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Google’s tensor processing units (TPUs) are integrated circuits specifically built to accelerate and scale
up machine learning workloads. They can perform fast distributed matrix multiplications and therefore
be repurposed for other computationally intensive tasks. In this work we demonstrate the use of TPUs
for accelerating and scaling up the density matrix renormalization group (DMRG), a powerful numerical
approach to compute the ground state of a local quantum many-body Hamiltonian. The cost of DMRG
scales with system size N as O(ND3), where the so-called bond dimension D regulates how expressive
the underlying matrix product state (MPS) variational ansatz is. We consider lattice models in two spatial
dimensions, with square lattices of size 10 × 10 (free fermions) and 20 × 20 (transverse field Ising model),
for which the required MPS bond dimension is known to scale at least as exp(

√
N ). Using half of a TPU v3

pod (namely 1024 TPU v3 cores), we reach an unprecedentedly large bond dimension D = 216 = 65 536,
for which optimizing a single MPS tensor takes about 2 min.
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I. INTRODUCTION

The density matrix renormalization group (DMRG)
[1,2] algorithm is the gold standard method for comput-
ing ground states and low-lying excited states of one-
dimensional (1D) local Hamiltonians [3–8]. Since its
original formulation, the DMRG method and its descen-
dants [9–15] have been applied to a wide variety of
problems, both in one and higher dimensions, rang-
ing from quantum chemistry [16–29] to material science
[30–32], quantum computing [33–41] and machine learn-
ing [42–49] to solving partial differential equations
[50,51]. Tensor network methods, of which DMRG is the
most successful incarnation, hold the promise of revolu-
tionizing these fields.

DMRG is an optimization method over a matrix prod-
uct state (MPS) [52–56], which is a powerful variational
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ansatz in the form of a one-dimensional tensor network.
For a system size N (where N denotes, e.g., the number of
sites in a lattice model or the number of electronic orbitals
in a molecule), the MPS is made of N tensors and the
computational cost of DMRG scales as O(ND3). Here, the
so-called bond dimension D determines how much quan-
tum entanglement the MPS is capable of accounting for,
and may depend on the system size, that is, D = D(N ). For
instance, to accurately represent a generic wave function,
the bond dimension must grow as D = exp(N ), making
the MPS optimization as expensive as a direct, brute-
force ground-state computation. Fortunately, most ground
states of local Hamiltonians in d spatial dimensions con-
tain restricted amounts of entanglement according to the
so-called area law (with possible logarithmic corrections).
Both the incredible success of DMRG for one-dimensional
systems and its challenges in higher dimensions can be
understood to be a direct consequence of this area law.

Such applications of DMRG in d > 1 dimensions,
while exceedingly difficult and computationally expensive,
are also tremendously important in order to account for
exotic quantum effects that other, less expensive meth-
ods fail to capture. Recent years have seen a growing
effort to understand how modern computer architectures,
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in particular high performance computing clusters, can
be used to speed up such computations [26,57–62]. In
this work we show that Googles’s tensor processing units
(TPUs) [63,64], originally developed for machine learning
workloads but more recently applied to other computa-
tional tasks [65–73], can be leveraged to perform, within
hours, large scale DMRG calculations of 2D quantum sys-
tems that would otherwise take many months to years to
finish on conventional shared memory hardware with up
to a few dozen CPU cores. We demonstrate the approach
in 2D square lattice models of sizes 10 × 10 and 20 × 20.
To the best of our knowledge, the largest bond dimension
employed, D = 216 = 65 536, sets a new record. (This is
achieved using only 1024 TPU v3 cores, namely half of a
TPU v3 pod, and without exploiting internal symmetries
in the MPS representation, and therefore there is signif-
icant room for further increasing D; see Sec. VI). These
results herald a new age of DMRG and, more generally,
tensor network methods, with the potential to transform the
computational landscape in all research areas where such
techniques are applied, from condensed matter to quantum
chemistry, materials science and machine learning.

The paper is organized as follows: in Sec. II we review
some relevant aspects of the DMRG algorithm, the MPS
ansatz, and the entanglement area law; in Sec. III we then
briefly describe TPUs; in Sec. IV we introduce the strategy
used to distribute DMRG on TPUs, including data distribu-
tion, a necessary out-of-core approach, and distributed ten-
sor contractions; in Sec. V we present benchmark results
using two models on a square lattice: free fermions and the
transverse field Ising model; we conclude the paper with
a summary and discussion in Sec. VI. We also include
Appendices A–C with additional technical details of our
DMRG implementation.

II. DENSITY MATRIX RENORMALIZATION
GROUP

In this section we present a brief review of the DMRG
algorithm [1] and the MPS ansatz [52], as well as other
relevant background material.

We consider a lattice system made of N sites, with each
site described by a vector space of finite dimension q and
orthonormal basis {|i〉}, i = 1, 2, . . . , q. For instance, with
q = 2, each site is represented by a two-dimensional vec-
tor space with orthonormal basis {|1〉 , |2〉}, corresponding,
e.g., to empty or occupied fermionic states {|0〉 , |1〉} if each
site represents a spinless fermionic degree of freedom, or
to spin-up or spin-down states {|↑〉 , |↓〉} if each site rep-
resents a spin- 1

2 quantum spin degree of freedom, as in
the two examples used later in this paper. The many-body
wave function of the lattice system then reads

|ψ〉 =
∑

i1i2···iN
ψ i1i2···iN |i1i2 · · · iN 〉 , (1)

where ψ i1i2···iN denotes qN (possibly complex) ampli-
tudes and |i1i2 · · · iN 〉 stands for the product basis |i1〉 ⊗
|i2〉 ⊗ · · · ⊗ |iN 〉 for the qN -dimensional vector space of
the N sites. Similarly, the local many-body Hamiltonian
expressed in the same basis reads

H =
∑

{i},{j }
Hi1j1i2j2···iN jN |i1i2 · · · iN 〉 〈j1j2 · · · jN | , (2)

although a more natural, efficient expression is as a sum of
local terms. Our goal is to compute an accurate approxi-
mation to the ground state |ψGS〉 of the lattice Hamiltonian
H, without explicitly storing the wave-function ampli-
tudes in Eq. (1), which would incur a computational cost
exponential in the system size N .

