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We find necessary and sufficient conditions to determine the interconvertibility of quantum systems
under time-translation covariant evolution, and use it to solve several problems in quantum thermodynam-
ics both in the single-shot and asymptotic regimes. It is well known that the resource theory of quantum
athermality is not reversible, but in Brandão et al. [Phys. Rev. Lett. 111, 250404 (2013)] it was claimed
that the theory becomes reversible “provided a sublinear amount of coherent superposition over energy
levels is available.” Here we show that if a sublinear amount of coherence among energy levels were
considered free, then the resource theory of athermality would become trivial. Instead, we show that by
considering a sublinear amount of energy to be free, the theory of athermality becomes reversible for the
pure-state case. A proof of the same claim for the mixed-state case is still lacking.
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I. INTRODUCTION

Thermodynamics is one of the most prevailing theo-
ries in physics with vast applications spreading from its
early-day focus on steam engines to modern applications
in biochemistry, nanotechnology, and black=hole physics,
to name just a few [1–3]. Despite the success of this field,
the foundations of thermodynamics remain controversial
even today. Not only is there persistent confusion over the
relation between the macroscopic and microscopic laws,
in particular, their reversibility and time symmetry, there
is not even consensus on how best to formulate the sec-
ond law. Indeed, as the Nobel Laureate Percy Bridgman
remarked in 1941 “there are almost as many formulations
of the second law as there have been discussions of it” and
the situation has not improved much since then. In recent
years, researchers have begun to adopt a new perspective
on these foundational problems by reformulating thermo-
dynamics as a resource theory [4–6]. In this approach
to thermodynamics, a system that is not in equilibrium
with its environment is considered as a resource called
athermality. Athermality is the fuel that is consumed,
in work extraction, computational erasure operation, and
other thermodynamical tasks [6–31].
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The resource-theoretic approach to thermodynamics
focuses on how to quantify a state’s deviation from equi-
librium, how to use this for useful tasks in quantum ther-
modynamics, and what the necessary and sufficient condi-
tions are for one state to be converted to another. In this
approach one can consider various notions of state con-
version: exact and approximate, single copy and multiple
copy, with and without the help of a catalyst. Such quan-
tum information techniques lead to many novel insights,
particularly given the historical significance of the notion
of information for foundational topics, such as Maxwell’s
demon [32], the thermodynamic reversibility of compu-
tation [33,34], Landauer’s principle about the work cost
of erasure [7,35], and Jaynes’s use of maximum entropy
principles in deriving statistical mechanics [36,37]. More-
over, the resource-theoretic approach to thermodynamics
demonstrates that the standard formulation of the second
law of thermodynamics, as the nondecrease of entropy,
is inadequate as a criterion for deciding whether or not a
given state conversion is possible. Nonetheless, one can
identify a set of measures of the degree of nonequilib-
rium (including the entropy), such that the state conversion
is possible if and only if all of these measures are not
increasing [12,27].

The role of quantum coherence in the resource theory of
athermality has several subtleties that were overlooked in
some of these works, including the seminal paper [10] that
introduced the resource theory of athermality [38]. Specif-
ically, one of the main results of Ref. [10] asserts that the
free energy “quantifies the rate at which resource states can
be reversibly interconverted asymptotically, provided that
a sublinear amount of coherent superposition over energy
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levels is available, a situation analogous to the sublinear
amount of classical communication required for entangle-
ment dilution.” However, it is relatively simple to show
[see Ref. [39] as well as Eq. (123) below] that the quantum
coherence of a pure quantum state |ψ〉⊗n grows at most
logarithmically with n, so that if a sublinear amount of
coherence among energy levels were considered free, then
the resource theory of athermality would become trivial.
What is meant in Ref. [10] is that coherence is provided
among energy levels that grows sublinearly with n. In other
words, they assume that the total energy (not coherence)
grows sublinearly with n, but the proof given in Ref. [10]
contains some gaps; see the Appendix for more specific
details.

In this paper we refine this assumption, by considering
“asymptotically negligible resources” to be sequences of
quantum states {ωn}n∈N, with O(log(n)) amount of coher-
ence, but whose total energy grows sublinearly with n.
Since the energy of n copies of any (non-zero-energy) state
grows linearly with n, this assumption is reasonable as it
allows for coherence only among energy eigenvectors with
asymptotically negligible energy. Under this mild assump-
tion we are able to recover the reversibility of the resource
theory of quantum athermality in the pure-state regime.

The paper is organized as follows. After introducing
notations and several pertaining preliminary results in
Sec. II, we develop the resource theory of time-translation
asymmetry in Sec. III, in which we find simple necessary
and sufficient conditions for exact manipulation of quan-
tum coherence. We then apply this result in Sec. IV for
interconversions among athermality states in the single-
shot regime. In Sec. V we develop the resource theory of
quantum athermality in the asymptotic regime, and prove
that it is reversible if we allow for a sublinear amount of
quantum athermality. Finally, in Sec. VI we end with a
discussion and outlook.

II. NOTATIONS AND PRELIMINARIES

In this section we introduce our notations and several
results from earlier works. We also present some new
results and observations. We denote both quantum systems
as well as their corresponding Hilbert spaces by the letters
A, B ,A′, B′, and R. We consider only finite-dimensional
systems and use vertical lines such as |A|, |B|, to denote
the dimension of systems A, B, respectively. Replicas of
a physical system will be denoted with the tilde symbol
above them. For example, Ã and B̃ are replicas of A and B,
respectively, and in particular |Ã| = |A| and |B| = |B̃|. The
set of positive semidefinite matrices acting on system A
will be denoted by Pos(A), and quantum states (also called
density matrices) in Pos(A) will be denoted by D(A). The
set of pure states in D(A) will be denoted by PURE(A).
The set of all completely positive trace-preserving (CPTP)

maps, i.e., quantum channels, from system A to B are
denoted by CPTP(A → B).

We use superscripts to indicate actions on subsystems of
a composite physical system. For example, let ρ ∈ Pos(A),
σ ∈ Pos(AB), and E ∈ CPTP(B → B′). Then, the notation
ρAσ AB is a short version corresponding to

(
ρA ⊗ I B

)
σ AB,

and similarly EB→B′ (
σ AB
)

is a short notation of (idA ⊗
EB→B′

)(σ AB), where idA is the identity channel. With these
notations, the Choi matrix of a channel E ∈ CPTP(A → B)
is defined as

J AB
E := E Ã→B

(
�AÃ

)
, (1)

where �AÃ := |�AÃ〉〈�AÃ|, and |�AÃ〉 :=∑m
x=1 |xx〉AÃ

(with m := |A|) is the unnormalized maximally entangled
state.

In this paper we consider only physical systems whose
Hamiltonians are well defined (i.e., no interactions with
other systems). For example, the Hamiltonians of physi-
cal systems A and B is denoted, respectively, by H A and
H B. Moreover, the Hamiltonian of system A (and similarly
of system B, etc.) is expressed as

H A =
m∑

x=1

ax�
A
x , (2)

where {ax}m
x=1 are distinct energy eigenvalues, and {�x}m

x=1
are orthogonal projectors satisfying�A

x�
A
y = δxy�

A
x for all

x, y ∈ [m] := {1, . . . , m}.

A. Notations of types

Let xn := (x1, . . . , xn) be a sequence with n elements
such that xi ∈ [m] for all i = 1, . . . , n. For any z ∈ [m] let
N (z|xn) be the number of elements in the sequence xn :=
(x1, . . . , xn) that are equal to z. The type of the sequence xn

is a probability vector in R
m
+ given by

t(xn) := (t1(xn), . . . , tm(xn)
)T, (3)

where

tz(xn) := 1
n

N (z|xn) ∀ z ∈ [m]. (4)

The significance of types to our work comes into play
when we consider an independent identically distributed
(IID)∼ p source. In this case, the probability of a sequence
xn drawn from the source is given by (see e.g., Ref. [40])

pxn := px1 · · · pxn = 2−n
(

H(t(xn))+D(t(xn)‖p)
)
, (5)

where H(t(xn)) is the Shannon entropy of the type of
the sequence xn, and D (t(xn)‖p) is the Kullback-Leibler
divergence between t(xn) and p.
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We denote by Type(n, m) the set of all types of
sequences in [m]n, and point out that its number of ele-
ments is bounded by [40]

|Type(n, m)| � (n + 1)m. (6)

The set of all sequences xn of a given type t = (t1, . . . , tm)
is denoted as xn(t). We emphasize that xn(t) denotes a set
of sequences whose type is t, whereas t(xn) denotes a sin-
gle probability vector (i.e., the type of a specific sequence
xn). The number of sequences in the set xn(t) is given by
the combinatorial formula of arranging nt1, . . . , ntm objects
in a sequence; in other words,

∣∣xn(t)
∣∣ =

(
n

nt1, . . . , ntm

)
:= n!
∏m

x=1(ntx)!
. (7)

The above formula is somewhat cumbersome, but by using
Stirling’s approximation it can be bounded by [40]

1
(n + 1)m

2nH(t) �
∣∣xn(t)

∣∣ � 2nH(t). (8)

B. Time-translation symmetry

In this subsection we state a few facts about time-
translation symmetry. We say that a quantum state ρA is
time-translation invariant, or quasiclassical, if for all t ∈ R

we have

e−iHAtρAeiHAt = ρA. (9)

Definition II.1: Let E ∈ CPTP(A → B). We say that
EA→B is time-translation covariant if for all t ∈ R and all
ρ ∈ D(A)

EA→B
(

e−iHAtρAeiHAt
)

= e−iHBtEA→B (ρA) eiHBt. (10)

The set of all the channels in CPTP(A → B) that are time-
translation covariant is denoted by COV(A → B).

The set of channels COV(A → A) contains a special
quantum channel known as the twirling channel. Express-
ing the Hamiltonian of system A as in Eq. (2), the twirling
channel on system A is defined by

PA→A (ρA) :=
m∑

x=1

�A
x ρ

A�A
x . (11)

This twirling channel, also known as the “pinching chan-
nel” (see, e.g., Ref. [41]), has the property that a state ρ ∈
D(A) is quasiclassical if and only if P(ρ) = ρ, and if a
quantum channel E ∈ COV(A → A) then P ◦ E = E ◦ P .

Moreover, if the Hamiltonian H A is nondegenerate then

PA→A = 	A→A, (12)

where 	A→A is the completely dephasing channel defined
as

	A→A (ρA) =
m∑

x=1

〈x|ρA|x〉 |x〉〈x|A ∀ ρ ∈ D(A).

(13)

The twirling channel can also be used to quantify time-
translation asymmetry. For example, the relative entropy
distance of a quantum state ρ ∈ D(A) to its twirled state
P(ρ) is a time-translation asymmetry (sometimes referred
to as coherence) measure given by

C(ρ) := D
(
ρ
∥∥P(ρ)) = H

(P(ρ))− H(ρ), (14)

where D(ρ‖σ) := Tr[ρ log ρ] − Tr[ρ log σ ] is the
Umegaki relative entropy and H(ρ) := −Tr[ρ log ρ] is
the von Neumann entropy. The above function is nonin-
creasing under time-translation covariant operations, and
achieves its maximal value of log |A| on the maximally
coherent state |+〉 := 1/

√|A|∑|A|
x=1 |x〉.

