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Quantum error correction is crucial for any quantum computing platform to achieve truly scalable quan-
tum computation. The surface code and its variants have been considered the most promising quantum
error correction scheme due to their high threshold, low overhead, and relatively simple structure that
can naturally be implemented in many existing qubit architectures, such as superconducting qubits. The
recent development of Floquet codes by Hastings and Haah offers another promising approach. By going
beyond the usual paradigm of stabilizer codes, Floquet codes achieve similar performance while being
constructed entirely from two-qubit measurements. This makes them particularly suitable for platforms
where two-qubit measurements can be implemented directly, such as the measurement-only topological
qubits based on Majorana zero modes (MZMs) proposed by Karzig et al. Here, we explain how two vari-
ants of Floquet codes can be implemented on MZM-based architectures without any auxiliary qubits for
syndrome measurement and with shallow syndrome-extraction sequences. We then numerically demon-
strate their favorable performance. In particular, we show that they improve the threshold for scalable
quantum computation in MZM-based systems by an order of magnitude and significantly reduce space
and time overheads below threshold.
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I. INTRODUCTION

For over a decade, the surface code [1–4] has been the
de facto standard for scalable fault-tolerant quantum com-
puting architectures. Its high threshold and local support on
a two-dimensional planar lattice make it highly appealing
for a wide variety of plausible physical implementations
[5–9]. However, despite promising progress [10–17], full
demonstration of a logical qubit encoded in a surface-
code patch has thus far remained elusive even for leading
experimental platforms.

One qubit platform that promises to reach error rates far
below what is required for the surface code is topologi-
cal quantum computation. Topological qubits are endowed
with topological protection, which can be thought of as
hardware-level error protection that is able to suppress
the effect of any local error exponentially in physical
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parameters such as the size of the system and the spectral
gap. While many different physical systems exhibit topo-
logical order and could in principle be used for topological
quantum computation [18], one of the most promising
implementations is that of Majorana zero modes (MZMs)
[19,20] in semiconductor-superconductor heterostructures
[21,22]. A particularly promising scheme to operate such
qubits is measurement-only topological quantum compu-
tation [23], which avoids having to physically move topo-
logical excitations and instead performs all manipulations
via (in the case of MZMs) joint fermion-parity measure-
ments on small numbers of MZMs. Specific proposals for
such qubits have been put forward in Ref. [24]. The natural
operations of these qubits are measurements of multiqubit
Pauli operators in a collection of adjacent qubits. Exactly
which Pauli operators are available depends on the details
of the physical layout, which can thus be tailored to a
particular application.

As stabilizer codes are constructed from multiqubit
Pauli measurements, it would seem that these MZM-based
measurement-only topological qubits are ideally suited for
the implementation of the surface code. Indeed, several
possible approaches have been discussed in the literature,
including direct measurement of the weight-4 Pauli oper-
ators [25], generalizations thereof [26], as well as circuits
that implement the stabilizers as a sequence of weight-2
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measurements [27,28]. However, these implementations
either rely on operations that are challenging to implement
physically or suffer from overhead in time and space that
is much larger than implementations of the surface code
based on, say, superconducting qubits.

Recently, this situation has been remedied by a new
class of codes that also have local support on a two-
dimensional lattice [29,30]. These so-called “Floquet
codes” can act as a fault-tolerant quantum memory by way
of a time-ordered sequence of two-qubit Pauli measure-
ments. Compared to the surface code, which is fundamen-
tally constructed from four-qubit Pauli measurements, this
obviates the need to compile four-qubit Pauli measure-
ments into either a sequence of two-qubit Clifford gates
and single-qubit measurements or one- and two-qubit Pauli
measurements. The codes can be formulated on any face-
three-colorable lattice and thus afford significant flexibility
in the physical layout. A natural choice of lattice is the
honeycomb lattice. The honeycomb Floquet code on a
torus has been shown in Ref. [31] to have highly com-
petitive thresholds and logical error rates. However, due
to the boundary conditions, it is impractical for large-scale
implementation on a physical plane. This has been reme-
died in a follow-up work [30], where the authors have
proposed a simple set of planar boundary conditions for
the honeycomb code.

Here, we reconsider this planar honeycomb code and
additionally introduce a Floquet code on the 4.8.8 lattice
(also known as the truncated-square or square-octagon lat-
tice). For both the 4.8.8 code and the honeycomb code,
we show that the bulk operations can be naturally imple-
mented in an array of so-called tetrons [24,32], a particu-
lar variant of measurement-only MZM-based topological
qubits. This implementation uses only the most natural set
of short-ranged measurements for this qubit platform. We
then introduce boundary conditions for both the honey-
comb and the 4.8.8 code that can be implemented directly
in these tetron arrays and that lead to physical implemen-
tations that require no auxiliary qubits and use only one
physical operation per check operator.

Crucially, through numerical simulations of these pla-
nar Floquet codes, we demonstrate that they significantly
outperform the surface code for the topological platform
(or any other platform where two-qubit Pauli measure-
ments are directly available). We find that the threshold
improves from around 0.2% [27] to above 1% (see Table
II). Furthermore, we find substantial time and space sav-
ings depending on physical and logical target error rates.
For example, Floquet codes offer a time savings fac-
tor between 5 and 10 and a space savings factor up to
5 for a target logical error rate of target logical error
rate 10−12 and physical error rates between 10−6 and
10−3. These improvements are largely due to the compar-
atively high thresholds and more time-efficient syndrome
measurements.

