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One-way nonreciprocal interactions between two quantum systems are typically described by a cas-
caded quantum master equation, and rely on an effective breaking of time-reversal symmetry (TRS) as
well as the balancing of coherent and dissipative interactions. Here, we present a new approach for obtain-
ing nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems, and
that does not in general require broken TRS. Our method relies on a local gauge symmetry present in
any Markovian Lindblad master equation. This new kind of quantum nonreciprocity has many implica-
tions, including a new mechanism for performing dissipative steady-state unitary gate operations on a
target quantum system. We also introduce a new, extremely general quantum-information-based metric
for quantifying quantum nonreciprocity.
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I. INTRODUCTION

The study of interactions and scattering that are intrin-
sically directional (i.e., nonreciprocal) is at the forefront
of many areas of physics. Such interactions are of funda-
mental interest: for example, they can lead to exotic phase
transitions in classical active matter systems [1–3], and can
also be used to generate dimerized many-body entangled
states [4–6]. They also have a myriad of practical applica-
tions in both classical and quantum information processing
tasks, in settings that range from classical photonic and
acoustic systems [7–9] to quantum circuits and networks
[10–19].

While classically, one can describe directional inter-
actions using effective non-Hermitian Hamiltonians, in
quantum settings one needs a description that conserves
probability and accounts for quantum fluctuations. The
standard quantum description of nonreciprocity is provided
by the theory of cascaded quantum systems [20,21]. It
describes an extremely general class of fully directional
interactions between two subsystems A and B that involve
a pair of arbitrary “local” operators Â and B̂ (i.e., Â only
acts on subsystem A, B̂ only acts on subsystem B). The
directional dynamics is described by a Lindblad quantum
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master equation (QME) of the form [20–22]

dρ̂
dt

= −i[ĤAB, ρ̂] + D[Â − iB̂]ρ̂ ≡ LCSρ̂, (1)

where ρ̂ is the system density matrix, ĤAB = (Â†B̂ +
B̂†Â)/2, and D[Ô]ρ̂ = (Ôρ̂Ô† − {Ô†Ô, ρ̂}/2) denotes the
standard Lindblad dissipator. One can show that the
dynamics encodes a fully one-way interaction where sub-
system A affects the dynamics and evolution of subsystem
B, but not vice versa.

Cascaded QMEs were first derived for setups involv-
ing an explicitly nonreciprocal element (e.g., a directional
waveguide or circulator). More recently, it was realized
that Eq. (1) provides a more general blueprint for engi-
neering nonreciprocal interactions, based on balancing a
coherent Hamiltonian interaction (described by ĤAB) and a
dissipative interaction (described by the dissipator D[Â −
iB̂]ρ̂) [22,23]. This can be realized by engineering suit-
able drives and couplings to dissipative environments,
without using a conventional nonreciprocal element. This
approach has been employed in a variety of experiments,
including quantum optomechanics (e.g., Refs. [13,15–18])
and superconducting quantum circuits (e.g., Refs. [12,14]).
Note that the coefficient −i in the dissipator of Eq. (1)
ultimately implies that any physical means for realizing
this dynamics requires an effective broken time-reversal
symmetry (TRS). This can be achieved by using phases
encoded in the drive tones applied to the system, in a
manner that generates a synthetic gauge flux. This time-
modulation approach to nonreciprocity is also well studied
in completely classical contexts [7–9].
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FIG. 1. (a) Schematic for quantum nonreciprocal interactions
via gauge symmetry. This approach uses correlated dissipation,
but is completely distinct from a cascaded quantum system. (b)
Dissipative steady-state realization of a tunable unitary gate mak-
ing use of the nonreciprocal interaction in (a), in a system where
subsystem A is a cavity mode a that controls the gate, and sub-
system B is the target qubit. One can selectively apply a unitary
gate (ÛB)

� on B by initializing A in the corresponding Fock state
|�〉, and letting the system relax to the steady state [see Eq. (3)
and Sec. III C].

One might guess that the general structure of Eq. (1) is
the only way to obtain fully directional, Markovian quan-
tum interactions between two systems. In this work we
show that this is not the case. We introduce a new kind
of quantum open-system dynamics where correlated dis-
sipation generates nonreciprocal interactions in a manner
distinct from the cascaded QME. As we discuss in detail,
we ultimately exploit a basic gauge symmetry present in
any Lindblad master equation. This gives us a mechanism
for nonreciprocity that, surprisingly, does not require any
notion of broken TRS or a nontrivial synthetic gauge field.
In its simplest form, the new nonreciprocal QME can be
written in terms of a generic local operator Â on A and a
unitary ÛB on B, as [see Fig. 1(a)]

dρ̂
dt

= �D[ÂÛB]ρ̂ ≡ Ldirρ̂. (2)

As we show, this purely dissipative dynamics is strictly
unidirectional (A influences B but not vice versa), and,
moreover, cannot be written in the cascaded QME form
of Eq. (1). We also show that this structure has a nontriv-
ial generalization to more complex master equations with
multiple dissipators.

Our work provides a thorough investigation of this
new route to quantum nonreciprocity, including imple-
mentation methods. We also introduce a new, very gen-
eral metric for quantum nonreciprocity that uses quantum
information-theoretic tools, and use this to characterize
the nonreciprocity of our mechanism in the presence of
imperfections. Our study also goes beyond just funda-
mental considerations. We discuss a potentially powerful
application of our new directional dynamics: a method

for realizing dissipative steady-state unitary quantum gate
operations. By this, we mean here that the gate operation is
realized in the dissipative steady state of the dynamics. The
basic idea is sketched in Fig. 1(b). Starting from a bipartite
system having control (A) and target (B) subsystems, the
goal is for the dissipative relaxation of the system [under
a dynamics of the form of Eq. (2)] to implement a unitary
operation on B whose form is dictated by the initial state
of A. Specifically, for a set of initial states for A indexed by
λ, we can achieve

ρ̂B(∞) = lim
t→∞ TrA[etLdir(ρ̂A(λ)⊗ ρ̂B)]

= ÛB(λ)ρ̂BÛB(λ)
†. (3)

The steady state of B is related to its initial state by a uni-
tary, whose form is dictated by the initial A state. As we
discuss in detail, this mechanism for performing gates has
several attractive features: it does not require any timing
control, and its dissipative nature makes it robust against
certain kinds of errors in initial A state preparation (as
long as all such A states lead to the same B unitary).
We stress that the mechanism of Eq. (3) is completely
distinct from previous works exploring alternative dissi-
pative approaches to quantum control [24–31]. While the
dissipative implementation of quantum gates in Eq. (3)
is not robust against loss in A, intriguingly, recent work
[32] shows that it leads to a promising route to realizing
autonomous quantum error-correction schemes.

The remainder of the paper is organized as follows.
In Sec. II, we set the stage for our discussions of quan-
tum nonreciprocity by introducing a very general quan-
tum information metric that quantifies quantum nonre-
ciprocal (QNR) interactions in an arbitrary system, in a
state-independent manner. Section III introduces our new
mechanism for QNR in the simplest setting, and discusses
its application to dissipative steady-state gate operations.
Section IV discusses physical implementation strategies
that are compatible with state-of-the-art superconducting
circuit and quantum optical platforms. Section V gener-
alizes our new mechanism to more complex cases with
multiple dissipators, and demonstrates that these QNR
interactions can generate entanglement. We conclude in
Sec. VI.

II. QUANTIFYING NONRECIPROCITY OF
GENERAL QUANTUM DYNAMICS

A. Basic notions

Before introducing our new mechanism, we start with
a more basic question: what is a fundamental, system-
agnostic way of identifying and quantifying nonreciprocal
dynamics? While in simple linear settings one can just
look at the asymmetry of scattering-matrix coefficients at
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a particular input frequency, we would like a more gen-
eral metric that can apply even when there is no obvious
connection to scattering, and which is not contingent on a
particular choice of initial state. As we now discuss, we
can formulate such a metric using well-known quantum
information-theoretic quantities.

We start with a generic bipartite system with subsystems
A and B, whose dynamics are described by the evolution
superoperator E (AB)

t . This superoperator tells us how the
system density matrix evolves, i.e.,

ρ̂AB(t) = E (AB)
t ρ̂AB(0). (4)

Here E (AB)
t is also known as a quantum map or channel;

any physical evolution corresponds to such a map, with
the requirement that E (AB)

t be completely positive and trace
preserving [33]. We stress that this description encom-
passes a full range of dynamics from nondissipative unitary
evolution to highly complex non-Markovian dissipative
evolution.

We now want a metric that tells us whether the dynamics
described by E (AB)

t is nonreciprocal. We first introduce the
isolation function of subsystem A, I (A)(t), which quantifies
how sensitive the evolution of A is over this time interval
to the initial state of subsystem B. The isolation function of
subsystem B, I (B)(t), will be defined in an analogous man-
ner. Isolation function I (A)(t) can be directly connected to a
standard task in quantum information theory. Suppose that
we first prepare subsystem B in one of two given states,
|φ1〉 or |φ2〉 with equal probability. We also prepare A in
some state ρ̂A. We then let the total system evolve for
time t. We thus have two possible time-evolution maps for
system A, contingent on the two subsystem B initial states:

E (A)|φi〉(t)ρ̂A ≡ TrB[E (AB)
t (ρ̂A ⊗ |φi〉B〈φi|)]. (5)

The goal is now to optimally guess which initial state B
we started with, using only a single measurement on the A
system at time t. We are interested in the maximum suc-
cess probability where we optimize over all A initial states
as well as the final A subsystem measurement. This proba-
bility pmax({|φ1〉, |φ2〉}) gives us a measure of how different
the A system dynamics is depending on the choice of initial
B state. One finds that [34]

pmax({|φ1〉, |φ2〉}) = 1
2 + 1

4

∥
∥E (A)|φ1〉(t)− E (A)|φ2〉(t)

∥
∥

�. (6)

Here, ‖ · ‖� denotes the so-called diamond norm and pro-
vides a distance measure between two quantum channels
[35], which is stable with respect to tensor product opera-
tions (i.e., attaching ancillary quantum systems to A). Note
that pmax must lie in the interval [0.5, 1].

Equation (6) thus provides a fundamental metric for the
sensitivity of the A system dynamics to a change in the

initial state of B. This then directly leads to a fundamen-
tal notion of how isolated the A system dynamics is from
B: further optimize Eq. (6) over the choice of the B sys-
tem initial states. This leads us to define the subsystem-A
isolation as

I (A)(t) ≡ 1 − 1
2

max
|φ1〉,|φ2〉∈HB

∥
∥E (A)|φ1〉(t)− E (A)|φ2〉(t)

∥
∥

�, (7)

where HB denotes the Hilbert space of B. Isolation func-
tion I (A)(t) lies in the interval [0, 1], and measures the
maximal influence a change in the initial subsystem-B state
could have on the A subsystem dynamics. The case of com-
plete isolation, I (A)(t) = 1, implies that the dynamics of A
is completely independent of the initial state of subsystem
B. The isolation function for subsystem B is defined in a
completely analogous manner. Note that if A and B are not
coupled at all in the dynamics (i.e., the total channel is a
tensor product of independent channels for each subsys-
tem), then both subsystems are fully isolated at all times:
I (A)(t) = I (B)(t) = 1. For t = 0, both systems are also of
course always trivially isolated as the total channel is the
identity.

B. Instantaneous nonreciprocity

These isolation functions now give us a simple way of
identifying nonreciprocal dynamics as an evolution map
that yields I (A)(t) �= I (B)(t), i.e., a situation where there is
an asymmetry in how strongly A influences B versus how
strongly B influences A. One can discuss nonreciprocity for
the instantaneous quantum map at a specific time, as well
as for the entire evolution. If we focus on a specific time,
we can define E (AB)

t as being reciprocal or nonreciprocal at
time t using the isolation functions, i.e.,

I (A)(t) = I (B)(t)

=⇒ E (AB)
t is instantaneously reciprocal at t; (8)

I (A)(t) �= I (B)(t)

=⇒ E (AB)
t is instantaneously nonreciprocal at t. (9)

C. Global nonreciprocity

One could also ask about whether the dynamics is non-
reciprocal over an entire time interval [0, t]. In this case,
we can define reciprocity by insisting that the isolations
are identical over the entire time interval:

I (A)(t) = I (B)(t) for all t ∈ (0, +∞)

=⇒ dynamics is reciprocal; (10)

∃t ∈ (0, +∞) such that I (A)(t) �= I (B)(t)

=⇒ dynamics is nonreciprocal. (11)
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D. Fully nonreciprocal dynamics

Finally, one is also often interested in identifying sit-
uations with full nonreciprocity, where one system is
unaffected by the other, but is nonetheless still able to influ-
ence it. We first consider the quantum map at a specific
time, and define instantaneous full nonreciprocity (i.e.,
unidirectionality) from A to B for E (AB)

t at time t as

I (A)(t) = 1, I (B)(t) < 1 (12)

=⇒ E (AB)
t is instantaneously unidirectional (A → B).

(13)

Physically, conditions (12) can be understood as ensuring
that states of A can affect evolution of B, but not vice versa.
One can also define maximal unidirectionality from A to
B (at time t) as any evolution that yields I (A)(t) = 1 and
I (B)(t) = 0. More generally, one can also define fully non-
reciprocal dynamics via the condition that the dynamics of
A is fully isolated at all times, but B is not fully isolated at
some time, as

∀t, I (A)(t) = 1, and ∃t such that I (B)(t) < 1. (14)

The case of B-to-A full nonreciprocity can be similarly
defined by interchanging A and B in Eq. (14). We stress
that having fully isolated A dynamics is a necessary but
not sufficient condition for full nonreciprocity from A to B.
In fact, it is possible to have dynamics generated by non-
trivial interactions that is isolated in both directions, i.e.,
I (A)(t) = I (B)(t) = 1 (for an example, see Sec. III D).

E. Physical intuition and example cases

For a variety of simple test cases, our formal defini-
tions of reciprocity and nonreciprocity agree with simple
intuition. For example, it is easy to show that if the start-
ing bipartite system is uncoupled, or is symmetric under
permutation of A and B labels, then its dynamics is auto-
matically reciprocal as per the definition in Eq. (10). Our
definition also does more than simply quantify asymme-
try of the bipartite system. As an example, in Appendix
A 1 we consider a class of highly asymmetric bipartite,
nondissipative systems that are always reciprocal as per
our definition in Eq. (10). These systems take the B subsys-
tem to be a qubit, the A system to be arbitrary, and take the
two subsystems to interact via a coupling Hamiltonian that
commutes with the B-only Hamiltonian. Another interest-
ing test case is where A and B are both single qubits. In this
case, if the evolution is an arbitrary unitary, then it must be
fully reciprocal (see Appendix A 2).