For n copies of system A, we denote by Pn ∈
COV(An → An) the pinching channel associated with the
total Hamiltonian H An

given by

H An
:= H A ⊗ I A ⊗ · · · ⊗ I A + I A ⊗ H A ⊗ · · · ⊗ I A

+ · · · + I A ⊗ · · · ⊗ I A ⊗ H A. (15)

With these notations we have P = P1. In Ref. [39] it was
shown that C(ρ⊗n) grows logarithmicly with n [see also
Eq. (123) below] and in particular,

lim
n→∞

1
n

C
(
ρ⊗n) = 0. (16)

C. The resource theory of athermality

In this subsection we review the resource theory of
athermality. We put emphasis on some subtleties that are
quite often overlooked in the existing literature. In particu-
lar, we distinguish between thermal operations and closed
thermal operations. Moreover, we prove some new results.
Specifically, to the author’s knowledge, all the lemmas and
theorems presented here are new.

1. Free states and athermality resource states

The free states in the resource theory of athermality cor-
respond to physical systems that are in thermal equilibrium
with their surrounding. For a heat bath that is held at a fixed
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inverse temperature β := 1/kBT, the free thermodynamics
state,

γ B := e−βHB

Tr
[
e−βHB] , (17)

is the thermal equilibrium state known as the Gibbs state
(here H B is the Hamiltonian associated with the heat bath).
We always use the Greek letter γ to indicate a Gibbs
state. For example, the notation γ A, γ A′

, and γ B, cor-
responds to the Gibbs states of systems A, A′, and B,
respectively. Moreover, the joint Gibbs state of two non-
interacting systems A and B will be denoted simply by
γ AB = γ A ⊗ γ B.

In the quantum resource theory (QRT) of athermal-
ity, every physical system that can be used as a resource
has a well-defined Hamiltonian. Therefore, a physical sys-
tem A cannot be characterized just by a density matrix
ρ ∈ D(A) since the resourcefulness of the state depends
also on the Hamiltonian of the system, H A. For this
reason, every thermodynamic state in quantum thermody-
namics comprises of a quantum state ρ ∈ D(A) acting on
the Hilbert space A, and a time-independent Hamiltonian
H A ∈ Pos(A) that governs the dynamics of the quantum
system A. That is, a state of athermality can be character-
ized by a pair (ρA, H A). This is indeed the characterization
used extensively in the literature.

From the resource-theoretic perspective, this charac-
terization of an athermality state has several drawbacks.
First, it is not invariant under an energy shift of the form
H A �→ H A + cI A, where c ∈ R is some constant. Indeed,
the choice of setting the minimal energy of a system to be
zero is somewhat arbitrary. Second, the resourcefulness of
the state ρA is determined in relation to its deviation from
the Gibbs state γ A of system A. Therefore, it seems more
natural to characterize athermality states (i.e., the “objects”
of this theory) by pairs of the form (ρA, γ A). Note that
all the relevant information about the Hamiltonian H A is
contained in the Gibbs state γ A, which is invariant under
energy shifts.

2. Free operations

The set of free operations relative to a background heat
bath at temperature T comprises of three basic steps:

1. Thermal equilibrium. Any subsystem B, with
Hamiltonian H B ∈ Pos(B), can be prepared in its
thermal Gibbs state γ B.

2. Conservation of energy. Unitary operation on a
composite physical system that commutes with the
total Hamiltonian can be implemented.

3. Discarding subsystems. It is possible to trace over
any subsystem (with a well-defined Hamiltonian) of
a composite system.

Any CPTP map comprising of the above three steps is
called a thermal operation. Any thermal operation E ∈
CPTP(A → A) can be expressed as

EA→A(ρA) = TrB
[UAB→AB (ρA ⊗ γ B)] , (18)

where U ∈ CPTP(AB → AB) is a unitary channel that is
Gibbs preserving; in other words,

UAB→AB (γ AB) = γ AB, (19)

where γ AB = γ A ⊗ γ B. In the lemma below we show
that CPTP(A → A′) with |A| �= |A′| also contains thermal
operations.

Lemma II.1: Let AB, A′B′ be two composite physical sys-
tems with |AB| = |A′B′|, and let U ∈ CPTP(AB → A′B′)
be a Gibbs preserving unitary channel; that is,

UAB→A′B′ (
γ AB) = γ A′B′

.

Then, the map (defined on all ω ∈ D(A))

N A→A′ (
ωA) := TrB′

[
UAB→A′B′ (

ωA ⊗ γ B)
]

(20)

is a thermal operation.

Proof. Consider the joint Gibbs state γ ABA′B′
:= γ AB ⊗

γ A′B′
and let V ∈ CPTP(ABA′B′ → ABA′B′) be the unitary

channel given by

VABA′B′→ABA′B′
:= UAB→A′B′ ⊗ U∗A′B′→AB. (21)

Observe that VABA′B′→ABA′B′
preserves the joint Gibbs state

γ ABA′B′
. Hence, the channel

TrABB′
[
VABA′B′→ABA′B′ (

ωA ⊗ γ BA′B′)]

= TrABB′
[
UAB→A′B′ (

ωA ⊗ γ B)⊗ U∗A′B′→AB(γ A′B′)]

= TrB′
[
UAB→A′B′ (

ωA ⊗ γ B)
]

= N A→A′ (
ωA) ,

is a thermal operation. This completes the proof. �
We denote by TO(A → A′) the set of all thermal oper-

ations in CPTP(A → A′). For fixed systems A and A′ the
set TO(A → A′) is in general not closed and not convex.
It stems from the fact that the dimensions of systems B
and B′ as appearing in Eq. (20) are unbounded. There-
fore, it will be convenient to define the closure of TO(A →
A′), denoted by CTO(A → A′), as a set of channels in
CPTP(A → A′) with the property that E ∈ CTO(A → A′)
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if and only if there exists a sequence of thermal operations
{Ek}k∈N, where each Ek ∈ TO(A → A′) and

lim
k→∞

Ek = E . (22)

By definition, the set CTO(A → A′) is closed. We now
prove that it is also convex.

Theorem II.1: The set CTO(A → A′) is convex.

Proof. We start by showing that TO(A → A′) is closed
under convex combination with rational coefficients.
Specifically, let

N A→A′
:=

�∑

x=1

mx

m
N A→A′

x , (23)

where each mx ∈ N, m :=∑�
x=1 mx, and each Nx ∈

TO(A → A′). Since each Nx is a thermal operation it can
be expressed as

N A→A′
x

(
ωA) := TrB′

x

[
UABx→A′B′

x
x

(
ωA ⊗ γ Bx

)]
, (24)

for some systems Bx, B′
x and some unitary channel Ux ∈

CPTP(ABx → A′B′
x). For each y ∈ [m], let ky be the inte-

ger in [�] satisfying

ky−1∑

x=1

mx � y <
ky∑

x=1

mx, (25)

and define

B :=
m⊕

y=1

Bky , B′ :=
m⊕

y=1

B′
ky

, and γ B := 1
m

m⊕

y=1

γ
Bky .

(26)

Finally, for any ηAB =⊕m
y=1 η

ABky ∈ D(AB) we define the
action of the unitary channel U ∈ CPTP(AB → A′B′) as

UAB→A′B′
(ηAB) =

m⊕

y=1

UABky →A′B′
ky

ky
(η

ABky ). (27)

With these definitions we get

TrB′
[
UAB→A′B′ (

ωA ⊗ γ B)
]

= 1
m

m∑

y=1

TrB′
ky

[
UABky →A′B′

ky
(
ωA ⊗ γ

Bky
)]

= 1
m

�∑

x=1

mxTrB′
x

[
UABx→A′B′

x
x

(
ωA ⊗ γ Bx

)]
, (28)

where in the last line we use the fact that for any x ∈
[�] there exist mx values of y ∈ [m] for which ky = x.

Finally, observe that the rhs of the equation above is
precisely N A→A′

(ωA). Therefore, N A→A′
is a thermal oper-

ation. This completes the proof that any rational convex
combination of thermal operations is a thermal operation.

To prove the convexity of CTO(A → A′) let {Mx}k
x=1

be k channels in CTO(A → A′) and let

MA→A′
:=

k∑

x=1

pxMA→A′
x (29)

be a convex combination of the k channels {Mx}.
For each n ∈ N let M(n)

x ∈ TO(A → A′) be such that
limn→∞ M(n)

x = Mx, and let {p (n)x }k
x=1 be a rational proba-

bility distribution with the property that limn→∞ p (n)x = px.
Now, from the previous argument we have that for all
n ∈ N the rational convex combination

k∑

x=1

p (n)x M(n)
x (30)

is in TO(A → A′). Therefore, by definition, the limit

lim
n→∞

k∑

x=1

p (n)x M(n)
x = M (31)

is in CTO(A → A′). This completes the proof. �
Every thermal operation E ∈ CPTP(A → A′) has two

key properties:

1. EA→A′
is Gibbs preserving operation (GPO); that is,

E(γ A) = γ A′
.

2. EA→A′
is time-translation covariant; in other words,

E ∈ COV(A → A′).

The set of all Gibbs preserving operations in CPTP(A →
A′) will be denoted by GPO(A → A′), and those that
are Gibbs preserving covariant (GPC) quantum channels
(i.e., channels that satisfy the above two properties) are
denoted by GPC(A → A′). In what follows, we also use
the notations

(ρA, γ A)
F−−→ (σ B, γ B), (32)

to indicate that (ρA, γ A) can be converted to (σ B, γ B) by
the free operations F. In our context, F can stand for ther-
mal operations, closed thermal operations (CTO), GPC,
and GPO. Since GPC form a closed set of operations we
have for any two systems A and A′

TO(A → A′) ⊂ CTO(A → A′) ⊂ GPC(A → A′)

⊂ GPO(A → A′). (33)

We now show that the pinching channel is a thermal
operation.
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Lemma II.2: Consider the pinching channel P ∈
CPTP(A → A) associated with the Hamiltonian of system
A. Then, P ∈ TO(A → A).