II. REVIEW OF FLOQUET CODES ON THE
HONEYCOMB LATTICE

The honeycomb code, originally introduced in Ref. [29],
is defined by a time-ordered sequence of weight-2 Pauli
operators supported on vertices of a hexagonal lattice.
Each operator, or “check,” corresponds to an edge in the
lattice. A family of honeycomb codes can be constructed
by tiling some number of “units,” which is a set of three
adjacent faces as shown in Fig. 1(a). The operators are
assigned such that all operators supported at a given vertex
anticommute. A specific choice for the honeycomb lattice
that satisfies these conditions is to assign ZZ to horizontal
edges, XX to edges with positive slope, and YY to edges
with negative slope. To define the order in which operators
are measured, it is furthermore required to assign a color
{blue, yellow, green} to each edge such that no two edges
touching the same vertex have the same color. Then, each
face is surrounded by two colors of edges and we choose
to color each face by the lone remaining color [for an illus-
tration, see Fig. 1(a)]. For a lattice with periodic boundary
conditions (a torus), a tiling using this unit is all that is
required. The check measurements are then time ordered
by color: first yellow, then blue, then green. This period-3
sequence forms one round of syndrome extraction for the
honeycomb code. A number of rounds proportional to the
distance is required for a fault-tolerant quantum memory.

Other boundary conditions require modifications, as dis-
cussed in detail in Ref. [30]. One set of boundary condi-
tions forms a parallelogram shape as shown in Fig. 1(b).
First, a set of units is tiled to form the bulk of the parallelo-
gram. Then, additional qubits and edges are added around
the perimeter. Some of the faces around the boundary are
incomplete, resulting in 2-gons instead of hexagons [33].
The parallelogram boundaries also require a modification
to the time ordering of the check measurements. Instead of
measuring checks in the period-3 sequence (yellow, blue,
green), the edges are measured in a period-6 sequence (yel-
low, blue, green, yellow, green, blue). Most of the edges,
including all of the blue and green edges, are measured
twice during this sequence. The black-yellow dashed edges
in Fig. 1(b) are measured only once.

A. Decoding graph construction and effective code
distances

The sequence of check measurements defines a corre-
sponding sequence of stabilizer groups. The instantaneous
stabilizer group at a given time step is the group of
Pauli operators obtained by projecting onto each check
operator up to and including the chosen time step. This
includes all of the check measurements at that time
step, and after at least four time steps, the Pauli oper-
ators supported on each of the hexagonal faces. The
instantaneous logical operators are the normalizers of the
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(a)

(b)

FIG. 1. (a) The tiling unit for the honeycomb code. Qubits are indicated by black dots. We assign a check operator ZZ for each
horizontal edge, XX for each edge with positive slope, and YY for each edge with negative slope. (b) The parallelogram boundary con-
ditions for the honeycomb code. The solid-color edges are measured in a period-6 sequence (yellow, blue, green, yellow, green, blue).
The curved edges are Pauli operators, chosen such that the triple of check operators meeting at a vertex are pairwise anticommuting.
(The degree-4 vertex in the top left corner is treated specially; see Table I.) For example, the curved green edges along the bottom are
assigned XY operators (from left to right). The striped black-yellow edges, bordering green faces, are measured during the first yellow
round, while the dashed black-yellow edges, bordering blue faces, are measured during the second yellow round.

instantaneous stabilizer group, modulo the instantaneous
stabilizer group.

On a torus (i.e., without boundaries), the instantaneous
stabilizer group consists of the plaquette stabilizers around
the hexagons and the check operators at the moment. With
boundaries, the instantaneous stabilizer group possesses
new types of elements (transient stabilizers), in addition
to perpetual stabilizers associated with the hexagons, 4-
gons, and 2-gons. First, when we measure yellow checks
after green checks, we do not measure black-yellow striped
checks bordering green faces. Hence, the green checks at
the bottom of Fig. 1(b) remain in the instantaneous stabi-
lizer group. In the next step, we measure the green checks

TABLE I. The elements of the instantaneous stabilizer group,
restricted to the three qubits in the top left of Fig. 1(b). In two
of the six rounds, the restricted instantaneous stabilizer group
remains unchanged and the check outcome for that round is
deterministic (in the absence of errors). For the operators in the
table, the three qubits are ordered by starting with the leftmost of
the three and moving clockwise.

Round
Check

operator

In steady state,
instantaneous stabilizer

group contains up to signs
Outcome

deterministic?

Y IYX IZZ, IYX
B IZZ IZZ, IYX Yes
G XXI XXI , IXY
Y ZYI XXI , ZYI
G XXI XXI , ZYI Yes
B IZZ YZI , IZZ

again and, in the absence of errors, the outcomes of the
green checks at the bottom boundary are deterministic.
This gives a node in the decoding graph, inferred by two
green-check outcomes. It is contrasted with a decoding
graph node corresponding to a hexagon, which is inferred
by 12 check outcomes. Second, similarly, the instanta-
neous stabilizer group at the yellow step (which follows a
green step) contains the product of the outcomes of the two
green checks at the top of Fig. 1(b), which are separated by
one yellow edge. Since we measure the green checks at the
next step, we obtain a decoding graph node that is inferred
by four green-check outcomes. Finally, the top-left corner
is exceptional, where two 2-gons do not carry perpetual
stabilizers. The top-left qubit and its two neighbors sup-
port a subgroup of the instantaneous stabilizer group. This
subgroup has period 6 up to signs (for concrete details,
see Table I). In two of the six rounds, the instantaneous
stabilizer group subgroup remains unchanged and the cor-
responding check outcome is deterministic (in the absence
of errors). Whenever there is a deterministic outcome,
there is a corresponding decoding graph node.

When tiled in the fashion shown in Fig. 1(b), either on
the torus or the parallelogram, the minimum weight of the
logical operators is given by 2�, where �2 is the number
of units in the tiling. That is, the minimum weight corre-
sponds to the length of the linear dimension, as measured
in the units of Fig. 1(a).

