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A topological defect network (TDN) is formed by a network of topological defects embedded within a
topological quantum field theory (TQFT). TDNs were introduced recently for the purpose of describing
fracton topological phases of matter using the framework of defect TQFT. Their effectiveness has been
demonstrated through numerous examples, yet a systematic construction was lacking. Here we solve this
problem by formulating a method to construct TDNs for a wide range of lattice Hamiltonians. Our method
takes a lattice Hamiltonian as input, applies an ungauging procedure, then creates a refined lattice within
each unit cell, followed by regauging the system to produce a TDN as output. For topological Calderbank-
Shor-Steane (CSS) Pauli stabilizer models, this procedure is guaranteed to produce a phase-equivalent
TDN. This provides TDN representations of canonical fracton models for which no such construction was
previously known, including Haah’s cubic code and Yoshida’s infinite family of fractal spin liquid models.
We demonstrate the applicability of our method beyond CSS stabilizer models by constructing TDNs for
non-CSS models including Chamon’s model and the semionic X -cube model.
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I. INTRODUCTION

The classification of all phases of matter is central to
condensed-matter theory. Topological phases [1–5] form
a particularly interesting class of strongly correlated zero-
temperature quantum phases of matter that have drawn
much attention in recent decades due, in part, to their
applications as quantum error-correcting codes [6]. In two
spatial dimensions, the classification problem for topolog-
ical phases is elegantly solved by the framework of TQFT
[7,8]. For a particular class of topological stabilizer code
Hamiltonians, a full constructive classification has been
found [9]. In three spatial dimensions, fracton topological
phases [10–17] have raised a challenge to this classifica-
tion program as they are topologically ordered and yet do
not yield to a conventional description via TQFT due to an
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essential interplay of topology and geometry [18]. These
fracton phases have attracted much interest again due to
their applications in quantum error correction [19–22], as
well as their relation to other areas of condensed-matter
physics [23–27], and the unusual quantum field theories
that they lead to [28–35].

Recently, an approach based on a network of topologi-
cal defects within a TQFT, i.e., a TDN, was proposed [36]
to extend the descriptive power of TQFT from conven-
tional topological phases to also include fracton topolog-
ical phases, thus uncovering a possible path towards their
full classification. The central conjecture in Ref. [36] stipu-
lates that TDNs are capable of describing all gapped phases
of matter. Here we address a slightly more limited version
of this conjecture for gapped phases with superselection
sectors that have finite order under fusion, in particular we
expect this to cover all topological commuting projector
models based on finite-dimensional qudit degrees of free-
dom. We remark that interesting examples violating the
above condition have been proposed in systems based on
infinite-dimensional degrees of freedom [37].

A. Main results and ideas

Our main result is a procedure to construct a phase-
equivalent TDN given an arbitrary topological CSS Pauli
stabilizer model. This construction confirms the conjecture

2691-3399/23/4(1)/010304(31) 010304-1 Published by the American Physical Society

https://orcid.org/0000-0003-1044-4927
https://orcid.org/0000-0001-6348-4135
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.010304&domain=pdf&date_stamp=2023-01-11
http://dx.doi.org/10.1103/PRXQuantum.4.010304
https://creativecommons.org/licenses/by/4.0/


SONG, DUA, SHIRLEY, and WILLIAMSON PRX QUANTUM 4, 010304 (2023)

made in Ref. [36] for the large class of fracton topological
orders that are based on topological CSS [38,39] stabi-
lizer codes [40]. Hamiltonians based on stabilizer codes
form the largest class of known fracton models [41] and
the one that has received the most extensive study due to
applications as quantum memories and the ease of relevant
calculations [42]. In particular, our construction produces
a TDN that is equivalent to Haah’s cubic code [11], the
canonical example of a fracton code with no topologi-
cal string operators. In addition, the construction provides
TDNs for Yoshida’s infinite family of fractal spin liq-
uid models [14], beyond the special case considered in
Ref. [36]. To the best of our knowledge, no TDN repre-
sentations were previously known for these models. We
attribute this to the lack of a general prescription for con-
structing a TDN representation given a topological lattice
model, a problem that is solved in this work for topological
CSS stabilizer models.

Previously TDNs were constructed on an ad hoc basis
by utilizing defects to mimic the elementary neutral topo-
logical charge clusters of a desired model. In the con-
structions of Ref. [36] cubes of gauge theory with flux
condensing boundaries were used as they support pointlike
topological charges. These cubes were coupled together
via topological defect lines that allowed condensation of
elementary neutral clusters of topological charges isomor-
phic to the elementary charge clusters of target fracton
models. Here, we extend the idea behind this previous con-
struction into a systematic recipe that produces a TDN
in the same quantum phase of matter as an arbitrary
topological CSS stabilizer Hamiltonian.

Our construction proceeds as follows: first we utilize the
generalized gauging and ungauging procedure for subsys-
tem symmetries to relate a fracton CSS stabilizer model to
an unconventional Ising model, following Refs. [16,17].
Each spin in the unconventional Ising model is then
encoded into a large block of an auxiliary conventional
Ising model, i.e., a repetition code. This step is reminis-
cent of reversing Kadanoff’s block-spin renormalization
procedure [43]. We then use a phase-equivalence relation
to rewrite the original unconventional Ising Hamiltonian
interactions in terms of local interactions on the new
fine-grained lattice. Finally, we (re)gauge the subsystem
symmetry of the fine-grained unconventional Ising model
thus produced to arrive at a TDN with the desired local-
ity properties. We show that this sequence of ungauging,
fine-graining, and regauging provides a phase equivalence
between the original fracton topological CSS code Hamil-
tonian and the new TDN Hamiltonian. We also show
that the TDN is stable provided that the original frac-
ton topological Hamiltonian has been sufficiently coarse
grained.

TDNs allow the microscopic lattice scale to be decou-
pled from the lattice scale of the defect network itself.
In particular, if the fine-graining step is iterated

indefinitely, the microscopic scale can be taken to zero
allowing a TDN construction of any CSS fracton Hamil-
tonian in terms of continuum TQFT containing a network
of defects. It is an interesting problem to additionally con-
sider the continuum limit of the defect network, which we
leave to future work.

The idea underlying our TDN procedure extends to any
fracton topological order that is constructed by gauging
a subsystem symmetry acting on layers of TQFTs. To
the best of our knowledge, such a construction recovers
almost all known fracton topological orders with finite-
order excitations. From this point of view, the case of
fracton CSS stabilizer codes we focus on in this work
essentially reduces to considering the trivial TQFT being
acted upon by subsystem symmetries. We also provide a
more complicated example where a TDN for the earliest
known fracton model, due to Chamon [10], is constructed
by gauging a nontrivial subsystem symmetry-protected
order. While our approach applies quite generally, we
leave the question of finding a proof that the TDNs result-
ing from our procedure applied to more general initial
models are in fact phase equivalent to them to future
work.

B. Outline

The paper is organized as follows. In Sec. II, we
introduce background on topological defect networks
and gauging global and subsystem symmetries in spin
models, including examples. In Sec. III, we review
the TDN construction for the X -cube model [16]
before rederiving it following our ungauging approach.
In Sec. IV, we provide a TDN construction for Haah’s
code (i.e., cubic code A [44]) by following our ungaug-
ing approach. In Sec. V, we discuss our general approach
for constructing TDNs for topological CSS stabilizer mod-
els. In Sec. VI, we demonstrate that this approach extends
beyond CSS stabilizer models by constructing a TDN for
Chamon’s fracton model. In Sec. VII, we conclude with
a discussion about constructing TDNs beyond stabilizer
models and in higher dimensions.

II. BACKGROUND

In this section we introduce TDNs [36] and the general-
ized gauging procedure for subsystem symmetries [16,17].

A. Topological defect networks

TDNs were recently introduced [36] to extend the
framework of defect TQFT [45] to describe lattice mod-
els with fracton topological order (see also Refs. [46,47]).
This framework effectively separates the microscopic lat-
tice scale from a potentially larger lattice scale of the
defect network itself. In particular, a continuum limit of
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the microscopic lattice can be taken with the defect net-
work fixed to arrive at a description in terms of defects in
a TQFT where the microscopic lattice has been abstracted
away. It was conjectured [36] that the TDN construction
is sufficiently general to describe all gapped phases of
matter. Here we add the proviso that the gapped phases
being described must have finite order under fusion. In
particular, the TDN framework straightforwardly contains
the classification of two-dimensional (2D) gapped quan-
tum phases via TQFT. This provides an approach to the
seemingly intractable problem of constructing and classi-
fying all topological phases of matter in higher dimension
in terms of the more familiar problem of understanding
TQFTs and the topological defects they support.

In order to understand TDNs, we first describe a topo-
logical defect. In a D+1 dimensional TQFT, one can intro-
duce new degrees of freedom and local interactions on a
d+1 dimensional submanifold with d < D without closing
the energy gap [48–50]. One then asks how the topologi-
cal excitations of the bulk topological order behave near
this altered submanifold, i.e., the defect. The defect is
topologically nontrivial if topological excitations are either
condensed or permuted when they pass through the defect.

In this work, we consider TDNs in three dimensions. In
order to define a general TDN in R

3, we consider a stratifi-
cation of the three-dimensional space into j -dimensional
submanifolds called j strata where j ≤ 3. We illustrate
such a stratification in Fig. 1 for the case of cubic lat-
tice in R

3. Now, we put an arbitrary 3+1D TQFT on each
of the 3 strata. Then, we couple together these TQFTs
via topological defects on the j strata where j ≤ 2. The
local interactions on the topological defects sitting on the 2
strata allow certain excitations of the 3+1D TQFTs neigh-
boring it to condense. When a subset of the 3+1D TQFT
condenses on the 2 strata, the excitations that braid non-
trivially with this subset are confined as they cannot pass

0 Strata

1 Strata

2 Strata

3 Strata

FIG. 1. A stratification of three-dimensional space. The space
is stratified into 3 strata (orange blocks), 2 strata (blue planes),
1 strata (magenta lines), and 0 strata (black dots). The thin
black lines show the finer lattice inside the 3 strata. 3+1D
TQFT lives on each 3 stratum. 3 strata are coupled together by
lower-dimensional defects (2 strata, 1 strata, 0 strata).

through the 2 strata to the neighboring 3 strata. Similarly,
one can introduce local interactions on the 1 strata and 0
strata corresponding to topological defects there.

As a consequence of the condensation and confinement
of topological excitations in the vicinity of topological
defects, excitations and their composites can be restricted
to move only in certain submanifolds on the scale of the
defect network. In fact, one can write down TDNs in
the same phase as gapped fracton models [36]. A simple
example is given by a TDN that realizes a phase equiva-
lent to that of the X -cube model. The TDN for X cube,
defined on a cubic lattice in R

3 uses 3+1D toric codes
with flux-condensing gapped boundaries on the 2 strata.
An appropriate choice of 1 strata imposes mobility con-
straints on the topological excitations of the 3+1D toric
code such that the e particle on a 3 strata maps to the frac-
ton of the X -cube model and an arc of the m loop maps
to the lineon of the X -cube model, see Sec. III for further
details.

As mentioned in the introduction, our construction of
TDNs for gapped fracton phases starts from a defect net-
work for an Ising paramagnet with certain subsystem sym-
metries and gauges it. Hence, we provide some background
on gauging spin models below.

B. Gauging spin models

In this subsection we review the construction of gener-
alized Ising models with subsystem symmetries, and the
generalized gauging procedure for these models.

Subsystem symmetry. We first define three sets C, M , and
E, which correspond to a set of constraint labels, matter
qubits, and excitations, respectively. We denote the ele-
ments of these sets by c ∈ C, m ∈ M , and e ∈ E. We define
P(M ) to be the Pauli group on M , which is given by all
products of Pauli-X and Pauli-Z operators acting on the
matter qubits M , working in a basis where

X =
(

0 1
1 0

)
Z =

(
1 0
0 −1

)
. (1)

A generating set for P(M ) is

Pg(M ) = {X ⊗ I · · · , I⊗ X · · · , Z ⊗ I · · · , I⊗ Z · · · }.
(2)

Each generator has a nontrivial Pauli-X or Z operator on
one of the qubits. The constraints are defined via the map

con : C→ P(M ), (3)

i.e., con is a map from the labels C to a set of Pauli terms
that generate a constraint algebra. Similarly, the set of
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excitations is defined by a map

exc : P(M )→ E, (4)

where exc maps a Pauli operator in P(M ) to the labels
of the constraint terms that it anticommutes with. Here,
we consider X -type global (subsystem) symmetries SX

i ∈
X (M ) and Z-type constraints con(c) ∈ Z(M ) [51]. We use
X (M ) to denote the X sector of P(M ), i.e., operators that
are generated by all X -type generators in Pg(M ), and sim-
ilarly for Z(M ). In our approach the constraint algebra
is used to define the symmetry via the condition that all
constraints must commute with the full symmetry group

[
con(c), SX

i

] = 0. (5)

Hence exc maps SX
i to the empty set. Consequently, the

kernel of the exc map from X (M ) to C coincides with
the symmetry group. In particular, conventional global and
subsystem symmetries can be contained in the kernel of
exc map.

SX
i ∈ X (ker exc(m)). (6)

In general, the con map can have a nontrivial kernel also.
The elements in the kernel of con define relations. The
relations of the constraint map satisfy

∏
c∈r

Z(con(c)) = IM , (7)

in which r ∈ ker con. We further introduce a map rel, from
a new space R to C, whose image is the part of the kernel
that is generated by elements of finite order (as the sys-
tem size diverges). These relations are described by a chain
complex,

R
rel−−−−→ C

con−−−−−→ Z(M ). (8)

The image of the Z-relation map are in the kernel of the
con map.

It is convenient to introduce a further chain complex,
resolving the part of the kernel of exc that corresponds to
finite weight symmetry operators. We use L to denote a set
of labels for generators of the finite weight symmetry oper-
ators (in the limit of infinite system size). We then have the
following exact sequence:

L
gen−−−−−→ X (M )

exc−−−−−→ C. (9)

For most of the examples we consider there are no non-
trivial symmetry generators of finite weight, rather all
symmetry operators have a weight that grows with the size
of the system. Generalized Ising Hamiltonians. We now
introduce a family of generalized Ising Hamiltonians on

the matter qubits, with local terms given by Pauli-X oper-
ators on single qubits and Z-type constraint generators over
multiple qubits.

H(J ) = −
∑
c∈C

Z(con(c))− J
∑

m

X (m). (10)

This model realizes a trivial disordered phase in the limit
J →∞, and a nontrivial ordered phase in the limit J → 0
(provided the constraint terms are nontrivial). The ordered
phase may be classical, i.e., a diagonal Hamiltonian, or
it may be quantum in which case an algebra of Pauli-X
terms are generated at finite order in perturbation theory
for J � 1 [52]. The Hamiltonian H(J � 1) lies in the
same topological phase as a Hamiltonian including the
constraint terms, along with a generating set of the finite
weight symmetry operators

H(J � 1) ∼ −
∑
c∈C

Z(con(c))−
∑
l∈L

X (gen(l)), (11)

where the energies have been rescaled and only a gen-
erating set of terms included in the Hamiltonian, both of
which are gapped zero-temperature quantum phase equiv-
alences [53]. In the case of a classical Hamiltonian in
the J → 0 limit, assuming the constraint algebra defines
a nontrivial global symmetry group, the resulting phase
spontaneously breaks the symmetry group as there exist
single Z operators (which are charged under the symmetry)
that act nontrivially within the ground space. Conversely,
it is possible to obtain topological phases where genera-
tors for the algebra of finite-order symmetry operators are
present in the Hamiltonian, and prevent the existence of
any low-weight Z operators that can act nontrivially within
the ground space. In general there may be a combination of
both topological and spontaneous symmetry broken order.

Generalized gauging map. Gauging is a bijective, iso-
metric duality map from wave functions with global sym-
metries to wave functions with gauge (local) symmetries
[16,17,54–56]. We define a new set G that labels gauge
qubits. These auxiliary qubits are introduced as part of the
gauging prescription. The gauging map takes the matter
Hilbert space to a gauge-invariant subspace of a gauge-
matter Hilbert space

G : P(M )→ �
(
P(M )⊗ P(G)

)
, (12)

where� is a projection onto the gauge-invariant subspace,
see below.