Proof. Expressing the Hamiltonian of system A as in
Eq. (2), the pinching channel P ∈ CPTP(A → A) can be
written as a mixture of unitaries of the form (see, for
example, Ref. [41])

P(ρ) = 1
m

m∑

x=1

UxρU∗
x ∀ ρ ∈ D(A), (34)

where

UA
x :=

∑

x′∈[m]

e
2π ixx′

m �A
x′ . (35)

Clearly, each of the m unitaries {UA
x } commutes with the

Hamiltonian H A. Therefore, each unitary channel Ux ∈
CPTP(A → A), defined via Ux(·) := Ux(·)U∗

x , is a ther-
mal operation. In the proof of Theorem II.1 we show that
any rational convex combination of thermal operations is
itself a thermal operation. Therefore, the mixture of uni-
taries in Eq. (34) is a thermal operation. This completes
the proof. �

3. Quasiclassical athermality

We say that an athermality state (ρA, γ A) is quasiclas-
sical if ρA and γ A commute; that is, ρ is diagonal in the
energy eigenbasis of system A. In this case, we denote
the athermality state (ρA, γ A) as (pA, gA), where pA and
gA are probability vectors consisting of the diagonals of
ρA and γ A, respectively. In this quasiclassical regime, for
two athermality states (pA, gA) and (pB, gB) we have (see
Theorem 5 in Ref. [7])

(pA, gA)
CTO−−→ (qB, gB) ⇐⇒ (pA, gA) � (qB, gB),

(36)

where � denotes relative majorization. Relative majoriza-
tion is a preorder defined between two pairs of proba-
bility vectors. Specifically, we say that (pA, gA) relatively
majorizes (qB, gB) (and write it as in the equation above)
if there exists a column stochastic matrix E such that
qB = EpA and gB = EgA. Relative majorization has sev-
eral characterizations including a geometrical one given by
Lorenz curves and testing regions (see, e.g., Ref. [42]).

If the Hamiltonian of system A is fully degenerate
(we say in this case that the Hamiltonian is trivial) then
H A = cI A for some constant c � 0 and the corresponding

Gibbs state,

gA = u(m) := 1
m

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ , (37)

is the m-dimensional uniform probability vector. We say
that two athermality states, (pA, gA) and (pB, gB), are
equivalent, and write

(pA, gA) ∼ (pB, gB) (38)

if both (pA, gA) � (pB, gB) and (pB, gB) � (pA, gA). One of
the remarkable properties of quasiclassical thermodynam-
ics is that a dense set of athermality states are equivalent
to states with a trivial (i.e., zero) Hamiltonian [43]. Specif-
ically, let g = (g1, . . . , gm)

T be the Gibbs state of system A
and suppose that its components {gx} are rational. Then,
there exists k1, . . . , km ∈ N such that for each x ∈ [m]
we have gx = kx/k, where k :=∑m

x=1 kx is the common
denominator. With such a Gibbs state, for any probability
vector p = (p1, . . . , pm)

T we have that [43]

(p, g) ∼ (r, u(k)) where r :=
m⊕

x=1

pxu(kx). (39)

The above equivalence indicates that athermality of the
the quasiclassical system A can be fully characterized by
the nonuniformity of the vector r, with r = 1/k(1, . . . , 1)T

being the least resourceful and r = (1, 0, . . . , 0)T being the
most resourceful. Therefore, in the quasiclassical regime
the resource theory of athermality is essentially equivalent
to the resource theory of nonuniformity, also known as the
resource theory of informational nonequilibrium [16].

4. The golden unit of athermality

A “golden unit” of a resource theory is a constituent
of a resource that can be used to measure the resource
very much like ebits are used to measure entanglement.
Due to the equivalence between athermality and nonuni-
formity in the quasiclassical regime, we can use units of
nonuniformity to measure the athermality of a given state.
Specifically, we can take the golden unit to have the form
(|0〉〈0|A, uA). This golden unit is equivalent to [44]

(|0〉〈0|A, uA) ∼ (|0〉〈0|X , uX
m

)
, (40)

where X is a two-dimensional classical system, m := |A|,
and

uX
m := 1

m
|0〉〈0|X + m − 1

m
|1〉〈1|X . (41)

Therefore, we can always consider the golden unit to
be a qubit. Moreover, note that uX

m is well defined even
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if m is not an integer. This can help simplifying cer-
tain expressions, and we therefore consider also the states(|0〉〈0|X , uX

m

)
with m ∈ R+.

5. Cost and distillation

We denote by F the free operations of the resource the-
ory of athermality. We consider three cases in which F =
CTO, F = GPO, and F = GPC. In either of these cases,
we define the conversion distance as

dF

(
(ρA, γ A) → (σ B, γ B)

)
:= min

E∈F(A→B)

1
2

∥∥σ B − E (ρA)∥∥
1 .

(42)

The conversion distance measures the closest distance (in
trace norm) that ρA can reach σ B by using only free oper-
ations. For any ε > 0 and ρ, γ ∈ D(A), this conversion
distance can be used to define the ε-single-shot distillable
athermality as

DistillεF (ρ, γ ) := log sup
0<m∈R

{
m : dF

( (
ρA, γ A)→ (|0〉〈0|X , uX

m

) )
� ε
}

. (43)

The asymptotic distillation of an athermality state (ρ, γ ) is
defined as

DistillF (ρ, γ ) := lim
ε→0+

sup
�,n∈N

{
�

n
: dF

( (
ρ⊗n, γ⊗n)→ (|0〉〈0|⊗�, u⊗�

2

) )
� ε

}
, (44)

where u2 is the two-dimensional maximally mixed state.
The single-shot and asymptotic distillation rates are related
by

DistillF(ρ, γ ) = lim
ε→0+

lim sup
n→∞

1
n

DistillεF
(
ρ⊗n, γ⊗n) .

(45)

We point out that DistillF(ρ, γ ) has the property that for
any k ∈ N

1
k

DistillF
(
ρ⊗k, γ⊗k)

= lim
ε→0+

lim sup
n→∞

1
nk

DistillεF
(
ρ⊗nk, γ⊗nk)

� lim
ε→0+

lim sup
n′→∞

1
n′ DistillεF

(
ρ⊗n′

, γ⊗n′)

= DistillF(ρ, γ ). (46)

Similarly, the conversion distance can be used to define the
ε-single-shot athermality cost as

CostεF (ρ, γ ) := log inf
0<m∈R

{
m : dF

( (|0〉〈0|X , uX
m

)→ (
ρA, γ A)

)
� ε
}

. (47)

The asymptotic athermality cost of the state (ρ, γ ) is
defined as

CostF (ρ, γ ) := lim
ε→0+

inf
m,n∈N

{m
n

: dF

( (|0〉〈0|⊗m, u⊗m
2

)→ (
ρ⊗n, γ⊗n)

)
� ε
}

.

(48)

The single-shot and asymptotic athermality costs are
related by

CostF(ρ, γ ) = lim
ε→0+

lim inf
n→∞

1
n

CostεF
(
ρ⊗n, γ⊗n) . (49)

For the case that F = GPO all the quantities above
have relatively simple closed formulas. In the single-shot
regime we have [44]

DistillεGPO (ρ, γ ) = Dε
min(ρ‖γ ),

CostεGPO(ρ, γ ) = Dε
max(ρ‖γ ), (50)

where Dε
min is the hypothesis testing divergence defined as

Dε
min(ρ‖γ ) := min

0���IA

{
Tr[γ�] : Tr[�ρ] � 1 − ε

}

(51)

and Dε
max is the smoothed max relative entropy defined as

Dε
max(ρ‖γ ) := min

{
Dmax(ρ

′‖γ ) :
1
2
‖ρ − ρ ′‖1 � ε

}

(52)

and Dmax(ρ‖γ ) := log min{t � 0 : tγ � ρ}. In the
asymptotic regime, under GPO, the resource theory of
athermality is reversible as reflected by the equality

DistillF (ρ, γ ) = CostF (ρ, γ ) = D(ρ‖γ ), (53)

where D(ρ‖γ ) := Tr[ρ log ρ] − Tr[ρ log γ ] is the
Umegaki relative entropy.

The hypothesis testing divergence that appears above
in the formula for the single-shot distillable athermality
is neither additive nor subadditive under tensor products.
Instead it satisfies a weaker type of subadditivity given in
the lemma below.
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Lemma II.3: Let ε > 0, ρ, γ ∈ D(A), and ρ ′, γ ′ ∈ D(A′).
Then,

Dε
min

(
ρ ⊗ ρ ′∥∥γ ⊗ γ ′) � Dε

min(ρ‖γ )+ Dmax
(
ρ ′‖γ ′) .

(54)

Proof. By definition,

2−Dεmin(ρ⊗ρ′‖γ⊗γ ′) = min
Tr[(ρ⊗ρ′)�]� 1−ε

Tr
[(
γ ⊗ γ ′)�

]
,

(55)

where the minimum is over all effects � ∈ Pos(AA′) that
satisfies � � I AA′

. The key idea is to use the inequality

γ ′ � 2−Dmax(ρ′‖γ ′)ρ ′. (56)

This inequality follows directly from the definition of
Dmax(ρ

′‖γ ′). Therefore, from the above two equations
we get

2−Dεmin(ρ⊗ρ′‖γ⊗γ ′)

≥ 2−Dmax(ρ′‖γ ′) min
Tr[(ρ⊗ρ′)�]�1−ε

Tr
[(
γ ⊗ ρ ′)�

]

= 2−Dmax(ρ′‖γ ′) min
Tr[ρ�]�1−ε

Tr [γ�] , (57)

where the second minimum is over all effects � ∈ Pos(A)
of the form

� := TrA′
[(

I A ⊗ ρ ′)�AA′]
. (58)

By removing the constraint (58) on � and taking instead
the minimum over all operators 0 � � � I A we get that the
minimization minTr[ρ�]�1−ε Tr [γ�] is equal by definition
to 2−Dmin(ρ‖γ ). Therefore, since the removal of the con-
straint (58) can only decrease the second minimization in
Eq. (57) we conclude that

2−Dεmin(ρ⊗ρ′‖γ⊗γ ′) � 2−Dεmax(ρ′‖γ ′)2−Dεmin(ρ‖γ ). (59)

This completes the proof. �

6. The relative entropy of athermality

The relative entropy of athermality of a state (ρA, γ A)

is defined in terms of the Umegaki relative entropy as
D(ρA‖γ A). This function quantifies the athermality of
the state (ρA, γ A), and is related to the free energy via
D(ρ‖γ ) = β

(
F(ρA)− F(γ A)

)
, where F(ρA) is the free

energy of ρA (see Ref. [10]). The relative entropy distance
can also be expressed as

D (ρ‖γ ) = −H(ρ)− Tr [ρ log γ ]

= −H(ρ)− Tr [P(ρ) log γ ]

= D
(P(ρ)∥∥γ )+ H

(P(ρ))− H(ρ)

= D
(P(ρ)∥∥γ )+ C(ρ). (60)

That is, the athermality of the state (ρ, γ ) can be decom-
posed into two components:

1. Its nonuniformity that is quantified by D
(P(ρ)∥∥γ ).

2. Its asymmetry (or coherence between energy
eigenspaces) that is quantified by the time-
translation asymmetry measure C(ρ).

Moreover, since the regularization of the coherence van-
ishes [see Eq. (16)] we conclude that

lim
n→∞

1
n

D
(Pn

(
ρ⊗n) ∥∥γ⊗n) = D (ρ‖γ ) . (61)

III. TIME-TRANSLATION SYMMETRY

We start by developing the resource theory of time-
translation asymmetry. Specifically, we provide necessary
and sufficient conditions for state conversions in this
model. As we mention in the preliminary section, we are
considering only in this paper physical systems whose
Hamiltonians are well defined. It turns out that the degen-
eracy of these Hamiltonians play an important role in the
manipulation of asymmetry.

