
PRX QUANTUM 4, 010316 (2023)

Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays

Minh-Thi Nguyen,1,‡ Jin-Guo Liu ,2,1,‡ Jonathan Wurtz ,1 Mikhail D. Lukin,2 Sheng-Tao Wang,1,*

and Hannes Pichler 3,4,†

1
QuEra Computing Inc., 1284 Soldiers Field Road, Boston, Massachusetts 02135, USA
2
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3
Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria

4
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020,

Austria

 (Received 14 September 2022; revised 14 December 2022; accepted 4 January 2023; published 14 February 2023)

Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-
efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds
of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was shown
to be efficiently encodable in such a quantum system. Here, we extend the classes of problems that can
be efficiently encoded in Rydberg arrays by constructing explicit mappings from a wide class of problems
to maximum-weighted independent set problems on unit-disk graphs, with at most a quadratic overhead
in the number of qubits. We analyze several examples, including maximum-weighted independent set on
graphs with arbitrary connectivity, quadratic unconstrained binary optimization problems with arbitrary
or restricted connectivity, and integer factorization. Numerical simulations on small system sizes indicate
that the adiabatic time scale for solving the mapped problems is strongly correlated with that of the orig-
inal problems. Our work provides a blueprint for using Rydberg atom arrays to solve a wide range of
combinatorial optimization problems with arbitrary connectivity, beyond the restrictions imposed by the
hardware geometry.

DOI: 10.1103/PRXQuantum.4.010316

I. INTRODUCTION

Quantum optimization algorithms aim to solve combi-
natorial optimization problems [1,2] by utilizing controlled
dynamics of quantum many-body systems. The key idea
underlying this paradigm is to steer the dynamics of quan-
tum systems such that their final states provide solutions
to the optimization problem of interest. Such dynamics are
often achieved either via the adiabatic principle in quantum
annealing algorithms (QAAs) [3–7], or by employing more
general, variational approaches, as exemplified by quan-
tum approximate optimization algorithms (QAOAs) [8]. A
popular approach to design such quantum algorithms is to
formulate the optimization problem in terms of a classical

*swang@quera.com
†hannes.pichler@uibk.ac.at
‡These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

spin model [9] that can be implemented on special-purpose
quantum hardware.

An exciting possibility in this context is offered by Ryd-
berg atom arrays [10]. Owing to the Rydberg-blockade
mechanism [10–12], these systems realize spin models that
naturally encode a paradigmatic combinatorial optimiza-
tion problem, namely the maximum independent set (MIS)
problem on a special class of geometric graphs, called
unit-disk graphs (UDGs) [13]. This allows a direct imple-
mentation of a variety of quantum optimization algorithms
on this platform [10,13,14]. Remarkably, first experiments
exploring this approach [10] observed a superlinear quan-
tum speedup over optimized classical simulated annealing
for finding exact solutions for some of the hardest acces-
sible graphs. However, the restriction to unit-disk graphs
limits the applicability of this approach. Overcoming this
limitation is one of the major challenges for exploring
quantum optimization on a much wider range of optimiza-
tion problems, including several problems of industrial
relevance [15].

Approaches to extend the applicability of Rydberg atom
arrays beyond UDGs have been recently explored in
Refs. [14,16], but they are either limited to a specific class
of graphs [16], or require three-dimensional arrays [14],

2691-3399/23/4(1)/010316(19) 010316-1 Published by the American Physical Society

https://orcid.org/0000-0003-1635-2679
https://orcid.org/0000-0001-7237-0789
https://orcid.org/0000-0003-2144-536X
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.010316&domain=pdf&date_stamp=2023-02-14
http://dx.doi.org/10.1103/PRXQuantum.4.010316
https://creativecommons.org/licenses/by/4.0/

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

and both require bespoke encoding for each problem graph
with unclear overhead for general graphs. Alternatively,
other schemes that can map arbitrary nonlocal interac-
tions into local ones have been proposed [17,18], but their
implementations are experimentally even more demand-
ing, requiring either four-body interactions [17,19] or the
use of tunable Ising interactions [18].

In this paper, we introduce a new, systematic approach
to encode optimization problems with arbitrary connectiv-
ity into Rydberg atom arrays. Our scheme requires only
two-dimensional (2D) atom trapping and the Rydberg-
blockade mechanism as the main ingredients, both of
which have been demonstrated already on current Rydberg
atom array platforms with high fidelity [10] (see Fig. 1).
Importantly, our encoding is constructive and efficient as
it incurs only a minimal, quadratic overhead in the num-
ber of qubits. We specifically discuss our approach on the
paradigmatic optimization problems including maximum-
weight independent set (MWIS) problems on arbitrary
graphs, arbitrary quadratic unconstrained binary optimiza-
tion (QUBO) or Ising problems. In addition, we apply
our method to generic constraint-satisfaction problems and
show how integer factorization can be mapped to Ryd-
berg atom arrangements. Finally, we perform numerical
simulations on small system sizes comparing the adiabatic

(a)

(b) (c)

(d)

FIG. 1. Procedure to solve a variety of optimization problems
using programmable Rydberg atom arrays. The original compu-
tational problem (a) can be mapped onto a MWIS problem on
a UDG in (b). (c) Physical platform, where each vertex in (b)
represents an atom trapped by optical tweezers. Each two-level
atom can be coherently driven with Rabi frequency � and detun-
ing �, and the Rydberg-blockade mechanism prevents two atoms
from being simultaneously excited to state |1〉 if they are within
a unit distance rB. (d) The solution to the UDG-MWIS problem
encodes the solution to the original problem.

time scale for original MWIS on non-UDG graphs to that
of the mapped problem and observe strong correlations
that suggest the encoding does not negatively impact the
performance of quantum algorithms.

We note that MIS on UDGs is known to be NP-complete
[20], so in principle any NP problem can be reduced to MIS
on UDGs with a polynomial overhead. Specific, formal
reduction sequences have, for example, been considered in
Ref. [10], but direct application of the prescribed reduction
method requires at least O(N 6) overhead. It is important
for near-term implementation on quantum machines to find
a low-overhead, explicit mapping, which is the main result
of our work.

II. OVERVIEW OF MAIN RESULTS

In this section, we provide an overview of the main
results of this work. The main ideas are summarized in
Figs. 1 and 2. Given a computation problem, we map it
to a UDG-MWIS problem (i.e., a MWIS problem on a
UDG) using a novel encoding scheme. The resulting UDG-
MWIS is the native problem for Rydberg atom array plat-
forms allowing a direct implementation of QAA or QAOA
for its solution [10,13]. The solution for the UDG-MWIS
obtained on the quantum device can then be mapped back
to a solution for the original computation problem. The key
result of this work is to provide a general framework for the
low-overhead, efficient, and explicit mapping.

The main idea underlying our encoding is summarized
in Fig. 2 for three examples discussed in detail in this
work: MWIS on general (non-unit-disk) graphs, QUBO
and Ising problems with arbitrary connectivity, and inte-
ger factorization [21]. The general framework for mapping
combinatorial optimization problems defined on graphs
can be seen in Figs. 2(a)–2(d). First, the variables corre-
sponding to vertices in the original graph can be encoded
in one-dimensional chains of atoms using the copy gadget.
These chains (represented by lines) are then arranged in
the form of a crossing lattice shown in Fig. 2(b), exhibit-
ing exactly one crossing between each pair of lines. For
each such crossing, we use additional gadgets—the cross-
ing gadget and the crossing-with-edge gadget— to encode
the presence (and strength) or absence of an interaction for
each pair of lines. All these gadgets are carefully designed
such that the resulting graph is a UDG (embedded on a
square lattice), and the solution of the original problem is
encoded in its MWIS. The mapping for the factoring prob-
lem follows a similar strategy [Figs. 2(e)–2(g)]: we first
encode the problem of finding the prime factors of a N -bit
integer into an optimization problem; with the help of a
crossing lattice and a properly designed factoring gadget,
this optimization problem is then transformed to a UDG-
MWIS problem. In all cases, the overhead in the number
of qubits is at most O(N 2), which is optimal for arbitrary
connectivity [22].

010316-2

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

Problem Graph

Factoring Problem

q1

q0

p1

p1

p0

p0

q1

q0

m0

m1m2

Arbitrary Connectivity

q0q0

q1

1

2 3

4

5 6 7

8

9

10

11 12 13 14

15 16 17 18

1920

21 22 23

24 25 26

27

28 29

30 31

32 33 34 35 36

37

38 39

40

41

42

43 44

45

46 47 48

49

50

51

52 53 54 55

56 57 58 59

6061

62 63 64

65 66 67

68

69 70

71 72

73 74 75 76 77

78 79

80

81

82

83 84

85

86 87 88

89

90

91

92 93 94 95

96 97 98 99

100

101 102 103

104 105 106

107

108 109

110 111

112 113 114 115

116

117 118

119

120

121

122 123

124

125 126 127

128

129

130

131 132 133 134

135 136 137 138

139

140 141 142

143 144 145

146

147 148

149 150

151 152 153 154

155 156

157

158

159

160

p0

p1

p 1

p0

q1

m 2 m 1

m 0 Integer
Factorization

(a)

(e)

1 2

3

4 5

6 7 8

9

10

11

12

13 14

15 16 17

18

19

20

21

22 23

24 25 26

27

28

29

30

31 32

33 34 35

36

37

38 39 40 41

42 43 44

45

46

47 48 49

50 51 52

53

54

55 56 57

58 59 60

61

62

63 64 65 66

67 68 69

70

71

72 73 74

75 76 77

78

79

80 81 82 83

84 85 86

87

88

89

90

91 92 93 94 95

96

97

98

99

100

101

102

103 104

105

1 2 3 4 5

1

2

3

4

5

QUBO and Ising

1 2 3

4 5 6

7

8

9

10

11

12 13

14 15 16

17

18

19 20

21 22 23

24

25

26

27 28

29 30 31

32

33

34

35 36 37

38 39 40

41

42

43 44 45

46 47 48

49

50

51 52 53

54 55 56

57

58

59 60 61

62 63 64

65

66

67 68

69 70 71

72

73

74 75 76 77

78 79 80

81

82

83

84

85 86 87 88 89

90

91

92

93

94

95

96

97 98

99

1 2 3 4 5

1

2

3

4

5

Maximum
Independent Set

(c)

(d)

1 2 3 4 5

1

2

3

4

5

Arbitrary Connectivity(b)

(f) (g)

1
2

3

4

5

FIG. 2. Architecture of UDG-MWIS mapping for three example problems. (a) Example non-UDG represented by G = (V, E) for the
MWIS and QUBO problems. (b) Crossing lattice used to construct UDG-MWIS mappings. Vertices in (a) are binary variables that can
be represented effectively by lines to construct the lattice. Intersections in the lattice allow arbitrary connectivity between the variables,
abstractly represented by squares. The lattice mimics an upper triangular adjacency matrix A, where for two vertices {v, w} ∈ V,
Avw = 1 if (v, w) ∈ E and Avw = 0 otherwise, represented abstractly by a filled and empty square here, respectively. (c) Final UDG-
MWIS representation of the original MWIS problem on general graphs. (d) Final UDG-MWIS representation of the original QUBO
and Ising problem. (e),(f),(g) Similar encoding procedure for the integer factorization problem for the example 6 = 2 × 3, with the
corresponding UDG-MWIS representation shown in (g).