To gauge the model, we introduce one gauge qubit per
constraint. The minimally coupled constraint terms are
then given by

G (Z(con(c))) = Z(con(c))⊗ Z(c). (13)

We define a set of local X -type gauge symmetry opera-
tors that satisfy the gauged version of the commutator in
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Eq. (5), i.e.,

[
Z(con(c))⊗ Z(c), SX

gauge

]
= 0. (14)

By enforcing this commutation relation, the gauge symme-
try generators are simply

SX
gauge(m) = X (m)⊗ X (exc X (m)). (15)

The projection onto the gauge-invariant subspace is then
given by

� :=
∏
m∈M

1
2
(
1+ SX

gauge(m)
)

(16)

Hence after gauging, the global (subsystem) symmetries
are enforced locally. These terms are also referred to
as generalized Gauss’s law terms, as they implement a
relation between charges on the matter qubits and a gener-
alized notion of electric flux lines on the surrounding gauge
qubits. Throughout the remainder of the text we simply
refer to the generalized Gauss’s laws as Gauss’s laws.

The X terms in the original Hamiltonian CQ remain
unchanged after gauging. Hence, the gauging map simply
acts on them as

G(X (m)) = X (m). (17)

Now we see the gauge symmetry operators Eq. (15) com-
mute with all other terms in the gauged Hamiltonian, so the
gauged Hilbert space is indeed invariant under the gauge
symmetry.

On the other hand, the single-body X terms in Eq. (17)
still do not commute with the Z terms in Eq. (13). This
leads to a nontrivial gauged Hamiltonian

H(J )gauged = −
∑
c∈C

Z(con(c))⊗ Z(c)− J
∑

m

X (M )

−�
∑

m

SX
gauge(m), (18)

where the � energetically enforces the gauge constraint,
becoming strict as �→∞. If we take the limit of the
coupling strength J →∞, all Z operators on matter qubits
are expelled from the finite energy subspace. Thus only
finite products of gauged Z terms that coincide with the
kernel of con survive, which are given by Eq. (7). Thus,
after gauging, finite-order terms in the kernel of con map
to finite-order pure gauge terms in the gauged Hamiltonian,

which are generated by

B(r) :=
∏
c∈r

Z(con(c))⊗ Z(c) =
∏
c∈r

Z(c). (19)

As J →∞, the matter qubits in SX
gauge(m) are fixed,

resulting in the pure gauge operator

A(m) := X (exc X (m)). (20)

Hence, in the limit J →∞ the gauged Hamiltonian is
equivalent to

H(∞)gauged ∼ −
∑

m

A(m)−
∑

r

B(r), (21)

where we only include a generating set of terms and
rescaled the energies as part of the equivalence relation.

In this limit of the pure gauge Hamiltonian, the chain
complex from Eq. (8) now describes the X - and Z-type
commuting Hamiltonian terms

CZ
Z relations−−−−−−−−→ G

G(exc)−−−−−−−→ CX . (22)

G stands for the space of gauge Hamiltonian, which is
isomorphic to C in Eq. (8). CZ is the space of Z-type stabi-
lizers, which is isomorphic to R. CX is the space of X -type
stabilizers, which is isomorphic to M . The image of the
Z-relation map satisfies Eqs. (7) and (19). The kernel of
the gaug(exc) map satisfies Eq. (14) and gives the terms in
Eq. (15). In the strong coupling limit, these terms become
Eq. (20). Comparing with Eq. (8) we can see that gaug-
ing corresponds to moving the position of the qubits in the
chain complex one step to the left.

C. Stabilizer formalism

In this subsection we give a brief introduction to the
stabilizer formalism [40] and describe the gauging proce-
dure in this language [17]. We use the computational basis
spanned by the eigenstates of Z, |0〉, and |1〉, which are
given by

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (23)

The actions of Pauli-X and Z operators on these states are

Z|0〉 = |0〉, Z|1〉 = −|1〉,
X |0〉 = |1〉, X |1〉 = |0〉. (24)

Furthermore, we introduce Clifford gates and stabilizer
states. The Clifford gates are CNOT gate, Hadamard gate,
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and phase gate module modulo a global U(1) phase on
qubits.

C = {CNOTij , Hi, Pi}/U(1), (25)

in which

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ ,

H = 1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
. (26)

A tensor product of Pauli operators O1 maps to another
tensor product of Pauli operators O2 by conjugation of
Clifford gates.

CO1C† = O2. (27)

For example, CNOT gate has the following properties:

CNOT(a, b)X (b)CNOT† = X (a)X (b)

CNOT(a, b)Z(a)CNOT† = Z(a)Z(b), (28)

in which a is the label of the target qubits and b is the label
of the control qubits.

The stabilizer states |ψS〉 are generated by a sequence of
Clifford gates from a computation basis state. For each sta-
bilizer state, there is an Abelian group S whose elements
s ∈ S are the tensor product of Pauli operators satisfying

s|ψS〉 = |ψS〉. (29)

s are called stabilizers and S is called stabilizer group. The
generators of the stabilizer group can be used to define the
terms in a Hamiltonian. Thus the corresponding stabilizer
Hamiltonian is given by

H = −
∑

i

sg
i − h.c. (30)

for the remainder of this work we leave the inclusion of
Hermitian conjugate terms in Hamiltonians implicit. Sg is
a generating set of S and the sum is over operators sg

i ∈ Sg .
To describe the gauging process more precisely, we now

choose Z2 matrix representations for con and exc and call
them σc and εc. The entries of these matrices are Z2 val-
ued. The dimension of σc is 2q× N , in which q = |M | is
the number of matter qubits and N is the number of con-
straints. Each column of σc represents for one constraint.
The first q rows of each column represent the X sector of
that term. When a term have a Pauli-X operator acting on
the ith qubit, the ith row of this column will be 1. The last q

rows represent the Z sector. When a Pauli-Z operator acts
on the ith qubit, the (q+ i)th row of this column will be 1.
Otherwise the entry is 0. We introduce the symplectic form
λq,

λq =
(

0 Iq
−Iq 0

)
. (31)

Iq is a q× q identity matrix. The symplectic form λq trans-
forms X sector to Z sector, and vice versa. For example,
consider a column

σ =

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠ . (32)

This column represents a term on a two-qubit system,
which is applying a Pauli-X operator on the first qubit and
Pauli-Z operator on the second qubit. After applying the
symplectic form, we get

λq :

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠ �→

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠ . (33)

Now this term becomes the Pauli-Z operator applying on
the first qubit and Pauli-X operator applying on the second
qubit. The X and Z sector exchange.

For a CSS stabilizer Hamiltonian, the matrix representa-
tion is schematically given by

σ =
(
σX 0
0 σZ

)
. (34)

Terms of the Hamiltonian are divided into X and Z types.
We can gauge this kind of Hamiltonian by applying the
maps in Eqs. (13), (15), and (17). The minimal coupled
constraints are given by

G (σZc) = Z(σZc)⊕ Z(c). (35)

The commutation relation Eq. (14) can be written as

[
Z(σZc)⊕ Z(c), SX

gauge

]
= 0. (36)

By enforcing the relation above, we get the Gauss’s law
terms

SX
gauge = X (m)⊕ X (σ †

Z m). (37)

X (m) here is the local representation of global (subsystem)
symmetries that acts on qubit m ∈ M . The gauged X terms
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are given by

G(σX ) = σX . (38)

If the kernel of the constraint map is not empty, according
to Eqs. (7) and (19), the pure gauge terms are given by

B(r) =
∏
c∈r

Z(c), (39)

in which
∏

c∈r c is the local generating set of ker σZ .

D. Introducing locality

In the following sections, we focus on local Hamilto-
nians. We introduce a cubic lattice and place the matter
qubits m ∈ M on the vertices of the lattice. We assume
the lattice has been sufficiently coarse grained such that all
local symmetry generators and Hamiltonian terms are sup-
ported within the unit cell. We focus on generalized Ising
matter Hamiltonians defined by single X terms and a gen-
erating set of constraint Z terms. Since these terms do not
commute, the Hamiltonian supports a nontrivial phase dia-
gram with a tunable parameter J associated to the X -type
terms. This phase diagram supports an ordered phase in the
limit J → 0 and a disordered trivial phase in the opposite
limit J →∞ as introduced above.

The Hamiltonian is again described by

H(J ) = −J
∑

m

X (m)−
∑

c

Z(σZc). (40)

Applying Eqs. (35), (37), and (38), as above, the gauged
Hamiltonian is

H(J )gauged = −�
∑

m

X (m)X (σ †
Z m)−

∑
c

Z(σZc)Z(c)

− J
∑

m

X (m). (41)

The global (subsystem) symmetries of this lattice are con-
tained in ker εc. We know that im σc commutes with ker εc.
So the global or subsystem symmetries are given by all
symmetries modulo local symmetry generators, which are
given by

SX = X (ker σ †
Z ). (42)

In the limit �→∞ and J →∞, the ungauged model is
deep in the symmetric trivial phase. Thus we can project
the value of X (m) to 1. The first term of Eq. (41) becomes

Am = X (σ †
Z m), (43)

which is a pure gauge term. Violation of this term gives
us electric excitations. The second term of Eq. (41) is

highly suppressed when J →∞. But if the kernel of σZ
is not empty, pure gauge flux terms can emerge, which
is given by Eq. (39). Violation of this term gives mag-
netic excitations (fluxes). The pure gauge Hamiltonian is
given by

H(∞)gauged ∼ −
∑

m

A(m)−
∑

r

B(r). (44)

For nontrivial phases one cannot simply project out the
matter qubits with single-site X fields after gauging, but
the gauging method itself remains valid. We present a
subsystem symmetry-protected topological (SSPT) cluster
states model example later and discuss its gauging process.
In that case, the gauge Hamiltonian terms are still given by
X (m)X (σ †

Z m) and Z(σZ)Z(c).
In the discussion below, we focus primarily on

translation-invariant Hamiltonians on the cubic lattice.
Translation invariance implies the Hamiltonian stays the
same when we translate all the terms by a lattice constant.
Because of this symmetry, we can simplify the matrix rep-
resentation. Instead of writing all terms in the matrix, we
write only the generating set of the Hamiltonian. All other
terms can be generated by translation.

We use {x, y, z, . . .} to represent the spatial directions on
the lattice and {x̄, ȳ, z̄, . . .} to represent the opposite direc-
tions. We choose a vertex on the lattice and denote its
position by 1. The neighboring vertex on x direction is
denoted by x and the next-neighboring vertex is denoted
by x2, etc. And the same for other directions. Consider
we have t qubits, and N ′ terms in the stabilizer generating
set, per vertex. The dimension of the matrix representation
is 2t× N ′. The entries of the matrix become polynomials
following Refs. [14,53,57,58].

In addition, without loss of generality, we deal only
with local Hamiltonians where all the entries in the corre-
sponding matrix representation are functions that depend
only on the zeroth- and first-order powers of {x, y, z, . . .}.
If a Hamiltonian contains next-neighbor, or longer, range
terms, we can always perform coarse graining to make
such terms depend only on first-order variables. We call
such terms ultra local.

Throughout this work, we repeatedly make use of the
following operations on stabilizer lattice models: adding
decoupled trivial qubits, applying CNOT gates, changing
the basis of stabilizer generators and translating Hamil-
tonian terms or qubits. In Haah’s polynomial formalism,
adding decoupled qubits prepared in the Z basis to a CSS
stabilizer Hamiltonian is represented by the operation

σX → σX ⊕ 0n×n, σX → σZ ⊕ 1n×n, (45)

in which 0n×n is an n× n null matrix and 1n×n is an n× n
identity matrix. A CNOT gate controlled on qubit a, with
target qubit b, separated by a lattice vector described by a
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polynomial f , acts on the X and Z sector in the following
way:

CNOT(a, b, f ) : RX
a �→ RX

a + f (x, y, z)RX
b ,

CNOT(a, b, f ) : RZ
b �→ RZ

b + f (x, y, z)RZ
a , (46)

in which R is the row of the stabilizer matrix representa-
tion, and a, b match those defined in Eq. (28). Changing the
basis of stabilizer generators is implemented by a column
operation on the stabilizer matrix

Col(a, b, f ) : Ca �→ Ca + f (x, y, z)Cb, (47)

where C is the column of the stabilizer matrix. Here, a, b
refer to stabilizer generators and f again describes a lat-
tice vector between them. Translating stabilizer generator
terms in the Hamiltonian is implemented by a column
operation

Ca �→ f (x, y, z)Ca, (48)

where C is a column of the stabilizer matrix, a speci-
fies the stabilizer generator and f the vector by which it
is translated. Similarly, shifting qubits correspond to row
operations

Ra �→ f (x, y, z)Ra, (49)

where R is a row of the stabilizer matrix, a specifies a qubit,
and f the vector by which it is translated.

Now we briefly summarize the relation between equiva-
lence operations that can be performed on the ungauged
and the gauged models in the stabilizer matrix formal-
ism.

(a) Adding trivial qubits prepared in Z basis on the
ungauged model is equivalent to adding identity
blocks in the ungauged constraint matrix σZ , as
we show in Eq. (45). After gauging, gauge qubits
are coupled to these trivial qubits, as we show in
Eq. (13), thus the stabilizer matrix of the gauged
model is also enlarged by identity blocks.

(b) CNOT gates are implemented by row operations
on the ungauged model [53]. They correspond to
changing basis on the gauged model, which are
column operations.

(c) Adding redundant constraints to the ungauged
model is equivalent to adding redundant columns
to its stabilizer matrix description. The redundant
constraints enlarge the spaces C and R in Eq. (8).
This corresponds to adding new gauge qubits to
the gauged model, which is implemented by adding
new rows to its stabilizer matrix description. This
operation also requires the introduction of further
relations between the constraints in the ungauged

model. After gauging, this results in the inclusion
of further terms in the strongly coupled Hamilto-
nian. In the strong coupling limit, these gauge qubits
couple to each other according to Eq. (19), which
results in the addition of new pure gauge terms to the
Hamiltonian. This corresponds to adding columns
to the stabilizer matrix representation of the gauged
model.

(d) Changing basis on the ungauged model is a col-
umn operation, as shown in Eq. (47). On the gauged
model, it corresponds to rearrangement of gauge
qubits, which is a row operation.

All of the above operations correspond to local unitary
operators, the addition of auxiliary qubits, or codespace
preserving local redefinitions of the Hamiltonian, which
are phase preserving. We present examples of gauging
below and discuss the exact forms of the above operations
in the following sections.

E. Example I: 2D Ising model and toric code

The Hamiltonian of the 2D Ising model is given by

HIsing = −J
∑

v

−
∑

l
(50)

in which v ∈ M is the label of matter qubits and l ∈ G is
the label of edges. The matrix representation is given by

σ =
(

1 0 0
0 1+ x 1+ y

)
(51)

By applying Eqs. (35), (37), and (38), the gauged Hamil-
tonian is given by

Hg = − J
∑

v

−
∑

l

−
∑

v

(52)

The gray dots represent for matter qubits and the blue dots
represent for the gauge qubits. In the strong coupling limit,
J →∞, we get the Hamiltonian in the form of Eq. (44),
which is given by

HTC = −
∑

v

−
∑

p

,

(53)
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in which v is the label of vertex and p is the label of
plaquette. This is the toric code model [6].

Following Eq. (42) the global symmetry before gauging
is given by

SX
global = X (ker σ †

Z ) =
∏
v∈M

X (v), (54)

which is the product of X operators on all matter qubits, as
expected. After gauging, this symmetry maps to identity.

In general, we can define toric code of level k ∈
{1, . . . , D− 1} in dimension D. Matter qubits are placed
at (k − 1) simplex and gauge qubits are placed at k sim-
plex. As an example, we can write down the Hamiltonian
of the 3D toric code,

H3
TC = −

∑

p

−
∑

v

(55)

v is the label of vertices and p is the label of plaque-
ttes. There are two kinds of excitations of 3D toric code
denoted by e and m. The electric charge e corresponds
to the violation of the X -type stabilizer generators. When
an X -type operator located at vertex v gets an −1 eigen-
value, there is an e excitation existing at v. When a string
of Pauli-Z operators are applied to the ground state, a pair
of e excitations are created at the endpoints of the string.
The magnetic flux excitation m corresponds to the vio-
lation of the Z-type stabilizer generators. When there is
a membrane of Pauli X operators applied to the ground
state, the magnetic flux loops are created on the boundary
plaquettes. Hence in 3D, there are pointlike excitation e
and membranelike excitation m. In higher dimensions, this
generalizes directly to 0-dimensional and codimension-1
topological excitations with −1 braiding. There are also
further generalizations of the toric code in d ≥ 2 spatial
dimensions realizing k ≤ d − 2 and d − k − 2 dimensional
excitations with a mutual −1 braiding. The 3D toric code
in particular plays an important role in the construction of
the TDNs that we discuss in the sections below.