To gain intuition about the opposite limit of full nonre-
ciprocity, it is useful to examine cases where the dynamics
of A is fully isolated. This is of course a necessary condi-
tion for fully unidirectional dynamics [see Eq. (14)], but
is of course not sufficient. One can show that if B can be

exactly traced out from the total system dynamics, then
the A isolation by our definition stays unity throughout the
time evolution, i.e.,

TrB[E (AB)
t (ρ̂A ⊗ ρ̂B)] = E (A)t ρ̂A for all t

=⇒ I (A)(t) ≡ 1 for all t.
(15)

Here E (A)t is a local superoperator acting on A and is inde-
pendent of ρ̂B. As a result, the dynamics of a generic
cascaded quantum system from A to B [see Eq. (1)] must
be fully isolated in terms of subsystem A. Furthermore,
because A cannot be exactly traced out from the system
dynamics, the dynamics of B can be affected by A, so that
dynamics generated by Eq. (1) is fully nonreciprocal by
Eq. (14).

III. QUANTUM NONRECIPROCITY VIA
GENERALIZED GAUGE SYMMETRY

A. Gauge-invariance nonreciprocity with a single
dissipator

We now introduce our new method for realizing nonre-
ciprocal quantum dynamics via an open-system Markovian
dynamics that is distinct from cascaded quantum systems.
We begin with the simplest case of a Lindblad master
equation with a single dissipator, leaving generalizations
to Sec. V. We start with a seemingly trivial observation for
a single, generic Lindblad dissipator on system A. Such a
dynamics is described by

LA,1ρ̂A = �D[Â]ρ̂A. (16)

It is straightforward to see that this Lindbladian is invari-
ant under an arbitrary gauge transformation of the jump
operator Â → Âeiθ(t), where θ(t) can be an arbitrary time-
dependent real function. This invariance formally corre-
sponds to a local (in time) gauge symmetry of a generic
Lindblad dissipator.

We can use this trivial insensitivity of the dynamics to
θ(t) to now obtain a nonreciprocal interaction between two
systems: simply replace the classical time-dependent phase
with a quantum operator acting on a different quantum sys-
tem B: θ(t) → θ̂B. As shown in Fig. 1(a), we now rewrite
the phase factor in the jump operator as unitary operator
ÛB acting on subsystem B. We thus obtain a new QME
[see also Eq. (2)]:

Ldirρ̂ = �D[ÂÛB]ρ̂. (17)

One can easily show that the gauge invariance property
discussed above ensures that the dynamics of A is insen-
sitive to B. More explicitly, consider a general master
equation where the interaction between A and B is given
by Eq. (17): dρ̂/dt = (LA,i + LB,i)ρ̂ + �D[ÂÛB]ρ̂, with
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LA(B),i describing the internal dynamics of A (B). One can
exactly trace out B to obtain a QME for the A reduced
density matrix ρ̂A = TrBρ̂ alone, as

dρ̂A

dt
= LA,iρ̂A + �D[Â]ρ̂A. (18)

However, the converse is in general not true: B will in gen-
eral be influenced by A, i.e., its evolution is sensitive to
the initial state of A as well as LA,i. The only exception is
the case where Â is proportional to a unitary; see also Sec.
III D.

The more formal definitions of nonreciprocity intro-
duced in Sec. II also yield an identical picture. Because
the equation of motion of the A subsystem is independent
of the B state [see Eq. (18)], it follows that the A isolation
must be unity throughout time evolution, i.e., I (A)(t) ≡ 1
for all t. For the B isolation, assuming that Â is not pro-
portional to a unitary operator, one can generally show
that I (B)(t) < 1 for some time t; see also Sec. III B for a
concrete example with a bosonic lowering operator as Â.
Thus, according to the new metric based on isolation func-
tions, the QME in Eq. (17) describes fully nonreciprocal
dynamics from A to B as long as we have Â†Â �∝ Î.

We stress that Eq. (17) describes a generic nonrecipro-
cal open-system dynamics that is distinct from a cascaded
quantum system: it cannot be written in the form of a
cascaded QME, Eq. (1). Our new approach in Eq. (17)
can be written as a Liouvillian that has no Hamiltonian
part, and that has a single dissipator with a jump opera-
tor that is a product of an A operator and a B operator. In
marked contrast, the cascaded quantum systems QME in
Eq. (1) has a Hamiltonian in its Liouvillian, and a jump
operator that is the sum of a subsystem-A operator and a
subsystem-B operator. These cannot be made equivalent.
At a more physical level, the differences in jump operators
correspond to different forms of system-bath coupling. The
inequivalence also implies that the nonreciprocal interac-
tion described by Eq. (17) cannot be realized by coupling
A and B to a directional waveguide [see Fig. 1(a)].

B. Example: photon-loss dissipator

To make our ideas more concrete, consider a simple case
where the A subsystem in Eq. (17) is a bosonic mode, and Â
is taken to be the photon lowering operator â for this mode.
Furthermore, take an initial state where A is unentangled
with B, and is prepared either in the vacuum state |0〉, or
in the Fock state |�〉 (� > 0). From Eq. (7), we can thus
obtain an upper limit of the corresponding B isolation in
the long-time t → ∞ limit as

I (B)(∞) ≤ 1 − 1
2

lim
t→∞

∥
∥E (B)|0〉 (t)− E (B)|�〉 (t)

∥
∥

�. (19)

One can also show (see Sec. III C) that the subsystem-
B evolution maps appearing in this equation have an
extremely simple form:

lim
t→∞ E (B)|n〉 (t)ρ̂B = Ûn

Bρ̂BÛ†n
B . (20)

Intuitively, this describes a dissipative process where each
time a photon is lost from the A cavity, subsystem B under-
goes a unitary evolution ÛB. We can thus derive an upper
bound for the corresponding B isolation in the long-time
t → ∞ limit as [36]

I (B)(∞) ≤ 1 −
√

1 − min
|φ〉∈HB

|〈φ|Û�
B|φ〉|2. (21)

Letting eiβm denote the eigenvalues ÛB, the right-hand side
of Eq. (21) can be further rewritten explicitly as

I (B)(∞) ≤ 1 − max
m,n

∣
∣
∣
∣
sin

�(βm − βn)

2

∣
∣
∣
∣
. (22)

Thus, the B isolation in the long-time limit is less than
1 for any nontrivial unitary Û�

B (i.e., not proportional to
the identity map), signaling nontrivial influence from A to
B. The isolation reaches a minimal value of zero if Û�

B
has two eigenvalues with relative π phase difference, in
which case the long-time evolution becomes maximally
nonreciprocal.

C. Dissipative quantum gates mediated by the new
form of nonreciprocal interaction

Our new nonreciprocal QME has many interesting fea-
tures. Here, we focus on a potentially powerful application:
the implementation of unitary gate operations on subsys-
tem B that are realized in a dissipative steady state, and
whose form is controlled by the initial state of subsystem
A. The most generic way to realize this is to construct
dynamics of the form (17), where Â has a subspace of
dark states D: if |d〉 ∈ D, then Â|d〉 = 0. Furthermore, let
S denote the set of states in the intersection between the
orthogonal complement of D and the inverse image of D
under Â. A given state |ψ〉 ∈ S is both orthogonal to the
dark state subspace and has the property that Â|ψ〉 is in D
(i.e., a single action of Â results in a dark state). We now
have a simple way to obtain our dissipative gate.

(a) At t = 0 the full system is taken to be in a product
state ρ̂AB(0) = ρ̂A(0)⊗ ρ̂B(0).

(b) If we do not want a gate operation to be performed
on B, we start subsystem A in an arbitrary dark state
in D. In this case, there is no evolution under Eq.
(17), and the subsystem-B state is unchanged.

(c) To turn the gate on, we instead prepare subsystem A
in an arbitrary state in S . In this case, there is non-
trivial evolution under Eq. (17). To achieve the gate
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operation, one just waits until the system reaches its
steady state. The dissipative steady state will be

ρ̂AB(∞) = ρ̂ ′
A ⊗ (ÛBρ̂B(0)Û

†
B), (23)

where ρ̂ ′
A is in D, i.e., it is a dark state. The final

state of B is related to the initial state by the unitary
ÛB.

We stress that this approach realizes a gate operation on
system B in the dissipative steady state; no precise tim-
ing control is needed. The only control that is needed is
to prepare subsystem A at t = 0 in a state in subspace S .
Crucially, this control need not be perfect, as any state
in this manifold (pure or impure) will lead to the desired
gate operation. This resilience is similar in spirit to recent
theoretical ideas for mixed-state encodings of quantum
information (see, e.g., Ref. [37]).

An even more versatile kind of controllable dissipative
gate is possible if Â has the general structure of a lowering
operator. By this, we mean that, within a given subspace,
Â is a matrix that only has nonzero entries along the super-
diagonal. This is exactly the situation we have if Â is a
bosonic lowering operator â; hence, we consider this case
in what follows. As illustrated in Fig. 1(b), if the control
subsystem A is initialized in a Fock state |�〉, the long-
time dynamics of the target system effectively applies ÛB �

times on the initial target state, so that we have

lim
t→∞ TrA{eLdirt[|�〉〈�| ⊗ ρ̂B(0)]} = (ÛB)

�ρ̂B(0)(Û
†
B)
�.

(24)

This recipe allows one to apply, e.g., tunable phase gates
on a target qubit. We stress that this gate mechanism works
for generic systems (see Appendix G for an example where
it can be used to apply displacement gates on a harmonic
oscillator).

We note that this approach to dissipative unitary gate
operations is distinct from previous works exploring dissi-
pative quantum control. For example, Verstraete et al. [24]
focused on dissipatively realizing a unique steady state
that effectively realizes a quantum computational task. In
contrast, we are dissipatively implementing a steady-state
unitary operation on subsystem B, not a unique state. Our
dissipator in Eq. (17) has of course multiple steady states,
something that is exploited by our protocol. Approaches
for mimicking Hamiltonian evolution on a subsystem have
also been formulated, using either strong dissipation [25–
27], measurements [28–30], or fast repetitive resets [31].
In stark contrast to our work, these approaches do not
yield a time-independent steady state. Instead, one needs
to explicitly shut off the dynamics at a particular time in
order to achieve a particular unitary (whereas we achieve
the unitary in the long-time steady state). We stress that

our dissipative unitary gate does not give rise to long-
time oscillations; as such it is completely distinct from
recent mechanisms studied in the context of quantum
synchronization [38,39].

The dissipative steady-state gate mechanism described
here suggests a fundamentally different physical architec-
ture for constructing a quantum processor. In the stan-
dard architectures, the analog information parameterizing
a target gate operation ÛB (e.g., the angles and axes of
a single-qubit rotation) is contained in external control
pulses, whose precision is subject to fluctuations of exter-
nal control electronics. Here, the analog parameters of ÛB
are “hardwired” within the engineered quantum system,
whose precision is an inherent property of the quantum
device itself. Subsystem A acts as a classical switch for
the gate, and the only information flow needed to execute
the quantum gate is a binary command. While it may be
nontrivial to prepare subsystem A in the starting states in
the basic examples presented in this paper (Fock states),
in principle, the starting manifold S can be made large
and macroscopically distinguishable fromD, so the control
need not be perfect as any state in this S (pure or impure)
will lead to the desired gate operation. Finally, to be clear,
the nonreciprocal dissipator in the current scheme does not
counter decoherence in ρ̂B. Interestingly, the mechanism of
steady-state unitary gates here provides a powerful knob
for implementing autonomous quantum error correction
[40–44] using reservoir engineering; see Ref. [32].

D. Gauge-invariance nonreciprocity: other generic
cases

We now discuss the physics of our nonreciprocal
dynamics in Eq. (17) for different generic choices of the
subsystem-A operator (beyond the lowering operator case
discussed above). Consider first the case where Â is itself
unitary. In this case, there is no asymmetry in our dis-
sipator (i.e., both subsystem operators are unitary), and
correspondingly we would expect that there cannot be any
directional interaction. This is indeed what occurs: in this
case, it is easy to confirm that both systems are isolated
from one another. The only way to see signatures of the
interaction would be to consider the evolution of corre-
lations between them. As discussed in Refs. [45,46], this
type of dissipative dynamics can be understood as coupling
both A and B to the same classical Poisson point process. It
is then straightforward to show that the time evolution of
both subsystems is independent of the other, and the corre-
lation between classical stochastic processes coupled to A
versus B is only discernible if one looks at AB correlators.

Another general case is where the Â operator in Eq. (17)
is Hermitian. While the dynamics in this case is directional
from A to B, we can exactly solve for the time evolution
in terms of the eigenbasis of the jump operator. The sys-
tem dynamics now allows a simple interpretation, i.e., B

010306-6



QUANTUM NONRECIPROCAL INTERACTIONS... PRX QUANTUM 4, 010306 (2023)

dephases at rates depending on the A state, but not vice
versa.

E. Connection to measurement-and-feedforward
processes

Given that a large class of standard quantum cascaded
systems can be intuitively understood as being equivalent
to a measurement-and-feedforward (MF) process [23,47],
it is worth discussing the relation between our nonlinear
dissipator in Eq. (17) and MF protocols. As shown in
Ref. [47], dissipators given by Eq. (17) can be realized
via a generalized MF process as eLdirδtρ̂ = ∑

�=1,2 M̂�ρ̂M̂ †
� .

Here, the Kraus operators M̂� are given by (to order δt)

M̂1 =
√
�δtÂÛB, M̂2 = 1 − �Â†Âδt, (25)

which satisfy the normalization condition
∑

�=1,2 M̂ †
� M̂� =

Î. Intuitively, this stochastic process corresponds to weakly
measuring A, and subsequently applying unitary transfor-
mations on B conditioned on the measurement results. This
interpretation provides a simple, complementary way to
understand the directionality of our dynamics in the single-
dissipator case. It also tells us that this dynamics can never
generate entanglement between A and B.

While, for a single dissipator, both the gauge-invariance
picture and MF picture let us understand the directional-
ity, the same is not true for the multiple-dissipator case
analyzed in Sec. V. In this case, the gauge invariance
pictures ensures nonreciprocity, but there is no mapping
onto a MF process (and, in fact, the dynamics can create
entanglement).

F. Non-Markovian effects

As we have stressed, the nonreciprocity of the dissipa-
tive dynamics in our basic dissipator of Eq. (17) is directly
related to the local gauge invariance of a standard Lind-
blad dissipator. This effective gauge symmetry however
only emerges in the limit of a Markovian bath, something
we discuss in detail in Appendix B. Physically, it requires
the bath correlation time τE to be much smaller than the
timescale associated with variation of the gauge phase θ(t):
τE � [θ̇ (t)]−1. If this condition is met, then the bath is
effectively only sensitive to the instantaneous value of θ(t),
and there is no difference between a constant in time θ(t)
versus a time-varying phase. Conversely, if changes in the
gauge phase θ(t) are not negligible during the bath correla-
tion time, the dynamics of θ(t) will induce non-Markovian
effects in the bath, and the system dynamics will no longer
be gauge invariant.