The paper is organized as follows. Section III introduces
Rydberg atom arrays and explains the natural encoding
of UDG-MWIS on the platform. Section IV outlines the
basic encoding gadgets by first showing MWIS gadgets
for simple constraint-satisfaction problems. Then, some
useful mapping gadgets are presented, including the copy
gadget, the crossing gadget, and the crossing-with-edge
gadget. Section V uses the above gadgets and the idea
of a crossing lattice to construct the explicit mapping to
UDG-MWIS from three example applications: MWIS on
general graphs, QUBO, and integer factorization. Addi-
tional gadgets and problem-specific details are presented.
Section VI studies the performance of quantum algorithms
before and after the mapping, focusing on the example of
the MWIS problem from a general graph to UDG mapping.
Finally, Sec. VII concludes the paper and outlines some
next steps and challenges. The Appendix includes more

details on strategies for overhead reduction and simplifi-
cation in Appendix A, a discussion on local defects and
MWIS guarantees in Appendix B, a more efficient map-
ping for problems with local connectivity in Appendix C,
and more details on the construction of the factoring gadget
in Appendix D.

III. BACKGROUND

A. Rydberg atom arrays

This work is primarily motivated by recent advances
in experiments with Rydberg atom arrays using neutral
atoms in optical tweezers [16,23–33]. In these systems,
atoms can be deterministically placed at programmable
positions in two dimensions [10,26,27]. Each atom real-
izes a qubit with an internal ground state representing |0〉

010316-3

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

and a highly excited, long-lived Rydberg state represent-
ing |1〉. The atoms can be coherently manipulated with
laser fields and interact pairwise via induced dipole-dipole
interactions when two atoms are in the Rydberg state.
Specifically, the laser-induced quantum dynamics of this
system can be described by the Hamiltonian

HRyd =
∑

v

�v

2
σ x

v −
∑

v

�vnv

+
∑

v<w

VRyd(|−→rv − −→rw |)nvnw. (1)

Here, −→rv denotes the position of the atom labeled by v,
σ x

v = |1〉v〈0| + |0〉v〈1| coherently flips its internal state,
and nv = |1〉v〈1| counts if the atom is in the Rydberg
state. The parameters �v and �v are the Rabi frequency
and laser detuning for the vth atom. In experiments, the
laser detuning can be controlled in a site-dependent way,
for example, using local ac-Stark shifts [34]. The interac-
tion potential VRyd(|−→rv − −→rw |) = C6/|−→rv − −→rw |6 leads to
a strong (distance-dependent) energy penalty for config-
urations where two nearby atoms are simultaneously in
the Rydberg state, giving rise to the so-called Rydberg-
blockade mechanism [10–13]. As a result, the low-energy
states of the Hamiltonian do not contain states with pairs
of atoms that are both in the Rydberg state if they are
within some characteristic distance, defined as the block-
ade radius rB. This effect naturally imposes the indepen-
dent set constraint on the ground state(s) of the Hamil-
tonian at �v = 0, which, as discussed below, allows one
to encode the MWIS of a corresponding UDG [10,13]. In
this classical limit (�v = 0), it is convenient to define the
blockade radius rB via VRyd(rB) = maxv(�v), which is the
convention we adopt throughout this work.

B. Unit-disk graphs

A unit-disk graph is a graph G = (V, E) with vertices
V and edges E that can be embedded in the 2D Euclidean
plane such that two vertices are connected by an edge if
and only if they are separated by a distance smaller than a
unit radius. We are interested in unit-disk graphs since they
are in one-to-one correspondence with atom arrangements
in 2D. Specifically, each atom represents a vertex, and we
identify the blockade radius with the unit-disk radius of
the graph. In this way, the low-energy configurations of
the atom array at �v = 0 correspond to large independent
sets of the unit-disk graph [13].

C. Maximum-weight independent sets

An independent set of a graph G is the subset of vertices
S ⊆ V, such that none of the vertices in S are connected
by an edge in G. The largest such independent set is
called a maximum independent set. Note that in general

the MIS may not be unique. The problem of finding a
MIS is called the maximum independent set problem. The
MIS problem can be generalized to the maximum-weight
independent set problem, where each vertex is assigned a
weight δv > 0, and accordingly, a weight WS is assigned
to each subset of vertices S ⊆ V via WS = ∑

v∈S δv . The
MWIS problem is to find an independent set with the
largest weight. It can be formulated as an energy minimiza-
tion problem. For this, one can associate a binary variable
nv ∈ {0, 1} with each vertex v ∈ V. This allows us to iden-
tify a subset of vertices S by a bitstring n = (n1, n2, . . .),
via S = {v ∈ V|nv = 1}. We frequently use this one-to-
one correspondence between bitstings and subsets in the
remainder of the paper. Using this representation, we can
consider the cost function

HMWIS = −
∑

v∈V

δvnv +
∑

(u,v)∈E

Uuvnunv . (2)

If Uuv > δw > 0 for all u, v, w, the ground-state configu-
ration of HMWIS indeed corresponds to the MWIS. As in
the unweighted case, the ground state can be degenerate,
corresponding to multiple independent sets achieving the
same maximum weight [35].

If the graph G is a UDG, we then refer to the correspond-
ing MWIS problem as the UDG-MWIS problem. Impor-
tantly, for such UDG-MWIS problems, the Hamiltonian
(2) coincides with the Rydberg atom array Hamiltonian
(1) at � = 0, where each atom is placed at the respective
location of the corresponding vertex, the blockade radius is
identified with the unit disk radius (and the interaction tails
beyond the blockade radius is neglected [10,36]), and the
weight of each vertex is identified with the local detuning
�v = δv [10,13]. Hence, we aim in the following to encode
a variety of problems of interests in UDG-MWIS.

IV. ENCODING GADGETS

In this section, we construct a number of encoding gad-
gets, which are the basic tools used in this work to refor-
mulate a variety of optimization problems as UDG-MWIS.
To this end, we first encode solutions of a set of elemen-
tary constraint-satisfaction problems as the solutions of a
MWIS problem on properly constructed unit-disk graphs.

A. Constraint satisfaction problems as MWIS

Consider a set of binary variables n = (n1, n2, . . .)
with ni ∈ {0, 1} and a set of constraints between them,
denoted by C, that can be simultaneously satisfied by
one or more assignments. We represent this constraint-
satisfaction problem as a MWIS problem by constructing
a weighted graph GC, such that the solutions are in corre-
spondence with the maximum-weighted independent sets
of GC. More specifically, we say the MWIS problem on GC
represents the constraint-satisfaction problem C if every

010316-4

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

MWIS of GC coincides with a satisfying assignment of
C, and if every satisfying assignment of C corresponds to
at least one MWIS of GC. Note that the number of ver-
tices in GC can be larger than the number of variables in C,
in which case we require the correspondence between the
MWISs and the satisfying assignments only on the subset
of vertices that correspond to the variables in C. Below, we
illustrate this concept on several examples.

1. Single constraints

We start with the simple example of two bits n =
(n1, n2) with a single constraint

n1 = n2, (3)

where ni ≡ 1 − ni denotes the negation of ni. This simple
NOT constraint has two satisfying assignments, n = (1, 0)

and n = (0, 1).
We represent this constraint-satisfaction problem as a

MWIS problem on a graph with two equally weighted ver-
tices connected by an edge [Fig. 3(a)], whose cost function
is simply HMWIS = −δ(n1 + n2) + Un1n2, with U > δ >

0. This graph has two degenerate MWISs, n = (1, 0) and
n = (0, 1), which are indeed in one-to-one correspondence
to the two satisfying assignments of the constraint.

Note, that for these two assignments, the cost function
evaluates to HMWIS = −δ, while a violation of the con-
straint incurs a cost δ > 0 (for n = (0, 0)) or a cost of
U − δ > 0 (for n = (1, 1)), rendering them energetically
unfavorable. For the remainder of the paper, we introduce
the quantity δgap = min(U − δ, δ) > 0 as the minimum
energy penalty for violation of a constraint.

Next, we consider another simple two-variable con-
straint:

n1n2 = 0. (4)

This constraint has three satisfying assignments n ∈
{(0, 0), (1, 0), (0, 1)} and may be represented as a MWIS
problem on a complete graph with three vertices with equal
weights [Fig. 3(b)]. The first two vertices, labeled 1 and 2,
correspond to the two bits of interest, while the third ver-
tex corresponds to an ancillary variable. The cost function
associated with this MWIS problem is HMWIS = −δ(n1 +
n2 + n3) + U(n1n2 + n2n3 + n3n1), with the three degen-
erate solutions corresponding to the three satisfying assign-
ments. Importantly, each of the three MWIS states coin-
cides with one of the three satisfying assignments on the
two vertices of interest [see Fig. 3(b)]. Again, a violation
of the constraint incurs an energy cost of at least δgap.

We remark that in this manner one can construct the
MWIS representation of all the basic operations in Boolean
logic, by providing a gadget that is the MWIS representa-
tion of the NOR constraint in Fig. 3(c).

(a)

1 2

1 2

1 2

3

1 2

3

1 2

3

(b)

(d)

(c)

1

2

3

1

2

3

1

2

3

1

2

3

+1 2

2 3

4

1 2 3

4

FIG. 3. MWIS representation of some example constraints.
Each bit is represented by a corresponding vertex in the MWIS
problem graph. The weight of the vertices is indicated by its
interior color on a gray scale. For each example, the degener-
ate MWIS configurations are shown by identifying vertices in a
MWIS with a red boundary. The MWISs correspond to the sat-
isfying assignments to the corresponding constraint-satisfaction
problem. (a) MWIS representation of n1 = n2. (b) MWIS repre-
sentation of n1n2 = 0, with the third, unlabeled vertex being an
ancillary vertex. For each of the three MWIS states, the configu-
ration on the relevant vertices 1 and 2 matches the corresponding
satisfying assignment. (c) MWIS representation of the NOR con-
straint using two ancilla vertices. Note that only four of the
five MWIS states are shown. Nevertheless, all five MWIS states
correspond to the four satisfying assignments on the relevant ver-
tices 1, 2, and 3. (d) A set of constraints C = {n1 = n2, n2n3 = 0},
where each is of the form given in (a),(b). The corresponding
MWIS problem is obtained by combining the two graphs cor-
responding to both constraints in C, resulting in the weighted
graph on the right. Observe that vertex 2, which appears in both
constraints, has twice the weight of the other vertices.

