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Nonstabilizerness or magic resource characterizes the amount of non-Clifford operations needed to pre-
pare quantum states. It is a crucial resource for quantum computing and a necessary condition for quantum
advantage. However, quantifying magic resource beyond a few qubits has been a major challenge. Here,
we introduce efficient measures of magic resource for pure quantum states with a sampling cost that is inde-
pendent of the number of qubits. Our method uses Bell measurements over two copies of a state, which
we implement in experiment together with a cost-free error-mitigation scheme. We show the transition of
classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer. For
applications, we efficiently distinguish stabilizer and nonstabilizer states with low measurement cost even
in the presence of experimental noise. Further, we propose a variational quantum algorithm to maximize
our measure via the shift rule. Our algorithm can be free of barren plateaus even for highly expressible
variational circuits. Finally, we experimentally demonstrate a Bell-measurement protocol for the stabilizer
Rényi entropy as well as the Wallach-Meyer entanglement measure. Our results pave the way to under-
standing the nonclassical power of quantum computers, quantum simulators, and quantum many-body
systems.
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I. INTRODUCTION

The simulation of quantum states is in general
intractable for classical computers. However, particular
classes of states can be efficiently simulated classically.
An important example concerns stabilizer states, which
are generated from Clifford operations [1,2]. The number
of non-Clifford operations needed to prepare a state can
be quantified by measures of nonstabilizerness or magic
resource. Henceforth, we abbreviate the term “magic
resource” to “magic.” Magic can be related to the diffi-
culty of classical simulation of quantum states [3–9] and
to quantum chaos [10–12]. Further, magic is a precious
resource required to realize universal unitaries [13,14] in
fault-tolerant quantum computers [15–18].

To characterize magic, various measures have been pro-
posed [6,10,19–28]. However, most measures require solv-
ing an optimization program, access to the amplitudes of
the quantum state, and a computational cost that scales
exponentially with the system size. Recently, stabilizer
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entropy has been proposed as an experimentally accessi-
ble measure [10]; however, its randomized measurement
protocol scales exponentially with the number of qubits
[29].

Rapid progress has been made in experimental demon-
strations of noisy intermediate-scale quantum computers
[30,31] and fault-tolerant quantum computers [32–35]. A
major challenge is to benchmark the power of quantum
computers and track their progress [36,37]. For fault-
tolerant quantum computers, magic characterizes the capa-
bility to implement universal quantum gates [14]. For
noisy intermediate-scale quantum computers, an important
benchmark is to prepare states that are difficult to simulate
classically [38], which can related to particular measures
of magic [4–6,11]. The relationship between the complex-
ity of quantum states and magic is also of major interest in
quantum many-body physics [39,40].

Here, we introduce Bell magic as an efficiently com-
putable measure of magic for quantum computers. The
number of measurements is independent of the number
of qubits and the classical postprocessing time scales lin-
early. Bell magic is a faithful measure of magic for pure
states, while for mixed states it is not faithful in general.
For noisy quantum computers, we use Bell measurements
over two copies of a state and error mitigation to compute
Bell magic efficiently. We propose practical applications
of Bell magic for state discrimination and to find highly
magical states with variational quantum algorithms. Our
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TABLE I. Definitions of symbols.

Name Symbol

Bell magic B
Additive Bell magic Ba
Probability of outcome r ∈ {0, 1}2N P(r)
Estimation error �B
Pauli string σn

1√
2
(|0〉 + e−i π4 |1〉) |T〉

cos( θ2 )|0〉 + e−i π4 sin( θ2 )|1〉, θ = arccos( 1√
3
) |R〉

cos( φ2 )|0〉 + sin( φ2 )|1〉 |Aφ〉
Number of qubits N
Number of measurements NQ
Resampling steps NR
Number of magic states NA
Number of T gates NT
Depolarizing error p
Classification error probability PE

variational quantum algorithm can have large gradients
even for highly expressible ansatz circuits. With the IonQ
quantum computer, we study the transition from stabilizer
states to intractable quantum states. Further, we experi-
mentally distinguish different types of states using magic.
Our results provide an indispensable tool to characterize
the magic of quantum computers, quantum simulators, and
numerical simulations of quantum many-body systems.

We first define preliminary concepts in Sec. II. Then, we
introduce Bell magic in Sec. III, its measurement scheme
in Sec. IV, and the method to mitigate errors in Sec. V. We
numerically and experimentally demonstrate the measure-
ment of Bell magic in Sec. VI. Then, we show applications
of Bell magic for state discrimination in Sec. VII and
for finding highly magical states with variational quantum
algorithms in Sec. VIII. Finally, the results are discussed in
Sec. IX. We give an overview of the definitions of symbols
in Table I.

II. PRELIMINARIES

We define the Pauli matrices σ00 = I2, σ01 = σ x, σ10 =
σ z, and σ11 = σ y . The 4N Pauli strings are N -qubit ten-
sor products of Pauli matrices, which we define as σn =⊗N

j =1 σn2j −1n2j , with n ∈ {0, 1}2N . The product of two
Pauli strings σr and σq can be written as σrσq = σr⊕q up
to a multiplication with {±1, ±i}, where ⊕ denotes a bit-
wise exclusive OR. The Bell states are given by |σ00〉 =
1/

√
2 (|00〉 + |11〉), |σ01〉 = 1/

√
2 (|00〉 − |11〉), |σ10〉 =

1/
√

2 (|01〉 + |10〉), and |σ11〉 = 1/
√

2 (|01〉 − |10〉) and
we define the product of Bell states as |σr〉 = |σr1r2〉 ⊗
· · · ⊗ |σr2N−1r2N 〉.

The stabilizer states |ψSTAB〉 are defined by a
commuting subgroup G of |G| = 2N Pauli strings
σ . We have 〈ψSTAB|σ |ψSTAB〉 = ±1 for σ ∈ G and
〈ψSTAB|σ ′|ψSTAB〉 = 0 for σ ′ /∈ G [1]. Any σr, σr′ ∈ G

commute [σr, σr′] = 0. The unitaries that transform stabi-
lizer states into other stabilizer states into stabilizer states
are the Clifford circuits UC. They can be generated by
combining the Clifford gate set consisting of the S gate
(S = diag[1, exp(−iπ/2)]), the Hadamard gate H, and the
controlled-NOT (CNOT) gate, which can be efficiently sim-
ulated on classical computers [1]. Universal unitaries are
realized by combining Clifford circuits with non-Clifford
resources such as the T gate (T = diag[1, exp(−iπ/4)])
[41]. Examples of stabilizer and nonstabilizer single-qubit
states are shown in Fig. 1(a).

Measures of magic characterize the distance to the set
of stabilizer states or unitaries [6,10,19–24,26,27]. Mea-
sures of magic are zero for stabilizer states and greater
than zero otherwise. Further, they should be nonincreasing
under Clifford operations [22]. Most schemes for fault-
tolerant quantum computers are based on stabilizers [15],
where universal quantum computation is enabled by con-
suming magic states [13]. Lower bounds on the number
of magic states necessary to generate a state or unitary
can be related to (sub)additive measures of magic such as
the robustness of magic [20], the stabilizer entropy [10],
or “mana” [22]. Further, measures such as the stabilizer
rank [5], the robustness of magic [20], or negativity [4]
can be related to the computational difficulty of particular
simulation algorithms for quantum states. For these algo-
rithms, the simulation cost increases drastically with the
number of non-Clifford gates. To understand the quantum
and classical cost of simulating and preparing quantum
states, one would like to compute measures of magic for
large quantum systems. However, the computational cost
scales in general exponentially with the qubit number for
the aforementioned measures.

We now introduce a measure of magic that can be
efficiently computed. We make use of entangled measure-
ments over multiple copies of states, which can reveal
information not accessible by single copies [42–45]. In
particular, measurements in the basis of Bell states are
known to give access to important properties, which
for single copies would require exponential resources
[45–49]. To realize Bell measurements, we first prepare
the tensor product ρA ⊗ ρB of two states ρA and ρB.
Then, we apply the Bell transformation with the unitary
UBell = ⊗N

n=1(H ⊗ I2)× cnot on all N pairs of qubits [see
Fig. 1(b)]. This transformation can also be realized in
atomic or photonic systems using a beam splitter [48].
Then, we measure NQ times in the computational basis
and record the outcomes rj ∈ {0, 1}2N with j = 1, . . . , NQ.
Here, rj

2n−1, n = 1, . . . , N is the outcome of the nth qubit
of subsystem A and rj

2n of subsystem B. This measurement
setting realizes a SWAP test to compute the trace overlap of
the two states

tr(ρAρB) = 1 − 2Podd, (1)
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FIG. 1. (a) Bell magic B [Eq. (3)] is a measure of nonstabilizerness for pure quantum states. The color shows B for the Bloch sphere
of a single qubit with Eq. (6), where the magnitude of B is increasing from blue to red. Stabilizer states along the main axes, such
as |0〉, |+〉, and |y〉, have zero magic, while the magic states |T〉 and |R〉 have nonzero magic. (b) The quantum circuit to measure B
of an N -qubit state |ψ〉 = U|0〉 with unitary U by preparing two copies |ψ〉 ⊗ |ψ〉 and measuring in the Bell basis. The number of
required measurements NQ is independent of N . (c) The state-discrimination scheme to determine whether a given state |ψ〉 belongs
to one of two classes α,β, with respective magic Bα > Bβ . When the estimated Bell magic B̂ is greater than a threshold B̂ > B∗, we
classify the state as class α; otherwise, class β. (d) The variational quantum algorithm to maximize magic by optimizing parameter θ

of the parametrized quantum circuit |ψ(θ)〉 = U(θ)|0〉. The algorithm runs via a feedback loop between measurements on the quantum
computer and a classical optimization routine.

where Podd is the probability that qj ∈ {0, 1}N has odd
parity, where qj

n = rj
2n−1 · rj

2n is a bit-wise AND of the
outcomes of each subsystem [46]. The SWAP test on two
copies of the same state ρ ⊗ ρ can give us the purity tr(ρ2)

as well as the entanglement 2-Rényi entropy tr(ρ2
k ) over a

subsystem ρk (see Appendix P).
Now, we perform the Bell measurement on two copies

of a pure state |ψ〉 ⊗ |ψ〉. The outcome r appears with a
probability [49]

P(r) = 〈ψ |〈ψ |Or|ψ〉|ψ〉 = 2−N |〈ψ |σr|ψ∗〉|2 , (2)

where Or = |σr〉〈σr| is the projector onto a product of
Bell states and |ψ∗〉 denotes the complex conjugate of
|ψ〉. For any state, we have 0 ≤ P(r) ≤ 2−N and there are
between 2N and 4N outcomes r with P(r) > 0. For any
set of bit strings {rj }NQ

j =1 sampled in the Bell basis from
a pure stabilizer state |ψSTAB〉 ∈ G, the Pauli strings of
its binary additions must commute, i.e., [σrk⊕rl , σrn⊕rm] =
0 ∀k, l, n, m (see Appendix A or Ref. [49]). Conversely,
finding at least one noncommuting Pauli string implies that
the measured quantum state is not a pure stabilizer state, as
the commuting subgroup G contains at most 2N elements.
This motivates the idea that the probability of observing
noncommuting Pauli strings is a measure of distance to the
set of pure stabilizer states.

III. BELL MAGIC

We now define Bell magic B as

B =
∑

r,r′,q,q′
∈{0,1}2N

P(r)P(r′)P(q)P(q′)
∥
∥[σr⊕r′ , σq⊕q′]

∥
∥

∞ , (3)

where the infinity norm is zero, ‖[σr, σq]‖∞ = 0, when
the two Pauli strings commute, [σr, σq] = 0, and
‖[σr, σq]‖∞ = 2 otherwise. As a measure of magic [22],
B is faithful with B(|ψSTAB〉) = 0 only for pure stabi-
lizer states |ψSTAB〉 and B > 0 otherwise. As shown in
Appendix B, B is also invariant under Clifford circuits
UC that map stabilizers to stabilizers, i.e., B(UC|ψ〉) =
B(|ψ〉). Further, Bell magic is constant under composition
with any stabilizer state |ψSTAB〉, i.e., B(|ψ〉 ⊗ |ψSTAB〉) =
B(|ψ〉) (see Appendix D). We numerically test an exten-
sive number of states and find that in all cases, Bell magic
is on average nonincreasing under measurements in the
computational basis over a set of qubits, i.e., B(|ψ〉) ≥∑

n qnB(Mn(|ψ〉)), where�n = |n〉〈n| ⊗ IN−1 is a projec-
tor on computational basis state |n〉, IN−1 is the identity
operator for N − 1 qubits, qn = 〈ψ |�n|ψ〉 is the mea-
surement probability, and Mn(|ψ〉) = q−1/2

n �n|ψ〉 is the
projected state.