F. Example II: 2D cluster state with linear subsystem
symmetries

Now we discuss a 2D linear subsystem symmetry pro-
tected topological (SSPT) model [59,60]. We consider a
square lattice and its dual lattice and label them as α,β.
We place one qubit per vertex. The Hamiltonian can be

written as

H = −
∑

v∈α

−
∑

v′∈β

(56)

in which v, v′ is the label of vertices on lattice α and
β, depicted by solid lines and dashed lines, respectively.
While this model is non-CSS, on each sublattice the
Hamiltonian terms can be divided into X and Z types. Thus
the methods we introduce above remain applicable. After
applying Eqs. (35), (37), and (38), the gauge symmetry
operators of each sublattice are given by

Av = , Av′ =

(57)

The minimal coupled constraints are given by

Bv = G (Z(σZv)X (v))

= Z(σZv)X (v)Z(v) (58)

Bv′ = G (
Z(σZv

′)X (v′)
)

= Z(σZv
′)X (v′)Z(v′). (59)

We arrive at

Bv = , Bv′ = .

(60)

The kernel of the constraint map for this model is trivial
for this Hamiltonian, hence we find no pure gauge terms.
Thus the gauged Hamiltonian is given by

H = −
∑

v∈α

−
∑

v′∈β

−
∑

v∈α

−
∑

v′∈β

.

(61)
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The subsystem symmetries are given by SX
subsystem =

X (ker εc), which are,

SX
m =

∏
v∈Lm

X (v) (62)

in which Lm can be any row or column of the α or β lattice.

G. Example III: 3D plaquette Ising model and X cube

Before reviewing the TDN construction of the X -cube
model in the next subsection, we first introduce its
ungauged variant, the plaquette Ising model [16] and dis-
cuss gauging it. The Hamiltonian of the plaquette Ising
model is given by

HPI = −J
∑

v

−
∑

p

,

(63)

where v labels vertices and p labels plaquettes of a 3D
cubic lattice. The constraint terms in this Ising model
lead to planar subsystem symmetries generated by spin
flips applied to all spins within a plane of the cubic
lattice [16]. These subsystem symmetries are given by
SX

subsystem = X (ker εc), which are,

SX
n =

∏
v∈Pn

X (v), (64)

where Pn denotes the set of qubits in a plane that is indexed
by n.

After gauging these subsystem symmetries, following
Eqs. (35), (37), and (38), we obtain gauge symmetry
operators given by

Av = ,

(65)

where the gauge qubits live on the edges of the dual lattice.
The gauged constraint terms are

Bv = G (Z(σZv)) = Z(σZv)Z(v) = .

(66)

The kernel of the constraint map for the plaquette Ising
model turns out to be nonempty. The local relations are
generated by products of four plaquette constraints adja-
cent to a single cube. Hence in the strong coupling limit

of the gauged model, there are pure gauge flux terms, see
Eq. (39). These correspond to four body star terms on
edges adjacent to a vertex within a single plane on the dual
lattice. The gauged Hamiltonian in the strong coupling
limit turns out to be the X -cube model

HXC = −
∑

c

−
∑

v

−
∑

v

−
∑

v

.

(67)

The planar subsystem symmetries of the plaquette Ising
model are mapped to a relation involving the product of
cube terms over a dual plane after the gauging procedure.

There are two types of topological excitations that gen-
erate all others in the X -cube model, fractons and lineons.
Fractons correspond to violations of the X -type stabilizer
generator. A cluster of four fractons, at the corners of a
dual plaquette, is created by the application of a Z opera-
tor to an edge of the lattice. A single fracton is immobile
unless an energy penalty is paid to create further excita-
tions as it is moved. More precisely, a fracton can move
one step on the lattice by creating a neighboring pair of
fractons. This implies that a pair of adjacent fractons can be
moved within the plane orthogonal to the edge separating
them without any energy penalty. Hence such a composite
excitation is known as a planon.

Lineons correspond to violations of the Z-type stabilizer
generators. The application of an X operator to an edge
of the lattice creates a pair of lineons on the adjacent ver-
tices. By applying further X operators these lineons can
move along a straight line. However, when a lineon turns
a corner another lineon with mobility in the perpendicular
direction is created. Hence single lineons have their mobil-
ity restricted to a single line. On the other hand, a pair of
adjacent lineons of the same type have mobility within a
lattice plane orthogonal to the edge separating them (for
one choice this composite excitation is trivial). Again such
a composite excitation is known as a planon.

The X -cube model is the most extensively studied type-
I fracton model, in the terminology of Ref. [16], due to
the simplicity it retains while still supporting topological
excitations with a range of fracton, lineon, and planon,
restricted mobilities. In contrast, models, which support
only fracton topological excitations, known as type-II frac-
ton models [16], are significantly more complicated. We
discuss TDN constructions of both kinds of fracton model
in the sections below.
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III. REVISITING THE X -CUBE TDN

In this section we revisit the construction of a TDN
for the X -cube model, first reviewing the construction in
Ref. [36], and then describing a construction following our
approach, which arrives at the same TDN.

A. Review of the X -cube TDN

The TDN representation of the X -cube model is defined
on a cubic stratification of a 3D manifoldM that is isomor-
phic to R

3 or the 3D torus T
3. On that manifold we have

3 strata, 2 strata, 1 strata, and 0 strata that form a cubic
lattice as shown in Fig. 1. To each 3 stratum we assign
a 3D toric code, while topological defects are assigned to
the j strata with j < 3. These defects can be specified by
a set of topological excitations that condenses on each of
the j strata. The condensing excitations determine the set
of remaining excitations, which cannot pass through each
of the strata due to nontrivial braiding relations. Schemat-
ically, the Hamiltonian of the TDN can be written as the
sum of Hamiltonian terms Hi associated to each strata.

H =
3∑

j=0

Hi. (68)

The details of this Hamiltonian are discussed below.
The basic strategy, following Ref. [36], is to assign a 3D

toric code to each 3 stratum and condense excitations from
the ambient 3 strata on lower-dimensional strata to make
the behavior of the uncondensed excitations equivalent
to those in the X -cube model. On 2 strata, the conden-
sate is generated by the magnetic excitations from the
neighboring 3 strata, denoted by ±

〈
m+, m−

〉
. (69)

Due to the braiding statistics of the excitations in the 3D
toric code, no electric excitations can pass through the 2
strata.

The condensate on each 1 strata is generated by
〈
e1e2e3e4, m1m2, m2m3, m3m4

〉
. (70)

The subscripts label the four neighboring 3 strata. This
condensate implies that an e1e2e3e4 charge pattern can be
created by applying string operators in the vicinity of the
1 strata. Due to the condensations on the 2 strata, the elec-
tric excitations cannot pass through the 2 strata to another
3 strata. The only way to move an e excitation between 3
strata is via a 1 strata, at the cost of generating a pair of
additional e excitations in different 3 strata. These e1e2e3e4
condensing excitations are isomorphic to the local neutral
clusters of fractons in the X -cube model.

Demonstrating the existence of lineon excitations in the
TDN is somewhat more involved, and is explained in detail

in Ref. [36], we briefly summarize the explanation here.
The mobility is due to the fact that a flux loop near a 1
stratum can be moved to the corner of the 3 stratum to
create the excitation shown on the left of Eq. (71). Each
disconnected arc of magnetic line excitation corresponds to
a lineon along the associated edge direction. Three lineons
with different orientations can annihilate at a corner

.

(71)

Hence a single lineon at a corner is equivalent to a pair of
lineons with different orientations. By using this property
and the condensations of m excitations on 1 strata, we find
the following process:

.
(a) (b)

(c) (d) (72)

Going from (a) to (b) requires an application of Eq. (71) to
turn one lineon on a 1 stratum at the corner into a pair of
lineons only with different orientations. To pass from (b) to
(c) we make use of m condensations on the 1 strata. To go
from (c) to (d) we apply Eq. (71) again. During this pro-
cess, no additional excitations are left behind. This exactly
mimics the behavior of lineon excitation in the X -cube
model. The planons of the X -cube model are similarly
formed by pairs of fractons or lineons.

In the TDN construction of the X -cube model just
described, we use the 3D toric code in 3 strata and topo-
logical defects on 1 and 2 strata. No further excitations
condense on the 0 strata, to fully specify the defect there we
specify the eigenvalue of all topological operators linking
the point to be +1, as was done in Ref. [36].

B. TDN representation of X cube via ungauging

In the previous subsection, we review the TDN repre-
sentation of the X -cube model. As explained in Sec. II G,
we can also obtain the X -cube model in Eq. (67) by gaug-
ing the plaquette Ising model in Eq. (63). In this section,
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we show how to construct the TDN of the X -cube model
explicitly from the plaquette Ising model.

The sketch of the construction is the following. We start
from the plaquette Ising model, and extend it to a fine-
grained lattice on a stratified space by adding trivial qubits
and applying unitary gates, specifically CNOT gates as well
as redefinitions of the stabilizer generators. After the strat-
ification, each qubit of the previous plaquette Ising model
becomes a 3 stratum containing a block of 3D Ising model,
and the original constraint terms now couple different 3
strata together. This is the ungauged defect network. We
obtain the TDN of the X -cube model by gauging it.

C. Defect network for the plaquette Ising model

The Hamiltonian of the plaquette Ising model is
given by,

HPI = −J
∑

v′
−

∑

p

.

(73)

where v′ is the label of vertices on a cubic lattice and p is
the label of plaquettes.

To produce a defect network, we first introduce an auxil-
iary cubic lattice with lattice spacing much smaller than the
original one. This is depicted for a 2D example in Fig. 2(a).
We refer to the newly introduced auxiliary lattice as the
finer lattice and call the original lattice the coarser lat-
tice. When a term couples only qubits within the same unit
cell of the finer lattice, we call it ultralocal. Next, we shift
the finer lattice, along with the matter qubits, relative to
the coarser lattice by half a finer lattice spacing in each of
the spatial directions. This step moves each of the matter

(a) (b)

(c)(d)(e)

FIG. 2. Illustration of our defect network construction applied to the 2D plaquette Ising model. (a) Qubits (gray circles) governed
by plaquette Ising model constraint terms (transparent orange) are shown on the original coarser lattice (black lines). A finer lattice
(gray lines) is introduced for reference. The plaquettes, edges, and vertices of the original lattice define 2, 1, and 0 strata for the defect
network construction. (b) The finer lattice is shifted by half a lattice spacing in all directions. Decoupled qubits (blue circles) governed
by trivial single-site constraints are introduced onto the vertices of the refined lattice. (b→ c)CNOT gates (black arrows) are applied
from the original (gray) qubit in each 2 strata to the newly introduced (blue) qubits in the same 2 strata. (c) The original (gray) qubit
in each 2 strata is now coupled to all newly introduced (blue) qubits in the same 2 strata via two-body ZZ Ising constraint terms
(red lines). (d) We choose a new, redundant, generating set of two-body Ising constraints (red). These constraints simply correspond
to blocks of the Ising model within 2 strata, and are ultralocal. The introduction of additional redundancy to the generating set of
constraints requires the addition of further relations on the constraints. An ultralocal generating set of these relations is given by
products of constraints around plaquettes that are fully contained within 2 strata (i.e., bounded by red edges). Up to, and including, this
step the plaquette Ising model couplings (transparent orange) on the original (gray) qubits remained unchanged. They couple qubits
on the scale of the coarser lattice and hence are not yet ultralocal. (e) We make use of the two-body Ising terms within the 2 strata to
choose a new ultralocal generating set of plaquette Ising terms (transparent orange) located at 0 strata. In this example there are no
Ising terms associated to 1 strata, and no further relations. In the general construction of a defect network for an ungauged topological
CSS stabilizer models (that has been sufficiently coarse grained), an ultralocal generating set of relations involving the generalized
Ising couplings is chosen at this stage, see Sec. V.
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qubits from a vertex of the coarser lattice to a corner vertex
of the finer lattice within a 3 cell. The cubes of the coarser
lattice define the 3 strata, faces 2 strata, edges 1 strata and
vertices 0 strata. Due to the half shift of the finer lattice,
the 0 strata are associated to cubes of the refined lattice,
the 1 strata are associated to plaquettes and cubes of the
refined lattice that intersect them, the 2 strata are associ-
ated to edges, plaquettes, and cubes of the refined lattice
that intersect them, and the 3 strata are associated to the
vertices, edges, faces, and cubes of the refined lattice that
they contain strictly.

Next we add trivial qubits on the vertices of the finer lat-
tice prepared in the ground state of the trivial Hamiltonian

Htrivial = −
∑
v

Z(v)− J
∑
v

X (v), (74)

where v is the label of the vertices on the finer lattice. This
process is shown for a 2D example in Fig. 2(b). We then
apply CNOT gates between the qubits on the coarser lattice
and the qubits on the finer lattice inside the correspond-
ing cubes. Recall, the properties of CNOT gates are given
by Eq. (28). By taking the qubits of the original plaquette
Ising model to be the control qubits and the newly intro-
duced trivial qubits in the corresponding cubes as target
qubits, we can get a complete set of Ising constraint terms
within each 3 stratum. This step is shown for a 2D exam-
ple in Fig. 2(c). Next, we change the basis of generators to
make all of the ZZ constraint terms nearest neighbor on the
finer lattice, and hence ultralocal. Then, we add redundant
ZZ terms to the 3 strata on every edge of the finer lattice
within a cube. The resulting 3 strata are Ising paramagnets.
This is shown for a 2D example in Fig. 2(d). This step also
involves the addition of new relations between the added
constraint terms. Furthermore, it is possible to choose a set
of generating relations that are themselves ultralocal within
the cubes.

While the ZZ terms in the 3 strata are ultralocal, the con-
straint terms of the plaquette Ising model are not. They still
couple qubits of the coarser lattice. For a depiction of this
in a 2D example see Fig. 2(d). To remedy this, we change
the basis of constraint generators by using the freedom to
multiply with two-body terms within each 3 strata to bring
all the constraints into an ultralocal form in the vicinity
of one of the strata. Which strata they are localized on
depends on their dimension. In particular, n-dimensional
terms become ultralocal on (3− n) strata. Since the pla-
quette terms in Eq. (73) are two dimensional we make
them ultralocal on 1 strata. Next, we add redundant terms
to those strata, along with additional relations, such that the
model is homogenous on each strata, and the relation gen-
erators are ultralocal. For a depiction of an ungauged defect
network in a 2D example, see Fig. 2(e). A justification for
why the above process results in a phase-equivalent TDN
after gauging is provided in Sec. V.

The Hamiltonian of 3 strata is thus given by

H3 = −J
∑

v

−
∑

l

.

(75)

These are just the terms of the 3D paramagnet and ultralo-
cal on the finer lattice.

As the Hamiltonian of the X -cube model does not have
one-dimensional (or three-dimensional) constraint terms,
there are no ultralocal terms on 2 strata (or 0 strata) of the
defect network. Therefore, the Hamiltonian on 2 strata (or
0 strata) is trivial.

For 1 strata, there are ultralocal plaquette terms on them.
The Hamiltonian on one of the 1 stratum is thus given by

H1 = −
∑

p
(76)

p is the label of plaquettes on 1 strata and these terms cou-
ple four 3 strata together. So far we get the Hamiltonian of
the defect network of the plaquette Ising model.

The above prescription can also be described in Haah’s
polynomial formalism as we introduced in Sec. II C. The
polynomial matrix of the plaquette Ising model is given by

(
1 0 0 0
0 1+ x + y + xy 1+ y + z + yz 1+ x + z + xz

)
.