2. Conjunction of constraints

Consider now a situation where C consists of a
set of multiple constraints that have to be satisfied
simultaneously. For example, consider a conjunction of
constraints involving three bits:

(n1 = n2) ∧ (n2n3 = 0), (5)

which has three satisfying assignments, (n1, n2, n3) ∈
{(1, 0, 0), (1, 0, 1), (0, 1, 0)}. To construct a corresponding
MWIS representation, we first consider the two MWIS rep-
resentations for the two involved constraints individually,
which are given in Figs. 3(a) and 3(b), and then simply
combine them by constructing the union of the individual
graphs and add their weights [Fig. 3(d)]. Equivalently, we
add the two cost functions of the two individual constraints

010316-5

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

to obtain the MWIS cost function encoding of Eq. (5):

HMWIS = −δ(n1 + 2n2 + n3 + n4)

+ U(n1n2 + n2n3 + n3n4 + n4n2). (6)

It is easy to see that ground states of this cost function cor-
responds to the satisfying assignments in Eq. (5) on the
vertices of interest, i.e., vertices 1, 2, and 3.

This example generalizes to the following impor-
tant observation: consider a set of constraints, C =
{C1, C2, . . . }, allowing for at least one satisfying assign-
ment. Given the MWIS representations of each individual
constraint Ci, we can construct a MWIS representation of
C by simply adding all the MWIS cost functions for all
individual constraints in C. The resulting cost function for
C indeed corresponds to a MWIS problem: its graph is
simply the union of the individual graphs corresponding
to the Cis, with the corresponding weights added on the
respective vertices [37].

This is a powerful method that allows us to build MWIS
representations of complicated constraints out of simpler
ones. We repeatedly make use of this technique in the
following sections. The utility of this tool can already be
illustrated by noting that the combination of the NOT and
the NOR constraints [Fig. 3(a) and 3(c)] is universal. This
immediately implies that we can encode any circuit satisfi-
ability problem [38] into a MWIS problem with a constant
overhead using this construction.

B. Gadgets for unit-disk transformation

While the representations introduced in the previous
subsection allow the encoding of arbitrary constraint-
satisfaction problems into MWIS, additional gadgets are
required for the specific task of transforming general
graphs problems into UDG-MWIS problems, which can
then been natively implemented using Rydberg atom
arrays. Here, we introduce several particularly useful gad-
gets in this context.

1. Copy gadget and effective bits

By combining N constraints of the form nm = nm+1, we
obtain a gadget, called the copy gadget:

n1 = n2 = n3 = n4 = · · · . (7)

Here, the information of the bit n1 is copied to all odd-
index bits n3, n5, As the name suggests, this copy
gadget is useful in situations where the value of the bit
n1 is needed in several distant locations or in a location
in conflict with the unit-disk requirement. Conceptually,
copy gadgets “stretch” the representation of a bit from a
vertex (a pointlike structure) to a one-dimensional (1D)
line, while staying in the paradigm of unit-disk graphs.

This technique is similar to other encoding approaches of
using wires or chains of virtual vertices [14,18,36,39,40].

Using the techniques developed in Sec. IV A, it is easy
to construct the MWIS representation of the copy gadget in
Eq. (7). It consists of a one-dimensional graph with N ver-
tices and edges between neighboring vertices. All vertices
have a weight 2δ, except for the two boundary vertices
of the line, which have weights δ [see Fig. 4(a)]. Indeed,

...

...

1 2 3

1 2 3

Copy Gadget

Crossing Gadget

Crossing-with-edge Gadget

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

weights:

(a)

(b)

(c)

FIG. 4. Important gadgets for formulating constraint-
satisfaction problems as UDG-MWIS. (a) Copy gadget. A 1D
line graph encodes an effective bit. The two degenerate MWIS
solutions are shown: the subset of odd-numbered vertices (top)
and even-numbered vertices (bottom) represent the effective
bit values 1 and 0, respectively. In this way, one can copy a
single bit to any odd-numbered vertex. (b) Crossing gadget.
The four degenerate MWIS solutions of the left graph coincide
with the four MWIS solutions on the right graph on vertices
1, 2, 3, 4. One of these solutions is shown. Given a graph
that contains a crossing, we can thus replace it with the right
UDG, without changing the structure of the MWIS solution.
(c) Crossing-with-edge gadget. Similar to (b), we can replace
any subgraph of the type depicted on the left with the UDG on
the right. One can check the MWIS solutions have one-to-one
correspondence. The weights in (a)–(c) are encoded in grayscale
according to the legend at the bottom of the figure.

010316-6

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

this weighted graph has two degenerate MWIS solutions:
n = (1, 0, 1, 0, . . .) and n = (0, 1, 0, 1, . . .), corresponding
to the two satisfying assignments of Eq. (7). We can thus
use these two states to represent the effective binary vari-
able with values 1 and 0, respectively (corresponding to
the value of n1). Note that the 1D line representation does
not necessarily need to be drawn as a straight line when
embedded in a 2D plane; it can bend and have kinks,
as long as the resulting embedding satisfies the unit-disk
criterion.

Importantly, we can equip this effective bit with an effec-
tive weight w by simply favoring one of the two staggered
configurations with respect to the other. For instance, this
can be achieved by adding an additional weight w to any
one of the equivalent vertices with an odd index in this gad-
get, e.g., the boundary vertex n1. More generally, we can
induce an effective weight w by any vertex weight configu-
ration as long as it satisfies

∑i
m=0 δ2m+1 = w + ∑i

m=1 δ2m
and 0 < δm, w < U. The latter inequalities ensure that the
two staggered configurations remain the two lowest energy
states, i.e., states with defect have a lower weight.

2. Crossing gadget

The copy gadget allows the effective representation of
a binary variable as a 1D line on a UDG. When there
are multiple such variables in a geometric representation,
it can be extremely useful to allow two such lines to
cross, without introducing any coupling between their cor-
responding effective degrees of freedom. However, such
a crossing manifestly violates the unit-disk constraint. We
solve this problem with the crossing gadget.

For this, consider the following set of constraints
between four binary variables

(n1 = n3) ∧ (n2 = n4). (8)

One way to represented this as a MWIS problem is to iden-
tify each variable as an equally weighted vertex in a graph
with edges E = {(1, 3), (2, 4)}. Depending on the relative
location of the vertices in the 2D plane (which might be
fixed, e.g., due to additional constraints), these two edges
might need to cross each other, violating the unit-disk
requirement. The crossing gadget is an alternative MWIS
representation of the same pair of constraints (8) that
avoids this issue. This gadget is depicted in Fig. 4(b) and
contains four ancillary binary variables (vertices). Note
that the vertices representing the original variables are
weighted equally with a weight δ, while the four ancillary
vertices have a weight 4δ [41]. This graph is manifestly a
UDG and realizes the desired relative geometrical distri-
bution of the vertices 1, 2, 3 and 4. One can easily check
that it has four-fold degenerate MWISs, which correspond
to the four satisfying assignments on the four original
vertices.

(a) (b)

FIG. 5. (a) Two decoupled effective degrees of freedom. By
combining the copy gadget and the crossing gadget, we can form
two 1D lines, here drawn horizontally and vertically. Both lines
represent a binary variable, nh ∈ {0, 1} and nv ∈ {0, 1}, respec-
tively. The crossing gadget effectively decouples these degrees of
freedom. Accordingly, this weighted graph has a fourfold degen-
erate MWIS, corresponding to the four possible states of two
binary variables. One of the MWISs is shown in red correspond-
ing to nh = 0 and nv = 1. Note that each of the four MWISs
contains exactly one of the four internal vertices of the cross-
ing gadget, so these internal vertices encode the states of both
effective degrees of freedom. (b) Two effective degrees of free-
dom, defined on a horizontal and a vertical line, respectively,
that satisfy an independence constraint nhnv = 0, introduced
by the crossing-with-edge gadget [Fig. 4(c)]. Note that this
graph has exactly three degenerate MWIS (out of which, one
is shown in red), corresponding to the configurations (nh, nv) ∈
{(0, 0), (0, 1), (1, 0)}.

In Fig. 5(a), we illustrate how to combine a crossing gad-
get and the copy gadget to define two decoupled effective
binary degrees of freedom living on two lines, a horizontal
one and a vertical one. Specifically, in Fig. 5(a), the two
effective degrees of freedom are realized by the two stag-
gered configurations of the horizontal and vertical line, and
the crossing gadget decouples them; this structure is real-
ized by extending each boundary vertex of the crossing
gadget using the copy gadget. Following the recipe given
in Sec. IV A 2, one defines a vertex weight pattern with
weights 4δ on the interior vertices of the crossing gadget,
weight 2δ on the exterior vertices of the crossing gadget
and on all vertices of the lines, except for the boundary
vertices of each line, which have a weight δ.

By generalizing this example, we can see that the copy
gadget allows us to represent binary variables as lines and
the crossing gadget allows these lines to cross without
introducing any interactions or constraints between their
effective degrees of freedom, so we can arrange these effec-
tive 1D lines arbitrarily in 2D without worrying about
crossings between them.

3. Crossing-with-edge gadget

The crossing gadget is useful to decouple effective
degrees of freedom defined on lines, even if the lines cross.
In contrast, we now introduce a gadget that allows us to

010316-7

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

introduce a specific type of interaction between the effec-
tive degrees of freedom. Specifically, we are interested
in a gadget that introduces the independence constraint
nunv = 0 between two effective variables, nu and nv , when
their corresponding lines cross. For this, we consider the
situation where four binary variables must satisfy the
constraints

((n1 = n3) ∧ (n2 = n4)) ∧ (n1n2 = 0), (9)

where in this case, nu ≡ n1, nv ≡ n2. This corresponds to
the MWIS problem on the graph on the left of Fig. 4(c).
In particular, we consider the situation where the vertices
are geometrically positioned relative to each other in a
way that requires a crossing; this case indeed occurs when
n1, n3 and n2, n4 each belong to a line (created by a copy
gadget) that corresponds to the effective binary variable
associated with n1 and n2. This graph is, however, not a
unit-disk graph, so we introduce the crossing-with-edge
gadget shown on the right of Fig. 4(c). The resulting graph
is manifestly a unit-disk graph with a threefold degener-
ate MWIS solution, corresponding to the three satisfying
assignments of the crossing-with-edge constraint required
in Eq. (9).