We further define the additive Bell magic:

Ba = − log2(1 − B). (4)

Ba shares all properties with B and, further, is addi-
tive with Ba(|ψ〉 ⊗ |φ〉) = Ba(|ψ〉)+ Ba(|φ〉), which is
proven in Appendix C. Ba has the operational mean-
ing as the number of initial magic states |T〉 = T|+〉 =
1/

√
2(|0〉 + e−i(π)/4|1〉)within any Clifford circuit UC. For

a state |T〉⊗k ⊗ |0〉⊗(N−k) consisting of a tensor product of k
magic states and otherwise the stabilizer state |0〉, additive
Bell magic is given by

Ba(UC|T〉⊗k ⊗ |0〉⊗(N−k)) = k. (5)

The additive Bell magic of an N -qubit product state
|ψsp(θ , ϕ)〉 = ⊗N

n=1(cos(θn/2)|0〉 + e−iϕn sin(θn/2)|1〉) is
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given by

Ba(θ , ϕ) = −
N∑

n=1

log2[1 − 1
32

sin2(θn)(35 + 28 cos(2θn)

+ cos(4θn)− 8 cos(4ϕn) sin4(θn))], (6)

which becomes maximal with BR
a = N log2(27/11) ≈

1.3N for the magic state |R〉⊗N = (cos(θ/2)|0〉 + e−i(π)/4

sin(θ/2)|1〉)⊗N with θ = arccos(1/
√

3). For N = 1, the
state of maximal magic is |R〉 and for N = 3 it is the Hog-
gar state, coinciding with the states of maximal robustness
of magic [20]. We report the explicit forms of the pure
states of maximal magic up to N = 4 in Appendix G. For
pure states, we find that Bell magic is upper bounded by

Bpure ≤ 4N (1 + 2−N − 2 × 4−N )2

(4N − 1)(1 + 2−N )2
. (7)

This bound is not tight but we find that it is saturated for
N = 1 and N = 3.

Note that as Bell magic is a measure of distance to the set
of pure stabilizer states, it is in general nonzero for prob-
abilistic mixtures of stabilizer states and thus not a proper
measure of magic for generic mixed states. For example,
the maximally mixed state ρm = IN 2−N with the N -qubit
identity IN (which can be written as a probabilistic mixture
of pure stabilizer states) has the maximal Bell magic with
B(ρm) = 1 − 4−N and Ba(ρm) = 2N (see Appendix E)

However, we can define an extension of Bell magic
that is indeed faithful for a class of mixed stabilizer
states. We consider N -qubit mixed stabilizer states of
the form ρSTAB = UC|ψSTAB〉〈ψSTAB| ⊗ IK 2−K U†

C, where
|ψSTAB〉 is a N − K qubit pure stabilizer state and UC is
an arbitrary N -qubit Clifford circuit. These states can be
written as ρSTAB = 2−N (I + ∑

σ∈G0
ασσ), where ασ = ±1

and G0 ⊆ G/{IN } is a subset of a commuting subgroup of
Pauli strings (excluding identity IN ) with |G0| ≤ 2N − 1.
We define the mixed Bell magic as

Bm(ρ) = 1 − 1 − B(ρ)
tr(ρ2)2

. (8)

Bm shares all properties of B and, additionally, we have
Bm(ρSTAB) = 0 (see Appendix F). We numerically check
various states and find that in all cases Bm is nonincreas-
ing when partially tracing out qubits. We also define the
additive mixed Bell magic

Ba,m(ρ) = − log2(1 − B(ρ))+ 2 log2(tr(ρ
2)). (9)

Note that we can also use error mitigation to extract Bell
magic from noisy states, which we show in Sec. V.

Input : Bitstrings r, q ∈ {0, 1}2N

Output: C
1 σr =

⊗N
n=1 σr2n−1r2n

2 σq =
⊗N

n=1 σq2n−1q2n

3 if [σr, σq] = 0 then
4 C ← 0
5 else
6 C ← 2
7 end

Algorithm 1. Check-Commute

IV. THEORY OF MEASURING MAGIC

Bell magic B can be efficiently estimated from measure-
ments on quantum states. We give an unbiased estimator
for B in Algorithms 1 and 2. We prepare two copies of
the state, perform Bell measurements between them, and
record the outcome. We repeat this step NQ times, requir-
ing in total 2NQ copies of the state. Then, we postprocess
the outcomes. We randomly draw four bit strings from
the outcomes without replacement and check whether their
addition commutes. This step is repeated NR times, where
the NR are the resampling steps and we always draw the bit
strings from all NQ outcomes. B is then estimated as the
probability of obtaining a noncommuting result.

As we show in the next paragraph, the number of mea-
surements NQ needed to estimate B with fixed accuracy is
independent of the qubit number N , i.e., NQ ∼ O(1). Fur-
ther, the classical postprocessing scales as O(N ). At first
glance this seems counterintuitive, as the number of pos-
sible outcomes scales exponentially with N . However, to
estimate B, we assign the bit strings only two possible val-
ues via the Check-Commute routine [corresponding to the
norm of the commutator in Eq. (3)]. Bell magic is then esti-
mated as the expectation value of the two values. Thus, the
measurement process corresponds to a Bernoulli trial, with
the same scaling of errors as estimating the expectation
value of a coin flip or a Pauli operator.

Input : j = 1, . . . , NQ bitstrings rj ∈ {0, 1}2N

sampled from Bell measurement
Resampling steps NR

Output: Bell magic B
Additive Bell magic Ba

1 B ← 0
2 for k = 1, . . . , NR do
3 Choose randomly without replacement

n1, n2, n3, n4 ∈ {1, . . . , NQ}
B ← B + Check-Commute(rn1 ⊕ rn2 , rn3 ⊕ rn4)

4 end
5 B ← B/NR

6 Ba ← − log2(1 − B)

Algorithm 2. Bell magic
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Now, we give analytic bounds on the estimation error of
B for the case NR = NQ/4. We slightly modify Algorithm
2 such that the bit strings are not sampled at random
but each of the NQ bit strings is drawn exactly once. As
we use each bit string only once, the outcomes of the
Check-Commute routine are statistically independent and
we can write the estimated Bell magic as a Bernoulli trial
B̂ = 2pnc = 2Mnc/Mtotal, where pnc is the probability that
an outcome does not commute, Mnc is the number of out-
comes that do not commute and Mtotal = NQ/4 is the total
number of repetitions. The standard deviation of the Bell
magic for such Bernoulli experiments is given by

std(B) = 2

√
pnc(1 − pnc)

Mtotal
=

√
8B
NQ
(1 − B

2
). (10)

The number of measurement samples NQ needed to
achieve an estimation error of at most �B with a failure
probability PF is bounded by Hoeffding’s inequality

P(|B̂ − B| ≥ �B) = PF ≤ 2 exp
(

− 2�B2Mtotal

(amax − amin)2

)

,

(11)

where amax = 2 and amin = 0 are the maximal and mini-
mal possible values of each trial of Algorithm 1. The upper
bound for the needed samples is given by

NQ ≥ 8
�B2 log(

2
PF
). (12)

In particular, the estimation error scales as �B ∝ N−1/2
Q

and is independent of the qubit number N . The above equa-
tions are derived for the choice NR = NQ/4. By increasing
the number of postprocessing steps NR > NQ/4, the accu-
racy increases further. We numerically find that NR =
10NQ provides estimates of the Bell magic close to the
maximal possible accuracy. Thus, we find that the classical
postprocessing has O(N ) complexity in time and memory.

The outcomes of the Bell measurement also allow us
to compute the purity tr(ρ2) via Eq. (1) at the same time.
The purity is estimated as the probability of measuring out-
comes of odd parity, which again is a Bernoulli trial. The
estimation error of the purity scales as ∝ N−1/2

Q , which
allows us to also estimate mixed Bell magic [Eq. (8)]
efficiently.

V. ERROR MITIGATION

Next, we use the purity to mitigate errors from the out-
comes of noisy quantum computers [50–52]. Our goal is to
determine the Bell magic of the pure state |ψ〉 by measur-
ing the state ρdp = (1 − p)|ψ〉〈ψ | + pρm subject to global
depolarizing noise with a probability p [41]. Depolariz-
ing noise has been shown to be a good approximation

in experiments on noisy quantum computers [51,52] and
coherent errors can be turned into depolarizing errors via
randomized compiling [53,54]. As is seen in Sec. VI, our
experimental results are well described with a depolariz-
ing model. We prepare two copies ρdp ⊗ ρdp and apply the
Bell transformation, where we assume that the Bell mea-
surement is noise free. From the Bell measurements, we
determine the purity tr(ρ2

dp) via Eq. (1) as well as the Bell
magic Bdp of the noise-affected state ρdp. The purity is
related to the depolarization error via tr(ρ2

dp) = (1 − p)2 +
(p(2 − p))/2N . By inverting, we obtain the depolarization
error

p = 1 −
√
(2N − 1)(2N tr(ρ2

dp)− 1)

2N − 1
. (13)

The mitigated Bell Bmtg of the noise-free state |ψ〉 is given
by (see Appendix I)

Bmtg = 1
(1 − pc)2

(Bdp − p2
cB(ρm)− 2pc(1 − pc)BR),

(14)

where pc = 1 − (1 − p)4 and BR = 1 − (1 − pc)
−1(

∑
q

Pdp(q)2 − 4−N pc). Here, Pdp(q) is the probability of mea-
suring bit string q of the noisy state. In the limit of many
qubits N , we approximate BR ≈ B(ρm) ≈ 1 and obtain

Bmtg ≈ Bdp − pc(2 − pc)

(1 − pc)2
. (15)

We now give the scaling of the number of samples NQ
needed to estimate the mitigated magic with an error
�B. We define the error �Bdp = |B̂dp − Bdp| of B̂dp esti-
mated by measuring the noisy quantum computer. We
insert Eq. (15) and obtain the error of the mitigated magic
�Bdp ≈ (1 − p)8�Bmtg, where we use (1 − pc)

2 = (1 −
p)8. The upper bound of �Bdp is given by Eq. (12), where
we insert the mitigated error �Bmtg. Note that the upper
bound can be slightly violated to our approximations and
the error in the estimation of p . However, we argue that
the scaling of the error remains the same, which we con-
firm numerically. Thus, the number of samples needed to
estimate the mitigated magic within error �Bmtg scales as

NQ ∝ 1

(1 − p)16�Bmtg2 . (16)

VI. DEMONSTRATION OF MEASURING BELL
MAGIC

Now, we demonstrate the measurement of Bell magic.
First, we numerically investigate in Fig. 2 the depen-
dence of the estimation error on various parameters.
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(a) (b) (c)

FIG. 2. (a) The simulation of the estimation error of mitigated Bell magic �B = 〈|B̂mtg − Bexact|〉 as a function of the
number of measurements NQ for varying depolarizing probability p . The dashed lines are linear fits with a slope of b =
{−0.507, −0.505, −0.479, −0.412} in descending order of the legend. We use a random Clifford circuit of N = 50 qubits applied
on an initial state of NA = 3 magic states with φ = π/4 and NR = 10NQ. The error is averaged over 1000 repetitions. (b) A plot of
�B against the depolarizing error p for a varying number of magic states NA and random UC. The dashed lines are fits with slope
b = {−6.32, −7.36, −7.307, −8.18}. We use N = 50, NQ = 104, and NR = 10NQ. (c) A plot of �B as a function of the classical
resampling steps NR after performing NQ measurements on a quantum computer. The crosses are the theoretical values of the standard
deviation given in Eq. (10) for NR = NQ/4. We use a random Clifford circuit of N = 8 qubits applied on an initial state of NA = 1
magic states.