A. Matrix product decompositions

For that purpose, one can use the DMRG algorithm
[1], which is a variational method in the space of MPSs
[52]. The MPS ansatz consists of a collection of N order-3
tensors

{M1, M2, . . . , MN }. (3)

Each tensor Mk has (possibly complex) components
[Mk]ik

αk−1αk , where each index αk takes Dk different values
(that is, αk = 1, 2, . . . , Dk). In other words, for each value
of ik ∈ {1, 2, . . . , q}, tensor Mk defines a matrix [Mk]ik of
size Dk−1 × Dk with matrix elements labeled by indices
αk−1 and αk. Following a common practice, we refer to
the index ik labeling the local basis of states as a physi-
cal index, and to the indices αk−1 and αk as bond indices.
The bond indices α0 and αN will be chosen to have dimen-
sions D0 = DN = 1, so that, for fixed value of the physical
indices i1 and iN , [M1]i1 and [MN ]iN are not matrices
but vectors (of dimension D1 and DN−1 and components
[M1]i1

1α1
and [M2]iN

αN−11, respectively). Given the above N
tensors, the MPS ansatz assumes that the qN wave-function
amplitudes in Eq. (1) can be written as

ψ i1i2···iN =
∑

{α}
[M1]i1

1α1
[M2]i2

α1α2
· · · [MN ]iN

αN−11

= [M1]i1 · [M2]i2 · · · · · [MN ]iN , (4)

where in the first line we have explicitly written both
the indices of each tensor and the sum over the matrix
indices {α} = α1,α2, . . . ,αN−1, whereas in the second line
we regarded each [Mk]ik as a matrix (except for [M1]i1

and [MN ]iN , which are vectors) and used the matrix prod-
uct symbol ‘·’ to represent matrix-matrix multiplication
(respectively, matrix-vector multiplication). Note that the
name ‘matrix product state’ of this variational ansatz
comes from the fact that it expresses the wave-function
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amplitudes as the matrix product (4). We note in passing
that any wave function ψ i1i2···iN can be cast in principle
into a MPS form using a sequence of SV or QR decom-
positions. However, such an approach in general requires
exponential computational resources.

Intuitively, the MPS ansatz assumes that state |ψ〉 has a
restricted amount of entanglement. Indeed, the so-called
bond dimension Dk limits how much entanglement the
ansatz can represent between two parts of the system,
namely between a part containing the first k sites (from
site 1 to site k) and another part containing the rest of the
sites (from site k + 1 to site N ). In particular, the larger the
bond dimension Dk, the more entanglement the MPS can
account for between these two parts, and thus the more
capable the ansatz is to represent entangled many-body
wave functions. On the other hand, tensor Mk contains q ×
Dk−1 × Dk variational parameters, so that the cost of stor-
ing the MPS grows with the bond dimensions. Quite often,
the bond dimension Dk is chosen according to the rule

Dk =

⎧
⎪⎨

⎪⎩

qk for 1 ≤ k < k1,
D for k1 ≤ k ≤ k2,
qN−k for k2 < k ≤ N − 1,

(5)

namely such that it grows exponentially with k for small
k until it reaches some maximum allowed bond dimen-
sion D, and similarly with N − k for large k < N . Given a
choice of maximum bond dimension D, k1 above is simply
the smallest site index such that D < qk1 , whereas k2 is the
largest site index such that D < qN−k2 . In many applica-
tions the above prescription implies that most of the MPS
tensors have size q × D2. Then the memory space required
to store the MPS scales with the bond dimension D and
system size N as O(ND2).

The MPS ansatz comes with so-called gauge freedom
[74–76], in that the amplitudes ψ i1i2···iN are invariant
under the simultaneous change [Mk]ik → [Mk]ik · Qk and
[Mk+1]ik+1 → Q−1

k · [Mk+1]ik+1 , where Qk is any invertible
Dk × Dk matrix and Q−1

k is its inverse. Indeed, the dou-
ble replacement is easily seen to leave the matrix product
[Mk]ik · [Mk+1]ik+1 invariant in Eq. (4), so that the wave-
function amplitudes are not changed. Using this gauge
freedom, we can bring MPS (3) into the so-called central
gauge [74,75] with respect to site n,

{A1, . . . , An−1, Cn, Bn+1, . . . , BN }, (6)

where letters A and B are used to denote MPS tensors that
satisfy the following orthogonality constraints:

∑

ik

([Ak]ik )† · [Ak]ik = 1 for all k < n, (7)

∑

ik

[Bk]ik · ([Bk]ik )† = 1 for all k > n. (8)

The central tensor Cn above does not satisfy any of the
two relations. The central form is important in order to
both simplify, and provide numerical stability to, the MPS
optimization procedure, as briefly reviewed below.

The system’s Hamiltonian H in Eq. (2) can be similarly
expressed in matrix product operator (MPO) [77–81] form,
given in terms of a sequence of N order-4 tensors

{H1, H2, . . . , HN }, (9)

where each tensor Hk has components [Hk]ik jk
mk−1mk . For

fixed values of the physical indices ik and jk, we can think
of [Hk]ik jk as a D′

k−1 × D′
k matrix. We again refer to ik and

jk as physical indices and to mk−1 and mk as MPO bond
indices. The Hamiltonian coefficients in Eq. (2) can then
be written as

Hi1j1i2j2···iN jN =
∑

{m}
[H1]i1j1

1m1
[H2]i2j2

m1m2
· · · [HN ]iN jN

mN−11

= [H1]i1j1 · [H2]i2j2 · · · · · [HN ]iN jN . (10)

Importantly, in this case the MPO representation is not
used as a variational ansatz for the Hamiltonian H, but as
a convenient way of exactly representing it.

B. Variational energy optimization

The exact ground state |ψGS〉 of Hamiltonian H is state
|ψ〉 that minimizes the expectation value of the energy,
as given by E(|ψ〉) ≡ 〈ψ |H|ψ〉 / 〈ψ |ψ〉. Accordingly, a
MPS approximation |ψ�

MPS〉 to the ground state |ψGS〉 is
obtained by minimizing the energy

E(|ψMPS〉) = 〈ψMPS|H|ψMPS〉
〈ψMPS|ψMPS〉 (11)

over the set of states |ψMPS〉 that can be written as a MPS
(for some fixed choice of bond dimensions {Dk}),

|ψ�
MPS〉 = arg min

|ψMPS〉
E(|ψMPS〉). (12)

In the following we outline the main steps of the DMRG
algorithm, which aims at obtaining |ψ�

MPS〉, and refer the
reader to the literature [1,75] for more details.

Starting from some initial state |ψMPS〉 given by a set
of MPS tensors {Mk} in Eq. (3), the DMRG algorithm
attempts to minimize the energy E(|ψMPS〉) in Eq. (11)
by iteratively optimizing one MPS tensor at a time. More
concretely, we first optimize the tensor on site n = 1, then
the tensor on site n = 2, etc., all the way to the tensor on
site n = N , in what is known as a forward sweep. That
is followed by a backward sweep, progressing from the
last site to the first one. For a given site n, the optimiza-
tion proceeds as follows. First, the MPS is written in the
central canonical form for that site, namely as in Eq. (6).
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FIG. 1. Left: matrix distribution pattern on TPU cores. The
figure shows the distribution pattern of a D × D matrix on eight
available TPU cores, arranged on a 4 × 2 torus. Each colored
panel has shape D/4 × D/2. Right: tensor network diagram
for a key tensor contraction in the DMRG algorithm, where
the one-site MPS tensor (regarded as an effective vector wave
function for a given site) is multiplied by three other tensors
(corresponding to an effective Hamiltonian for that site).