Analogous to the discussion of the crossing gadget, we
can also combine the crossing-with-edge gadget with copy
gadgets to obtain two crossing lines [drawn horizontally
and vertically in Fig. 5(b)] that host two effective binary
degrees of freedom, respectively, with an independence
constraint between them. The resulting weight pattern is
shown in Fig. 5(b).

V. ARBITRARY CONNECTIVITY

Using the suite of encoding gadgets introduced in the
previous section, we can now encode a variety of com-
putational problems into UDG-MWIS, which can then be
readily implemented on Rydberg atom arrays. Here, in this
section, we discuss three example applications in detail:
MWIS on graphs with arbitrary connectivity, QUBO prob-
lem, and the integer factorization problem. As we will see
later, the resulting UDGs can be embedded on a square lat-
tice with at most a quadratic overhead. The recipe involves
two main steps: the first is to construct the so-called cross-
ing lattice using the copy gadget, and the second is to apply
crossing replacements to encode arbitrary connectivity.

A. The crossing lattice

Consider an optimization problem for N binary vari-
ables, such as the MWIS problem defined on an arbitrary
graph G = (V, E), where each vertex represents a binary
degree of freedom. To realize arbitrary connectivity, we
first use the copy gadget to represent each vertex v ∈ V by
a 1D vertex line. The state of the binary variable associ-
ated with a vertex v (0 or 1) can then be accessed at any

odd-index vertex of the corresponding line [Fig. 4(a)]. As
detailed below, interactions between the effective degrees
of freedom represented by these lines can be introduced at
points where the lines cross. To achieve arbitrary connec-
tivity, each line must thus cross every other line at least
once. A simple layout achieving this is shown abstractly
in Fig. 2(b), where each line is drawn with a vertical and
a horizontal segment, forming an upper triangular crossing
lattice. In this way, a line (representing vertex v) crosses
any other line (representing vertex w) exactly once. At
these crossing points, we can then use the various cross-
ing gadgets introduced in the previous section to induce
interactions between v and w or to keep them decoupled.
This is detailed concretely in Secs. V B and V C below.
In addition to introducing interactions, these gadgets also
turn the resulting graph explicitly into a UDG. Note that
the resulting graph can be constructed by N (N − 1)/2
“tiles,” each containing eight vertices for a tile formed
by a crossing gadget, or seven vertices for a tile formed
by a crossing-with-edge gadget. Taking into account also
the boundary vertices, we conclude that this construction
leads to a UDG with at most 4N 2 vertices, corresponding
to the optimal quadratic overhead for arbitrary connectiv-
ity [22]. We note that this particular choice of “weaving”
lines together may be suboptimal, especially if the connec-
tivity is sparse. In such a case, the total size of the lattice
and thus the encoding overhead can be reduced by form-
ing more sophisticated crossing lattices. More details of the
simplification steps are included in Appendix A.

B. Maximum-weight independent set

Building on the above recipe, we now detail how to map
the MWIS problem on an arbitrary weighted graph G =
(V, E) with vertex weights wv (v ∈ V) to a UDG-MWIS
problem. As shown in Fig. 6(a), we first create a cross-
ing lattice using the copy gadget. At each crossing point
between two lines (corresponding to vertices u, v ∈ V), we
decouple the effective degrees of freedom using a crossing
gadget if (u, v) /∈ E, or induce an independence constraint
for the effective degrees of freedom via a crossing-with-
edge gadget if (u, v) ∈ E, as shown in Fig. 6(b). We note
that this results in a UDG that can be embedded on a
square lattice (whose diagonal sets the unit-disk radius).
The weights on the vertices of this UDG are 2δ on all ver-
tices except the four interior vertices of the crossing gadget
(which have weight 4δ) and the two boundary vertices
of each line, whose weights are chosen to introduce the
correct effective weights wv for the effective variable rep-
resented by each line. We choose a convention in which the
first vertex along the line v has a weight δ + wv/2, and the
last vertex along this line has a weight δ − wv/2. Note that,
to guarantee that the MWIS of the resulting UDG is indeed
formed by the proper low-energy configurations of each
line, the weights have to satisfy 2wv ≤ δ. This can always

010316-8

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

Crossing Lattice

Ground (MWIS) State

1

5

3

42

After simplification

1 2 3 4 5

11111

2 3 4 5

2222

3 4 5

333

4 5

44

5

5

i

j

1 2 3 4 5

i

j

1

2

3

4 5

(a)

(b)

FIG. 6. Example encoding procedure for the MWIS problem
on the K2,3 (non-unit-disk) graph into UDG-MWIS. (a) Cross-
ing lattice. Each vertex v is represented by a line using the copy
gadget, with odd-numbered vertices labeled. Each line is bent to
form a triangular lattice, giving a crossing point between any two
variables. If the two variables share an edge in the original graph,
we draw an edge between their representative vertices on the lat-
tice. A UDG is then obtained by replacing each crossing with
a crossing or crossing-with-edge gadget. (b) UDG representation
and the corresponding ground-state solution. Each crossing in (a)
is replaced with a unit cell containing at most eight vertices, thus
resulting in a final mapping with 92 vertices. The MWIS of the
original graph ({2, 4, 5}) can be read out from the boundary ver-
tices of the ground state of the mapped graph. This mapping can
further be simplified (see Fig. 10) to a mapping of only nine ver-
tices, where the vertices corresponding to the original degrees of
freedom still encode the desired MWIS solution.

be achieved by a proper normalization of the weights, or a
suitable choice of δ (for more details see Appendix B).

The MWIS of the mapped problem can be straightfor-
wardly transformed back to a valid solution in the original
problem. Indeed, since the state of the effective degrees of
freedom associated with each line can be accessed at the
first vertex of the line, the MWIS of the original problem
is directly given by the configuration of the boundary ver-
tices of the MWIS of the mapped problem. This solution
readout is shown as the yellow ellipses of Fig. 6(b).

C. Quadratic unconstrained binary optimization

QUBO is a paradigmatic NP-hard combinatorial opti-
mization problem that has a wide range of applications.
Generally, it seeks to find an input configuration that
minimizes a quadratic polynomial function

f (z) =
∑

i<j

Jij zizj +
∑

i

hizi, (10)

where the domain of f is binary bitstrings z ∈ {±1}N .
QUBO is also called the Ising problem, where each bit
can be represented by a spin 1/2 degree of freedom, and
the QUBO solutions correspond to the ground states of the
Ising model.

To encode the QUBO problem in a UDG-MWIS, we
again start with constructing the crossing lattice, with each
line encoding one of the binary variables zi [Fig. 7(a)]. For
simplicity, we choose the number of vertices along each
line to be even. We then use the crossing gadget at each
of the crossing points of the lattice, which decouples all
the N effective binary degrees of freedom. Recall that at
this point in the construction all vertices in the resulting
graph have a weight 2δ, except for the boundary vertices
on each line, which have a weight δ and the four interior
vertices of each crossing gadgets, which have a weight 4δ.
The QUBO cost function is then imposed on the effective
degrees of freedom by adjusting these weights as follows:
Firstly, the weight of the two boundary vertices of line i
is adjusted to δ + wi for the first vertex and δ − wi for the
last one [see Fig. 7(a)]. It is easy to see that for lines of
even length this induces the linear term hizi for the effec-
tive degree of freedom zi, with wi = hi up to normalization
(see Appendix B). Secondly, the weights of the internal
four vertices of the crossover gadget between the lines
representing the bits i and j are adjusted to 4δ ± wij as
depicted in the inset of Fig. 7(a), where wij = Jij up to
normalization. To see that this induces the quadratic inter-
action term Jij zizj between the two effective bits, recall
that exactly one of the four ancillary vertices of the cross-
ing gadget is part of the MWIS, and that this vertex is
determined by the configuration of the effective degrees
of freedom zi and zj [see Figs. 5(a) and 7(b)]. Similar to
the MWIS encoding, the additional weights have to be
appropriately normalized, such that the ground state of
the cost Hamiltonian consists of configurations that cor-
respond to valid (i.e., defect-free) configurations of the
effective degrees of freedom. This is guaranteed by a nor-
malization such that maxi(

∑
j |wij |, |wi|) < δ. For more

details on the normalization, see Appendix B. Similar to
the MWIS problem, the ground state of the QUBO prob-
lem can be directly inferred from the ground state of the
resulting UDG-MWIS problem. An example is shown in
Fig. 7(c) highlighting the MWIS for a random choice of
Jij and hi, and N = 5. In the inset, we confirm that the
MWIS state is indeed the one corresponding to the solution

010316-9

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

j

i

j

i

(c)

(b)

MWIS

1

2 3 4 5

2

3 4 5

3

4 5

4

5

3

3

3

4

4

4

4

5

5

5

5

2

2

j

i

j

i

All-to-all connectivity

j

i

(a)

FIG. 7. Example encoding procedure for the QUBO and Ising
problem for a 5-bit system. (a) Crossing lattice. Similar to the
MWIS mapping, we can construct the UDG-MWIS represen-
tation of a generic QUBO problem by inserting a gadget at
each crossing. The gadget has a similar structure as the crossing
gadget used in the MWIS encoding, but the weights on the ancil-
lary vertices are biased to induce quadratic interaction terms wij
between the effective degrees of freedom; see (b). (c) Example
of an encoded N = 5 QUBO problem, and the high-weight spec-
trum of the encoded cost function, illustrating that the MWIS is
indeed in the 0-defect sector and thus encodes the solution of the
QUBO problem. The QUBO solution {−1, +1, +1, +1, +1} is
encoded in the boundary of the graph.

of the QUBO problem. We also show the weights of other
independent sets, including those that do not correspond
to valid configurations of the effective degrees of freedom,

i.e., configurations that include defects. We note that the
weights of the configurations in the zero-defect sector have
a one-to-one correspondence with the spectra of the orig-
inal QUBO problem. One can see that some states with
defects have a higher total weight than some states that rep-
resent valid configurations of the effective variables (i.e.,
without defects), but, importantly, the MWIS is guaranteed
to be in the zero-defect sector given proper normalization.