We measure the state UC|Aφ〉⊗NA ⊗ |0〉N−NA , with N = 50
qubits, where |Aφ〉 = cos(φ/2)|0〉 + sin(φ/2)|1〉 is param-
eterized with angle φ, and UC are random Clifford cir-
cuits realized as hardware-efficient quantum circuits [55]
(for details, see Appendix H). We have Ba(|Aφ=0〉) = 0
and Ba(|Aφ=π/4〉) = Ba(|T〉) = 1. We numerically simu-
late states of N = 50 qubits with tensor-network methods
[56,57]. In Fig. 2(a), we plot the estimation error �B =
〈|B̂mtg − Bexact|〉 between the mitigated magic B̂mtg esti-
mated from NQ measurements and the exact value Bexact.
We show the error for a varying number of Bell measure-
ments NQ and depolarizing error p . We find that the fit
matches the prediction �B ∝ N−1/2

Q [Eq. (16)]. We find
a slightly different slope for large p , which could be the
result of not including estimation errors in the purity in our
theory. In Fig. 2(b), we plot �B against the depolarizing
error p for a varying number of magic states NA within a
Clifford circuit. The fit to the data is close to the relation
�B ∝ (1 − p)−8 of Eq. (16). In Fig. 2(c), we plot�B as a
function of the resampling steps NR for various numbers of
measurements NQ. We find that the theoretical model given
in Eq. (10) matches our simulation accurately. Increasing
NR > NQ/4 improves the accuracy, until it converges for
large NR to a constant value. Our numerics suggest that
NR = 10NQ is a good empirical choice that gives nearly
the lowest possible error.

Next, we experimentally measure in Fig. 3 the magic
of various states on the 11-qubit IonQ quantum com-
puter [58]. We prepare two instances of the desired quan-
tum state on the quantum computer, then apply the Bell
transformation and measure each qubit. We investigate
the additive Bell magic of various types of states. In
particular, we measure different product states and the

state of maximal Bell magic in Fig. 3(a), as well as sta-
bilizer states with a variable number of injected T gates in
Fig. 3(b). We note that while product states are not entan-
gled, the other states are substantially entangled, which we
confirm experimentally with the Meyer-Wallach measure
[59] in Appendix P. The error mitigation with Eq. (14)
substantially improves the results, matching the exact sim-
ulations quite well. In Fig. 3(a), we observe, for |T〉⊗N ,
a linear increase in Ba with N , highlighting its additive
property. In Fig. 3(b), we study the transition of classically
simulable stabilizer states to intractable quantum states
[11]. We prepare a state of the form UC

∏NT
n=1 UTUn

C|0〉,
where Un

C is a randomly chosen Clifford circuit and UT =
I2 ⊗ · · · ⊗ T ⊗ · · · ⊗ I2 is a T gate placed at a random
qubit. For the practical implementation of the circuit on
quantum computers, see Appendix H. For NT = 0, we pre-
pare a stabilizer state with Ba = 0. Nonstabilizer states
are prepared for NT > 0. We find that Ba grows nearly
monotonously with NT until it converges. We find that the
converged Ba matches closely the Bell magic averaged
over Haar-random states. Agreeing with our observations,
recent results have shown that with increasing NT, cir-
cuits will closely approximate unitaries sampled from the
distribution of Haar-random states [12,60,61].

VII. STATE DISCRIMINATION

The efficient measurement of magic opens up new appli-
cations in state discrimination. When performing quantum
computation or communicating over quantum networks,
an important task is to verify whether a given unknown
state possesses the desired properties such as a sufficient
amount of magic [see Fig. 1(c)]. Now, our goal is to
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(a) (b)

FIG. 3. An experiment to measure the additive Bell magic Ba
on the IonQ quantum computer for various types of states. (a)
In the left part of the graph, we show product states of stabilizer
states |+〉⊗N and magic states |T〉⊗N and |R〉⊗N , as well as the
state of maximal magic |ψmax〉 for N = 3. (b) In the right part of
the graph, we show the magic as a function of NT T gates inserted
at random positions in a Clifford circuit. We show the unmiti-
gated and mitigated magic from the IonQ quantum computer and
an exact simulation of the quantum states. The mean value and
the standard deviation of Ba are taken over six random instances
of the states for N = 3 qubits. The dashed line is the additive
Bell magic averaged over Haar-random states. The experiment is
performed with NQ = 103 measurement samples and no further
error or readout error mitigation. With the purity measured from
the experiment, Eq. (13) gives, on average, a depolarization error
of p ≈ 0.1 for the IonQ quantum computer.

determine the correct class of an unknown state |ψ〉 sam-
pled from one of two classes α, β with different Bell magic
B(|ψ〉 ∈ α) = Bα and B(|ψ〉 ∈ β) = Bβ , with Bα > Bβ .
To this end, we perform NQ repetitions of the Bell measure-
ments and estimate B̂. We choose an appropriate threshold
B∗. For B̂ > B∗, we decide that the given state belongs to
α, while for B̂ ≤ B∗ we say that the state belongs to β. We
define PE as the probability of wrongly classifying a state
in the state-discrimination protocol.

We now motivate the scaling of the number of mea-
surements NQ needed for the classification task with a
misclassification probability PE . If the estimation error�B
of B(|ψ〉) is larger than Bα − Bβ , the estimation error
is too large to reliably distinguish the two classes. Thus,
the estimation error must be smaller than the difference
in magic of the two states �B < Bα − Bβ to reliably dis-
tinguish the states. Equation Eq. (16) tells us how many
measurements are needed to estimate magic with additive
error �B. We argue that, in general, the classification task
follows the same scaling as Eq. (16) in the number of
samples NQ:

NQ∝∼
1

(1 − p)16(Bα − Bβ)2 . (17)

An important special case is the discrimination of magic
states Bα > 0 from stabilizer states with Bβ = 0. For this
case, we can derive the precise number of measurements
needed for a threshold B∗ = 0 and p = 0.

First, we study a state with low magic,

|ψC(φ)〉 = UC|Aφ〉 ⊗ |0〉N−1, (18)

consisting of an arbitrary Clifford circuit UC and an ini-
tial state |Aφ〉 ⊗ |0〉N−1 with NA = 1 nonstabilizer qubit
|Aφ〉 = cos(φ/2)|0〉 + sin(φ/2)|1〉. Here, φ controls the
amount of magic introduced into the circuit, as seen in
Eq. (6). In particular, for φ = nπ/2, n being an integer,
no magic is introduced, whereas for φ = π/4 we have
Ba = 1. For small φ, Bell magic can be approximated as
B(|φ| � 1) ≈ 2φ2. By tuning φ, we can create states con-
taining arbitrarily low amounts of magic. We define the
error probability PE(φ) as the probability of wrongly clas-
sifying |ψC(φ)〉 as a stabilizer state. With the assumption
of large NR, we find (as shown in Appendix N) that

PE(φ) = 4−NQ[(3 − cos(2φ))NQ + (3 + cos(2φ))NQ]

− 2−NQ[sin(φ)2NQ + cos(2φ)2NQ]. (19)

For φ = π/4, we can approximate the error probability as

PE(
π

4
) ≈ 2

(
3
4

)NQ

. (20)

We achieve an error PE(π/4) < 0.01 when NQ > 18. For
near-stabilizer states with small φ � 1, we find that

NQ ≈ −2 log(PE(φ � 1))
φ2 , (21)

showing an inverse-quadratic scaling law with φ. For
example, a modest budget of NQ = 375 samples is needed
to classify φ = π/20 with an error of Pmin

E < 0.01. Surpris-
ingly, for small φ we find a scaling NQ ∝ B−1. This scaling
is better than Eq. (17), which is derived with the additional
assumption of a relatively small number of resampling
steps NR = NQ/4.

As second case, we study the limit of highly magi-
cal states with NA � 1. For these types of states, we can
assume that the NQ Bell measurements yield random bit
strings. As we add two bit strings together in Algorithm 2,
we have in total NQ − 1 independent bit strings and their
associated Pauli strings. The probability that two random
Pauli strings commute is approximately 1/2. The mis-
classification probability is given by the probability that
NQ − 1 Pauli strings pairwise commute:

PE(NA � 1) ≈ 2−(NQ−1)(NQ−2)/2. (22)

In particular, we achieve an error probability PE(NA �
1) < 0.01 when NQ > 5.
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FIG. 4. The simulation of the error probability PE for wrongly
classifying a given magic state as a stabilizer state using NQ
measurements and threshold B∗ = 0. The measured states are
randomly chosen Clifford circuits of N = 50 qubits applied to
a product state of NA magic states, where angle φ controls the
amount of magic introduced, with φ = 0 zero magic and φ = π

4
maximal magic. The dashed lines are Eq. (19) for the NA = 1
cases with φ = π

20 (blue), φ = π
8 (orange), and φ = π

4 (green).
The red dashed line Eq. (22) is the analytic formula for highly
magical states.

Now, we numerically demonstrate our magic state dis-
crimination protocol. In Fig. 4, we simulate the states
|ψ(φ)〉 = UC|Aφ〉⊗NA ⊗ |0〉⊗(N−NA), where UC is a ran-
domly chosen Clifford circuit and NA is the number of
nonstabilizer input qubits. We measure the state NQ times
and estimate the magic B̂ with Algorithm 2. For NQ ≤ 3,
we cannot draw the bit strings without replacement in
Algorithm 2 and thus we draw with replacement instead. If
we measure B̂ = B∗ = 0, we incorrectly say that the state
is a stabilizer state; otherwise, for B̂ > 0 we classify the
state as a nonstabilizer state. We find that our numerical
results for the error probability PE fit very well with our
theoretical formulas.

Next, in Fig. 5 we use the IonQ quantum computer
to experimentally distinguish stabilizer and nonstabilizer
states. We measure stabilizer states and states generated by
a hardware-efficient circuit with random parameters that
are expected to have a lot of Bell magic (see Appendix
H). The measured Bell magic of the states is shown in
Appendix K. Due to noise, the prepared stabilizer states
are mixed states and have nonzero Bell magic. Thus, we
use the supervised-learning algorithm shown in Appendix
J to learn the best decision boundary B∗ from the experi-
mental data. When, for a given measured state, B̂ < B∗, we
say that the measured state is a stabilizer state; otherwise,
we say that it is not a stabilizer state. In Fig. 5, we show
the classification error as a function of the number of sam-
ples NQ measured on the quantum computer. We find that
the experimental results fit well with a simulation of the
protocol with the measured depolarizing noise p = 0.15.

FIG. 5. An experiment to distinguish stabilizer and highly
magical states with the IonQ quantum computer using Bell
magic. We show classification error PE as a function of the num-
ber of measurements NQ. The supervised-learning algorithm to
determine the best thresholdB∗ is shown in Appendix J. We mea-
sure 20 randomly chosen instances of stabilizer and magic states,
respectively, which are generated with a hardware-efficient cir-
cuit of d = 2 depth and N = 3 qubits. The shown curves are the
classification error for the test data set, which consists of 20%
of the data and is not seen during training. The error is aver-
aged over ten random distributions of test and training data. The
blue dots are the experiment with the IonQ quantum computer,
while the orange crosses are a noisy simulation using the average
experimentally measured depolarization error p ≈ 0.15.

Note that with our machine-learning algorithm, the maxi-
mal error rate is Pmax

E = 1/2 due to the trivial strategy of
classifying states at random.