The above picture can be made rigorous, and one can
calculate leading non-Markovian corrections. In Appendix
C 1, we consider a microscopic bath model with a system-
environment (SE) interaction Hamiltonian of the form

ĤSE = eiθ(t)ξ̂ †Â + H.c. Here, ξ̂ is the bath operator that
couples to the system. We derive the leading-order correc-
tion to Eq. (16) due to a finite bath correlation time τE , a
correction that scales as τE θ̇ (t). Furthermore, in Sec. IV B,
we work with an explicit quantum realization of our dis-
sipative scheme, and use the isolation functions defined in
Sec. II to quantify how a finite bath correlation time causes
deviations from full nonreciprocity.

IV. PHYSICAL IMPLEMENTATION IN CAVITY
QED SYSTEMS

A. Basic setup

We now discuss methods for implementing the general
nonreciprocal dynamics of Eq. (17) in a quantum opti-
cal setup. Note that, incidentally, dissipators of the form
(17) have been used to describe, e.g., decay of two-level
atoms with recoil [48,49]. However, to the best of our
knowledge, such processes have not been discussed in the
context of engineering useful nonreciprocal interactions.
The standard treatment of such processes also immedi-
ately expands out the unitary in Eq. (17) (see, e.g., Ref.
[50]), obscuring the fully nonreciprocal structure. In this
section, in contrast, we focus on experimentally compati-
ble methods for realizing a generic target dissipator. One
direct approach would be to explicitly break TRS, and
use standard nonreciprocal elements like a circulator or a
chiral waveguide. Formally, such implementations involve
starting with a larger system described by a cascaded mas-
ter equation, eliminating degrees of freedom, and then
obtaining the effective dynamics of Eq. (17). We discuss a
generic method for doing this (starting with a chiral waveg-
uide) in Appendix D. Note that several recent circuit QED
experiments using nonreciprocal elements could be use-
fully interpreted in this way [51–53] (see Appendix D for
more details). We also stress that this recipe for realizing
Eq. (17) using a larger cascaded quantum system does not
imply that the two types of dynamics are equivalent. To
see this, one may consider an analogical example involving
open versus closed quantum systems: there, it is straight-
forward to understand that the two still correspond to very
distinct forms of dynamics, even though any open quan-
tum system can be realized by starting from a larger closed
quantum system with auxiliary reservoir modes, and then
eliminating the reservoir degrees of freedom.

We focus here on a more intriguing implementation
strategy that uses reservoir engineering techniques but
does not require any elements that explicitly break time-
reversal symmetry, i.e., the dynamics does not involve any
nontrivial gauge-invariant phases. We take subsystem A
to be a resonator mode with bosonic annihilation operator
â, and subsystem B to be a qubit with Pauli-z operator σ̂z.
We wish to realize our nonreciprocal master equation (17)
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(a) (b)

FIG. 2. (a) Schematic of a setup that realizes a nonreciprocal
interaction from a cavity mode a (A) to a qubit (B). Both sub-
systems are coupled to an auxiliary damped bosonic mode c that
plays the role of a reservoir; see Eq. (28). (b) The effective dissi-
pator describing the nonreciprocal interaction in the Markovian
reservoir limit κc � J .

with the choices Â = â and ÛB = exp(−iθσ̂z/2), i.e.,

dρ̂
dt

= Lgateρ̂ = �D[e−iθσ̂z/2â]ρ̂. (26)

To engineer the effective dynamics in Eq. (26), we cou-
ple both the cavity mode a and the qubit to an auxiliary,
highly damped bosonic mode ĉ (decay rate κc), via tunnel-
ing and dispersive interactions, respectively [see Fig. 2(a)].
The interaction Hamiltonian between the system and the c
mode (i.e., the reservoir) is

Ĥint = (J â†ĉ + H.c.)+ (λc/2)σ̂zĉ†ĉ, (27)

where J denotes the complex tunnel coupling rate. We also
include a direct Hamiltonian dispersive coupling between
the cavity mode â and the qubit, ĤS = (λa/2)σ̂zâ†â. We
take the a and c modes to be resonant, and work in a
rotating frame where the a, c and qubit frequencies are
shifted to zero. The total dynamics (including the reservoir
c mode) is then described by the QME

dρ̂tot

dt
= LSRρ̂tot = −i[ĤS + Ĥint, ρ̂tot] + κcD[ĉ]ρ̂tot. (28)

Note that Eq. (28) does not involve any explicit break-
ing of TRS, in that there is no nontrivial gauge phase.
Even if J is complex, the corresponding hopping phase
can always be eliminated by a gauge transformation on â;
hence, the phase of J plays no role. This can be under-
stood physically from the fact that the setup in Eq. (28)
does not host any closed loops enclosing a nontrivial flux.
We thus assume henceforth, without loss of generality, that
the cavity-reservoir coupling amplitude in Eq. (28) is real
and positive, i.e., J = |J |.

We next consider the limit where reservoir-mode pho-
tons decay much faster than their tunneling rate to the
cavity, i.e., κc � J . We can then adiabatically eliminate
the reservoir (see Appendix E), yielding an effective QME

for the cavity-qubit density matrix ρ̂:

dρ̂
dt

= −i
[
λa + λeff

2
σ̂zâ†â, ρ̂

]

+ �effD[e−iθeffσ̂z/2â]ρ̂.

(29)

For κc � J , the parameters in this QME are

�eff = 4J 2κc/(κ
2
c + λ2

c), (30)

λeff = −4J 2λc/(κ
2
c + λ2

c), (31)

θeff = 2 arctan(λc/κc). (32)

The various couplings in Eq. (29) can easily be given phys-
ical interpretations. In the regime κc � J , the reservoir and
the qubit together form a new effective, Markovian envi-
ronment for the cavity mode. The corresponding effective
cavity decay rate �eff matches Fermi’s golden rule expec-
tation, and is independent of the qubit state. Here λeff is an
induced dispersive coupling arising from weak hybridiza-
tion of a and c modes. The most interesting parameter is
the phase θeff. At a heuristic level, whenever a photon hops
from the cavity mode to the reservoir mode and subse-
quently decays, the qubit is rotated by an angle θeff about
the z axis. In the limit λc � κc, this phase shift can be
understood as a product between photon dwell time in the
reservoir c mode, τc ∼ κ−1

c , and the bare qubit-reservoir
dispersive coupling strength λc.

Finally, we imagine tuning the direct dispersive interac-
tion so that it cancels the induced dispersive interaction,
i.e., tune λa = −λeff. In this case, we are left only with
the dissipator in Eq. (29), which corresponds exactly to
the form in our general directional QME (26). We thus
obtain a completely directional dynamics from the cavity
to the qubit. We stress that this physical implementation
uses standard forms of qubit-cavity coupling, and does not
use any explicitly nonreciprocal elements.

It is worth stepping back to ask what the essential ingre-
dients are here to obtain quantum nonreciprocity without
any explicit breaking of TRS. Like in our general QME
in Eq. (2), it is crucial to have a final dissipator that is a
product of A and B operators, corresponding to a nonlinear
system-bath interaction (i.e., the environment couples to
the composite operator ÂÛB). Furthermore, we need asym-
metry: the B operator is unitary, the A operator is not. It is
interesting to note that nonlinearity and broken inversion
symmetry have been used in a very different manner to
engineer nonreciprocal scattering without breaking TRS,
both in classical [54,55] and quantum [56–58] settings.
However, the scattering in those works are only approx-
imately nonreciprocal, and even then only for a limited
range of incident field powers and frequencies. This is
very different from our mechanism, which is unidirectional
independent of the initial state, and which is not equivalent
to a simple scattering problem.
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FIG. 3. (a) State-averaged infidelity of the cavity-controlled
steady-state qubit gate, as a function of the non-Markovianity
parameter κc/J . We consider different choices of initial cavity
state: either the Fock state |φi〉A = |1〉 (solid) or |2〉 (dashed), and
take θeff = π/6. These different initial cavity states result in dif-
ferent gate operations. Infidelity tends to zero in the Markovian
limit. (b) Isolation functions for both qubit and cavity as a func-
tion of the non-Markovianity parameter κc/J . We take a fixed
evolution time t = π/�eff and θeff = π/6. Blue curves denote the
cavity isolation I (A)(t); cf. Eqs. (7) and (33). Red curves denote
the conditional qubit isolation function I (B){|0〉,|�〉}(t) (� = 1, 2) that
is an upper bound for the qubit isolation I (B)(t); see Eq. (34). We
see strongly nonreciprocal behavior [i.e., I (A)(t) � 1, I (B)(t) < 1]
even away from the Markovian limit. As discussed in the main
text, when calculating I (A)(t), we truncate the cavity Fock space
to nmax photons for simplicity; the solid (dashed) curve is for
nmax = 1 (nmax = 2).

B. Non-Markovian effects in the qubit-cavity setup

The physical implementation given by Eq. (28) provides
a concrete setup where we can quantitatively analyze the
effects of non-Markovianity. In this case, the reservoir (i.e.,
the highly damped c mode) has a finite correlation time
τc ∼ κ−1

c , and the Markovian limit is only reached for a
large decay rate κc. As discussed in Sec. III F, the gauge
symmetry that leads to isolation and nonreciprocity in our
system only exists in the Markovian limit. We thus expect
to see deviations from ideal behavior away from this limit.

In Fig. 3(a), we numerically investigate the infidelity
[59] of the steady-state gate operation performed on B, as
a function of the non-Markovianity parameter κc/J . The
remaining parameters are also varied to keep the qubit
gate angle θ in Eq. (32) fixed (here at a value θeff = π/6).
As expected, the infidelity rapidly drops to zero in the
Markovian large-κc limit. This general trend remains true
no matter what the chosen value of θeff.

We can also ask how non-Markovian effects impact
nonreciprocity in this system. The isolation functions

introduced in Sec. II let us quantitatively compare the non-
reciprocity of Eq. (28) for different values of κc. For cavity
dynamics due to Eq. (28), one can show that the cavity
isolation function can be expressed as

I (A)(t) = 1 − 1
2

∥
∥E (A)|↑〉 (t)− E (A)|↓〉 (t)

∥
∥

�, (33)

where | ↑〉, | ↓〉 are σ̂z eigenstates. While the diamond
norm can be calculated for quantum maps acting on an
infinite-dimensional Hilbert space, to make the problem
numerically tractable, we truncate the cavity Hilbert space
to have at most one or two photons (as this is already suf-
ficient to illustrate the effect of non-Markovianity). The
numerically calculated cavity isolations for increasing cav-
ity decay rates κc are plotted with blue curves in Fig. 3(b).
We see that, even for modest values of κc (i.e., not strongly
in the Markovian regime), the cavity is well isolated.

To characterize nonreciprocity, we also need to con-
sider the qubit isolation I (B)(t). We can find a simple upper
bound for this quantity using the conditional qubit isola-
tion I (B){|0〉,|�〉}(t), corresponding to initial control cavity Fock
states {|0〉, |�〉} (� = 1, 2), as

I (B)(t) ≤ (

I (B){|0〉,|�〉}(t) ≡ 1 − 1
2

∥
∥E (B)|0〉 (t)− E (B)|�〉 (t)

∥
∥

�
)

. (34)

From the definition of qubit isolation [cf. Eq. (7)], one sees
that I (B){|0〉,|�〉}(t) must be no less than the actual qubit iso-
lation function I (B)(t). As shown in Fig. 3(b), in the fast
reservoir limit κc/J � 1, I (B){|0〉,|�〉}(t) (� = 1, 2) (red curves)
is considerably smaller than cavity isolation I (A)(t) (blue
curves), demonstrating that the reservoir mode mediates an
effective unidirectional interaction from the control cavity
to qubit.

V. GENERALIZED GAUGE-INVARIANCE
NONRECIPROCITY: THE NON-ABELIAN CASE

A. Gauge symmetry of a multidissipator Lindblad
master equation

We now discuss how our recipe for quantum non-
reciprocity based on gauge invariance can be extended
from Eq. (17) to a much broader class of dynamics.
This generalized version involves dissipative dynamics
with multiple dissipators, and the relevant local gauge
symmetry can become non-Abelian. As we show, this
generalized version is in general not equivalent to uncondi-
tional evolution under measurement and feedforward, and
is capable of generating entanglement. It is also (like the
single-dissipator case) distinct from the cascaded quantum
systems master equation.

Similar to Sec. III A, we start by considering a single
system A undergoing dissipative Lindblad dynamics, but
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now involving multiple dissipators:

d
dt
ρ̂A = �

N
∑

�=1

D[Â�]ρ̂A ≡ LAρ̂A. (35)

As is well known, multidissipator Liouvillians like LA are
invariant under a wide class of transformations that mix
the jump operators Âl. Let ulm be the matrix elements of an
arbitrary N × N complex unitary matrix Ǔ [60]. Then we
necessarily have (see, e.g., Ref. [61])

N
∑

�=1

D[Â�] =
N

∑

�=1

D
[ N

∑

m=1

u�mÂm

]

. (36)

The above invariance of LA also trivially continues to hold
if we make the unitary mixing matrix Ǔ(t) time depen-
dent. Formally, this represents a local-in-time, non-Abelian
gauge symmetry, as, for N ≥ 1, different allowed Ǔ do not
commute with one another.

For what follows, it will be helpful to give an intuitive
picture of this multidissipator gauge symmetry. Each of
the N dissipators in our master equation (indexed by �)
can be interpreted as describing the influence of an inde-
pendent dissipative bath. The operator

∑

m u�mÂm is then
interpreted as the particular system-A operator that couples
to bath �. The u�m are thus system-bath coupling constants.
Equation (36) hence tells us that there are several distinct
ways to couple our system to the N baths that results in
identical dynamics; all that is required is that the u�m form
a unitary matrix. At a physical level, this means that each
independent bath should couple to an “orthogonal” set of
system operators (i.e., the rows of Ǔ are orthogonal), and
that the “total coupling strength” to bath l is always the
same, i.e.,

∑

m |ulm|2 = 1.