A. Degenerate versus nondegenerate Hamiltonians

Let H A and H B be the Hamiltonians of two systems A
and B, of dimensions m := |A| and n := |B|. The Hamil-
tonians can be expressed in their spectral decomposition
as

H A =
m∑

x=1

ax|x〉〈x|A and H B =
n∑

y=1

bx|y〉〈y|B, (62)

where {ax} and {by} are the energy eigenvalues of H A and
H B, respectively.
Definition III.1: We say that the Hamiltonians H A and
H B, as defined in Eq. (62), are relatively nondegenerate
if for all x, x′ ∈ [m] and y, y ′ ∈ [n] we have

ax − ax′ = by − by ′ ⇒ x = x′ and y = y ′. (63)

If the condition above does not hold we say that the
Hamiltonians are relatively degenerate.

Note that if H A and H B are relatively nondegenerate,
then each of them is also nondegenerate. For example,
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suppose H A is degenerate with ax = ax′ for some x �=
x′ ∈ [m]. Then, for y = y ′ we get ax − ax′ = 0 = by − by ′
even though x �= x′. Therefore, relative nondegeneracy is a
stronger notion than nondegeneracy. In fact, relative non-
degeneracy of H A and H B is equivalent to the nondegener-
acy of the joint Hamiltonian H AB = H A ⊗ I B + I A ⊗ H B.
Moreover, in the generic case in which H A and H B are arbi-
trary (chosen at random) the Hamiltonians are relatively
nondegenerate. For this case, time-translation covariant
channels have a very simple characterization.

Theorem III.1: Let A and B be two physical systems
with relatively nondegenerate Hamiltonians. Then, N ∈
CPTP(A → B) is a time-translation covariant channel if
and only if

N A→B = 	B→B ◦ N A→B ◦	A→A, (64)

where 	A→A and 	B→B are the completely dephas-
ing channels of systems A and B, respectively. In other
words, for physical systems with relatively nondegenerate
Hamiltonians only classical channels are time-translation
covariant.

Proof. We start by expressing Eq. (10) in the Choi rep-
resentation. Specifically, by replacing ρ in Eq. (10) with
the unnormalized maximally entangled state �AÃ, the rhs
becomes

e−iHBtE Ã→B
(
�AÃ

)
eiHBt = e−iHBtJ AB

E eiHBt, (65)

and the lhs of Eq. (10) can be expressed as

E Ã→B
(

e−iHÃt�AÃeiHÃt
)

= E Ã→B
(

e−iHAt�AÃeiHAt
)

= e−iHAtJ AB
E eiHAt, (66)

where in the first equality we use the fact that |�AÃ〉 =
1/

√|A|∑|A|
x=1 |x〉A|x〉Ã (here {|x〉A} and {|x〉Ã} are eigen-

bases of HA and HÃ, respectively) has the property that

e−iHÃt
∣∣�AÃ〉 = e−iHAt

∣∣�AÃ〉. (67)

Hence, by equating Eq. (65) with Eq. (66) we get that in
the Choi representation the condition on E in Eq. (10) is
equivalent to

e−iHAt ⊗ eiHBtJ AB
E eiHAt ⊗ e−iHBt = J AB

E . (68)

Now, substituting into the above equation J AB
E =∑

x,x′,y,y ′ cxyx′y ′ |x〉〈x′| ⊗ |y〉〈y ′| (where cxyx′y ′ are some

coefficients) gives

cxyx′y ′ei
(
−ax+ax′+by−by′

)
t = cxyx′y ′ ∀ t ∈ R. (69)

Hence, cxyx′y ′ = 0 unless

ax − by = ax′ − by ′ . (70)

Combining this with the fact that H A and H B are relatively
nondegenerate we get that cxyx′y ′ = 0 unless x = x′ and
y = y ′. Hence, the Choi matrix J AB

E can be expressed as

J AB
E =

∑

x,y

cxyxy |x〉〈x|A ⊗ |y〉〈y|B (71)

so that EA→B is a classical channel. This completes the
proof. �

We consider now the interesting case in which A = B.
In this case, we have in particular H A = H B so we cannot
apply the result above to this case.
Definition III.2: Let H A be the Hamiltonian of a system
A with energy eigenvalues {ax}m

x=1. We say that H A has a
nondegenerate Bohr spectrum if it has the property that for
any x, y, x′, y ′ ∈ [m]

ax − ay = ax′ − ay ′ ⇐⇒ x = x′ and y = y ′

or x = y and x′ = y ′;

that is, there are no degeneracies in the nonzero differences
of the energy levels of H A.

Observe that almost all Hamiltonians have a nondegen-
erate Bohr spectrum (i.e., the set of all Hamiltonians that
do not have a nondegenerate Bohr spectrum is of measure
zero). Therefore, the results below that involves the Hamil-
tonian with a nondegenerate Bohr spectrum will apply to
almost all systems. Such time-translation covariant chan-
nels with respect to nondegenerate Bohr spectrums have
the following characterization.

Lemma III.1: Let H A be a Hamiltonian with a nondegen-
erate Bohr spectrum, E ∈ CPTP(A → A), and m := |A|.
Then, E ∈ COV(A → A) if and only if there exists a condi-
tional probability distribution {py|x}x,y∈[m], and an m × m
positive semidefinite matrix Q (with components denoted
as {qxy}x,y∈[m]) whose diagonal components are qxx = px|x
(for all x ∈ [m]) such that the Choi matrix of EA→A is given
by

J AÃ
E =

∑

x,y∈[m]

py|x|x〉〈x|A ⊗ |y〉〈y|Ã

+
∑

x �=y
mathbfx,y∈[m]

qxy |x〉〈y|A ⊗ |x〉〈y|Ã. (72)
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Proof. Following the same lines as in Theorem III.1, by
replacing H B with H A everywhere, we get that a quantum
channel E ∈ CPTP(A → A) is time-translation covariant if
and only if its Choi matrix J AÃ

E =∑x,x′,y,y ′ cxyx′y ′ |x〉〈x′| ⊗
|y〉〈y ′| satisfies cxyx′y ′ = 0 unless

ax − ay = ax′ − ay ′ . (73)

Since H A is generic (i.e., has a nondegenerate Bohr spec-
trum) we get that the Choi matrix J AÃ

E corresponds to a
time-translation covariant channel if and only if cxyx′y ′ = 0
unless x = x′ and y = y ′, or x = y and x′ = y ′. Denot-
ing by py|x := cxyxy and qxy := cxxyy we conclude that E ∈
CPTP(A → A) is a time-translation covariant channel if
and only if J AÃ′

E has the form Eq. (72). Since J AÃ
E � 0 we

have, in particular, that each py|x � 0, and the condition
that the marginal J A = I A implies that

∑
y py|x = 1 for all

x = 1, . . . , m. Note that the two terms on the rhs of Eq. (72)
have orthogonal support. Therefore, J AB � 0 if and only if
both py|x � 0 for all x and y, and Q � 0. This completes
the proof. �

Remark: Observe that even if the spectrum of the Hamil-
tonian H A has degeneracies, any quantum channel E ∈
CPTP(A → A) whose Choi matrix has the form Eq. (72) is
necessarily time-translation covariant. Therefore, several
of the results below will also be useful for Hamiltonians
with degenerate spectrum.

B. Exact interconversions

In this subsection we consider the exact conversion of
one state to another under time-translation covariant chan-
nels. Specifically, let {|x〉A}x∈[m] be the energy eigenbasis
of a Hamiltonian H A, and let

ρA =
∑

x,x′∈[m]

rxx′ |x〉〈x′|A and σ A =
∑

x,x′∈[m]

sxx′ |x〉〈x′|A

(74)

be two density matrices in D(A) with components {rxx′ }
and {sxx′ }, respectively.

Theorem III.2: Let ρ, σ ∈ D(A) be as in Eq. (74) and
suppose that rxx′ �= 0 for all x, x′ ∈ [m], and the Hamilto-
nian H A has a nondegenerate Bohr spectrum. Then, the
following statements are equivalent:

1. There exists E ∈ COV(A → A) such that σ = E(ρ).
2. The m × m matrix Q, with components

qxy :=
⎧
⎨

⎩
min

{
1, sxx

rxx

}
if x = y

sxy
rxy

otherwise,
(75)

is positive semidefinite.

Moreover, the second statement implies the first state-
ment even if the Hamiltonian H A has a degenerate Bohr
spectrum.

Remark: In the proof below we see that if rxy = 0 for
some off-diagonal terms (i.e., x �= y) then sxy must also be
zero. However, in this case, we see that for any x �= y ∈
[m] with rxy = 0, the components of qxy can be arbitrary.
This means that in this case the condition becomes cum-
bersome, as we need Q to exist as defined above but with
no restriction on the components qxy for which rxy = 0.

Proof. From Lemma III.1 it follows that there exists E ∈
COV(A → A) such that σ = E(ρ) if and only if there
exists a conditional probability distribution {py|x}, and an
m × m positive semidefinite matrix Q, such that

σ = E(ρ) = TrA

[
J AÃ
E (ρT ⊗ I Ã)

]

=
∑

x,y

py|xrxx|y〉〈y| +
∑

x �=y

qxyrxy |x〉〈y|. (76)

That is, σ = E(ρ) if and only if

syy =
m∑

x=1

py|xrxx ∀ y ∈ [m] and

sxy = qxyrxy ∀ x �= y ∈ [m].

(77)

Hence, for the off-diagonal terms, sxy = 0 whenever rxy =
0. Since we assume that all the off-diagonal terms of ρ are
nonzero, i.e., rxy �= 0 for x �= y, there is no freedom left in
the choice of the off-diagonal terms of Q and we must have
qxy = sxy/rxy . Since Q must be positive semidefinite we
maximize its diagonal terms {px|x}m

x=1 given the constraint
that syy =∑m

x=1 py|xrxx. This constraint immediately gives
syy � py|yryy so that we must have py|y � syy/ryy . Clearly,
we also have py|y � 1 so we conclude that

py|y � min
{

1,
syy

ryy

}
. (78)

Remarkably, this condition is sufficient since there
exists conditional probabilities {py|x}, with both py|y =
min

{
1, syy/ryy

}
and syy =∑m

x=1 py|xrxx. Indeed, for sim-
plicity set rx := rxx and sx := sxx, and define

py|x :=
{

min
{

1, sx
rx

}
if x = y

1
μrx
(sy − ry)+(rx − sx)+ otherwise

(79)

where

μ :=
∑

y∈[m]

(sy − ry)+=1
2
‖s − r‖1, (80)

and we use the notation (sy − ry)+ := sy − ry if sy � ry
and (sy − ry)+ := 0 if sy < ry . Clearly, py|x � 0, and it
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is straightforward to check that
∑m

y=1 py|x = 1 and sy =∑m
x=1 py|xrx; that is, the above conditional probability dis-

tribution satisfies all the required conditions. This com-
pletes the proof for the case that H A has a nondegenerate
Bohr spectrum.