VIII. VARIATIONAL BELL MAGIC SOLVER

Variational quantum algorithms find the parameters θ of
a parametrized quantum circuit |ψ(θ)〉 such that they max-
imize a cost function C(θ) measured on a quantum com-
puter [31,62,63]. The algorithm runs in a quantum classical
feedback loop, where the cost function is measured on
the quantum computer and used by a classical optimiza-
tion routine to find improved parameters. We now propose
a variational quantum algorithm to maximize Bell magic
[see Fig. 1(d)]. Commonly, the cost function is maximized
with gradient descent, where the kth parameter is itera-
tively updated with the gradient θ ′

k = θ k − ∂kC(θ). The
shift rule provides exact gradients when the circuit is com-
posed of parametrized Pauli rotations [64]. For standard
measurements on single quantum states, the shift rule is
given by ∂k〈C(θ)〉 = v(〈C(θ + ek

π
4v )〉 − 〈C(θ − ek

π
4v )〉),

where ek is the kth unit vector and v > 0 [65].
We extend the shift rule to Bell measurements (see

Appendix L),

∂kP(r) = 2v〈ψ(θ + π

4v
ek)|〈ψ(θ)|Or|ψ(θ + π

4v
ek)〉|ψ(θ)〉

− 2v〈ψ(θ − π

4v
ek)|〈ψ(θ)|Or|ψ(θ − π

4v
ek)〉|ψ(θ)〉,

(23)
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Input :
j = 1, . . . , 3NQ bitstrings rj ∈ {0, 1}2N sampled from
Bell measurement on |ψ(θ)〉 ⊗ |ψ(θ)〉
j = 1, . . . , NQ bitstrings qj

+ ∈ {0, 1}2N sampled from
Bell measurement on |ψ(θ + π

2 ek)〉 ⊗ |ψ(θ)〉
j = 1, . . . , NQ bitstrings qj

− ∈ {0, 1}2N sampled from
Bell measurement on |ψ(θ − π

2 ek)〉 ⊗ |ψ(θ)〉
Resampling steps NR

Output: Gradient of Bell magic ∂kB
1 B+ ← 0
2 B− ← 0
3 for k = 1, . . . , NR do
4 Choose randomly without replacement

n1, n2, n3 ∈ {1, . . . , 3NQ}
5 m ∈ {1, . . . , NQ}
6 B+ ← B+ + Check-Commute(rn1 ⊕ rn2 , rn3 ⊕ qm

+ )
7 B− ← B− + Check-Commute(rn1 ⊕ rn2 , rn3 ⊕ qm

− )
8 end
9 B+ ← 4B+/NR

10 B− ← 4B−/NR

11 ∂kB ← B+ − B−

Algorithm 3. Gradient of Bell magic

and the gradient of Bell magic is given by

∂kB = 4
∑

r,r′,q,q′
∈{0,1}2N

[∂kP(r)]P(r′)P(q)P(q′)
∥
∥[σr⊕r′ , σq⊕q′]

∥
∥

∞ .

(24)

Algorithm 3 depicts how to efficiently measure the gradi-
ent on a quantum computer for the case v = 1/2.

Conveniently, the Bell measurements also give us access
to the diagonal entries Fkk(θ) of the quantum Fisher infor-
mation metric Fij (θ) = 4[〈∂iψ |∂jψ〉 − 〈∂iψ |ψ〉〈ψ |∂jψ〉]
without requiring additional measurements. The quantum
Fisher information metric and its diagonal approxima-
tion can tremendously speed up the training of variational
quantum algorithms with the quantum natural gradient
F−1(θ)∇C(θ) [66–69]. With the shift rule, the diago-
nal entries of the metric are given by Fkk(θ) = 2(1 −
|〈ψ(θ)|ψ(θ + ek

π
2 )〉|2) [70]. For pure states, the fidelity

|〈ψ(θ)|ψ(θ + ek
π
2 )〉|2 is given by the SWAP test in Eq. (1),

where we can simply reuse the measurement outcomes for
the gradient of magic.

In Fig. 6, we numerically study the variational Bell
magic solver to find the pure state with maximal Bell
magic Bmax. We show the variational magic solver to max-
imize B as a function of the training epochs for a varying
number of measurement samples NQ. We use the gradient
method Adam [71] and the gradients are determined using
the shift rule, where we use NQ measurement samples
for each measurement setting. To estimate the gradients,
we require in total NQ(2K + 3) measurement samples,
where K is the number of parameters of the circuit. The

FIG. 6. The simulation of the variational algorithm to max-
imize Bell magic B of a parametrized quantum circuit for a
varying number of measurement samples NQ. We plot the dif-
ference between the average Bell magic 〈B〉 found at a training
epoch and the maximal possible magic Bmax of pure states. The
training results are averaged over ten random training instances.
The learning rate is γ = 0.1, the depth of circuit d = 6, and the
number of qubits N = 4.

parametrized quantum circuit is shown in Appendix H
and the initial parameters are chosen such that the initial
state is close to a stabilizer state. Training is initially fast
until reaching the average magic of Haar-random quantum
states. Then, optimization continues at a slower pace. With
increasing NQ, our solver finds states that have close to the
maximal amount of Bell magic. In general, we find that
pure states of high Bell magic are characterized by having
a small, but nonzero, expectation value for nearly all Pauli
operators. We further study the structure of pure states with
high Bell magic in Appendix G.

The performance of variational quantum algorithms is
tied to their expressibility and trainability [31]. Express-
ibility describes how well an ansatz uniformly explores
the full Hilbert space, which makes it more likely that the
ansatz can express the target solution [72]. A circuit is
maximally expressible if it forms a 2-design, i.e., averag-
ing over the ansatz matches an average over Haar-random
unitaries up to the second moment. A variational quan-
tum algorithm is trainable when the magnitude of gradients
is large. A common issue is the so-called barren-plateau
problem, where the magnitude of the gradients vanishes
exponentially with the number of qubits [73]. Nearly all
variational quantum algorithms use the observable H =
∑poly(N )

n=1 γnσn, which consists of a sum over a polynomial
number of arbitrary Pauli strings σn with constant coef-
ficients γn. For this general class of cost function, high
expressibility leads directly to vanishing gradients and the
training becomes impractical [73,74].

Bell magic does not belong to the aforementioned
class of cost functions, as it cannot be expressed by
a polynomial sum of Pauli strings and it requires two
copies of a quantum state to be measured. We illustrate
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this fact for a highly expressible ansatz where barren
plateaus are absent for Bell magic, while generally used
cost functions suffer from barren plateaus. As a sim-
ple demonstration, we define the ansatz |ψ(θ , UC)〉 =
UC exp(−i(1)/2θσ y

1 )|0〉⊗N , where UC is a Clifford circuit,
θ is the parameter of the circuit, and σ y

1 is the y Pauli
operator acting on the first qubit. Over randomly sampled
Clifford circuits UC from the Clifford group C, this ansatz
is maximally expressible, as it uniformly explores the full
Hilbert space and forms a 2-design [75]. Thus, for any cost
function H consisting of a polynomial number of Pauli
strings, the magnitude of the gradient decays exponentially
with the number N of qubits [73]:

Var[∂θ 〈ψ(θ , UC)|H|ψ(θ , UC)〉)]θ ,C = Tr(H2)

2(22N − 1)
∝ 2−N ,

(25)

where the variance is taken over θ and the Clifford group
C. In contrast, the variance of the gradient in respect to Bell
magic is independent of N . As shown in Appendix M, we
find that

Var[∂θB(|ψ(θ , UC)〉)]θ ,C = 1
2

, (26)

ensuring the trainability of this ansatz for any N .

IX. DISCUSSION AND CONCLUSIONS

We show how to measure and learn Bell magic with
quantum computers. Our algorithm relies on Bell measure-
ments of two copies of a quantum state, which is straight-
forward to implement on quantum computers and simu-
lators, as demonstrated in past experiments to measure
entanglement [45,48,76]. Bell magic can be measured con-
currently with entanglement, which we verify in Appendix
P by measuring the Wallach-Meyer entanglement measure.
For quantum computers, the Bell transformation can be
implemented directly without SWAP gates when all qubits
are connected to all other qubits, such as on the IonQ quan-
tum computer [58], or when the two copies of the quantum
state can be arranged in a ladder structure [45]. Further,
it can be easily implemented in numerical simulations to
study the magic of many-body quantum systems [39,40].
In contrast to existing measures of magic, the measurement
cost NQ is independent of the qubit number and has only an
inverse-quadratic scaling NQ ∝ �B−2 with the estimation
error�B. Noise occurring in experiments can be mitigated
with a scaling of NQ ∝ (1 − p)−16. We derive these bounds
assuming a small number of resampling steps NR = NQ/4
in the classical part of the algorithm, where a better scaling
is possible by increasing NR.

For our study, we assume depolarizing noise, which
we find is sufficient to mitigate noise on the IonQ quan-
tum computer. The error-mitigated Bell magic of our

experiments closely matches exact simulations, opening up
the study of nonstabilizerness on noisy quantum computers
[31]. Additional methods that turn nondepolarizing noise
into depolarizing noise could be used to further improve
error mitigation [53,54].

Fault-tolerant quantum computers are commonly run
by state-synthesis protocols, where a resource state
|φ〉ini combined with error-corrected Clifford opera-
tions is transformed into a target state |φ〉target [14].
Magic quantifies a lower bound on the nonstabilizer
resources needed to synthesize a particular state or uni-
tary [5,20,25]. As Bell magic is invariant under Clif-
ford unitaries, a necessary condition for state synthe-
sis is that B(|φ〉target) ≤ B(|φ〉ini). Thus, Bell magic can
experimentally establish lower bounds on the magi-
cal resources needed to synthesize states on quantum
computers.

Another important task is to verify whether a given state
is indeed correct [36,37]. Given a stabilizer state, learn-
ing the description of the state requires measurements on
O(N ) copies [49]. In contrast, discriminating whether a
given state is a stabilizer state is comparatively easier,
requiring only O(1) copies [77]. Our work allows us to dis-
tinguish states with different degrees of nonstabilizerness
in the presence of noise. For example, with only NQ = 6
measurements, we can decide with an error of less than
1% whether a given state is a stabilizer state or a highly
magical state. To distinguish stabilizer states and near-
stabilizer states as defined in Eq. (18), we find a scaling
of NQ ∝ φ−2. Our method could be used to reliably cer-
tify states for quantum communication [78] and quantum
computing tasks [79]. Note that the related task of test-
ing whether a given unitary is Clifford has been studied in
Refs. [77,80].

We also find that Bell magic is connected to the
recently proposed linear stabilizer entropy Mlin = 1 −
2N ∑

r(2
−N 〈ψ |σr|ψ〉2)2 and the 2-Rényi entropy M2 =

− log(2N ∑
r(2

−N 〈ψ |σr|ψ〉2)2) [10]. We find that these
measures of magic can be also computed with Bell
measurements via Mlin = 1 − 2N ∑

r P(r)2 and M2 =
− log(2N ∑

r P(r)2) (see Appendix O). Here, one has to
explicitly estimate the probabilities P(r), which in gen-
eral requires an exponential amount of measurements. We
experimentally compute the stabilizer entropy with the
IonQ quantum computer and compare it with Bell magic in
the Appendix O, where we find that both measures behave
similarly.

Our results reveal a fundamental relationship between
magic and the probability distribution of bit strings in
the Bell basis. Statistical tests over these distributions
could serve as benchmarks of classical simulation com-
plexity, similar to cross-entropy benchmarking in the
computational basis [38].

Bell magic is a faithful measure of magic for pure states,
while mixed Bell magic is also faithful for a class of mixed
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states [see Eq. (8)]. We prove the invariance under Clifford
unitaries and composition and our numerics suggest that
Bell magic is nonincreasing under partial trace and mea-
surements in the computational basis. We leave the formal
proof of whether mixed Bell magic fulfills these condi-
tions as an open problem [22]. Using convex-roof-type
extensions, it may also be possible to construct a faithful
Bell magic for arbitrary mixed states [81]. As an extension
to unitaries, channel capacity and qudits would be inter-
esting as well [22,24]. It would be also useful to find a
quantitative connection between Bell magic and classical
simulation complexity [4].

Finally, we show that our variational algorithm for Bell
magic can have large gradients even for highly express-
ible circuits that uniformly sample the full Hilbert space.
For commonly used cost functions, expressible circuits
must have barren plateaus [73,74,82,83]. However, this
rule does not apply to Bell magic, as it cannot be expressed
by a polynomial number of Pauli strings. As an example,
we demonstrate an ansatz that has a high expressibility
and yet the gradient is independent of N . Unbounded cost
functions are known to have similar features, although they
are not suited for near-term quantum computers [84]. We
note that barren plateaus can still appear depending on
the choice of ansatz. It would be interesting to search for
other cost functions that combine expressibility and large
gradients by using entangled measurements over multiple
copies [44]. One could also study the trainability of Bell
magic in conjunction with the learnability transition that
occurs in Clifford circuits combined with T gates [85,86].