Then the central tensor Cn is replaced with a new tensor C′
n

that is chosen in a way as to optimally lower E(|ψMPS〉)
while keeping the rest of the MPS tensors constant. This
is accomplished by diagonalizing a linear operator using
a Krylov-space method such as the Lanczos method (see
Fig. 1 and the text below for more details). The lead-
ing computational cost of the DMRG algorithm scales as
O(N (qD′D3 + q2D′2D2)).

The DMRG algorithm proceeds with forward and back-
ward sweeps until either the energy E(|ψMPS〉) has con-
verged to some desired accuracy, or a maximum sweep
number has been reached. Although ideally one would
like to obtain the optimal MPS ground-state approxima-
tion |ψ�

MPS〉 in Eq. (12), in practice, it is understood that
one must settle for a reasonably converged MPS ground-
state approximation, also denoted |ψ�

MPS〉 in the rest of this
paper.

C. Computational cost and area law

For simplicity, from now on we assume a uniform MPS
bond dimension D. Optimizing a central tensor Cn →
C′

n (e.g., using the Lanczos method) as well as shifting
the central canonical form (6) from site n to site n + 1
(which can be accomplished using a polar, QR, or singu-
lar value decomposition [82]) both have a computational
cost O(D3), leading to a total cost per optimization sweep
that scales with bond dimension D and system size N as
O(ND3). It is important to emphasize the linear scaling
in N at fixed D, as opposed to the exponential scaling
incurred in a brute-force ground-state computation using
the qN amplitudes in Eq. (1). However, in order to achieve
some desired accuracy with a MPS computation, the bond
dimension D may need to be adjusted as a function of the
system size N , that is, in general D = D(N ), in which case
the scaling of computational resources may no longer be
linear in N .

In order to gain further insight into computational costs,
a useful rule of thumb is to think that the bond dimension
D must grow exponentially with the entanglement entropy
S [83–85] of the target ground state |ψ GS〉 for half of
the system, that is, D ∼ exp(S). For a generic (nonlocal)
Hamiltonian H, the half-system entropy of the ground
state is expected to grow linearly in the system size, S ≈
N , a scaling known as the entanglement volume law. In
this case, the bond dimension must grow exponentially
with system size, D ∼ exp(N ), and using a MPS repre-
sentation is not computationally advantageous with respect
to a brute-force computation. Luckily, ground states of
local Hamiltonians often have a more forgiving scaling
of entanglement entropy S with system size N , known as
the entanglement area law [83,85–92] (sometimes with a
logarithmic correction), which justifies the use of a MPS
representation and the DMRG algorithm.

Specifically, in a d-dimensional cubic lattice made of
N = Ld sites, the half-system entropy of a state obeying
the area law scales as

S ∼ Ld−1 = N (d−1)/d (area law) (13)

or, in the presence of a logarithmic correction, as

S ∼ N (d−1)/d × log N (logarithmic correction). (14)

The above rule of thumb then indicates that the required
MPS bond dimension should respectively scale as

D ∼ exp(N (d−1)/d) (area law), (15)

D ∼ exp(N (d−1)/d)× poly(N ) (logarithmic correction).
(16)

In d = 1 dimensions, the ground state typically obeys an
area law if the local Hamiltonian has a finite energy gap.
In this case S ∼ N 0 suggests that a constant bond dimen-
sion D, independent of the system size N , may suffice
to accurately approximate the ground state |ψ GS〉 with
a MPS, resulting in an overall computational cost lin-
ear in N . For gapless Hamiltonians in d = 1 dimensions,
the ground state often exhibits a logarithmic correction to
the area law, S ∼ log(N ), resulting in a polynomial bond
dimension D ∼ poly(N ) and thus also a computational
cost that grows as some power of the system size N . We
conclude that DMRG is efficient for ground states of d = 1
systems.

In d = 2, 3 dimensions, ground states of gapped and
gapless local Hamiltonians often obey the entanglement
area law, with some gapless systems (e.g., systems with
a Fermi surface of dimension d − 1) also displaying log-
arithmic corrections. For such systems, the above rule of
thumb indicates that DMRG has cost that scales at least as
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exp(
√

N ) and exp(N 2/3) in d = 2, 3 dimensions, respec-
tively. Note that, in spite of this exponential scaling of
computational costs (in a fractional power of N ), DMRG
still has significant advantage with respect to the exp(N )
scaling of a brute-force computation.

While the area law (with possible logarithmic correc-
tions in certain critical systems) has mostly been investi-
gated in regularly structured lattice models, we expect it to
also roughly apply to more generic systems, such as large
molecules in d = 3 dimensions, where DMRG is used in
the context of quantum chemistry [16–29].

In conclusion, DMRG is efficient in d = 1 dimensions,
where it is firmly established as the method of choice to
compute ground states. On the other hand, DMRG scales
exponentially as exp(

√
N ) and exp(N 2/3) in d = 2, 3

dimensions. In spite of this unfavorable scaling, DMRG
is actively used in restricted d > 1 geometries such as thin
two-dimensional strips and cylinders [93–107] and small
three-dimensional molecules [29,108–115]. In such cases,
the massive computational cost of running DMRG consti-
tutes the main roadblock to studying larger systems. As we
show in this work using tensor processing units, special-
ized hardware originally developed to accelerate and scale
up machine learning workloads can be repurposed to also
accelerate and scale up DMRG computations, significantly
increasing the bond dimension D that can be afforded. This
allows us to use DMRG to more accurately address larger
systems in d > 1 dimensions.

III. TPU CORES, BOARDS, AND PODS

TPUs are application-specific integrated circuits devel-
oped by Google specifically for large-scale machine learn-
ing applications [63,64]. However, in recent times a grow-
ing number of papers have demonstrated their applicabil-
ity to accelerating and scaling up other computationally
intensive tasks, including large-scale dense linear alge-
bra operations [67], the simulation of quantum circuits
[70,71], brute-force ground-state computation and dynam-
ics simulation in quantum many-body systems [65,66,69],
and quantum chemistry electronic structure computations
using density functional theory [68,72,73]. In this work
we focus on TPUs of third generation, denoted v3 in
the following. (After completion of our work, TPUs of
fourth generation, with increased compute power, were
made available. The results presented in this work can be
straightforwardly generalized to TPU v4.) In the third gen-
eration, eight TPU v3 cores form a TPU board, and up to
256 TPU v3 boards can be connected into a TPU pod (with
2048 TPU v3 cores).

A single TPU v3 core is equipped with two matrix-
multiplication units (MXUs) and 16 GB of on-chip, high-
bandwidth memory (HBM). A MXU is a systolic array
that can multiply matrices of size 128 × 128 natively,
using multiplication of floating numbers in half precision

(specifically, in brain float 16 format, or bf16) and accumu-
lation in single precision (fp32). Using six passes through
the MXU, a single TPU core can however also deliver
over 10 TFLOPS of single-precision (fp32) matrix-matrix
multiplication.