The effective distance of the code depends on the cir-
cuit and corresponding noise model used to implement
the check measurements. If errors occur independently on
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(a)

(b)

FIG. 2. (a) The tiling unit for the 4.8.8 Floquet code. As in Fig. 1(a), qubits are indicated by black dots. Every diagonal edge is YY,
every horizontal edge ZZ, and every vertical edge XX . (b) The rectangular boundary conditions for the 4.8.8 Floquet code. As in the
honeycomb code, the solid-color edges are measured in a period-6 sequence (yellow, blue, green, yellow, green, blue). The dashed and
striped black-yellow edges are the same Pauli type as the solid yellow edges but are measured at different rounds in the measurement
sequence. The dashed edges, incident to green faces, are measured during the first yellow round. The striped edges, incident to blue
faces, are measured during the second yellow round.

each qubit, the distance is equal to the minimum weight
2� of the logical operators. Under other noise models, the
effective distance can be lower and is defined to be the
minimum number of errors in that noise model (where an
error may act on several qubits), which may cause an unde-
tectable logical error. For the noise model that we consider
in this paper, where errors may occur on pairs of qubits,
the effective distance is cut in half to � (see Sec. VI A).

Note that in Floquet codes, it is possible for measure-
ment errors alone (i.e., a bit flip of the measurement
outcome without any error on the qubits of the code) to
lead to an undetectable logical error and with respect to
such errors, the distance in the parallelogram is equal to
2� − 1. In Fig. 1(b), there is a set of five measurement
errors, all in a line starting at a solid yellow edge on the
left boundary and ending at a dashed yellow edge on the
right boundary (four edges of which are parallel to each
other), which leads to an undetectable logical error.

B. Logical operator dynamics

A distinctive feature of Floquet codes is that both the
stabilizer group and the logical operators change over
time. Check measurements for a given time step may anti-
commute with representatives of the instantaneous logical
operators from the previous time step. The logical oper-
ators can always be multiplied by stabilizers from the
previous instantaneous stabilizer group in order to resolve

this issue. This changes both the support and the relative
phase of the logical operators.

For example, let Xt be a logical operator immediately
following time t. Let St be a check operator measured
at time t and let φ ∈ {±1} be a measurement-dependent
phase such that φSt is in the instantaneous stabilizer group
immediately following time t. Let St+1 be a check operator
measured at time t + 1 such that {Xt, St+1} = {St, St+1} =
0. We may then choose Xt+1 = φStXt so that [Xt+1, St+1] =
0. Note that Xt+1 picks up a phase φ relative to Xt. The
phase φ is dependent on the measurement outcome {±1}
of the check measurement for St.

At any moment in time, each logical operator is
described by a Pauli operator, on which it is supported, and
a ±1 phase. This phase is the product of a subset of out-
comes from the history of check measurements. We call
this set of measurements the logical phase conditions and
they are crucial when computing the logical effect of an
error (see Sec. VI B).

III. FLOQUET CODES ON THE 4.8.8
(SQUARE-OCTAGON) LATTICE

The honeycomb code is a promising candidate for fault-
tolerant quantum error correction because of its logical
error performance and its layout on a two-dimensional
planar grid. One drawback, however, is that the effec-
tive distance of the code is cut in half by correlations
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21
3 4

FIG. 3. The square lattice of tetrons used to implement the honeycomb and 4.8.8 Floquet codes. The topological superconducting
wires (dark blue) have a MZM at either end. The qubit islands (light-blue shaded) correspond to two parallel topological wires joined
by a trivial superconducting backbone (teal), with MZMs (red stars) labeled according to the box in the upper left. Rows of tetrons are
separated by coherent links (floating topological wires). Neighboring qubit islands are connected by semiconducting segments (tan),
with two semiconducting columns separating each column of qubits.

of the errors on two-body check measurements, as in the
noise model that we consider here. Fortunately, this lim-
itation can be avoided by using the Floquet-code model
on the 4.8.8 (truncated square or square-octagon) lat-
tice.

Like the honeycomb lattice, the 4.8.8 lattice is three-
colorable and can therefore be used to construct a simi-
lar family of Floquet codes. The basic unit is shown in
Fig. 2(a), which can be used to tile the torus. Qubits are
again placed on the vertices of the lattice, each of which
is incident to three edges of different colors {blue, yel-
low, green}. We assign XX to each vertical edge (colored
green or blue), YY to each diagonal edge (colored yel-
low), and ZZ to each horizontal edge (colored green or
blue). (This choice makes Pauli frames translation invari-
ant in the underlying physical qubits.) Like-colored edges
are measured simultaneously and colors are alternated in

a time-ordered sequence. Note that the types of decoding
graph nodes for the 4.8.8 Floquet code are conceptually
simpler than those of honeycomb Floquet code. There are
perpetual stabilizers associated with each plaquette (8-, 4-,
and 2-gons), leading to decoding graph nodes inferred by
16, eight, or four check outcomes. In addition, there are
decoding graph nodes inferred by just two check outcomes
along the boundary.

To define the code with open boundaries, again a choice
of boundary conditions is required. A convenient choice
is shown in Fig. 2(b). Time ordering of the check mea-
surements is also analogous to the honeycomb code. On
the torus, the period-3 sequence (yellow, blue, green) is
sufficient. On the plane, we use the period-6 sequence (yel-
low, blue, green, yellow, green, blue). The black-yellow
dashed edges are each measured only once during the
period-6 sequence. The planar check sequence prescribed

(a) (b) (c)

FIG. 4. (a) The vertical brick-wall unit of the honeycomb lattice. (b) The vertical brick-wall unit of the 4.8.8 lattice. (c) The bulk-
measurement loops. The colors refer to the measurement time steps, rather than the Pauli operators.
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(a) (b)

FIG. 5. The boundary measurements for the 4.8.8 Floquet code. (a) 2-gons along vertical boundaries require ZZ between vertically
adjacent qubit islands, which can be implemented using both semiconducting columns to the left or right of the qubit. (b) 2-gons along
horizontal boundaries require ZX and XZ between horizontally adjacent qubit islands, which can be implemented using the coherent
links above or below the qubit islands. The white dot indicates that, for convenient physical implementation, the roles of the X and Z
operators are swapped for that qubit as compared to the bulk. For example, a horizontal edge is assigned ZZ in the bulk but becomes
either XZ or ZX when an end point is marked by the white dot.

above can be modified by permutations of the colors;
for example, “blue, yellow, green, blue, green, yellow.”
Because of the asymmetry of the faces in the 4.8.8 lat-
tice, the choice of colors is not entirely arbitrary. It is
possible that other permutations may change the logical
performance.