Finally, if H A has a degenerate Bohr spectrum and
Q � 0 then we still get that the Choi matrix of the form
Eq. (72) [with py|x as in Eq. (79) and qxy as in Eq. (75)] cor-
responds to a quantum channel E ∈ CPTP(A → A) with
the property that σ = E(ρ). As discussed below the proof
of Lemma III.1, all channels with a Choi matrix of the
form Eq. (72) are time-translation covariant. Hence, E ∈
COV(A → A). This completes the proof. �

Remark: In the proof above we saw that if rxy = 0 for
some x �= y then σ = E(ρ) for some E ∈ COV(A → A)
only if sxy = 0. This in particular implies that if ρ has
a block diagonal form ρ = ( ρ̃ 0

0 0 ), and if it can be con-
verted by a time-translation covariant channel to σ , then σ
must have the form σ = ( σ̃ 0

0 D ) where D is some diagonal
matrix.

As an example for the theorem above, consider the qubit
case in which both

ρ =
(

a z
z̄ 1 − a

)
and σ =

(
b w
w̄ 1 − b

)

are qubit states. Without loss of generality suppose that
a � b [we can always rearrange the order of the diagonals
of ρ and σ by a permutation in COV(A → A)]. In this case
the matrix Q can be expressed as

Q =
⎛

⎝
b
a

w
z

w̄
z̄ 1

⎞

⎠ . (81)

Therefore, Q � 0 if and only if

b
a

�
∣
∣∣
w
z

∣
∣∣
2

. (82)

Observe that if ρ is a pure state, so that |z| = √
a(1 − a),

then the above equation holds if and only if |w|2 � b(1 −
a). Now, since σ � 0 we have |w|2 � b(1 − b) so that 1 −
|w|2

b � b. Therefore, for any a in the range

a ∈
[

b, 1 − |w|2
b

]
(83)

we get both |w|2 � b(1 − a) and a � b. That is, for any
mixed state σ there exists a pure state ψ that can be
converted to σ . On the other hand, if σ is pure [i.e.,
|w|2 = b(1 − b)] and ρ arbitrary qubit, then the condition

in Eq. (82) becomes

|z|2 � a(1 − b). (84)

Since ρ � 0 we also have |z|2 � b(1 − b). Combining
both inequalities we find that the only way ρ can be con-
verted to a pure qubit state σ is if b = a (since a � b
is the initial assumption) and |z|2 = a(1 − a). That is,
ρ is a pure state itself, and up to a diagonal unitary is
equal to σ . Hence, pure coherence cannot be obtained
from mixed coherence, and deterministic interconversion
among inequivalent pure resources is not possible.

The example above shows that there is no unique
“golden unit” that can be used as the ultimate resource in
two-dimensional systems. Instead, any pure resource (i.e.,
pure state that is not an energy eigenstate) is maximal in the
sense that there is no other resource that can be converted
into it (up to the equivalence class of diagonal unitaries).
However, the set of all pure qubit resources is maximal
(i.e., any mixed state can be reached from some pure state
by time-translation covariant operations). We now show
that this latter property holds in general.

Corollary III.1: Let σ ∈ D(A) be an arbitrary state, and
denote by px := 〈x|σ |x〉 the diagonal elements of σ in the
energy eigenbasis {|x〉}m

x=1 of system A. Then, the pure
quantum state

|ψ〉 :=
m∑

x=1

√
px|x〉 (85)

can be converted to σ by a time-translation covariant
channel.

Proof. Observe that the diagonal elements Q are all 1, and
the off-diagonal terms are given by

qxy = sxy√pxpy
∀ x, y ∈ [m] , x �= y. (86)

Therefore, we can express Q = D−1
p σD−1

p , where Dp is the
diagonal matrix whose diagonal is (

√
p1, . . . ,

√
pm). Since

Dp > 0 and σ � 0 it follows that Q � 0. �

IV. QUANTUM ATHERMALITY IN THE
SINGLE-SHOT REGIME

In Sec. III A we saw that if A and B are two physical
systems with relatively nondegenerate Hamiltonians, then
a quantum channel N ∈ CPTP(A → B) is time-translation
covariant if and only if it is classical. Since thermal
operations are time-translation covariant, it follows that
for relatively nondegenerate Hamiltonians thermal opera-
tions must be classical. This observation has the following
consequence.
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Corollary IV.1: Let F be either CTO or GPC, and let
A and B be two physical systems with relatively nonde-
generate Hamiltonians. Let (ρA, γ A) and (σ B, γ B) be two
athermality states on system A and B, and rA, sB, gA,
and gB, be the probability vectors whose components are
the elements on the diagonals of ρA, σ B, γ A, and γ B,
respectively. Then, the following are equivalent:

1.
(
ρA, γ A

) F−→ (
σ B, γ B

)
.

2. σ B is diagonal in the energy eigenbasis and(
rA, gA

) � (sB, gB
)
.

Remark: Note that in the generic case of relatively non-
degenerate Hamiltonians, GPC can destroy only the coher-
ence between the energy levels of the input state ρA.
In this case, coherence cannot be manipulated, but only
destroyed.

Consider the conversion of one athermality state
(ρA, γ A) to another athermality state (σ B, γ B) under any
of the free operations, F, discussed above. Such a con-
version is equivalent to a conversion with the same input
and output Gibbs states, since appending a Gibbs state is a
reversible thermal operation. To see this explicitly, observe
first that

(
ρA, γ A) F↔ (

ρA ⊗ γ B, γ AB) ,
(
σ B, γ B) F↔ (

γ A ⊗ σ B, γ AB) ,
(87)

where F is one of the four sets TO, CTO, GPC, and
GPO, and the symbol

F↔ indicates conversion under F in
both directions. Therefore, the conversion of

(
ρA, γ A

)
to(

σ B, γ B
)

is equivalent to the conversion of
(
ρA ⊗ γ B, γ AB

)

to the state
(
γ A ⊗ σ B, γ AB

)
. Note that the latter conver-

sion has the same input and output Gibbs state γ AB.
Therefore, interconversions among states with the same
Gibbs state (and, in particular, with |A| = |B|) is general
enough to capture also interconversions with |B| �= |A| (as
long as we do not impose some additional nondegeneracy
constraints); see Fig. 1.

We now focus on interconversions among states that are
all in D(A), and unless necessary, will drop the system
superscript A from the states. However, we assume that
the Hamiltonian H A has a nondegenerate Bohr spectrum.
This will reduce a bit from the generality of the results,
however, as discussed above, this is the generic case and
almost all Hamiltonians having such a spectrum.

A. Exact conversions

Consider a conversion of the form (ρ, γ )
GPC−−→ (σ , γ ),

where ρ, σ , γ ∈ D(A), and all the off-diagonal terms of ρ
are nonzero. In this case, Theorem III.2 states that ρ can
be converted to σ by a time-translation covariant channel
if and only if the matrix Q as defined in Eq. (75) is positive

FIG. 1. Equivalence of conversions. The top conversion with
two different Gibbs states γ A and γ B is equivalent to the bottom
conversion with the same Gibbs state γ AB.

semidefinite. Since CGP channels are, in particular, covari-
ant under the time-translation group, the condition Q � 0

is a necessary (but not sufficient) condition for (ρ, γ )
GPC−−→

(σ , γ ). To get the full necessary and sufficient conditions,
let J AB be the Choi matrix of a time-translation covari-
ant channel E ∈ COV(A → A) that satisfies E(ρ) = σ and
E(γ ) = γ . Recall that the Choi matrix of such a channel
has the form [cf. Eq. (72)]

J AÃ =
∑

x,y

py|x|x〉〈x|A ⊗ |y〉〈y|Ã +
∑

x �=y

sxy

rxy
|x〉〈y|A ⊗ |x〉〈y|Ã,

(88)

where P = (py|x) is some column stochastic matrix, and we
assume that the off-diagonal terms of ρ are nonzero. Let r
and s be the probability vectors consisting of the diagonals
of ρ and σ , respectively, and identify the diagonal matrix
γ with the Gibbs vector g consisting of its diagonal. Then,
the Choi matrix above facilitates such a channel E if and
only if it is positive semidefinite and

Pr = s and Pg = g. (89)

Note that the above condition implies that (r, g) � (s, g),
however, it is not sufficient since we also require that
J AÃ � 0. This latter condition is equivalent to the require-
ment that the matrix obtained by replacing the diagonal
elements of Q [as defined in Eq. (75)] with {px|x}x∈[m] is
positive semidefinite. We summarize these considerations
in the following lemma.

Lemma IV.1: Let (ρA, γ A) and (σ A, γ A) be two ather-
mality states of a system A, whose Hamiltonian H A has
a nondegenerate Bohr spectrum. Using the same notations
as in Eq. (74), suppose that rxy �= 0 for all x �= y. Then, the
following statements are equivalent:
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1. (ρA, γ A)
GPC−−→ (σ A, γ A).

2. There exists a column stochastic matrix P that
satisfies both Eq. (89) and the matrix

m∑

x=1

px|x|x〉〈x| +
∑

x �=y∈[m]

sxy

rxy
|x〉〈y| � 0. (90)

Moreover, the second statement implies the first state-
ment even if the Hamiltonian H A has a degenerate Bohr
spectrum.

The lemma above does not provide much computational
simplification over the results in Ref. [27], since determin-
ing the existence of such a column stochastic matrix P is
itself a semidefinite programming (SDP) problem. How-
ever, the significance of this lemma is that it makes the role
of quantum coherence in such conversions of athermal-
ity much more apparent, as demonstrated by the following
theorem. Moreover, we see below that in the qubit case
the lemma above provides a simple criterion for exact
interconversions under GPC.

Theorem IV.1: Let (ρA, γ A) and (σ A, γ A) be two quantum
athermality states of dimension m := |A|, whose Hamil-
tonian H A has a nondegenerate Bohr spectrum. For any
x, y ∈ [m] let rxy := 〈x|ρ|y〉 and sxy := 〈x|σ |y〉 be, respec-
tively, the xy component of ρ and σ in the energy eigen-
basis. Suppose that rxy �= 0 for all x, y ∈ [m] and that
rxx = sxx for all x ∈ [m]. Then, the following statements are
equivalent:

1. (ρA, γ A)
GPC−−→ (σ A, γ A).

2. QA := I A +∑x �=y∈[m]
sxy
rxy

|x〉〈y|A � 0.

Moreover, the second statement implies the first state-
ment even if the Hamiltonian H A has a degenerate Bohr
spectrum.

Remark: The condition in the theorem above that ρ and
σ have the same diagonals means that ρ and σ have the
same nonuniformity and they differ only by their coherence
(asymmetry) properties. In fact, observe that the condition
QA � 0 is identical to the condition given in Theorem III.2
for the case that the diagonals of ρ and σ are the same.

Therefore, in this case we have (ρA, γ A)
CGP−−→ (σ A, γ A) if

and only if ρA can be converted to σ A by time-translation
covariant operations. In particular, the Gibbs state, γ A,
does not play a role in such conversions since ρ and σ
have the same nonuniformity (i.e., same diagonals).