At the next level we find a TPU board, which is
actually the smallest available configuration, with eight
TPU v3 cores and one controlling host CPU machine.
The eight cores are arranged on a 2D torus and,
importantly, each core is connected to its neighbors
through a fast intercore interconnect (ICI) communica-
tion link (with 656-GB/s bandwidth [64]). A TPU board
has a total of 128 GB of HBM and can yield up
to about 80 TFLOPS of single-precision matrix-matrix
multiplication [67].

Finally, up to 256 TPU boards (that is, up to 2048 TPU
cores) can be joined into a TPU v3 pod, where the cores
are again arranged on a 2D torus and directly connected
to nearest neighbors with ICI links, with a total of 32 TB
of HBM and near 20 PFLOPS of single-precision matrix-
matrix multiplication [67]. One can also use a slice of a
pod containing an intermediate number of TPU cores. For
instance, in Fig. 4 below we provide performance results
and estimates for slices with 32, 128, 512, and 2048 cores.
The largest TPU configuration we use in this work is half
a pod (that is, 1024 cores).

TPUs can be programmed using XLA [116], an opti-
mized graph compiler that translates from roughly C-
like commands called HLOs to roughly assemblylike
equivalents called LLOs. The HLOs themselves may
be written directly, but are usually instead “traced”
from any of several higher-level languages. For the
DMRG work presented in this paper, we wrote the
code with Jax [117], a NumPy-like interface to XLA,
following the single-instruction multiple data (SIMD)
paradigm.

IV. DMRG ON TPUS

The performance of our large-scale implementation of
DMRG on multicore TPU configurations is based on three
main points: (i) individual MPS tensors (and other aux-
iliary tensors) are distributed through the available TPU
cores; (ii) an out-of-core approach is adopted in order to
more efficiently use the 16 GB of high-bandwidth memory
on each TPU core; (iii) tensor contractions are accelerated
through parallelization.

A. Data distribution

The largest data objects in a DMRG simulation are (a)
the N order-3 MPS tensors Mn that contain the variational
parameters of the ansatz and (b) two sets of N auxiliary
tensors Ln and Rn, called left and right environment Hamil-
tonian tensors [1,75], which, given a choice of central site
n, represent a contraction of MPS and MPO tensors for
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all sites k < n and all sites k > n, respectively. In compo-
nents, we can write [Mn]i

αβ , [Ln]m
αβ , [Rn]m

α,β , where greek
letters are used to denote “large” indices, such as the MPS
bond indices, with size D that in our implementation could
potentially be scaled up to D ∼ 105, whereas roman letters
are used to denote “small” indices, namely the physical
index i taking q values for q = 2 in the examples below,
and the MPO bond dimension D′, which in those examples
grows up to D′ ∼ 100.

Let T denote any of these order-3 tensors, with com-
ponents [T]i

αβ . In our implementation, we regard tensor
T as a collection {Ti=1, Ti=2, . . .} of large matrices, where
each matrix Ti has components [Ti]αβ given by [T]i

αβ . Each
matrix Ti is then distributed across all available TPU cores
in a checkerboard fashion, as shown in Fig. 1 for the case
of eight TPU cores. Each matrix panel is stored in the
high-bandwidth memory of the corresponding TPU core.
Since in SIMD code each matrix panel is expected to have
the same size, matrix dimensions are chosen appropriately
such that they can be evenly divided by the grid shape
of the TPU cluster. The motivation to distribute data in
this way will become clear below, where tensor contrac-
tions are reduced to sequences of distributed matrix-matrix
multiplications.

B. Out-of-core approach

The memory required to store the MPS tensors and
the left and right environment Hamiltonian tensors scales
as O(ND2q) and O(ND2D′), respectively, where N is the
number of sites, D the MPS bond dimension, q the phys-
ical index dimension, and D′ the MPO bond dimension.
For large DMRG computations, these memory require-
ments can quickly become prohibitive, when compared to
the total available HBM on TPUs. For example, for a sys-
tem of two-level quantum degrees of freedom on each site
(local dimension q = 2) on a square lattice made of a 10 ×
10 grid (number of sites N = 100) with a local Hamil-
tonian consisting only of a nearest-neighbor fermionic
hopping term (MPO bond dimension D′ = 22) and with
a MPS bond dimension D = 216 = 65 536, the minimally
required memory using single precision (4 bytes per fp32)
grows to about 32 TB, which therefore already exhausts
the maximally available 32-TB HBM of an entire TPU v3
pod.

On the other hand, at any given time of a DMRG
optimization sweep only a small number of such tensors
are really required for processing on the TPUs. We have
therefore adopted an out-of-core approach, where the bulk
of the data is stored on hard drives (which are readily
and cheaply available). For one optimization step of the
DMRG algorithm, the necessary data are read from hard
drive into the HBM of the TPUs, where the relevant opti-
mization step is executed, then the result is written back to
the hard drive. To minimize the idling time of the TPUs,

we utilize three simultaneous threads to perform DMRG
optimization on the TPUs, and reading and writing of data
from and to the disk.

C. Distributed tensor contractions

To illustrate how tensor contractions are performed in a
distributed way, let us consider the contraction of the ten-
sor network shown in the right panel of Fig. 1, which is
the bottleneck operation in the DMRG algorithm. Given
a site n, the tensor network contains the central MPS
tensor Cn for that site, as well as the left and right envi-
ronment Hamiltonian tensors Ln and Rn and the MPO
tensor Hn. Conceptually, we can think of the contraction of
this tensor network as corresponding to a “vector-matrix”
multiplication, if we regard the central MPS tensor Cn
as representing a “vector” (an effective wave function
on site n) and the remaining three tensors as represent-
ing a “matrix” (an effective Hamiltonian H eff on site n).
This effective “vector-matrix” multiplication needs to be
performed several times as part of the Lanczos tridiag-
onalization (which aims to compute the ground state of
the effective Hamiltonian H eff on site n as part of a single
DMRG optimization step).

In order to proceed, we first preprocess the MPO
tensor Hn, with components [Hn]ij

αβ that often vanish
(sparse MPO), into a list of nonzero components v =
{v1, v2, . . . } and their corresponding multi-indices p =
{(a1, b1, c1, d1), (a2, b2, c2, d2), . . . } such that H akbk

ckdk
= vk.

The tensor network contraction is then performed by
looping over all elements in the lists; see Algorithm 1
below. Note that, for each nonzero value in v, we must per-
form two matrix-matrix multiplications involving matrices
from tensors Ln, Cn, and Rn. As explained above, each
of these matrices has been suitably distributed among the
TPU cores. Then we multiply them using the scalable uni-
versal matrix multiplication algorithm (SUMMA) [118],
following a TPU implementation discussed in Ref. [67].
Each iteration of the loop produces a different distributed
matrix, which is weighted by the corresponding weight vk
and added to one of the q matrices that will constitute the
final order-3 tensor with the result of the tensor network
contraction.

