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While quantum circuits built from two-particle dual-unitary (maximally entangled) operators serve as
minimal models of typically nonintegrable many-body systems, the construction and characterization of
dual-unitary operators themselves are only partially understood. A nonlinear map on the space of unitary
operators has been proposed in Phys. Rev. Lett. 125, 070501 (2020) that results in operators being arbi-
trarily close to dual unitaries. Here, we study the map analytically for the two-qubit case describing the
basins of attraction, fixed points, and rates of approach to dual unitaries. A subset of dual-unitary operators
having maximum entangling power are 2-unitary operators or perfect tensors and these are equivalent to
four-party absolutely maximally entangled states. It is known that they only exist if the local dimension is
larger than d = 2. We use the nonlinear map, and introduce stochastic variants of it, to construct explicit
examples of new dual and 2-unitary operators. A necessary criterion for their local unitary equivalence
to distinguish classes is also introduced and used to display various concrete results and a conjecture in
d = 3. It is known that orthogonal Latin squares provide a “classical combinatorial design” for construct-
ing permutations that are 2-unitary. We extend the underlying design from classical to genuine quantum
ones for general dual-unitary operators and give an example of what might be the smallest-sized genuinely
quantum design of a 2-unitary in d = 4.
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I. INTRODUCTION

In recent years a major research trend has been to use
the tools of quantum information theory to understand
the puzzles of quantum many-body physics. The typi-
cally complex entanglement structure of many-body states
drives cross fertilization across various fields of research
in physics. Particularly in the areas of condensed-matter
physics and string theory, quantum information theory
continues to play an exciting role in creating new avenues
of understanding [1–4].

Quantum computers allow the realization of the vision
of Feynman [5] on the efficient simulation of physical
systems [6]. In the present era of noisy-intermediate-
scale quantum (NISQ) [7] computing, such simulations
become realistic [8]. The universality of quantum com-
puting allows simulation of any quantum system, where
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quantum circuits are built using unitary operators or gates
acting on single-particle and two-particle subsystems.
A quantum computer is itself a controllable quantum
many-body system. Traditional approaches involve study-
ing the properties of systems based on the Hamiltonian
evolution and spectra. At this juncture, it is important to
understand the properties of quantum many-body systems
from the quantum circuit formalism and to contrast that
with the traditional studies.

Quantum advantage using random unitary circuits has
been explored in recent experiments using Google’s
“Sycamore” processor [9] and “Zuchongzhi 2.0” [10].
Similar models are used in studies of entanglement evolu-
tion in many-body quantum systems, in which the random
unitary gates act on nearest neighbors [11–15]. Quantum
circuits in arbitrary local dimensions, without any random
interactions, have been proposed as elegant minimal mod-
els that can span the gamut of integrable to fully chaotic
quantum many-body systems [16–19]. These quantum cir-
cuits have a special “duality” property in that the evolution
operator in the spatial as well as in the temporal direction
of the circuit is governed by unitary dynamics. The origin
of this duality lies in the two-particle unitary gates being
dual unitary [17]. This duality facilitates an analytical
treatment of many quantities such as two-point correlation
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functions, the spectral form factor, operator entanglement,
out-of-time-order correlators, and the exact study of the
entanglement dynamics [17,18,20–35]. The two-particle
unitary from which the circuit is built plays a significant
role in the following and is an operator in d2-dimensional
space, where the local dimension is d and is typically
denoted as U.

On the other hand, entanglement of unitary operators,
similar to states, has been studied from the early days of
quantum information theory [36–45]. Quantities such as
operator entanglement [37], the entangling power [36], and
the complexity of an operator [46] are a few measures that
quantify the nonlocal properties of unitary operators. Oper-
ator entanglement measures how entangled an operator is
when viewed as a vector in a product vector space. It has
been identified that a unitary operator is dual unitary if
and only if it has maximum possible operator entangle-
ment [47]. The entangling power quantifies the average
entanglement produced by a bipartite unitary operator act-
ing on an ensemble of pure product states. A special sub-
class of dual-unitary operators are those having the max-
imum possible entangling power allowed by local dimen-
sions. These are the same operators that have been referred
to variously as 2-unitary [48] or perfect tensors [49].

The exactly calculable two-point correlation functions
in dual-unitary circuits enable the characterization of the
many-body system in terms of an ergodic hierarchy, from
ergodic to Bernoulli through mixing [17,50]. It is identified
that the dual-unitary circuit is Bernoulli when correlations
instantly decay, if and only if the two-particle unitary oper-
ator has maximum entangling power [50]. Additionally,
a sufficient condition for the many-body circuit to show
the mixing behavior is derived as a function of the entan-
gling power [50]. These results establish a close connec-
tion between the entangling properties of the two-particle
unitary operators from which the many-body quantum cir-
cuits are built and the dynamical nature of the many-body
systems.

Let the Schmidt form of a bipartite pure quantum
state be |ψ〉AB = ∑d−1

i=0
√
λi |ii〉 /

√
d, where d is the local

Hilbert-space dimension. Setting λi = 1 for all i in this
expansion results in |�〉 = ∑d

i=1 |ii〉 /√d, which is a max-
imally entangled state—in fact, the one that is closest
to |ψAB〉. Any set of orthonormal bases in the subspaces
constructs such maximally entangled states.

In contrast, the construction of maximally entangled
unitary operators does not follow from orthonormal oper-
ator bases. Let us express a unitary operator in oper-
ator Schmidt form, U = ∑d2

j =1

√
λj Xj ⊗ Yj , tr(X †

j Xk) =
tr(Y†

j Yk) = δjk, and λj ≥ 0. U is maximally entangled or
dual unitary if and only if λi = 1 for all i. However,
the constraint of unitarity is stronger than the constraint
of normalization on the state and this imposes complex
conditions on the Schmidt matrices Xj and Yj . Thus

simply assigning λi = 1 for all i does not retain unitarity,
although it does result in a maximally entangled operator.
This makes it hard to analytically construct dual-unitary
operators. Construction of maximally entangled unitaries
has been discussed at least as early as in Ref. [51].

If the local dimension is d = 2, namely for qubits, all
possible dual-unitary operators can be parametrized using
the Cartan decomposition [17]. There are no 2-unitary or
perfect tensors in this case. While a complete parametriza-
tion of dual-unitary operators for d > 2 is not known,
many classes and examples have been examined and used
thus far. The SWAP or flip operator is a simple example of
a dual-unitary operator. The discrete Fourier transform in
d2 dimensions maximizes operator entanglement [52,53]
and is hence also dual unitary. However, the SWAP has
zero entangling power, while the Fourier transform has a
finite value. Diagonal and block diagonal operators, along
with the SWAP gate, can be used to construct a dual-unitary
operator [50,54]. These have limited entangling power and
in particular cannot reach the maximum value [50]. The
dual-unitary operators introduced recently in Ref. [55] are
also bounded by the entangling power of diagonal unitary
operators.

A numerical iterative algorithm that produces unitary
operators that are arbitrarily close to being dual unitary has
been presented in Ref. [47]. This algorithm can yield dual-
unitary operators with a wide range of entangling powers,
especially exceeding the bound corresponding to block-
diagonal-based constructions. Remarkably, the numerical
algorithm can also yield exact analytical forms for dual-
unitary operators [50] and several other examples, includ-
ing new 2-unitaries, are displayed further below. A slightly
modified algorithm has been used to positively settle an
open problem on the existence of four-party absolutely
maximally entangled (AME) states of local dimension
six [56] (see also Ref. [57], for an elaborate discussion of
the solution). AME states are genuinely entangled multi-
partite pure states that have maximal entanglement in all
bipartitions [58]. Thus an AME state of N qudits, each of
dimension d, denoted as AME(N , d) has all subsystems of
size �N/2� maximally mixed.

The numerical algorithm acts generically as a dynami-
cal map in the space of unitary operators. These are thus
high-dimensional dynamical systems that deserve to be
studied in their own right. In this work, we study the
fixed-point structure of the map. In particular, for the case
of two qubits, an explicit analytical form of the map is
derived. This enables the derivation of dynamical char-
acteristics such as the rate of approach to attractors that
are dual-unitary operators. A variety of dynamical behav-
iors have been observed: (i) power-law approaches to the
SWAP gate and (ii) an exponential approach to other dual-
unitary gates, with a rate that diverges for the maximally
entangling case of the double-controlled-NOT (DCNOT)
gate.
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Due to operator-state isomorphism, a 2-unitary operator
is equivalent to a four-party AME state [48]. There are var-
ious ways of constructing AME states in which quantum
combinatorial designs are used [48,59]. Since 2-unitaries
are a subset of dual unitaries, a less restrictive combi-
natorial design underlying dual-unitary operators that are
permutations has been found in Ref. [50]. In this work, we
extend such combinatorial designs to dual-unitary oper-
ators going beyond permutations. We define stochastic
dynamical maps capable of generating such structured
dual-unitary operators.

Apart from dual-unitary operators, the maps presented
in Ref. [47] can be used to generate infinitely many 2-
unitaries for d > 2. An important question now arises if
the 2-unitaries so obtained are local unitarily (LU) equiv-
alent to each other and to 2-unitary permutations of the
same size. Two bipartite unitary operators, U and U′, on
Hd ⊗ Hd are said to local unitarily equivalent, denoted by
U

LU∼ U′, if there exist single-qudit unitary gates u1, u2, v1,
and v2 such that

U′ = (u1 ⊗ u2)U(v1 ⊗ v2). (1)

However, as far as we know, there is no general procedure
to identify LU-equivalent unitary operators, apart from
the case of two qubits [45]. This problem becomes acute
when the operators concerned, such as the 2-unitaries,
have the same entangling powers. In this work, we address
this question by proposing a necessary criterion for LU
equivalence between bipartite unitary operators that can
potentially also work in the case of 2-unitaries.

This leads us to conjecture that all two-qutrit 2-unitaries
are LU equivalent to each other. From an exhaustive
search, we find that the special subset of 72 possible 2-
unitary permutations of size 9 are LU equivalent to each
other. For local Hilbert-space dimension d = 4, we find
that this still continues to hold: indeed, there are 6912
2-unitary permutations and we find that these can gener-
ated from any one of them by local permutations. Thus
up to LU equivalence, we find that there is only one 2-
unitary permutation in d = 3 and d = 4 and this implies
that there is only one unique orthogonal Latin square
(OLS) of size 3 and 4. Note that the connection between 2-
unitary permutations and OLSs has been known for some
time [60].

Although there is only one 2-unitary permutation up to
LU equivalence, further below, we give an explicit exam-
ple of a 2-unitary of size 16 that is not LU equivalent to any
2-unitary permutation of the same size. In other words, we
give an explicit example of an AME state of four ququads
that is not LU connected to an AME state of four ququads
with minimal support. Minimal-support four-party AME
states have d2 nonvanishing coefficients in some product
orthonormal basis, which is the smallest number possi-
ble [48]. These new examples of AME states can be used

to construct new error-correcting codes, as has been done
in Ref. [56], and can provide insights into the most general
underlying combinatorial designs that 2-unitaries possess.
For d = 5, we show that there are two LU-inequivalent 2-
unitary permutations or, equivalently, two LU-inequivalent
AME states of minimal support. This contradicts Conjec-
ture 2 in Ref. [61], which implies that all four-party AME
states of minimal support are LU equivalent for all local
dimensions d.

A. Summary of principal results and structure of the
paper

In view of the length of this paper, we summarize some
of the main results here:

(1) Dynamical maps for generation of dual-unitary
operators, given in Secs. III and IV:

(a) It is shown in Proposition 1 that the map pre-
serves local unitary equivalence.

(b) An explicit form of the map for the two-qubit
case is derived. This is used to show that all dual
unitaries are period-2 points and, conversely,
that all period-2 points are dual unitaries. It
is shown that convergence of the map to dual
unitaries is typically exponential.

(2) Quantum designs and new classes of 2-unitaries and
AME states, set out in Secs. V–VII:

(a) A necessary criterion for LU equivalence
between bipartite unitary gates is proposed and
is particularly useful for establishing inequiv-
alence between 2-unitary operators and AME
states.

(b) An AME state of four qudits each of local
dimension 4, AME(4, 4), is constructed such
that it is not LU equivalent to any known AME
state obtained from classical OLSs. It is likely
to be the simplest genuine orthogonal quantum
Latin-square construction.

(c) For local dimensions d = 3 and d = 4, it is
shown that there is only one LU class of AME
states constructed from OLSs. However, we
show that there is more than one such LU class
for d > 4.

The paper is structured as follows. In Sec. II, the basic ter-
minology used in the current work is defined. In Sec. III,
the nonlinear iterative maps from which dual-unitary and
2-unitary operators are produced is described and their
fixed-point structure is discussed. Stochastic generaliza-
tions are introduced and result in specially structured oper-
ators. In Sec. IV, the iterative map is studied in explicit
forms for the case of qubits. Here, we analytically estimate
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the power-law or exponential approach to dual-unitary
operators. In Sec. V, combinatorial designs correspond-
ing to dual-unitary operators are discussed. In Sec. VI,
the question of the local unitary equivalence of 2-unitary
operators is discussed, specially for the small cases of
d = 3 and d = 4. In Sec. VII, permutations with small
dimensions are studied in detail via their entangling pow-
ers and gate typicality. A classification of LU classes
for dual-unitary and T-dual unitary permutation opera-
tors is given for d = 2 and d = 3. Finally, we conclude
in Sec. VIII.

II. PRELIMINARIES AND DEFINITIONS

In this section, we mostly recall some relevant quantities
and measures.

A. Operator entanglement and entangling power

Any operator X ∈ B(Hd) is mapped to the state |X 〉 ∈
Hd ⊗ Hd as

|X 〉 := (X ⊗ I) |�〉 , (2)

where {|i〉}d
i=1 is an orthonormal basis in Hd and |�〉 :=

1/
√

d
∑d

i=1 |ii〉 is the generalized Bell state. A bipar-

tite unitary operator U = ∑d2

ij αij eA
i ⊗ eB

j ∈ B(Hd ⊗ Hd)

is mapped to |U〉 = ∑d2

ij αij |ei〉A ⊗ |ej 〉B ∈ Hd2 ⊗ Hd2 ,
where eA,B

i are a pair of operator bases in B(Hd).
The entanglement of a unitary operator U is the

entanglement of the state |U〉 = ∑d2

j =1

√
λj |X A

j 〉 |YB
j 〉. The

Schmidt decomposition of U is given by

U =
d2∑

j =1

√
λj X A

j ⊗ YB
j , (3)

with trX A
j

†X A
k = trYB

j
†YB

k = δjk,
∑d2

j =1 λj = d2. The
operator entanglement of U is defined in terms of linear
entropy as

E(U) = 1 − 1
d4

d2∑

j =1

λ2
j , (4)

where 0 ≤ E(U) ≤ 1 − 1/d2.
Another related, but distinct, entanglement facet of a

unitary operator U is its entangling power, ep(U). It is
defined as the average entanglement produced due to its
action on pure product states distributed according to the
uniform Haar measure,

ep(U) = CdE(U |φ1〉 ⊗ |φ2〉)|φ1〉,|φ2〉
, (5)

where E(·) can be any entanglement measure and Cd is
a constant scale factor. Considering E(·) to be the linear

entropy, the entangling power can be directly calculated
using operator entanglement [37] as follows. Let S be the
SWAP operator such that

S |φA〉 |φB〉 = |φB〉 |φA〉 , (6)

for all |φA〉 ∈ Hd, |φB〉 ∈ Hd. We choose Cd such that the
scaled entangling power 0 ≤ ep(U) ≤ 1 is given by

ep(U) = 1
E(S)

[E(U)+ E(US)− E(S)], (7)

where E(S) = 1 − 1/d2.
Note that the swap operator is such that it has the

maximum possible operator entanglement; however, the
entangling power ep(S) = 0. For any operator U, ep(U) =
ep(US) = ep(SU). The so-called gate typicality gt(U) [62]
distinguishes these and is defined as

gt(U) = 1
2E(S)

[E(U)− E(US)+ E(S)]. (8)

It also ranges from 0 to 1, with gt(S) = 1, and it vanishes
for all local gates.