B. From gauge symmetry to a multidissipator
nonreciprocal interaction

Similar to Sec. III A, Eq. (36) now provides a route to
construct a nonreciprocal interaction with a second sub-
system B: we make each matrix element u�m(t) of Ǔ (t)
an operator û�m acting on B. This results in a new mas-
ter equation acting on the state of the bipartite A plus B
system:

d
dt
ρ̂AB = �

N
∑

�=1

D[ẑ�]ρ̂ ≡ Lmultiρ̂ (37)

with

ẑ� =
N

∑

m=1

Âmû�m. (38)

At a physical level, we can interpret this as a kind of gener-
alized dissipative parametric coupling: system B controls

the strength and form of the coupling between system A
and the N dissipative baths in the problem. If the different
û�m operators fail to commute, then there will be unavoid-
able quantum noise in the magnitude and form of these
couplings. Note that simpler parametric dissipative cou-
plings have been studied in quantum optomechanics (see,
e.g., Refs. [62,63]), where a mechanical resonator controls
the loss rate of a photonic cavity mode.

The dissipative parametric coupling between A and B in
Eqs. (37) and (38) will not in general be directional; this
requires a further constraint. We now come to the central
result of this section: the master equation (37) mediates
a fully nonreciprocal interaction from A to B if the B
operators satisfy the generalized unitarity constraint

N
∑

�=1

(û�m)†û�m′ = EBδmm′ ÎB, (39)

where ÎB is the identity operator on subsystem B and EB
is a positive real constant. Noting that EB can be absorbed
into the definition of û�m, we set EB = 1 going forward.
If Eq. (39) is satisfied, it is easy to show that A is com-
pletely isolated from B: one can trace out B and derive a
closed QME for the dynamics of A that is independent of
any additional local dynamics acting on B. This isolation
reflects the underlying gauge symmetry discussed above
(see Appendix F 1 for details). The converse is not true: B
will in general be influenced by A. Note that if Eq. (39) is
satisfied, operators û�m can be viewed as matrix elements
of a generalized unitary transformation acting on a larger
space (see Appendix F 1).

We stress that Eq. (37) is not a trivial generalization of
the single-dissipator case in Eq. (17), since each individ-
ual dissipator D

[

ẑ�
]

need not generate fully nonreciprocal
dynamics on its own. Unidirectionality is thus in general a
collective property of the full Liouvillian, and not of each
dissipator on its own. Furthermore, there is no clever trans-
formation that allows one in general to express the Liou-
villian in such a form, i.e., Lmultiρ̂ �= ∑

� ��D[Â′
�ÛB,�]ρ̂.

At a physical level, Eq. (39) represents a constraint on
our dissipative parametric interaction. While system B still
parametrically controls the coupling of system A to the N
dissipative baths in our problem, the coupling to each of
these baths is fixed in magnitude irrespective of the state
of B. Furthermore, each bath always sees an orthogonal
combination of the system-A operators Â�. This constraint
ensures that system A is independent of system B [by
virtue of the symmetry in Eq. (36)], but still allows A to
influence B.

C. Example: qubit-controlled photonic loss

As a concrete example, we consider a bipartite system
where the A subsystem is comprised of two photonic cav-
ity modes a1, a2, and the B subsystem is a single qubit
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FIG. 4. (a) Schematic illustrating a two-dissipator gauge sym-
metry nonreciprocal interaction. Two cavity modes a1,a2 are
each coupled to waveguides, which are then sent to a beam
splitter that depends on the state of a qubit. The dissipation is
described by the Liouvillian �(D[ẑ1] + D[ẑ2]) [see Eqs. (40) and
(42)]. (b) Numerically computed cavity isolation I (A){|+x〉,|−x〉}(t) for
dynamics generated by the two-dissipator sum (solid red line)
versus a single dissipator 2�D[ẑ1] (dashed blue curve). The A
isolation stays unity in the former case, as expected for any
dynamics that is fully nonreciprocal by design [see the discussion
on Eq. (40)]. In contrast, individual dissipators from the setup in
(a), e.g., D[ẑ1], are not unidirectional. For illustrative purposes,
the numerics plotted here is restricted to the subspace with at
most two photons in A, but our result remains valid for a1, a2
modes with infinite levels. (c) Entanglement (logarithmic neg-
ativity EN ) generation by the dissipations, assuming a product
initial state |11〉A ⊗ ∣

∣+y
〉

B. The fully nonreciprocal interactions
generated by �(D[ẑ1] + D[ẑ2]) creates entanglement (solid red
curve), signaling nontrivial influence from the cavity modes to
the qubit.

[see Fig. 4(a)]. We take the basic dissipative process to
be single-photon loss on each cavity mode, i.e., Â� =
â� (� = 1, 2). Consider first the setup without the qubit.
In this case, the right-hand side of master equation (36)
describes a setup where each cavity couples to its own
output waveguide, with the two waveguides then being
routed through a beam splitter with scattering matrix Ǔ .
The two outputs of the beam splitter are then routed to
zero-temperature reservoirs. One clearly sees that the par-
ticular form of the beam splitter unitary is immaterial to the
two cavity modes: regardless of its form, each cavity mode
experiences identical, independent single-photon loss.

We now use our general recipe to make this into a non-
reciprocal interaction between the two cavity modes and
a qubit, by making the beam splitter a “quantum” beam

splitter whose scattering properties depend on qubit oper-
ators. Such a qubit-controlled beam splitter can be charac-
terized by a unitary operator Ûqbs on the total cavity-qubit
system. We take this operator to depend on both σ̂z and σ̂x,
with a total system dynamics that is described by

L2ρ̂ = �

2
∑

�=1

D[ẑ�]ρ̂, ẑ� = Ûqbsâ�(Ûqbs)
†, (40)

with

Ûqbs = eiϕσ̂z(â
†
1â1−â†

2â2)+iθσ̂x(â
†
1â2+â†

2â1). (41)

The qubit-controlled beam splitter in Eq. (41) general-
izes simpler constructions only involving a single-qubit
operator. The latter setups have been discussed theoreti-
cally (see, e.g., Refs. [37,64]) and even realized recently in
experiment [65]. As we will see, using two noncommut-
ing operators in our example will give us a new dynamical
structure that is distinct from the single-dissipator setup in
Sec. III A.

The jump operators in Eq. (40) can be explicitly com-
puted to be

ẑ1 = e−iϕσ̂z (cos θ â1 − i sin θ σ̂xâ2), (42a)

ẑ2 = eiϕσ̂z (−i sin θ σ̂xâ1 + cos θ â2). (42b)

Each of these dissipators has a nontrivial action on the
composite system that in general will correlate the state
of the qubit and cavities [see Fig. 4(a)]. For example, the
jump operator ẑ1 has an amplitude for flipping the state of
the qubit (correlated with loss from a2) and for not flipping
the qubit state (correlated with loss from a1). The situa-
tion is reversed for ẑ2. In general, neither of these jump
operators can be written as a product of a qubit opera-
tor times a cavity operator. For simplicity, we assume that
θ = ϕ = π/4 in what follows, but our results are valid as
long as sin 2θ sin 2ϕ �= 0. Note that the latter constraint
ensures that Eq. (40) cannot be decomposed into a trivial
sum of single nonreciprocal dissipators.

The dissipators in master equation (40) have the same
form as those in the general nonreciprocal master equation
(38). A direct computation also shows that the unitarity
condition of Eq. (39) is satisfied. As a result, Eq. (40)
necessarily describes a unidirectional interaction from the
subsystem-A cavity modes to subsystem B, the qubit. The
cavity modes are unaffected by the qubit, and each experi-
ence simple loss at rate �. In contrast, the qubit remains
nontrivially influenced by the cavity modes. It is inter-
esting to ask what this nonreciprocal interaction means
physically. To obtain intuition, one can consider the sim-
ple case where â1, â2 are replaced by c numbers α1,α2.
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The form of qubit dissipation then crucially depends on the
relative phase between the two amplitudes, i.e., the phase
of α1/α2: if the ratio is real, the two qubit jump operators
will be proportional to two unaligned unitaries, and the
resulting qubit dynamics simply corresponds to coupling
to classically stochastic Hamiltonians [46]. In contrast, if
α1/α2 is complex, i.e., α1,α2 have different phases, then
the jump operators will not be proportional to unitaries,
generating richer dissipative dynamics for the qubit.

An alternative picture for Eq. (40) is provided by view-
ing the dynamics as due to an average over stochastic
quantum jumps [66]. As we show, this is particularly
useful for understanding entanglement generation by the
nonreciprocal dynamics. Consider a product initial state,
|�AB〉 = |11〉A ⊗ |ψqb〉B with a generic qubit state |ψqb〉B.
With a single quantum jump, the initial state is acted on
once by ẑ1 or ẑ2 [see Eq. (42)]. Because the action on the
qubit state by these jump operators is correlated with the
action on the two-photon state, the total qubit-cavity state
will in general become entangled after the jump, indicating
possible entanglement generation in the averaged dynam-
ics. Later in this section, we further provide a concrete
example for entanglement generation by Eq. (40).

To help see these properties more explicitly, and to see
that the directionality is not a property of each dissipator
on its own, we can calculate the isolation function of sub-
system A [defined via Eqs. (5) and (7)]. We compare the
nonreciprocal dynamics as generated by Eq. (40), against
the case with just a single dissipator, i.e.,

L′
2ρ̂ = 2�D[ẑ1]ρ̂, (43)

where the jump operator is again given by Eq. (42a). In
Fig. 4(b), we plot the conditional subsystem-A isolation
I (A){|+x〉,|−x〉}(t), defined as

I (A){|+x〉,|−x〉}(t) ≡ 1 − 1
2

∥
∥E (A)|+x〉(t)− E (A)|−x〉(t)

∥
∥

�. (44)

This quantity measures how sensitive the subsystem-A
dynamics is to the initial state of B, when B starts in a
σx eigenstate |±x〉. It sets an upper bound on the full A
subsystem isolation I (A)(t). As shown in Fig. 4(b), the con-
ditional cavity isolation stays unity at all times for master
equation (40). This is as expected, as the generalized uni-
tarity constraint is satisfied. As a result, I (A)(t) should be
unity according to Eq. (15). In contrast, the A isolation
is significantly smaller than 1 for the case where we only
have one of the two required dissipators; see Eq. (43). In
this case, A is not isolated from B. This shows concretely
that the combined action of both dissipators in Eq. (40)
leads to a fully directional dynamics, even though each on
its own does not mediate a one-way interaction. Note that
in this plot we have calculated the isolation functions in
a restricted cavity Hilbert subspace with at most two total
photons. However, this does not affect the validity of our

conclusion, since numerically computed isolation will set
an upper bound for the isolation of the bosonic A subsys-
tem with infinite levels. As such, our calculation clearly
shows that we cannot get fully nonreciprocal interaction
with only one of the dissipators in Eq. (42).

Of course, simply showing that subsystem A is iso-
lated does not indicate a nonreciprocal interaction: we
also need to verify that B is influenced by A, and that
we have not simply canceled any interaction between the
two subsystems. To show that there is indeed a nonrecip-
rocal interaction, in Fig. 4(c) we show that our master
equation [Eq. (40)] can generate entanglement between
the two subsystems. We show in that figure the time-
dependent entanglement, as quantified by the logarithmic
negativity, between A and B starting with an initial prod-
uct state |11〉A ⊗ |+y〉B, with |+y〉B denoting the qubit σ̂y
eigenstate. We see that entanglement is generated at inter-
mediate times (red solid curve), even though system A is
fully isolated at all times. This indicates that A must be
influencing B, and that we have a nontrivial nonreciprocal
interaction.

The fact that our dynamics can generate entanglement
also leads to other important conclusions. It immedi-
ately implies that Eq. (40) cannot be realized via local
measurement and feedforward processes, and as such,
cannot be rewritten as a sum of single nonreciprocal
dissipators, each having form (17). If such a decompo-
sition were possible (see, e.g., Appendix F 2), then our
dynamics would be equivalent to a local measurement-
plus-feedforward protocol, something that cannot gen-
erate entanglement [cf. the discussion below Eq. (25)].
We note that this nonreciprocal entanglement generation
is unique to the multidissipator version of our master
equation.

Finally, as in the simpler single-dissipator version of
our mechanism, deviations from the Markovian limit will
also impact the directionality of our interaction; this is
discussed in more detail in Appendix C 2.

VI. SUMMARY AND OUTLOOK

In this work, we have introduced and analyzed a new
kind of dissipative dynamics that leads to fully nonre-
ciprocal interactions between two quantum systems. The
crucial ingredient was a time-local gauge symmetry inher-
ent in any Markovian, Lindblad master equation. Surpris-
ingly, the explicit breaking of time reversal or the use of
synthetic gauge fields were not necessary. As such, our
new class of directional quantum master equations do not
have the form of a standard cascaded quantum master
equation.

Nonreciprocal quantum interactions are being actively
studied for both their fundamental and practical implica-
tions. Our results thus greatly expand the toolbox and class
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of interactions available for such studies. In terms of appli-
cation, we have shown how our interactions can be used
for a new kind of dissipative quantum gate; the applica-
tion to more complex kinds of quantum control (using,
e.g., the multidissipator version of our dynamics) could
be extremely fruitful. We note that in a very different
context, engineered dissipation has been studied theoret-
ically [40,44] and demonstrated experimentally [41–43]
as means to realize autonomous quantum error correction
(AQEC). Here, dissipative processes are designed to miti-
gate errors by bringing the system back to a desired code
space. While our dissipative nonreciprocity and dissipative
gates are very different in nature, it is worth asking whether
these ideas could be combined with autonomous error
correction for even more robust forms of quantum infor-
mation processing. In Ref. [32], the general nonreciprocal
structure in Eq. (17) is shown to enable a novel AQEC
scheme against excitation loss, a dominant error source in
bosonic systems. In concatenation with discrete-variable
QEC codes, it further offers a promising route towards
practical fault-tolerant quantum computation (see Ref. [32]
for detail). In another example, cases of nonreciprocal
dissipators in Eq. (17) are also considered for achiev-
ing passively protected quantum memory [67]. Unlike our
work, Lieu et al. [67] did not note the general underly-
ing nonreciprocal structure in Eq. (17), nor provide any
route to physically realizing the required dissipators. An
important open question is under what circumstances such
nonreciprocal dissipators would provide a practical advan-
tage in applications; we leave a systematic study to future
works.