This approach is particularly appealing for highly sparse
MPO tensors, as one typically finds when the MPO is

1: function contract(i, v, L,R, C)
2: M = zeros like(C) Container for storing the final contraction result
3: for n = 0 . . . len(i) − 1 do
4: a, b, c, d = i[n]
5: T = SUMMA(SUMMA(L[c, . . .], C[a, . . .]), R[d, . . .])
6: M [b, . . .]+= v[n]*T Accumulate matrix multiplications
7: end for
8: return M

9: end function

Algorithm 1. Contraction algorithm
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encoding a local Hamiltonian of a lattice model. For dense
MPO matrices, as, e.g., appearing in some quantum chem-
istry applications of DMRG, a vectorized approach can be
more efficient.

While the discussion above focuses on the computation
of the energy, the computation of other observables (local
or nonlocal) can be carried out in the same way using
standard techniques.

Another important step in the DMRG algorithm is tensor
orthogonalization [75], which is traditionally implemented
using a QR decomposition or a singular value decomposi-
tion. In this work we choose to perform orthogonalization
using instead a polar decomposition (which, in a so-called
two-site DMRG approach can also be used for optimal
tensor truncation). Further implementation details can be
found in the Appendix A.

V. RESULTS

In order to benchmark our distributed implementation
of DMRG on TPUs, we compute a MPS approximation
|ψ�

MPS〉 to the ground state |� GS〉 of two different 2D
square lattice models. The first one is a model of free
spinless fermions on a lattice of size 10 × 10, which can
also be solved efficiently using the free fermion formal-
ism, so that we have the exact solution to compare against.
Its ground state displays a logarithmic correction to the
area law, making this model extremely challenging from
a DMRG perspective. The second model is the transverse
field Ising model on a lattice of size 20 × 20, for which we
do not have an exact solution, but other techniques can be
used. The ground state of this model obeys an area law.
This makes it less computationally demanding for DMRG,
allowing us to consider a larger lattice.

The two models analyzed in this section are already
well understood. We have chosen them mostly for two
reasons. On the one hand, they are challenging from a
DMRG perspective and, as such, can be used to meaning-
fully illustrate the use of very large bond dimension, as
made available by TPUs. On the other hand, such models
are often also used to benchmark other methods, including
quantum Monte Carlo [119] and numerical linked-cluster
expansions [120] or other tensor network algorithms such
as those based on a tree tensor network [121], the multi-
scale entanglement renormalization ansatz [122,123], and
projected entangled pair states (PEPSs) [124]. Benchmark-
ing DMRG on the same models (although for different
system sizes) enables useful comparisons.

A. Free fermion model

We first consider, on a 10 × 10 square lattice with N =
100 sites, the nearest-neighbor Hamiltonian

H SF = −
∑

〈i,j 〉
ĉ†

i ĉj + μ
∑

i

ĉ†
i ĉi (17)

with ĉi (anticommuting) fermionic annihilation operators
and μ the chemical potential. This model describes a sys-
tem of noninteracting electrons that can hop from each
site to its nearest-neighboring ones, where the value of μ
can be tuned to determine the number of electrons in the
ground state (e.g., N/2 = 50 particles for μ = 0). Using
the free fermion formalism, the quadratic Hamiltonian (17)
can be numerically diagonalized with computational cost
that scales just as O(N 3), instead of the generic O(exp(N ))
of a brute-force diagonalization. This is in contrast with
the interacting case (e.g., if we added quartic terms to the
above Hamiltonian), where the free fermion formalism can
no longer be used. Here, the ground-state energy from the
O(N 3) diagonalization will be used to assess the accuracy
of the DMRG result.

It is important to emphasize that, despite the lack of
interactions, computing the ground state of Hamiltonian
(17) is still a formidable challenge from the perspective of
the DMRG algorithm. Indeed, for a sufficiently small value
of |μ|, this Hamiltonian is seen to describe a system with a
one-dimensional Fermi surface, which results in the pres-
ence of a large number of gapless excitations. As such, its
ground state |ψ GS〉 displays a logarithmic correction to the
area law [83,89], implying that an accurate MPS approx-
imation |��

MPS〉 requires a bond dimension D expected to
scale faster than O(exp(

√
N )); see Eqs. (14) and (16) for

d = 2. This is the strongest scaling of ground-state entan-
glement (and bond dimension D) observed to naturally
occur in condensed matter systems in d = 2 dimensions.
Thus, as far as DMRG is concerned, this noninteracting
lattice model is not easier than a strongly interacting lattice
model.

Figure 2 presents the DMRG approximations E(|ψ�
MPS〉)

for the ground-state energy E(|ψ GS〉) for μ = 0 (half fill-
ing). The Hamiltonian is encoded in a MPO with bond
dimension D′ = 22. The top panel shows the converged
DMRG energy as a function of the bond dimension D.
The red line denotes the numerically exact value obtained
from a O(N 3) diagonalization. The bottom panel in Fig. 2
shows the evolution of the relative error of this energy as
a function of bond dimension D. At D = 216 the approx-
imation achieves a relative accuracy of less than one part
in a million. Note that simulations are carried out in sin-
gle precision, limiting the maximum achievable accuracy
to about 10−7. To the best of our knowledge, these are the
largest DMRG computations (in terms of bond dimension)
to date. Results for D = 216 = 65 536 are obtained within
roughly 15 h on a slice of a TPU v3 pod made of 512
cores. We use 10 sweeps and a Krylov dimension of four
for the sparse diagonalization required for optimizing each
tensor.

A remark regarding internal symmetries in the MPS
representation is in order. Hamiltonian H SF commutes
with the particle number operator N = ∑

i ĉ†
i ĉi, indicating
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Exact

FIG. 2. Top: convergence of the DMRG ground-state energy
towards the exact value as a function of bond dimension D for a
2D system of spinless free fermions on a 10 × 10 square lattice.
Bottom: convergence of the relative error in energy for the same
system.

particle number preservation, an internal U(1) symme-
try generated by N . Thus, its ground state |ψ GS〉 also
has a well-defined particle number N GS, N |ψ GS〉 =
N GS |ψ GS〉. This can be exploited in DMRG [76,125–
128]. Indeed, by specializing the MPS tensors Mk to be
themselves invariant (covariant) under the Abelian U(1)
symmetry group, we can ensure that the MPS represen-
tation is exactly symmetric with the correct number N GS
of particles, N |ψMPS〉 = N GS |ψMPS〉. In addition, this
confers each MPS tensor a block-sparse structure that
significantly reduces the number of variational parameters
to be optimized, as well as the required computational cost.

Our current distributed implementation of DMRG on
TPUs does not enforce or exploit the above model’s inter-
nal U(1) symmetry. Our goal here is to benchmark the
performance of DMRG in a way that the results are rep-
resentative of a more general 2D lattice model, where
such internal symmetry may not be present (see, e.g.,
our next example). We foresee nevertheless no obstruc-
tion to incorporating particle conservation in our current
implementation.