Proof. Since the diagonals of ρ and σ are the same, we
get that if QA � 0 then by taking the stochastic matrix P
to be the identity matrix, all the conditions of Lemma IV.1

are satisfied so that (ρA, γ A)
CGP−−→ (σ A, γ A). Conversely, if

(ρA, γ A)
CGP−−→ (σ A, γ A) then by Lemma IV.1 there exists

a stochastic matrix P with a diagonal {px|x} that satis-
fies Eq. (90). By adding the positive semidefinite matrix∑m

x=1(1 − px|x)|x〉〈x| to the matrix in Eq. (90) we get that
also QA � 0. This completes the proof. �

The theorem above has the following consequence.

Corollary IV.2: Let ρ ∈ D(A) be an arbitrary state, and
denote by px := 〈x|ρ|x〉 the diagonal elements of ρ in the
energy eigenbasis {|x〉}m

x=1 of system A. Then,

(
ψA, γ A) GPC−−→ (

ρA, γ A) (91)

where |ψA〉 :=∑m
x=1

√
px|x〉.

Proof. Since ψA and ρA have the same diagonals, it fol-
lows from Theorem IV.1 and the discussion above that(
ψA, γ A

) GPC−−→ (
ρA, γ A

)
if and only if ψA can be con-

verted to ρA by time-translation covariant operations. The
latter conversion is possible due to Corollary III.1. This
completes the proof. �

Lemma IV.1 can also be used to give the precise condi-
tions for interconversions under GPC of qubit athermality
states. For this purpose, let ρ, σ , γ ∈ D(A) with |A| = 2.
Denote

ρ =
(

r a
ā 1 − r

)
, σ =

(
s b
b̄ 1 − s

)
, γ =

(
g 0
0 1 − g

)
.

(92)

We also denote the diagonals of the matrices above by
r := (r, 1 − r)T, s := (s, 1 − s)T, and g = (g, 1 − g)T. We

would like to find the conditions under which (ρ, γ )
GPC−−→

(σ , γ ). Recall that if a = 0 then we must have b = 0 since
GPC cannot generate coherence between energy levels.
Therefore, the case a = 0 has already been covered by the
quasiclassical regime. Note also that the case g = 1/2 also
corresponds to the quasiclassical case (since in this case
ρ and σ can be diagonalized). We therefore assume in the
rest of this subsection that a �= 0 and g �= 1/2.

Theorem IV.2: [cf. Ref. [45]] Let ρ, σ , γ ∈ D(A) be three
qubit states as above and suppose a �= 0 and g �= 1/2.
Then, for r �= g, (ρ, γ )

GPC−−→ (σ , γ ) if and only if (r, g) �
(s, g) and

|b|2
|a|2 �

det
(

s 1 − r
g 1 − g

)
det
(

r 1 − s
g 1 − g

)

(r − g)2
. (93)

For r = g, (ρ, γ )
GPC−−→ (σ , γ ) if and only if s = g and

|a| � |b|.
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Remark: If s = g (but r �= g) then the condition in
Eq. (93) can be simplified. Specifically, in this case we get
that (ρ, γ ) can be converted to (σ , γ ) by GPC if and only if

|b|2
|a|2 � det(γ ). (94)

Proof. From Lemma IV.1 it follows that (ρ, γ ) can be con-
verted to (σ , γ ) by GPC if and only if there exists a 2 × 2
column stochastic matrix P = {py|x}x,y∈{0,1} that satisfies
Pr = s, Pg = g, and

(
p0|0 b/a
b̄/ā p1|1

)
� 0. (95)

Note that this last condition is equivalent to

|b|2
|a|2 � p0|0p1|1. (96)

The conditions Pr = s and Pg = g can be expressed as the
following linear systems of equations:

[
r 1 − r
g 1 − g

] [
p0|0
p0|1

]
=
[

s
g

]
(97)

and
[

r 1 − r
g 1 − g

] [
p1|0
p1|1

]
=
[

1 − s
1 − g

]
. (98)

Note that the equations involving p1|0 and p1|1 follow triv-
ially from the ones involving p0|0 and p0|1 since P is
column stochastic. From Cramer’s rule it then follows that
for the case that r �= g

p0|0 =
det
(

s 1 − r
g 1 − g

)

det
(

r 1 − r
g 1 − g

) and p1|1 =
det
(

r 1 − s
g 1 − g

)

det
(

r 1 − r
g 1 − g

) .

(99)

Finally, substituting the above expression in Eq. (96) gives
Eq. (93).

For the case that r = g we also have s = g [other-
wise, (r, g) �� (s, g)] and the linear system of equations
in Eq. (97) has a unique solution given by p0|0 = p1|1 =
1. Therefore, in this case, Eq. (96) gives |b| � |a|. This
completes the proof. �

From the remark below Theorem IV.2 it follows that
already in the qubit case, conversions under GPC have a
certain type of discontinuity. To see this, consider the case
s = g, and observe that the condition |a|2 det(γ ) � |b|2 is
stronger than the condition |a| � |b| that one obtains if

also r = g. In particular, since det(γ ) � 1/4, there exists
an ε > 0 and ρ, σ , γ ∈ D(A) such that for any ρ ∈ Bε(σ )

[here Bε(σ ) is the ball of all density matrices that are ε
close to σ ] we have that (ρ, γ ) cannot be converted by
GPC to (σ , γ ) unless ρ = σ (up to free diagonal unitary).
As an explicit example, let

σ = 1
6

(
2

√
2√

2 4

)
and γ = 1

3

(
1 0
0 2

)
. (100)

According to the theorem above, in this example,

(ρ, γ )
GPC−−→ (σ , γ ) if and only if either ρ = σ or

a � b√
det(γ )

= 1
2

. (101)

However, note that for sufficiently small ε > 0 the condi-
tion ρ ∈ Bε(σ ) would imply that a cannot be too far away
from b = √

2/6 < 1/2. Therefore, for sufficiently small

ε > 0 the condition ρ ∈ Bε(σ ) implies that (ρ, γ )
GPC−−→

(σ , γ ) if and only if ρ = σ (up to a free diagonal unitary).

B. Approximate single-shot conversions

For the case that F = GPC, the conversion distance
given in Eq. (42) can be expressed as

dF

(
(ρA, γ A) → (σ A′

, γ A′
)
)

:= min
E∈COV(A→A′)

{
1
2

‖σ − E(ρ)‖1 : γ A′ = E (γ A)
}

.

(102)

Since the trace distance between two density matrices can
be expressed as

1
2

‖σ − E(ρ)‖1 = min
�∈Pos(A′)
��σ−E(ρ)

Tr [�] , (103)

the conversion distance can be expressed as the following
minimization problem:

dF

(
(ρ, γ ) → (σ , γ )

) = min Tr [�] (104)

subject to

1. �A′ � σ A′ − TrA

[
J AA′ (

ρT ⊗ I A′)]
.

2. J A = I A.
3. γ A′ = TrA

[
J AA′ (

γ A ⊗ I A′)]
.

4.
[
J AA′

, e−iHAt ⊗ eiHA′
t
] = 0 for all t ∈ R.

5. � ∈ Pos(A′) and J ∈ Pos(AA′).

The optimization problem above can be solved efficiently
with semidefinite programs, however, when the output
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state is quasiclassical the conversion distance takes a much
simpler form.

Consider the conversion distance from an arbitrary state
(ρA, γ A) to a quasiclassical state

(
σ A′

, γ A′)
. In this case, a

channel E ∈ CPTP(A → A′) is time-translation covariant
if and only if E ◦ P = E since the output of the chan-
nel is classical (and therefore time-translation invariant).
Therefore, in this case we get

dGPC

(
(ρA, γ A) → (σ A′

, γ A′
)
)

:= min
E∈COV(A→A′)

{
1
2

‖σ − E(ρ)‖1 : γ A′ = E (γ A)
}

� min
E∈COV(A→A′)

{
1
2

∥∥P(σ − E(ρ))∥∥1 : γ A′ = E (γ A)
}

= min
E∈COV(A→A′)

{
1
2

‖σ − E ◦ P(ρ)‖1 : γ A′ = E (γ A)
}

� dGPO

(
(P(ρA), γ A) → (σ A′

, γ A′
)
)

. (105)

On the other hand, we have

dGPO

(
(P(ρA), γ A) → (σ A′

, γ A′
)
)

= min
E∈CPTP(A→A′)

{
1
2

‖σ − E ◦ P(ρ)‖1 : γ A′ = E (γ A)
}

� min
E∈CPTP(A→A′)

{
1
2

‖σ − P ◦ E ◦ P(ρ)‖1 :

γ A′ = E (γ A)
}

� min
E∈COV(A→A′)

{
1
2

‖σ − E(ρ)‖1 : γ A′ = E (γ A)
}

= dGPC

(
(ρA, γ A) → (σ A′

, γ A′
)
)

. (106)

Therefore, combining the two expressions above we get
that

dGPC

(
(ρA, γ A) → (σ A′

, γ A′
)
)

= dGPO

(
(P(ρA), γ A) → (σ A′

, γ A′
)
)

. (107)

One can then use the expression given in Ref. [42] for the
conversion distance between two quasiclassical states.

The above observation can be used to get an exact
closed formula for the ε-single-shot distillable athermal-
ity defined on any quantum athermality state (ρ, γ ) as in
Eq. (43) with F = GPC. Note that since the golden unit
(|0〉〈0|X , uX

n ) that appears in Eq. (43) is quasiclassical, it
cannot be used to define the single-shot cost of an arbitrary
quantum athermality state since quasiclassical states can-
not be converted by GPC to states with coherence between

energy levels. Therefore, in this subsection we consider
only single-shot distillation of athermality.

Theorem IV.3: Let ρ, γ ∈ D(A) and ε ∈ [0, 1]. Then, the
ε-single-shot distillable athermality of the state (ρ, γ ) is
given by

DistillεGPC (ρ, γ ) = Dε
min

(P(ρ)∥∥γ ) . (108)

Proof. The relation in Eq. (107) immediately implies that

DistillεGPC (ρ, γ ) = log sup
0<m∈R

{
m : dGPO

(
(P(ρ), γ ) → (|0〉〈0|, um)

)
� ε
}

= DistillεGPO (P(ρ), γ ) . (109)

Therefore, combining this with the first equality of Eq. (50)
yields Eq. (108). This completes the proof. �

V. QUANTUM ATHERMALITY IN THE
ASYMPTOTIC REGIME

Unlike Gibbs preserving operations, both thermal oper-
ations and GPC operations cannot generate coherence
between energy levels. This means that any number of
copies of the golden unit (|0〉〈0|, u) cannot be converted
even to a single copy of an athermality state (ρA, γ A)

that exhibits coherence between energy levels. However, it
turns out that this type of irreversibility between the (infi-
nite) cost to prepare the state (ρA, γ A) versus the finite rate
at which it can be used to distill golden units of athermality,
can be removed if we allow for a relatively small amount
of coherence to be added to the system.