The code for this paper is available via Ref. [87].
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experimentally measured with a randomized measurement
protocol that scales exponentially with the number of
qubits [88].

APPENDIX A: STABILIZER STATES AND BELL
MEASUREMENT

Here, we show the connection between Bell measure-
ment and stabilizer states. The transformation into the Bell
basis is applied with the unitary UBell = ⊗N

n=1(H ⊗ I2)×

cnot on all N pairs of qubits [see Fig. 1(b)]. The resulting
state is sampled NQ times and we record the j th measure-
ment outcome as the bit string rj ∈ {0, 1}2N . The outcome
r appears with a probability [49],

P(r) = 〈ψ |〈ψ |Or|ψ〉|ψ〉 = 2−N |〈ψ |σr|ψ∗〉|2 , (A1)

where Or = |σr〉〈σr| is the projector onto the Bell state and
|ψ∗〉 denotes the complex conjugate of |ψ〉. For any state,
there are at least 2N possible outcomes r as |〈ψ |σr|ψ∗〉|2
≤ 1.

The stabilizer states |ψSTAB〉 are defined by a
commuting subgroup G of |G| = 2N Pauli strings
σ . We have 〈ψSTAB|σ |ψSTAB〉 = ±1 for σ ∈ G and
〈ψSTAB|σ ′|ψSTAB〉 = 0 for σ ′ /∈ G. Any σr, σr′ ∈ G com-
mute [σr, σr′] = 0. Any stabilizer state can be written as
[89]

|ψSTAB〉 = 1√|A|
∑

x∈A

i�(x)(−1)q(x)|x〉 , (A2)

where A is an affine subspace of the Galois field F
N
2

and �, z : {0, 1}N → {0, 1} are linear and quadratic poly-
nomials over F2. As � is linear, we have �(x) = sx
for s ∈ {0, 1}N and the complex factor of the stabi-
lizer state can be written as i�(x) = ∏

k∈S ixk for some
S ⊆ [N ]. Thus, we can write the complex conjugate
as a transformation with the z Pauli operator |ψ∗〉 =
σ⊗S

10 |ψ〉 = σg|ψ〉, with some g = {s1, 0, s2, 0, . . . , sN , 0}
that characterizes the complex phase of the stabilizer
state [49]. Inserting this relation into Eq. (A1), the prob-
ability of sampling a bit string q from a stabilizer
state is given as P(q) = 2−N |〈ψSTAB|σqσg|ψSTAB〉|2 =
2−N |〈ψSTAB|σq⊕g|ψSTAB〉|2. There are 2N outcomes with
nonzero probability P(q) > 0 with σt = σq⊕g ∈ G. Any
outcome q can be written as q = t ⊕ g, where the set of
strings t ∈ {0, 1}2N with σt ∈ G forms an N -dimensional
linear subspace of F

2N
2 . The addition of two elements of the

subspace t ⊕ t′ is again part of the commuting subspace
σt⊕t′ ∈ G. The addition of two measured outcomes q, q′
yields q ⊕ q′ = t ⊕ g ⊕ t′ ⊕ g = t ⊕ t′. Thus, the addition
of two outcomes from a stabilizer state yields a Pauli string
of the commuting subgroup σq⊕q′ ∈ G.

In summary, for any set of bit strings {qn}NQ
n=1 sam-

pled in the Bell basis from a pure stabilizer state, the
Pauli strings of its binary additions must commute, i.e.,
[σqk⊕ql , σqn⊕qm] = 0 ∀k, l, n, m. Conversely, finding at least
one noncommuting Pauli string implies that the mea-
sured quantum state is not a pure stabilizer state, as the
commuting subgroup G contains at most 2N elements.
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APPENDIX B: INVARIANCE UNDER CLIFFORD
CIRCUITS

We now show that Bell magic is invariant B(|ψ〉) =
B(UC|ψ〉) under arbitrary Clifford circuits UC, i.e., uni-
taries that map stabilizer states into stabilizer states.

To this end, we start by proving that the second and third
lines of Eq. (B1) are indeed equal:

Q(n) =
∑

r∈{0,1}2N

P(r)P(r ⊕ n)

≡
∑

r

〈ψ |〈ψ |Or|ψ〉|ψ〉〈ψ |〈ψ |Or⊕n|ψ〉|ψ〉

= 4−N
∑

r

〈ψ |σr|ψ〉2〈ψ |σr⊕n|ψ〉2, (B1)

where we have an arbitrary n ∈ {0, 1}2N . We note that by
using four copies of |ψ〉, we can rewrite the bottom line of
Eq. (B1) as

∑

r

〈ψ |σr|ψ〉2〈ψ |σr⊕n|ψ〉2 = 〈ψ |⊗4
∑

r

σ⊗2
r ⊗ σ⊗2

r⊕n|ψ〉⊗4.

(B2)

Similarly, the second line of Eq. (B1) can be rewritten as

∑

r

〈ψ |〈ψ |Or|ψ〉|ψ〉〈ψ |〈ψ |Or⊕n|ψ〉|ψ〉

= 〈ψ |⊗4
∑

r

Or ⊗ Or⊕n|ψ〉⊗4. (B3)

Now, we note that both the Bell operator Or and the Pauli
string σr can be written as tensor products acting on two
and one qubits, respectively. In particular,

Or = |σr1r2〉〈σr1r2 | ⊗ · · · ⊗ |σr2N−1r2N 〉〈σr2N−1r2N | (B4)

and

σr = σr1r2 ⊗ · · · ⊗ σr2N−1r2N . (B5)

At the same time, the sum can be decomposed as
∑

r =∑
r1

∑
r2

· · · ∑r2N
.

The operators can be written as tensor products of N
operators acting on four-qubit subspaces:

∑

r

σ⊗2
r ⊗ σ⊗2

r⊕n =
∑

r1,r2

σ⊗2
r1r2

⊗ σ⊗2
r1⊕n1r2⊕n2

⊗ · · · ⊗
∑

r2N−1r2N

σ⊗2
r2N−1r2N

⊗ σ⊗2
r2N−1⊕n2N−1r2N ⊕n2N

and
∑

r

Or ⊗ Or⊕n

=
∑

r1,r2

|σr1r2〉〈σr1r2 | ⊗ |σr1⊕n1r2⊕n2〉〈σr1⊕n1r2⊕n2 | ⊗ · · · ⊗
∑

r2N−1r2N

|σr2N−1r2N 〉〈σr2N−1r2N |⊗

|σr2N−1⊕n2N−1r2N ⊕n2N 〉〈σr2N−1⊕n2N−1r2N ⊕n2N |.

Now, one can explicitly calculate the operators on the four-
qubit Hilbert space by hand and we find for all n1, n2 ∈
{0, 1} the following equivalence:

∑

r1,r2

|σr1r2〉〈σr1r2 | ⊗ |σr1⊕n1r2⊕n2〉〈σr1⊕n1r2⊕n2 |

= 1
4

∑

r1,r2

σ⊗2
r1r2

⊗ σ⊗2
r1⊕n1r2⊕n2

.

This equivalence also holds for any tensor product of the
four-qubit operator. Thus we find, for any n ∈ {0, 1}2N ,

∑

r

Or ⊗ Or⊕n = 1
4N

∑

r

σ⊗2
r ⊗ σ⊗2

r⊕n. (B6)

Together with Eqs. Eq. (B2) and Eq. (B3), this proves that
Eq. (B1) is indeed correct.

As a corollary, combining Eqs. Eq. (B1) and Eq. (A1)
yields the surprising relation

∑

r∈{0,1}2N

〈ψ |σr|ψ〉2〈ψ |σr⊕n|ψ〉2

=
∑

r∈{0,1}2N

|〈ψ |σr|ψ∗〉|2|〈ψ |σr⊕n|ψ∗〉|2. (B7)

Next, we proceed to prove the invariance of Bell magic.
As reminder, Bell magic is defined as

B =
∑

r,r′,q,q′
∈{0,1}2N

P(r)P(r′)P(q)P(q′)
∥
∥[σr⊕r′ , σq⊕q′]

∥
∥

∞ . (B8)

Also, recall that σr⊕r′ = σrσr′ up to a prefactor {1, −1,
i, −i}. Now, we equivalently rewrite Bell magic into

B =
∑

n,q∈{0,1}2N

Q(n)Q(q)
∥
∥[σn, σq]

∥
∥

∞ . (B9)

where we define Q(n) = ∑
r P(r)P(r ⊕ n), with P(r) as

defined in Eq. (A1). Now, we transform |ψ〉 with a random
Clifford circuit UC into UC|ψ〉. Note that UC transforms a

010301-12



SCALABLE MEASURES OF MAGIC RESOURCE... PRX QUANTUM 4, 010301 (2023)

Pauli string σn into another Pauli string σq with UCσnU†
C =

σq. This transformation is bijective, i.e., each Pauli string is
mapped to another unique Pauli string. Using Eq. (B1), we
have Q(n) = 4−N ∑

r〈ψ |σr|ψ〉2〈ψ |σrσn|ψ〉2. The trans-
formed probability Q′(n) is given by

Q′(n) = 4−N
∑

r

〈ψ |U†
CσrUC|ψ〉2〈ψ |U†

CσrσnUC|ψ〉2

= 4−N
∑

r

〈ψ |U†
CσrUC|ψ〉2〈ψ |U†

CσrUCU†
CσnUC|ψ〉2

= 4−N
∑

r

〈ψ |σr|ψ〉2〈ψ |σrσm|ψ〉2 ≡ Q(m),

where we use that the sum over all Pauli strings remains
invariant due to the bijective property and we define m as
the transformed Pauli string σm = U†

CσnUC. This means
that a transformation with UC simply permutes the dis-
tribution Q(n). The Bell magic B′ after transformation is
given by

B′ =
∑

n,q∈{0,1}2N

Q′(n)Q′(q)
∥
∥[σn, σq]

∥
∥

∞

=
∑

n,q∈{0,1}2N

Q(n)Q(q)
∥
∥
∥[UCσnU†

C, UCσqU†
C]

∥
∥
∥

∞

=
∑

n,q∈{0,1}2N

Q(n)Q(q)
∥
∥
∥UC[σn, σq]U†

C

∥
∥
∥

∞

=
∑

n,q∈{0,1}2N

Q(n)Q(q)
∥
∥[σn, σq]

∥
∥

∞ ≡ B,

where in the final step we use that the commutator of two
Pauli strings is either 0 or another Pauli string and therefore
the norm is left invariant under transformation with UC.

APPENDIX C: ADDITIVE BELL MAGIC

We now show that the additive Bell magic Ba =
− log2(1 − B) is additive. We consider a product |ψ〉 =
|A〉 ⊗ |B〉 of two arbitrary states |A〉 and |B〉. We now want
to show that Ba(|A〉 ⊗ |B〉) = Ba(|A〉)+ Ba(|B〉).

First, we set out some preliminary considerations.
As the Bell transformation is a tensor product, the out-

comes appearing on the qubits of |A〉 and |B〉 are indepen-
dent of each other. We define the outcomes for the qubits
of |A〉 as rA and for |B〉 as rB.

The product of two Pauli strings σr and σq is given
by σrσq = ±iCr,qσr⊕q, where Cr,q = 0 when [σr, σq] = 0
and Cr,q = 1 otherwise. We can use this to write the

commutator for the tensor product as

[σr, σq] = [σrA ⊗ σrB , σqA ⊗ σqB]

= (σrAσqA)⊗ (σrBσqB)− (σqAσrA)⊗ (σqBσrB)

= ±σrA⊕qA ⊗ σrB⊕qB((−1)CrA ,qA+CrB ,qB

− (−1)CrA ,qA+CrB ,qB ).