(77)

We can use one of the plaquette terms to show how
to build the defect network. Consider we have the term
1+ x + y + xy and add trivial qubits in one of the cubes,
we get

σZ =

⎛
⎜⎜⎜⎝

1+ x + y + xy 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎞
⎟⎟⎟⎠ . (78)

The first row are the Z-constraint term on the coarser lat-
tice. The following rows are the Z sector of the trivial
qubits in one of the 3 strata. We apply CNOT gates between
the qubits of the original model and the trivial qubits. The
CNOT gates on X and Z sectors are given by Eq. (46). After
applying CNOT gates, we get
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σZ =

⎛
⎜⎜⎜⎝

1+ x + y + xy 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎞
⎟⎟⎟⎠ . (79)

We see between the trivial qubits there is a complete set of ZZ terms. To make these terms ultralocal, we apply column
operations, as shown in Eq. (47). Then we add redundant nearest-neighbor ZZ terms to make them on every edge of the
finer lattice. We get

σZ =
(

1+ x + y + xy [ijk]+ [(i+ 1)jk] [ijk]+ [i(j + 1)k] [ijk]+ [ij (k + 1)]
)

. (80)

Here we use [ijk] as the coordinates of the finer lattice in
one 3 stratum. We use [ijk]+ [(i+ 1)jk] to represent for
the nearest-neighbor ZZ terms along direction i, and the
same for the other directions j and k.

However, this is not the end of the story. As we can
see, the first term 1+ x + y + xy is not ultralocal. So we
need to apply further column operations Eq. (47) to make it
ultralocal on 1 stratum. Finally we add redundant plaquette
terms along the 1 stratum and choose a set of local rela-
tion generators. After these steps, the construction of the
ungauged defect network of X -cube model is complete.

A comment here about the construction of defect net-
works is that, all the operations we have, including adding
trivial qubits, applying CNOT gates and column operations
are allowed transformations that keep the phase of matter
invariant. They are generalized local unitary transforma-
tions. This is discussed in more detail in Sec. V.

D. Gauging

We know from Sec. II G that the plaquette Ising model is
mapped to the X -cube model under gauging. So by gaug-
ing the defect network of plaquette Ising model, we expect
to also find the TDN of the X -cube model. We demonstrate
this explicitly in this subsection.

By applying Eqs. (35) and (37), and in the strong cou-
pling limit, the gauged Hamiltonian of the 3 strata Eq. (75)
is given by,

Hg
3 = −

∑

p

−
∑

v

.

(81)

p and v are the labels of plaquettes and vertices on the finer
lattice. The blue dots are the gauge qubits of the 3D toric
code.

Similarly, the gauged Hamiltonian of the 1 strata is
given by

H g
1 = −

∑
A1 −

∑
B1. (82)

A1 are the Gauss’s law terms

A1 = .

(83)

The blue dots here are the gauge qubits of 3D toric code.
The orange dot is the gauge qubit on the center of pla-
quettes on 1 strata. These terms are given by following
Eqs. (35)–(37).

B1 are the flux terms. These flux terms lie in the kernel
of the constraint map according to Eq. (39). During the
gauging procedure, we couple gauge qubits to constraint
terms. The gauged plaquette terms are then given by,

,

(84)

in which p is the label of plaquettes on 1 strata. There are
also gauged Ising constraint terms adjacent to the 1 strata.
The kernel of the constraint terms on the 1 strata is given
by combinations of these two types of constraints of the
form

.

(85)

The orange qubits lie on the plaquettes on the 1 strata.
While the blue qubits are on edges adjacent to the 1 strata.
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On 0 strata, the kernel of the constraint map is generated
by products of four terms of the form shown in Eq. (84)
from different 1 strata. The flux terms on 0 strata are thus
given by

,

(86)

As there is no ultralocal constraint terms on 2 strata, there
is no nontrivial flux terms on 2 strata. We have now com-
pleted the construction of the X -cube TDN Hamiltonian.

E. Condensations and excitations in the X -cube TDN
lattice model

Due to the appearance of new Gauss’s law and flux
terms in the vicinity of lower-dimensional strata after
gauging, the behavior of bulk topological excitations is
modified there. For instance, some patterns of bulk exci-
tations are condensed on the defects, which means they
are identified with the vacuum sector there. Additionally,
defects may also permute the topological superselection
sectors of bulk excitations that pass through them. In this
subsection, we show the equivalence of the X -cube model
and the TDN constructed in the preceding subsection by
verifying that the condensations and hence the behavior of
excitations is equivalent.

We first check the electric condensations. These elec-
tric condensations correspond to patterns of bulk electric
charges that condense on the defects. These patterns can
also be created by local operators on the defects. These
local operators commute with the Hamiltonian Eq. (85) on
the defects but anticommute with the Gauss’s law terms
Eq. (83) in the bulk. The minimal coupled local opera-
tor that satisfy the above conditions are single Z operators
on the orange qubits on the 1 strata. By applying a sin-
gle Z operator on the 1 strata, Gauss’s law terms Eq. (83)
in four neighboring 3 strata are violated, which produces
the anticipated electric charge pattern e1e2e3e4. Here we
use the subscripts 1 to 4 to denote the four adjacent 3
strata. These charges can each be moved within their cor-
responding 3 strata via the application of local operators
therein. These electric excitations become identified with
the X -cube fractons.

On 2 strata, the only possible local operators are sin-
gle Z operators on the boundary of the adjacent 3 strata.
These operators create pairs of electric charges in the same
3 strata. Such pairs can already locally annihilate within
the 3 strata so there are no nontrivial electric condensa-
tions on 2 strata. A similar argument applies to the 0 strata,
showing there are no further electric condensation there
either.

Next we check the magnetic condensations. Generally
there are two ways to find them. One way is to find local
operators that commute with the Hamiltonian Eq. (85) on
the defects, but anticommute with the flux terms in the
neighboring bulks. The second, equivalent, way is to find a
generating set of composite magnetic flux excitations that
braid trivially with the electric composite excitations that
condense on the relevant strata. Following the first method
for 2 strata, the relevant local operators are single X oper-
ators on the adjacent Ising gauge qubits. These operators
anticommute with the plaquette terms in the bulk and we
find the magnetic condensations

〈
m+, m−

〉
. Where we use

+ and − to represent the neighboring 3 strata. On 1 strata,
we find the following local operators:

.

(87)

These operators are independent from one another and
commute with Eq. (85) but anti-commute with the flux
terms in the bulk. The following magnetic condensation
can then be read off

〈
m1m2, m2m3, m3m4

〉
.

If we instead follow the second method, we start
from the electric condensations

〈
e1e2e3e4

〉
on 1 strata and

the magnetic condensations on the neighboring 2 strata〈
m1, m2, m3, m4

〉
. The magnetic condensations must braid

trivially with the electric condensations, such magnetic
composite excitations are given by

〈
m1m2, m2m3, m3m4

〉
.

For more complicated defect Hamiltonians, it can be dif-
ficult to find all local operators that induce a complete
generating set of magnetic condensations. However, it
remains straightforward to find the electric condensations.
Thus the second method often turns out to be much simpler
than the first in practice.

From Eq. (86) we know that there are no Ising gauge
qubits in the vicinity of the 0 strata. Thus there is no mag-
netic condensation on 0 strata. However, we are still able
to find local operators that commute with the Hamiltonian
on 0 strata, which are

.

(88)

These operators do not create any excitations in the bulk,
but they anticommute with Eq. (85). We find that these
operators play an important role when transporting a
magnetic flux along 1 strata. Recall that the magnetic
excitations of the X-cube model are also lineons, which
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have their mobility restricted to lines unless additional
excitations are created.

There are other local operators in the vicinity of 0 strata
that commute with the full Hamiltonian. An example is
shown below

.

(89)

This operator corresponds to the fact that 3 loops can
annihilate at a vertex as we shown in Eq. (71).

The behavior of X -cube lineons can be derived from our
TDN lattice model, reproducing Eq. (72),

.

(90)

Starting from (a), there is a magnetic flux on the 1 stratum
below. Next we apply Eq. (89) to get (b). Then we apply
Eqs. (88) and (87) to get (c). Finally we apply Eq. (89)
with the opposite orientation to find (d). The operator in
(d) creates a magnetic flux on the 1 stratum above. During
this process we use only operators that commute with the
Hamiltonian. Therefore, no additional energy is generated.
This demonstrates that the magnetic flux arcs are in fact
lineons, as they indeed have restricted mobility along lines
in the TDN we have constructed.

In the final part of this subsection we discuss the behav-
ior of electric condensations. The electric condensations
on 1 strata result in the mobility constraints of fractons.
Consider a fracton in a 3 stratum that we want to move

to the next 3 stratum. It cannot pass through the 2 stratum
directly as on the 2 stratum there is a condensate gener-
ated by

〈
m+, m−

〉
and the electric charge braids nontrivially

with elements of this condensate. The only possible route
is via the 1 strata. We can apply local Z operators to move
the electric charge. When the charge reaches the 1 stratum,
similar to the e4 in Eq. (91), to move it to the adjacent 3
stratum we apply a local Z operator on the plaquette.

(91)

This operator annihilates e4 but creates e1, e2, and e3 on
the neighboring 3 strata. So although the electric charge
is moved to the neighboring 3 stratum, another pair of
electric charges is also created. This process costs addi-
tional energy. Thus the electric charges in our TDN are
fully immobile on the scale of the 3 strata, and furthermore
mimic the mobility of fractons in the X -cube model

In summary, in this section we provide a lattice construc-
tion of a TDN for the X -cube model from its ungauged
variant, the plaquette Ising model, by applying phase
equivalence transformations. The TDN we construct has
equivalent excitation structure to the X -cube model. In
Sec. V we present a general argument that implies the TDN
Hamiltonian is in fact in the same phase of matter as the
X -cube model.

IV. TDN FOR HAAH’S CUBIC CODE A

In this section we use our gauging construction to find
a TDN representation of Haah’s cubic code [11]. No TDN
was previously known for the cubic code, due to the lack
of a systematic procedure for converting lattice models into
TDNs before the construction introduced here.

A. Introduction to Haah’s cubic code A

Haah’s code, also known as cubic code A is the canon-
ical example of a type-II fracton model [11]. It has the
following Hamiltonian:

HCC1 = −
∑

c

−
∑

c

.

(92)

There are two qubits on each vertex, which are denoted by
orange and green dots in Eq. (92). The excitation patterns
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created by local Pauli-Z operators are shown below.

.

The excitation pattern for local X operators are similar.
These excitations are called fractons. Each step fractons
take on the lattice creates two extra excitations, i.e., they
cannot move without costing additional energy.

Cubic code A can be achieved by gauging a fractal Ising
model [16,17] in the J →∞ limit, whose Hamiltonian is
given by

H = − J
∑

v

−
∑

c

−
∑

c

.

(93)

In the following subsections, we describe a lattice con-
struction of the TDN of Haah’s cubic code A from this
fractal Ising model.

B. Defect network for the fractal Ising model

We now describe the failure of a naive attempt to make a
fractal Ising TDN that results in a TDN for the cubic code
after gauging. We move on to describe how, by first coarse
graining the fractal Ising model, we can successfully con-
struct an alternate fractal Ising TDN that results in a valid
TDN for cubic code after gauging.

We start from the fractal Ising model Eq. (93). To con-
vert it into a defect network, we follow the procedure
described in Sec. III C, first introducing a refined cubic lat-
tice. Next we add trivial qubits on the vertices of the finer
lattice, prepared in the ground state of trivial Hamiltonian

Htrivial = −
∑
v

Z(v)− J
∑
v

X (v), (94)

where v labels the vertices of the finer lattice. Again, the
cubes of the coarser lattice play the role of 3 strata, faces 2
strata, edges 1 strata, and vertices 0 strata. We then apply
CNOT gates between the qubits on the coarser lattice and
their corresponding qubits on the finer lattice. This pro-
cess is depicted in Fig. 2. The properties of CNOT gates
are described in Eq. (46). The CNOT gates introduce a

complete set of Ising constraint terms inside each 3 stra-
tum. Next, we change the choice of stabilizer generators
to make all of the ZZ-constraint terms within a 3 stratum
nearest neighbor and hence ultralocal. This step is imple-
mented by column operations in the stabilizer formalism,
see Eq. (47). We then add redundant Ising ZZ terms to all
remaining edges of the finer lattice within each 3 strata.
This step also involves the introduction of additional rela-
tions between these redundant Ising terms, which can be
generated by the standard plaquette relations of the Ising
model. The interactions and relations within the resulting
3 strata are simply those of the cubic lattice Ising model.

At this stage the ZZ terms in the 3 strata are ultralocal.
However, the original constraint terms of the fractal Ising
model are not ultralocal as they couple qubits of the coarser
lattice. Thus, we change our choice of the set of stabilizer
generators in each 3 stratum. This is implemented by col-
umn operations in the stabilizer formalism, see Eq. (47).
In particular, we multiply the fractal Ising constraint terms
with the two-body Ising terms introduced in the bulk of the
3 strata to make all the constraints ultralocal on an appro-
priate strata. The strata that each fractal Ising constraint
is localized to depends on the dimension of a hypercube
containing the term. Concretely, n-dimensional terms are
made ultralocal on (3− n) strata. For example, the pla-
quette terms in Eq. (73) are two-dimensional, thus they
are made ultralocal on 1 strata. Following the same logic,
the constraint terms in Eq. (93) can be made ultralo-
cal in the vicinity of a 0 strata, as both such terms are
three-dimensional. However, the corresponding TDN pro-
duced by regauging the resulting Hamiltonian is in fact
not ultralocal. This is caused by the following subtlety,
after gauging the flux terms can not be made ultralocal
as they necessarily involve multiple corners of the same
cubic 3 stratum. In the ungauged model this manifests in
the impossibility to choose a generating of relations that
are ultralocal.

To convey this point, we take a small diversion and
note that a similar difficulty can already be seen in the
simple 2D example depicted in Fig. 3(a). This example is
described by the following Ising constraint terms:

σZ =
(

0 0
1+ xy x + y

)
. (95)

Since both types of constraint terms are two dimensional
(i.e., they involve x and y terms in the polynomial), they
are made ultralocal on 0 strata as shown in Fig. 3(a). Fol-
lowing Eq. (39), the gauge flux terms are determined by
the kernel of the constraint map. In this case, we need to
multiply terms involving four distinct 0 strata to produce a
flux term. This is not ultralocal as it has a size on the order
of the coarser lattice scale, which becomes the lattice scale
of the defect network itself.
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(a))

(b)

FIG. 3. (a) A 2D example that demonstrates how nonultralo-
cal flux terms may occur even with constraint terms that are
ultralocal at 0 strata. The bold lines are the coarser lattice. The
plaquettes of the coarser lattice are 2 strata, edges are 1 strata,
and vertices are 0 strata. The light gray lines form the finer lattice.
The defect network for the Ising model in Eq. (95) is depicted on
the left. Its matter qubits live on the vertices of the finer lattice.
It has ultralocal constraint terms at each vertex. Four such terms
indicated on the left, along with ZZ terms in the 2 strata, generate
a relation that is not ultralocal. After gauging this leads to a flux
term that is not ultralocal, depicted on the right. (b) A demonstra-
tion of why the naive TDN for the cubic code is not ultralocal,
similar to the example shown above in (a). While the constraint
terms of the ungauged model (left) are ultralocal, the relations
involving them are not. After gauging, this leads to a flux term
in the cubic code TDN that is not ultralocal, shown on the right.
We find that an additional coarse-graining step along each axis
is sufficient to construct an ultralocal TDN, as explained in the
main text.

Similarly, if we make the constraint terms of Haah’s
cubic code ultralocal at 0 strata, after gauging, gauge qubits
at different 0 strata are coupled together, and hence the flux
terms are not ultralocal. This is depicted in Fig. 3(b). To
demonstrate this more explicitly, we first recall that as part
of the gauging procedure each constraint term is coupled
to a gauge qubit. The gauged constraint terms of the fractal
Ising model are given by

,

where the orange and green dots represent distinct gauge
qubits. Following Eq. (19), the flux terms are given by the
kernel of the constraint map. A generating set of flux terms

is constructed by multiplying the gauged constraint terms
on different 0 strata together, as shown in Fig. 3(b). The
size of the 3 strata is considered macroscopic compared to
the finer lattice we introduce. Thus the flux terms we find
are not ultralocal. Fortunately, it is straightforward to avoid
such nonultralocal flux terms. To achieve this we simply
coarse grain the fractal Ising model by a factor of 2 along
each axis before gauging it.