Our work also has great potential for fundamental stud-
ies. For example, it provides a direct way of designing
quantum analogues of classical kinetically constrained
models that feature directionality (see, e.g., Ref. [68]).
Such models could provide a new setting to study glassy
dynamics in the quantum regime. It would also be inter-
esting to study our new kind of dissipative interactions
in many-body lattice models. Here, our mechanism could
be used to construct a class of directional models that are
dissipative analogues of closed systems with dynamical
gauge fields. The latter is a topic of intense interest in a
variety of engineered quantum systems (see, e.g., Refs.
[69–72]).
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APPENDIX A: EXAMPLES OF HAMILTONIAN
DYNAMICS THAT IS FULLY RECIPROCAL

ACCORDING TO EQ. (10)

In Sec. II in the main text, we introduce a new metric of
isolation to quantify the influence of one subsystem on the
dynamics of another subsystem, which leads to a general
definition of reciprocity and nonreciprocity in the quantum
regime. It is interesting to ask what the isolation looks like,
and how nonreciprocal it is, if one considers fully coherent
(i.e., Hamiltonian) dynamics. In this appendix, we pro-
vide two general classes of Hamiltonian dynamics, which
can be proven to be reciprocal as per Eq. (10). It is also
intriguing to ask if fully Hamiltonian dynamics of generic
systems should always be reciprocal by the definition in
Eq. (10). While we conjecture that it should be case, in
order for the definition of (non)reciprocity in Sec. II to
align with the (breaking of) Onsager reciprocity relations,
we leave a thorough study to future works.

1. Isolation function of reciprocal dynamics generated
by Hamiltonians with local qubit (B) Z2 symmetry

While our proof can be straightforwardly generalized to
Hamiltonian dynamics of a generic bipartite system with
an NA- (NB-)dimensional subsystem A (B), as long as the
total AB Hamiltonian has a local symmetry that is NB
dimensional and nondegenerate within the B subspace, for
the sake of clarity, here we focus on bipartite systems AB
where B is a single qubit. In this subsection, we explic-
itly derive the isolation functions for dynamics generated
purely by Hamiltonians with a local qubit Z2 symmetry,
and show that any such dynamics must be fully reciprocal
by the definition in Eq. (10). We stress that such Hamilto-
nians, albeit having a constrained form, can be generally
nonlinear and interacting.

Consider a generic bipartite system consisting of an NA-
dimensional system as A and a qubit as B. We assume
that the system evolves under a Hamiltonian ĤAB, where
interaction between A and B commutes with the qubit-only
Hamiltonian ĤB,0 ≡ TrAĤAB. We can thus define, without
loss of generality, the eigenstates of ĤB,0 as a qubit-σ̂z
eigenbasis, and rewrite the system Hamiltonian as

ĤAB = ĤA ⊗ ÎB + ξ̂A ⊗ σ̂z. (A1)

For notational simplicity, it is convenient to rewrite the
total Hamiltonian in terms of projectors onto qubit-σ̂z
eigenstates as

ĤAB = Ĥ (A)
↑ ⊗ | ↑〉〈↑ | + Ĥ (A)

↓ ⊗ | ↓〉〈↓ |, (A2)

where the conditional A Hamiltonians contingent on qubit
states |σ 〉 (σ =↑, ↓) are given by Ĥ (A)

↑/↓ = ĤA ± ξ̂A.
Following Eq. (5) in the main text, we can again define

the evolution superoperator of A, depending on initial qubit
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(B) state |φi〉, as

E (A)|φi〉(t)ρ̂A ≡ TrB[e−iĤABt(ρ̂A ⊗ |φi〉B〈φi|)eiĤABt]. (A3)

Substituting Eq. (A2) into the above equation, the condi-
tional A quantum map can be straightforwardly calculated
as

E (A)|φi〉(t)ρ̂A =
∑

σ=↑,↓
|〈σ |φi〉|2e−iĤ (A)

σ tρ̂AeiĤ (A)
σ t. (A4)

Since the A evolution in this case can be rewritten as
a probabilistic mixture of unitary gates, the A isolation
can be shown to have a closed analytical form. For con-
venience, we first introduce the unitary operator Û(A)

↓↑ (t)
acting on A that describes the “overlap” between the two
conditional unitary maps as

Û(A)
↓↑ (t) = eiĤ (A)

↓ te−iĤ (A)
↑ t, (A5)

and define its eigenvalues as eiφ� (� = 1, 2, . . . , NA). One
can thus show that

I (A)(t) = 1 − max
1≤�<m≤NA

∣
∣
∣
∣
sin

(φ� − φm)

2

∣
∣
∣
∣
. (A6)

Conversely, we can also compute the qubit (B) isolation
exactly, since the qubit undergoes a constrained form of
dynamics that conserves the σ̂z operator [cf. the system
Hamiltonian in Eq. (A2)]. In this case, the qubit expe-
riences a simple phase shift and/or dephasing during the
time evolution. More specifically, given initial qubit state
ρ̂B and expanding it using the σ̂z basis, the qubit popu-
lations stay constant throughout the evolution. The qubit
coherence due to Eq. (A2) can be computed as

〈↑ |E (B)|φi〉(t)ρ̂B| ↓〉
〈↑ |ρ̂B| ↓〉 = Tr(e−iĤ (A)

↑ t|φi〉A〈φi|eiĤ (A)
↓ t
)

= Tr(Û(A)
↓↑ (t)|φi〉A〈φi|), (A7)

where Û(A)
↓↑ is again the overlap unitary in Eq. (A5).

Because the qubit map now takes a pure-dephasing form,
the diamond norm between two such qubit maps can be
explicitly derived as

||E (B)|φ1〉(t)− E (B)|φ2〉(t)||�
= |Tr[Û(A)

↓↑ (t)(|φ1〉〈φ1| − |φ2〉〈φ2|)]|
= |〈φ1|Û(A)

↓↑ (t)|φ1〉 − 〈φ2|Û(A)
↓↑ (t)|φ2〉|. (A8)

Expanding the states |φ1〉, |φ2〉 in Eq. (A8) using the eigen-
basis of Û(A)

↓↑ , and optimizing over all A initial states, one

can compute the B isolation function I (B)(t) as

I (B)(t) ≡ 1 − 1
2

max
|φ1〉,|φ2〉∈HA

∥
∥E (B)|φ1〉(t)− E (B)|φ2〉(t)

∥
∥

�

= 1 − 1
2

max
|φ1〉,|φ2〉∈HA

∣
∣〈φ1|Û(A)

↓↑ (t)|φ1〉

− 〈φ2|Û(A)
↓↑ (t)|φ2〉

∣
∣

= 1 − max
1≤�<m≤NA

∣
∣
∣
∣
sin

(φ� − φm)

2

∣
∣
∣
∣
. (A9)

Comparing the above expression to Eq. (A6), we thus have

I (A)(t) = I (B)(t). (A10)

2. Proof of reciprocity for arbitrary Hamiltonian
dynamics of two-qubit systems

In this subsection, we restrict to bipartite systems where
both A and B are single qubits, and we seek to prove
that arbitrary Hamiltonian dynamics of this two-qubit sys-
tem is reciprocal as per Eq. (10). To start, we note that
the isolation function of A (B) is invariant under applica-
tions of local unitaries at the input and/or output ports of
the quantum channel. More specifically, we consider two
generic quantum maps E (AB) and F (AB) that are related by
the equation

E (AB)ρ̂AB = (ŴA ⊗ ŴB)(F (AB)ρ̂ ′
AB)(Ŵ

†
A ⊗ Ŵ†

B), (A11)

ρ̂ ′
AB = V̂A ⊗ V̂Bρ̂ABV̂†

A ⊗ V̂†
B. (A12)

Making use of the fact that the diamond norm [cf. Eq. (6)]
is invariant under unitary transformations applied before
or after the quantum channels [34], one can straightfor-
wardly show that the corresponding isolation functions
I (A/B)(E (AB)) and I (A/B)(F (AB)) are also equal for two maps,
i.e.,

I (A/B)(E (AB)) = I (A/B)(F (AB)). (A13)

The isolation functions in the above equation are defined
similarly to Eq. (7) for the two channels, and we
omit any time variables (if applicable) for notational
simplicity.

We next observe that, as pointed out in the main text,
dynamics generated by any Hamiltonian symmetric under
permutation of A and B is automatically reciprocal by
our definition. For two-qubit systems, and assuming no
local Hamiltonians, we conclude that dynamics gener-
ated by so-called Heisenberg XYZ interactions should be
reciprocal. Rewriting the corresponding unitary evolution
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superoperator as

U (AB)
XYZ ρ̂AB = ÛXYZ ρ̂ABÛ†

XYZ , (A14)

ÛXYZ = exp
[

−i
(

∑

α=x,y,z

Jασ̂A,ασ̂B,α

)]

, (A15)

we thus have

I (A)(U (AB)
XYZ ) = I (B)(U (AB)

XYZ ). (A16)

Finally, we make use of the standard decomposition of any
two-qubit rotations into local unitaries and a Heisenberg
unitary [73], which can be viewed as a special case of
the KAK decomposition of Lie groups. For a generic two-
qubit unitary operator ÛAB, the decomposition states that
there exist two local unitaries ÛA,� ⊗ ÛB,� (� = 1, 2) such
that the following equality holds:

ÛAB = (ÛA,1 ⊗ ÛB,1)ÛH (ÛA,2 ⊗ ÛB,2) (A17)

with

ÛH = exp
[

−i
(

∑

α=x,y,z

hασ̂A,ασ̂B,α

)]

. (A18)

Comparing the above equation with Eq. (A11), we see that
the unitary map generated by ÛAB has the same isolation
functions as that generated by ÛH . From Eq. (A16), we
can further prove that, for any two-qubit unitary evolution
U (AB)

2 ρ̂AB = ÛABρ̂ABÛ†
AB, we have

I (A)(U (AB)
2 ) = I (B)(U (AB)

2 ), (A19)

so that any two-qubit Hamiltonian dynamics must be
reciprocal.

APPENDIX B: THE ROLE OF MARKOVIANITY IN
THE EMERGENCE OF GAUGE SYMMETRY IN A

SINGLE-DISSIPATOR LINDBLAD MASTER
EQUATION

As discussed in the main text, the unidirectional
nature of dynamics generated by the nonlinear dissipator
D[ÂÛB]ρ̂ [see Eq. (17) in the main text] crucially depends
on a fundamental gauge symmetry, which is inherent to
Lindblad-form QMEs that describe Markovian environ-
ments. In this section, we illustrate this connection using
a microscopic model for the quantum dissipation.

Let us consider a generic, single Lindblad dissipator of
system A, given by

LA,1ρ̂ = �D[Â]ρ̂. (B1)

Without loss of generality, we could model the dissipation
as due to a bosonic microscopic environment consisting

of harmonic oscillator modes b�, so that the system-bath
Hamiltonian can be written as

Ĥtot = ĤE + ĤSE, ĤE =
∑

�

ω�b̂
†
�b̂�, (B2)

ĤSE = Âξ̂ † + H.c., ξ̂ =
∑

�

g∗
� b̂�. (B3)

The density of states (DOS) function J0[ω] of this bosonic
environment can be explicitly computed in terms of the
interaction picture bath operator ξ̂ (t) = eiĤEtξ̂e−iĤE t as

J0[ω] ≡ 1
2π

∫ ∞

−∞
〈[ξ̂ (t), ξ̂ †(0)]〉eiωtdt

=
∑

�

|g�|2δ(ω − ω�). (B4)

In the Markovian limit, the environmental DOS J0[ω]
reduces to a constant, i.e., we have

J0[ω] ≡ � ⇐⇒ 〈[ξ̂ (t1), ξ̂ †(t2)]〉 = �δ(t1 − t2).
(B5)

In this limit, we can integrate out the bath dynamics to
obtain a standard Lindblad equation, as given by Eq. (B1).

We now perform a standard gauge transformation that
shifts the jump operator phase by a time-dependent real
value θ (t), i.e., Â → Â′ = Âeiθ(t), so that the new interac-
tion picture system-bath interaction becomes

Ĥ ′
SE(t) =

∑

�

(g�Âb̂†
�e

iω�t+iθ(t) + H.c.). (B6)

Mathematically, the gauge symmetry of the Lindblad dis-
sipator can be understood from the fact that the micro-
scopic bath DOS J ′[ω] stays invariant under the gauge
transformation. More specifically, we can rigorously show
that

J ′[ω] = 1
2π

∫ ∞

−∞

∑

�

|g�|2eiωt−iω�te−iθ(t)+iθ(0)dt

= �

∫ ∞

−∞
δ(t)e−iθ(t)+iθ(0)dt

= �. (B7)

This derivation formally shows that the microscopic origin
of the time-local gauge symmetry of the Lindbladian in Eq.
(B1) is due to a completely flat bath DOS function, i.e., due
to a Markovian environment.

As mentioned, above derivation requires that the bath is
perfectly Markovian, so that the bath correlation function
〈[ξ̂ (t), ξ̂ †(0)]〉 is proportional to a delta function. We now
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discuss an intuitive way to understand the role of Marko-
vianity in the emergence of the time-local gauge symmetry.
Noting that the gauge phase eiθ(t) enters the interaction pic-
ture Hamiltonian in exactly the same manner as dynamical
phases of the environmental modes eiω�t, we could for-
mally absorb time dependence of the gauge phase into
the definition of the environmental chemical potential, by
going to the following rotating frame defined with respect
to Ĥrot:

Ĥ ′
E → Ĥ ′′

E = ĤE − Ĥrot, (B8)

b̂′
� → b̂′′

� = eiĤrottb̂�e−iĤrott = b̂�eiθ(t). (B9)

Here we have

Ĥrot = −θ̇ (t)
∑

�

b̂†
�b̂�. (B10)

We remark that the system-bath interaction in the rotat-
ing frame takes the same form as the original interaction
Hamiltonian in Eq. (B3), i.e., we have

Ĥ ′′
E =

∑

�

[ω� + θ̇ (t)]b̂†
�b̂�, (B11)

Ĥ ′′
SE =

∑

�

(g�Âb̂†
� + H.c.). (B12)

Noting that the bath Hamiltonian now varies in time, we
can formally define a time-dependent bath DOS function
J [ω; t] as

J [ω; t] ≡
∑

�

|g�|2δ(ω − ω� − θ̇ (t)), (B13)

which can be related to the original bath DOS function
J0[ω] in Eq. (B4) as

J [ω; t] = J0[ω − θ̇ (t)]. (B14)

In the Markovian limit we thus have J [ω; t] ≡ J0[ω] =
�, so that the bath DOS is invariant under generic gauge
transformations. For a realistic environment, the bath
bandwidth should be finite and hence cannot be perfectly
Markovian. In this case, the above analysis would be valid
as long as the bath correlation time τE is much smaller than
the timescale associated with dynamics of the gauge phase,
i.e., τE θ̇ (t) � 1.