In summary, any QUBO problem on N variables can be
encoded in a UDG-MWIS problem with at most 4N 2 +
O(N) vertices. For restricted connectivity, one may con-
struct a lower-overhead crossing lattice; for details, see
Appendix C.

D. Integer factorization

As a final example, we now formulate the problem of
decomposing an n-bit composite integer m = pq into its
prime factors p and q as the UDG-MWIS problem. To
this end, we use the binary representation for the inte-
ger m = ∑n−1

i=0 2imi, with mi ∈ {0, 1}, p = ∑k−1
i=0 2ipi for

the k-bit integer, and q = ∑n−k−1
i=0 2iqi for the (n − k)-bit

integer. The factoring problem thus amounts to finding the
unknown bits pi and qi such that

n−1∑

i=0

2imi =
k−1∑

i=0

n−k−1∑

j =0

2i+j piqj . (11)

Note that k is a priori unknown. However, this is not an
issue, as one can consider the problem (11) for each possi-
ble value k = 1, 2, . . . , n/2, or, alternatively, consider n-bit
representations of both p and q.

We proceed by introducing ancillary binary variables
si,j and ci,j , which may be interpreted as partial sum bits
and carry bits, respectively. Using elementary algebra, the
factoring problem (11) may be expressed as a system of
k(n − k) coupled equations [42,43]

si,j + 2ci,j = piqj + si+1,j −1 + ci−1,j (12)

for i = 0, . . . , k − 1 and j = 0, . . . , n − k − 1, where the
values c−1,j = ci,0 = si,−1 = 0 are fixed and we identify
s0,j = mj . Factoring m thus reduces to finding binary val-
ues for si,j , ci,j , pi, and qj such that the k(n − k) Eq. (12)
are all satisfied.

To embed this system of equations in a 2D plane, we
use the copy gadget to copy the values of pi and qj to new
ancillary variables pi,j and qi,j with the copy constraints

pi,j = pi+1,j , (13)

qi,j = qi,j +1, (14)

and identify pi ≡ pi,0 and qj ≡ q0,j . We then can write
Eq. (11) as

si,j + 2ci,j = pi,j qi,j + si+1,j −1 + ci−1,j . (15)

010316-10

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

We refer to the three Eqs. (13)–(15) (for a given i, j)
as the factoring constraints Fi,j . The constraints Fi,j are
manifestly local in two dimensions, in the sense that the
variables si,j , ci,j , pi,j , and qi,j can be arranged on a square
lattice such that all factoring constraints Fi,j involve only
neighboring or diagonally neighboring variables. A graph-
ical representation of this is given in Fig. 8(a), with the
box at lattice point (i, j) representing the constraints Fi,j .

(b) (c)

(a)

FIG. 8. Encoding procedure for integer factorization. (a)
Graphical representation of the set of equations to be satisfied
for integer factorization (m = p · q). The factor bits pi, qi and
binary variables si,j , ci,j are represented by copy lines to construct
an effective square crossing lattice for the problem, with a filled
square at crossings and the integer bits mi specifying some of the
boundary conditions of the problem. (b) Each filled square rep-
resents a set of equality constraints between the binary variables
associated with the adjacent legs. The final UDG-MWIS can be
obtained by replacing each square with the factoring gadget that
enforces the mathematical constraints relevant for the factoring
problem. The unit-disk radius should be slightly larger than 2

√
2

times the lattice constant. (c) An example of the UDG-MWIS
representation of the factoring problem 6 = 3 × 2.

Specifically, each line represents a binary variable, and
each box represents the factoring constraints that have to
be satisfied by the variables connected to it. We note that
each variable enters in exactly two factoring constraints,
except at the boundary.

This formulation of the factoring problem allows for
a mapping to a UDG-MWIS problem. Specifically, we
introduce a new factoring gadget consisting of a weighted
32-vertex unit-disk graph depicted in Fig. 8(b), where
we identify eight of the vertices with the eight variables
involved in the factoring constraints Fi,j . See Appendix D
for more details on the construction of the factoring gad-
get. In particular, we follow the design principle given in
Sec. IV A: the factoring gadget is designed such that (i)
the MWIS space is degenerate, (ii) every MWIS coincides
with a valid solution of Fi,j on the vertices that represent
the involved variables, and (iii) every valid solution of Fi,j
is represented by at least one MWIS. All these require-
ments can be checked by exhaustive search for the factor-
ing gadget depicted in Fig. 8(b). Since each variable has to
satisfy two factoring constraints [see Fig. 8(a)], we design
the factoring gadget such that this geometrical requirement
can be easily met. Indeed, we can represent the full set
of constraints {Fi,j |i = 0, . . . , k − 1; j = 0, . . . , n − k − 1}
as a unit-disk graph (of unit radius r = 2

√
2 on a square

lattice), by repeating the factoring gadget on a k(n − k)
square lattice, as depicted in Fig. 8(c). This construction
therefore results in a lattice with some of the boundary con-
ditions fixed by the values of mi, such that the MWIS of
the rest of the graph reveals the values of pi and qj , satisfy-
ing Eq. (11), thus providing the solution for the factoring
problem.

VI. NUMERICAL SIMULATIONS

In previous sections, we demonstrate an encoding strat-
egy to map a computation problem with arbitrary connec-
tivity onto a maximum-weighted independent set problem
on a unit-disk graph, showing that the ground state of
the mapped problem encodes the solution of the original
problem. We now present numerical simulations of quan-
tum algorithms to demonstrate the impact of the proposed
mapping procedure on quantum performance. Specifically,
we use the quantum adiabatic algorithm and consider the
MWIS problem on an ensemble of non-isomorphic, simply
connected six-node graphs, which includes three non-unit-
disk graphs. For simplicity, we choose uniform weights
for each graph �v = �. Using the procedure introduced
in Sec. V B and further simplification steps described in
Appendix A, we map each of the original MIS problems to
a UDG-MWIS problem and compare performance metrics
of QAA for both problems. There are a total of 112 non-
isomorphic graphs with six vertices. We sample 54 such
graphs: due to limits of classical simulation, we evaluate
only instances whose mapped graphs contain no more than

010316-11

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

25 vertices; we also do not consider the 40 graphs that
can be directly embedded as UDGs on the square lattice
without any overhead.

Figure 9 presents the performance results for the ensem-
ble of graphs. The QAA for the MWIS problems may
be performed for a particular graph by varying �v(t)
and �v(t) in the Rydberg Hamiltonian (1) [13]. Typi-
cally, the QAA is designed by initializing all qubits in
the |0〉 state, where �(t = 0) < 0 and �(t = 0) = 0 (with
U > 0). QAA for MWIS is usually done in two or three

1 2 3

4 5 6

1

2

3

4 56

(a)

(b)

(c)

i.

ii.

5 6

FIG. 9. QAA performance for MWIS on original and mapped
graphs. (a) Example unit-disk mapping and MIS configuration of
a six-vertex graph. The original graph (left) is unweighted, and
the mapped graph is a weighted UDG (right). The correspond-
ing vertices are labeled with numbers. (b) i. Rabi frequency �(t)
and detuning �(t) sweep used in the QAA protocol. The global
detuning �(t) is shown in solid red, while 2�(t) and 3�(t) are
shown in dashed lines. ii. Computed PMIS for the original and
mapped graphs as a function of total sweep time T. The adia-
batic timescale TLZ, which is related to the minimum energy gap,
is extracted from the long-time Landau-Zener fitting. (c) Scal-
ing of TLZ for mapped graphs for the ensemble of unweighted
nonisomorphic graphs with size N = 6.

stages [10]. First, �(t) is ramped up to a nonzero value
while �(t) is slowly tuned from negative to zero. Next,
�(t) is ramped off while �(t) is slowly tuned from zero
to positive. In this way, the initial state is adiabatically
connected to the ground state of the final, classical Hamil-
tonian whose ground state encodes the MWIS solution of
the UDG. For sufficiently slow ramps, the quantum state
of the system follows the instantaneous ground state of
the time-dependent Hamiltonian and thus the final state
corresponds to the MWIS of the graph.

In order to focus on adiabatic behavior near the gap
closing point and account for the weights in the MWIS
problem, we choose to initialize the state of the system
starting at the end of the first stage, in the ground state of
the Hamiltonian �(t = 0) = �0 and �(t = 0) = 0. Then,
� is linearly ramped to zero over a time T and each of the
detunings are linearly ramped from zero to a final value.
Note that because the weights �v on each vertex may be
different, the rate of change of detuning may be different
on each vertex. This protocol is shown in Fig. 9(b).

For our numerical simulation, we work in the limit of
�0, �0 � U, where the nonindependent set space of the
graph can be neglected (in experiments, this corresponds
to the strong Rydberg-blockade limit). In this limit, we
can restrict the simulation to the independent set subspace
of the graph. We also ignore long-range Rydberg interac-
tions, since the original graph does not have a geometric
description.

The performance of QAA is often discussed via an anal-
ysis of the minimum spectral gap along the parameter
path. However, the minimum gap alone is not sufficient
to understand the time scales for adiabaticity, as the struc-
ture of matrix elements between ground and excited states
can cause larger or smaller diabatic effects. Furthermore,
it can be ambiguous for instances where multiple degen-
erate ground states exist. We therefore compare the QAA
performance on the original and mapped problems by
directly comparing their adiabatic time scales. Specifi-
cally, we evaluate the adiabatic time scale by extracting
a Landau-Zener time scale, TLZ, which is the character-
istic time needed to evolve the system adiabatically. TLZ
is determined by fitting numerical results to the expected
long-time behavior of the ground-state probability PMIS =
1 − ea−T/TLZ at T where PMIS � 0.99. This procedure is
described in more detail in Ref. [13].

Figure 9(c) presents results of this analysis, compar-
ing the extracted Landau-Zener time scale for the origi-
nal graphs in our ensemble with the Landau-Zener time
scale of the corresponding mapped UDGs. The simula-
tion results indicate that for the graphs considered, the
timescale for adiabaticity of a mapped MWIS problem
is correlated with that of the original problem: the cor-
relation appears to be linear, but the limited range of
data precludes a reliable fitting; the spread of the data is
likely due to the specific structure of the graph, but there

010316-12

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

is no clear dependence on the number of vertices in the
mapped graph. Unfortunately, these instances are far from
the large-problem size limit and the displayed time scales
give us little intuition about the asymptotic performance
of the quantum algorithm for larger graphs. To have more
conclusive understandings of the performance of quan-
tum algorithms, one has to study it in Rydberg atom array
experiment on larger graphs.