The resulting coarse-grained fractal Ising model has
eight qubits per site. To construct a defect network, we
again introduce a finer cubic lattice inside the cubes. To
each vertex on the finer lattice we assign eight qubits.
These qubits are prepared in the ground state of the trivial
Hamiltonian

Htrivial = −
∑
vi

Z(vi)− J
∑
vi

X (vi), (96)

where vi is the label of vertices on the finer lattice and
i ∈ {1, 2, . . . , 8} is the label of qubits on each vertex. We
refer to the qubits with the same label i as being from the
same layer. Next we apply CNOT gates between the origi-
nal qubits and the trivial qubits of the same label i to create
eight blocks of the Ising model within the 3 strata, fol-
lowing the same method as above in this and the previous
section. We note this also involves choosing a new redun-
dant generating set of constraints, along with an associated
set of relations.

In the failed construction above, we made all the frac-
tal constraint terms ultralocal at 0 strata. Here, after coarse
graining, the 16 types of fractal Ising constraint terms split
up into a pair of dimension 0, three pairs of dimension
1, three pairs of dimension 2, and a pair of dimension 3.
Of the dimension 1 terms, a pair is associated to each lat-
tice direction, and similarly for the dimension 2 terms. We
next make the terms ultralocal by making a new choice of
generating set for the constraints. This results in a pair of
different terms assigned to each 3 strata, 2 strata, 1 strata,
and 0 strata. We further include redundant copies of each
type of fractal Ising term in the 1, 2, and 3 strata, to make
the Hamiltonian homogeneous over each strata. This step
is accompanied by the introduction of additional relations
due to the redundant copies. In this case, we find that it
is possible to choose a generating set of relations that are
ultralocal, similar to the X -cube example above. This is
because the terms involved in each relation in the original
uncoarse-grained fractal Ising model are all mapped into
the vicinity of a single vertex by the coarse-graining step.
Hence, after gauging a generating set of flux terms should
also be ultralocal, which we confirm below.

We now define the Hamiltonian of the coarse-grained
fractal Ising defect network. On the 3 strata the terms are
given by
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H3 = − J
∑

vi

−
∑

li

−
∑

v

−
∑

v

.

(97)

The first two terms are Ising terms on each layer. The lat-
ter two terms are the 0-dimensional fractal constraints that
couple different layers together at the same vertex. Hence,
we see that some of the fractal terms become pointlike
within the 3 strata after coarse graining.

On 2 strata, as no CNOT gates are applied between pairs
of distinct 3 strata, there are no two-body Ising terms
between the 3 strata. The ultralocal representation of the
fractal constraint terms on 2 strata are linelike. They cou-
ple different vertices between neighboring 3 strata. The
Hamiltonian on the yz-oriented 2 strata is given by

H2 = −
∑

l̃

−
∑

l̃

.

(98)

These two terms are the fractal constraint terms on 2 strata.
Here, l̃ is the label of edges connecting two neighboring 3
strata and + and − are the labels of 3 strata.

Similarly, the fractal constraint terms on 1 strata are
plaquettelike. They couple four distinct 3 strata. The
Hamiltonian on z-oriented 1 strata is given by

H1 = −
∑

p̃

−
∑

p̃

(99)

p̃ is the label of plaquettes on 1 strata. a, b, c, d are the
labels of neighboring 3 strata.

There are only two terms on each 0 stratum. The Hamil-
tonian is given by

H0 = − −

(100)

We use {a, . . . , h} to label the eight neighboring 3 strata.
While we describe only the Hamiltonian explicitly for

certain orientations, due to the 2π/3 rotation symmetry of
the cubic code about (1, 1, 1), the Hamiltonians along the

remaining orientations of 1 and 2 strata follow by applying
the permutation of the axes x→ y, y → z, z→ x, which
correspond to a permutation of labels 2→ 4, 4→ 5, 5→
2 and 3→ 8, 8→ 6, 6→ 3. We use the standard cycle
notation (245)(386) to denote this permutation.

C. TDN for Haah’s cubic code

To gauge the coarse-grained fractal Ising model defect
network, we first couple gauge qubits to the constraint
terms. As there are two different types of constraint terms,
we introduce two different types of gauge qubits. The two
gauged constraint terms of the fractal Ising model in the 3
strata, beyond the standard gauged two-body Ising terms,
are given by,

.

The orange and green qubits depict the gauge qubits
that associated to the fractal constraint terms. Following
Eq. (37), the Gauss’s law operators within the 3 strata are
given by

(101)

where i ∈ {1, . . . , 8}, j ∈ {1, 2, 4, 5}, and k ∈ {1, 3, 6, 8}.
Thus, on 3 strata, by applying Eqs. (35) and (39) to (97)
in the strong coupling limit, the gauged Hamiltonian is

H g
3 = −

∑
A3 −

∑
B3, (102)

where A3 are the Gauss’s law terms, which are given by

,

where j and k here are the same as above. The B3 terms are
the flux terms, which are given by

.
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The same method applies to Eq. (98), resulting in the fol-
lowing gauged Hamiltonian on yz-oriented 2 strata in the
strong coupling limit:

H g
2 = −

∑
A2 −

∑
B2. (103)

Here, the A2 Gauss’s law terms are given by

,

for i ∈ {1, 2, 5}, j ∈ {1, 6}, and k ∈ {3, 8}. The B2 flux
terms are given by

,

where l̃ are the edges on the yz-oriented 2 strata that
connect two different 3 strata.

The gauged Hamiltonian on 1 strata from Eq. (99) is

H g
1 = −

∑
A1 −

∑
B1, (104)

where the Gauss’s law terms A1 are given by

.

While the flux terms B1 are given by

,

where p̃ are the plaquettes on the z-oriented 1 strata that
connect four different 3 strata.

As a result of gauging the Hamiltonian on 0 strata from
Eq. (100), the Gauss’s law terms near 0 strata are given by

.

As there are only two gauge qubits per 0 stratum, there
are no flux terms strictly contained on the 0 strata. Rather,
there are ultralocal flux terms adjacent to the 0 strata,
which are given by

,

(105)

where l̃ and p̃ are the edges and plaquettes on the neigh-
bouring 2 and 1 strata. This is precisely the flux terms of
Haah’s cubic code 1 in Eq. (92). Furthermore, this terms
is ultralocal, which solves the nonlocality problem that
occurs in the uncoarse-grained model.

D. Condensations and excitations

To conclude this section we derive electric and magnetic
condensations induced on the various strata of the cubic
code TDN we have constructed.

We first consider the condensation of electric topologi-
cal charges. As defined in Sec. III E, electric condensations
can be created by local operators on the defects. The TDN
of Haah’s cubic code 1 not only has defects between
strata, it also has couplings between different layers in
the same stratum. So the electric condensations of the
cubic code TDN can be created by local operators on
defects and the nontrivial gauge qubits between layers. By
checking Eqs. (102)–(104), we find the following electric
condensations on 3, 2 and 1 strata:

3 strata :
〈
e1e2e4e5, e1e3e6e8

〉
2 strata(yz) :

〈
ea

2ea
3ea

6eb
1, ea

2ea
7eb

4eb
5

+ four 3 strata electric condensations
〉

1 strata(z) :
〈
ea

3ea
7eb

4ed
2, ea

3eb
8ec

1ed
6

+ eight 3 strata electric condensations

+ eight 2 strata electric condensations
〉
.
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FIG. 4. Example of an electric condensation on a 1 stratum.
We label the four adjacent 3 strata as {a, b, c, d}. On each 3 stra-
tum, there are eight layers of 3D toric code. We label these layers
{1, 2, . . . , 8}. Using these labeling conventions, we depict a clus-
ter of electric topological charges ea

3ea
7eb

4ed
2 that condenses on the

1 stratum.

Each 2 stratum has two neighboring 3 strata, hence the
condensations on the neighboring 3 strata also condense
on this 2 stratum. Similarly, electric condensations on
adjacent 2 and 3 strata also condense on a 1 strata. The
superscript labels on excitations denote the 3 strata that
contains them, this is depicted in Figs. 4 and 5.

The magnetic condensations, as described in Sec. III E,
must braid trivially with the electric ones. They are
also described by collections of magnetic excitations in
the neighboring strata. Due to the electric condensations
within the 3 strata certain combinations of m excitations
are confined, leaving six deconfined copies of toric code
with deconfined m loops generated by the following set:

〈
m1m5m8, m2m5, m3m8, m4m5, m6m8, m7

〉
. (106)

We provide a complete list of electric and magnetic con-
densations below [61].

3 strata :
〈
e1e2e4e5, e1e3e6e8

〉

FIG. 5. Example of a magnetic condensation on a 2 stratum.
We label the adjacent 3 strata {a, b}. On each 3 stratum, there
are eight layers of 3D toric code labeled {1, 2, . . . , 8}. We depict
a cluster of magnetic flux loops ma

7mb
2mb

5 that condenses on the
topological defect on the 2 stratum, ma

7 from above and mb
2mb

5
from below.

2 strata (yz) :
〈
ea

2ea
3ea

6eb
1, ea

2ea
7eb

4eb
5, ma

1ma
5ma

8,

ma
2ma

5mb
1mb

5mb
8, ma

2ma
3ma

8mb
1mb

8,

ma
6ma

8mb
1mb

2mb
8, ma

4ma
5, ma

7mb
2mb

5,

mb
3mb

8, mb
4mb

5, mb
6mb

8, mb
7

+ four 3 strata electric condensations
〉

1 strata (z) :
〈
ea

3ea
7eb

4ed
2, ea

3eb
8ec

1ed
6, ma

1ma
5ma

8md
1md

4md
8,

ma
2ma

5mb
1mb

5mb
8mc

1mc
4mc

8md
3md

7md
8,

ma
3ma

8mb
1mb

2mb
8mc

1mc
4mc

8md
2md

3md
5md

6,

ma
4ma

5md
1md

5md
8, ma

7mb
2mb

5md
2md

3md
4md

7md
8,

ma
6ma

8mb
1mb

2mb
8mc

1mc
4mc

8md
1md

3md
4md

7,

mb
3mb

8md
3md

6, mb
4mb

5mc
1mc

5mc
8md

2md
3md

5md
6,

mb
6mb

8mc
1mc

4mc
8md

3md
7md

8, mb
7mc

4mc
5,

mc
2mc

5md
7, mc

3mc
8, mc

6mc
8, mc

7,

+ eight 3 strata electric condensations

+ eight 2 strata electric condensations
〉

Due to the order-three rotation about (1, 1, 1) symmetry of
the cubic code, one can straightforwardly find the conden-
sations on the remaining 1 and 2 strata by relabeling the
indices with the permutation (245)(386). The definition of
this notation is introduced at the end of Sec. IV B. Again,
the superscript labels on excitations denote the 3 strata that
contains them, as depicted in Figs. 4 and 5.

Similar to the X -cube TDN, we pick a complete set of
eigenvalues to diagonalize the operator algebra supported
in the vicinity of the 0 strata [36], which is again abelian
in this example. This corresponds to the inclusion of flux
terms on the 0 strata in the lattice Hamiltonian. After lifting
this local degeneracy, nothing further condenses at the 0
strata.

V. TDN REPRESENTATIONS OF ALL
TOPOLOGICAL CSS STABILIZER MODELS

In this section, we describe a general method to con-
struct a TDN representation of any topological CSS stabi-
lizer model. To perform our construction, we require the
original topological CSS stabilizer model to satisfy a cer-
tain locality condition described below. This can always be
ensured by coarse graining the model until the stabilizer
generators are local to a single cube, and then performing
one additional step of coarse graining by a factor of 2 along
each axis.

A. The ungauged defect network

We consider a topological CSS stabilizer model, whose
Z2 matrix representation is given by
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σ =
(
σX 0
0 σZ

)
. (107)

By ungauging the model [17] as described in Sec. II, we
find a generalized Ising model with a set of constraints

σ ′ =
(

0
σc

)
. (108)

The matrix σc = σ T
X is the constraint map introduced in

Eq. (3). The construction introduced in this section applies
in any spatial dimension, for clarity we present it specif-
ically for three-dimensional space as we expect this to
be the case of most immediate interest. In three dimen-
sions, the entries of σc are given by polynomials that
depend on 1, x, y, z and higher-order monomials such as
xyz, x2y, x3y4z5, etc. We are working under the assumption
that the original CSS stabilizer code has terms that are local
to a single cube (this can always be ensured after sufficient
coarse graining). Hence we can choose generators that do
not involve any powers of x, y, z that are higher than 1.

We let r denote the relation map for these constraints, as
defined in Eq. (8). Then Eq. (7) can be written as

σcr = 0. (109)

The relations determine the flux terms of the gauged
model, as described in Eq. (19). Hence if the flux terms
of the gauged model, corresponding to the original topo-
logical CSS stabilizer code, are assumed to be local to a
cube then a generating set of relations are also local to a
cube. That is, the entries of the map r do not involve any
powers of x, y, z that are higher than 1.

For our construction to produce a valid TDN we require
that there is a generating set of relations that are not only
cube local, but satisfy a stronger locality condition. This
condition corresponds to having all operators involved
in the generating relations being cube local. This is a
stronger condition than simply requiring the relation gen-
erators themselves to be cube local, as such relations can
include nearest-neighbor constraints, which themselves
can involve nearest-neighbor operators. Overall this can
lead to next-nearest-neighbor operators being involved in
a single relation. This results in nonultralocal terms in the
TDN, as we encounter in the failed first attempt at con-
structing a TDN for cubic code, described in Sec. IV B.
Coarse graining the original model until the generators are
cube local, followed by an addition coarse graining step by
a factor of 2 along each axis is enough to ensure that the
desired strict locality condition is satisfied. This is simply
because any next-nearest-neighbor operators that may be
involved in a relation become nearest neighbor after the
additional coarse graining. We remark that the additional
coarse graining is sufficient, but may not be necessary since
models such as X -cube and Haah’s cubic code 1B [44]

directly satisfy the strict locality condition. In fact all the
models considered in Ref. [36] satisfy the strict locality
condition without further coarse graining.

To convert the generalized Ising model into a defect
network we follow Sec. III C and introduce a much finer
lattice scale that is shifted by half a lattice spacing along
each axis, such that the vertices of the original coarser
lattice are contained within cubes of the finer lattice. The
unit cells of the coarser lattice define the 3 strata, the faces
define the 2 strata, the edges define the 1 strata and the
vertices define the 0 strata. If there are multiple qubits on
each vertex on the coarse-grained lattice we label them
{a, b, c, . . .}. Then on the finer lattice we add the same num-
ber of qubits to each vertex and label them by {a, b, c, . . .}
as well. The qubits that have the same label are consid-
ered to lie within the same layer. For each layer, we add
qubits governed by a trivial Hamiltonian to the vertices of
the finer lattice in the ground state of

Htrivial = −
∑
v

Z(v)− JX (v), (110)

in which J is a tunable coupling factor and v labels vertices
of the finer lattice.

In the polynomial matrix representation, adding trivial
qubits is equivalent to adding blocks of identity matrices
to X and Z sectors of Eq. (108). The Pauli-Z constraint
sector of the new matrix is given by

σ ′c →
(
σc 0
0 1

)
. (111)

In this equation σc now describes the constraints on the
coarser lattice scale and the identity matrix describes the
newly added qubits on the finer lattice.

Next, we apply CNOT gates from the original qubits to
the corresponding trivial qubits within the same layer and
3 stratum. The CNOT gates are defined in Eq. (46). This
results in

σ ′c →

⎛
⎜⎜⎜⎜⎝

σc I I · · · I
0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

⎞
⎟⎟⎟⎟⎠

nvL×nvL

, (112)

where I are nv × nv identity matrices, nv is the number of
qubits per vertex on the finer lattice, and L is the number of
vertices of the finer lattice in each 3 stratum. In Eq. (112)
we have a complete set of ZZ-constraint terms between
the qubits on each layer of each 3 stratum. We next add
redundant ZZ terms to all edges of the finer lattice within
the 3 strata. This corresponds to adding linearly depen-
dent columns to σ ′c. This also introduces additional relation
generators, which corresponds to adding columns to the
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relation map r. Then we change the basis of constraint
generators to make all the ZZ terms ultralocal, i.e., near-
est neighbor on the finer lattice. This is implemented by
applying column operations, as defined in Eq. (47), to the
constraint map σ ′c. We similarly choose a basis of relation
generators that is ultralocal on the finer lattice. Schemat-
ically, the resultant matrix for the Pauli-Z constraints is
then

σ
′
c =

(
σc σIsing

)
. (113)

The left part, σc, represents the generalized Ising constraint
terms on the coarse lattice, while the right part, σIsing rep-
resents the standard Ising terms on the finer lattice within
each 3 stratum. To summarize, we have nv layers of the
standard Ising model within each 3 stratum, which are
coupled by the constraint terms σc on the larger lattice
scale.