B. Matrix reshaping

A bipartite unitary operator U on Hd ⊗ Hd can be
expanded in the product basis as

U =
∑

iαj β

〈iα|U|j β〉 |iα〉〈j β| . (9)

There are four basic matrix rearrangements of U that we
use in this work:

(1) Realignment operations:

R1 : 〈iα|U|j β〉 = 〈βα|UR1 |ji〉, (10)

R2 : 〈iα|U|j β〉 = 〈ij |UR2 |αβ〉. (11)

(2) Partial-transpose operations:

	1 : 〈iα|U|j β〉 = 〈j α|U	1 |iβ〉, (12)

	2 : 〈iα|U|j β〉 = 〈iβ|U	2 |j α〉. (13)

The relation between entanglement and matrix reshapings
becomes clear on considering the state |U〉 as now a four-
party state |ψ〉 ∈ Hd ⊗ Hd ⊗ Hd ⊗ Hd:

|ψ〉ABCD = (UAB ⊗ ICD) |�〉AC |�〉BD , (14)

where |�〉 = 1/
√

d
∑d

i |ii〉 is the generalized Bell state.
The reduced states corresponding to the three possible
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partitions AB|CD, AC|BD, and AD|BC are given by

ρAB = 1
d2 UU†, ρAC = 1

d2 UR2UR2†, ρAD = 1
d2 U	2U	2†.

(15)

Using (X ⊗ Y)R2 = |X 〉〈Y∗|, where the asterisk (“*”)
refers to complex conjugation in the computational basis,
it is easy to see that UR2UR2† = ∑d2

1 λj |Xj 〉〈Xj |. The
Schmidt values λj are the singular values of UR2 (which
are the same as the singular values of UR1 ). The oper-
ator entanglement E(U) can be interpreted as the linear
entropy of entanglement of the bipartition AC|BD and can
be expressed in terms of UR as

E(U) = 1 − 1
d4 Tr(URUR†)2. (16)

Similarly, the operator entanglement E(US) is the linear
entropy of the bipartition AD|BC and is

E(US) = 1 − 1
d4 Tr(U	U	†)2. (17)

Whenever the subscripts on R and 	 are dropped, they can
refer equally to either of the two operations. Note that the
singular values of UR and U	 are all local unitary invariants
(LUIs).

We recall definitions of some special families of unitary
operators and also introduce some new families of unitary
operators.
Definition 1: (dual unitary [17]). If the realigned matrix
UR of unitary operator U is also unitary, then U is called a
dual unitary.
Definition 2: (T-dual unitary [50]). If the partial-
transposed matrix U	 of a unitary operator U is also
unitary, then U is called a T-dual unitary.
Definition 3: (2-unitary [48]). A unitary U for which both
UR and U	 are also unitary is called a 2-unitary.
Definition 4: (self-dual unitary). A unitary operator U for
which UR = U is called a self-dual unitary.

Note that for a 2-unitary, E(U) = E(US) = E(S) = 1 −
1/d2 are maximized and thus, from Eq. (7), ep(U) = 1,
the maximum possible value. Thus the corresponding four-
party state given by Eq. (14) is maximally entangled
along all three bipartitions and is an absolutely maximally
entangled state of four qudits: AME(4, d).

In the mathematics literature, the class of unitary opera-
tors that remain unitary under “block-transpose” have been
studied since 1989 [63–69]. Referred to as biunitaries, they
are dual unitary up to multiplication by SWAP and they are
the result of the 	1 operation above. However, the term
“biunitary” seems to be used interchangeably for both dual
and T-dual-unitary operators and subsequently no special

studies of 2-unitaries that are both dual and T-dual seem to
exist.

T-dual and dual unitaries have very different entangle-
ment properties, as reflected in their two most prominent
representatives: the identity and the SWAP gate. However,
they are related in the sense that every T-dual unitary U
has a dual partner US (or SU). Note that if U is 2-unitary,
so also are UR and U	 . For example, the realignment of UR

is U itself, while (UR)	 = U	S, which is evidently unitary
given that U is 2-unitary.

III. DUAL-UNITARY AND 2-UNITARY
OPERATORS FROM NONLINEAR

ITERATIVE MAPS

Complete parametrization of dual-unitary operators for
arbitrary local Hilbert-space dimension d is not known
in general except in the two-qubit case [17]. Several
(incomplete) analytic constructions of families of dual-
unitary operators have been proposed based on complex
Hadamard matrices [70] and on diagonal [54] and block-
diagonal unitary matrices [50]. Here, we briefly review the
nonlinear maps introduced in Ref. [47] to generate unitary
operators that are arbitrarily close to dual unitaries.

A. Dynamical map for dual unitaries

The following map is defined on the space of bipartite
unitary operators:

MR : U(d2) −→ U(d2).

One complete action of MR on a seed unitary U0 consists
of the following two steps:

(i) Linear part: realignment of U0: U0
R−→ UR

0
(ii) Nonlinear part: projection of UR

0 to the nearest uni-
tary matrix U1 given by its polar decomposition

(PD) [71,72]; UR
0 = U1

√
UR †

0 UR
0

Note that UR
0 must be of full rank for the map to be

well defined, as the polar decomposition of rank-deficient
matrices is not uniquely defined. We write one complete
action of the map on U0 as

MR[U0] := U1.

After n iterations,

MR ◦ MR ◦ · · · ◦ MR︸ ︷︷ ︸
n times

[U0] := Mn
R[U0] = Un.

For arbitrary seeds, the map has been observed to almost
certainly converge to dual unitaries [47] and this is made
plausible by the following observations on the fixed points
of the map MR.
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An important property of the map is that it preserves the
local orbit of seed unitary U0 in the following sense.

Proposition 1:

If U′
0

LU∼ U0, then U′
1 = MR[U′

0]
LU∼ U1 = MR[U0].

(18)

Proof. We start from the identity [50]

U
′R
0 = [(u1 ⊗ u2)U0(v1 ⊗ v2)]R

= (u1 ⊗ vT
1 )U

R
0 (u

T
2 ⊗ v2), (19)

where T is the usual transpose. Using the polar decompo-
sition of UR

0 , we obtain

U
′R
0 = (u1 ⊗ vT

1 )U1

√
UR †

0 UR
0 (u

T
2 ⊗ v2)

= (u1 ⊗ vT
1 )U1(uT

2 ⊗ v2)

√
U

′R †
0 U′R

0

≡ U′
1

√
U

′R †
0 U′R

0 . (20)

Explicitly,

MR[U′
0] = (u1 ⊗ vT

1 )MR[U0](uT
2 ⊗ v2). (21)

�
Thus the changes in the operator entanglement under the

MR map are unaffected by local unitary operations.
Analogous to the MR map for dual unitaries, one can

define a M	 map to generate T-dual-unitary operators.
The action of M	 on U0 is defined as M	[U0] := U1,
where U1 is the closest unitary to U	

0 given by its polar
decomposition. Such an algorithm has been independently
studied in Ref. [73] to generate a special class of randomly
structured bipartite unitary operators.

1. Dual unitaries as fixed points

The action of the map on a dual unitary U is

MR[U] = UR,

as UR is also unitary. As the realignment operation is an
involution, (X R)R = X , it follows that MR[UR] = U and

M2
R[U] = U, (22)

i.e., dual unitaries are period-2 fixed points of the map.
Note that self-dual unitaries (UR = U) are fixed points of
the MR map itself.

For the two-qubit case (d2 = 4), we prove that dual
unitaries are the only fixed points of the M2

R map or,

equivalently, the period-2 orbits of MR. However, for the
two-qutrit case (d2 = 9), there are fixed points of the M2

R
map other than dual unitaries (for an explicit example,

see Appendix E). In this case, UR
0 = U1

√
UR †

0 UR
0 , UR

1 =
U0

√
UR †

1 UR
1 and the pair U0 and U1 conspire such that each

one is the nearest unitary to the realignment of the other.
Generic seeds are not of this kind; nor do they seem to end
up in such pairs.

For d2 > 9, we are unable to find such nondual fixed
points. The reason why the map does not converge to such
fixed points is because of large dimensionality: a random
sampling of seed unitaries over the corresponding unitary
group U(d2) with (d2 − 1) parameters is unable to find
appropriate seed unitaries that lead to such fixed points.
One might also expect higher-order fixed points of the
map, which makes the map a novel dynamical system in
its own right, but for the purposes of this work we do not
focus on such directions.

B. Dynamical map for 2-unitaries

The set of 2-unitary operators is a common intersection
of dual and T-dual unitaries. In order to generate 2-unitary
operators a slightly modified map, M	R is used by also
incorporating the partial-transpose operation. Schemati-
cally, the action of the map on seed unitary U0 is

M	R : U0
R−→ UR

0
	−→ (

UR
0

)	 := U	R
0

PD−→ U1. (23)

It has been pointed out previously that sampling U0
from the circular unitary ensemble (CUE), for small local
dimensions (d2 = 9, 16), Un = Mn

	R[U0] is arbitrarily
close to being 2-unitary, with a significant probability;
around 95% for d2 = 9 and 20% for d2 = 16 [47]. To
generate 2-unitary operators in larger dimensions, one
may need to start with an appropriate initial seed unitary,
not just sampled from the CUE. This has been done in
Ref. [56] to generate a 2-unitary of order 36, which has
settled the long-standing problem of the existence of abso-
lutely maximally entangled states of four parties in local
dimensions six.

The search for 2-unitaries in the unitary group U(d2)

with d4 parameters can be viewed as an optimization
problem for maximizing the entangling power in a high-
dimensional space with a complex landscape. Random
seeds can get attracted to the many local extrema, which
are typically saddles. This makes the search to find global
extrema increasingly hard in higher dimensions. A glimpse
of the difficulties involved is discussed in Ref. [74], where
details about Hessians of the entangling power and espe-
cially its maximization in d = 6 are presented.

040331-6



LU EQUIVALENCE OF DUAL UNITARIES PRX QUANTUM 3, 040331 (2022)

1. 2-unitaries as fixed points

An action of the M	R map on a 2-unitary U is given by

M	R[U] = U	R,

as U	R := (
UR
)	 = U	S is also unitary. The combined

rearrangement 	R is not an involution like R or 	 but
is equivalent to the identity operation when composed
thrice. Note that the 	R operation on the set of four sym-
bols that label the indices of the product-basis states is
{1, 2, 3, 4} R−→ {1, 3, 2, 4} 	−→ {1, 4, 2, 3}. Thus, iterating 	R
thrice results in

{1, 2, 3, 4} 	R−→ {1, 4, 2, 3} 	R−→ {1, 3, 4, 2} 	R−→ {1, 2, 3, 4} .

Therefore, 2-unitaries are period-3 fixed points of the M	R
map:

M3
	R[U] = U. (24)

C. Structured dual unitaries from stochastic maps

Analytic constructions of dual unitaries are obtained by
multiplying T-dual unitaries with the swap S. The fami-
lies of T-dual-unitary operators that have been analytically
constructed so far mostly have a block-diagonal structure
or are permutations (which can also be block diagonal)
[50,75]. Dual-unitary permutations preserve dual unitarity
under multiplication (both left as well as right) by arbi-
trary diagonal unitaries [50]. We refer to this property of
dual-unitary permutations as an enphasing symmetry and
it is a kind of gauge freedom enjoyed by these matri-
ces. This symmetry is also present in the uniform block-
diagonal constructions. In general, the iterative algorithms
discussed above do not lead to dual unitaries with this sym-
metry. In these cases, no special structure of dual is usually
evident, as illustrated in Fig. 1.

In this section, we demonstrate that modified algo-
rithms can be defined that are capable of resulting in dual

FIG. 1. The action of the MR map, 1000 times, on a random-
seed unitary of size d2 = 9 results in an approximate dual unitary
that typically has all d4 entries nonzero. The absolute values of
the matrix elements in one such instance are shown.

and 2-unitaries with block-diagonal structures or enphased
permutations and hence afford some degree of control or
design. This is achieved by incorporating in the algorithm
random diagonal unitaries that preserve the dual-unitary
property of structured matrices.

One such algorithm MR, which converges to dual uni-
taries with the enphasing symmetry, is defined as

MR : U0
R−→ UR

0
PD−→ U′

1 → U1 = D1 U′
1 D2, (25)

where D1 and D2 are diagonal unitaries with random
phases. Note that the map is no longer deterministic, as
U0 does not uniquely determine U1. The map converges
(in all cases that we have encountered for d = 2, d = 3,
and d = 4) to dual unitaries that remain dual unitary upon
multiplication by arbitrary diagonal unitaries.

Starting from a random-seed unitary U0, the map con-
verges to dual unitaries with different block structures as
shown in Fig. 2 for d2 = 9. For the sake of convenience,
we show the nonzero elements of the corresponding T-dual
unitary to the dual unitary obtained from the map. It is
known that a block-diagonal unitary of size d2 is T dual
if the size of each block is a multiple of d [50]. The map
indeed yields T-dual unitaries that are block diagonal and
the size of each block is a multiple of d, as shown in Fig. 2
for d2 = 9. The resulting dual unitaries are of the following
form (up to multiplication by S):

(i) U = ⊕3
i=1ui, ui ∈ U(3)

(ii) U = u1 ⊕ u2, u1 ∈ U(6), u2 ∈ U(3)
Due to their peculiar structure, these dual unitaries remain
dual unitary under multiplication by random diagonal uni-
taries. This is easy to see for the uniform block case
as compared to the nonuniform case in Fig. 2. In the
nonuniform case, the 6 × 6 block cannot be replaced by an
arbitrary unitary matrix. In fact, the 6 × 6 unitary matrix
acting on C2 ⊗ C3 should satisfy T-dual unitarity [50].
If we require in addition that the duality (or, equivalently,
T duality) is preserved under multiplication by diagonal

FIG. 2. Structured T-dual unitaries obtained using the MR map
for d = 3. Left: a T-dual unitary consisting of three blocks (uni-
tary matrices) of size 3. Right: a T-dual unitary with a 6 × 6
block and a 3 × 3 block.
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unitaries, a subset is picked, an example being shown in
Fig. 2. Note the peculiar structure of the 6 × 6 block in the
nonuniform case. It consists of three 2 × 2 unitary matri-
ces arranged in such a way that multiplication by arbitrary
diagonal unitaries preserves T duality.

We check that similar structured matrices are obtained
for d = 4 and d = 5. For d2 = 16, the map yields dual uni-
taries that are of the following forms (up to multiplication
by S):

(i) U = ⊕4
i=1ui, ui ∈ U(4)

(ii) U = ⊕2
i=1ui, ui ∈ U(8)

(iii) U = ⊕2
i=1ui, u1 ∈ U(4), u2 ∈ U(12)

These block structures are compatible with the analytical
constructions of dual-unitary operators based on block-
diagonal unitaries.