B. Transverse field Ising model

As a second benchmark, we also consider the transverse
field Ising model,

H TFI = −
∑

〈i,j 〉
σ̂ z

i σ̂
z
j + B

∑

i

σ̂ x
i (18)

on a 20 × 20 square lattice with N = 400 sites. Here σ̂ x
i

and σ̂ z
i are Pauli matrices and B the magnetic field strength.

This model represents a system of spin- 1
2 quantum spin

degrees of freedom with ferromagnetic interaction σ̂ z
i σ̂

z
j

between nearest-neighbor spins and subject to an external
transverse magnetic field. This model is invariant under
spin-flip transformations (internal Z2 symmetry) gener-
ated by the unitary operator U = ∏

i σ̂
x
i , which we again

do not enforce or exploit in our DMRG implementation.
The model has a quantum critical point for Bc ≈ 3.04,
and thus we expect the ground state |ψ GS〉 at or near
this value of the magnetic field to be robustly entangled.
Since there is no Fermi surface, the ground-state entan-
glement entropy scales as an area law without logarithmic
corrections, as previously confirmed using other methods
[119,120,122,123]. Accordingly, the bond dimension D
required for an accurate approximation |ψ�

MPS〉 scales as
O(exp(

√
N )); see Eqs. (13) and (15) for d = 2. This is still

a very challenging computation for DMRG, but the milder
scaling of the entanglement entropy (compared to the free
fermion model above) allows us to consider a larger lattice.

Figure 3 shows the DMRG approximation E(|ψ�
MPS〉)

for the (unknown) ground-state energy E(|ψ GS〉) of the
transverse field Ising Hamiltonian (18) on a 20 × 20 square
lattice, at a near-critical magnetic field strength of B = 3.0
and exactly encoded in a MPO with bond dimension D′ =
22. The plot shows how the converged DMRG energy per
site appears to saturate to a constant as we increase the
bond dimension D, in clear analogy with Fig. 2 for the
spinless fermion model, where such saturation was to the
correct value of the ground-state energy. While this model
cannot be solved analytically, results from numerical stud-
ies using, e.g., Monte Carlo or tensor network methods
[124] are available, albeit not at the exact same system
size. At bond dimension D = 215 = 32 768 our simula-
tions already reached the maximum level of achievable
accuracy within single-precision arithmetic.

C. Scaling of runtimes

Finally, Fig. 4 shows measured and estimated runtimes,
for fixed MPO bond dimension D′ = 22 and as a function
of the MPS bond dimension D, for the update of a sin-
gle MPS tensor. These times include the time to perform
the Lanczos tridiagonalization, the orthogonalization of the
optimized tensor, and the update of one left or right block
Hamiltonian.
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D
M

RG

FIG. 3. Convergence of the DMRG ground-state energy per
site as a function of bond dimension D for the critical trans-
verse field Ising model on a 20 × 20 lattice, leading to an
energy density of −3.181 97(2). For comparison, Lubasch et al.
[124] obtained the values −3.172 10(1) and −3.182 43(1) for the
energy density using a PEPS simulation on 11 × 11 and 21 × 21
lattices, respectively.

At fixed TPU configuration (fixed color in the plot), the
runtimes are seen to scale with the MPS bond dimension D
as D3. On the other hand, if every time that we double the
bond dimension we quadruple the number of TPU cores
(see the data points for D = 215, 216, 217, and 218 for 32,
128, 512, and 2048 cores, respectively), then the runtimes
grow approximately only linearly in D. The type of scaling
is key to reaching unprecedentedly large bond dimensions
with affordable run times.

Figures 5(a) and 5(b) show strong and weak scaling
behavior, respectively, for a DMRG-style matrix-vector
operation (see Fig. 1, right panel). In the strong scaling
case for D = 16 384 we observe a runtime reduction by a
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)

FIG. 4. Measured and estimated runtimes per DMRG opti-
mization step (including the Lanczos update, tensor orthogonal-
ization, and update of the effective environment Hamiltonian) on
different TPU cluster sizes. The solid line is proportional to the
expected D3 scaling of the DMRG algorithm.
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FIG. 5. (a) Strong scaling analysis for a DMRG-style matrix-
vector operation for a bond dimension of D = 16384 on an
increasingly larger number of TPU cores. Doubling the number
of devices we observe a roughly (20.766 ≈ 1.7)-fold reduction in
runtime. For ideal strong scaling, the slope of the line would
be −1, compared to the measured −0.766. (b) Weak scaling
analysis of the same DMRG-style matrix vector operation as in
(a). Between subsequent data points from left to right, the bond
dimension is doubled while the number of devices is quadrupled.
Doubling the bond dimension increases runtimes by 23, while
quadrupling the number of cores should (ideally) reduce runtimes
by a factor of 4, resulting in an (ideal) increase of runtimes by a
factor of 2. The slope of 1.05 in the figure shows that we essen-
tially observe such ideal scaling (namely slope 1.0) for the largest
problem sizes investigated.

factor of 20.766 ≈ 1.7 upon doubling the resources, some-
what short of the ideal factor of 2. For the weak scaling
case [shown in Fig. 5(b)] on the other hand, we observe an
almost ideal scaling of runtimes (by a factor of 2) upon
both doubling the bond dimension and quadrupling the
amount of TPU cores.

VI. SUMMARY AND DISCUSSION

We have presented an implementation of the DMRG
algorithm on Google’s TPUs. Our implementation
leverages the distributed accelerated hardware and
high-bandwidth memory of a TPU cluster to perform
DMRG simulations at unprecedented scale, speed, and
accuracy. We benchmarked the implementation on two
problems that are notoriously difficult from a DMRG per-
spective, namely a system of spinless fermions on a 10 ×
10 square lattice known to display a logarithmic correc-
tion to the area law, and the (near-)critical transverse field
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Ising model on a 20 × 20 lattice. We performed simu-
lations with bond dimensions of up to D = 216, to the
best of our knowledge the largest ever simulated bond
dimension so far. We obtained converged results at these
bond dimensions in just less than a day. We estimate that
such simulations would take months to years on standard
shared-memory hardware with up to a few dozen CPU
cores, using highly efficient, compiled code. Our results
show that compute clusters of hardware accelerators can
be leveraged very efficiently for tensor network computa-
tions. For our demonstration, we used TPUs, but we would
like to emphasize that similar results can be obtained with
a cluster of tightly connected graphic processing units
(GPUs).