This implies that the commutator is nonzero only when
CrA,qA + CrB,qB = 1, i.e., when we have [σrA , σqA] �= 0 and
[σrB , σqB] = 0, or [σrA , σqA] = 0 and [σrB , σqB] �= 0. This
is the case when the Pauli strings of A commute but
not those of B, as well as the reverse case. With this
result, we can now write the infinity norm of the commu-
tator as

∥
∥[σr, σq]

∥
∥

∞ = ∥
∥[σrA , σqA]

∥
∥

∞ + ∥
∥[σrB , σqB]

∥
∥

∞ −∥
∥[σrA , σqA]

∥
∥

∞
∥
∥[σrB , σqB]

∥
∥

∞. This expression is zero only
when both A and B do not commute or both commute.
Recall that

∥
∥[σr, σq]

∥
∥

∞ = 2 when σr, σq do not commute
and zero otherwise.

To simplify the notation for the Bell magic, we define
Q(r) = ∑

q P(q)P(q ⊕ r). Note that σqσr = σq⊕r up to a
multiplication with {1, −1, i, −i}, where we can ignore this
factor for the calculation of the Bell magic since we take
the norm of the commutator. With the above fact, we can
write the Bell magic as

B =
∑

r,q∈{0,1}2N

Q(r)Q(q)
∥
∥[σr, σq]

∥
∥

∞ . (C1)

As the Bell transformation is a tensor product and the
underlying state is a product state, the probability for the
outcomes are independent and we can write

Q(r) = QA(rA)QB(rB). (C2)

We note that
∑

rA,qA
QA(rA)QA(qA) = 1 and

∑
rB,qB

QB(rB)QB(qB) = 1.
We now combine our considerations to calculate the

magic of the product state. We find that

B(|A〉 ⊗ |B〉)
=

∑

rA,qA

∑

rB,qB

QA(rA)QA(qA)QB(rB)QB(qB))

∥
∥[σrA ⊗ σrB , σqA ⊗ σqB]

∥
∥

∞

=
∑

rA,qA

QA(rA)QA(qA)
∥
∥[σrA , σqA]

∥
∥

∞
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+
∑

rB,qB

QB(rB)QB(qB)
∥
∥[σrB , σqB]

∥
∥

∞

−
(

∑

rA,qA

QA(rA)QA(qA)
∥
∥[σrA , σqA]

∥
∥

∞

)

·

×
(

∑

rB,qB

QB(rB)QB(qB)
∥
∥[σrB , σqB]

∥
∥

∞

)

= B(|A〉)+ B(|B〉)− B(|A〉)B(|B〉).

We now find, for the additive magic,

Ba(|A〉 ⊗ |B〉) = − log2[1 − B(|A〉)− B(|B〉)
+ B(|A〉)B(|B〉)]. (C3)

Finally, the additive magic of the individual states |A〉 and
|B〉 is given by

Ba(|A〉)+ Ba(|B〉) = − log2[(1 − B(|A〉))(1 − B(|B〉))]
= − log2[1 − B(|A〉)− B(|B〉)+ B(|A〉)B(|B〉)]
≡ Ba(|A〉 ⊗ |B〉),

which concludes our proof.

APPENDIX D: COMPOSITION OF BELL MAGIC
AND STABILIZER STATES

We now show that Bell magic is invariant under com-
position of a state |ψ〉 with a stabilizer state |ψSTAB〉, i.e.,
B(|ψ〉 ⊗ |ψSTAB〉) = B(|ψ〉). For additive Bell magic, we
have

Ba(|ψ〉 ⊗ |ψSTAB〉) = Ba(|ψ〉)
+ Ba(|ψSTAB〉) = Ba(|ψ〉), (D1)

where we use the properties of additivity and faithful-
ness. Thus, the property of composition holds for Ba. Now,
we apply the definition of additive Bell magic B = 1 −
2−Ba to Eq. (D1), from which it immediately follows that
composition with a stabilizer state leaves B invariant as
well.

APPENDIX E: BELL MAGIC OF MAXIMALLY
MIXED STATE

Here, we derive the Bell magic of the maximally mixed
state B(ρm). The Bell measurement applied to the maxi-
mally mixed state ρm = I/2N with identity matrix I pro-
duces every possible bit string r ∈ {0, 1}2N with equal
probability P(r) = 4−N . Now, we define the probability of
all binary additions that yield r as Q(r) = ∑

q P(q)P(q ⊕

r) = 4−N . Now, we can write the Bell magic as

B =
∑

r,q

Q(r)Q(q)
∥
∥[σr, σq]

∥
∥

∞ = 4−2N
∑

r,q

∥
∥[σr, σq]

∥
∥

∞ .

(E1)

We split the equation into the two cases, r = 0 and r �=
0, and obtain B = 4−2N ∑

q

∥
∥[σ0, σq]

∥
∥

∞ + 4−2N ∑
r �=0

∑
q∥

∥[σr, σq]
∥
∥

∞. There are 4N Pauli strings in total. The iden-
tity Pauli string σ0 = I commutes with every other Pauli
string, i.e., [σ0, σq] = 0. All other Pauli strings commute
with half of the Pauli strings and do not commute with the
other half, yielding

∑
q

∥
∥[σr �=0, σq]

∥
∥

∞ = 4N . Thus,

B(ρm) = 4−2N
∑

r �=0

4N = 1 − 4−N . (E2)

APPENDIX F: MIXED BELL MAGIC

We now show that Bm(ρ) = 1 − (1 − B(ρ))/(tr(ρ2)2)

is faithful for mixed stabilizer states of the form ρSTAB =
UC|ψSTAB〉〈ψSTAB| ⊗ ρmU†

C, i.e., Bm(ρSTAB) = 0. Here,
ρm = IK 2−K is the maximally mixed state over K qubits
and |ψSTAB〉 is a stabilizer state of N − K qubits. First, we
consider the case UC = I . Then, from the invariance under
composition and Appendix E, it follows that

B(ρSTAB) = B(ρm) = 1 − 4−N = 1 − tr(ρm)
2, (F1)

where in the final step we use the fact that tr(ρm) = 2−K .
Inserting the above equation into the definition of mixed
Bell magic, we find that Bm(ρSTAB) = 0. Faithfulness for
ρSTAB with UC �= I follows from the invariance of B and
purity tr(ρ2) under Clifford unitaries.

APPENDIX G: MAXIMAL MAGIC OF PURE
STATES

We can give an upper bound Bpure ≤ Bpure
max on the Bell

magic of pure states. Bell magic is the average of the
commutator norm over the probability distribution P(r).
It becomes minimal for stabilizer states, where P(r) is
only nonzero for a small subset of r. In contrast, it is
maximal when the probability distribution is uniformly
spread over as many r as possible, such as for the max-
imally mixed state. For pure states, the distribution has
the constraint that P(r) is zero for r with odd parity, i.e.,
tr(ρ2) = 1 − 2Podd = 1. This follows from the SWAP test
in Eq. (1), where odd-parity outcomes are forbidden for
pure states. We have Podd ≤ 1/2(1 − 2−N ). Now, the Bell
distribution Pmax(r with the highest Bell magic for pure
states will have zero value for odd rodd and a constant value
for even reven. Thus, by setting all even P(reven) = Puni
and all odd P(rodd) = 0, we find from the normalization
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of probability distribution that

Puni = 2 × 4−N

1 + 2−N . (G1)

Now, following the calculation in Sec. E, we compute

B =
∑

r,q

Q(r)Q(q)
∥
∥[σr, σq]

∥
∥

∞ (G2)

for Q(r) = ∑
q Pmax(q)Pmax(q ⊕ r). We find Q(0) =

Puni and Q(r �= 0) = (1 − Puni)/(4N − 1) = (1 + 2−N −
2 × 4−N )/((4N − 1)(1 + 2−N )). Finally, we obtain

Bpure ≤ Bpure
max = Q(r �= 0)2 × 4N (4N − 1)

= 4N (1 + 2−N − 2 × 4−N )2

(4N − 1)(1 + 2−N )2
.

Note that Bpure
max is an upper bound on the Bell magic of pure

states and in general is not saturated, as no state with the
corresponding Bell-measurement distribution may exist.
However, we numerically find that for N = 1 and N = 3,
the bound is saturated.

We now give explicit pure states that have the maxi-
mal amount of Bell magic, which we find by using our
variational quantum algorithm. For N = 1, this is the
magic state B(1)a = log2(27/11) ≈ 1.29545588 for magic
state |R〉 with θ = arccos(1/

√
3) and ϕ = π/4. For N = 2,

the maximal state is

|ψ(2)〉 = 1
2
{1, 1, 1, i} (G3)

with B(2)a ≈ 2.67807. For N = 3, the state of maximal Bell
magic states is the Hoggar state,

|ψ(3)〉 = 1
6
{1 + i, 0, −1, 1, −i, 1, 0, 0}, (G4)

with B(3)a ≈ 4.651794, which is also the maximal state for
the robustness of magic [20]. For N = 4, we report the
maximal Bell magic of B(4)a ≈ 6.221364. While we do not
find an exact form for this state, we report here a nearly
maximal state with a simple description,

|ψ(4)〉 = 1

8
√

2
{4, 1 + i, 4i, −1 + i, 4i, 3(1 + i), 2i, −1 − i,

− 1 + i, 4i, 3(1 − i), −2i, −1 − i, 2i, −1 + i, 2}

where Ba = 6.221239. These reported states have substan-
tially more Bell magic than corresponding Haar-random
states of the same N and may be useful for state prepara-
tion.

To get a better understanding what constitutes a state
of high Bell magic, we write states in the form ρ =

2−N (σ0 + ∑
r �=0 αrσr), where for pure states we demand

that
∑

r |αr|2 = 2N + 1. Note that for a valid state, we
additionally demand that αr are chosen such that ρ is pos-
itive semidefinite. Stabilizer states have exactly 2N terms
with |αr| = 1 and zero otherwise. In contrast, we find that
for states of high Bell magic all αr have nearly the same
value over all 4N Pauli operators. For example for N =
1 we have |R〉〈R| = 1/2(I + 1/

√
3(σx + σy + σz)) or, for

the Hoggar state for N = 3, we have |αr| = 1/3. These
states also saturate the upper bound of pure-state Bell
magic. Note that for N = 2, the maximal pure state does
not saturate the bound, as it has a nonequal distribution of
αr.

APPENDIX H: CONSTRUCTION OF QUANTUM
CIRCUITS

To prepare quantum states in an experimentally friendly
way on the IonQ quantum computer, we use parametrized
quantum circuits as shown in Fig. 7 [55]. The state

|ψ(θ)〉 =
d∏

l=1

W[
N⊗

n=1

Rz(θ
z
l,n)][

N⊗

n=1

Ry(θ
y
l,n)]|0〉⊗N (H1)

is generated by d layers of parametrized single-qubit rota-
tions Rα(θ) = exp(−i(θ)/(2)σ α), where α ∈ {x, y, z}, and
a set of fixed entangling gates W which are CNOT gates
arranged in a nearest-neighbor chain configuration. We
can choose the K parameters θ for the parametrized quan-
tum circuit in two fashions. First, we sample them uni-
formly θ rand ∈ [0, 2π)K . This set of parameters generates
highly random quantum states |ψ(θ rand)〉 that approxi-
mate Haar-random states for sufficiently deep circuits [73].
This circuit is used to create the highly magical states
for the experimental state-discrimination task on the IonQ
quantum computer.

Next, to prepare stabilizer states as well as to measure
the transition of stabilizer into intractable quantum states
on the IonQ quantum computer, we use the same cir-
cuit with a different set of parameters. We choose K − NT
parameters as nπ/2, where n is an integer, and NT param-
eters as multiples of π/2 shifted by π/4 with {n(π)/2 +
π/4}, yielding θNT ∈ {n(π)/2}K−NT ⊗ {n(π)/2 + π/4}NT .
For NT = 0, all single-qubit rotations are Clifford gates and
do not introduce any magic into the circuit. The entan-
gling gates W composed of CNOT gates are Clifford gates
as well and thus for NT = 0, we obtain random stabilizer
states. For NT > 0, NT non-Clifford gates are introduced
into the circuit, which yield an increasing amount of
magic. As one can easily check, the shift in parameter
by π/4 is equivalent to adding a T gate (for z rota-
tions) or a stabilizer-transformed version of the T gate in
the y basis (for y rotations). For large d, our approach
is equivalent to adding NT T gates at random positions
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d layers

FIG. 7. A parametrized quantum circuit |ψC(θ)〉 of N qubits. It
is composed of d layers of single-qubit rotations around the y and
z axes parametrized with θ and entangling CNOT gates arranged
in a nearest-neighbor chain configuration.

into a Clifford circuit sampled randomly from the Clifford
group.