VII. CONCLUSIONS AND OUTLOOK

In this work, we described an encoding strategy to map
a variety of computation problems with arbitrary connec-
tivity to maximum-weighted independent set problems on
unit-disk graphs, which have a hardware-efficient imple-
mentation of quantum optimization on neutral, trapped
atoms interacting via Rydberg states. The encoding incurs
at most a quadratic overhead in the number of variables
in the optimization problem and is thus very efficient. In
addition, the mapping follows an explicit, straightforward
procedure, which produces a unit-disk graph that can be
embedded on a square lattice with favorable conditions on
the necessary unit-disk radius and hence enables practical
implementation with Rydberg atom arrays.

We provided three concrete examples for the problem
mapping: MWIS problem on general graphs with arbitrary
connectivity, the QUBO problem, and the integer factor-
ization problem. In all examples, we show how the for-
mation of a crossing lattice together with a few encoding
gadgets enable a simple, unified approach to map a wide
range of computation problems into UDG-MWIS. Numer-
ical simulations indicate that the performance of quantum
algorithms on the mapped problems is directly correlated
with that of the original problems. If the linear correla-
tion in the Landau-Zener time persists asymptotically, this
suggests that any quadratic quantum speedup [10] in the
original graph may be transferred to an equivalent speedup
on the unit-disk graph.

While in this work we focused on encodings into
UDG-MWIS, we remark that similar strategies can also
be designed for encoding computation problems into
unweighted UDG-MIS problems. This is favorable for
experimental implementation when local detuning capabil-
ities are not available. The details for unweighted encoding
are described in a companion paper [22]. There are at
least several interesting future directions that deserve fur-
ther explorations. First, our approach may be generalized
to encode computation problems that include interactions
involving three or more variables, such as higher-order
unconstrained binary optimization (HUBO) problems; the
NOR gate shown in Fig. 3(c), for example, is a constraint
that involves three variables. It would also be interesting
to consider encoding approaches beyond 2D geometry, for
example, by generalizing the idea of a crossing lattice to a
“crossing cube” in three dimensions (3D); one may design

encoding methods with lower overhead in 3D or make use
of the third dimension in other ways such as thinking of
it as the time direction for circuit satisfiability problems.
Finally, we emphasize that our encoding strategy focuses
on exact (ground-state) solutions. An interesting question
is to what extent such strategies can be employed for
approximate optimization. It will be important to under-
stand the effects of the encoding mappings on the perfor-
mance of quantum algorithms in terms of excitations into
higher-energy states.

The source code that implements the mappings
in this work is available in the GitHub repository
UnitDiskMapping.jl. The (sub)optimal configurations and
weight spectrum of the maximum independent set prob-
lem instances are computed using the Julia package
GenericTensorNetworks.jl, which implements the generic
tensor-network algorithm [44].

ACKNOWLEDGMENTS

We thank Leo Zhou, Soonwon Choi, Xiu-Zhe (Roger)
Luo, Harry Levine, Giuliano Giudici, Zhongda Zeng,
Peter Zoller, and Nathan Gemelke for helpful discus-
sions. We acknowledge financial support from the DARPA
ONISQ program (Grant No. W911NF2010021), the Army
Research Office (Grant No. W911NF-21-1-0367), the Cen-
ter for Ultracold Atoms, the National Science Foundation,
the Vannevar Bush Faculty Fellowship, the U.S. Depart-
ment of Energy (DE-SC0021013 and DOE Quantum Sys-
tems Accelerator Center (Contract No. 7568717), the ERC
Starting grant QARA (Grant No. 101041435), and an
ESQ Discovery Grant. Jin-Guo Liu acknowledges fund-
ing support provided by QuEra Computing Inc. through a
sponsored research program.

APPENDIX A: OVERHEAD REDUCTION

In this Appendix, we provide additional strategies to the
introduced mapping scheme to further reduce the over-
head required for encoding the computation problems into
UDG-MWIS problems. We introduce several simplifica-
tion techniques that can be easily automated to reduce the
overhead of the final mapped graph, allowing us to map
specific graphs with significantly less overhead.

1. Crossing lattice reduction

a. Pathwidth reduction

As discussed in the main text, to impose interaction con-
straints for arbitrary connectivity, we construct a crossing
lattice. We can reduce the depth of the crossing lattice by
reordering the vertices, thus allowing the final mapping to
scale with the pathwidth of the original graph. A graph
G = (V, E) has a pathwidth pw(G) ≤ k if and only if it has
a vertex order v1, v2, . . . , vn such that for any 1 ≤ i ≤ n,
there are at most k vertices among {v1, . . . , vi} that have

010316-13

https://github.com/QuEraComputing/UnitDiskMapping.jl
https://github.com/QuEraComputing/GenericTensorNetworks.jl

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

neighbors in {vi+1, . . . , vn}. We can obtain pw(G) with a
path decomposition. A path decomposition is a sequence
of “bags” (X1, X2, . . . , XN), where Xi ⊆ V such that

v ∈ Xi, v ∈ Xk =⇒ ∀j ∈ [i, k], v ∈ Xj . (A1)

In other words, every vertex v ∈ V in G belongs to at
least one bag and the set of bags containing v forms a
connected interval of the sequence (X1, X2, . . . , XN). More-
over, for each edge e ∈ E, there is a bag Xi that contains
both endpoints. We define the width w of a path decom-
position as the maximum size of the bags and pathwidth
pw(G) = w − 1.

This is advantageous because for a sparse graph, the
pathwidth is usually much smaller than the number of ver-
tices. For example, the pathwidth of a 3-regular graph is
asymptotically bounded by n/6, and the pathwidth of a tree
graph is logarithmic in n. By inspecting the appearance of
the order of vertices in a bag in an optimal path decom-
position, we get a good vertex reordering that reduces the
size of the crossing lattice as described below.

b. Vertex reordering

One can reorder the vertices in the encoding mappings
to reduce the depth of the final mapped graph to the path-
width of the graph, i.e., the size of the crossing lattice is
thus O(N ∗ pw(G)). More concretely, we can reduce the
overhead in the mappings by minimizing the length of
the copy lines and reducing the number of crossing gad-
gets needed. Reordering the vertices allows us to cluster
crossings in the crossing lattice where the two degrees of
freedom interact (such as when two vertices share an edge
in the MWIS problem), and thus reduce the number of
unnecessary crossings in the crossing lattice.

Graphically, as seen in Fig. 10, for the example of the
MWIS problem on the K2,3 graph. Figure 10(a) depicts the
original crossing lattice discussed in Sec. V A. Reorder-
ing the vertices according to the path decomposition of the
graph [Fig. 10(b)] reduces the number of empty squares
(crossing gadgets) from 4 to 2, thus reducing the mapping
overhead even when pw(G) + 1 = N ; in general, we have
pw(G) + 1 < N for most graphs. Because the crossing lat-
tice is a 2D mapping, we can apply the same strategy to
reorder vertices along both axes: one can find a bipartition
of a graph to construct a crossing lattice that minimizes
the number of unnecessary crossings (or empty squares),
as shown in Fig. 10(c). Using vertex reordering, for the
K2,3 example graph, we can construct a simplified unit-disk
mapping of nine vertices [Fig. 10(d)] whereas the direct
mapping has 92 nodes.

Thus, we can generally simplify the standard mapping
and reduce the overhead by restructuring the crossing lat-
tice to reduce the length of copy lines and minimize unnec-
essary crossings. The optimal vertex reordering requires
computing the optimal path decomposition of a graph,

1 2 3 4 5

1

2

3

4

5

2 4 1 3 5

Vertex Reordering

(a) (b)

(c)

Original

Rerouting Simplified Mapping

1

5

3

42

(d)

(e)

FIG. 10. (a)–(c) Simplification techniques to reduce the over-
head. Vertex reordering can be used to reduce the depth of the
crossing lattice. (d) Final mapping of the K2,3 graph after biparti-
tion and vertex reordering, reducing the overhead mapping from
92 nodes to 9 [see Fig. 6(b)]. (e) MWIS overhead scaling as a
function of the number of vertices of original randomly gener-
ated graphs for chosen graph classes using a greedy pathwidth
reduction algorithm.

which is itself an NP-hard problem. For small graphs, the
optimal path decomposition can be effectively computed
with the branching algorithm [45]; for larger graphs, one
can use heuristic algorithms to find good path decomposi-
tion. This strategy allows us to achieve an overhead scaling
for a chosen set of graph classes shown in Fig. 10(e).
A more detailed discussion of how vertex reordering can
reduce the number of crossings is included in the compan-
ion paper [22].

2. Simplification gadgets

We can further reduce the mapping overhead from
the standard encoding procedure, or any valid unit-disk
mapping by introducing rewriting rules, or gadgets that

010316-14

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

maintain the integrity of the mapping, while also reduc-
ing the overhead of the graph. Simplification gadgets are
most useful for the MWIS problem, where node weights
are more uniform, but simplification gadgets should pre-
serve the weight constraints of the original problem. For
example, here are some simplification rules:

i i

i

i

i

i i i

APPENDIX B: DEFECTS AND MWIS
GUARANTEES

As described in the main text, one needs to be care-
ful with the proper normalization of the vertex weights to
ensure the ground state of the mapped problem correctly
encodes the solution of original problem. In this Appendix,
we provide more details on normalization for the MWIS
and QUBO problem.

For the MWIS mapping shown in Fig. 6, the UDG-
MWIS problem is guaranteed to encode a valid solution of
the original problem only if the additional weights (biases)
are properly chosen. If a bias is too large, it may be ener-
getically favorable to violate a constraint in the problem,
causing the MWIS to be an invalid solution. These con-
straint violations, in the context of the copy gadget, are
called “defects.” It is thus imperative to limit the size of
the biases to guarantee that the MWIS is a valid solution.

For the constraint-satisfaction problems constructed as
reductions for MWIS and QUBO, there is a hierarchy of
constraints. At one scale is δ, which corresponds to the
energy scale of the unweighted problem and at another
scale is the linear (wi) and quadratic (wij) biases that pre-
fer certain MWIS and QUBO solutions for the weighted
problems.