If errors occur independently on each qubit, then, like
the honeycomb, the distance is equal to the minimum
weight d of the logical operators. Unlike the honeycomb,
the effective distance of the 4.8.8 code remains unchanged
if the noise model includes two-qubit errors on the check
measurements. This property leads to better spatial over-
head, as discussed in Sec. V B, under a two-qubit cor-
related noise model. The essential reason for this is that
every two-qubit operator on the support of a check oper-
ator intersects any minimum-weight logical operator only
in one qubit.

One can formally show that the effective distance is still
d under two-qubit errors on the check measurements by
the following consideration. As shown in Ref. [29], the
decoding graph can be constructed under a simplified error
model in which a single-qubit Pauli error P may be intro-
duced only if it immediately follows the measurement of
a check operator P ⊗ P. Any Pauli error configuration in
space-time defines a 1-chain in this decoding graph and a
logical operator corresponds to a path from one boundary
to the opposite boundary of the decoding graph. Then, it
suffices to show that no two-qubit error on the support of
any check operator can advance the end point of the 1-
chain by more than graph distance one from a boundary
plane of the decoding graph.

IV. PHYSICAL LAYOUT

For the physical implementation of these codes, we
consider a square grid of so-called tetron qubits. We
briefly review the architecture here; for a more detailed
description, see Ref. [24]. The tetron has two parallel p-
wave superconducting wires [20,34] connected by a trivial
superconducting wire in the center. Together, these form a
qubit island with a finite charging energy, which fixes the
total fermion number in the ground state and suppresses
quasiparticle poisoning events. Each topological wire has a
MZM at either end, described by self-adjoint fermion oper-
ators γj , j ∈ {1, 2, 3, 4} labeled according to the box in the
upper left of Fig. 3. These satisfy the canonical anticom-
mutation relations {γi, γj } = 2δij . Fixing the total parity to
be even, −γ1γ2γ3γ4 = 1, these four Majorana zero modes
form a two-dimensional degenerate ground state that can
be used to encode a qubit. The single-Pauli operators are
given by Majorana bilinears as

iγ1γ2 = iγ3γ4 = X , (1)

iγ1γ4 = iγ2γ3 = Y, (2)

iγ1γ3 = −iγ2γ4 = Z. (3)

The fact that each Pauli operator has two equivalent repre-
sentations as Majorana bilinear will turn out to be crucial
for an efficient implementation of Floquet codes. Two-
qubit Pauli operators can be inferred straightforwardly
and each corresponds to four equivalent products of four
Majorana operators.
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(a) (b)

FIG. 6. The boundary measurements for the honeycomb Floquet code. (a) 2-gons along vertical boundaries require YZ or ZY between
vertically adjacent qubit islands, which can be implemented using both semiconducting columns to the left or right of the qubit and
the coherent link between the qubits. (b) 2-gons along horizontal boundaries require ZY and XZ or YZ and ZX measurements between
horizontally adjacent qubit islands, which can be implemented using the coherent links above or below the qubit islands. As in Fig. 5,
the white dot indicates that the roles of the X and Z operators are swapped for that qubit as compared to the bulk. Note that the XZ and
ZX measurement loops are shown in Fig. 5.

Single- and multiqubit Pauli measurements are per-
formed by forming an interference loop that includes the
corresponding set of MZMs. These interference loops
must be formed such that electrons can travel along them
coherently, with the loop entering and exiting the qubit(s)
through the MZM pair(s) of interest and the remainder
of the loop formed by semiconducting segments. The
semiconductor is shown in tan in Fig. 3; not shown are
tunable junctions that allow interference loops to be con-
figured on nanosecond timescales. If the loops additionally
include semiconductor quantum dots, the state of the qubits
will shift the excitation spectrum of the quantum dot in
a way that can be detected using standard microwave-
frequency techniques, thus performing a measurement of
the (multi)qubit Pauli operator [24]. To form long loops
(in excess of the semiconductor phase coherence length),

TABLE II. Threshold estimates for code implementations with
two-qubit Pauli measurements. The effective distance d is for
a circuit-noise model with two-qubit correlated errors. For the
4.8.8 code, the torus distance must be even and the rectangle dis-
tance must be odd. Note that for a square grid of Majorana-based
qubits, the code size coincides with the number of qubits required
for implementation.

Code family Boundary Code size Threshold

6.6.6 Floquet
(honeycomb)

Torus 6d2 1.2–1.3%

Parallelogram 6d2 + 4(d − 1) 1.1–1.3%
4.8.8 Floquet

(truncated
square)

Torus 4d2 1.0–1.2%

Rectangle 4d2 + 8(d − 1) 1.0–1.2%

it is convenient to introduce additional floating topological
wires, so-called “coherent links” [24], which can be seen as
single topological wires between the tetron qubits in Fig. 3.
While in principle measurement loops can be made arbi-
trarily large, in practice the measurement error increases
with the size of the loop [28,35] and it is thus desirable
to rely on measurements corresponding to short loops. The
length of the loop for a given Pauli measurement can be
optimized by choosing from the set of equivalent Majorana
operators the one that leads to the shortest loop. For this
specific layout, two-qubit measurements that avoid coher-
ent links (ZZ, XX , XY, YX , and YY between vertical nearest
neighbors; ZZ between horizontal nearest neighbors) are
expected to be of similar fidelity to single-qubit measure-
ments with one coherent link (X and Y) and higher than
those involving additional superconducting islands (e.g.,
ZX between vertical or horizontal neighbors). Note that
only one pair of MZMs on the qubit can be measured at
a time in order to define a single path through the qubit
island and that measurement loops cannot intersect.