To make the σc couplings in Eq. (113) ultralocal, we
follow a similar strategy as we did for the ZZ-constraint
terms within the 3 strata. We first move each coupling
term to become local at an appropriate 3, 2, 1, or 0 strata,
depending on its form, by multiplying with ZZ edge terms
within the 3 strata. This is implemented by column opera-
tions on the σ ′c map. Next we add redundant copies of each
term along the corresponding 3, 2, 1, or 0 strata, to make
the couplings homogeneous along these strata. This corre-
sponds to adding linearly dependent columns to σ ′c. This
also introduces linearly dependent columns to the relation
map r, we can further choose a basis of relation genera-
tors that are ultralocal, which is implemented by column
operations on r. At this point we arrive at a Hamilto-
nian for the ungauged generalized Ising defect network
that is ultralocal, and each step is simply implemented
by column and row operations on σ and r, which corre-
spond to local unitary circuits, the addition of auxiliary
qubits and the redefinition of generators for a stabilizer
group, all of which preserve the quantum phase of mat-
ter. This completes the construction of the ungauged defect
network.

B. Gauging the ungauged defect network

To obtain a TDN in the same topological phase of mat-
ter as the original CSS stabilizer model, we gauge the
ungauged defect network constructed in the previous sub-
section. Following the formalism reviewed in Sec. II B, we
assign a gauge degree of freedom to each constraint term.
The Gauss’s law operators are then given by Eqs. (36)
and (37). The flux operators are determined by the ultralo-
cal relations rl ∈ r we define in Eq. (109). In general, three
different kinds of flux terms appear:

1. The relations of the Ising models within 3 strata:
After gauging, each layer of the standard Ising

model becomes a layer of toric code, as described
in Sec. II E.

2. The relations of the ungauged stabilizer model:
Following the construction outlined above, the con-
straints of the ungauged model now have ultralocal
relations that can be realized near individual 0 strata.
The flux terms that are associated with these rela-
tions are essentially the same as the flux terms of
the original stabilizer model. For example, see the
flux term for Haah’s cubic code A in Eq. (105),
Sec. IV C.

3. The relations involving ZZ-constraint terms and
constraint terms of the ungauged stabilizer
model: The constraint terms of the ungauged sta-
bilizer model on 0, 1, 2, and 3 strata can multiply
with the neighboring standard Ising ZZ-constraint
terms in the 3 strata, to form a nontrivial set of
relations on lower-dimensional strata. Some of the
unconventional mobility properties of fractons that
occur in TDNs are consequences of the flux terms
derived from these relations. Example of such terms
are given in Eq. (85) for the X -cube model and
Eqs. (102)–(104) for Haah’s cubic code A.

The two-step coarse-graining process assumed through-
out this section guarantees all of the above relations are
ultralocal, as explained in the previous subsection.

The electric topological excitations that condense on dif-
ferent strata can be found by applying local Z operators
on the gauge qubits corresponding to nontrivial constraint
terms. These operators commute with the corresponding
flux terms in the Hamiltonian, but anticommute with the
Gauss’s law terms in the neighboring 3 strata. This pro-
cess allow the clusters of electric charge that condense
in the vicinity of each strata to be calculated using the
TDN Hamiltonian. For examples, see Eq. (91) for the
X -cube model and Eqs. (102)–(104) for Haah’s cubic
code A.

As explained in Sec. III E, the magnetic excitations that
condense on each stratum must braid trivially with the
electric condensate. They are, of course, generated by col-
lections of magnetic excitations in the neighboring strata.
One can find the magnetic condensate by finding all such
collections that braid trivially with the electric condensate,
which boils down to simple matrix algebra over F2, the
field with two elements. Another method to construct the
magnetic condensate is by finding all ultralocal operators
that commute with the Hamiltonian on a certain stratum,
while anticommuting with flux terms on the neighboring 3
strata. These two methods are equivalent.

Finally, we explain how the phase-equivalence opera-
tions we implement on the ungauged TDN, imply phase
equivalence between the original CSS stabilizer model and
the final gauged TDN. The chain complex of the gauged
and ungauged models, in their strong coupling limits, can
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be summarized as (see Sec. II B)

R
r−−−−→C

σc−−−−→ Q, (ungauged)

CZ
σ̂Z−−−−−→G

σ̂X←−−−−− CX , (gauged) (114)

in which σ̂Z = r and σ̂X = σ †
c . R is isomorphic to CZ , C is

isomorphic to G, and Q is isomorphic to CX . The relation
between phase equivalences of the ungauged model and
phase equivalences of the gauged model essentially fol-
lows from realizing that each step in such equivalences can
be rephrased as a sequence of operations on the isomorphic
spaces R ∼= CZ , C ∼= G, Q ∼= CX that can be interpreted as
phase equivalences on both gauged and ungauged models.

When we construct the TDN from an ungauged model,
we apply several operations:

(a) Adding trivial qubits. On the ungauged model, we
add trivial qubits in the ground state of Hamilto-
nian Eq. (110), thus the constraint map changes to
σZ ⊕ 1. On the gauged model, gauge qubits are cou-
pled to the matter qubits. The matrix of the gauged
Hamiltonian also changes to σ †

Z ⊕ 1. At the same
time, C and Q are enlarged.

(b) Applying CNOT gates. On the ungauged model,
applying CNOT gates is implemented by row opera-
tion on σc, see Eq. (46). This corresponds to chang-
ing the basis on Q. On the gauged model, these row
operations map to column operations on σ̂X , which
correspond to changing the basis on CX .

(c) Adding redundant constraints. On the ungauged
model, this corresponds to adding redundant
columns to σc, which is equivalent to enlarging
C. On the gauged model, these operations corre-
spond to adding redundant rows (i.e., gauge qubits).
Adding redundant constraints generates additional
redundant relations, which correspond to adding
more columns to r (σ̂Z) and σ̂X .

(d) Applying column operations. We apply column
operations, see Eq. (47), to the ungauged model to
make all the constraints ultralocal. This corresponds
to changing the basis of C. This is equivalent to
changing the basis of G. Furthermore, changing the
basis of C induces a change of basis on R. We pick
a new basis on R that induces r to be ultralocal. This
is equivalent to making σ̂Z ultralocal.

All the steps we perform in the construction of the TDN
(gauged and ungauged) are phase preserving as they corre-
spond to local unitary operators, the addition of auxiliary
qubits, and the redefinition of the set of generators for a sta-
bilizer group. Hence the whole construction is also phase
preserving, and therefore the resulting gauged TDN lies
in the same topological quantum phase of matter as the
original topological CSS stabilizer model.

VI. TDN REPRESENTATIONS OF NON-CSS
STABILIZER CODES

In this section, we demonstrate that the techniques dis-
cussed for CSS codes can be generalized to construct TDN
representations for a large class of non-CSS fracton codes
characterized by emergent gauge theory. We provide three
illustrative examples. The first example is the fermionic
Haah’s code, which is one member of a large family of
non-CSS fracton codes obtained by gauging subsystem
fermion parity symmetries of an atomic insulator state
[62,63]. Our method applies to all members of this class.
The second example is the semionic X -cube model [64],
which is a twisted (meaning the lineonic gauge fluxes have
nontrivial exchange and braiding statistics) fractonic gauge
theory that can be represented as a non-CSS stabilizer
code [65]. The final example is Chamon’s model, which
is a prototypical type I fracton model [10]. It has recently
been shown to exhibit an emergent fractonic gauge the-
ory with fermionic gauge charge (i.e., it is obtained by
gauging fermion parity subsystem symmetries) and, like
the semionic X -cube model, nontrivial (twisted) statistics
in the gauge flux sector [66].

A. Fermionic Haah’s code

The construction of the Haah code TDN proceeded by
ungauging the model, coarse graining the lattice, then
expanding individual Ising spins on the ungauged level
into macroscopic blocks of Ising paramagnets, which
become the 3 strata of the resulting TDN upon gauging.
An analogous procedure can be carried through for the
fermionic Haah’s code, except that instead of Ising spins,
individual fermionic orbitals are expanded into macro-
scopic blocks of atomic insulator states. Upon gauging,
these blocks become 3 strata occupied by fermionic Z2
topological order (i.e., with fermionic electric charge).
Therefore, the TDN of the fermionic Haah’s code is iden-
tical to that of the Haah code, except with the toric code
3 strata replaced by fermionic toric code 3 strata. The
electric condensations of Sec. IV D are consistent with
fermionic electric charge since an even number of charges
is contained in each condensed excitation.

B. Semionic X -cube model

The semionic X -cube model is a variant of the X -cube
model obtained by coupling three stacks of 2D doubled
semion topological order [64]. The original Hamiltonian
can be transformed into a non-CSS stabilizer code model
via a generalized local unitary transformation [65]. The
excitation content of the model is identical to that of the
ordinary X -cube model in terms of fusion and mobility,
however it differs in the self-exchange statistics of the ele-
mentary lineons—a given lineon has statistics identical to
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those of a bound state of 2D semions living in orthogo-
nal planes. Like the X -cube model, the semionic X -cube
model exhibits an emergent fractonic gauge theory, which
is obtained by gauging Z2 planar subsystem symmetries
of a nontrivial SSPT phase. The nontrivial statistics of the
gauge flux lineons are a manifestation of the nontriviality
of this SSPT.

1. Weak SSPT

The ungauged semionic X -cube model is in fact a weak
SSPT in the sense of Refs. [60,67], meaning roughly that
it can be obtained from a trivial symmetric product state
by stacking 2D SPT states. For our purposes, it is useful
to consider the following construction of a Hamiltonian
HSSPT realizing this phase. The model is defined in refer-
ence to a cubic lattice� and its dual lattice�′. The Hilbert
space has the form H = Hbulk

⊗
P∈�′HP where P runs

over all x-, y-, and z-oriented planes of the dual lattice.
Hbulk contains one qubit on each site of the direct lattice
�, whereas HP is a tensor-product Hilbert space whose
degrees of freedom lie in the plane P. The specific micro-
scopic form of HP is unimportant. The Hamiltonian is

HSSPT = −
∑
i∈�

Xi +
∑
P∈�′

HP, (115)

where HP is the Hamiltonian for a Levin-Gu Z2 SPT state
[68] living in HP. The Hamiltonian HP is symmetric under
a Z2 operator SP, however we do not consider this operator
to be a physical symmetry of the system. Instead, there is
one Z2 planar subsystem symmetry for each plane Q of the
direct lattice �, which has the form

SQ = SPS′P
∏
i∈Q

Xi, (116)

where P and P′ are the dual lattice planes adjacent to Q.
When all SQ symmetries are gauged, the resulting model is
equivalent to the semionic X cube under generalized local
unitary transformation [67].

2. TDN

We can now construct a TDN for the semionic X -cube
model by first fine graining the ungauged model HSSPT
to produce an ungauged TDN, and then gauging the pla-
nar subsystem symmetries. Hence, each qubit in HIsing is
expanded into a paramagnetic 3 stratum, and the Levin-
Gu state in each HP becomes highly fine grained with
respect to the spacing of�. Upon gauging the fine-grained
SQ symmetries, the 3 strata are occupied by blocks of 3D
toric code. Because each SQ acts on the adjacent Hilbert
spaces HP and HP′ , each of which hosts a Levin-Gu SPT
under SQ, the 3 strata toric codes have boundary condi-
tion on 2 strata corresponding to a condensate of m loops

in which each m string endpoint is attached to an other-
wise confined semion. On the other hand, in the ungauged
TDN a quadruple of symmetry charges in each of the
four paramagnetic 3 strata adjacent to a given 1 strata is
uncharged under all of the fine-grained SQ symmetries, as
in the case of the ungauged X -cube TDN. Therefore, in
the gauged TDN, the 1 strata are characterized by conden-
sation of e1e2e3e4 composites. In summary, the semionic
X -cube TDN is identical to the X -cube TDN of Sec. III,
except that the m loop-condensing boundary conditions on
2 strata are replaced by their twisted counterparts [69]. As
in the X -cube TDN, the fracton excitation of the semionic
X -cube model in this TDN construction can be identified
as a single electric charge excitation of a particular 3 stra-
tum. The lineon excitation is likewise identified as a short
gauge flux string segment in the vicinity of a particular 1
stratum. However, in this case a flux loop can only termi-
nate on a 2 stratum if it is bound to a semion. Therefore, the
lineon inherits nontrivial statistics arising from the bound
state of two semions in orthogonal layers.

An alternative way to understand this TDN is via the
following condensation procedure. We begin with the ordi-
nary X -cube TDN, and stack a 2D doubled semion layer
onto each plane of the stratification. Then, we condense all
excitations of the form e−be+ on the 2 strata. Where e± are
the electric charges living on either side of a given 2 stra-
tum, and b is the boson of the doubled semion layer on that
2 stratum. The state prior to condensation can be under-
stood as a TDN composed of blocks of (1) 3D toric code on
3 strata and (2) 2D doubled semion layers on 2 strata, glued
together via condensation of the following excitations:

2 strata :
〈
m−, m+

〉
1 strata :

〈
e1e2e3e4, m1m2, m2m3, m3m4,

s12s34, s̄12s̄34, s23s41, s̄23s̄41
〉

where m± are the gauge flux loops living above or below
the given 2 stratum, ei and mi the excitations of the ith 3
stratum adjacent to the given 1 stratum (i = 1, 2, 3, 4), and
sij (s̄ij ) the semion (antisemion) on the 2 stratum between
the ith and j th 3 strata. The 2 strata condensations and first
line of 1 strata condensation simply encode the X -cube
TDN, whereas the second line of 1 strata condensation
simply encodes the fact that the blocks of 2D doubled
semion order within a given plane are all connected to form
a single doubled semion layer [70].

The condensation of all e−be+ excitations on 2 strata has
the following consequences. First, all individual semions s
and antisemions s̄ become confined due to the nontrivial
braiding with e−be+. However, bound states of semions
(or antisemions) attached to the endpoints of an m− or
m+ loop terminating on a 2 stratum survive as deconfined
excitations. In fact, m loops must be bound to semions
(or antisemions) at their endpoints due to the nontrivial

010304-25



SONG, DUA, SHIRLEY, and WILLIAMSON PRX QUANTUM 4, 010304 (2023)

braiding of a bare loop with e−be+, hence modifying the
statistics of the lineon excitations. Finally, the 1 strata con-
densate is reduced to the subset of topological excitations
that braid trivially with e−be+:

〈
e1e2e3e4, m1m2s41s23, m2m3s12s34, m3m4s23s41

〉
.

Due to the condensation of e−be+ excitations on 2 strata,
the bosons b from the doubled semion layers may still
pass through the 1 strata, i.e., b12b34, b23b41, are con-
densed there. This further implies that composite excita-
tions formed by pairs of magnetic flux lines with anti-
semions replacing the semions in the condensate above,
such as m1m2s̄41s̄23, condense on the 1 strata.

C. Chamon’s model

Chamon’s model [10] was the first topological frac-
ton model to appear in the literature. It is a qubit model
defined on a FCC lattice with one qubit per site. The
Hamiltonian takes the form H = −∑

i Oi, where Oi is the
multiqubit Pauli operator depicted in Fig. 6. These terms
mutually commute and have an unfrustrated ground space,
hence this Hamiltonian constitutes a non-CSS stabilizer
code. The basic properties of this model, such as ground-
state degeneracy and types of fractonic excitations, are
discussed in detail in Ref. [19].