There are several obvious ways to further improve the
performance of our implementation of DMRG on TPUs.
On the one hand, at an algorithmic level, we already
mentioned that one can exploit the internal symmetries
of a model [e.g., internal U(1) symmetry corresponding
to particle number conservation in the 2D free fermion
model (17)]. Incorporating the internal U(1) symmetry
into our implementation of DMRG will lead to a substan-
tial reduction of variational parameters and runtimes for
the same (effective) bond dimension. At fixed TPU con-
figuration, we expect to then be able to further increase
the maximal bond dimension D by perhaps up to about
5–10 times. On the other hand, the largest TPU con-
figuration used in this work was made of 1024 cores,
or half a TPU v3 pod. Using a full TPU v3 pod with
2048 cores would result in a roughly 2 times faster
computation at fixed bond dimension D. Alternatively,
it would allow us to increase the largest D by a factor√

2. While conducting our simulations, Google announced
the fourth generation of TPUs, which are currently avail-
able. A TPU v4 pod (with 8192 TPU v4 cores) would
allow for an additional 2 times increase of the maximal
bond dimension D at comparable runtimes. On the other
hand, a superpod of NVIDIA’s DGX nodes (with each
DGX node containing eight A100 or H100 GPUs) could
be utilized in a similar way to reach even larger bond
dimensions.

It is worth pointing out that MPS algorithms similar to
DMRG also form the basis for more sophisticated tensor
networks approaches like, e.g., projected entangled pair
states for 2D quantum lattice systems [12], and the avail-
ability of fast, large-scale MPS algorithms hence directly
impacts not only DMRG but the field of tensor network
algorithms as a whole.

In conclusion, the large-scale implementation of DMRG
with TPUs presented in this paper may have profound
impacts in fields such as condensed matter physics [95,
107], quantum chemistry [16–29], and material science
[30–32] to machine learning [42–49], where MPS and
tensor network algorithms are either well established or
rapidly gaining traction.
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APPENDIX A: TENSOR ORTHOGONALIZATION

A crucial step in the DMRG method is the orthog-
onalization of an optimized MPS tensor M with com-
ponents M i

αβ . That refers to either one of the following
decompositions:

[M ]i
αβ =

∑

γ

[A]i
αγ [R(l)]γβ (left orthogonalization),

(A1)

[M ]i
αβ =

∑

γ

[R(r)]αγ [B]i
γβ (right orthogonalization).

(A2)

Here tensors A and B satisfy the left and right isomet-
ric constraints in Eqs. (7) and (8), respectively, which we
rewrite here in components as

∑

i,γ

(
[A]i

γα

)∗ [A]i
γβ = δαβ (left isometry), (A3)

∑

i,γ

[B]i
αγ

(
[B]i

βγ

)∗ = δαβ (right isometry). (A4)

In the following we focus on the left orthogonaliza-
tion, Eqs. (A1) and (A3). The right orthogonalization in
Eqs. (A2) and (A4) can be obtained similarly. For the rest
of this appendix, we regard tensor M as a matrix, defined
to have coefficients

[M ](iα)β = [M ]i
αβ , (A5)

where we joined tensor indices i and α into a single matrix
index (iα) (note that prior to joining i and α, index i was
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changed from an upper index to a lower index, which
is a trivial change in our setting). This corresponds to a
so-called reshaping operation, which turns tensor M into
a matrix (also denoted M !) according to Eq. (A5). Note
that matrix M is in general rectangular. For instance, at
constant MPS bond dimension D, it has shape (qD)× D,
where q is the dimension of the vector space describing
one site of the lattice, so that it has q times more rows than
columns. Our goal is to obtain D orthonormal columns, in
the sense of Eq. (A3).

Two popular approaches to orthonormalize M are the
use of either a QR decomposition or a singular value
decomposition (SVD) of M . A TPU distributed version
of QR or SVD was not available to us at the time we
implemented DMRG. We were able to implement instead a
TPU distributed version of the polar decomposition, which
requires mostly distributed matrix-matrix multiplications
and additions. The polar decomposition of M reexpresses
this matrix as a product of an isometric (qD)× D matrix
U and a positive semidefinite Hermitian D × D matrix H ,
i.e.,

M = U · H . (A6)

We can then obtain tensor A and matrix R(l) in Eqs. (A1)
and (A3) from U and H simply according to

[A]i
αβ = [U](iα)β , [R(l)]αβ = [H ]αβ . (A7)

The polar decomposition can be obtained by first normal-
izing M into X0 so that its largest singular value is upper
bounded by 1, namely,

X0 = M/z, z = ||M || =
√

tr(M † · M ), (A8)

and then converging the Newton-Schultz iteration:

Xi+1 = Xi · ( 3
21 − 1

2 X †
i · Xi

)
. (A9)

It is easily verified that each iteration step in Eq. (A9)
applies the polynomial P(x) = 3

2 x − 1
2 x3 to the (renormal-

ized) singular values of M , while preserving its left and
right singular vectors. Iterative application λi+1 = P(λi)

maps initial real numbers λ0 in the interval (0, 1] to 1, in
the limit i → ∞ (when a singular value x is not too small,
the iteration will turn it into 1 quadratically, that is, with
a deviation from 1 that is suppressed quadratically in the
number of iterations). Equation (A9) hence converges to
the polar factor U of X0 (and thus of M ) [129]. We can then
also obtain H from M and U simply using H = U† · M .

It is instructive to relate the polar decomposition to the
SVD of M , given by M = W · S · V, where S is a diag-
onal matrix with the singular values and W and V are

1: function polar factor(M)
2: z = M

3: M ← M/z

4: q = M .shape[0]
5: converged = False
6: while not converged do
7: T= zeros like(M [0, . . .])
8: for i=0. . . q − 1 do
9: T+=SUMMA(M [i, . . .],M [i, . . .],

10: herm A=True, Hermitian transpose of A

11: herm B=False)
12: end for
13: for i = 0 . . . q − 1 do
14: M [i, . . .] ← 3

2M [i, . . .] − 1
2SUMMA(M [i, . . .], T )

15: end for
16: converged = CHECK UNITARITY(M)
17: end while
18: return M

19: end function

Algorithm 2. Newton-Schultz iteration for the polar factor
of M

unitary (or isometric) matrices. The unitary (or isometric)
and Hermitian factors U and H then read

U = W · V, H = V† · S · V, (A10)

where we have used the fact that

M = W · S · V = (W · V) · (V† · S · V) = U · H .

We note that the case of singular values that are identi-
cally zero can be approximately addressed by adding to
M a diagonal constant perturbation of magnitude equal to
machine precision ε.

Iteration (A9) requires only matrix multiplications,
transpositions, matrix addition, and complex conjugation
as fundamental operations. In the distributed setting, we
implement the first two using the well-known SUMMA
algorithm [118] for distributed matrix multiplications
(SUMMA can also handle the case of multiplication of
transposed matrices). Matrix addition and matrix complex
conjugation of distributed matrices is trivial in that it can
be carried out locally on each core.

APPENDIX B: TENSOR TRUNCATION

Another operation of central importance in some imple-
mentations of DMRG (and, more generally, in many other
tensor network algorithms) is truncation of a matrix,
namely rank reduction by retaining only its largest singular
values. In DMRG, this is needed in the context of a two-
site update. The DMRG implementation described in this
paper corresponds to a one-site update and does not require
tensor truncations, but here we explain how to implement
them for completeness.