The honeycomb and 4.8.8 lattices map to the tetron array
in Fig. 3 using vertical bricks such that each 2n-gon corre-
sponds to a rectangle of height n. With this mapping, the
honeycomb and 4.8.8 Floquet codes in the bulk use a sub-
set of the highest-fidelity two-qubit measurements: XX and
YY measurements between vertically adjacent qubit islands
and ZZ between horizontally adjacent qubit islands (see
Fig. 4). To implement measurements on neighboring pairs
of vertically adjacent qubits without their corresponding
loops intersecting, we use two columns of semiconduc-
tor separating each column of qubits. We thus see that
the implementation of both the honeycomb and 4.8.8
Floquet codes on this physical layout does not require any

010310-7



ADAM PAETZNICK et al. PRX QUANTUM 4, 010310 (2023)

(a) (b)

(c) (d)

2×10–1

1×10–1

6×10–2

4×10–2

2×10–2

1×10–2
1×10–2 1.1×10–2 1.2×10–2 1.3×10–21.4×10–21.5×10–29×10–3

Pr
[lo

gi
ca

l e
rr

or
]

Pr[physical error]

2×10–1

1×10–1

6×10–2

4×10–2

2×10–2

1×10–2
1×10–2 1.1×10–2 1.2×10–2 1.3×10–21.4×10–21.5×10–29×10–3

Pr
[lo

gi
ca

l e
rr

or
]

Pr[physical error]

2×10–1

1×10–1

6×10–2

4×10–2

2×10–2

1×10–2
1×10–2 1.1×10–2 1.2×10–2 1.3×10–21.4×10–21.5×10–29×10–3

Pr
[lo

gi
ca

l e
rr

or
]

Pr[physical error]

2×10–1

1×10–1

6×10–2

4×10–2

2×10–2

1×10–2
1×10–2 1.1×10–2 1.2×10–2 1.3×10–21.4×10–21.5×10–29×10–3

Pr
[lo

gi
ca

l e
rr

or
]

Pr[physical error]

FIG. 7. Logical error rate estimates for the honeycomb and 4.8.8 Floquet codes near threshold: (a) honeycomb torus; (b) honeycomb
parallelogram; (c) 4.8.8 torus; (d) 4.8.8 rectangle. In the legend, d is the effective distance of the code. The dashed gray line indicates
Pr[logical error]= Pr[physical error].

auxiliary qubits or extra time steps, a significant advantage
compared to codes built out of higher-weight stabilizers
[28].

To implement the boundary conditions depicted for the
code patches in Figs. 1(b) and 2(b) requires additional mea-
surements. In the 4.8.8 Floquet code, extending the bulk-
measurement pattern to the boundaries introduces ZZ
between vertically adjacent qubit islands and XX between
horizontally adjacent qubit islands. While the former can
be implemented without using any coherent links Fig. 5(a),
the latter requires two coherent links. To avoid this, we
modify the measurement pattern for one of the qubits form-
ing 2-gons along horizontal boundaries. One choice is to
swap X and Z for one of the qubits, indicated by a white
dot in Fig. 5(b). This modification swaps a no-coherent link
(ZZ) and a two-coherent link (XX ) measurement for two
one-coherent link measurements (XZ and ZX ).

For the honeycomb code, extending the bulk-
measurement pattern to the boundaries requires measuring

ZY and YZ between vertically adjacent qubit islands and
YX and XY between horizontally adjacent qubit islands.
The new vertical measurements each make use of a single
coherent link [see Fig. 6(a)]. Each of the new pair of hor-
izontal measurements requires two coherent links; we can
once again avoid these by modifying the measurement pat-
tern for one of the qubits forming 2-gons along horizontal
boundaries (e.g., from ZZ and XY along the bottom bound-
ary 2-gons to XZ and ZY and from ZZ and YX along the
top boundary to ZX and YZ as shown in Fig. 6). There are
multiple choices for how to modify these boundary condi-
tions that introduce the same number of one-coherent link
measurements.

We explicitly show the full measurement circuit for the
4.8.8 Floquet code on the physical layout in Appendix A.
Note that as the 4.8.8 Floquet code only uses coherent
links along certain horizontal boundary measurements, it is
slightly preferable from the physical-layout point of view
compared to the honeycomb code.
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FIG. 8. (a) Empirical logical error estimates for the honeycomb and 4.8.8 Floquet codes with planar boundaries. Effective distances
(3,5,7,9) are shown. (b) Heuristic estimates of 0.25(p/0.012)(d+1)/2 as a function of the effective distance d for the parallelogram
honeycomb code. Empirical estimates are shown as solid lines for reference. (c) Heuristic estimates of 0.07(p/0.01)(d+1)/2 for the
rectangular 4.8.8 Floquet code.

V. LOGICAL PERFORMANCE ESTIMATES

We now turn to numerical simulations of the logical per-
formance of the codes described in the previous sections.
All results use a gate set consisting of direct two-qubit
Pauli measurements and a two-qubit depolarizing noise
model as described in Sec. VI. Our results for the thresh-
olds are summarized in Table II. Logical performance
estimates for the honeycomb and 4.8.8 Floquet codes are
shown in Figs. 7 and 8(a), where the former focuses on
the threshold region for each code family while the latter
shows the performance far below threshold.