Recently, a generalized local unitary equivalence was
discovered [66] between Chamon’s model and a 4-
foliated X -cube model [71,72] variant H4-fol characterized
by an emergent fractonic gauge theory with fermionic
gauge charges and nontrivial (twisted) lineonic gauge flux
exchange statistics. Similar to the case of the semionic X -
cube model, this emergent gauge theory is dual to a weak
SSPT state, meaning it can be obtained by stacking 2D
invertible states onto a trivial symmetric product state. This
structure enables the construction of a TDN representation
as we describe below.

FIG. 6. Chamon’s fracton model on the FCC lattice. There is
one qubit on every blue dot and the six-body stabilizer term, as
shown, is defined on every vertex indicated by a gray dot.

1. Weak SSPT

We consider the following construction of a Hamilto-
nian HSSPT dual to H4-fol [66]. The model is defined in
reference to a tetrahedral-octahedral honeycomb cellula-
tion � (see Fig. 7). The Hilbert space has the form H =
Hbulk

⊗
P∈�HP, where P runs over all planes of the hon-

eycomb. Hbulk contains a qubit attached to each tetrahedral
3 cell of� and a fermionic orbital attached to each octahe-
dral 3 cell of �, whereas HP is a fermionic tensor-product
Hilbert space whose degrees of freedom lie in plane P of
the honeycomb. The specific microscopic form of HP is
unimportant. The Hamiltonian is

HSSPT = −
∑
c∈T

Xc −
∑
c∈O

iγcγ
′
c +

∑
P∈�

HP, (117)

where T (O) runs over all tetrahedral (octahedral) 3 cells,
γc and γ ′c refer to the two Majorana operators on orbital
c, and HP is the Hamiltonian of an invertible fermionic
topological order living in HP. The invertible topological
order described by HP is dual to the ν = 4 (ν = −4) Kitaev
sixteenfold way state [73] for even (odd) plane P. There is
one Z2 planar subsystem symmetry for each slice Q of the
honeycomb �, which has the form

SQ = Z
P
2 Z

P′
2

∏
c∈Q∩T

Xc

∏
c∈Q∩O

iγcγ
′
c , (118)

where P and P′ are the honeycomb planes enclosing the
slice Q, and Z

P
2 refers to the fermion parity ofHP. When all

SQ symmetries are gauged, the resulting model is equiva-
lent to H4-fol and hence Chamon’s model under generalized
local unitary transformation [74].

2. TDN

We can now construct a TDN for Chamon’s model by
first fine graining the ungauged model HSSPT to produce

FIG. 7. Tetrahedral-octahedral honeycomb stratification used
in the construction of a TDN for Chamon’s model.
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an ungauged TDN, and then gauging the planar subsys-
tem symmetries. The stratification of space is thus given
by the tetrahedral-octahedral honeycomb on which HSSPT
is defined. This TDN combines nontrivial aspects of both
of the previous examples: fermionic 3D toric code in (some
of) the 3 strata, and twisted boundary conditions along 2
strata. Note that each unit cell of the honeycomb actu-
ally corresponds to a 2× 2× 2 unit cell of Chamon’s
model [66]. Upon gauging the fine-grained SQ symmetries,
the tetrahedral (octahedral) 3 strata are occupied by blocks
of bosonic (fermionic) 3D toric code. Because each SQ acts
on the adjacent Hilbert spaces HP and HP′ , each of which
hosts an invertible fermionic topological order dual to the
ν = ±4 Kitaev state, the 3 strata toric codes have bound-
ary condition on 2 strata corresponding to a condensate of
m loops in which each m string endpoint is attached to an
otherwise confined semion or antisemion (depending on
whether P is an even or odd layer). On the other hand,
in the ungauged TDN a quadruple of symmetry charges in
each of the four paramagnetic 3 strata adjacent to a given
1 strata is uncharged under all of the fine-grained SQ sym-
metries. After gauging, this leads to a quadruple of gauge
charges that has trivial total gauge charge, i.e., a cluster that
is topologically trivial and can be created locally. Hence in
the gauged TDN the 1 strata are characterized by conden-
sation of e1e2e3e4 composites, where ei is either fermionic
or bosonic depending on the 3 stratum.

The intuition behind this TDN is similar to that of the
semionic X cube model. Individual electric charge exci-
tations of a particular 3 stratum are fractons, which are
either bosonic or fermionic depending on the 3 stratum.
Short gauge flux string segments in the vicinity of a par-
ticular 1 stratum are lineons. In this case a flux loop can
only terminate on a 2 stratum if it is bound to a semion
or antisemion of the 2D topological order on that stratum.
Therefore, the lineon inherits nontrivial statistics arising
from the bound state of two anyons in orthogonal layers. It
can be shown that the topological excitations of this TDN,
in terms of fusion rules and statistics, are identical to those
of Chamon’s model (see Ref. [66] for details).

We now briefly sketch a condensation procedure that
reproduces this TDN. First, we construct a TDN corre-
sponding to the untwisted version of H4-fol, i.e., with trivial
lineon statistics. This TDN is identical to the X -cube TDN
except that (1) it is defined on the tetrahedral-octahedral
honeycomb rather than a simple cubic stratification, and
(2) the octahedral 3 strata are occupied by fermionic 3D
toric code rather than ordinary 3D toric code. We then
stack onto this TDN a ν = 4 Kitaev state on each even
honeycomb plane, and a ν = −4 Kitaev state on each odd
honeycomb plane. Then, we condense all excitations of
the form e−fe+ where e± are the electric charges living
on either side of a given 2 stratum, and f is the fermion
of Kitaev state on that 2 stratum (recall that the ν = 4
state is the semion-fermion topological order, whereas the

ν = −4 state is the antisemion-fermion topological order).
The e−fe+ excitations are always bosonic since each 2 stra-
tum is straddled by one fermionic and one bosonic 3D
toric code. The result of this condensation is to (1) con-
fine all individual semions or antisemions, such that these
Kitaev states no longer exist as separate topological orders
but rather as twisted boundary conditions for the adjacent
toric codes, and (2) attach a semion or antisemion to the
endpoints of each m loop terminating on a given 2 stratum,
thus yielding the TDN described above. The condensate
on 1 strata is of the same form as the semionic X cube
described above, with some e charges being replaced by
fermionic e charges, and the semions being replaced by
the semions in the ν = ±4 Kitaev states.

VII. CONCLUSION

In this work, we have proposed a general method to
construct topological defect networks for a wide range
of topological lattice Hamiltonians. We provided a gen-
eral recipe that produces a phase-equivalent TDN from
any topological CSS stabilizer Hamiltonian. Our general
recipe was applied to produce a TDN for Haah’s cubic
code, the canonical type-II example for which no TDN
was previously known. We additionally proposed a TDN
for Chamon’s non-CSS fracton code, the first topological
fracton model to be discovered. Our focus was restricted to
models with prime-dimensional qudits but we foresee no
obstacle to generalizing our TDN constructions to models
with qudits of nonprime dimensions.

Our results provides a different point of view on topolog-
ical CSS stabilizer codes that brings the TDN framework to
bear on important questions about their structure and code
properties. We believe this will lead to valuable insights,
just as ideas from TQFT have for 2D codes [6,75].

Interestingly, our construction generalizes directly to
any phase of matter that can be obtained by gauging
(potentially fermionic) subsystem symmetries of stacked
(possibly subdimensional) topological quantum field the-
ory layers [76]. To the best of our knowledge, this covers
almost all known gapped fracton models whose excita-
tions have finite order under fusion, including non-Abelian
models [77–85]. This general construction supports the
following refinement of the conjecture posed in Ref. [36]:
TDNs can realize all zero-temperature gapped phases of
matter whose excitations have finite order under fusion. It
is notable that even for a relatively simple non-CSS Pauli
stabilizer Hamiltonian such as Chamon’s model, our gen-
eral recipe may produce a TDN that involves far more
complex ingredients that are beyond Pauli stabilizer mod-
els. This differs from the CSS case we studied, in which
the general construction produces a CSS Pauli stabilizer
Hamiltonian for the TDN, which has essentially the same
level of complexity as the original Hamiltonian, only more
degrees of freedom.
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There are, however, models that are expected to lie
beyond the class for which our recipe works and hence pro-
vide an important testing ground for the above conjecture.
The gauged strong subsystem symmetry protected phases
introduced in Ref. [67] provide explicit examples, which
have so far not been realized via a TDN.

For the description of models with topological excita-
tions that have infinite order under fusion, and/or local
degrees of freedoms that have an infinite-dimensional local
Hilbert space, we expect a generalization of the TDN
construction to be necessary. We envision such a construc-
tion to be built from well-understood components, such as
gauge theories based on continuous Lie groups, the sim-
plest example being U(1), on the 3 strata, and appropriate
defects therein on the lower-dimensional strata. Working
out the details of such a framework, and whether this
is capable of describing all gapped phases in three (and
higher) spatial dimensions, specifically those with infinite
order excitations, remains an open question.
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APPENDIX: FURTHER TDN EXAMPLES

Our TDN construction can be applied to an arbitrary
topological CSS stabilizer Hamiltonian. Yoshida’s frac-
tal spin liquid models [14] provide an infinite family of
fracton CSS stabilizer Hamiltonians to which our con-
struction applies. In this Appendix we describe TDNs for
two specific fractal spin liquid models, a simple example,
previously considered in Ref. [36], and a more nontriv-
ial type-II example, that is equivalent to Haah’s cubic
code [14].

1. Yoshida’s first-order fractal spin liquid

The Hamiltonian of the simplest of Yoshida’s first-order
fractal spin liquids is given by

HF SL = −
∑

c

−
∑

c

(A1)

The sums are over all cubes. The constraints of the
ungauged FSL are thus given by

(A2)

By applying the gauging map we introduce in Sec. II and
the general recipe of constructing TDNs in Sec. V, we
get the nontrivial Gauss’s law terms near the z-oriented 1
strata, which are given by

(A3)

The green gauge qubits are on the center of plaquettes. The
flux terms are given by

,

(A4)

which are exactly the same as the flux terms of Eq. (A1).
By applying the method we introduce in Sec. III E, the

condensations on the z-oriented 1 strata are given by〈
e2e3e4, m2m3, m3m4, m1

〉
.

On the xy-oriented 2 strata, all Hamiltonian terms are the
same as the bulk. Therefore, the condensation are given by〈

e+e−, m+m−
〉
.

+ and − are the labels for two neighboring 3 strata. As
we do not have constraint terms on other 2 strata, the
condensations there are simply given by〈

m+, m−
〉
.

There are no further condensations on other 1 strata.

2. Cubic code in FSL form

One can also write Haah’s cubic code 1 A in FSL form.
The constraint terms of the ungauged model are given by
the matrix,

σc =
(
1+ x + x2 + x2y 1+ x + x2 + xz + x2z + x2z2

)
,

(A5)

which are shown in Fig. 8. We notice these terms are not
nearest neighbor. So to get the TDN, according to Sec. V,
we first coarse grain it along x and z directions as shown in
Fig. 8. The coarse-grained constraint terms are given by
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σc →

⎛
⎜⎝

1+ x 0 x + xy 0 1+ x + xz 0 x + xz xz
0 1+ x 0 x + xy 0 1+ x + xz x x + xz

1+ y 0 1+ x 0 1+ z z 1+ x + xz 0
0 1+ y 0 1+ x 1 1+ z 0 1+ x + xz

⎞
⎟⎠ . (A6)

We notice that the first four columns depend only on x and
y, so these terms become ultralocal on z-oriented 1 strata.
By applying the method we introduce in Sec. III E, electric
condensations on z-oriented 1 strata are given by〈

ec
1ed

1ec
3ed

3, eb
1ed

1ec
3ed

3, ec
2ed

2ec
4ed

4, eb
2ed

2ec
4ed

4

〉
.

The same as the labels we use in Sec. IV D. {a, b, c, d, e, f ,
g, h} are the labels of 3 strata and {1, 2, 3, 4} are the labels
of the layers inside each 3 stratum. Here the reason why
we only have four layers rather than eight is that we coarse
grain only the lattice along two different directions x and z.

The last four columns depend only on x and z, so these
terms become ultralocal on y-oriented 1 strata. Similarly,
the corresponding electric condensations are given by

〈
ea

1eb
1ef

1 ea
3ee

3ea
4, ea

2eb
2ef

2 ee
3ea

4ee
4, eb

1ef
1 eb

2ea
3eb

3ef
3 ,

ef
1 eb

2ef
2 ea

4eb
4ef

4

〉
.

According to Sec. III E we know that the magnetic conden-
sations braid with the electric condensations trivially. Thus
for the z-oriented 1 strata, the magnetic condensations are
given by〈

md
1ma

3md
3, md

2ma
4md

4, ma
3mc

3md
3, ma

4mc
4md

4, mc
1ma

3,

mb
1md

3, mc
2ma

4, mb
2mb

4, ma
1, ma

2, mb
3, mb

4

〉
.

For the y-oriented 1 strata, they are given by
〈
mb

1mf
3 ma

4me
4mf

4 , ma
3mf

3 ma
4me

4mf
4 , ma

1ma
4me

4mf
4 ,

mf
1 mf

3 ma
4me

4, mb
2mf

3 me
4mf

4 , mf
2 me

4mf
4 , me

3ma
4mf

4 ,

ma
2me

4, mb
3mf

3 , mb
4mf

4 , me
1, me

2

〉
.

Since there is no constraint terms become ultralocal on
2 strata, similar to the X -cube model in Sec. III E, the

y

x

z

Z
Z

Z

Z

Z

Z

Z

Z

Z
Z

FIG. 8. The constraint terms of the ungauged CC1 in FSL
form.

condensations on 2 strata are just trivial magnetic fluxes,
which are given by

〈
m+1 , m+2 , m+3 , m+4 , m−1 , m−2 , m−3 , m−4

〉
,

where +(−) refer to two neighboring 3 strata and
{1, 2, 3, 4} are the labels of layers inside each 3 stratum.

In conclusion, the condensations of CC1 in FSL form
are given by

1 strata (y) :
〈
ea

1eb
1ef

1 ea
3ee

3ea
4, ea

2eb
2ef

2 ee
3ea

4ee
4, eb

1ef
1 eb

2ea
3eb

3ef
3 ,

ef
1 eb

2ef
2 ea

4eb
4ef

4 , mb
1mf

3 ma
4me

4mf
4 , ma

1ma
4me

4mf
4 ,

ma
3mf

3 ma
4me

4mf
4 , mf

1 mf
3 ma

4me
4, mb

2mf
3 me

4mf
4 ,

mf
2 me

4mf
4 , me

3ma
4mf

4 , ma
2me

4, mb
3mf

3 , mb
4mf

4 ,

me
1, me

2

〉
1 strata (z) :

〈
ec

1ed
1ec

3ed
3, eb

1ed
1ec

3ed
3, ec

2ed
2ec

4ed
4, eb

2ed
2ec

4ed
4, mc

1ma
3,

md
1ma

3md
3, md

2ma
4md

4, ma
3mc

3md
3, ma

4mc
4md

4,

mb
1md

3, mc
2ma

4, mb
2mb

4, ma
1, ma

2, mb
3, mb

4

〉
2 strata :

〈
m+1 , m+2 , m+3 , m+4 , m−1 , m−2 , m−3 , m−4

〉
.

There is no condensations on x-oriented 1 strata, 3 strata,
and 0 strata.

[1] F. J. Wegner, Duality in generalized Ising models and phase
transitions without local order parameters, J. Math. Phys.
12, 2259 (1971).

[2] P. W. Anderson, Resonating valence bonds: A new kind of
insulator?, Mater. Res. Bull. 8, 153 (1973).

[3] R. B. Laughlin, Anomalous Quantum Hall Effect: An
Incompressible Quantum Fluid with Fractionally Charged
Excitations, Phys. Rev. Lett. 50, 1395 (1983).

[4] X. G. Wen, Vacuum degeneracy of chiral spin states in
compactified space, Phys. Rev. B 40, 7387 (1989).

[5] X. G. Wen, Topological orders in rigid states, Int. J. Mod.
Phys. B 04, 239 (1990).

[6] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. 303, 2 (2003).

[7] E. Witten, Topological quantum field theory, Commun.
Math. Phys. 117, 353 (1988).

[8] M. Atiyah, Topological quantum field theories, Publ. Math.
de l’Inst. des Hautes Sci. 68, 175 (1988).

[9] J. Haah, Classification of translation invariant topological
Pauli stabilizer codes for prime dimensional qudits on two-
dimensional lattices, J. Math. Phys. 62, 012201 (2021).