APPENDIX C: LEADING-ORDER
NON-MARKOVIAN CORRECTIONS TO FULLY
NONRECIPROCAL MASTER EQUATIONS DUE

TO BROKEN GAUGE SYMMETRY

1. Single-dissipator case

The discussion in the preceding section relates an intrin-
sic gauge symmetry of any Lindbladian dissipative dynam-
ics to the Markovian nature of the corresponding bath. In

this subsection, we focus on Lindbladians with a single
dissipator, and examine how the gauge symmetry can be
broken if the bath deviates from the Markovian limit. We
again start with the interaction picture system-bath Hamil-
tonian, where the system-bath coupling is modulated in
time by a phase factor (which formally acts as a gauge
transformation on the jump operator). The Hamiltonian is
given by Eq. (B6) as

Ĥ ′
SE(t) = Âξ̂ †eiθ(t) + H.c.

=
∑

�

(g�Âb̂†
�e

iω�t+iθ(t) + H.c.). (C1)

Assuming that the bosonic bath is in the vacuum state, we
can derive a Markovian evolution equation for the system
density matrix as

d
dt
ρ̂(t) = −i[�(t)Â†Â, ρ̂(t)] + �BR(t)D[Â]ρ̂(t). (C2)

Note that the above equation is an example of the so-called
Bloch-Redfield equation, which generalizes the standard
Lindblad master equation by incorporating effects due to a
finite bath correlation time. The Bloch-Redfield equation
still assumes that the bath is Gaussian, but allows the bath
to be non-Markovian. The first term on the right-hand side
of Eq. (C2) is analogous to the Lamb shift, and describes a
correction to the coherent system Hamiltonian due to cou-
pling to the environment. The second term takes the same
form as the standard Lindblad dissipator, but the dissipator
strength can now be negative because we have included
effects from a non-Markovian bath.

To compute the coefficients�(t) and �BR(t) in Eq. (C2),
it is useful to view Eq. (C1) as coupling the system to
a new, effective bath operator, whose phase is modified
by the gauge phase eiθ(t). We refer to this new bath as
the “gauge transformed bath” in the following discussions.
We can thus introduce the two-point correlation function
Eθ (t1, t2) of the new bath operator, which is given by

Eθ (t1, t2) ≡ 〈ξ̂ (t1)ξ̂ †(t2)〉e−iθ(t1)+iθ(t2)

=
∑

�

|g�|2e−iω�(t1−t2)−iθ(t1)+iθ(t2). (C3)

It is important to note that, while the original bath is sta-
tionary, the new bath set by the gauge phase is generally
nonstationary, except for the trivial case where the gauge
phase θ(t) is only a linear function of time. This means
that the correlation function Eθ (t1, t2) in Eq. (C3) would
depend on both the time difference t1 − t2 and the “center
of times” (t1 + t2)/2, unless we have θ(t) = θ(0)+ tθ̇ (0).
The Lamb shift coefficient �(t) can now be related to the
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bath correlation function as

�(t) = Im
∫ t

0
dt1〈ξ̂ (t)ξ̂ †(t1)〉e−iθ(t)+iθ(t1)

= Im
∫ t

0
dt1Eθ (t, t1), (C4)

and the dissipator strength �BR(t) is in turn given by

�BR(t) = 2Re
∫ t

0
dt1Eθ (t, t1). (C5)

If the original bath has a finite but short correlation time
τE (the definition of short will become clear in the dis-
cussion that follows), we can compute the leading-order
non-Markovian correction in the master equation, which
depends on θ̇ (t). We first rewrite the correlation function
of the gauge-transformed bath in terms of the autocorrela-
tion function of the old bath E(t1, t2) [setting θ(t) ≡ 0 in
Eq. (C3)] as

Eθ (t1, t2) = E(t1, t2)e−iθ(t1)+iθ(t2). (C6)

Without loss of generality, we assume that the bath has
a finite correlation time τE , so that the stationary bath
autocorrelation function can be written as

E(t1, t2) = Eθ (t1, t2)
∣
∣
θ(t)≡0 = g2

effe−|t1−t2|/τE , (C7)

where geff = √
E(0, 0) is a real coupling coefficient that

characterizes the system-bath coupling strength. If the
gauge phase changes much slower than the bath correlation
time, i.e., we have

τ 2
E θ̈ (t) � τE θ̇ (t) � 1 for all t, (C8)

and if we are interested in system dynamics over
timescales that are much longer than the bath correla-
tion time (t � τE), then we can approximate the integral
entering Eqs. (C4) and (C5) as

∫ t

0
dt1Eθ (t, t1)

= g2
eff

∫ t

0
e−(t−t1)/τE e−iθ(t)+iθ(t1)dt1

� g2
eff

∫ t

−∞
e−(t−t1)/τE e−iθ̇ (t)(t−t1)+iθ̈ (t)(t−t1)2/2dt1

� g2
effτE[1 − iτE θ̇ (t)+ iτ 2

E θ̈ (t)− τ 2
E θ̇ (t)

2]. (C9)

Thus, we obtain first two leading-order contributions to the
Lamb shift, and to the time-dependent decay rate, in terms

of the small parameter τE θ̇ (t) as

�(t) � −g2
effτ

2
E[θ̇ (t)− τE θ̈ (t)], (C10)

�BR(t) � 2g2
effτE(1 − [τE θ̇ (t)]2). (C11)

We can thus rewrite Eq. (C2) as

d
dt
ρ̂(t) � ig2

effτ
2
E[θ̇ (t)− τE θ̈ (t)][Â†Â, ρ̂(t)]

+ 2g2
effτE(1 − [τE θ̇ (t)]2)D[Â]ρ̂(t). (C12)

It is also convenient to rewrite the above equation in terms
of the original bath DOS J0 given in Eq. (B4). The latter
can now be calculated as

J0[ω] ≡ 1
2π

∫ ∞

−∞
〈[B̂(t), B̂†(0)]〉eiωtdt

= 1
2π

∫ ∞

−∞
E(t, 0)eiωt

= 1
π

g2
effτE , (C13)

so that we have

∂tρ̂(t) � iπJ0[0]τE[θ̇ (t)− τE θ̈ (t)][Â†Â, ρ̂(t)]

+ 2πJ0[0](1 − [τE θ̇ (t)]2)D[Â]ρ̂(t). (C14)

2. Generalization to the multidissipator case

The discussion in the previous subsection can be
straightforwardly generalized to a Lindbladian with mul-
tiple dissipators. In the main text, we stated that the
invariance of a generic Lindbladian under time-dependent
unitary transformations Ǔ(t) [60] on the jump operators
is closely related to the Markovian nature of the bath.
Here, we illustrate this connection by similarly deriv-
ing leading-order non-Markovian corrections to general
Lindbladians with multiple dissipators. For concreteness,
here we consider a general class of microscopic environ-
ments that can realize such dissipators in the Markovian
limit, but our approach straightforwardly applies to generic
environments.

We start by rewriting a general Lindbladian as [see Eq.
(36)]

LAρ̂A = �

N
∑

�=1

D
[ N

∑

m=1

u�m(t)Âm

]

ρ̂A, (C15)

where the u�m(t) are again matrix elements of the N -
dimensional complex unitary matrix Ǔ(t). For the purpose
of discussion, we consider a microscopic environment real-
izing such dissipative dynamics, by coupling the system to
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a harmonic oscillator bath with independent bath operators
ξ̂�. In the interaction picture with respect to the bath-only
Hamiltonian ĤE , the system-bath Hamiltonian is given by

ĤSE(t) =
N

∑

�,m=1

u�m(t)Âmξ̂
†
� (t)+ H.c., (C16)

where the bath operators satisfy white-noise statistics

〈ξ̂ (0)†� (t1)ξ̂
(0)
�′ (t2)〉 = 0, (C17)

〈ξ̂ (0)� (t1)ξ̂
(0)†
�′ (t2)〉 = �δ��′δ(t1 − t2). (C18)

In the Markovian limit, the resulting system (A modes)
dynamics will be invariant under any unitary matrix Ǔ(t).
To understand the role of Markovianity in the emergence
of this time-local generalized gauge symmetry, we again
assume that the bath modes have finite but very small
correlation times, and we now derive the correction to A
system dynamics due to non-Markovian effects. Towards
this goal, it is useful to rewrite the system-bath coupling
using a new set of bath operators Ĉ� as

ĤSE(t) =
N

∑

�=1

Â�Ĉ
†
�(t)+ H.c., Ĉ�(t) =

N
∑

m=1

u∗
m�(t)ξ̂m(t).

(C19)

In contrast to the original stationary bath operators ξ̂m(t),
similar to the single-dissipator case, the new bath operators
Ĉm(t) are in general nonstationary due to the presence of
the time-dependent coefficients um�(t). As we show, such
nonstationarity will in general give rise to nontrivial non-
Markovian effects in A dynamics.

Making use of the standard Born-Markov approxima-
tion, we can integrate out the bath modes to obtain an
effective master equation for system A:

dρ̂(t)
dt

= −i
N

∑

�,m=1

��m(t)[Â
†
�Âm, ρ̂(t)]

+
N

∑

�,m=1

��m(t)
(

Âmρ̂(t)Â
†
� − 1

2
{Â†
�Âm, ρ̂(t)}

)

.

(C20)

The effective Hamiltonian, also known as the Lamb shift
term, and the dissipator coefficient matrices are given by

�(t) = − i
2

[S(t)− S†(t)], (C21)

�(t) = S(t)+ S†(t), (C22)

S�m(t) =
∫ t

0
dt1〈Ĉ�(t)Ĉ†

m(t1)〉. (C23)

While our discussion is applicable to generic forms of
bath correlators in the small correlation time limit, for
concreteness, we assume that they take the diagonal forms

〈ξ̂ (0)†� (t1)ξ̂
(0)
�′ (t2)〉 = 0, (C24)

〈ξ̂ (0)� (t1)ξ̂
(0)†
�′ (t2)〉 = �δ��′

1
2τE,�

e−|t1−t2|/τE,� . (C25)

We can thus compute the master equation coefficients
via the bath kernel function S�m(t). For convenience, we
introduce the time-dependent generator of Ǔ(t) as

Ǧ(t) = −i
dǓ(t)

dt
Ǔ†(t). (C26)

Assuming a small bath correlation time �τE,� � 1, we
can perturbatively compute the leading-order corrections
to S�m(t) as

S�m(t) =
N

∑

j ,j ′=1

u∗
j �(t)

∫ t

0
dt1〈ξ̂j (t)ξ̂

†
j ′(t1)〉uj ′m(t1)

� �

2

N
∑

j ,j ′=1

u∗
j �(t)uj ′m(t)[δjj ′ + iτE,j gjj ′(t)

× −iτ 2
E,j ġjj ′(t)− τ 2

E,j gja(t)gaj ′(t)]. (C27)

The corresponding master equation (C20) can now be
conveniently rewritten in terms of a new jump operator
basis,

ẑ�(t) =
N

∑

m=1

u�m(t)Âm, (C28)

so that we can write the effective master equation as

Lρ̂(t) � −i
N

∑

�,m=1

�̃�m(t)[ẑ
†
�(t)ẑm(t), ρ̂(t)] +

N
∑

�,m=1

�̃�m(t)

×
(

ẑm(t)ρ̂(t)ẑ
†
�(t)− 1

2
{ẑ†
�(t)ẑm(t), ρ̂(t)}

)

.

(C29)

The Lamb shift term and dissipator coefficients in the new
basis can thus be derived as

�̃�m(t) = �
4 [(τE,� + τE,m)g�m(t)− (τ 2

E,� + τ 2
E,m)ġ�m(t)

+ i(τ 2
E,� − τ 2

E,m)g�a(t)gam(t)], (C30)

�̃�m(t) = � + �
2 [i(τE,� − τE,m)g�m(t)

− i(τ 2
E,� − τ 2

E,m)ġ�m(t)

− (τ 2
E,� + τ 2

E,m)g�a(t)gam(t)]. (C31)
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Before ending this subsection, we also discuss an intuitive
way to understand the local-in-time gauge symmetry Ǔ(t)
in the multidissipator case. Similar to the single-dissipator
scenario, the addition of unitary matrix elements u�m(t) in
the Lindbladian LAρ̂ = �

∑N
�=1 D[

∑N
m=1 u�m(t)Âm]ρ̂ [see

Eq. (C15)] can be equivalently viewed as the result of
shifting the Hamiltonian frequencies of a microscopic
harmonic oscillator bath. Let us again consider a micro-
scopic bath realizing the dissipators, with the system-bath
Hamiltonian given by

Ĥtot = ĤE + ĤSE, ĤE =
∑

α

ωα

N
∑

�=1

b̂†
�,α b̂�,α ,

(C32)

ĤSE(t) =
N

∑

�,m=1

u�m(t)Âmξ̂
†
� + H.c., ξ̂� =

∑

α

g∗
α b̂�,α .

(C33)

Note that we choose the bath mode frequencies ωα and
coupling strengths g∗

α to be identical for corresponding
modes b̂�,α coupled to different system operators Â�. This
bath model is not necessarily physically motivated, but it
allows a simple interpretation of the time-dependent cou-
pling coefficients u�m(t). In fact, we can now transform to
a new rotating frame

ρ̂SE → ρ̂ ′
SE = Û†(t)ρ̂SEÛ(t), Û(t) = T e−i

∫ t
0 δĤE(t1)dt1 ,

(C34)

so that the time dependence in system-bath couplings is
converted into an additional term in the bath-only Hamil-
tonian as

ĤSE → Ĥ ′
SE = Û†(t)ĤSEÛ(t) =

N
∑

�=1

Â�ξ̂
†
� + H.c., (C35)

ĤE → Ĥ ′
E(t) = ĤE + δĤE(t). (C36)

The correction term δĤE(t) takes the form of a beam
splitter Hamiltonian, and can be written as

δĤE(t) =
∑

α

N
∑

�,m=1

h�m(t)b̂
†
�,α b̂m,α , (C37)

where the beam splitter matrix h�m(t) = [Ȟ(t)]�m is related
to the unitary matrix Ǔ(t) via the equation

Ȟ(t) = i
dǓ†(t)

dt
Ǔ(t). (C38)

APPENDIX D: RESERVOIR ENGINEERING
IMPLEMENTATION OF NONRECIPROCAL

INTERACTIONS IN EQ. (17) VIA A
UNIDIRECTIONAL WAVEGUIDE

In Sec. IV A in the main text, we state that the nonrecip-
rocal single-dissipator master equation in Eq. (17) can be
straightforwardly realized via reservoir engineering, if one
also has access to elements explicitly breaking TRS, e.g.,
an unidirectional waveguide. In this appendix, we provide
a detailed discussion about the physical setup in this case
and its connection to related experiments [51,52].