To obtain structured 2-unitaries, we define M	R map as
follows:

U0
R−→ UR

0
	−→ (

UR
0

)	 := U	R
0

PD−→ U′
1 → U1 = D1 U′

1 D2.
(26)

For d2 = 9, it is observed that for a random-seed unitary, if
the map converges to 2-unitary then it is a 2-unitary permu-
tation matrix up to multiplication by diagonal unitaries, as
shown in Fig. 3. There is only one nonzero element in each
row, positioned in such a way that the whole arrangement
of nonzero entries in a 2-unitary permutation matrix is
directly related to OLSs, which we elaborate in the follow-
ing sections. The map is not as efficient as its deterministric
counterpart M	R in yielding 2-unitaries from random-seed
unitaries. However, it demonstrates that one can obtain
structured 2-unitary operators of desired symmetry and it
can be used to gain insights into the most general construc-
tions of such special unitary operators, We observe that
multiplying at each step of the map with random but struc-
tured unitaries other than diagonal unitaries can also yield

FIG. 3. The action of the M	R map on a random-seed unitary
of order 9. The map converges to 2-unitary permutation matrix
(up to phases). The only nonzero element in each row or column
is shown by a yellow square.

structured dual matrices, provided that duality is preserved
under such operations.

IV. DYNAMICAL MAP IN THE TWO-QUBIT CASE

The MR map is now studied explicitly and analytically
in the case of two-qubit unitary operators. The nonlocal
part of the operators is well known in this case. As the
map has been shown to be covariant under local unitary
transformations [see Eq. (18)], it is sufficient to consider
its action on the nonlocal part. The subset of dual-unitary
matrices is known explicitly in this case and we can cal-
culate the rate at which arbitrary seeds approach the dual
set. We find that those that approach the SWAP gate S do
so algebraically slowly, while generically the approach is
exponential.

Any unitary operator in U(4) can be written as (u1 ⊗
u2)U(v1 ⊗ v2), where ui and vi are single-qubit unitaries in
U(2) and

U = exp

[

−i
3∑

k=1

ck (σk ⊗ σk)

]

. (27)

Here, the σk are Pauli matrices, the ck ∈ R are Cartan coef-
ficients, and U is the nonlocal part of the canonical Cartan
form [76–78]. The so-called “Weyl chamber” [78] is a
tetrahedron formed by considering the subset of ck values:

0 ≤ |c3| ≤ c2 ≤ c1 ≤ π

4
. (28)

The ck values in the Weyl chamber that uniquely iden-
tify local unitarily inequivalent gates are also termed as
the information content of the gate [79]. Below, we sim-
ply refer to the nonlocal part of U as the Cartan form. For
two-qubit dual unitaries [17],

c1 = c2 = π

4
, c3 ∈

[
0,
π

4

]
, (29)

and provides the complete parametrization of the nonlocal
part. An equivalent parametrization is not known in higher
dimensions.

A. MR map in the Weyl chamber

While the map has been defined on general unitary
matrices, the overall phase has no impact on entanglement
and the map can be defined as an action on SU(4), with
det(U) = 1, to itself by removing the phase at each step.
This turns out to be very useful for the qubit case.
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Consider a seed unitary in Cartan form as

U0 = exp

[

−i
3∑

k=1

c(0)k (σk ⊗ σk)

]

=

⎛

⎜⎜⎜⎜
⎝

e−ic(0)3 c(0)− 0 0 −ie−ic(0)3 s(0)−
0 eic(0)3 c(0)+ −ieic(0)3 s(0)+ 0

0 −ieic(0)3 s(0)+ eic(0)3 c(0)+ 0

−ie−ic(0)3 s(0)− 0 0 e−ic(0)3 c(0)−

⎞

⎟⎟⎟⎟
⎠

, (30)

where

c(n)± = cos(c(n)1 ± c(n)2 ),

s(n)± = sin(c(n)1 ± c(n)2 ), n = 0, 1, . . . . (31)

Note that U0 ∈ SU(4) and we would like the subsequent
iterations to also satisfy this property: it also becomes easy
to identify the Cartan coefficients ci at every step. A cru-
cial property of the map is that it preserves the matrix form
of U0 such that U1 has exactly the same structure (see
Appendix A).

Let

Un =

⎛

⎜
⎝

αn 0 0 βn
0 δn γn 0
0 γn δn 0
βn 0 0 αn

⎞

⎟
⎠ ∈ SU(4) , (32)

where

αn = e−ic(n)3 c(n)− , βn = −ie−ic(n)3 s(n)− ,

γn = −ieic(n)3 s(n)+ , δn = eic(n)3 c(n)+ . (33)

The mapping between matrix elements of Un+1 and Un is
given by

αn+1 = e−i
χn+1

4

2

[
αn + δn

|αn + δn| + αn − δn

|αn − δn|
]

βn+1 = e−i
χn+1

4

2

[
αn + δn

|αn + δn| − αn − δn

|αn − δn|
]

γn+1 = e−i
χn+1

4

2

[
βn + γn

|βn + γn| − βn − γn

|βn − γn|
]

δn+1 = e−i
χn+1

4

2

[
βn + γn

|βn + γn| + βn − γn

|βn − γn|
]

, (34)

where

χn+1 = Arg[(α2
n − δ2

n)(β
2
n − γ 2

n )]. (35)

The dynamical system is thus a four-dimensional com-
plex map on the manifold S4 × S4. There are constraints

originating from the unitarity condition: |αi|2 + |βi|2 =
1, |γi|2 + |δi|2 = 1, Re(αiβ

∗
i ) = 0, and Re(γiδ

∗
i ) = 0, and

the SU condition: (α2
n − β2

n )(δ
2
n − γ 2

n ) = 1. The nonlin-
ear nature of the map is clear, as the entries of the above
transformation are themselves functions of other variables.

Rather than the high-dimensional complex map in
Eq. (34), using Eq. (33) we obtain a three-dimensional
(3D) real map in terms of the Cartan coefficients. Defining
θ
(n)
± = Arg(αn ± δn) and φ

(n)
± = Arg(βn ± γn), the com-

plex map in Eq. (34) simplifies to

c(n+1)
1 = 1

4
(−θ(n)+ + θ

(n)
− − φ

(n)
+ + φ

(n)
− ),

c(n+1)
2 = 1

4
(θ
(n)
+ − θ

(n)
− − φ

(n)
+ + φ

(n)
− ),

c(n+1)
3 = 1

4
(−θ(n)+ − θ

(n)
− + φ

(n)
+ + φ

(n)
− ). (36)

Numerically, it is observed that the Cartan coefficients of
Un+1 = MR[Un] obtained from the above 3D map agree
for all even n with those calculated using the numeri-
cal algorithm presented in Ref. [79,80] and also satisfy
Eq. (28). However, for odd n, the c(n)3 values still agree but
the c(n+1)

1 and c(n+1)
2 values differ from the numerical value

by π/2. In order to obtain the desired Cartan coefficients
satisfying Eq. (28) from the above 3D map, one needs to
replace c(n+1)

2 by π/2 − c(n+1)
2 for all odd n.

Before we simplify the 3D map given by Eq. (36), we
first prove the following two theorems.

Theorem 1: For two-qubit gates of the form Eq. (27), self-
dual unitaries (U = UR) are the only fixed points of the
MR map.

Theorem 2: For two-qubit gates of the form Eq. (27), dual
unitaries are the only fixed points of the M2

R map, i.e.,
M2

R[U0] = U0 if and only if U0 is dual unitary.

Proofs of the above theorems are presented in
Appendix B.

Consider a two-qubit seed unitary U0 parametrized by
the Cartan parameters c(0)1 , c(0)2 , and c(0)3 . Under the MR

map, U0 is mapped to U1, which is parametrized by c(1)1 ,
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c(1)2 , and c(1)3 . The MR map can be viewed most economi-
cally as a 3D dynamical map on the Cartan parameters,

Un
MR−−→ Un+1,

(c(n)1 , c(n)2 , c(n)3 )
MR−−→ (c(n+1)

1 , c(n+1)
2 , c(n+1)

3 ). (37)

B. Deriving the map for special initial conditions

Although we are unable to derive explicit maps in terms
of these parameters for general c(0)i , we are able to do so for
special values. We show that these converge to the desired
fixed points, c(n→∞)

1 = π/4, c(n→∞)

2 = π/4, and c(n→∞)

3 ∈
[0,π/4], which comprise the set of dual-unitary operators.
This is depicted in Fig. 4 for a few random realizations
evolved under the map for n = 10 steps. For the general
case, we argue why this happens and also derive the rate of
the exponential approach.

1. XY family: Plane c3 = 0

The first special case is when c(0)3 = 0 and 0 < c(0)2 ≤
c(0)1 . In this case, using Eq. (34), we can see that a single
application of the MR map results in the following unitary:

U1 =

⎛

⎜
⎝

1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

⎞

⎟
⎠ ,

with det(U1) = det(U0) = 1. Thus the map preserves the
SU property of seed unitaries. The Cartan parameters for
U1 are c(1)1 = c(1)2 = π/4 and c(1)3 = 0 and therefore U1 is
dual unitary. This gate is LU equivalent to the DCNOT gate

FIG. 4. Trajectories of five random realizations of two-qubit
gates are shown inside the Weyl chamber under action of the map
for n = 10 steps. The edge joining the SWAP gate and the DCNOT
gate corresponds to dual unitaries to which the map converges.

[79], which is S × CNOT. Explicitly,

UDCNOT = (H ⊗ I) U1 (D1 ⊗ D1 H)

=

⎛

⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟
⎠ , (38)

where H = 1/
√

2
(

1 1
1 −1

)
is the Hadamard gate and

D1 = Pπ/2 =
(

1 0
0 i

)
is a phase gate.

Thus the entire interior of the base of the Weyl cham-
ber, the c3 = 0 plane, is mapped to the same dual-unitary
gate U1 in just one step and the rate at which it happens is
infinite.

2. XXX family: c1 = c2 = c3

Let c1 = c2 = c3 = c ∈ [0,π/4] in Eq. (27), the single-
parameter family of unitary operators U:

U = exp

(

−i c
3∑

i=1

σi ⊗ σi

)

. (39)

This forms an edge of the Weyl chamber, the one that con-
nects local unitaries to the SWAP gate S. Unitaries of this
form are useful in many contexts, such as in the Trotteriza-
tion of the integrable isotropic (XXX) Heisenberg Hamil-
tonian [81]. They are also, modulo phases, the fractional
powers of the SWAP gate S as U = exp (−2 i c S).

If we choose the seed unitary U0 from this family with
c = c(0), it follows from Eq. (33) that β0 = 0. The action
of the map on U0 gives

U1 =

⎛

⎜
⎝

α1 0 0 β1
0 0 γ1 0
0 γ1 0 0
β1 0 0 α1

⎞

⎟
⎠ , (40)

for which δ1 = 0. Note that U1 is not exactly of the same
form as U0, for which β0 = 0. In fact, for all even (odd) n,
Un is such that βn = 0 (δn = 0). For even n, βn = 0 implies
c1(n) = c2(n) both being equal to c(n)3 and thus Un belongs
to the same family. However, for odd n, it is observed
that although c(n)2 = c(n)3 ≤ π/4, c(1)1 = π/2 − c(1)2 ≥ π/4
and thus c(1)1 does not satisfy Eq. (28). Note that U1 with
Cartan coefficients c(1)1 = π/2 − c(1) and c(n)2 = c(1)3 = c(1)

is not LU equivalent to a gate with Cartan coefficients
c(n)1 = c(n)2 = c(1)3 = c(1), although in the part of the Weyl
chamber to which we restrict our attention, they are the
same points.

As a consequence of this, the 3D map given by Eq. (36)
becomes a one-dimensional (1D) map.
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Let c(n) be the Cartan coefficient parametrizing Un =
Mn

R[U0] and

xn = 1/ tan(2 c(n)). (41)

The complications attendant on the ranges of ci do not
affect this variable. In terms of xn (for a derivation, see
Appendix C), the map takes a simple algebraic form,

xn+1 = 2 xn

1 +√
4 x2

n + 1
. (42)

The unique fixed point of the map is x∗ = 0, corresponding
to the SWAP gate, and the map is a contraction, as shown in
Appendix C. Therefore, in the limit of large n, xn → x∗ =
0. In this limit, Eq. (42) can be approximated as

xn+1 ≈ xn(1 − x2
n). (43)

Thus, in the vicinity of the fixed point, the difference
equation may be approximated by the differential equation
dxn/dn = −x3

n . This is simple to solve and gives the
large-n approximation to the map above as

xn ≈ 1/
√

2n. (44)

3. SWAP-CNOT-DCNOT face: c(0)
1 = π/4

In this case, seed unitaries lie on the SWAP-CNOT-DCNOT
face of the Weyl chamber with c(0)1 = π/4. Under the
action of the map, c(n)1 = π/4 for all n and thus the cor-
responding map is two-dimensionally defined in terms of
c(n)2 and c(n)3 . An important property of the map observed
in this case, which follows as c± = s∓, is that the phase in
Eq. (34), χn+1 = 0. This property is crucial for simplifying
the map as shown below.

Defining yn = 1/ tan2(2 c(n)2 ) and zn = 1/ tan2(2 c(n)3 ),
the corresponding two-dimensional (2D) map takes a
purely algebraic form given by (for a derivation, see
Appendix C)

yn+1 = yn

1 + zn
,

zn+1 = zn

1 + yn
. (45)

Although the above map has a symmetric form, due to the
specific choice of Cartan parameters Eq. (28), the symme-
try is broken and the fixed points are y∗ = 0 (or c(∞)

2 =
π/4) and z∗ ∈ [0, ∞] (or c(∞)

3 ∈ [0,π/4]), corresponding
to the set of dual unitaries. This 2D map can be solved

analytically by noting that

� = 1 + yn+1

1 + zn+1
= 1 + yn

1 + zn
(46)

is an invariant. Its value is determined by the initial
conditions as

� = 1 + y0

1 + x0
=
(

sin(2 c(0)3 )

sin(2 c(0)2 )

)2

< 1, (47)

for c(0)3 < c(0)2 .
Using this to eliminate zn, we have the 1D map

yn+1 = �
yn

1 + yn
, (48)

which has the exact solution

yn = �n y0

1 +
(

1 −�n

1 −�

)
y0

(49)

and implies that

zn = z0

�n +
(

1 −�n

1 −�

)
� z0

. (50)

It follows from Eq. (49) that y∞ = 0 and z∞ = 1/�− 1,
respectively. Also, c(∞)

3 , which parametrizes the dual uni-
tary to which the map converges, can be written explicitly
in terms of the initial pair (c(0)2 , c(0)3 ) as

c(∞)

3 = 1
2

arctan

[√
�

1 −�

]

= 1
2

arctan

⎡

⎣ sin(2 c(0)3 )√
sin2(2 c(0)2 )− sin2(2 c(0)3 )

⎤

⎦ . (51)

Define �c(n)i = c(∞)
i − c(n)i , where c(∞)

1 = c(∞)

2 = π/4,
and c(∞)

3 is as above.

�c(n)2 ∼ | sin 2 c(∞)

3 |n,

�c(n)3 ∼ | sin 2 c(∞)

3 |2 n. (52)

Note that � = sin2(2 c(∞)

3 ), governs the exponential
approach to the duals. From the explicit and full solution
in Eq. (49), it follows that we see below that these continue
to hold for the general case as well.