Consider a matrix M and its SVD

M = W · S · V, (B1)

where W and V are unitary (or isometric) matrices and S is
a diagonal matrix with the singular values sα of M in its
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diagonal, that is, [S]αα = sα , organized in decreasing order
s1 ≥ s2 ≥ · · · ≥ sm ≥ 0. In components, the SVD reads

[M ]αβ =
m∑

γ=1

[W]αγ sγ [V]γβ . (B2)

Before proceeding further, we note here that in tensor net-
work algorithms, matrix M to be truncated will often result
from reshaping a higher-order tensor (e.g., an order-4 ten-
sor assigned to two adjacent sites of a lattice in a two-site
DMRG update). However, the specific origin of M is not
important in our discussion below.

A δ-truncated singular value decomposition of M cor-
responds to the SVD of another matrix M̃ obtained by
keeping only the singular values sα of M that are larger
than δ. Suppose that there are m′ (with m′ ≤ m) such
singular values. Then M̃ is defined through

[M̃ ]αβ =
m′∑

γ=1

[W̃]αγ sγ [Ṽ]γβ , (B3)

where W̃ and Ṽ are obtained from W and V by keeping only
their first m′ columns and rows, respectively. That is,

[W̃]αγ = [W]αγ for all α, 1 ≤ γ ≤ m′, (B4)

[Ṽ]γβ = [V]γβ for all β, 1 ≤ γ ≤ m′. (B5)

We can similarly define a truncated singular value matrix
S̃, of size m′ × m′, as the diagonal matrix that contains
the m′ singular values sα organized in decreasing order,
such that

[S̃]γ γ = [S]γ γ = sγ , 1 ≤ γ ≤ m′. (B6)

Matrix M̃ = W̃ · S̃ · Ṽ can then be seen to be the rank-
m′ best approximation to M , in that the difference matrix
� ≡ M − M̃ has the smallest possible norm ||�|| =√

tr(� ·�†).
Our goal is to produce two matrices F and G, with m′

columns and rows, respectively, such that their product
equates to M̃ , that is,

M̃ = F · G. (B7)

In a tensor network algorithm, the pair F , G corresponds
to adjacent tensors where the bond index connecting them
has been truncated (e.g., two adjacent MPS tensors during
a two-site update in DMRG). An obvious way to obtain F
and G is from the SVD of M , by choosing, e.g., F = W̃ and
G = S̃ · Ṽ. However, here we are interested in obtaining F
and G without resorting to a SVD of matrix M .

Remarkably, the above task can be achieved with the
polar decomposition that, as described in the previous

appendix, can be implemented using a small set of sim-
ple matrix operations: matrix-matrix multiplications and
additions, as well as matrix transposition and complex
conjugation. Next we describe how.

As a first step, we use the polar decomposition to obtain
the isometric and positive semidefinite factors U and H of
matrix M in Eq. (A6). By construction, H has the singu-
lar values sα of M as its eigenvalues. As a second step,
we compute the polar decomposition of H − 1δ. Let U′
and H ′ be the resulting unitary and positive semidefinite
factors,

H − 1δ = U′ · H ′. (B8)

In general, the polar decomposition Z = X · |Z| of a Her-
mitian matrix Z with (real) eigenvalues zα is given in
terms of a unitary matrix X and a positive semidefinite
matrix |Z| with very simple structure: both X and |Z| have
the same eigenvectors as Z; moreover, for the αth com-
mon eigenvector, |Z| has as eigenvalue the absolute value
|zα| of the corresponding eigenvalues zα of Z, whereas
X has as eigenvalue σα = ±1, where the sign is such
that zα = σα|zα|. In other words, the unitary factor U′ in
Eq. (B8) must have m′ eigenvalues +1 (for the m′ eigen-
vectors of H − 1δ with positive eigenvalues sα − δ > 0)
and the rest of the eigenvalues must be −1 (for the eigen-
vectors of H − 1δ with negative eigenvalues sα − δ < 0).
In particular, we can use U′ to define two projectors P+ and
P− onto the positive and negative subspaces of H − 1δ
(equivalently, the subspaces of H with sα > δ and with
sα < δ) by

P± = 1 ± U′

2
, (B9)

and use them in turn to define projections H>δ and
H<δ of matrix H onto its sα > δ subspace and sα < δ

subspace,

H>δ ≡ P+·H · P+, H<δ ≡ P− · H · P−, (B10)

such that H = H>δ + H<δ . We can thus write

M = U · H = U · H>δ + U · H<δ , (B11)

where the first term U · H>δ = U · P+ · H corresponds
to the largest m′ singular values sα of M . In other
words, we have obtained the best rank-m′ approximation
M̃ to M :

M̃ = U · P+·H . (B12)

However, we have not yet reduced the number of columns
of U. For that purpose, we must find an isometry C+ with
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1: function subspace(P )
2: m = TrP
3: C = RANDOM (m,m ) Initial guess of shape m × m

4: X = P@C Use, e.g., SUMMA in the distributed setting
5: C = POLAR FACTOR (X) Polar decomposition instead of a QR decomposition
6: return C

7: end function

Algorithm 3. Subspace iteration for an m × m projector matrix
P with rank m′

m′ columns such that

P+=C+C†
+. (B13)

That is, we need to find an orthonormal basis for the
m′-dimensional column space of the rank-m′ projector
P+. We achieve this using a slight modification of the
standard, QR-based subspace-iteration method to avoid
the use of a QR decomposition (see Appendix C). Then
we have

M̃ = U · P+·H = U · C+·C†
+·H = Ũ · H̃ , (B14)

where matrices

Ũ ≡ U · C+, H̃ ≡ C†
+·H , (B15)

have m′ columns and rows, respectively, and therefore
qualify as matrices F and G in the truncated decomposition
(B7).

A similar approach based on the McWeeny iteration can
be used to truncate to a fixed number of singular val-
ues, instead of truncating singular values below a certain
threshold δ [130].

APPENDIX C: SUBSPACE ITERATION

Consider a m × m Hermitian matrix P that is a rank-m′
projector, namely, such that

P · P = P, tr(P) = m′, (C1)

where we also assume that P is rank deficient, meaning
that m′ < m. Our goal is to find an isometric matrix C of
shape m × m′ such that we can write P as the product

P = C · C†. (C2)

For that purpose, we can use Algorithm 3. It is a spe-
cialization (for a rank-deficient projector P) of the sub-
space iteration method that can more generally be used
to compute the first n dominant eigenvectors of a matrix.
Specifically, we modify the standard subspace iteration
method in two ways: (1) since P2 = P, a single itera-
tion is sufficient (so we skip looping over steps 4 and

5); (2) we use a polar decomposition (easier to imple-
ment on a distributed TPU setting) instead of the usual QR
decomposition.
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