A. Thresholds

Our performance estimates allow for a rough compari-
son of the thresholds between periodic and planar bound-
ary conditions and also between honeycomb and 4.8.8
Floquet codes. For the honeycomb code, the planar thresh-
old of approximately 1.1% is somewhat smaller than the
toric threshold of approximately 1.3%. It is unclear if these
differences are meaningful, as more extensive simulations
would be needed to accurately estimate the thresholds
and their separations. For the 4.8.8 code, the planar and
toric thresholds are roughly comparable, both being around
approximately 1.1%.

The more significant separation in the thresholds is
between the measurement-based surface-code implemen-
tations and the Floquet codes described here. In Ref. [27],
implementations of the surface code with two-qubit Pauli
measurements have been shown to have a threshold of
approximately 0.2% for the same noise model as used
here. This large difference [36] is likely due to the large
circuit volume for the surface code—each plaquette mea-
surement in the surface code requires ten time steps, while

the honeycomb code requires only two time steps and three
measurements (on average) for each plaquette.

Finally, our estimate for the honeycomb threshold on
the torus is lower than the 1.6–2.0% reported in Ref. [31].
We speculate that this could be due to differences in meth-
ods for computing the logical error rate, the details of the
decoder, or the code geometry. For example, our simula-
tions use d/2 rounds of noisy measurements flanked by
rounds of ideal measurements (see Sec. VI B), whereas
Ref. [31] uses 3d/2 rounds of noisy measurements.

B. Subthreshold performance

While the threshold estimates are of theoretical interest,
the resource requirements for fault-tolerant quantum com-
puters will be governed by logical error performance for
physical errors well below threshold. Of particular interest
in this regime is the relative performance between the two
Floquet codes and also as compared to the surface code.

Empirical logical error estimates for planar versions of
the honeycomb and 4.8.8 Floquet codes at physical noise
rates below threshold are given in Fig. 8(a). We omit esti-
mates for the torus since periodic boundary conditions are
not expected to be practical at large scale. For effective
distances beyond our empirical data, we use the threshold-
based heuristic method of Ref. [5]. For a threshold estimate
pth and a fixed constant C, the logical error rate for effective
distance d is estimated as

Pr[logical] ≈ C
(

p
pth

)(d+1)/2

. (4)

We choose C so that Eq. (4) upper bounds our empirical
estimates for d > 3 and p ≤ 10−3 [see Figs. 8(b) and 8(c)].
For a fixed distance, the subthreshold logical error rates
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FIG. 9. Overhead estimates for a target logical error rate of 10−12 with respect to (a) the number of qubits (space), (b) the measure-
ment depth (time), and (c) the space-time volume (number of qubits × measurement depth). The solid lines are based on empirical
estimates from Fig. 8(a), while the dashed lines are based on heuristic estimates from Figs. 8(b) and 8(c). For reference, corresponding
surface-code estimates from Ref. [27] are shown in blue. The gray lines along the bottom show the improvement factor of the Floquet
codes relative to the surface code. They are obtained by taking the minimum of the two surface-code values (double or windmill), the
minimum of the two Floquet code values (honeycomb or 4.8.8), and computing the ratio surface/Floquet.

between the honeycomb and 4.8.8 codes can differ sub-
stantially. Except for small distances, the honeycomb code
offers a lower logical error rate.

C. Space and time overhead

From our logical error estimates, we may estimate the
space (number of qubits) and time requirements of the Flo-
quet codes. The overhead estimates for a target logical
error rate of 10−12 are given in Fig. 9. For reference, we
compare against the corresponding resource requirements
for measurement-based implementations of the surface
code, as given in Ref. [27].

The time overheads for the Floquet codes are strictly
and significantly better than those of the surface code. We
estimate between a 5× and 10× improvement in time over-
head for physical error rates between 10−6 and 10−3. The
time savings are a consequence of the differences in mea-
surement depth per logical cycle. For the surface code, the
measurement depth is either 10d for the “double-ancilla”
layout or 19d for the “windmill” layout. Compare this to a
corresponding measurement depth of 3d for the Floquet

codes. In addition, due to lower logical error rates, the
Floquet codes require a smaller effective distance d.

Space savings over the surface code can be up to 10×
for error rates above 0.1%. However, for a fixed dis-
tance, the surface code requires fewer qubits (2d2 or 3d2)
than the Floquet codes (4d2 + 8(d − 1) or 6d2 + 4(d −
1)). Accordingly, the savings decrease with the physical
error rate. For physical error between 10−5 and 10−3, the
space savings range up to a factor of 5. For physical error
between 10−6 and 10−5, the space requirements slightly
favor the surface codes.

For a model in which errors occur independently on each
qubit, the effective distance of the honeycomb code dou-
bles, while the effective distance of the 4.8.8 code (and
the surface code) remains unchanged (see Sec. II). Under
that model, the space overhead of the honeycomb code
could be substantially better than those of the 4.8.8 code
and the surface code. Another option for the honeycomb
code is to use ancilla qubits and multiple measurements to
implement each check operator. This mitigates two-qubit
errors and doubles the effective distance in the presence
of two-qubit correlated noise. But it also requires more
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2petS1petS

4petS3petS

6petS5petS

FIG. 10. The six-step measurement sequence for the planar 4.8.8 code patch shown in Fig. 2(b), as implemented in an array of tetron
qubits.

measurements, increasing both the time per logical oper-
ation and the circuit volume. We do not consider that case
here.

VI. COMPUTATIONAL METHODS

A. Noise model

We use the noise model defined in Ref. [27], and coined
“EM3” in Ref. [31]. In this model, each two-qubit mea-
surement fails independently with probability p . When

it fails, it acts as the ideal measurement followed by an
error drawn uniformly from the set of nontrivial errors
{P1 ⊗ P2 × F} − {I ⊗ I × 0}, where P1, P2 ∈ {I , X , Y, Z}
are Pauli errors acting on the support of the measure-
ment and F ∈ {0, 1} is a bit flip of the measurement
outcome.