For the numerical simulation of the state-discrimination
and magic estimation task of N = 50 qubits, we use a mod-
ified version of Fig. 7, where the initial state |0〉 is replaced
by NA magic states. In particular, the circuit consists of
an initial state of NA magic states and a Clifford circuit of
depth d:

|ψ(θ)〉 =
d∏

l=1

W[
N⊗

n=1

Rz(θ
z
l,n)][

N⊗

n=1

Ry(θ
y
l,n)]|T〉NA |0〉⊗N−NA.

(H2)

Here, the position of the NA magic states |T〉 is randomly
permuted within the N qubits. The layered unitaries are
chosen as random Clifford circuits by choosing random
parameters θ ∈ {n(π)/2}K , where n is an integer, such that
all parametrized gates are single-qubit Clifford gates. W
is an entangling layer consisting of CNOT gates arranged
in a nearest-neighbor chain configuration. For our simu-
lations, we use a depth of d = 4. This circuit has a Bell
magic Ba = NA.

APPENDIX I: ERROR MITIGATION

We want to determine the Bell magic of a pure state |ψ〉
subject to depolarizing noise,

ρ = (1 − p)|ψ〉 + pI2−N , (I1)

by measuring the depolarized state ρ. From the measure-
ment of the purity tr(ρ2

dp), we can calculate

p = 1 −
√
(2N − 1)(2N tr(ρ2

dp)− 1)

2N − 1
. (I2)

Now, we derive the error-mitigation method. First, the
projector onto a Bell state can be written as

�r1r2 = |σr1r2〉〈σr1r2 | = 1
4
(I ⊗ I + Ex

r1r2
σ x ⊗ σ x

+ Ey
r1r2
σ y ⊗ σ y + Ez

r1r2
σ z ⊗ σ z), (I3)

with factors Eαr1r2
= ±1. The projector onto a product of

Bell states is then given by Or = ⊗N
n=1�r2n−1,r2n .

Now, the state affected by depolarizing noise is given by
ρ = (1 − p)|ψ〉〈ψ | + pI/2N . The probability of measur-
ing bit string r via Bell measurement on the noisy state is
given by

Pdp(r) = Tr(ρ ⊗ ρOr)

= (1 − p)2P0(r)+ p24−N Tr(I ⊗ IOr)

+ p(1 − p)2−N (Tr(|ψ〉〈ψ | ⊗ IOr)

+ Tr(I ⊗ |ψ〉〈ψ |Or)),

with P0(r) = Tr(|ψ〉〈ψ | ⊗ |ψ〉〈ψ |Or). With the decom-
position of the projector into Pauli strings [see Eq. (I3)],
Tr(I ⊗ |ψ〉〈ψ |σα ⊗ σα) = 0, Tr(I ⊗ I) = 4N , and Tr(|ψ〉
〈ψ | ⊗ I) = 2N , we obtain

Pdp(r) = (1 − p)2P0(r)+ p(2 − p)4−N . (I4)

This means that depolarization occurring on one of the
copies results in the same measured probability distribu-
tion as global depolarization acting on all copies. Thus,
the probability of no error occurring is given by (1 − p)2.
Now, we define the probability

Qdp(r) =
∑

q⊕q′=r

Pdp(q)Pdp(q′) (I5)

of getting the binary added bit string r. The Bell magic can
be then written as

Bdp =
∑

r,q∈{0,1}2N

Qdp(r)Qdp(q)
∥
∥[σr, σq]

∥
∥

∞ . (I6)

Here, we use that σr = σqσq′ = σq⊕q′ up to a multipli-
cation with {1, −1, i, −i}. Inserting Pdp(r) with the depo-
larizing noise, we obtain Qdp(r) = (1 − p)4Q0(r)+ (1 −
(1 − p)4)4−N , where Q0(r) = ∑

q⊕q′ P0(q)P0(q) is the
probability for the pure state. Here, we use the fact that∑

r∈{0,1}2N P0(r) = 1 and
∑

r∈{0,1}2N = 4N . We now define

pc = 1 − (1 − p)4 (I7)

to simplify to Qdp(r) = pcQ0(r)+ (1 − pc)4−N . We can
now write out the Bell magic in terms of the probability
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Q0 for the noise-free state

Bdp =
∑

r,q∈{0,1}2N

Qdp(r)Qdp(q)
∥
∥[σr, σq]

∥
∥

∞

=
∑

r,q

∥
∥[σr, σq]

∥
∥

∞ (p
2
c Q0(r)Q0(q)

+ (1 − pc)
24−2N + 2pc(1 − pc)4−N Q0(r)

= (1 − pc)
2Bmtg + p2

cB(ρm)+ 2pc(1 − pc)BR.

Here, B(ρm) = ∑
r,q 4−2N

∥
∥[σr, σq]

∥
∥

∞ = 1 − 4−N is the
Bell magic of the maximally mixed state, Bmtg =∑

r,q Q0(r)Q0(q)
∥
∥[σr, σq]

∥
∥

∞ is the mitigated Bell magic
of the noise-free state, and we define

BR = 4−N
∑

r,q

Q0(r)
∥
∥[σr, σq]

∥
∥

∞ . (I8)

We now show how to calculate BR. First, we split this term
into the cases r = 0 and r �= 0:

BR = 4−N
∑

q

Q0(0)
∥
∥[σ0, σq]

∥
∥

∞

+ 4−N
∑

r �=0

Q0(r)
∑

q

∥
∥[σr, σq]

∥
∥

∞ .

A given Pauli string σr with r �= 0 commutes with half
of all 4N Pauli strings, while it does not commute with
the other half. Thus,

∑
q

∥
∥[σr �=0, σq]

∥
∥

∞ = 4N . For the case
r = 0, the Pauli string σ0 = I is the identity and thus it
always commutes

∥
∥[σ0, σq]

∥
∥

∞ = 0. Using 4−N ∑
r �=0 1 =

1 − Q0(0), we obtain

BR = 1 − Q0(0) = 1 −
∑

q⊕q′=0

P0(q)P0(q′)

= 1 −
∑

q

P0(q)2. (I9)

For a stabilizer state
∑

q P0(q)2 = 2−N , as P(q) =
2−N |〈ψ |σr|ψ∗〉|2 and there are 2N Pauli strings with
nonzero expectation values. On the other hand, for a
maximally mixed state, we find that

∑
q P0(q)2 = 4−N ,

as every bit string q appears with equal probability.
Thus, we can bound 1 − 2−N ≤ BR ≤ 1 − 4−N . Now we
want to calculate

∑
q P0(q)2 by measuring the depo-

larized state. The sum of the squares of the probabili-
ties of the bit strings is given by

∑
q Pdp(q)2. Inserting

Eq. (I4), we obtain
∑

q Pdp(q)2 = (1 − pc)
∑

q P0(q)2 +

pc4−N . We invert this equation to obtain

∑

q

P0(q)2 =
∑

q Pdp(q)2 − 4−N pc

1 − pc
. (I10)

Putting all our results together, the mitigated Bell magic is
given by

Bmtg = 1
(1 − pc)2

(Bdp − p2
cB(ρm)− 2pc(1 − pc)BR),

(I11)

where BR = 1 − (1 − pc)
−1(

∑
q Pdp(q)2 − 4−N pc). For a

large number of qubits N , the sum of probabili-
ties becomes exponentially small—4−N ≤ ∑

q P(q)2 ≤
2−N —and becomes challenging to measure. In this limit,
we can approximate BR ≈ B(ρm) ≈ 1 and finally obtain

Bmtg ≈ Bdp − pc(2 − pc)

(1 − pc)2
. (I12)

APPENDIX J: SUPERVISED LEARNING FOR
DECISION BOUNDARIES

We want to learn to classify unknown states using Bell
magic measured on (noisy) states with a finite number of
measurement samples NQ. We have two classes of states
with different amounts of Bell magic, i.e., class β with sta-
bilizer states with low Bell magic and class α with random
states with high Bell magic. To train the classifier, we are
given a training set of Ntrain states, where we know to which
class the states belong by virtue of the label yi ∈ {−1, 1}.
The label yi = −1 indicates class β and yi = 1 class α. We
now measure Bell magic using NQ measurement samples
for each state of the training set and estimate the Bell magic
for each state B̂(i). Now, we want to find the best threshold
B∗ that separates the two classes such that B̂(i) ≤ B∗ is cor-
rectly assigned as ŷi = −1 and B̂(i)2 > B∗ as ŷi = 1. To find
the best threshold, we maximize

B∗
opt = maxB∗

Ntrain∑

i=1

sign(B̂(i) − B∗)yi. (J1)

To evaluate the performance of the classifier, we test
the threshold B∗

opt on an unlabeled test data set of Ntest
states that have not been used during training. We define
Perror = N wrong

test /Ntest as the probability of wrongly classify-
ing N wrong

test states. The trivial strategy of guessing at random
would achieve an error probability of Perror = 1/2.

APPENDIX K: DATA FOR LEARNING-STATE
DISCRIMINATION

In Fig. 8, we show the data that we use for our experi-
mental demonstration of the state-discrimination protocol
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FIG. 8. The simulated Bsim
a plotted against the experimentally

measured mitigated additive Bell magic Bmtg
a . These data points

are used for the state-discrimination task in the main text. We
show the result for NQ = 1000 measurements and N = 3 qubits.

on the IonQ quantum computer. We show the simulated
Bsim

a and the mitigated additive Bell magic Bmtg
a . The

blue shows the stabilizer data, while the orange shows the
highly magical states generated by a hardware-efficient cir-
cuit with random parameters as defined in Appendix H.
The linear curve is the relationship expected for perfect
results. We observe that the Bell magic is slightly under-
estimated in experiment. The vertical dashed line is the
optimal threshold B∗

a to discriminate stabilizer and non-
stabilizer states from the experiment for NQ = 1000. For
smaller NQ, the measurement error increases and no B∗

a to
perfectly distinguish the two classes can be found, yielding
a finite classification error.

APPENDIX L: SHIFT RULE FOR BELL MAGIC

We now derive the shift rule for Bell measurements
and the Bell magic. The shift rule provides exact gradi-
ents when the circuit is composed of parametrized Pauli
rotations [64]. For standard measurements on single quan-
tum states, the shift rule is given by ∂k〈C(θ)〉 = v(〈C(θ +
ek(π)/4v)〉 − 〈C(θ − ek(π)/4v)〉), where ek is the kth unit
vector and r is an arbitrary number [65].

For any operators U, V, and O, we can write [64]

〈ψ |U†OV|ψ〉 + h.c. = 1
2

[〈ψ |(U + V)†O(U + V)|ψ〉
− 〈ψ |(U − V)†O(U − V)|ψ〉], (L1)

where h.c. indicates the Hermitian conjugate of the preced-
ing terms.

For Bell magic, we have to estimate the probability
P(r) = 〈ψ |〈ψ |Or|ψ〉|ψ〉 of measuring a Bell state |σr〉,
where Or = |σr〉〈σr| is the projector onto the Bell state.
The derivate of the parametrized quantum circuit |ψ(θ)〉 =
∏d

n=1 Vn(θn)Wn|0〉 with d layers, entangling gates Wn,

parameters θ , and parametrized rotations Vn(θn) = e−i θk
2 σn

is given by some Pauli string σn, the derivative on the
quantum state |ψ〉 can be written as

∂k|ψ(θ)〉 =
d∏

n=k+1

[Vn(θn)Wn](−i
1
2
σk)

k∏

n=1

[Vn(θn)Wn]|0〉

≡ Uk(−i
1
2
σk)|φk〉,

where in the last step we define |φk〉 = ∏k
n=1 Vn(θn)Wn|0〉

and Uk = ∏d
n=k+1 Vn(θn)Wn. Now, the derivative of P(r)

using the product rule is given by

∂kP(r) =2〈φk|〈φk|(Uk ⊗ Uk)
†Or(Uk ⊗ Uk)

[(−i
1
2
σk)⊗ I ]|φk〉|φk〉 + h.c.