The safest normalization of biases is to constrain that the
total weights is less than the cost of a single constraint vio-
lation. For the copy gadget, which encodes the constraint
(n1 = n2) ∧ (n2 = n3) ∧ · · · , the cost of violating one con-
straint and adding one defect is at least δ. For instance,
consider a length-12 copy gadget with bias w

For the configuration with a defect (the third line), the
left side incorrectly represents a 1, while the right side
represents a 0. Similarly, for the crossing gadget, remov-
ing the vertex from a clique costs an energy of at least
2δ, at the expense of adding two defects; one to the hor-
izontal and one to the vertical copy gadget. Thus, the most
conservative normalization of biases, which sums over all
clauses, is

δ >
∑

ij

|wij | + |wi|. (B1)

Unfortunately, such a normalization is too conservative.
For the MWIS problem, the normalization goes as 1/N ,
while, for the QUBO problem, the normalization goes as
1/N 2. A larger bias that still guarantees a valid MWIS can
be found by inspecting the structure of the copy gadget and
crossing lattice.

For the MWIS problem, it is beneficial to inspect only
a single copy gadget. Consider a copy gadget of length
2n and biases +w on one end and −w on the other. The
valid solutions have energies (n − 1)δ ± w, and the single-
defect invalid solution has an energy nδ. Thus, in order to
guarantee a valid solution, it serves to have every bias δ >

wi. In this way, the normalization must obey the constraint

δ > maxi|wi|. (B2)

For the QUBO problem, it is similarly beneficial to inspect
only a single copy gadget. Single-defect solutions to the
copy gadget may potentially be energetically favorable if
the cost of adding a defect is outweighed by satisfying
more quadratic terms. As an extreme case, consider a bit
i in a state −1, with a QUBO interaction wij > 0 with
every other qubit j . However, suppose the optimal state
of every other qubit j is +1 for j < k, and −1 for j ≥ k
due to a strong linear term pinning the vertical j bits. In
this case, every QUBO quadratic contribution to the left of
k is negative while all to the right are positive, and the total
contribution to the QUBO energy is small,

with a weight of w = wi − ∑
j <k |wij | + ∑

j >k |wij |. How-
ever, if one adds a single defect to bit i at k, it looks like a
+1 state to the left and −1 to the right, satisfying every
QUBO quadratic term at the cost of adding one defect

010316-15

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

worth of energy,

with a weight of w′ = wi + ∑
j |wij | − δ. To guarantee the

MWIS encodes a valid solution, the weight of the zero-
defect solution must be larger w ≥ w′. Given a QUBO
contribution will always contribute a positive weight (w >

wi), this guarantee is equivalent to enforcing that the defect
cost is greater than the sum on all w for each bit

δ > maxi

∑

j

|wij |. (B3)

If both the linear and quadratic constraints are satisfied by
normalizing the weights correctly, the MWIS is guaran-
teed to be a zero-defect state and thus encode the QUBO
solution.

APPENDIX C: RESTRICTED QUBO
CONNECTIVITY

While it is useful to envision arbitrary-connectivity
QUBO problems, its application comes at the practical
cost of encoding overhead. For example, encoding a 5-
bit problem takes around a 16 × 16 lattice, which is on
the upper limit of today’s Rydberg atom array system
[10]. A more near-term solution is to specify graphs with
a constrained connectivity that naturally fit more bits
onto today’s hardware. A natural restriction is a nearest-
neighbor 2D connectivity, such as an example graph shown
in Fig. 11(a). Just like any arbitrary QUBO problem can be
mapped to a UDG-MWIS problem with a quadratic over-
head, a restricted 2D QUBO problem can be mapped onto
UDG-MWIS with only a constant overhead.

In order to construct particular restricted connectivity
QUBO problems for the particular topology of Fig. 11, it
is instructive to introduce three new gadgets, which are
extensions of the crossing gadget. The first gadget is a
square clique of four vertices, which is similar to the four-
vertex clique of the QUBO gadget, shown in Fig. 11(b).
The four MWIS of the clique represent four possible states
of two qubits; for this mapping, we choose the top right
vertex to be the ++ state, and the bottom right vertex to
be the +− state, etc. In order to encode a QUBO interac-
tion between the bits, we likewise bias the weights of each
vertex as shown in Fig. 11(b).

An additional gadget can encode ferromagnetic (J > 0)

or antiferromagnetic (J < 0) interactions between adja-
cent bits, as shown in Fig. 11(c). The independent set
restriction naturally encodes nn-type interactions, while
QUBO usually requires ZZ-type interactions, which can

(a)

(c)

(d)

(b) 50-bit Nearest-Neighbor
restricted QUBO

2-bit clique

FM edge

AFM edge

– – – +

+ – + +

– – – +

+ – + +

– – – +

+ – + +

– – – +

+ – + +

– – – +

+ – + +

FIG. 11. An example 2D restricted-connectivity graph and
reduction to UDG-MWIS. (a) A particular topology of bits (ver-
tices) and quadratic terms (edges). The original graph can be
mapped into a UDG-MWIS using some gadgets. (b) Two bits can
be represented by a clique of four vertices, with each state (±±)

represented by a single vertex of the clique. Linear and quadratic
interactions are represented by biasing the weights of the clique.
(c) Interactions between neighbors can be represented by adding
ancilla vertices. (d) The original restricted-connectivity QUBO
problem as mapped to a UDG-MWIS problem, where the ground
state encodes the solution to the QUBO problem. Here, quadratic
QUBO weights are chosen to be ±J . This example graph has
50 bits in the original graph and an extent of 13 × 13 in the
mapped UDG graph, which naturally fits onto today’s Rydberg
atom array hardware.

be converted back and forth using linear terms. In this
way, the interaction between adjacent bits can be encoded
by adding one (J < 0) or two (J > 0) ancilla vertices

010316-16

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

in between each clique within the unit-disk radius. Ulti-
mately, the absolute value of the interaction is encoded into
the weight of these interaction vertices.

For an example of how this interaction gadget works,
consider the one vertex antiferromagnetic interaction and
gadget of Fig. 11(c). If the horizontal bit of the left clique
is in the +1 state (e.g., on the right side of the clique),
the ancilla vertex is blockaded from being part of the
independent set, and likewise if the horizontal bit of the
right clique is in the −1 state. Thus, the effective inter-
action, encoded into the condition of the ancilla vertex
of weight wij being included in the independent set, is
wij (1 − zi)(1 + zj)/4. Similarly, the two-vertex ferromag-
netic interaction is encoded into the weight as wij (1 − (1 −
zi)(1 + zj)/4), as the ancilla vertex is only blockaded for
one configuration instead of three. Note that the antiferro-
magnetic gadget has a negative sign in front of the zz term,
as required, and similar for the ferromagnetic gadget. After
correcting the linear offsets, the biases for each vertex of
the gadget are shown in Fig. 11(c), with wij = J .

Finally, one must guarantee that the ground state does in
fact map to the codespace of valid solutions, with proper
normalization as described in Appendix B. Here, a solution
is valid if each four-vertex clique has at least one vertex in
the maximum independent set. This may be guaranteed by
increasing the zero-bias weight of the four-vertex clique
to be much larger than any other scale. One guaranteed
offset is U = 8J , where J is the largest coupling strength
between adjacent bit cliques. This condition is set because,
if the weight is smaller, an independent set vertex in the
clique can be replaced with two adjacent vertices of the
interaction gadget, which each have a weight of 4|J |. Thus,
this bias guarantees the correct ground state. An example
set of weights, which encodes a graph with random bonds
±J , is shown in Fig. 11(d).

It should be emphasized that Fig. 11 is just one particu-
lar example of a local connectivity encoding for unit-disk
graphs. In practice, there may be many different encod-
ings of many different restricted-connectivity graphs. Due
to the nature of Rydberg atom arrays, which reconstruct the
graph for each shot, these neutral-atom platforms are much
more flexible in the connectivities of the problems they
solve, potentially even on a shot-by-shot basis. This is in
contrast with other architectures such as superconducting
qubits, which have a fixed qubit connectivity and require a
lengthy fabrication process to modify their topology.

Additionally, these local-connectivity graphs can encode
more nonlocal problems, by increasing the ferromagnetic
weight of edges such that the ground state of adjacent ver-
tices are always the same. In this way, choosing a large
ferromagnetic weight recreates the copy gadget and, by
extension, may recreate the crossing lattice of the all-to-
all QUBO problem shown in Fig. 7. Furthermore, such
a local-connectivity graph may recreate other hardware’s
configuration. For instance, the DWAVE Chimera graph

[46] consists of sets of eight bipartite connected bits in a
unit cell, which are connected colinearly with adjacent unit
cells. The same connectivity can be reproduced by choos-
ing some large ferromagnetic J terms appropriately on the
grid of Fig. 11. It should be emphasized that due to the
reconfigurable nature of Rydberg atom arrays, it is trivial
to modify the topology of the connectivity. For example,
on one shot, a Rydberg atom array system could recreate
the DWAVE Chimera topology, while, on the next shot, it
may recreate the DWAVE Pegasus topology, and so forth.

APPENDIX D: FACTORING GADGET

In this Appendix, we elaborate on the factoring gad-
get introduced in Fig. 8. The factoring gadget is designed
such that the MWIS space corresponds to the satisfying
assignments

si,j + 2ci,j = pi,j qi,j + si+1,j −1 + ci−1,j , (D1)

qi+1,j = qi,j , (D2)

pi,j +1 = pi,j . (D3)

We first focus on the constraint (D1) since the other
two constraints are easy to satisfy with a combination
of copy and crossing gadgets. To simplify notations, let
us rewrite the constraint (D1) as ab + c + d = 2e + f
between binary variables a, b, c, d, e, f ∈ {0, 1}. We fur-
ther rewrite this constraint as a conjunction of two simple
constraints, namely

z = ab, (D4)

z + c + d = 2e + f . (D5)

We obtain a MWIS representation of the first constraint
directly from the crossing gadget [see Fig. 12(a)]. As
already discussed in the main text, the interior vertices
of the crossing gadget encode the information about the
variables on the boundary. Specifically, the lower left inte-
rior vertex (representing z) is in the MWIS if and only if
both the top and the right outer vertices (representing a
and b, respectively) are also in the MWIS, thus exactly
representing ab = z.

The MWIS representation of the second constraint is
given in Fig. 12(b). One can check by exhaustive search
that the MWISs of this gadget indeed represent exactly all
satisfying assignments of z + c + d = 2e + f . To obtain
the MWIS representation of ab + c + d = 2e + f , we thus
simply join the graphs in Figs. 12(a) and 12(b) at the com-
mon vertex z. Note that the total weight of the vertex z in
this joint graph is the sum of its weights in each individual
graph. One can easily identify this joint structure in the full
factoring gadget given in Fig. 8(b). The remaining parts of
this gadget are simply formed by combining it with copy
and crossing gadgets that satisfy (D2) and (D3) and to route

010316-17

MINH-THI NGUYEN et al. PRX QUANTUM 4, 010316 (2023)

(a) (b)

z

a

b

f
d

e

c
z

weights:

FIG. 12. The two basic components of the factoring gadget.
The gadget in (a) is a crossing gadget. Besides its use in routing
effective variables a and b, it also serves as a tool to access the
value of the product of the variables, z = ab, at the indicated
interior vertex. The gadget in (b) is the MWIS representation of
the constraint z + c + d = 2e + f .

the variables to positions where they can be accessed also
by neighboring factoring gadgets.