This noise model is chosen for simplicity and for com-
parison against existing numerical simulations. We do not
expect it to accurately represent the noise characteristics of
a physical device.
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B. Calculating logical errors

To estimate the probability of a logical error, we sam-
ple errors from d/2 (where d is the effective distance of
the code) rounds of noisy syndrome measurements flanked
both before and after by two rounds of ideal syndrome
measurements. For the torus, we alter the definition of
a round to be two sequential period-3 sequences. This
method is the direct analog of that used in Ref. [27] but it
accounts for the fact that each of the plaquettes is measured
twice per length-6 syndrome round.

The effect of a set of errors is calculated by propagat-
ing the errors through the measurement circuit. This yields
a residual Pauli error on the qubits and a set of flipped
measurement outcomes. The measurement flips are used
as input to the decoder (see Sec. VI C) in order to obtain
a recovery Pauli operator. The recovery operator is mul-
tiplied into the residual error of the effect to obtain a net
effect. The net effect is considered to be a logical error if
exactly one of the following is true:

(1) the net residual Pauli error anticommutes with one
or both of the (instantaneous) logical operators or

(2) the intersection of the bit-flip errors with the set of
logical phase conditions has odd size

The logical operators and their corresponding logical phase
conditions can be computed by using stabilizer simulation
of the check measurements to compute the instantaneous
stabilizer group. Pauli support (without dependent phases)
can be computed from the normalizer. Each logical oper-
ator is then added to the instantaneous stabilizer group
and used as input to the check-measurement simulation in
order to determine the set of measurement outcomes in the
logical phase conditions.

Toric versions of the honeycomb and 4.8.8 Floquet
codes each have two logical qubits and therefore four logi-
cal operators. For fair comparison with the planar versions,
which have only one logical qubit, we arbitrarily choose
one of the two qubits and ignore the other.

C. Decoding

We use a minimum-weight perfect-matching decoder
with weighted edges [4]. Edge weights are assigned based
on a fixed physical error rate p . Therefore, the performance
of the decoder depends on the choice of value for p . For
threshold estimates (Fig. 7), we assign edge weights using
p = 2% and for low-error estimates [Fig. 8(a)], we assign
edge weights using p = 0.1%.

The input to the decoder is a sequence of bits that indi-
cates changes to the eigenvalues of the stabilizers. For
stabilizers (faces) in the bulk of the lattice, each bit is
obtained by taking the parity of adjacent check measure-
ments over a length-6 time window, i.e., two consecutive

rounds of checks. For the honeycomb code, this is the par-
ity of 12 measurement outcomes and for the 4.8.8 code it
is the parity of either eight or 16 measurement outcomes.
At boundaries, there are different types of input bits to the
decoder, corresponding to transient stabilizers as explained
in Secs. II and III.

The time steps for which the value of a given face can
be inferred are determined by the face color. A face of a
given color is inferred only when all of its adjacent edges
have been measured in the previous two time steps. For
example, in the repeated check sequence (yellow, blue,
green, yellow, green, blue), the corresponding faces that
can be inferred are “green, green, yellow, blue, blue, yel-
low.” Faces around the boundary follow a similar inference
rule but where the inference may span more than two time
steps (see also Secs. II and III).

D. Weighting set sampling

To estimate the logical error rate, we use an importance-
sampling technique akin to malignant set sampling [37].
For simplicity of explanation, suppose that each location
in space-time undergoes an error channel ρ �→ (1 − p)ρ +
pE�ρE�, where E� is a Pauli operator that depends on the
location �. Then, the overall logical error rate is given by

Pr[logical] =
∑
w≥0

fw

(
n
w

)
pw(1 − p)n−w, (5)

in which w is the number of locations where E� has
occurred, which we call the “degree,” n is the total number
of locations, and fw is the fraction of those that result in
a logical error among all error configurations of degree w.
If we uniformly sample over all possible error configura-
tions of total degree w with sample count sw, then we can
estimate the fraction fw by cw/sw, where cw is the count
of postdecoder states that are different from the error-free
state.

Estimating the logical error in this way is most bene-
ficial in the low-error regime where the expected logical
failure rate is very small. The usual Monte Carlo sam-
pling approach would require a very large sample number,
whereas the method described here does not depend on the
absolute logical failure rate.

In Eq. (5), the probability pw(1 − p)n−w of a degree-w
error configuration depends only on w. With more general
error channels that are possibly nonuniform across space-
time, the probability of a degree-w error configuration also
depends on the types of errors. For example, if an error
channel is ρ �→ (1 − 3p)ρ + pE1ρE1 + 2pE2ρE2, which
is the same for all locations, then we estimate each of the
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fractions fw(j ), where j = 0, 1, 2, . . . , w, such that

Pr[logical] =
∑
w≥0

w∑
j =0

fw(j )nw(j )pj (2p)w−j (1 − 3p)n−w,

(6)

where nw(j ) is the total number of error configurations
of degree w with exactly j occurrences of E1. The num-
ber nw(j ) can be computed by expanding a polynomial
(1 + x1 + x2)

n and reading off the coefficient of xj
1xw−j

2 .
Note that one can expedite the computation of nw(j ) by
truncating intermediate polynomials and keeping only the
terms up to degree w.

E. Bounds and statistical uncertainty

To compute the statistical uncertainty of Eq. (5), we use
a Bayesian approach with conjugate priors. We treat each
fraction fw = cw/sw ∈ [0, 1] as a random variable, where
cw follows a Binomial(n = sw, p = fw) distribution, and
we aim to estimate the parameter fw for each w.