This section is organized as follows. We start by show-
ing that the distillable athermality of (ρA, γ A) is equal to
the Umegaki relative entropy (historically, a version of this
result was first proved in Ref. [10], however, our proof
has a pedagogical value as it is relatively short and is
based on the single-shot regime). We then introduce a few
new concepts, such as asymptotic scaling, energy spread,
and sublinear athermality resources, in order to show how
reversibility can be restored by appending the free opera-
tions with resources that are asymptotically negligible.

A. Distillation of quantum athermality

The formula given in Eq. (108) for the ε-single-shot dis-
tillable athermality can be used to derive the asymptotic
distillable athermality. Specifically, we have

DistillGPC (ρ, γ ) = lim
ε→0+

lim sup
n→∞

1
n

Dε
min

(Pn(ρ
⊗n)
∥∥γ⊗n) .

(110)

We now use this observation, and obtain a closed formula
for the rhs of the equation above.
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Theorem V.1: (cf. Ref. [10]) Let (ρ, γ ) be an athermality
state of a quantum system A. Then,

DistillF (ρ, γ ) = D (ρ‖γ ) . (111)

where D is the Umegaki relative entropy, and F stands for
either TO, CTO, or GPC.

Proof. Since P(γ ) = γ we get from Eq. (108) and the data
processing inequality (DPI) that

DistillεGPC (ρ, γ ) = Dε
min

(P(ρ)∥∥P(γ ))

DPI → � Dε
min (ρ‖γ ) ,

(112)

and consequently

DistillGPC (ρ, γ ) � lim
ε→0+

lim sup
n→∞

1
n

Dε
min

(
ρ⊗n
∥∥γ⊗n)

= D(ρ‖γ ), (113)

where the equality follows from the quantum Stein’s
lemma. Since TO and CTO are subsets of GPC the above
inequality also holds if we replace GPC with TO or CTO.

To get the opposite inequality, fix k ∈ N and apply the
pinching channel Pk ∈ CTO(Ak → Ak) on k copies of ρ.
The resulting state, σk := Pk(ρ

⊗k), is quasiclassical. Now,
from Eq. (46) we get

DistillTO (ρ, γ ) � 1
k

DistillTO
(
ρ⊗k, γ⊗k)

� 1
k

DistillTO
(
σk, γ⊗k) , (114)

where in the second inequality we use the fact that the
pinching channel is a thermal operation (see Lemma II.2)
so that by definition, σk cannot have a higher distillable
rate than ρ⊗k. Since σk is a quasiclassical state we have
that DistillTO

(
σk, γ⊗k

)
equals D

(
σk
∥
∥γ⊗k

)
. Therefore, the

equation above gives

DistillTO (ρ, γ ) � 1
k

D
(Pk

(
ρ⊗k) ∥∥γ⊗k) . (115)

Now, since the above inequality holds for all k ∈ N we
conclude that

DistillTO (ρ, γ ) � lim sup
k→∞

1
k

D
(Pk

(
ρ⊗k) ∥∥γ⊗k)

(61) → = D(ρ‖γ ).
(116)

This completes the proof. �

B. Scaling of time-translation asymmetry

In this subsection we show that the coherence of n
copies of a states grows logarithmically with n. Let A be a
physical system with Hamiltonian H ∈ Pos(A) and a state
ψ ∈ PURE(A) given by

H A =
m∑

x=1

ax|x〉〈x| and |ψ〉 =
m∑

x=1

√
px|x〉,

where m = |A|. For any n ∈ N, the state ψ⊗n has the form

|ψ〉⊗n =
∑

xn∈[m]n

√
pxn |xn〉

=
∑

xn∈[m]n

2− n
2

(
H(t(xn))+D(t(xn)‖p)

)
|xn〉 (117)

where we use (5). For any type t ∈ Type(n, m) define

|t〉An
:= 1
( n

nt1,...,ntm

)1/2
∑

xn∈xn(t)

|xn〉, (118)

where the sum runs over all sequences xn of the same type
t. With the above notations

|ψ〉⊗n =
∑

t∈Type(n,m)

√
rt,n|t〉An

, (119)

where

rt,n := |xn(t)|2−n
(

H(t)+D(t‖p)
)
. (120)

Note that the vectors |t〉An
are eigenvectors of the Hamilto-

nian of system An. Specifically,

H⊗n|t〉An = n
m∑

x=1

txax|t〉An
, (121)

so that the energy in the state |t〉An
is n times the aver-

age energy with respect to the type t. In the generic case,
the energy eigenvalues {a1, . . . , am} are rationally indepen-
dent; in other words, for any set of m integers �1, . . . , �m ∈
Z we have

�1a1 + · · · + �mam = 0 ⇐⇒ �1 = · · · = �m = 0.
(122)

Under this mild assumption (which we do not assume,
but is still worth mentioning), each type in Type(n, m)
determines uniquely the energy of the system.

Since each |t〉An
is an energy eigenstate, it follows from

Eq. (119) that we can always write |ψ〉⊗n as a linear com-
bination of |Type(n, m)| � (n + 1)m energy eigenstates. In
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other words, the coherence of |ψ〉⊗n can be compressed
into an (n + 1)m dimensional vector (which is polynomial
in n).

The observation above has the following consequence.
In Corollary IV.2 we saw that for any mixed state in D(A)
there exists a pure state in PURE(A) that can be converted
to it by GPC. Combining this with the above observa-
tion implies that the pure state coherence cost of prepar-
ing a state ρ⊗n ∈ D(An) cannot exceed m log(n + 1), and
specifically we have

C
(
ρ⊗n) � m log(n + 1), (123)

where C is the coherence measure defined in Eq. (14).
Therefore, the asymmetry cost rate, i.e., coherence cost per
copy of ρ, cannot exceed m(log(n + 1))/n, which goes to
zero as n → ∞. On the other hand, the nonuniformity cost
(i.e., quasiclassical athermality cost) does not go to zero in
the asymptotic limit since the energy of ρ⊗n grows linearly
with n.

To summarize, athermality comprises of two types of
resources, namely nonuniformity (also known as informa-
tional nonequilibrium) and time-translation asymmetry (or
coherence in short). Therefore, the athermality asymptotic
cost of an athermality state also comprises of two types,
nonuniformity cost and coherence cost. The latter however
goes to zero in the asymptotic limit, and therefore needs to
be rescaled differently. This makes the QRT of athermality
very subtle, and consequently several important questions
in the theory are still open (see Sec. VI).

C. The energy spread

The energy spread of a given pure stateψ ∈ PURE(A) is
defined as the difference between the maximal and minimal
energies that appear when writing ψ as a superposition of
energy eigenvectors. In the discussion above we saw that n
copies of a stateψ ∈ PURE(A) can be expressed as a linear
combination of no more that (n + 1)m energy eigenvec-
tors. Among these energy eigenvectors are the zero-energy
eigenvector [corresponding to the type t = (1, 0, . . . , 0)T]
and the maximal energy eigenvector [corresponding to the
type t = (0, . . . , 0, 1)T]. Therefore, since the energy in the
decomposition (119) spreads from zero to nam (where am
is the maximal energy of a single copy of system A), we
conclude that the energy spread of ψ⊗n is nam.

The energy spread can be reduced drastically if one
allows for a small deviation from the state ψ⊗n. Explicitly,
for any ε > 0 we can split |ψ⊗n〉 into two parts

|ψ〉⊗n =
∑

t∈Sn,ε

√
rt,n|t〉An +

∑

t∈Sc
n,ε

√
rt,n|t〉An

, (124)

where

Sn,ε := {t ∈ Type(n, m) :
1
2
‖t − p‖1 � ε

}
, (125)

and Sc
n,ε is the complement of Sn,ε in Type(n, m). By sub-

stituting the bounds in Eq. (8) into the definition of the
coefficients rt,n we get that

1
(n + 1)m

2−nD(t‖p) � rt,n � 2−nD(t‖p). (126)

Therefore, the fidelity of |ψ⊗n〉 with the second term on
the rhs of Eq. (124) is given by

∑

t∈Sc
n,ε

rt,n �
∑

t∈Sc
n,ε

2−nD(t‖p)

Pinsker′s inequality → �
∑

t∈Sc
n,ε

2−2nε2

� 2−2nε2∣∣Type(n, m)
∣∣

(6) → � 2−2nε2
(n + 1)m

n→∞−−−→ 0. (127)

That is, for any ε > 0 and sufficiently large n, the state
|ψ〉⊗n can be made arbitrarily close to the state

|ψn
ε 〉 := 1√

νε

∑

t∈Sn,ε

√
rt,n|t〉An

, (128)

where νε :=∑t∈Sn,ε
rt,n is the normalization factor. Now,

from Eq. (121) the energy of any state |t〉An
with type

t ∈ Sn,ε isμt := n
∑m

x=1 txax. Expressing t = p + r we get
that 1/2‖r‖1 � ε and

|μt − μp| � n
m∑

x=1

ax|tx − px| = n
m∑

x=1

ax|rx| � 2nε
m∑

x=1

ax.

(129)

Therefore, for any two types t, t′ ∈ Type(n, m) that are ε
close to p we have

|μt − μt′ | � 4nε
m∑

x=1

ax. (130)

In other words, the energy spread of the state |ψn
ε 〉 is no

greater than 4nε
∑m

x=1 ax.
Note that by taking ε > 0 sufficiently small we can make

the energy spread 4nε
∑m

x=1 ax much smaller than nam.
However, we still get that the energy spread of ψn

ε is lin-
ear in n. We show now that there exist states in PURE(An)

that are very close to ψ⊗n but with energy spread that is
sublinear in n.

Lemma V.1: Let ψ ∈ PURE(A) and α ∈ (1/2, 1). Then,
there exists a sequence of pure state {χn}n∈N in PURE(An)

with the following properties:
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1. The limit

lim
n→∞

∥∥ψ⊗n − χn
∥∥

1 = 0. (131)

2. The energy spread of χn is no more than
4nα

∑m
x=1 ax.

Remark: Note that due to the inequality Type(n, m) �
(n + 1)m it follows that any pure state in An, including |χn〉,
can be expressed as a linear combination of no more than
(n + 1)m energy eigenstates.

Proof. Set εn := nα−1. Since α ∈ (1/2, 1) we have
limn→∞ εn = 0 and limn→∞ nε2

n = ∞. The latter implies
that if we replace ε in (127) with εn we still get the zero
limit of (127). Hence, the pure state χn := ψn

εn
satisfies

Eq. (131). Finally, from Eq. (130) we get that the energy
spread of χn cannot exceed

4nεn

m∑

x=1

ax = 4nα
m∑

x=1

ax. (132)

This completes the proof. �

D. Sublinear athermality resources

The lemma above asserts that the state ψ⊗n is very close
to a state χn, whose energy spread is sublinear in n. How-
ever, the average energy 〈χn|H⊗n|χn〉 grows linearly in n.
This is consistent with our next assumption that systems
whose energy grows sublinearly in n can be viewed as
asymptotically negligible resources.