[1] A. Schrijver et al., Combinatorial Optimization: Polyhedra
and Efficiency (Springer, Berlin, 2003), Vol. 24.

[2] B. Korte and J. Vygen, Combinatorial Optimization: The-
ory and Algorithms (Springer, Heidelberg, 2008).

[3] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quan-
tum Computation by Adiabatic Evolution, arXiv:0001106
(2000).

[4] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,
and D. Preda, A quantum adiabatic evolution algorithm
applied to random instances of an NP-complete problem,
Science 292, 472 (2001).

[5] T. Kadowaki and H. Nishimori, Quantum annealing in the
transverse Ising model, Phys. Rev. E 58, 5355 (1998).

[6] A. Das and B. K. Chakrabarti, Colloquium: Quantum
annealing and analog quantum computation, Rev. Mod.
Phys. 80, 1061 (2008).

[7] T. Albash and D. A. Lidar, Adiabatic quantum computation,
Rev. Mod. Phys. 90, 015002 (2018).

[8] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approx-
imate optimization algorithm, arXiv:1411.4028 (2014).

[9] A. Lucas, Ising formulations of many np problems, Front.
Phys. 2, 5 (2014).

[10] S. Ebadi et al., Quantum optimization of maximum inde-
pendent set using Rydberg atom arrays, Science 376, 1209
(2022).

[11] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and
M. D. Lukin, Fast Quantum Gates for Neutral Atoms, Phys.
Rev. Lett. 85, 2208 (2000).

[12] M. Saffman, T. G. Walker, and K. Mølmer, Quantum infor-
mation with Rydberg atoms, Rev. Mod. Phys. 82, 2313
(2010).

[13] H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D. Lukin,
Quantum optimization for maximum independent set using
Rydberg atom arrays, arXiv:1808.10816 (2018).

[14] M. Kim, K. Kim, J. Hwang, E.-G. Moon, and J. Ahn,
Rydberg quantum wires for maximum independent set
problems, Nat. Phys. 18, 755 (2022).

[15] J. Wurtz, P. Lopes, N. Gemelke, A. Keesling, and S. Wang,
Industry applications of neutral-atom quantum comput-
ing solving independent set problems, arXiv:2205.08500
(2022).

[16] A. Byun, M. Kim, and J. Ahn, Finding the Maximum Inde-
pendent Sets of Platonic Graphs using Rydberg Atoms,
PRX Quantum 3, 030305 (2022).

[17] W. Lechner, P. Hauke, and P. Zoller, A quantum annealing
architecture with all-to-all connectivity from local interac-
tions, Sci. Adv. 1, e1500838 (2015).

[18] X. Qiu, P. Zoller, and X. Li, Programmable Quantum
Annealing Architectures with Ising Quantum Wires, PRX
Quantum 1, 020311 (2020).

[19] C. Dlaska, K. Ender, G. B. Mbeng, A. Kruckenhauser, W.
Lechner, and R. van Bijnen, Quantum Optimization via
Four-Body Rydberg Gates, Phys. Rev. Lett. 128, 120503
(2022).

[20] B. Clark, C. Colbourn, and D. Johnson, Unit disk graphs,
Discrete Math. 86, 165 (1990).

[21] We also show that circuit satisfiability problems can be
mapped into UDG-MWIS and so all other NP problems
can be mapped through circuit satisfiability if no better
low-overhead mapping is found.

[22] J.-G. Liu et al., (to be published 2022).
[23] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.

Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[24] A. Browaeys and T. Lahaye, Many-body physics with indi-
vidually controlled Rydberg atoms, Nat. Phys. 16, 132
(2020).

[25] A. M. Kaufman and K.-K. Ni, Quantum science with opti-
cal tweezer arrays of ultracold atoms and molecules, Nat.
Phys. 17, 1324 (2021).

[26] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semegh-
ini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler,
W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić,
and M. D. Lukin, Quantum phases of matter on a 256-atom
programmable quantum simulator, Nature 595, 227 (2021).

[27] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.
Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C.
Lang, T. Lahaye, A. M. Läuchli, and A. Browaeys, Quan-
tum simulation of 2D antiferromagnets with hundreds of
Rydberg atoms, Nature 595, 233 (2021).

[28] T. M. Graham et al., Multi-qubit entanglement and algo-
rithms on a neutral-atom quantum computer, Nature 604,
457 (2022).

[29] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A.
Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams,
and M. Endres, High-fidelity entanglement and detec-
tion of alkaline-earth Rydberg atoms, Nat. Phys. 16, 857
(2020).

[30] A. W. Young, W. J. Eckner, W. R. Milner, D. Kedar, M.
A. Norcia, E. Oelker, N. Schine, J. Ye, and A. M. Kauf-
man, Half-minute-scale atomic coherence and high relative
stability in a tweezer clock, Nature 588, 408 (2020).

010316-18

https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1126/science.1057726
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1103/RevModPhys.90.015002
https://arxiv.org/abs/1411.4028
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1126/science.abo6587
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/RevModPhys.82.2313
https://arxiv.org/abs/1808.10816
https://doi.org/10.1038/s41567-022-01629-5
https://arxiv.org/abs/2205.08500
https://doi.org/10.1103/PRXQuantum.3.030305
https://doi.org/10.1126/sciadv.1500838
https://doi.org/10.1103/PRXQuantum.1.020311
https://doi.org/10.1103/PhysRevLett.128.120503
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1038/s41586-020-3009-y

QUANTUM OPTIMIZATION WITH ARBITRARY. . . PRX QUANTUM 4, 010316 (2023)

[31] K. Singh, S. Anand, A. Pocklington, J. T. Kemp, and
H. Bernien, Dual-Element, Two-Dimensional Atom Array
with Continuous-Mode Operation, Phys. Rev. X 12, 011040
(2022).

[32] J. T. Zhang, L. R. B. Picard, W. B. Cairncross, K. Wang,
Y. Yu, F. Fang, and K.-K. Ni, An optical tweezer array
of ground-state polar molecules, Quantum Sci. Technol. 7,
035006 (2022).

[33] L.-M. Steinert, P. Osterholz, R. Eberhard, L. Festa, N.
Lorenz, Z. Chen, A. Trautmann, and C. Gross, Spatially
programmable spin interactions in neutral atom arrays,
arXiv:2206.12385 (2022).

[34] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.
Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S.
Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero,
T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M.
D. Lukin, Generation and manipulation of Schrödinger
cat states in Rydberg atom arrays, Science 365, 570
(2019).

[35] Note that the particular scale of Uuv does not change the
low-energy properties (i.e., the energy of the states corre-
sponding to independent sets) as long as Uuv > maxw δw.

[36] H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D. Lukin,
Computational complexity of the Rydberg blockade in two
dimensions, arXiv:1809.04954 (2018).

[37] Note that, in general, this strategy could result in edges
appearing in multiple constraints, producing inhomoge-
neous edge weights. However, because the satisfying
assignments are independent sets, we can always homog-

enize the edge constraint by considering an equivalent
problem of homogeneous edge weights by choosing a large
enough U � δ.

[38] C. Moore and S. Mertens, The Nature of Computation
(Oxford University Press, Oxford, 2011).

[39] V. Choi, Minor-embedding in adiabatic quantum com-
putation: II. Minor-universal graph design, Quantum Inf.
Process. 10, 343 (2010).

[40] S. Knysh and V. N. Smelyanskiy, Adiabatic Quantum
Computing in systems with constant inter-qubit couplings,
arXiv:0511131 (2005).

[41] Any weight larger than 2δ for the ancillary vertices would
work. The choice 4δ is convenient, since it homogenized
defect energies when crossing gadgets are combined with
copy gadgets.

[42] C. J. Burges, Factoring as optimization, Microsoft Research
MSR-TR-200 (2002).

[43] R. Dridi and H. Alghassi, Prime factorization using quan-
tum annealing and computational algebraic geometry, Sci.
Rep. 7, 43048 (2017).

[44] J.-G. Liu, X. Gao, M. Cain, M. D. Lukin, and S.-T.
Wang, Computing solution space properties of combina-
torial optimization problems via generic tensor networks,
arXiv:2205.03718 (2022).

[45] D. Coudert, D. Mazauric, and N. Nisse, in International
Symposium on Experimental Algorithms (Springer, Berlin,
2014), p. 46.

[46] D-wave QPU architecture: Topologies. https://docs.dwave
sys.com/docs/latest/c˙gs˙4.html.

010316-19

https://doi.org/10.1103/PhysRevX.12.011040
https://doi.org/10.1088/2058-9565/ac676c
https://arxiv.org/abs/2206.12385
https://doi.org/10.1126/science.aax9743
https://arxiv.org/abs/1809.04954
https://doi.org/10.1007/s11128-010-0200-3
https://arxiv.org/abs/quant-ph/0511131
https://doi.org/10.1038/srep43048
https://arxiv.org/abs/2205.03718
https://docs.dwavesys.com/docs/latest/c_gs_4.html

	I.. INTRODUCTION
	II.. OVERVIEW OF MAIN RESULTS
	III.. BACKGROUND
	A.. Rydberg atom arrays
	B.. Unit-disk graphs
	C.. Maximum-weight independent sets

	IV.. ENCODING GADGETS
	A.. Constraint satisfaction problems as MWIS
	1.. Single constraints
	2.. Conjunction of constraints

	B.. Gadgets for unit-disk transformation
	1.. Copy gadget and effective bits
	2.. Crossing gadget
	3.. Crossing-with-edge gadget

	V.. ARBITRARY CONNECTIVITY
	A.. The crossing lattice
	B.. Maximum-weight independent set
	C.. Quadratic unconstrained binary optimization
	D.. Integer factorization

	VI.. NUMERICAL SIMULATIONS
	VII.. CONCLUSIONS AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: OVERHEAD REDUCTION
	1.. Crossing lattice reduction
	a.. Pathwidth reduction
	b.. Vertex reordering

	2.. Simplification gadgets

	. APPENDIX B: DEFECTS AND MWIS GUARANTEES
	. APPENDIX C: RESTRICTED QUBO CONNECTIVITY
	. APPENDIX D: FACTORING GADGET
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