The marginal case � = 1 corresponds to seed unitaries
on the SWAP-CNOT edge with c(0)2 = c(0)3 and is dealt with
separately below.
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4. SWAP-CNOT edge

For these gates, c(0)1 = π/4 and c(0)2 = c(0)3 and is a spe-
cial case of the face just discussed. In this case, the 2D map
in Eq. (45) degenerates to a 1D map given by

yn+1 = yn

1 + yn
, (53)

with � = 1. This map also can be solved analytically and
the solution is given by

yn = y0√
n y2

0 + 1
. (54)

The approach to the unique fixed point y∗ = 0 is algebraic,
in contrast to other gates on the SWAP-CNOT-DCNOT face,
and goes as approximately 1/

√
n. Thus the SWAP gate is

approached slowly along both the edges that connect it in
the Weyl chamber from the locals or from the CNOT gates.
The other edge is the dual-unitary edge that is already a line
of fixed points. In fact, the entire face of the Weyl chamber
containing locals-SWAP-CNOT is mapped into itself and all
initial conditions on this approach the dual-unitary SWAP
gate algebraically. This face is characterized by two of the
Cartan coefficients being equal, namely, c(n)2 = c(n)3 ≡ c(n).
In the limit of large n, �c(n)1 = π/4 − c(n)1 ∼ 1/n while
�c(n)2 = �c(n)3 = π/4 − c(n) ∼ 1/

√
n.

5. XXZ family: c1 = c2

Let us now consider a family of two-qubit gates
for which c(0)1 = c(0)2 = c(0) ∈ (0,π/4], and c(0)3 ≤ c(0) ∈
[0,π/4]. This restricts the seed unitaries to the face of the
Weyl chamber that contains locals-SWAP-DCNOT. Under
the action of the map, the unitaries remain on this face for
even n and up to a local unitary transformation for odd n.

The map is two-dimensionally defined on c(n)1 = c(n)2 =
c(n) ≤ π/4 and c(n)3 ≤ c(n) is given by

c(n+1) = π

4
− 1

4
arctan

×
{

1
2

sin(2 c(n)3 )

[
1

tan2(c(n))
− tan2(c(n))

]}
,

(55)

c(n+1)
3 = c(n)3

2
+ 1

4
arctan

×
{

1
2

tan(2 c(n)3 )

[
1

tan2(c(n))
+ tan2(c(n))

]}
.

(56)

The fixed points consisting of c∗ = π/4 and c∗
3 can take

any value in [0,π/4], which is a line of fixed points corre-
sponding to two-qubit dual unitaries. It is not hard to see
that these are the only fixed points of the map.

The important information about the nature of the map
can be obtained in the large-n limit, which is effectively a
linear-stability analysis. For small �c(n), Eq. (55) gives

�c(n+1) ≈ sin(2 c(n)3 )�c(n), (57)

whereas Eq. (56) yields simply c(n+1)
3 ≈ c(n)3 to first order

in Xn, indicating that it can take any value, only determined
by the initial condition. We denote this value as c∗

3 = c(∞)

3 .
Thus the above equation is of the form �c(n+1) = r�c(n),
with r = sin(2 c(∞)

3 ), and we obtain the solution

�c(n) = e−nξ�c(0), ξ = | ln r| =
∣∣∣ln sin(2 c(∞)

3 )

∣∣∣ . (58)

Therefore, the convergence to the respective fixed points,
c∗ = π/4 and c∗

3 = c(∞)

3 ∈ [0,π/4], is also exponential,
with the rate determined by the value c(∞)

3 as found in
Eq. (52) for gates lying on the SWAP-CNOT-DCNOT face.
This is shown qualitatively in Fig. 5. The rate ξ = ∞ when
c(∞)

3 = 0 and the unitaries converge to the DCNOT. This is
consistent with the discussion in the XY discussion above,
where it is shown that in this case just one step of the map is
needed. The rate ξ = 0 is obtained for c(∞)

3 = π/4, corre-
sponding to asymptotic convergence to the SWAP gate. This
is consistent with the discussion of the edge XXX above,
where an algebraic approach is obtained.

For large n, the behavior of �c(n+1)
3 = c(∞)

3 − c(n)3 is
found by analyzing Eq. (56), keeping the second-order

DCNOTLocals

SWAP

FIG. 5. Convergence in the XXZ case: the initial condition
in the local-SWAP-DCNOT face. r = sin (2 c(100)

3 ) ≈ sin (2 c(∞)

3 ),
which is related to the rate of convergence to a dual-unitary gate
as ξ = ln r, is plotted. Around 105 initial conditions (c(0), c(0)3 )

are taken and evolved for n = 100 times under the 2D map given
in Eqs. (55)–(56). Initial conditions with c(0)3 = 0, in the base of
the triangle above, converge to the DCNOT gate at an infinite rate,
while initial conditions with c(0) = c(0)3 ∈ (0,π/4] converge to
the SWAP gate at a vanishing rate, namely algebraically.
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terms in �c(n), and we obtain

�c(n+1)
3 = 1

2
sin(4c(∞)

3 )(�c(n))2 = 1
2

sin(4c(∞)

3 )e−nξ3 ,

(59)

with ξ3 = 2ξ , and hence the approach to c(∞)

3 is expon-
ential at a rate that is twice that of the other Cartan
parameters.

6. Generic initial conditions

Interestingly, the numerical results indicate that the
exponential approach to (π/4,π/4, c(∞)

3 ) given in Eqs. (58)
and (59) continues to hold for a generic initial con-
dition inside the Weyl chamber. An illustration is dis-
played in Fig. 6 for the initial condition (c(0)1 , c(0)2 , c(0)3 ) =
(π/6,π/8,π/12). Under the map, it converges to a dual-
unitary gate with c∞

3 ≈ 0.443. The rates ξ1 and ξ2 at which
�c(n)1 = π/4 − c(n)1 and�c(n)2 = π/4 − c(n)2 approach 0 are

almost the same, being given by ξ =
∣∣∣ln sin(2 c(∞)

3 )

∣∣∣. The

rate ξ3 at which�c(n)3 = c(∞)

3 − c(n)3 → 0 continues to be a
very good approximation: ξ3 = 2ξ . Initial conditions that
converge to dual unitaries with large c(∞)

3 values, i.e., a
small entangling power, take longer times. This is reflected
in Fig. 4 for random realizations where gates that are closer
to the SWAP gate take longer to reach the corresponding
point on the dual-unitary edge.

We summarize the convergence of the map for different
families in Table I. The slow algebraic approach holds for
all initial conditions that approach the SWAP gate. In fact,
we numerically verify that even for higher dimensions,
d > 2, if the seed unitary is a fractional power of SWAP,
they approach the dual-unitary SWAP gate algebraically as
approximately 1/

√
n.

It may be noted that a very different map on the Weyl
chamber has been studied by looking at the powers of
two-qubit gates in Ref. [82]. This map is ergodic on the
Weyl chamber and is related to billiard dynamics in a

FIG. 6. Convergence for the initial condition inside the Weyl
chamber: a seed unitary with (c(0)1 , c(0)2 , c(0)3 ) = (π/6,π/8,π/12)
is evolved under the map for n = 50 steps. Both quantities
�c(n)1 = π/4 − c(n)1 and �c(n)2 = π/4 − c(n)2 decay exponentially
with approximately the same rate ξ = | ln sin(2c(∞)

3 )| determined
by c(∞)

3 ≈ 0.443. The rate at which �c(n)3 = c(∞)

3 − c(n)3 → 0 is
almost twice that of �c(n)1 or �c(n)2 . The numerically calculated
slopes match with these values.

tetrahedron, unlike the dissipative nature of the MR map
that we study.

V. COMBINATORIAL DESIGNS
CORRESPONDING TO DUAL-UNITARY

OPERATORS

Tools developed in combinatorial mathematics have
been very useful in constructing multipartite entangled
states [48,59]. In Ref. [60], it has been shown that OLSs
of order d can be used to construct 2-unitary permutation
matrices of order d2. Since 2-unitary operators belong to a
subset of dual-unitary operators, we point to less restrictive
combinatorial structures corresponding to general dual-
unitary operators. In the case of dual-unitary permutations,
such designs have been discussed earlier in Ref. [50],
which we first summarize.

TABLE I. Convergence to dual unitaries for different two-qubit seed unitaries, parametrized by the Cartan coefficients c(0)i . In all
cases, c(∞)

1 = c(∞)

2 = π/4 and �ci = c(∞)
i − c(n)i .

Cartan coefficients and Dual-unitary Nature of
Weyl-chamber location of seeds approached convergence

Base, c(0)3 = 0, c(0)2 > 0 DCNOT, c(1)3 = c(∞)

3 = 0 Instantaneous, rate ∞
SWAP-local edge, c(0)1 = c(0)2 = c(0)3 SWAP Algebraic, �ci ∼ 1/

√
n

SWAP-local-CNOT face, c(0)2 = c(0)3 �= c(0)1 c(∞)

3 = π/4 Algebraic, �c3, �c2 ∼ 1/
√

n, �c1 ∼ 1/n

SWAP-local-DCNOT face, c(0)1 = c(0)2 �= c(0)3 Exponential,

SWAP-CNOT-DCNOT face, c(0)1 = π/4, c(0)2 �= c(0)3
Generic �c1,�c2 ∼ exp(−ξ n), �c3 ∼ exp(−2ξ n)

Interior, c(0)1 > c(0)2 > c(0)3
c(∞)

3 �= 0, π/4 ξ = | ln sin(2c(∞)

3 )|
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A. Permutation matrices: Classical design

A permutation of d2 symbols or elements from [d] ×
[d], [d] = {1, 2, . . . , d}, is specified by the operator on
computational product-basis states |ij 〉 as

P |ij 〉 = |kij lij 〉 . (60)

Thus, this can be written in terms of a pair of d × d matri-
ces K = (kij ) and L = (lij ). In Ref. [50], it has been shown
that for P to be dual unitary (T dual), the conditions on the
K and L matrices are as follows:

(i) Condition on K : no element repeats along any row
(column).

(ii) Condition on L: no element repeats along any col-
umn (row).

As an example, for d = 2, the dual-unitary SWAP gate
permutes the basis states as

11 12
21 22 −→ 11 21

12 22 , (61)

with K and L given by

K = 1 2
1 2 , L = 1 1

2 2 . (62)

OLSs denoted OLS(d) [83] are examples of designs used
to construct the 2-unitary operators [60]. A Latin square is
a d × d array with d distinct elements such that every ele-
ment appears exactly once in each column and in each row.
Two Latin squares with elements sij and tij are orthogonal
if the ordered pairs (sij , tij ) are all distinct.

If K and L, defined above, are Latin squares, then the
corresponding permutation matrix P is both dual unitary
and T dual; hence it is 2-unitary. OLS(d) exists for all d
except d = 2 and d = 6 [84]. Thus 2-unitary permutations
exist for all d values except d = 2 and d = 6. An example
of an OLS(3) is the following:

1 2 3
3 1 2
2 3 1

∪
1 3 2
3 2 1
2 1 3

=
11 23 32
33 12 21
22 31 13

. (63)

Note that all nine pairs from the set {1, 2, 3} × {1, 2, 3} =
{11, 12, . . . , 32, 33} are present.

For dual-unitary or T-dual permutations, K and L are not
Latin squares in general. We define the r-Latin square (c-
Latin square) as an arrangement of d symbols in a d × d
array if it satisfies the conditions of a Latin square only
along the rows (columns). Note that the usual Latin square
is both r-Latin square as well as c-Latin square. Two such
less constrained Latin squares are orthogonal if by super-
posing them all, the d2 ordered pairs obtained are distinct.

For dual-unitary permutations, K is r-Latin square and L is
c-Latin square, while for T-dual permutations, K is c-Latin
square and L is r-Latin square, which are restatements of
the above conditions for duality (T duality).

B. General dual-unitary operators: Quantum design

Here, we discuss the underlying combinatorial struc-
ture of general dual-unitary operators. Consider a unitary
operator U ∈ B(Hd ⊗ Hd). Define

|ψij 〉 = U |ij 〉 , (64)

where {|ij 〉}d
i,j =1 is the computational basis in Hd ⊗ Hd.

The unitarity of U implies that the set of vectors {|ψij 〉}d
i,j =1

also forms an orthonormal basis in Hd ⊗ Hd.
Consider the |ψij 〉, which are of product form

|ψij 〉 = |αij 〉 ⊗ |βij 〉 . (65)

Analogous to K and L defined in the previous section for
permutation operators, we arrange d2 single-qudit states
|αij 〉 and |βij 〉 as follows:

K =
|α11〉 |α12〉 · · · |α1d〉
|α21〉 |α22〉 · · · |α2d〉

...
...

...
...

|αd1〉 |αd2〉 · · · |αdd〉

L =
|β11〉 |β12〉 · · · |β1d〉
|β21〉 |β22〉 · · · |β2d〉

...
...

...
...

|βd1〉 |βd2〉 · · · |βdd〉
. (66)

The conditions for U to be dual unitary in terms of K and
L are presented below.

Theorem 3: If every row of K and every column of
L forms an orthonormal basis in Hd, then the unitary
operator U = ∑d

i,j =1 |ψij 〉〈ij | = ∑d
i,j =1 |αijβij 〉〈ij | is dual

unitary.

Proof. The orthonormality condition on the vectors in
every row of K and every column of L implies that
〈αij |αij ′ 〉 = δjj ′ ,

∑d
j =1 |αij 〉〈αij | = Id, ∀ i and 〈βij |βi′j 〉 =

δii′ ,
∑d

i=1 |βij 〉〈βij | = Id, ∀ j . Using these conditions, it
follows that

URUR† =
⎛

⎝
d∑

i,j =1

|αij i〉 〈βij j |
⎞

⎠

⎛

⎝
d∑

i′,j ′=1

|βi′j ′ j ′〉 〈αi′j ′ i′|
⎞

⎠ ,

=
⎛

⎝
d∑

j =1

|αij 〉 〈αij |
⎞

⎠⊗
(

d∑

i=1

|i〉〈i|
)

,

= Id ⊗ Id = Id2 .
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It is similarly shown that UR†UR = Id2 and hence unitary
U is dual unitary. �

The conditions on K and L for U to be dual unitary
are generalizations of K and L corresponding to dual-
unitary permutations. In K and L, the notion of symbols
being different in a row or column is replaced by its quan-
tum analog, the orthogonality of vectors (quantum states).
In fact, such a generalization is known for Latin square
and OLS referred as quantum Latin square (QLS) [85]
and orthogonal quantum Latin square (OQLS) [59,86],
respectively. A quantum Latin square is a d × d array
of d-dimensional vectors such that each row and each
column forms an orthonormal basis in Hd. Two quan-
tum Latin squares are orthogonal if, together, they form
an orthonormal basis in Hd ⊗ Hd. If K and L defined
above are quantum Latin squares, then U is a 2-unitary
operator [59].

The fact that there are no repetitions of symbols in a
Latin square in any row or column translates into orthogo-
nality of vectors in each row and column in the correspond-
ing QLS. The “quantumness” and equivalence between
quantum Latin squares has been defined in Ref. [87] in
terms of the number of distinct basis vectors (up to phases),
known as the cardinality. For QLSs constructed from clas-
sical Latin squares, simply by replacing the symbol k by a
basis vector |k〉 in a d dimensional space, the cardinality is
d and is said to be classical.