Recall the desired dissipator in Eq. (17), as given by
Ldirρ̂ = �D[ÂÛB]ρ̂. For concreteness, in this appendix we
assume that the A subsystem is a cavity mode with operator
Â = â being a bosonic lowering operator, but we note that
the scheme discussed below can be generalized to other
systems as well. The corresponding Lindbladian is thus

Ldirρ̂ = �D[âÛB]ρ̂. (D1)

For reasons that will become clear later, it is convenient
to rewrite the unitary in terms of a Hermitian generating
operator ÊB, i.e.,

ÛB = exp(−iÊB), (D2)

where eigenvalues of ÊB are real and lie in the range
(−π ,π ]. Noting that the definition of unitary ÛB has a
global gauge phase degree of freedom, we can redefine it
as e−iθ0ÛB with arbitrary phase θ0 without affecting sys-
tem dynamics; we choose this phase such that −1 is not in
the spectrum of ÛB, or, equivalently, ÊB does not contain
eigenvalue π .

We now introduce a fully directional coupling (e.g.,
mediated by a one-way waveguide) from A to a reservoir
mode c, as well as a Hamiltonian interaction ĤBC between
B and the reservoir that shifts the c frequency. The total
system-reservoir (SR) dynamics can thus be described by
the master equation

dρ̂SR

dt
= −i[ĤAC + ĤBC, ρ̂SR]

+ D[
√

�aâ − i
√

�cĉ]ρ̂SR. (D3)

Here, �a, �c denote the effective coupling rates between
modes a, c and the directional waveguide, respectively.
The coupling Hamiltonians ĤAC and ĤBC are now given
by

ĤAC = 1
2

√

�a�c(â†ĉ + ĉ†â), (D4)

ĤBC = 1
2λM̂Bĉ†ĉ, (D5)

where M̂B is a dimensionless Hermitian operator on B that
we determine later. Note that if we ignore B and its cou-
pling to the reservoir mode c, the remaining setup reduces
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to the standard cascaded quantum system [see Eq. (1)].
To realize the dissipator in Eq. (D1), we take the limit
where c serves as a Markovian reservoir for the AB system.
More specifically, this requires �c � �a, in which case we
can use standard adiabatic elimination techniques [74] to
integrate out mode c. We thus obtain an effective master
equation of the system AB as

dρ̂
dt

= �aD[âÛB,eff]ρ̂, (D6)

ÛB,eff = �cÎB − iλM̂B

�cÎB + iλM̂B

. (D7)

It is worth stressing that the validity of Eq. (D6) does not
depend on having a small coupling between the reservoir
and subsystem B, i.e., λ can be comparable or even greater
than �c. Hence, we can use this recipe to realize general
unitary operators ÛB.

Comparing Eq. (D6) with Eq. (D1), we can choose the a
mode coupling rate �a and subsystem-B coupling operator
M̂B in the initial setup, Eq. (D3), such that the effective
master equation (D6) realizes the desired dynamics, i.e.,
we require

�a = �, (D8)

M̂B = �c

λ
tan

ÊB

2
. (D9)

We thus obtain a general recipe, as given by Eq. (D3),
that makes use of directional coupling and reservoir engi-
neering techniques to implement a nonreciprocal quantum
master equation of the form (D1). For the specific case
where B is a single qubit, and assuming that the target
unitary is a Z rotation e−iθσ̂z/2, we further have

M̂B = �c

λ

(

tan
θ

4

)

σ̂z. (D10)

We note that the physical setup discussed in this appendix
is experimentally accessible using, e.g., state-of-the-art
superconducting qubit platforms. In fact, in a different con-
text, specific cases of dynamics in Eq. (D3) have been
implemented for quantum nondemolition (QND) measure-
ment of itinerant microwave photons [51,52]. In those
works, the QND detector structure consists of a cavity
dispersively coupled to a qubit. To perform the QND
detection, an itinerant microwave field is sent through a
circulator and then reflected off the cavity mode. By mea-
suring the qubit phase shift, one can in turn extract the
average photon number of the input pulse. Comparing the
QND setup to our master equation (D3), the cavity and the
qubit would be mapped to the reservoir mode c and subsys-
tem B, respectively. As a result, the external coupling rate
of the cavity would correspond to �c, and the cavity-qubit

dispersive interaction to Eq. (D5). For the setup discussed
in Ref. [52], we can use a qubit in the place of mode a
to describe the single-photon source in that work, so that
the recipe in Eq. (D3) can be straightforwardly modified to
describe the corresponding experimental system. In Ref.
[51], the itinerant microwave has a Gaussian pulse shape,
which can be formally mimicked via the output of a cav-
ity mode (A) with a time-dependent coupling rate �a(t). In
both experiments, the unidirectional coupling is achieved
by explicit use of a circulator.

Despite aforementioned similarities between the phys-
ical setups used in Refs. [51,52] and our model, we note
that those previous works did not really utilize the master
equation in Eq. (D3) or (D6) to analyze the dynamics of
their systems. Our derivation thus reveals a striking new
feature of dynamics in those types of setups: in the Marko-
vian limit (�c � �a), if one starts from a product state of
the A cavity Fock state and a generic qubit (B) state, the
qubit steady state in the long-time limit would undergo a
coherent Z rotation from its initial state, with the phase
shift controlled by the photon number of the initial A state.
The experimental setup in Ref. [52] can thus be directly
used to dissipatively realize steady-state unitary gates (see
also Sec. III C).

Finally, we note that the effective master equation (D6)
describes an idealized case; in realistic settings, the fidelity
of the unitary gate emerging from such a dissipative
steady-sate relaxation process will suffer from a range of
imperfections, including non-Markovian effects due to a
finite reservoir linewidth, nonzero thermal photon popu-
lation in the reservoir and cavity modes, imperfect prepa-
ration of the initial A cavity state, etc. Still, in principle,
it is possible to carefully engineer the practical systems to
suppress those factors and achieve gate fidelity comparable
to typical pulse-based gates. Furthermore, given an exper-
imental system, one can incorporate those imperfections
into the theory model in Eq. (D3) and quantitatively exam-
ine how they affect the dissipative steady-state gate fidelity
(see, e.g., Sec. IV B for a discussion on non-Markovian
effects), which can be useful for designing new setups to
improve the gate fidelity.

APPENDIX E: THE ROLE OF MARKOVIANITY IN
ACHIEVING UNIDIRECTIONAL INTERACTION

FOR THE PHYSICAL IMPLEMENTATION
IN EQ. (28)

In Sec. IV A in the main text, we discuss physical
implementation of the nonreciprocal dissipator Lgateρ̂ =
�D[e−iθσ̂z/2â]ρ̂ via an intermediate reservoir mode [see
Eq. (28)]. We also state that this setup crucially requires
that the reservoir mode is Markovian. In this appendix, we
provide a detailed discussion on the role of Markovianity
in such physical realizations.
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We start with a general setup consisting of a driven-
cavity-qubit system coupled to a reservoir mode. In the
rotating frame with respect to the drive frequency, the total
system dynamics can be described by the master equation
dρ̂/dt = L0ρ̂, with the Lindbladian given by

L0ρ̂ = −i[ĤS + ĤE + Ĥint, ρ̂] + κaD[â]ρ̂ + κcD[ĉ]ρ̂,

(E1)

ĤS = −�aâ†â + λa

2
σ̂zâ†â + f ∗

dr (t)â + fdr(t)â†, (E2)

ĤE = −�cĉ†ĉ, Ĥint = (J â†ĉ + J ∗ĉ†â)+ λc

2
σ̂zĉ†ĉ.

(E3)

As discussed in Sec. IV A, in the large reservoir linewidth
limit, i.e., κc � |J |, one can treat the reservoir mode effec-
tively as a Markovian environment for the cavity-qubit
system. In this regime, one can follow standard adiabatic
elimination procedures to integrate out the reservoir mode
and obtain the desired dynamics. To elucidate the role of
Markovianity, here we consider instead the regime with
small reservoir linewidth κc � |J |. As we show, the effects
due to non-Markovianity now manifest as extra frequency-
dependent corrections to the system Langevin equations of
motion.

For concreteness, let us first write out the quantum
Langevin equations of the system:

i∂tâ =
(

−�a + λa

2
σ̂z − i

κa

2

)

â

+ J ĉ − i
√
κaâin + fdr(t), (E4)

i∂tĉ =
(

−�c + λc

2
σ̂z − i

κ2

2

)

ĉ + J ∗â − i
√
κcĉin,

(E5)

i∂tσ̂− = (λaâ†â + λcĉ†ĉ)σ̂−. (E6)

However, we note that similar analysis can be carried out
at the level of, e.g., the system master equation as well.

While our discussion can be straightforwardly generalized
to a generic initial state, for convenience, we assume that
the cavity mode starts in a coherent state |α0〉, i.e., with
amplitude α0, and the reservoir is in the vacuum state at
initial time t = t0. Thus, the system dynamics can be fully
determined by solving the following set of linear equations
for the cavity and reservoir mode amplitudes āσ and c̄σ
(σ =↑, ↓):

i∂tāσ =
(

−�a + λa

2
σz − i

κa

2

)

āσ + J c̄σ + fdr(t),

(E7a)

i∂tc̄σ =
(

−�c + λc

2
σz − i

κc

2

)

c̄σ + J ∗āσ , (E7b)

with σz = ±1 corresponding to σ =↑, ↓. The qubit coher-
ence function can thus be computed by solving the differ-
ential equation

1
〈σ̂−(t)〉

d〈σ−(t)〉
dt

= −iλaā↑ā∗
↓ − iλcc̄↑c̄∗

↓. (E8)

We can formally integrate out the reservoir mode by trans-
forming to Fourier space and eliminating c̄σ [ω] from the
equations, using the relation

c̄σ [ω] = J ∗

ω +�c − λcσz/2 + iκc/2
āσ [ω]. (E9)

For notational convenience, we can rewrite the reservoir
amplitude in terms of the reservoir mode susceptibility
function χ(0)c,σ [ω] as

c̄σ [ω] = J ∗χ(0)c,σ [ω]āσ [ω], (E10)

χ(0)c,σ [ω] ≡ 1
ω +�c − λcσz/2 + iκc/2

. (E11)

As a result, we obtain

āσ [ω] = 1
ω +�a − λaσz/2 + iκa/2 − |J |2/(ω +�c − λcσz/2 + iκc/2)

fdr[ω]

= 1

ω +�a − λaσz/2 + iκa/2 − |J |2χ(0)c,σ [ω]
fdr[ω]. (E12)

Without loss of generality, and for illustrative purposes,
we assume that the drive is resonant with cavity mode
a, and that the local cavity loss is negligible, so that we
have �a = κa = 0. In this case, we can further simplify

the Fourier-space cavity amplitudes as

āσ [ω] = 1

ω − λaσz/2 − |J |2χ(0)c,σ [ω]
fdr[ω]. (E13)
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The above equation allows one to express the cavity mode
linear response susceptibilities χa,σ [ω] as dressed by the
coupling to the reservoir mode:

āσ [ω] = χa,σ [ω]fdr[ω], (E14)

χa,σ [ω] =
(

ω − λa

2
σz − |J |2χ(0)c,σ [ω]

)−1

. (E15)

Noting that the phase of tunnel coupling rate J does not
affect linear response susceptibilities of the cavity, we can
use a local gauge transformation on the cavity mode to
make J completely real. Therefore, without loss of gen-
erality, we assume a real coupling constant J between the
reservoir and cavity modes hereafter.

Making use of the cavity susceptibilities in Eq. (E15),
we can define the self-energy of the cavity mode as
Ea,σz [ω] ≡ ω − (χa,σ [ω])−1, so that we have

āσ [ω] = 1
ω − Ea,σz [ω]

fdr[ω]. (E16)

The cavity mode self-energy can now be conveniently
written in terms of qubit-independent and qubit-dependent
contributions, i.e.,

Ea,σz [ω] = ω +�c + iκc/2
(ω +�c + iκc/2)2 − (λc/2)2

|J |2

+
(
λa

2
+ |J |2
(ω +�c + iκc/2)2 − (λc/2)2

λc

2

)

σz.

(E17)

Since we are interested in dynamics at timescales much
slower than reservoir correlation time τc ∼ κ−1

c , we can
choose a specific λa to minimize the qubit-state-dependent
term in Eq. (E17) at low frequencies as

λa = −Re
[ |J |2
(�c + iκc/2)2 − (λc/2)2

]

λc. (E18)

If the cavity mode is resonant with the reservoir mode,
i.e., if �c = �a = 0, the qubit-dependent term in the self-
energy [Eq. (E17)] allows perfect cancelation in the sta-
tionary limit (ω = 0). In contrast, for transient dynamics at
fast frequencies ω, the cavity self-energy can have non-
trivial dependence on qubit states, even in the resonant
limit.

Let us examine such frequency-dependent corrections
in more detail. For convenience, we can rewrite the self-
energy in terms of reservoir linewidth κc and effective
parameters θeff and �eff that describe the stationary limit
dissipation, i.e., letting

λc = κc tan
θeff

2
, �c = 0, (E19)

�eff = J 2 4κc

κ2
c + λ2

c
=⇒ J 2 = 1

4
�effκc sec2 θeff

2
,

(E20)

λa = J 2 4λc

κ2
c + λ2

c
= �eff tan

θeff

2
, (E21)

so that the self-energy function can be reformulated as

Ea,σz [ω] = �eff

2
(ω + iκc/2)(κc/2) sec2(θeff/2)+ ω(ω + iκc) tan(θeff/2)σz

(ω + iκc/2)2 − ([κc/2] tan[θeff/2])2
. (E22)

For the sake of discussion, we can use a representative
value for the effective phase shift θeff = π/2, so that above
expression further simplifies to

Ea,σz [ω] = �eff

2
(ω + iκc/2)κc + ω(ω + iκc)σz

ω(ω + iκc)− κ2
c /2

. (E23)

The Markovian limit amounts to requiring that the self-
energy scale near resonance, i.e., �eff, is much smaller
than the frequency range over which Ea,σz [ω] significantly
changes. The latter frequency scale is in turn set by reser-
voir mode linewidth κc. In the limit where �eff � κc, we
can expand the self-energy function in the vicinity of ω =

0, so that we obtain

Ea,σz [ω] � −i
�eff

2

(

1 + 2
ω

κc
σz

)

. (E24)

The second term in the parentheses in Eq. (E24) represents
leading-order non-Markovian corrections, which describe
qubit backaction to the cavity and cause deviation from the
full-nonreciprocity limit.