We now define, for simplicity, O′
r = (Uk ⊗ Uk)

†Or(Uk ⊗
Uk), introduce an arbitrary factor v > 0, and apply
Eq. (L1):

∂kP(r) = 2v〈φk|〈φk|O′
r[(−i

1
2v
σk)⊗ I ]|φk〉|φk〉 + h.c.

= v〈φk|〈φk|[(I − i
1

2v
σk)

†⊗I ]O′
r

× [(I − i
1

2v
σk)⊗ I ]|φk〉|φk〉

− v〈φk|〈φk|[(I + i
1

2v
σk)

†⊗I ]O′
r

× [(I + i
1

2v
σk)⊗ I ]|φk〉|φk〉.

For any Pauli strings σ , we can rewrite the generators into
a unitary as follows [64]:

e−i π4v
1
2 σ = 1√

2
(I − i

1
2v
σ) . (L2)

We now find that

∂kP(r)

= 2v〈φk|〈φk|[e−i π4v
1
2 σn ⊗ I ]†O′

r[e−i π4v
1
2 σn ⊗ I ]|φk〉|φk〉

− 2v〈φk|〈φk|[ei π4v
1
2 σn ⊗ I ]†O′

r[ei π4v
1
2 σn ⊗ I ]|φk〉|φk〉

= 2v〈ψ(θ + π

4v
ek)|〈ψ(θ)|Or|ψ(θ + π

4v
ek)〉|ψ(θ)〉

− 2v〈ψ(θ − π

4v
ek)|〈ψ(θ)|Or|ψ(θ − π

4v
ek)〉|ψ(θ)〉,

(L3)

where in the last step we introduce the kth unit vector
ek and we absorb e−i(π)/(4v)(1)/(2)σn into the definition of
the kth parametrized rotation, i.e., Uke−i(π)/(4v)(1)/(2)σn |φk〉
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= |ψ(θ + (π)/(4v)ek)〉. Finally, with the product rule, the
gradient of Bell magic is given by

∂kB = 4
∑

r,r′,q,q′
∈{0,1}2N

[∂kP(r)]P(r′)P(q)P(q′)
∥
∥[σrσr′ , σqσq′]

∥
∥

∞ .

(L4)

APPENDIX M: TRAINABILITY OF BELL MAGIC

Here, we present the calculation of the gradi-
ent of the Bell magic for the ansatz |ψ(θ , UC〉 =
UC exp(−i 1

2θσ
y
1 )|0〉⊗N . A straightforward calculation

yields B(θ , UC) = 1
2 sin(2θ)2. Here, we use that Bell

magic is invariant under the choice of Clifford circuit UC.
For the gradient, we find that ∂θB(θ , UC) = sin(4θ). We
calculate the variance of the gradient by integrating over
θ , which yields

Var(∂θB(θ , UC))θ ,UC = 1
2π

(∫ 2π

0
[∂θB(θ , UC)]2dθ

−
(∫ 2π

0
∂θB(θ , UC)dθ

)2)

= 1
2

. (M1)

APPENDIX N: STATE DISCRIMINATION FOR A
SINGLE MAGIC STATE

Here, we derive the error probability of classifying a
Clifford circuit with exactly one magic state as input.
The state |ψC(φ)〉 = UC|φ〉 ⊗ |0〉N−1 consists of an arbi-
trary Clifford circuit UC and an initial state |Aφ〉 ⊗ |0〉N−1

with exactly one nonstabilizer qubit |Aφ〉 = cos(φ/2)|0〉 +
sin(φ/2)|1〉. φ controls the amount of Bell magic intro-
duced into the circuit. In particular, for φ = nπ/2, where n
is an integer, no magic is introduced, whereas for φ = π/4,
the Bell magic introduced in the circuit is equivalent to the
|T〉 state.

We now derive the error for the case UC = I and N =
1 with |ψC(φ)〉 = |Aφ〉. General N and UC follow from
faithfulness, composition, and invariance under transfor-
mation with UC for the Bell magic. First, we apply the Bell
transformation and obtain

UBell|Aφ〉 ⊗ |Aφ〉 = 1√
2
(|00〉 − cos(φ)|10〉 + sin(φ)|01〉).

(N1)

The probabilities of measuring the respective bit strings are
p00 = 1/2, p10 = 1/(2) cos(φ)2 and p10 = 1/(2) sin(φ)2.
Now, we sample this state NQ times and apply the
algorithm for the Bell magic. We assume the case of a large
number of resampling steps NR such that the algorithm
adds all possible combination pairs of bit strings together,
then checks whether any of those pairs correspond to
noncommuting Pauli strings. One can easily check that

such a noncommuting pair of Pauli strings is only found
when one samples each possible bit string {00}, {01}, and
{10} at least once. Thus, the error probability of finding
only commuting Pauli strings and thus wrongly estimating
B = 0 is given by

PE(NQ) =
NQ∑

k=0

(
NQ

k

)

[pN−k
00 pk

01 + pN−k
00 pk

10 + pN−k
10 pk

01]

− pN
00 − pN

10 − pN
01.

Here, we sum over all possible combinations of measur-
ing only two kinds of bit strings. The last three terms are
subtracted as these terms appear twice in the sums. After
inserting the probabilities and simplifying, we obtain

PE(φ) = 4−NQ[(3 − cos(2φ))NQ + (3 + cos(2φ))NQ]

− 2−NQ[sin(φ)2NQ + cos(2φ)2NQ].

APPENDIX O: STABILIZER ENTROPY AND BELL
MEASUREMENT

Stabilizer entropy is a class of measures of magic that
have been recently introduced [10]. They can be measured
using a randomized-measurement approach. As an alter-
native approach, we show how to measure the stabilizer
entropy with Bell measurements. The stabilizer 2-Rényi
entropy is given by

M2 = − log(2N
∑

r

(2−N 〈ψ |σr|ψ〉2)2) (O1)

and the linear stabilizer entropy by

Mlin = 1 − 2N
∑

r

(2−N 〈ψ |σr|ψ〉2)2. (O2)

With Eq. (B1) and setting n = 0, we can write the stabilizer
2-Rényi entropy with the outcome probability P(r) of Bell
measurements as

M2 = − log(2N
∑

r

P(r)2) (O3)

and the linear stabilizer entropy

Mlin = 1 − 2N
∑

r

P(r)2. (O4)

Note that the explicit estimation of P(r) requires a num-
ber of measurement samples that scale exponentially with
the number of qubits N . Using our shift rule, given in
Eq. (L3), one could also maximize M2 in a variational
quantum algorithm.

We can also mitigate errors of M2 on noisy quantum
computers. Assuming depolarizing noise p as outlined in
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(a) (b) (c) (d)

FIG. 9. An experiment to measure (a),(b) additive Bell magic Ba and (c),(d) stabilizer 2-Rényi entropy M2 on the IonQ quantum
computer for various types of states. (a) In the left part of the graph, we show product states of stabilizer states |+〉⊗N , magic states
|T〉⊗N and |R〉⊗N as well as the state of maximal Bell magic, |ψmax〉 for N = 3. (b) In the right part of the graph, we show magic
as a function of NT T gates inserted at random positions in a Clifford circuit. For all measures of magic, we show the unmitigated
and mitigated magic from the IonQ quantum computer as well as an exact simulation of the quantum states. The mean value and
the standard deviation are taken over six random instances of the state for N = 3 qubits. The dashed line is the Bell magic averaged
over Haar-random states. The experiment is performed with NQ = 103 measurement samples and no further error or readout error
mitigation. The purity measured on the IonQ quantum computers gives us a depolarization error of p ≈ 0.1.

Sec. I, we measure the probabilities Pdp(r) of the noisy
state. Using the purity estimated from the SWAP test of
the Bell measurements in Eq. (I2), we can estimate p .
Then, the mitigated probabilities P0(r) can be computed
via Eq. (I4) as

P0(r) = Pdp(r)− p(2 − p)4−N

(1 − p)2
. (O5)

Note that negative probabilities can appear due to shot
noise or the noise not being perfectly depolarizing. In this
case, we set all P0(r) < 0 to zero.

In Fig. 9, we compare the experimental results for Bell
measurements on the IonQ quantum computer for stabi-
lizer entropy and Bell magic. For all measures, we use
the same experimental data. We show additive Bell magic
Ba in Figs. 9(a) and 9(b) and stabilizer 2-Rényi entropy
M2 in Figs. 9(c) and 9(d). We find that error mitigation
improves the result for all measures. For the exact simula-
tion, all measures produce similar behavior; in particular,
we observe that both Ba and M2 are additive for the vari-
ous |T〉 states with N . Both measures share the same state
of maximal Bell magic. Further, we see that with increas-
ing NT, the average magic of both measures converges to
the respective value found for Haar-random states.

APPENDIX P: ENTANGLEMENT AND BELL
MEASUREMENTS

We now investigate the entanglement of the states that
we studied in the main text for Bell magic. The Meyer-
Wallach measure E [59] has been proposed as a measure to
characterize the entanglement of states prepared on quan-
tum computers [72]. First, one defines a mapping ιj (e) that

acts on the computational basis states ιj (b)|b1 · · · bn〉 =
δbbj |b1 · · · b̃j · · · bn〉, where bj ∈ {0, 1} and b̃j denotes the
absence of the j th qubit. The Meyer-Wallach measure is
then defined as

E(|ψ〉) ≡ 4
n

n∑

j =1

D
(
ιj (0)|ψ〉, ιj (1)|ψ〉), (P1)

where D is the generalized distance of the coefficients of
two states |u〉 = ∑

ui|ei〉 and |v〉 = ∑
vi|ei〉,

D(|u〉, |v〉) = 1
2

∑

i,j

|uivj − uj vi|2. (P2)

It can be rewritten as [90]

E(ψ) = 2(1 − 1
N

N∑

i=k

tr(ρ2
k )), (P3)

where ρk = trk(ρ) is the partial trace of |ψ〉 over all qubits
except for the kth qubit. It is zero for pure product states
and can maximally reach E = 1 for classes of highly
entangled states such as the Greenberger-Horne-Zeilinger
(GHZ) state. For Haar-random states and random stabilizer
states, we find that E(|ψHaar〉) = (2N − 2)/(2N + 1) [91].
We now assume that a pure state |ψ〉 is subject to depo-
larizing error p , resulting in the noisy state ρdp as defined
in Eq. (I1). By measuring the Meyer-Wallach measure Edp
on ρdp, we want to compute the mitigated measure Emtg
for the corresponding pure state |ψ〉. We now apply the
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(a) (b)

FIG. 10. The measurement of the Wallach-Meyer measure E
for entanglement on the IonQ quantum computer. We compute E
for various type of states. We use the same states and parameters
as in Fig. 9. The dashed line is E for Haar-random states.

error-mitigation method in Appendix I with

ρk,dp = ρk(1 − p)+ 1
2

Ikp . (P4)

After squaring and taking the trace over ρk,dp, we find that

Emtg = Edp − (2 − p) p
2

(1 − p)2
. (P5)

Note that the tr(ρ2
k ) can be efficiently computed via Bell

measurements [46]. In particular, tr(ρ2
k ) = 1 − 2Podd,k,

where Podd,k is the probability of odd parity of the out-
comes measured on the kth qubits of the two copies.

We experimentally measure E on the IonQ quantum
computer in Fig. 10. We use the same states and parameters
as used for computing Bell magic in Fig. 9. As expected,
we find experimentally that product states have E ≈ 0. In
contrast, entangled states such as |ψ〉max and the random
Clifford states with T gates have high E . We find that
E is nearly independent of NT and close to the average
value expected for Haar-random states. We observe some
variance in our result, as we only consider states with a
short circuit depth and we measure only a small number of
states. Our results highlight the complementary properties
of Bell magic and entanglement of different types of states,
which can be easily measured with Bell measurements on
noisy quantum computers.
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