Quantum Latin squares with cardinality more than d
cannot be obtained from classical Latin squares using uni-
tary transformations of the basis vectors and are referred
to as genuinely quantum [87]. Quantum Latin squares
with cardinality equal to d2, the maximum possible value,
for general d and their relation to quantum sudoku are
discussed in Refs. [87,88].

For dual-unitary or T-dual-unitary operators, K and L
are not quantum Latin squares in general. We define the
r-quantum Latin square (c-quantum Latin square) denoted
by r-QLS (c-QLS) as a d × d array of d-dimensional vec-
tors if it satisfies the conditions of a quantum Latin square
only along the rows (columns). Note that the quantum
Latin square is both r-QLS as well as c-QLS. For dual-
unitary operators, K is r-QLS and L is c-QLS, while for
T-dual operators, K is c-QLS and L is r-QLS.

Two such less constrained QLS are said to be orthogonal
if, together, they form an orthonormal basis in Hd ⊗ Hd.
In analogy with cardinality of a quantum Latin square, we
define the cardinality of K or L as the number of distinct
basis vectors (up to phases) that they contain. An r-QLS or
c-QLS of size d is classical if it contains d distinct basis
vectors and genuinely quantum if it contains more than d
distinct basis vectors. For dual-unitary permutations, the
cardinality of K and L is always equal to d and thus they
are classical. An example of a pair of genuine r-QLS and
c-QLS of size 3 are, respectively,

K :
|1〉 |2〉 |3〉
|1〉 |2〉 |3〉

1√
2
(|1〉 + |2〉) 1√

2
(|1〉 − |2〉) |3〉

, (67)

L :
|1〉 − |1〉 1√

2
(|1〉 + |2〉)

|2〉 |2〉 |3〉
|3〉 |3〉 1√

2
(|1〉 − |2〉)

. (68)

Note that both K (r-QLS) and L (c-QLS) contain five
distinct basis vectors (quantum states), across two differ-
ent orthonormal bases, and are thus genuinely quantum.
Together, K and L form an orthonormal basis in H3 ⊗ H3
arranged in a d × d array as

|1〉 ⊗ |1〉 − |2〉 ⊗ |1〉 |3〉 ⊗ 1√
2
(|1〉 + |2〉)

|1〉 ⊗ |2〉 |2〉 ⊗ |2〉 |3〉 ⊗ |3〉
1√
2
(|1〉 + |2〉)⊗ |3〉 1√

2
(|1〉 − |2〉)⊗ |3〉 |3〉 ⊗ 1√

2
(|1〉 − |2〉)

. (69)

The dual-unitary gate corresponding to the above arrangement of size 9 is

U9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1√

2
1√
2

0

0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1√

2
− 1√

2
0

0 0 1√
2

0 0 0 0 0 1√
2

0 0 1√
2

0 0 0 0 0 − 1√
2

0 0 0 0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (70)
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with (ep(U9), gt(U9)) = (3/4, 5/8). This dual unitary is
not locally equivalent to any dual-unitary permutation
matrix (the corresponding K and L contain only three dis-
tinct vectors) with the same entangling power and gate
typicality. We obtain the dual unitary U9 using the MR
map (see Sec. III A). This is one of the nice properties of
the map, in that it yields structured dual unitaries by choos-
ing appropriate seed unitaries such as permutations. For
ep(U) < 1, it is relatively easier to construct dual unitaries
that are LU inequivalent to dual-unitary permutations with
the same entangling power. However, for ep(U) = 1, i.e.,
2-unitaries, this is not the case, as they satisfy additional
constraints, which we discuss in the next section.

C. Combinatorial structures of known families of dual
unitaries

1. Diagonal ensemble

Dual unitaries have one-to-one correspondence with
T-dual-unitary operators, which are easier to construct.
The simplest ensemble of T-dual unitaries one can think of
is that of diagonal unitaries with arbitrary phases, denoted
D1. A d2-parameter subset of dual unitaries can be obtained
by (premultiplying or postmultiplying diagonal unitaries
with the SWAP gate S [50,54]. It is easy to see that for dual
unitaries of the form U = D1S obtained from the diagonal
ensemble,

U(|k〉 ⊗ |l〉) = D1S(|k〉 ⊗ |l〉) = exp(i θlk)(|l〉 ⊗ |k〉).
(71)

Thus, the corresponding K and L are same as that of the
SWAP gate (up to phases) and hence are classical.

2. Block-diagonal ensemble

A more general d3-parameter family of dual-unitary
gates, U = DdS, can be obtained from block-diagonal
unitaries [50,75,89], given by

Dd =
d∑

i=1

|i〉〈i| ⊗ ui, ui ∈ U(d). (72)

This is a controlled unitary from the first subsystem to the
second. For this family of dual unitaries, the combinatorial
structures are given by

K :

|1〉 |2〉 · · · |d〉
|1〉 |2〉 · · · |d〉
...

...
...

...
|1〉 |2〉 · · · |d〉

,

L :

u1 |1〉 u2 |1〉 · · · ud |1〉
u1 |2〉 u2 |2〉 · · · ud |2〉

...
...

...
...

u1 |d〉 u2 |d〉 · · · ud |d〉
, (73)

where the ut values are related to the dual unitary U =
DdS by Eq. (72). Note that the orthonormality along the
columns in L is ensured by the identical unitary transfor-
mation of each basis vector. Although K contains only d
distinct vectors and is classical, L contains in general d2

(the maximum possible number) of distinct vectors and
hence is genuinely quantum.

The quantum designs considered so far, such as the
ones above, are mostly unentangled. Generalizations to
entangled designs are needed to describe, for example, the
recently found 2-unitary operator behind the AME(4, 6)
state [56]. Although one can write necessary and sufficient
conditions for U to be 2-unitary (see Appendix D), in terms
of reduced-density matrices of bipartite states defined in
Eq. (64), the orthogonality relations in the corresponding
OQLS are harder to interpret than in OLS.

A unitary gate U on Hd ⊗ Hd is an universal entan-
gler if U(|αi〉 ⊗ |βi〉) is always entangled for any choice
of the product state |αi〉 ⊗ |βi〉. It is known that universal
entanglers do not exist for d = 2 and d = 3, i.e., there is no
two-qubit or two-qutrit unitary gate that maps every prod-
uct state to an entangled state [90]. It is easy to see that
all columns of a universal entangler must be entangled;
however, this condition is necessary but not sufficient [91].
Those dual-unitary and 2-unitary gates that are universal
entanglers will have genuinely entangled quantum designs.
Unfortunately, there are no known constructions of uni-
versal entanglers and the conditions under which they are
obtained are not known.

VI. LOCAL UNITARY EQUIVALENCE OF
2-UNITARY OPERATORS

A. A necessary criterion

Given any two bipartite unitary operators U and U′,
as far as we know, there is no procedure to determine if
they are LU equivalent, U

LU∼ U′, or not denoted by namely
U

LU∼ U′ if Eq. (1) is satisfied for some local operators ui
and vi. The problem is exacerbated for the case of 2-unitary
operators, as the singular values of UR and U	 , which
are LUIs, are all equal and hence maximize the standard
invariants such as E(U) and E(US).

Here, we propose a necessary criterion to investi-
gate the LU equivalence between unitary operators based
on the distributions of the entanglement they produce
when applied on an ensemble of uniformly generated
product states. The action of a bipartite unitary opera-
tor U on product states generically results in entangled
states:

|ψAB〉 = U(|φA〉 ⊗ |φB〉). (74)

Let E(|ψ〉AB) be any measure of entanglement and let
φA and φB be sampled from the Haar measure on the
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subspaces. Then, the resulting distribution p(x; U) of the
entanglement is

p(x; U) =
∫
δ (x − E[U(|φA〉 ⊗ |φB〉)]) dμ(φA)dμ(φB).

(75)

It is clear that if U is left multiplied by local uni-
taries, p(x; U) is unchanged, as entangled measures are
invariant under such operations. If U′ = U(uA ⊗ uB), then
p(x; U′) = p(x; U), as dμ(u†

A |φA〉) = dμ(|φA〉), which is

a property of the Haar measure. Thus, if U
LU∼ U′, then

p(x; U′) = p(x; U). Conversely, if p(x; U′) �= p(x; U), this
implies that U LU

� U′.
However, if the distributions are indistinguishable, i.e.,

p(x; U′) = p(x; U), then U and U′ may or may not be LU
equivalent. To see that the criterion is necessary but not
sufficient, consider two LU-inequivalent operators U and
U′ = US, where S is the SWAP gate. Although U and U′
are LU inequivalent, they generate identical entanglement
distributions, p(x; U) = p(x; U′). Note that U and U′ have
the same entangling power, ep(U) = ep(U′), but have dif-
ferent gate typicalities, gt(U) �= gt(U′), and are thus LU
inequivalent.

We enlarge the local equivalence between U and U′
to include multiplication by SWAP gates on either or both

sides, denoted by U′ LUS∼ U as

U′ = (u1 ⊗ v1) Sa U Sb (u2 ⊗ v2), (76)

where the ui and vi are single-qudit gates and a and b take
the values 0 or 1. Any operator in the LUS equivalence
class of U will produce the same entanglement distribution,
p(x; U).

B. 2-unitaries in d = 3

1. Permutations

The 2-unitary permutations of order d2 maximize the
entangling power and are in one-to-one correspondence
with OLSs of size d; OLS(d) [60]. In general, 2-unitary
operators are in one-to-one correspondence with AME
states of four qudits [48]. Under this mapping, 2-unitary
permutation matrices correspond to AME states with min-
imal support [48], i.e., these contain minimal possible
terms equal to d2 when written in the computational basis.
A complete enumeration of all possible 2-unitary per-
mutations of size d2 boils down to the possible number
of OLS(d), which is known for d ≤ 9 (see A072377,
Ref. [92]). For d = 3, there are 72 possible 2-unitary
permutations of size 9. We find by a direct numeri-
cal exhaustive search over local permutation matrices of
size 3 that all 72 possible 2-unitary permutations are

LU equivalent. This observation leads to the following
proposition.

Proposition 2: There is only one LU class of 2-unitary
permutations of order 9.

We choose the following 2-unitary permutation as a
representative of the LU-equivalent class of 2-unitary
permutations of order 9:

P9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . .
. . . . 1 . . . .
. . . . . . . . 1
. . . . . 1 . . .
. . . . . . 1 . .
. 1 . . . . . . .
. . . . . . . 1 .
. . 1 . . . . . .
. . . 1 . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (77)

An easy way to obtain all 72 possible 2-unitary permuta-
tions is by searching over (3!)4 = 1296 local permutations
pi of size 3 in

P′ = (p1 ⊗ p2)P9(p3 ⊗ p4). (78)

Although this is not an efficient way, as each 2-unitary per-
mutation is repeated 18 times, all 1296/18 = 72 possible
permutations can be obtained.

An equivalent statement in terms of LU equivalence
of AME(4, 3) states with minimal support is known (see
Ref. [61]). An AME(4, 3) state with minimal support
considered in Ref. [61] contains arbitrary phases and is
equivalent to an enphased 2-unitary permutation, i.e., a
2-unitary permutation multiplied by a diagonal unitary.
It is a special property of 2-unitary permutations that
these remain 2-unitary upon multiplication by diagonal
unitaries, with arbitrary phases, owing to their special com-
binatorial structure. Indeed, one can show that in d =
3, all enphased permutations are LU equivalent to P9.
Local dimension d = 3 is special in the sense that num-
ber of phases, d2 − 1 = 8, exactly matches the number
of phases that one can absorb using four enphased local
permutations, each containing d − 1 phases; 4(d − 1) =
8. Note that d2 − 1 = 4(d − 1) has a solution only for
d = 3 and thus such results about LU equivalence about
enphased 2-unitary permutations in d = 3 do not hold
for d > 3.

2. LU equivalence of 2-unitaries in d = 3

Dynamical maps are very efficient in yielding 2-
unitaries for local Hilbert-space dimension d = 3 and
d = 4 from random-seed unitaries. The 2-unitaries so
obtained do not have an evident simple structure, as do
2-unitary permutations. It is natural to ask if these are
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FIG. 7. The two-qutrit case d2 = 9. The distributions p(x; U)
of entanglement obtained from the action of 9 × 9 unitaries U
on Haar-distributed product states. Two distributions, one corre-
sponding to the 2-unitary permutation matrix P9, Eq. (77) and the
other a 2-unitary U9 obtained from the map with a random seed,
are shown. These two are numerically indistinguishable and we
cannot find a different distribution than the one shown here for
the O(103) 2-unitaries obtained from the map.

LU equivalent to each other. For the purposes of LU
equivalence, we compare the entanglement distributions
of 2-unitaries obtained from the map, p(x; U), with that
of the 2-unitary permutation matrix, p(x; P9). We find
that the von Neumann entropy is a good measure to
highlight the differences in the distributions; in particu-
lar, it performs better than the linear entropy and hence
we use it. The von Neumann entropy of the single-qudit

reduced-density matrix of |ψ〉AB [see Eq. (74)] is defined
as

Ev(ρA) = −tr(ρA log ρA).

The distributions p(x; P9) and p(x; U9) from a 2-unitary U9
are shown in Fig. 7. The matrix U9 is obtained using a ran-
dom seed in the dynamical map M	R. Surprisingly, both
the distributions are indistinguishable for these 2-unitaries,
although their origins and forms are very different. We
check entanglement distributions for O(103) 2-unitaries
obtained from the map but cannot find a different dis-
tribution from that of the 2-unitary permutation matrix.
In fact, in most cases we can transform the 2-unitaries
obtained from the map, using random seeds, into 2-unitary
permutation matrices using appropriate local transforma-
tions in U(3)⊗ U(3). Based on overwhelming numerical
evidence, we propose the following conjecture.

Conjecture 1: All 2-unitaries of order 9 are LU equivalent
to P9.

C. 2-unitaries in d = 4

1. Permutations

The total number of 2-unitary permutations of size 16
is 2 × 3456 = 6912. By performing a direct exhaustive
search over local permutations, quite remarkably—even
in this case—it turns out that all 6912 2-unitary permu-
tations are LU equivalent and thus lead to the following
proposition.

Proposition 3: There is only one LU class of 2-unitary
permutations of order 16.

We choose the following 2-unitary permutation matrix as a representative of the LU-equivalent class of 2-unitary
permutations of order 16:

P16 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . .
. . . . . . . . . . 1 . . . . .
. . . . . . . . . . . . . . . 1
. . . . . . . 1 . . . . . . . .
. . 1 . . . . . . . . . . . . .
. . . . . . . . . . . . . 1 . .
. . . . . . . . 1 . . . . . . .
. . . . . . . . . 1 . . . . . .
. . . . . . . . . . . . 1 . . .
. . . 1 . . . . . . . . . . . .
. . . . . . 1 . . . . . . . . .
. . . . . . . . . . . . . . 1 .
. . . . . . . . . . . 1 . . . .
. . . . 1 . . . . . . . . . . .
. 1 . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (79)
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Using (4!)4 = 3, 31, 776 possible local permutations, each 2-unitary permutation is obtained 48 times and therefore all
331776/48 = 6912 are taken into account.