It is also interesting to consider qubit dynamics in this
setup. Because of the nonlinear dispersive coupling, the
qubit dynamics can be more complicated in frequency
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space: taking the Fourier transform of Eq. (E8), we have

ω ln〈σ−[ω]〉 =
∫ +∞

−∞
dω1(λaā↑[ω1]ā∗

↓[ω − ω1]

+ λcc̄↑[ω1]c̄∗
↓[ω − ω1]). (E25)

We can again substitute Eq. (E9) into this equation to
obtain

ω ln〈σ−[ω]〉 =
∫ +∞

−∞
dω1�a[ω1;ω]ā↑[ω1]ā∗

↓[ω − ω1],

(E26)

�a[ω1;ω] = λa + λc|J |2χ(0)c,↑ [ω]χ(0)c,↓ [ω − ω1]. (E27)

In the Markovian limit, the cavity amplitude is approx-
imately independent of the qubit state, so that we have
ā↑(t) � ā↓(t). In this limit, the first term on the right-hand
side of Eq. (E27), which is given by λa, leads to a pure
phase shift on the qubit, while the second term can induce
both a phase shift and dephasing in qubit dynamics.

APPENDIX F: PROPERTIES OF
MULTIPLE-DISSIPATOR GENERALIZATION OF

GAUGE-SYMMETRY NONRECIPROCAL
LINDBLADIANS IN EQ. (37)

In Sec. V in the main text, we introduce the multidis-
sipator generalization of gauge-symmetry nonreciprocal
Lindbladians, which take the form [cf. Eq. (37)]

Lmultiρ̂ = �

N
∑

�=1

D
[ N

∑

m=1

û�mÂm

]

ρ̂. (F1)

In analogy to the classical gauge symmetry (36), the B
operators û�m can be thought of as operator-valued matrix
elements of a generalized unitary, which acts on the com-
posite linear space C

N ⊗ HB between the dissipator space
C

N of the Â� operators and the B system Hilbert space. In
this appendix, we provide more details about the general
structure of this generalized unitary. Based on this con-
struction, we also discuss a couple of typical examples
illustrating the connections and differences between the
multi- and single-dissipator nonreciprocal Lindbladians.

1. Connection to a generalized unitary operator

To motivate the generalized unitary, we again start with
a multidissipator Lindbladian acting only on system A, as
given by LAρ̂A = �

∑N
�=1 D[Â�]ρ̂A. As noted in the main

text, this Lindbladian is invariant under a generic unitary

transformation on the jump operators Â�,

LAρ̂A = �

N
∑

�=1

D
[ N

∑

m=1

u�mÂm

]

ρ̂A, (F2)

where the u�m are matrix elements of an N -dimensional
complex unitary matrix u�m = (Ǔ)�m. We can also write
the unitary matrix explicitly in terms of its Hermitian
generator Ȟ, i.e., Ǔ = exp(−iȞ). For the discussion that
follows, it is convenient to rewrite the Hermitian matrix Ȟ
as a sum of N 2 basis matrices Ě�m as

Ȟ =
N

∑

�,m=1

h�mĚ�m. (F3)

Here, Ě�m ≡ e� (em)
† are formed by outer products between

N basis vectors e� of the linear space C
N , so that we have

Ě†
�′�Ěm′m = δ�′m′ Ě�m.
We now turn to the nonreciprocal Lindbladian given by

Eq. (F1). In analogy to the gauge symmetry described in
Eq. (F2), we can generate B operators û�m via a generalized
unitary operator acting on the composite linear space C

N ⊗
HB as

û�m = (e−iĤgen)�m, (F4)

Ĥgen =
N

∑

j ,j ′=1

Ějj ′ ĥjj ′ , (F5)

where the ĥjj ′ are operators acting on B satisfying ĥjj ′ =
ĥ†

j ′j . One can further show that the unitarity conditions
∑

� û†
�mû�m′ = δmm′ ÎB [see Eq. (39)] hold if and only if the

û�m operators can be rewritten as Eq. (F4). If Eq. (F4)
holds, as mentioned in the main text, one can exactly
trace out system B to obtain a closed master equation act-
ing on system A as dρ̂A/dt = �

∑

�D[Â�]ρ̂A, so that the
multimode master equation (F1) is again unidirectional.

2. Example cases of multidissipator nonreciprocity
equivalent or inequivalent to an incoherent sum of

single fully directional dissipators

As discussed in the main text, Eq. (F1) describes a
much more general class of fully nonreciprocal dynamics
as compared to the single-dissipator case [see Eq. (17)].
Here we discuss in detail conditions for when the former
multidissipator dynamics can or cannot be rewritten as an
incoherent sum of unidirectional dissipators, i.e., if it is
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possible to write an equality relation of the form

Lmultiρ̂
?= �

∑

�

D[ÛB,�Â′
�]ρ̂. (F6)

While it is difficult to comprehensively characterize all
the possible scenarios where such an equivalence rela-
tion exists, here we discuss two independently sufficient
conditions for Eq. (F6) to hold. The first case can be
easily understood in terms of the generalized Hermitian
generator in Eq. (F5). More specifically, if we can diag-
onalize it using a new local A basis as defined by F̌��′ =
∑N

j ,j ′=1 v�j ′ Ěj ′j v∗
�′j , so that we have

Ĥgen =
N

∑

j ,j ′=1

Ějj ′ ĥjj ′ =
N

∑

�=1

F̌���̂B,�, (F7)

where v�m = (V̌)�m are elements of a unitary matrix, then
one can use a few lines of algebra to show that Eq.
(F1) in this case is equivalent to a sum of single fully
nonreciprocal dissipators. More specifically, we obtain

Lmultiρ̂ = �

N
∑

�=1

D
[

e−i�̂B,�

N
∑

m=1

v∗
�mÂm

]

ρ̂. (F8)

Note that the right-hand side of Eq. (F8) is fully equiva-
lent to the starting Lindbladian, but now each dissipator by
itself implements a unidirectional interaction from A to B.

The second case is if we cannot diagonalize the gen-
erator in Eq. (F5) [and hence the generalized unitary; see
Eq. (F4)] via a local basis change on A operators, but the
B system only has a single qubit, and all qubit operators
û�m commute with each other. For such Lindbladians, we
can again reformulate it as a sum of single nonreciprocal
dissipators via a local linear transformation on Â� jump
operators, so that Eq. (F6) holds. To see this, we first note
that the total system dynamics is easily solvable by jointly
diagonalizing û�m via a local B basis, which we assume to
be the σ̂z basis for simplicity, so that time evolution under
Lmulti will conserve excitations in that basis. More con-
cretely, the generalized unitary can now be decomposed
using projectors P̂↑(↓) onto σ̂z eigenstates of subsystem B
as

e−i
∑N

j ,j ′=1 Ějj ′ ĥjj ′ = Ǔ↑P̂↑ + Ǔ↑P̂↓. (F9)

Again, we can transform the local A basis to Ǔ ′
↑(↓) =

W̌Ǔ↑(↓)W̌† via a unitary matrix W̌ ; for the jump oper-
ators in this new dissipator frame to be unidirectional,
we require that Ǔ ′

↑ = exp(−iĎ)Ǔ ′
↓, where (Ď)�m = δ�md�

denotes a real diagonal matrix. This relation can be real-
ized by transforming to the eigenbasis of Ǔ↑Ǔ†

↓, so that we
have

Lmultiρ̂ = �

N
∑

�=1

D[e−id�σ̂z/2Â′
�]ρ̂. (F10)

As a concrete example, we consider A consisting of two
bosonic modes. Using Ž and X̌ to denote Pauli matrices
acting on C

2, we focus on the dissipator generated by the
generalized unitary operator

û�m = [e−iθ(Žσ̂z cosϕ+X̌ ÎB sinϕ)]�m. (F11)

The corresponding system Lindbladian is given by

Lρ̂ = �D[â1(cos θ − iσ̂z cosϕ sin θ)− iâ2 sin θ sinϕ]ρ̂

+ �D[â2(cos θ + iσ̂z cosϕ sin θ)

− iâ1 sin θ sinϕ]ρ̂. (F12)

In this case Ǔ↑(↓) = e−iθ(±Ž cosϕ+X̌ sinϕ), and we can gen-
erally rewrite the Lindbladian into the form (F10). For
the specific case with θ = π/2, the relevant nonlocal basis
simplifies to ây,± = (â1 ± iâ2)/

√
2, so that we have

Lρ̂ = �

2
D[ei(π/2−ϕ)σ̂z ây,+]ρ̂ + �

2
D[ei(−π/2+ϕ)σ̂z ây,−]ρ̂.

(F13)

More generally, if we cannot diagonalize the generator in
Eq. (F5) (and hence the generalized unitary) via a local
basis change on A operators, and if û�m operators do not
commute or B has a more complicated level structure than
a qubit, then there are cases where it is impossible to write
the Lindbladian Lmulti as Eq. (F6), i.e., an incoherent sum
of fully nonreciprocal dissipators. For example, we can
again consider two bosonic modes as subsystem A, where
the generalized unitary is given by

û�m = [e−i(ϕŽσ̂z+θX̌ σ̂x)]�m. (F14)

The corresponding system Lindbladian can be written as

Lρ̂ = �D[e−iϕσ̂z â1 cos θ − iσ̂xeiϕσ̂z â2 sin θ ]ρ̂

+ �D[eiϕσ̂z â2 cos θ − iσ̂xe−iϕσ̂z â1 sin θ ]ρ̂, (F15)

which reproduces Eqs. (40) and (42) in the main text.
It is interesting to note that if we were to ignore all σ̂x
operators in Eq. (F15), the resulting Lindbladian would
still be fully nonreciprocal, but could now be rewritten as
�(D[e−iϕσ̂z â1] + D[eiϕσ̂z â2])ρ̂, which would be equivalent
to a sum of single unidirectional dissipators. The inclu-
sion of σ̂x in the jump operators would not affect local
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dynamics of system A; however, those σ̂x operators matter
for evolution of correlations between A and B subsystems.
As discussed in Sec. V, those correlations can be highly
nonclassical and even result in entanglement generation
between A and B.

3. Steady state of multidissipator unidirectional
dynamics with bosonic lowering operators as Â�

It is interesting to note that if subsystem-A operators Â�
are bosonic lowering operators of cavity modes a�, i.e.,
Â� = â�, and if A is initialized in a Fock state where at
most one cavity mode has nonzero photon(s), then we can
further analytically derive the long-time limit of the quan-
tum map generated by Lmulti. To see this, we first expand
master equation (37) [i.e., Eq. (F1)] and rewrite it as sum
of quantum jump and no-jump contributions. Making use
of the unitarity conditions in Eq. (39), the equation can be
simplified as

Lmultiρ̂ = �

N
∑

m,m′=1

ÂmEmm′(ρ̂)Â†
m′ − �

2

{ N
∑

n=1

Â†
nÂn, ρ̂

}

,

(F16)

Emm′(ρ̂) =
N

∑

j =1

ûjmρ̂û†
jm′ . (F17)

If Âm = âm, it is straightforward to show that

lim
t→∞ eLmultit[(â†

m)
�|0〉〈0|â�m ⊗ ρ̂B,i] = (Emm)

�(ρ̂B,i). (F18)

Thus, for general Lmulti that cannot be rewritten as a sum
of single nonreciprocal dissipators, the long-time limit of
dynamics within subsystem B generated by the unidirec-
tional interaction will in general be dissipative, in contrast
to the single-dissipator case in Eq. (17) (cf. Sec. III C).

APPENDIX G: GAUGE-SYMMETRY
NONRECIPROCITY BETWEEN TWO BOSONIC

MODES

As discussed in the main text, our recipe for building
nonreciprocal QMEs is generally applicable to a broad
range of systems. Here we consider an alternative type of
system that hosts this physics; more specifically, we look
at a nonreciprocal dissipator between two cavity modes a
and b, as described by the Lindblad master equation

dρ̂
dt

= Lbosρ̂ = �D[e−iθ x̂b/2â]ρ̂, (G1)

where x̂b denotes the standard quadrature operator of the b
mode,

x̂b = 1√
2
(b̂ + b̂†). (G2)

We can write out the corresponding Ito quantum stochastic
differential equations [74] for a generic system operator M̂
as

dM̂
dt

= −[M̂ , eiθ x̂b/2â†]
[
�

2
e−iθ x̂b/2â +

√
�âin

]

+
[
�

2
eiθ x̂b/2â† +

√
�â†

in

]

[M̂ , e−iθ x̂b/2â]. (G3)

Equation (G1) takes the general form of nonreciprocal
master equations via gauge symmetry discussed in the
main text [see Eq. (17)]. It is thus straightforward to show
that time evolution of the expectation value of any local
operator acting on the a cavity is closed within the a
mode, i.e., Eq. (G1) describes a unidirectional coupling
from mode a to b. The reverse is, as expected, not true:
dynamics of the second cavity mode b in general depends
on cavity mode a. For example, we can derive the equation
of motion for the b mode momentum average 〈p̂b〉 as

d〈p̂b〉
dt

= −γ θ
2
〈â†â〉. (G4)

This equation can be intuitively understood in terms of the
measurement-and-feedforward picture (cf. Sec. III E): the
dissipator D[e−iθ x̂b/2â]ρ̂ describes a process where cavity
mode a is weakly coupled to a photodetector, and every
time a photon is detected, we apply a unitary transforma-
tion e−iθ x̂b/2 to mode b. Throughout time evolution, the
quadrature operator x̂b of mode b is conserved (i.e., gen-
erates a strong symmetry of the master equation). On the
other hand, the unitary gates act as displacements on the
conjugate quadrature p̂b. We can now understand system
dynamics in terms of a stochastic unraveling via quantum
trajectories: whenever a photon jump occurs in mode a,
one would displace the quadrature p̂b by a constant −θ/2.
Averaging over all stochastic trajectories thus gives rise to
Eq. (G4).

We also note that although the equations of motion for
the expectation value of b mode quadratures are relatively
simple, the dynamics is still highly non-Gaussian. To see
this explicitly, we first derive the equations of motion of
higher-order moments of the cavity quadrature as

d〈p̂2
b 〉

dt
= −γ θ〈p̂bâ†â〉 + γ

θ2

4
〈â†â〉, (G5)

d〈p̂3
b 〉

dt
= −γ 3θ

2
〈p̂2

b â†â〉 + γ
3θ2

4
〈p̂bâ†â〉 − γ

θ3

8
〈â†â〉,

(G6)
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so that we obtain the equation of motion of the third-order
cumulant 〈δp̂3

b 〉 as

d〈δp̂3
b 〉

dt
= −γ 3θ

2
〈δp̂2

b â†â〉 + γ
3θ
2

〈δp̂2
b 〉〈â†â〉

+ γ
3θ2

4
〈δp̂bâ†â〉 − γ

θ3

8
〈â†â〉. (G7)

If the system starts in a product state between two cavity
modes, all but the last term on the right hand side of Eq.
(G7) will vanish at initial time, leading to a nonzero third
cumulant 〈δp̂3

b (δt)〉 at a positive infinitesimal time δt > 0
(as long as the cavity a has a nonzero photon number).
Thus, the dynamics generated by Eq. (G1) is in general
non-Gaussian.
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