010304-29

https://doi.org/10.1063/1.1665530
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevB.40.7387
https://doi.org/10.1142/s0217979290000139
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1007/BF01223371
https://doi.org/10.1007/BF02698547
https://doi.org/10.1063/5.0021068


SONG, DUA, SHIRLEY, and WILLIAMSON PRX QUANTUM 4, 010304 (2023)

[10] C. Chamon, Quantum Glassiness in Strongly Correlated
Clean Systems: An Example of Topological Overprotec-
tion, Phys. Rev. Lett. 94, 40402 (2005).

[11] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A - At., Mol., Opt. Phys.
83, 42330 (2011).

[12] I. H. Kim, 3d local qupit quantum code without string
logical operator, (2012), ArXiv:1202.0052.

[13] C. Castelnovo and C. Chamon, Topological quantum
glassiness, Philos. Mag. 92, 304 (2012).

[14] B. Yoshida, Exotic topological order in fractal spin liquids,
Phys. Rev. B 88, 125122 (2013).

[15] S. Vijay, J. Haah, and L. Fu, A new kind of topological
quantum order: A dimensional hierarchy of quasiparticles
built from stationary excitations, Phys. Rev. B 92, 235136
(2015).

[16] S. Vijay, J. Haah, and L. Fu, Fracton topological order, gen-
eralized lattice gauge theory and duality, Phys. Rev. B 94,
235157 (2016).

[17] D. J. Williamson, Fractal symmetries: Ungauging the cubic
code, Phys. Rev. B 94, 155128 (2016).

[18] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Fracton Mod-
els on General Three-Dimensional Manifolds, Phys. Rev. X
8, 031051 (2018).

[19] S. Bravyi, B. Leemhuis, and B. M. Terhal, Topological
order in an exactly solvable 3D spin model, Ann. Phys. 326,
839 (2010).

[20] S. Bravyi and J. Haah, Energy Landscape of 3D Spin
Hamiltonians with Topological Order, Phys. Rev. Lett. 107,
150504 (2011).

[21] S. Bravyi and J. Haah, Quantum Self-Correction in the
3D Cubic Code Model, Phys. Rev. Lett. 111, 200501
(2013).

[22] B. J. Brown and D. J. Williamson, Parallelized quantum
error correction with fracton topological codes, Phys. Rev.
Res. 2, 1 (2020).

[23] I. H. Kim and J. Haah, Localization from Superselection
Rules in Translation Invariant Systems, Phys. Rev. Lett.
116, 027202 (2016).

[24] A. Prem, J. Haah, and R. Nandkishore, Glassy quantum
dynamics in translation invariant fracton models, Phys.
Rev. B 95, 155133 (2017).

[25] M. Pretko and L. Radzihovsky, Fracton-Elasticity Duality,
Phys. Rev. Lett. 120, 195301 (2018).

[26] A. Gromov, Fractional topological elasticity and fracton
order, (2017), arXiv preprint ArXiv:1712.06600.

[27] D. Doshi and A. Gromov, Vortices and fractons (2020),
ArXiv:2005.03015.

[28] M. Pretko, Subdimensional particle structure of higher rank
U(1) spin liquids, Phys. Rev. B 95, 115139 (2017).

[29] K. Slagle and Y. B. Kim, Quantum field theory of X-
cube fracton topological order and robust degeneracy from
geometry, Phys. Rev. B 96, 195139 (2017).

[30] A. Gromov, Towards Classification of Fracton Phases: The
Multipole Algebra, Phys. Rev. X 9, 031035 (2019).

[31] K. Slagle, D. Aasen, and D. Williamson, Foliated field
theory and string-membrane-net condensation picture of
fracton order, SciPost Phys. 6, 043 (2019).

[32] N. Seiberg, Field theories with a vector global symmetry,
SciPost Phys. 8, 050 (2019).

[33] N. Seiberg and S. Shao, Exotic symmetries, duality, and
fractons in 2+1-dimensional quantum field theory, (2020),
ArXiv:2003.10466.

[34] N. Seiberg and S.-H. Shao, Exotic u(1) symmetries, dual-
ity, and fractons in 3+1-dimensional quantum field theory,
(2020), ArXiv:2004.00015.

[35] K. Slagle, Foliated Quantum Field Theory of Fracton Order,
Phys. Rev. Lett. 126, 101603 (2021).

[36] D. Aasen, D. Bulmash, A. Prem, K. Slagle, and D. J.
Williamson, Topological defect networks for fractons of all
types, Phys. Rev. Res. 2, 043165 (2020).

[37] X. Ma, W. Shirley, M. Cheng, M. Levin, J. McGreevy,
and X. Chen, Fractonic order in infinite-component Chern-
Simons gauge theories, (2020), ArXiv:2010.08917.

[38] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A - At., Mol., Opt. Phys.
54, 1098 (1996).

[39] A. Steane, Multiple-particle interference and quantum error
correction, Proc. R. Soc. A: Math., Phys. Eng. Sci. 452,
2551 (1996).

[40] X. Yin, J. Zhang, and X. Wang, Sequential injection anal-
ysis system for the determination of arsenic by hydride
generation atomic absorption spectrometry, Fenxi Huaxue
32, 1365 (2004).

[41] A. Dua, I. H. Kim, M. Cheng, and D. J. Williamson, Sort-
ing topological stabilizer models in three dimensions, Phys.
Rev. B 100, 155137 (2019).

[42] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R.
Wootton, Quantum memories at finite temperature, Rev.
Mod. Phys. 88, 45005 (2016).

[43] L. P. Kadanoff, Scaling laws for Ising models near Tc, Phys.
Phys. Fiz. 2, 263 (1966).

[44] J. Haah, Bifurcation in entanglement renormalization group
flow of a gapped spin model, Phys. Rev. B 89, 75119
(2014).

[45] N. Carqueville, C. Meusburger, and G. Schaumann, 3-
dimensional defect TQFTs and their tricategories, preprint,
(2016), ArXiv:1603.01171.

[46] X.-G. Wen, Systematic construction of gapped nonliquid
states, Phys. Rev. Res. 2, 033300 (2020).

[47] J. Wang, Non-liquid cellular states, (2020), ArXiv:2002.
12932.

[48] H. Bombin, Topological Order with a Twist: Ising Anyons
from an Abelian Model, Phys. Rev. Lett. 105, 30403
(2010).

[49] S. Beigi, P. W. Shor, and D. Whalen, The quantum dou-
ble model with boundary: Condensations and symmetries,
Commun. Math. Phys. 306, 663 (2011).

[50] A. Kitaev and L. Kong, Models for gapped bound-
aries and domain walls, Commun. Math. Phys. 313, 351
(2012).

[51] This covers all Pauli symmetries that are nonanomalous
and can hence be gauged [16,17] To see this consider the
restriction of Pauli symmetries to single sites; if all such
single-site restricted symmetry actions commute we can
change on-site basis to bring these actions into the form of
X operators. If some actions do not commute this indicates
an anomaly of the symmetry combined with the transla-
tion group. In this case we assume coarse graining can be
performed to restore on-site commutativity on a coarser

010304-30

https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevA.83.042330
https://arxiv.org/abs/1202.0052
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1103/PhysRevLett.107.150504
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/physrevresearch.2.013303
https://doi.org/10.1103/PhysRevLett.116.027202
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevLett.120.195301
https://arxiv.org/abs/1712.06600
https://arxiv.org/abs/2005.03015
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevX.9.031035
https://arxiv.org/abs/2003.10466
https://arxiv.org/abs/2004.00015
https://doi.org/10.1103/PhysRevLett.126.101603
https://doi.org/10.1103/PhysRevResearch.2.043165
https://arxiv.org/abs/2010.08917
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1103/PhysRevB.100.155137
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRevB.89.075119
https://arxiv.org/abs/1603.01171
https://doi.org/10.1103/PhysRevResearch.2.033300
https://arxiv.org/abs/2002.12932
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.1007/s00220-011-1294-x
https://doi.org/10.1007/s00220-012-1500-5


TOPOLOGICAL DEFECT NETWORK. . . PRX QUANTUM 4, 010304 (2023)

lattice scale, otherwise the anomaly cannot be removed by
explicitly breaking the translation group to a subgroup.

[52] D. J. Williamson and T. Devakul, Type-II fractons from
coupled spin chains and layers, Phys. Rev. B 103, 155140
(2021).

[53] J. Haah, Lattice Quantum Codes and Exotic Topologi-
cal Phases of Matter (California Institute of Technology,
Pasadena, 2013).

[54] A. Kubica and B. Yoshida, Ungauging quantum error-
correcting codes, (2018), ArXiv:1805.01836.

[55] W. Shirley, K. Slagle, and X. Chen, Foliated fracton order
from gauging subsystem symmetries, SciPost Phys. 6, 41
(2019).

[56] Here, we consider infinite systems to bypass subtle bound-
ary issues, and note that the duality holds only between
symmetric subspaces.

[57] J. Haah, Commuting Pauli Hamiltonians as maps between
free modules, Commun. Math. Phys. 324, 351
(2013).

[58] J. Haah, Algebraic methods for quantum codes on lattices,
Rev. Colomb. de Mat. 50, 299 (2016).

[59] Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, Sub-
system symmetry protected topological order, Phys. Rev. B
98, 035112 (2018).

[60] T. Devakul, D. J. Williamson, and Y. You, Classifica-
tion of subsystem symmetry-protected topological phases,
Phys. Rev. B 98, 235121 (2018).

[61] A condensible algebra (object) of bosons A is Lagrangian
if (dim A)2 = dim D(Zn

2). Here n is the number of Z2 lay-
ers and D(Z2) stands for the toric code topological order,
or quantum double of Z2. In the cubic code TDN, on 3
strata dimA = 28 and one can verify (dimA)2 = 216 = 48 =
dimD(Z8

2). On 2 strata we have (dimA)2 = 232 = 416 =
dimD(Z16

2 ). On 1 strata we have (dimA)2 = 264 = 432 =
dimD(Z32

2 ). Hence the defects that induce these condensa-
tions fully gap out the relevant strata.

[62] N. Tantivasadakarn, Jordan-Wigner dualities for translation-
invariant Hamiltonians in any dimension: Emergent
fermions in fracton topological order, Phys. Rev. Res. 2,
023353 (2020).

[63] W. Shirley, Fractonic order and emergent fermionic gauge
theory, (2020), ArXiv:2002.12026.

[64] H. Ma, E. Lake, X. Chen, and M. Hermele, Fracton topo-
logical order via coupled layers, Phys. Rev. B 95, 245126
(2017).

[65] T. Wang, W. Shirley, and X. Chen, Foliated fracton order
in the Majorana checkerboard model, Phys. Rev. B 100,
085127 (2019).

[66] W. Shirley, X. Liu, and A. Dua, Emergent fermionic gauge
theory and foliated fracton order in the Chamon model, to
appear (2022).

[67] T. Devakul, W. Shirley, and J. Wang, Strong planar subsys-
tem symmetry-protected topological phases and their dual

fracton orders, Phys. Rev. Res. 2, 012059 (2020).
[68] M. Levin and Z. C. Gu, Braiding statistics approach to

symmetry-protected topological phases, Phys. Rev. B -
Condens. Matter Mater. Phys. 86, 115109 (2012).

[69] H. Wang, Y. Li, Y. Hu, and Y. Wan, Gapped bound-
ary theory of the twisted gauge theory model of three-
dimensional topological orders, J. High Energy Phys. 2018,
1 (2018).

[70] Note that s12s34 becomes a boson after folding the layers
meeting at a 1 strata to form a gapped boundary to vacuum
[36].

[71] K. Slagle and Y. B. Kim, X-cube model on generic lat-
tices: Fracton phases and geometric order, Phys. Rev. B 97,
165106 (2018).

[72] W. Shirley, K. Slagle, and X. Chen, Fractional excitations
in foliated fracton phases, Ann. Phys. 410, 167922 (2019).

[73] Kitaev Alexei, Anyons in an exactly solved model and
beyond, Ann. Phys. (N. Y) 321, 2 (2006).

[74] The set of SQ symmetries generate the global fermion par-
ity, hence upon gauging the model no longer has physical
fermions.

[75] J. Haah, An invariant of topologically ordered states under
local unitary transformations, Commun. Math. Phys. 342,
771 (2016).

[76] More generally, the TQFT layers can be replaced by any
states that are entanglement renormalization group fixed
points.

[77] S. Vijay and L. Fu, A generalization of non-abelian anyons
in three dimensions, (2017), ArXiv:1706.07070.

[78] A. Prem, S.-J. Huang, H. Song, and M. Hermele, Cage-Net
Fracton Models, Phys. Rev. X 9, 021010 (2019).

[79] H. Song, A. Prem, S.-J. Huang, and M. A. Martin-Delgado,
Twisted fracton models in three dimensions, Phys. Rev. B
99, 155118 (2019).

[80] D. Bulmash and M. Barkeshli, Gauging fractons: Immo-
bile non-Abelian quasiparticles, fractals, and position-
dependent degeneracies, Phys. Rev. B 100, 00 (2019).

[81] A. Prem and D. Williamson, Gauging permutation symme-
tries as a route to non-Abelian fractons, SciPost Phys. 7,
068 (2019).

[82] D. J. Williamson and M. Cheng, Designer non-Abelian
fractons from topological layers, (2020), ArXiv:2004.
07251.

[83] D. T. Stephen, J. Garre-Rubio, A. Dua, and D. J.
Williamson, Subsystem symmetry enriched topological
order in three dimensions, Phys. Rev. Res. 2, 033331
(2020).

[84] J. Sullivan, T. Iadecola, and D. J. Williamson, Planar
p-string condensation: Chiral fracton phases from frac-
tional quantum Hall layers and beyond, Phys. Rev. B 103,
205301 (2021).

[85] N. Tantivasadakarn, W. Ji, and S. Vijay, Non-Abelian
hybrid fracton orders, Phys. Rev. B 104, 115117 (2021).

010304-31

https://doi.org/10.1103/PhysRevB.103.155140
https://arxiv.org/abs/1805.01836
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.15446/recolma.v50n2.62214
https://doi.org/10.1103/PhysRevB.98.235121
https://doi.org/10.1103/PhysRevResearch.2.023353
https://arxiv.org/abs/2002.12026
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevResearch.2.012059
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1007/JHEP10(2018)114
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1016/J.AOP.2019.167922
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1007/s00220-016-2594-y
https://arxiv.org/abs/1706.07070
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.100.155146
https://doi.org/10.21468/scipostphys.7.5.068
https://arxiv.org/abs/2004.07251
https://doi.org/10.1103/PhysRevResearch.2.033331
https://doi.org/10.1103/PhysRevB.103.205301
https://doi.org/10.1103/PhysRevB.104.115117

	I.. INTRODUCTION
	A.. Main results and ideas
	B.. Outline

	II.. BACKGROUND
	A.. Topological defect networks
	B.. Gauging spin models
	C.. Stabilizer formalism
	D.. Introducing locality
	E.. Example I: 2D Ising model and toric code
	F.. Example II: 2D cluster state with linear subsystem symmetries
	G.. Example III: 3D plaquette Ising model and X cube

	III.. REVISITING THE X-CUBE TDN
	A.. Review of the X-cube TDN
	B.. TDN representation of X cube via ungauging
	C.. Defect network for the plaquette Ising model
	D.. Gauging
	E.. Condensations and excitations in the X-cube TDN lattice model

	IV.. TDN FOR HAAH'S CUBIC CODE A
	A.. Introduction to Haah's cubic code A
	B.. Defect network for the fractal Ising model
	C.. TDN for Haah's cubic code
	D.. Condensations and excitations

	V.. TDN REPRESENTATIONS OF ALL TOPOLOGICAL CSS STABILIZER MODELS
	A.. The ungauged defect network
	B.. Gauging the ungauged defect network

	VI.. TDN REPRESENTATIONS OF NON-CSS STABILIZER CODES
	A.. Fermionic Haah's code
	B.. Semionic X-cube model
	1.. Weak SSPT
	2.. TDN

	C.. Chamon's model
	1.. Weak SSPT
	2.. TDN


	VII.. CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX: FURTHER TDN EXAMPLES
	1.. Yoshida's first-order fractal spin liquid
	2.. Cubic code in FSL form

	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