2. Entangled OLSs of size 4: A new example of AME(4, 4)

Although there is only one LU class of 2-unitary permutations of order 16, we give an explicit example of a 2-unitary
orthogonal matrix that is not LU equivalent to any 2-unitary permutation. This is obtained via the nonlinear map M	R
given in Eq. (23) with a permutation seed, and is given by

O16 = 1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . 1 . . . . −1 . . . . −1
. 1 . . −1 . . . . . . −1 . . −1 .
. . −1 . . . . 1 −1 . . . . −1 . .
. . . −1 . . 1 . . 1 . . 1 . . .
. 1 . . −1 . . . . . . 1 . . 1 .

−1 . . . . 1 . . . . 1 . . . . −1
. . . −1 . . 1 . . −1 . . −1 . . .
. . −1 . . . . −1 1 . . . . −1 . .
. . −1 . . . . −1 −1 . . . . 1 . .
. . . 1 . . 1 . . −1 . . 1 . . .

−1 . . . . −1 . . . . −1 . . . . −1
. −1 . . −1 . . . . . . −1 . . 1 .
. . . −1 . . −1 . . −1 . . 1 . . .
. . 1 . . . . −1 −1 . . . . −1 . .
. 1 . . 1 . . . . . . −1 . . 1 .
1 . . . . −1 . . . . 1 . . . . −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (80)

This matrix can be written in a compact form as

O16 = PT
16D4P16, (81)

where D4 is a block-diagonal matrix consisting of four
4 × 4 Hadamard matrices. Each row or column of O16
contains four nonzero entries being equal to either 1/2
or −1/2 and is such that its eighth power is equal to the
identity O8

16 = I. To show that O16 is indeed not LU equiv-
alent to P16, we compare the entanglement distributions
p(x; O16) and p(x; P16). The distributions, shown in Fig. 8,
are clearly distinguishable: p(x; O16) �= p(x; P16) and thus
O16

LU
� P16. Entanglement distributions for a large number

of generic 2-unitaries obtained by applying the dynami-
cal map M	R on random-seed unitaries do not result in
any distinguishable distributions other than the ones shown
in Fig. 8. This suggests that there are at least three LU
classes of 2-unitaries in d2 = 16. The representatives of
these three LU classes are as follows: (i) P16, given by
Eq. (79); (ii) enphased P16—P

′
16 = D1 P16 D2, where D1

and D2 are diagonal unitaries with arbitrary phases; and
(iii) O16, given by Eq. (80). Note that P16 and P

′
16 are not

LU equivalent in general and thus the corresponding AME
states of minimal support are not LU equivalent.

Each row or column of O16 treated as a pure state in
H4 ⊗ H4 is maximally entangled and thus the underly-
ing combinatorial design corresponding to O16 does not

factor into the separable structures K and L defined in
Eq. (66). Also note that each 4 × 4 block in Eq. (80) is
unitary up to a scale factor and thus the rows or columns
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FIG. 8. The two-ququad case d2 = 16. The distributions
p(x; U) of entanglement corresponding to the 2-unitary permu-
tation matrix U = P16 [Eq. (79)] and the 2-unitary orthogonal
matrix U = O16 [Eq. (80)]. The distributions are clearly distin-
guishable and show that P16 and O16 are not LU equivalent.
Also shown is the entanglement distribution corresponding to
enphased P16—D1P16D2, where D1 and D2 are diagonal uni-
taries—which is not LU equivalent to either P16 or O16.
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of OR
16 are also maximally entangled states in H4 ⊗ H4.

Similar entangled combinatorial structures corresponding
to a 2-unitary of size 36 have been referred to as entangled
OQLSs in Ref. [56] in which entangled OQLSs of size 6
have been found in Sec. VI B. Based on our discussion in
the previous section on 2-unitaries of size 9 and the known
fact that there are no 2-unitaries of size 4, d = 4 seems
to be the smallest possible dimension in which entangled
OLSs exist.

This allows us to construct a new kind of AME state
of four ququads; AME(4, 4), which is not LU equivalent
to an AME state of minimal support constructed from P16.
The corresponding AME state written in the computational
basis is given by

|O16〉 =
4∑

i,j ,k,l=1

(O16)ij ,kl |ijkl〉 . (82)

The tensor Tijkl = (O16)ij ,kl is a perfect tensor [49], the
nonzero entries of which are given by Eq. (80). To our
knowledge, this is the simplest AME state that is not
derived from a classical design or is equivalent to one (for
equivalence among AME states, see, e.g., Refs. [61,93]).
Thus it qualifies as a younger cousin of AME(4,6), which
is a genuine OQLS [56]. However, unlike the golden
state AME(4,6), this is purely real. Earlier constructions
of ququad AME states have a much larger number of
particles [93].

We perform several local unitary transformations on O16
and reduce the number of its nonzero entries or, equiva-
lently, the support of the AME state given by Eq. (82), from
64 to 42, although the transformed matrix has entries other
than ±1/2. The transformed matrix has two unentangled
columns and therefore O16 is not a universal entangler.

VII. ENTANGLING PROPERTIES OF DUAL AND
T-DUAL PERMUTATION MATRICES

Permutation matrices form an important class of entan-
gling unitary operators [60]. In this section, we study
the entangling properties of dual and T-dual permuta-
tion matrices on Hd ⊗ Hd, which are special subsets of
the permutation group P(d2). Dual-unitary permutation
matrices have recently been explored in Ref. [89] and
used as building blocks of quantum circuits with interest-
ing dynamical behavior [50]. Two permutation matrices,
P1 and P2, have been defined in Ref. [60] to belong to
the same entangling class if they have the same entan-
gling power, ep(P1) = ep(P2). Two LU-equivalent per-
mutation matrices always belong to the same entangling
class but permutation matrices belonging to the same
entangling power need not be LU equivalent. For the
sake of convenience, we write the permutation matrix in
terms of the column number of the only nonzero entry

SWAP

DCNOT

CNOT

FIG. 9. The two-qubit case d2 = 4. The entangling power
versus the gate typicality of all permutations P(4), treated as
two-qubit gates. The number of entangling classes, those with
different entangling powers, is 2.

in each row. For example, in this notation, P9 given by
Eq. (77) is written as P9 = {1, 5, 9, 6, 7, 2, 8, 3, 4}, corre-
sponding to the permutation π : {1, 2, 3, 4, 5, 6, 7, 8, 9} →
{π(1) = 1,π(2) = 5, . . . ,π(8) = 3,π(9) = 4} .

A. Dual-unitary and T-dual permutations in d = 2 and
d = 3

We list all possible entangling classes for dual-unitary
permutations in P(d2) for d = 2 and d = 3.

In the two-qubit case, the corresponding permutation
group is P(4). The projection of P(4) on ep -gt plane is
shown in Fig. 9. There are four distinct points correspond-
ing to 24 possible permutations of order 4, treated as
two-qubit gates, on the ep -gt plane and every permutation
matrix is either dual or T dual. The number of entangling
classes is only two and these are listed in Table II.

In the two-qutrit case, the corresponding permutation
group is P(9). The projection of P(9), treated as two-
qutrit gates, on the ep -gt plane is shown in Fig. 10. There
are only 60 distinct points on the ep -gt plane from the
9! = 3, 62, 000 possible permutation matrices of order 9.

It has been shown in Ref. [94] that there are 18 LU
classes of T-dual (or, equivalently, dual-unitary) permuta-
tion matrices. A representative permutation from each LU
class is also listed therein. These LU classes are listed in
Table III along with their entangling powers. Therefore,

TABLE II. The entangling and LU classes of dual (equiva-
lently, T dual) permutations in P(4).

ep(P) No. of LU classes

0 1
2/3 1
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SWAP

FIG. 10. The two-qutrit case d2 = 9. The entangling power
versus the gate typicality of all 9! permutations P(9), treated as
two-qutrit gates. The number of entangling classes corresponding
to dual (and, equivalently, T dual) permutation matrices is 10.

the number of entangling classes corresponding to dual-
unitary (and, equivalently, T-dual) permutation matrices
is 10.

Except for three entangling classes [corresponding to
ep(P) = 0, ep(P) = 8/9, and ep(P) = 1], there is more
than one LU class. Taking permutations from two different
LU classes with the same entangling power (say, ep(P) =
1/2), we observe that these produce the same entangle-
ment distributions p(x; U). This suggests that these LU-
inequivalent permutations with the same entangling power
and gate typicality might be connected by the SWAP gate.
Indeed, we find that according to the LUS classification
defined in Eq. (76) with a = b = 1, there are only 11 LUS
classes, i.e., two permutations P and P′ belonging to the
same entangling class but different LU classes are related
(up to local permutations) as P′ = SPS, where S is the
SWAP gate. This is the case for all entangling classes in

TABLE III. The entangling, LU, and LUS classes of dual
(equivalently, T-dual) permutations in P(9).

S.No. ep(P) No. LU classes No. LUS classes

1 0 1 1
2 4/9 2 1
3 1/2 2 1
4 2/3 3 2
5 25/36 2 1
6 13/18 2 1
7 3/4 2 1
8 29/36 2 1
9 8/9 1 1
10 1 1 1
Total 18 11
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FIG. 11. The entanglement distributions obtained for P and P′
permutation matrices of size 9 belonging to two LUS classes (see
the text) corresponding to the entangling class with ep(U) = 2/3.
The distinguishabiliity of the distributions implies that P and P′
are not LU equivalent.

Table III with more than one LU classes except for the
entangling class ep(U) = 2/3.

The entangling class ep(U) = 2/3 is special and has
two LUS classes. Representative permutations written
in compact form as P = {1, 4, 8, 2, 5, 7, 6, 3, 9} and P′ =
{1, 4, 9, 2, 5, 8, 6, 3, 7} from both LUS classes produce
the distinguishable entanglement distributions shown in
Fig. 11. The LU inequivalence between P and P′ can also
be seen via the singular values of P	 and P

′	 , which are
LUIs [see Eq. (17)]; the singular values of P	 and P

′	

are {2, 2, 1} and
{√

5,
√

2,
√

2
}

, respectively. This leads
us to the strong suspicion that the equality of entan-
glement distributions may be a sufficient condition for
LUS equivalence, i.e., p(x; U) = p(x; U′) if and only if

U
LUS∼ U′.
An interesting fact that we observe is that with von Neu-

mann entropy as a measure of entanglement, the averages
of the distributions obtained for these permutations differ
slightly; for P, Ev(ρA) ≈ 0.57, while for P′, Ev(ρA) ≈ 0.55,
taking into account 106 realizations of product states in
both cases. Note that if the linear entropy is taken as a
measure, then the averages must be equal according to
the definition of the entangling power [37]. This suggests
the role of other unknown LU invariants besides E(U)
and E(US), which determine the average of the entangle-
ment distribution when von Neumann entropy is taken as
a measure of entanglement.

It is to be noted that out of 18 possible LU classes
only one corresponds to the entangling class ep(P) = 1
of 2-unitary permutations. As a consequence of this, all
72 possible 2-unitary permutations of order 9 are locally
equivalent, which is consistent with Proposition 2.
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B. Numerical results for d > 3

The total possible number of LU classes of dual or,
T-dual, permutations in P(d2) for d > 3 is not known.
The number of entangling classes is also not known, as
an exhaustive enumeration of such permutations is pro-
hibitively large. To obtain a lower bound on the possi-
ble number of entangling classes corresponding to dual-
unitary permutations of size 16, we numerically search
over permutations in the vicinity of different permutations
such as SWAP and 2-unitary gates. The results obtained
from such a search over around 1.2 × 107 permutations
of size 16 (out of a possible 16! ∼ 1013) are shown in
Fig. 12. We obtain 56 entangling classes corresponding to
dual or, equivalently, T-dual permutations. This provides
a weak lower bound on the number of LU-inequivalent
classes for dual-unitary permutations of size 16. Note that
one of the entangling classes is ep(U) = 1, correspond-
ing to 2-unitary permutations for which there is only one
LU-equivalence class (see Proposition 3).

We end this section by showing that there exists more
than one LU class for 2-unitary permutations in d > 4.
An easy way to see this is by comparing entanglement
distributions of 2-unitary permutation P ∈ P(d2) and their
realignment PR ∈ P(d2). This is shown in Fig. 13 for a
2-unitary permutation in d = 5 given by

P25 = {1, 7, 13, 19, 25, 22, 3, 9, 15, 16, 18, 24, 5, 6, 12, 14,

20, 21, 2, 8, 10, 11, 17, 23, 4} ,

PR
25 = {1, 7, 13, 19, 25, 8, 14, 20, 21, 2, 15, 16, 22, 3, 9, 17,

23, 4, 10, 11, 24, 5, 6, 12, 18} . (83)

SWAP

FIG. 12. The two-ququad case d2 = 16. The entangling power
versus the gate typicality of 1.2 × 107 permutations (out of a total
of 16! ≈ 1013 permutations), treated as two-ququad gates. the
number of entangling classes corresponding to dual (and, equiva-
lently, T-dual) permutation matrices obtained from our numerical
search is found to be 56.
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FIG. 13. Case of d2 = 25. The entanglement distributions of
2-unitary permutation P25 [see Eq. (83)] and its realignment
PR

25, which is also a 2-unitary. The distributions are clearly dis-

tinguishable: p(x; P25) �= p(x; PR
25) and this shows that P25

LU
�

PR
25.

The entanglement distributions are different; p(x; P25) �=
p(x; PR

25) and this establishes that they are not LU equiv-
alent. Recall that one cannot justify LU inequivalence
between 2-unitaries based on the singular values of their
reshuffled and partially transposed rearrangements as they
are all maximized, being equal to 1. We check the entangle-
ment distributions for 100 2-unitary permutations of size
25 together with their different rearrangements but find
only two different distributions, shown in Fig. 13. Thus the
total number of LU and LUS classes for 2-unitary permu-
tations in d = 5 remains unknown but it is certainly greater
than 1. Similarly, in d = 7, d = 8, and d = 9, we observe
only two different distributions corresponding to 2-unitary
permutations and their rearrangements.

A consequence of having more than one LU class of
enphased 2-unitary permutations in d > 3 is that it results
in minimal-support AME states that are not LU equiva-
lent. Our results thus contradict Conjecture 2 in Ref. [61],
which, particularly for four-party states, implies that there
is only one LU class of AME states of minimal support. As
we illustrate in Figs. 8 and 13, there exists more than one
LU class of AME states of minimal support for d = 4 and
d = 5.

Assuming that 2-unitary permutations belonging to the
same LU class are related by local permutations, it can be
seen that there are more than one LU class of 2-unitary
permutations for d = 7, d = 8, and d = 9. It follows from
the fact that the number of possible OLS known for these
cases (see A072377, Ref. [92]) exceeds the number of
OLS that can be obtained from a 2-unitary permutation
P using local permutations; (p1 ⊗ p2)P(p3 ⊗ p4). It is to
be noted that all (d!)4 number of OLS so obtained are not
all different. Interestingly, in d = 5, we find that although
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(5!)4 = 207360000 exceeds the number of possible OLS
(equal to 3110400), the latter is not a factor of the former,
unlike the cases d = 3 and d = 4.

VIII. SUMMARY AND DISCUSSION

Despite several constructions of the set of dual-unitary
operators, the complete characterization for an arbitrary
local Hilbert-space dimension remains an open problem.
In Ref. [47], we have proposed a nonlinear iterative map
that produces dual-unitary operators from arbitrary-seed
unitaries. The map acts as a dynamical system in the space
of bipartite unitary operators. In this work, we study the
period-2 fixed points of the map, which are dual-unitary
operators, and provide a stochastic generalization of the
map, which produces structured fixed points that are dual
unitaries. Complete characterization of the fixed points
of all orders remains to be understood and makes the
map a novel dynamical system in its own right. For two-
qubit gates, using the canonical or Cartan decomposition,
we analytically study the convergence rates for various
initial conditions. However, convergence of the map in
local Hilbert-space dimension d > 2 remains an unsolved
problem.