The total number of samples sw at each weight w is
chosen via a heuristic that guarantees sufficiently small
variance in the estimated logical error rate at some cho-
sen physical error rates. Taking the estimates of fw to be
independent for different w, the variance in the estimate of
the logical error rate is given by

σ 2
logical =

∑
w

σ 2
w

[(
n
w

)
pw(1 − p)n−w

]2

. (7)

Fixing p , we choose to equalize the contributions from
each different w, which lead to having sw be distributed
across w in a manner that is inversely proportional to[(n

w

)
pw(1 − p)n−w

]2, with a total number of samples across
all w set so that σlogical is a small fraction of Pr[logical].
Since Pr[logical] is not known a priori, preliminary simu-
lations are used to make a coarse estimate of the threshold
pth. We then use the heuristic Eq. (4) and adjust the sw. For
several choices of p and anticipated logical error rates, we
can combine the different sw for a fixed w by taking the
maximum sw across different p of interest.

Once the sw are fixed and the data is collected, we have
all the parameters needed to compute the uncertainty in the
logical error rate. For w < wmin = (d + 1)/2, we set fw =
0, since errors of those weights are always correctable. For
w ≥ wmin, we take the prior distribution for each fw to be
independent and given by Beta(α = 1, β = 1). The beta
distribution is conjugate to the binomial distribution in the
sense that, given a beta-distributed prior over the fw, an
exact Bayesian update with a binomial-distributed obser-
vation leads to a beta-distributed posterior over the same
parameter [38]. More concretely, after sampling we have
a set of (cw, sw) pairs, from which we obtain a posterior
distribution Beta(1 + sw − cw, 1 + cw) for fw.

Following this procedure for each w of interest, we may
sample from the posteriors to generate samples for the
polynomial in Eq. (5) based on the posterior distribution
for each fw and from these samples we may generate uncer-
tainty regions based on the empirical distribution for the
value of the polynomial at each physical error rate. We
generate 100 samples of the polynomial and report the
empirical quartiles as a function of the physical error rate.

For sufficiently large w, sampling becomes impracti-
cal and unnecessary. Instead, we truncate and sample
only up to some fixed weight W. The probability mass
of the unsampled weights can be upper bounded by 1 −∑W

w≥wmin

(n
w

)
pw(1 − p)n−w. We then add this bound to our

estimate to obtain

Pr[logical] ≈ 1 −
W∑

w≥wmin

(1 − fw)

(
n
w

)
pw(1 − p)n−w.

(8)

The regions reported in Figs. 7 and 8(a) correspond to
the upper quartile from samples of Eq. (5) and the lower
quartile from samples of Eq. (8). At the scales used in
Figs. 7 and 8(a), the curves for Eqs. (5) and (8) are indis-
tinguishable and are depicted by the solid lines in the
plots.

VII. CONCLUSIONS

We introduce a new Floquet code using a 4.8.8 lattice
and analyze the performance of the planar variant of this
code and the honeycomb code [29] in measurement-based
Majorana quantum computing architectures. We find the
corresponding error threshold to be greater than 1%. The
subthreshold logical error rates and the space and time
requirements are also lower. Compared to the surface-
code implementation in Ref. [27], the planar Floquet codes
described here have a threshold that is an order of magni-
tude higher and time and space overheads that are up to an
order of magnitude smaller for many noise regimes. This
makes the honeycomb and 4.8.8 Floquet codes leading
candidates for large-scale fault-tolerant quantum compu-
tation on measurement-based systems.

The honeycomb and 4.8.8 Floquet codes have a zero-
overhead implementation on the lattice of Majorana-based
qubits in Fig. 3, which only uses short-distance measure-
ment loops in the bulk, supplemented by intermediate-
distance (requiring one coherent link) measurement loops
along the boundaries. In contrast, implementation of the
surface code on measurement-based topological qubits
requires the introduction of auxiliary qubits and extra time
steps to build up the weight-4 stabilizer measurements
[27], while also making use of coherent links for all two
qubit measurements involving data qubits [28]. As the
physical error rate is expected to increase with the mea-
surement loop distance, we would expect the honeycomb
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and 4.8.8 Floquet codes to have lower physical error rates
compared to the surface code when implemented on qubits
of the same quality.

There are several variations of the physical layout of
the Floquet codes. First, both the honeycomb and 4.8.8
patches have a natural extension to hexons, modifying
the physical layout by including an additional topologi-
cal wire for each qubit. In the hexon implementation, it
may be possible to optimize the boundary measurements
to avoid using any coherent links. In this case, coherent
links could be removed throughout the lattice (making
all bulk-measurement loop distances equivalent to those
in the tetron layout with a reduced loop distance along
the boundaries), at the cost of removing the ability to
fully characterize single qubits. Second, the two semicon-
ducting columns separating columns of tetrons in Fig. 3
could be replaced by a single semiconducting column, at
the cost of either doubling the number of time steps (to
avoid simultaneously measuring adjacent vertical edges)
or using coherent links throughout the bulk (by mapping
the honeycomb and 4.8.8 lattices to horizontal brick-wall
versions).
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Note added.—Recently, we became aware of closely
related but independent work by Gidney and Newman
[39]. They propose different boundary conditions for the
honeycomb code in which some of the checks at the
boundary are reduced from two-qubit measurements to sin-
gle qubits. As in Ref. [31], their threshold estimates are
somewhat larger than ours, possibly due to differences in
decoders and possibly due to different methods for estimat-
ing logical error rate. They conclude that the surface code
still outperforms the honeycomb code for superconducting
qubit and similar architectures. However, for direct mea-
surement architectures such as those with Majorana qubits,
their qualitative conclusions match ours.

APPENDIX: PHYSICAL LAYOUT
MEASUREMENT CIRCUITS

In Fig. 10, we show the six-step measurement circuit
needed to implement the planar 4.8.8 code patch shown in
Fig. 2(b) in an array of tetron qubits, as described in Sec.
IV.
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