The subset of dual-unitary operators having maximum
entangling power is that of 2-unitary operators. The 2-
unitary permutation operators can be constructed from
combinatorial designs called OLSs. The nonexistence of
OLSs of size 6 motivates us to look for general quantum
combinatorial designs corresponding to 2-unitary opera-
tors, as have recently been found in Ref. [56] for local
dimension d = 6. The problem of finding such quantum
combinatorial designs reduces to finding the 2-unitary
operators that are not LU equivalent to any 2-unitary per-
mutation matrix. From our extensive numerical searches
using the dynamical map and known constructions of 2-
unitaries, we cannot find any such quantum design for local
dimension d = 3. All 2-unitary permutation operators of
size 9 are LU equivalent to each other. Based on these
results, we conjecture that all 2-unitary operators of size 9,
not just permutations, are LU equivalent to each other. If
true, this implies that there is just one 2-unitary two-qutrit
gate up to LU equivalence.

Methods to ascertain LU equivalence between bipartite
unitary operators are not known in general. For unitary
operators with identical values of known LUIs such as the
entangling power and the gate typicality, the problem of
LU equivalence becomes harder. In this paper, we propose
a necessary criterion for distinguishing LU-inequivalent
2-unitary operators based on the entanglement distribu-
tion that these produce. Using the iterative map, we find
a 2-unitary operator for local dimension d = 4 that is LU
inequivalent to any 2-unitary permutation of the same
size. Thus, this qualifies as a genuine 2-unitary quantum
design in the lowest possible dimension, as they do not

exist for d = 2 and, as far as we know, for d = 3. This
also implies that we display an explicit example of an
AME(4, 4) state that is not LU equivalent to AME(4, 4), of
minimal support. We show that for d = 5, there are at least
two LU classes of 2-unitary permutations and thus there
are two LU-inequivalent AME states of minimal support.
The consequences of these new examples of AME states
for quantum error correction are an interesting direction
and are left for future studies. The stochastic local opera-
tions and classical communication (SLOCC) equivalence
of LU-inequivalent four-party AME states found in this
work for d > 3 is an interesting problem and is left for
future studies.

Note added.—Recently, we became aware of Ref. [95],
in which a criterion for determining the local unitary
equivalence of operators is presented that involves an
exponential (in local dimension) set of invariants.
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APPENDIX A: DETAILS ABOUT THE MAP IN
THE TWO-QUBIT CASE

In the two-qubit case, the Cartan form of any unitary
[see Eq. (27)] can be written as

U0 =

⎛

⎜⎜⎜⎜
⎝

e−ic(0)3 c(0)− 0 0 −ie−ic(0)3 s(0)−
0 eic(0)3 c(0)+ −ieic(0)3 s(0)+ 0

0 −ieic(0)3 s(0)+ eic(0)3 c(0)+ 0

−ie−ic(0)3 s(0)− 0 0 e−ic(0)3 c(0)−

⎞

⎟⎟⎟⎟
⎠

,

(A1)

where

c(0)± = cos(c(0)1 ± c(0)2 ); s(0)± = sin(c(0)1 ± c(0)2 ).

The unitary operator U in its canonical decomposition has
four parameters. Let α0 = e−ic(0)3 c(0)− ,β0 = −ie−ic(0)3 s(0)− ,
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γ0 = −ieic(0)3 s(0)+ , and δ0 = eic(0)3 c(0)+ . Then, the Eq. (A1) can
be written as

U0 =

⎛

⎜
⎝

α0 0 0 β0
0 δ0 γ0 0
0 γ0 δ0 0
β0 0 0 α0

⎞

⎟
⎠ . (A2)

The MR map can now be studied analytically by applying
it to the two-qubit unitary operators in its Cartan form [see
Eq. (A2)]. The action of linear map R on U0 defined in

Eq. (A2) results in

UR
0 =

⎛

⎜
⎝

α0 0 0 δ0
0 β0 γ0 0
0 γ0 β0 0
δ0 0 0 α0

⎞

⎟
⎠ . (A3)

The polar decomposition of the matrix UR
0 , which is given

by UR
0 = U1H , where U1 is unitary and H =

√
UR†UR, is

given by

H = 1
2

⎛

⎜⎜
⎝

|α0 − δ0| + |α0 + δ0| 0 0 −|α0 − δ0| + |α0 + δ0|
0 |β0 − γ0| + |β0 + γ0| −|β0 − γ0| + |β0 + γ0| 0
0 −|β0 − γ0| + |β0 + γ0| |β0 − γ0| + |β0 + γ0| 0

−|α0 − δ0| + |α0 + δ0| 0 0 |α0 − δ0| + |α0 + δ0|

⎞

⎟⎟
⎠ . (A4)

The unitary U1 = UR
0 H−1 is given by

U1 =

⎛

⎜⎜
⎝

α0α++δ0α− 0 0 α0α−+δ0α+
0 β0β++γ0β− β0β−+γ0β+ 0
0 γ0β++β0β− γ0β−+β0β+ 0

α0α−+δ0α+ 0 0 α0α++δ0α−

⎞

⎟⎟
⎠ , (A5)

where α± and β± are given as

α± = |α0 − δ0| ± |α0 + δ0|
2|α0 − δ0||α0 + δ0| ,

β± = |β0 − γ0| ± |β0 + γ0|
2|β0 − γ0||β0 + γ0| . (A6)

Note that although U0 ∈ SU(4), U1 given by Eq. (A5)
need not be in SU(4) in general. The mapping between
α0,β0, γ0, δ0 of U0 and α′

1,β ′
1, γ ′

1, δ′
1 of U1 is

α′
1 = (α0 + δ0)|α0 − δ0| + (α0 − δ0)|α0 + δ0|

2|α0 − δ0||α0 + δ0| ,

β ′
1 = (α0 + δ0)|α0 − δ0| − (α0 − δ0)|α0 + δ0|

2|α0 − δ0||α0 + δ0| ,

γ ′
1 = (β0 + γ0)|β0 − γ0| − (β0 − γ0)|β0 + γ0|

2|β0 − γ0||β0 + γ0| ,

δ′
1 = (β0 + γ0)|β0 − γ0| + (β0 − γ0)|β0 + γ0|

2|β0 − γ0||β0 + γ0| . (A7)

The above set of equations, written in a compact form as
⎛

⎜⎜
⎝

α′
1
β ′

1
γ ′

1
δ′

1

⎞

⎟⎟
⎠ =

⎛

⎜
⎝

α+ 0 0 α−
α− 0 0 α+
0 β− β+ 0
0 β+ β− 0

⎞

⎟
⎠

⎛

⎜
⎝

α0
β0
γ0
δ0

⎞

⎟
⎠ , (A8)

depicts the nonlinear nature of the map.

APPENDIX B: PROOFS OF THE FIXED-POINT
THEOREMS IN THE TWO-QUBIT CASE

1. Proof of Theorem 1

Proof. Let U0 be a two-qubit gate of the form given in
Eq. (32). If U0 is a fixed point of the MR map,

MR[U0] = U1 = U0. (B1)

As this implies that U1 is also in SU(4), χ1 = 0. Using
Eq. (34), the fixed-point condition MR[U0] = U0 can be
written as

α0 = 1
2

[(k(0)+ + k(0)− )α0 + (k(0)+ − k(0)− )δ0], (B2a)

β0 = 1
2

[(k(0)+ − k(0)− )α0 + (k(0)+ + k(0)− )δ0], (B2b)
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γ0 = 1
2

[(l(0)+ − l(0)− )β0 + (l(0)+ + l(0)− )γ0], (B2c)

δ0 = 1
2

[(l(0)+ + l(0)− )β0 + (l(0)+ − l(0)− )γ0], (B2d)

where k(0)± = 1/|α0 ± δ0| and l(0)± = 1/|β0 ± γ0|. From the
unitarity of U0, it follows that Re(α0β

∗
0 ) = Re(γ0δ

∗
0) = 0.

Multiplying Eq. (B2a) by γ ∗
0 , Eq. (B2c) by α∗

0 in Eq. (B2),
and taking real parts, we obtain k(0)+ + k(0)+ = l(0)+ + l(0)+ =
2. Similarly, multiplying Eq. (B2a) by β∗

0 and taking the
real parts, we obtain

(k(0)+ − k(0)− )Re[δ0β
∗
0 ] = 0. (B3)

Therefore, either k(0)+ = k(0)− or Re[δ0β
∗
0 ] = 0. For k(0)+ =

k(0)− , together with the condition k(0)+ + k(0)+ = 2, from
Eq. (B2b), it follows that β0 = δ0. For U0 with β0 = δ0 �=
0, it is can be shown that γ0 = ±α0 using the unitarity of
U0. Therefore, U0 is of the form

U0 =

⎛

⎜
⎝

α0 0 0 β0
0 β0 ±α0 0
0 ±α0 β0 0
β0 0 0 α0

⎞

⎟
⎠ , (B4)

which satisfies UR
0 = U0 and thus is a self-dual unitary.

From Eqs. (B2b) and (B2d), using the unitarity of U0

together with k(0)+ + k(0)+ = l(0)+ + l(0)+ = 2, it follows that
|β0|2 = |δ0|2 = Re(β0δ

∗
0). Therefore, the other condition

Re(β0δ
∗
0) = 0 in Eq. (B3) is satisfied only when β0 = δ0 =

0. In this case, U0 is of the form

U0 =

⎛

⎜
⎝

α0 0 0 0
0 0 γ0 0
0 γ0 0 0
0 0 0 α0

⎞

⎟
⎠ , (B5)

where |α0| = |γ0| = 1 and is also self-dual unitary. Hence,
all period-1 fixed points of the MR map in the two-qubit
case are self-dual. �

The canonical form of the dual unitaries obtained by
setting c1 = c2 = π/4 in Eq. (A1) is of the form given
in Eq. (B5). Self-dual unitaries of the form given in
Eq. (B4) are LU equivalent to the canonical form. For
example, (H ⊗ H)U0(H ⊗ H), where H is the Hadamard

gate—H = 1/
√

2
(

1 1
1 −1

)
—is of the canonical form,

where U0 is of the form

U0 =

⎛

⎜
⎝

α0 0 0 β0
0 β0 α0 0
0 α0 β0 0
β0 0 0 α0

⎞

⎟
⎠ .

2. Proof of Theorem 2

Proof. One way is easy: if U0 is dual unitary, then
MR[U0] = UR

0 , as UR
0 is unitary, and therefore M2

R[U0] =
MR[UR

0 ] = U0, i.e., U0 is a fixed point of the M2
R map.

The other direction is as follows. That all fixed points
of M2

R are dual unitary is nontrivial. Analogous to the
period-1 case, the fixed-point equation M2

R[U0] = U0 can
be written in terms of matrix elements. The action of MR
on U0 leads to U1, given by

U1 =

⎛

⎜
⎝

α1 0 0 β1
0 δ1 γ1 0
0 γ1 δ1 0
β1 0 0 α1

⎞

⎟
⎠ ,

where

α1 = 1
2

[(k(0)+ + k(0)− )α0 + (k(0)+ − k(0)− )δ0], (B6a)

β1 = 1
2

[(k(0)+ − k(0)− )α0 + (k(0)+ + k(0)− )δ0], (B6b)

γ1 = 1
2

[(l(0)+ − l(0)− )β0 + (l(0)+ + l(0)− )γ0], (B6c)

δ1 = 1
2

[(l(0)+ + l(0)− )β0 + (l(0)+ − l(0)− )γ0], (B6d)

in which k(0)± = 1/|α0 ± δ0| and l(0)± = 1/|β0 ± γ0| and
we ignore the overall phase as it does not affect the
proof. As M2

R[U0] := MR[MR[U0]] = MR[U1] = U0,
therefore mapping among the matrix elements is given by

α0 = 1
2

[(k(1)+ + k(1)− )α1 + (k(1)+ − k(1)− )δ1], (B7a)

β0 = 1
2

[(k(1)+ − k(1)− )α1 + (k(1)+ + k(1)− )δ1], (B7b)

γ0 = 1
2

[(l(1)+ − l(1)− )β1 + (l(1)+ + l(1)− )γ1], (B7c)

δ0 = 1
2

[(l(1)+ + l(1)− )β1 + (l(1)+ − l(1)− )γ1], (B7d)

where k(1)± = 1/|α1 ± δ1| and l(1)± = 1/|β1 ± γ1|. Using
unitarity constraints Re(αnβ

∗
n ) = Re(γnδ

∗
n) = 0 (n = 0, 1),

we simplify the above set of equations.
Multiplying Eq. (B7a) by γ ∗

1 and taking real parts, we
obtain

Re[α0γ
∗
1 ] = 1

2
(k(1)+ + k(1)− )Re[α1γ

∗
1 ]. (B8)

Now, multiplying α0 by the complex conjugate of
Eq. (B6c) and taking real parts, we obtain

Re[α0γ
∗
1 ] = 1

2
(l(0)+ + l(0)− )Re[α0γ

∗
0 ]. (B9)

040331-25



RATHER, ARAVINDA, and LAKSHMINARAYAN PRX QUANTUM 3, 040331 (2022)

From Eqs. (B8) and (B9), it follows that

Re[α1γ
∗
1 ]

Re[α0γ
∗
0 ]

= l(0)+ + l(0)−
k(1)+ + k(1)−

. (B10)

Similarly, mutiplying Eq. (B6a) by γ ∗
0 , the complex conju-

gate of Eq. (B6c) by α0, and taking real parts leads to

Re[α1γ
∗
1 ]

Re[α0γ
∗
0 ]

= k(0)+ + k(0)−
l(1)+ + l(1)−

. (B11)

From Eqs. (B10) and (B11), it follows that

l(0)+ + l(0)−
k(1)+ + k(1)−

= k(0)+ + k(0)−
l(1)+ + l(1)−

. (B12)

Multiplying the complex conjugate of Eq. (B7b) by β1 and
taking real parts,

Re[β1β
∗
0 ] = 1

2
(k(1)+ + k(1)− )Re[δ∗

1β1]. (B13)

Now, multiplying Eq. (B6b) by β∗
0 and taking real parts,

Re[β1β
∗
0 ] = 1

2
(k(0)+ + k(0)− )Re[δ0β

∗
0 ]. (B14)

From Eqs. (B13) and (B14), it follows that

Re[δ1β
∗
1 ]

Re[δ0β
∗
0 ]

= k(0)+ + k(0)−
k(1)+ + k(1)−

. (B15)

Similarly, mutiplying Eq. (B6d) by δ∗
0 , the complex con-

jugate of Eq. (B7d) by δ1, and taking real parts, we
obtain

Re[δ1β
∗
1 ]

Re[δ0β
∗
0 ]

= l(0)+ + l(0)−
l(1)+ + l(1)−

. (B16)

From Eqs. (B15) and (B16), it follows that

k(0)+ + k(0)−
k(1)+ + k(1)−

= l(0)+ + l(0)−
l(1)+ + l(1)−

. (B17)

From Eqs. (B12) and (B17), it is easy to check that

k(0)+ + k(0)− = l(0)+ + l(0)− , k(1)+ + k(1)− = l(1)+ + l(1)− (B18)

Multiplying Eq. (B7a) by γ ∗
0 and taking real parts, we

obtain

Re[α0γ
∗
0 ] = 1

2

[
(k(1)+ + k(1)− )Re[α1γ

∗
0 ]

+ (k(1)+ − k(1)− )Re[δ1γ
∗
0 ]
]

,

= (k(1)+ + k(1)− )(k(0)+ + k(0)− )

4
Re[α0γ

∗
0 ]

+ (k(1)+ − k(1)− )(l(1)+ − l(1)− )
4

Re[δ1β
∗
1 ], (B19)

where the second equation is obtained using Re[α1γ
∗
0 ] =

(k(0)+ + k(0)− )/2 Re[α0γ
∗
0 ] and Re[δ1γ

∗
0 ] = (l(1)+ − l(1)− )/

2 Re[δ1β
∗
1 ]. Using Eq. (B15) in the above equation, we

obtain

Re[α0γ
∗
0 ] = (k(1)+ + k(1)− )(k(0)+ + k(0)− )

4
Re[α0γ

∗
0 ]

+ (k(1)+ − k(1)− )(l(1)+ − l(1)− )
4

(k(0)+ + k(0)− )

(k(1)+ + k(1)− )

× Re[δ0β
∗
0 ], (B20)

Now, multiplying the complex conjugate of Eq. (B7b) by
δ0 and taking real parts,

Re[β∗
0 δ0] = 1

2

[
(k(1)+ − k(1)− )Re[α∗

1δ0]

+ (k(1)+ + k(1)− )Re[δ∗
1δ0]

]
,

= (k(1)+ − k(1)− )(l(1)+ − l(1)− )
4

Re[α∗
1γ1]

+ (k(1)+ + k(1)− )(l(1)+ + l(1)− )
4

Re[δ∗
1β1], (B21)

where the second equation is obtained using Re[α∗
1δ0] =

(l(1)+ − l(1)− )/2 Re[α∗
1γ1] and Re[δ∗

1δ0] = (l(1)+ + l(1)− )/
2 Re[δ∗

1β1]. Using Eqs. (B10) and (B15) in the above
equation, we obtain

Re[β∗
0 δ0] = (k(1)+ − k(1)− )(l(1)+ − l(1)− )

4
(k(0)+ + k(0)− )

(k(1)+ + k(1)− )
Re[α0γ

∗
0 ]

+ (k(0)+ + k(0)− )(l(1)+ + l(1)− )
4

Re[δ∗
0β0], (B22)

From Eqs. (B20), (B22) and (B18), we obtain

k(1)+ = k(1)− , l(1)+ = l(1)− ,

(k(0)+ + k(0)− )(k(1)+ + k(1)− ) = (l(0)+ + l(0)− )(l
(1)
+ + l(1)− ) = 4.

(B23)

040331-26



LU EQUIVALENCE OF DUAL UNITARIES PRX QUANTUM 3, 040331 (2022)

A similar calculation of Re[α1γ
∗
1 ] and Re[β1δ

∗
1] implies

that

k(0)+ = k(0)− , l(0)+ = l(0)− ,

(k(0)+ + k(0)− )(k(1)+ + k(1)− ) = (l(0)+ + l(0)− )(l
(1)
+ + l(1)− ) = 4.

(B24)

Using Eq. (B24) in Eqs. (B6) and (B7), it follows that
k(n)± = l(n)± = 1, where n = 0, 1, as in the period-1 case.
For k(1)+ = k(1)− = 1, α1 = α0,β1 = δ0, γ1 = γ0, and δ1 =
β0. Therefore, Re(α0δ

∗
0) = Re(β0γ

∗
0 ) = 0, which implies

that UR
0 given by

UR
0 =

⎛

⎜
⎝

α0 0 0 δ0
0 β0 γ0 0
0 γ0 β0 0
δ0 0 0 α0

⎞

⎟
⎠

is also unitary (note that α0 and γ0 do not change posi-
tions under the realignment operation) and thus U0 is dual
unitary. Hence, M2

R[U0] = U0 implies that U0 is dual
unitary. �

We assume that α0, β0, δ0, and γ0 are all nonzero. It
is easy to verify from Eqs. (B6)–(B7) that if α0 = 0, then
γ0 = 0 and if β0 = 0, then δ0 = 0. In the former case, seed
unitary is dual unitary of the form

UR
0 =

⎛

⎜
⎝

0 0 0 β0
0 δ0 0 0
0 0 δ0 0
β0 0 0 0

⎞

⎟
⎠ (B25)

and in the latter case U0 is self-dual unitary, of the canoni-
cal form given in Eq. (B5).

For two-qubit gates of the form given in Eq. (A1) with-
out any restriction on the parameters, the general form of a
two-qubit dual-unitary gate obtained from the map is

U0 =

⎛

⎜
⎝

α0 0 0 β0
0 ±β0 ±α0 0
0 ±α0 ±β0 0
β0 0 0 α0

⎞

⎟
⎠ .

APPENDIX C: DETAILS ABOUT THE MAP IN
TERMS OF CARTAN PARAMETERS

1. Map in terms of Cartan parameters

a. XXX family

For c(n)1 = c(n)1 = c(n)1 = c(n), the complex-number argu-
ments appearing in Eq. (36) simplify to

θ
(n)
+ = −arctan

[
1 − cos 2 c(n)

1 + cos 2 c(n)
tan c(n)

]
,

θ
(n)
− = −arctan

[
1 + cos 2 c(n)

1 − cos 2 c(n)
tan c(n)

]
,

φ
(n)
+ = −arctan

[
1

tan c(n)

]
,

φ
(n)
− = π − arctan

[
1

tan c(n)

]
. (C1)

Using the above equation, Eq. (36) simplifies to

c(n+1)
1 = c(n+1)

3 = c(n+1) = π

4
− 1

4
arctan

[
2

tan 2 c(n)

]
,

(C2)

for all n and

c(n+1)
2 = c(n+1) for odd n, = π

2
− c(n+1) for even n, (C3)

where the Cartan coefficients satisfy 0 ≤ c(n)3 ≤ c(n)2 ≤ c(n)1
for all n. Thus the map on Cartan parameters is 1D and is
given by

c(n+1) = π

4
− 1

4
arctan

[
2

tan 2 c(n)

]
. (C4)

It is easy to check that c∗ = π/4 is the fixed point of
the map. We show that it is global attractor for all c(0) ∈
(0,π/4] below. In terms of xn = 1/ tan 2 c(n), Eq. (C4)
becomes

xn = xn+1

1 − x2
n+1

, (C5)

which, under rearrangement, gives Eq. (42).
To prove convergence, we write the map in terms of xn

defined in Eq. (41) as

xn+1

xn
= 2

1 +
√
(2 xn)2 + 1

. (C6)

For xn ∈ (0, ∞), 1 <
√
(2xn)2 + 1, hence we obtain

1 +
√
(2 xn)2 + 1 > 2 =⇒ 2

1 +
√
(2 xn)2 + 1

< 1.

Hence, from Eq. C6, xn+1 < xn and this explains the con-
tractive nature of the map. The convergence of the map can
also be justified in terms of its Jacobian, given by

Jx = d
dx

[
2 x

1 + √
4 x2 + 1

]
= 2

1 + 4 x2 + √
1 + 4 x2

,

with Jx < 1 ∀ x ∈ (0, ∞). The approach to the fixed point
x∗ = 0 or, equivalently, the approach of Un to the SWAP
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Number of iterations n

FIG. 14. The XXX case: convergence to the respective fixed
point x∗ = 0 under the map initiated with c(0) = π/8 or, equiv-
alently x0 = 1. The inset shows the power-law behavior for the
same initial condition, as seen from the convergence xn

√
n →

1/
√

2 for large n.

gate, is algebraic with an exponent equal to 1/2, as shown
in Fig. 14 for x0 = 1. The numerical values in Fig. 14
obtained from the algorithm proposed in Ref. [79] exactly
match the analytical values obtained from Eq. (42).

b. SWAP-CNOT-DCNOT face

In this case, the substitution c(n)1 = π/4 and assuming
that 0 ≤ c(n)3 ≤ c(n)2 ≤ c(n)1 ≤ π/4 simplifies the complex-
number arguments in the 3D map of Eq. (36) to

θ
(n)
+ = −arctan

[
tan c(n)2 tan c(n)3

]
,

θ
(n)
− = −arctan

[
tan c(n)3

tan c(n)2

]

,

φ
(n)
+ = −arctan

[
1

tan c(n)2 tan c(n)3

]

,

φ
(n)
− = π − arctan

[
tan c(n)2

tan c(n)3

]

. (C7)

Using the above set of equations in Eq. (36), the map on
the Cartan coefficients reduces to

c(n+1)
1 = π

4
,

c(n+1)
2 = π

4
± 1

2
arctan

[
sin 2 c(n)3 cot 2 c(n)2

]
,

c(n+1)
3 = 1

2
arctan

[
tan 2 c(n)3

sin 2c(n)2

]

. (C8)

Number of iterations n

FIG. 15. The SWAP-CNOT edge: convergence to the respective
fixed point y∗ = 0 under the map initiated with c(0) = π/16. The
inset shows the power-law behavior for the same initial condition
as seen from the convergence yn

√
n → 1 for large n.

Thus the map is 2D and in terms of yn = 1/ tan2 2 c(n)2

and zn = 1/ tan2 2 c(n)3 , the above 2D map takes a purely
algebraic form given by Eq. (45) in the main text.

c. SWAP-CNOT edge

In this case, the map on the Cartan parameters is 1D:
c(n+1)

1 = π/4, c(n+1)
2 = c(n+1)

3 = c(n+1), given by

c(n+1) = 1
2

arctan
[

1
cos 2 c(n)

]
. (C9)

In terms of tn = tan2(2 c(n)), the above map takes a simple
linear form

tn+1 = 1 + tn; (C10)

hence, tn = n − 1 + t0. In terms of yn = 1/ tan2(2 c(n)),
this reduces to Eq. (53), with an exact solution given by
Eq. (54). In this case, the approach to the fixed point y∗ = 0
or, equivalently, the approach of Un to the SWAP gate,
is algebraic with an exponent equal to 1/2, as shown in
Fig. 15.

APPENDIX D: 2-UNITARIES WITH ENTANGLED
ROWS AND COLUMNS

We write unitary operator U in block form as U =∑d
i,j =1 |i〉 〈j | ⊗ Xij :
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(1) Unitarity of U, expressed as UU† = U†U = Id2 :

UU† =
⎛

⎝
d∑

i,j =1

|i〉〈j | ⊗ Xij

⎞

⎠

⎛

⎝
d∑

k,l=1

|k〉〈l| ⊗ Xkl

⎞

⎠

†

,

=
d∑

i,k=1

⎛

⎝|i〉〈k| ⊗
d∑

j =1

Xij X †
kj

⎞

⎠ .

UU† = Id2 gives

d∑

j =1

Xij X †
kj = δikId. (D1)

(2) Dual unitarity of U, expressed as URUR † =
UR †UR = Id2 :

URUR † =
⎛

⎝
∑

ij

|ij 〉〈X ∗
ij |
⎞

⎠
(
∑

kl

|kl〉〈X ∗
kl |
)†

,

=
∑

ij

∑

kl

〈Xkl|Xij 〉 |ij 〉〈kl| .

URUR † = Id2 gives

〈Xkl|Xij 〉 = δikδjl, (D2)

i.e., the Xij form an orthonormal operator basis.
(3) T duality of U, expressed as U	U	 † = Id2 :

U	U	 † =
⎛

⎝
d∑

i,j =1

|j 〉〈i| ⊗ Xij

⎞

⎠

⎛

⎝
d∑

k,l=1

|l〉〈k| ⊗ Xkl

⎞

⎠

†

,

=
d∑

j ,l=1

(

|j 〉〈l| ⊗
d∑

i=1

Xij X †
il

)

.

U	U	 † = Id2 gives

d∑

i=1

Xij X †
il = δjlId. (D3)

The above conditions are equivalent to those presented
in Refs. [56,96] in terms of single-qudit reduced-density
matrices (marginals) of a two-qudit pure state: Xij �→
|Xij 〉 = (Xij ⊗ I) |�〉, where |�〉 is the generalized Bell
state. It is easy to see that the marginal with respect to
the first qudit is given by Xij X †

ij . Thus conditions (1)
and (2) above involve orthonormality of sums of single-
qudit marginals in each row and each column, respectively.
A d × d arrangement of d2-dimensional vectors (two-qudit

quantum states) |Xij 〉 that satisfy Eqs. (D1)–(D3) form an
OQLS. This generalizes the notion of OLS for general
2-unitary operators that are not necessarily permutations
or those for which single-qudit marginals are projectors,
where each |Xij 〉 is a product state. The original defini-
tions of OQLS [59,86] are fragile in the sense that they
do not work when the |Xij 〉 are entangled. Note that the
entanglement of two-qudit states |Xij 〉 changes when uni-
tary U = ∑d

i,j =1 |i〉〈j | ⊗ Xij is multiplied by local unitary
transformations.

APPENDIX E: FIXED POINT OF M2
R MAP THAT

IS NOT DUAL UNITARY

Here, we give an example of a fixed point of the M2
R

map in d2 = 9 that is not dual unitary. The unitary is given
by

UND =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0
0 0

√
3/2 1/2 0 0 0 0 0

0 0 0 0 0
√

3/2 −1/2 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 −1/2

√
3/2 0 0 0 0 0

0 0 0 0 0 1/2
√

3/2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(E1)

The action of MR map on UND results in

U′
ND := MR[UND] (E2)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√
3/2 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1/2 0 0 0 −√

3/2 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0

1/2 0 0 0 0 −√
3/2 0 0 0

0 0 0 1 0 0 0 0 −0
0 0

√
3/2 0 0 0 1/2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(E3)

such that MR[U′
ND] = UND, i.e., UND (the subscript “ND”

is used to emphasize it is not dual unitary) is a fixed point
of the M2

R map

M2
R[UND] := MR[MR[UND]] = MR[U′

ND] = UND.

Interestingly, UND and U′
ND are LU equivalent,

UND = (u1 ⊗ u2)U′
ND(v1 ⊗ v2), (E4)
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where

u1 =
⎛

⎝
−√

3/2 0 −1/2
0 1 0

−1/2 0
√

3/2

⎞

⎠ , u2 = v1 =
⎛

⎝
1 0 0
0 0 1
0 −1 0

⎞

⎠ ,

and v2 =
⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ .

UND (U′
ND) is not dual unitary: UR

NDUR †
ND �= I, having three

distinct Schmidt values given by
{
1 + √

3/2, 1, 1 − √
3/2
}
,

with each value repeated three times. As a consequence of
LU equivalence, UND and U′

ND have the same entangling
power and gate typicality.
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Życzkowski, Entanglement and quantum combinatorial
designs, Phys. Rev. A 97, 062326 (2018).

[60] L. Clarisse, S. Ghosh, S. Severini, and A. Sudbery, Entan-
gling power of permutations, Phys. Rev. A 72, 012314
(2005).

[61] A. Burchardt and Z. Raissi, Stochastic local operations with
classical communication of absolutely maximally entan-
gled states, Phys. Rev. A 102, 022413 (2020).

[62] B. Jonnadula, P. Mandayam, K. Życzkowski, and A. Laksh-
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