Definition V.1: A sublinear athermality resource (SLAR)
is a sequence of quantum athermality systems {Rn}n∈N,
such that |Rn| grows polynomially with n, and there exists
two constants independent of n, 0 � α < 1 and c > 0, such
that

∥∥H Rn
∥∥

∞ � cnα ∀ n ∈ N. (133)

The key assumption in the definition above is that the
energy of systems Rn grows sublinearly with n. Therefore,
in the asymptotic limit in which n → ∞ the resourceful-
ness of any sequence of athermality states

{
(ωRn , γ Rn)

}
n∈N

becomes negligible relative to the resourcefulness of n
copies of the golden unit (|0〉〈0|A, uA). Specifically, in
Appendix B we show that the distillation rate of athermal-
ity as given in Theorem V.1 does not change if we replace
CTO (or GPC) by CTO+SLAR (or GPC+SLAR). While
this small amount of an athermality resource does not
change the distillation rate, we see now that it does change
the cost rate and thereby sufficient to restore reversibility.

E. Cost of pure states

For any athermality system R (i.e., system R has a well-
defined Hamiltonian H R and a Gibbs state γ R) we define
the R-assisted conversion distance of one athermality state
(ρA, γ A) to another athermality state (σ B, γ B) as

dR
CTO

( (
ρA, γ A)→ (

σ B, γ B)
)

:= inf
ω∈D(R)

dCTO

( (
ρA ⊗ ωR, γ AR)→ (

σ B, γ B)
)

. (134)

That is, dR
CTO is the smallest distance that (ρA, γ A) can be

reached by CTO to (σ B, γ B) with the help of a system R,
whose Hamiltonian H R (or equivalently its Gibbs state γ R)
is fixed. With this at hand, we define the R-assisted ε cost
of (ρA, γ A) to be

Costε,RCTO

(
ρA, γ A) :=

log inf
0<m∈R

{
m : dR

CTO

(
(|0〉〈0|X , uX

m) → (ρA, γ A)
)
� ε
}

.

The type of free operations that we consider here are CTO
assisted with SLAR. We therefore set in this subsection F
to be CTO+SLAR. Using the definitions above, we define
the asymptotic cost of a state (ρA, γ A) under F as

CostF
(
ρA, γ A) :=

inf
{Rn}

lim
ε→0+

lim inf
n→∞

1
n

Costε,Rn
CTO

(
ρ⊗n, γ⊗n) , (135)

where the infimum is over all SLARs {Rn}n∈N.

Theorem V.2: Let (ψA, γ A) be an athermality state with
ψ ∈ PURE(A). Then,

CostF
(
ψA, γ A) = D

(
ψA
∥∥γ A) , (136)

where D is the Umegaki relative entropy.

Proof. Let Sn,ε be the set of types given in Eq. (125) and
set Sn := Sn,εn with εn := nα−1. Let also {χn}n∈N be the
sequence of pure states that satisfies all the properties out-
lined in Lemma V.1. In particular, each χn is very close to
ψ⊗n (for n sufficiently large) and the energy spread of χn
is given by 4nα

∑m
x=1 ax for some α ∈ (1/2, 1). Recall that

each χn has the form [cf. Eq. (128)]

|χn〉 =
∑

t∈Sn

√
qt|t〉An

, (137)

where {qt} are some coefficients in R+ (that form a prob-
ability distribution over the set of types in Sn). Let kn :=
|Sn| be the number of terms in the superposition above
[hence kn � (n + 1)m], and let {μj }kn

j =1 be the set of all
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energy eigenvalues of the Hamiltonian H⊗n that corre-
sponds to all the energy eigenvectors {|t〉An}t∈Sn . That
is, each j ∈ [kn] corresponds exactly to one type t that
appears in the superposition (137). Although the ener-
gies eigenvalues {μj } depend also on n, we did not add
a subscript n to ease on the notations. Without loss of
generality we also assume that μ1 � · · · � μkn , so that its
energy spread μkn − μ1 � 4nα

∑m
x=1 ax (see Lemma V.1).

We also denote by tmin,n the type in Sn that corresponds to
the smallest energy μ1.

Let Rn be a kn-dimensional quantum (reference) sys-
tem whose Hamiltonian has a nondegenerate spectrum
given by

H Rn =
kn∑

j =1

(μj − μ1)|j 〉〈j |Rn . (138)

Note that the Hamiltonian H Rn has the same eigenvalues
as the energies that appear in χn shifted by μ1. Set λj :=
μj − μ1 to be the j th eigenvalue of H Rn , and observe that

0 = λ1 � λ2 � · · · � λk � 2nα
m∑

x=1

ax. (139)

Let zn ∈ [m]n be a sequence of type tmin,n so that
H⊗n|zn〉An = μ1|zn〉An

. Let also

|φRn〉 :=
k∑

j =1

√
qj |j 〉Rn , (140)

where qj := qt with t being the type that corresponds to j ;
in other words, t is the type satisfying H⊗n|t〉An = μj |t〉An

.
By construction, {Rn}n∈N is a SLAR, and the pure state

φRn ⊗ |zn〉〈zn|An
(141)

has the exact same energy distribution as the pure state

|1〉〈1|Rn ⊗ χAn

n (142)

(recall that |1〉Rn corresponds to the zero energy of system
Rn). Hence, the above two states are equivalent resources
and can be converted from one to the other by reversible
thermal operations (i.e., an energy-preserving unitary). We
now use this resource equivalency to compute the cost of
ψ⊗n in terms of the cost of the quasiclassical state |zn〉〈zn|.

Let ε ∈ (0, 1/2) and let n ∈ N be sufficiently large such
that ψ⊗n is ε close to χn. Therefore, any positive real

number 0 < m ∈ R that satisfies

dRn
CTO

(
(|0〉〈0|X , uX

m) → (χAn

n , γ An
)
)

� ε (143)

also satisfies

dRn
CTO

(
(|0〉〈0|X , uX

m) → (ψ⊗n, γ An
)
)

� 2ε. (144)

In particular, this means that

Cost2ε,Rn
CTO

(
ψ⊗n, γ An

)
� Costε,Rn

CTO

(
χAn

n , γ An
)

. (145)

We therefore focus now on bounding the expression on the
rhs above.

By adding the resource (|1〉〈1|Rn , γ Rn) we can only
increase the cost. Therefore,

Costε,Rn
CTO

(
χAn

n , γ An
)

� Costε,Rn
CTO

(
|1〉〈1|Rn ⊗ χAn

n , γ RnAn
)

= Costε,Rn
CTO

(
φRn ⊗ |zn〉〈zn|An

, γ RnAn
)

� CostεCTO

(
|zn〉〈zn|An

, γ An
)

= Dε
max

(
|zn〉〈zn|An∥∥γ An

)

� Dmax

(
|zn〉〈zn|An∥∥γ An

)
, (146)

where in the first equality we use the resource equivalency
between the athermality states in Eqs. (141) and (142).
In the second inequality we use the fact that the cost of
|zn〉〈zn| without the assistance of Rn cannot be smaller than
the cost of φRn ⊗ |zn〉〈zn| with the assistance of Rn, since
the latter is defined in terms of an infimum over all states
ω ∈ D(Rn) [cf. Eq. (134)]. In the second equality we use
the second relation of Eq. (50) combined with the fact
that in the quasiclassical regime GPO has the same con-
version power as CTO [see Eq. (36)]. Finally, in the last
inequality we use the fact that Dmax is always no smaller
than its smoothed version. Combining this with the previ-
ous equation and with the definition of CostF

(
ψA, γ A

)
, we

conclude that

CostF
(
ψA, γ A) � lim inf

n→∞
1
n

Dmax

(
|zn〉〈zn|An∥∥γ An

)
.

(147)

Now, observe that

Dmax

(
|zn〉〈zn|An

∥∥γ An
)

= − log
〈
zn
∣∣γ An∣∣zn〉

γ An = (γ A)⊗n → = −
m∑

x=1

ntn,min
x log〈x|γ A|x〉,

(148)
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where in the last equality we use the fact that the sequence
zn has a type tmin,n. Combining this with the previous
equation we conclude that

CostF
(
ψA, γ A) � − lim

n→∞

m∑

x=1

tn,min
x log〈x|γ A|x〉

= −
m∑

x=1

px log〈x|γ A|x〉

= D(ψ‖γ ), (149)

where we use the fact that tmin,n ∈ Sn so that tmin,n is
εn close to p. Therefore, since limn→∞ εn = 0 we have
limn→∞ tmin,n = p. This completes the proof. �

VI. DISCUSSION AND OUTLOOK

Quantum athermality can be viewed as a composite
resource consisting of nonuniformity and quantum coher-
ence. While the study of nonuniformity is well understood,
the role coherence plays in quantum thermodynamics is
far less understood. In this paper, we first developed the
resource theory of time-translation asymmetry, which is
the type of quantum coherence appearing in thermody-
namics. Remarkably, we were able to find (Theorem III.2)
a relatively simple criterion, determining if there exists
a time-translation covariant channel between two given
quantum states. We restricted our attention to Hamilto-
nians with a nondegenerate Bohr spectrum as almost all
Hamiltonians have such a spectrum. However, it is worth
noting that some important Hamiltonians, such as the
Hamiltonian of the harmonic oscillator, do not have such
a spectrum. For such Hamiltonians, some of our results
do not apply, although significant progress has been made
recently in this direction [46–48].

We use the resource theory of time-translation asymme-
try to develop the theory of quantum athermality in the
single-shot regime. We consider three types of free oper-
ations: TO, CTO, and GPC. In particular, Theorem IV.1
demonstrated in a rigorous way that two athermality states
ρ, σ ∈ D(A) with the same diagonal elements have the
same nonuniformity content, and can only be different in
their coherence content.

In this respect, it would be interesting to know if the
same result holds also for CTO. One of the long-standing
open problems in the resource-theoretic approach to quan-
tum thermodynamics is whether under CTO, quantum
athermality comprises of just nonuniformity and coher-
ence. That is, since GPC is a larger set of operations than
CTO it could well be that some interconversions between
two athermality resources is possible under GPC opera-
tions but not under CTO. If this is the case, it would mean
that quantum athermality contains another type of resource
that is not captured solely by coherence and nonuniformity.

In the asymptotic regime, however, GPC does not pro-
vide any advantage over CTO. Both sets of operations lead
to the same distillable rate given in terms of the Umegaki
relative entropy (see Theorem V.1). Since coherence is
needed to create athermality states that are not quasiclassi-
cal, the cost rate of a nonquasiclassical state diverges. To
get a meaningful result, we followed the idea of Ref. [10]
to borrow a small amount of coherence, and showed that,
for pure states, with the assistance of an asymptotically
negligible quantum athermality, we can restore into the
fully quantum domain, the reversibility that exists in the
quasiclassical regime.

We defined asymptotically negligible resources as
sequences {Rn}n∈N whose maximal energy grows sublin-
early with n. The intuition behind this definition is that the
energy of n copies of a system A grows linearly with n
so that for sufficiently large n, the energy of An is much
larger than that of Rn. Indeed, such a sublinear athermal-
ity resource cannot increase the distillable athermality (see
Appendix B).

In Theorem V.2 we showed that the cost rate of a pure
athermality resource, under F := CTO + SLAR, is given
by the Umegaki relative entropy. Moreover, in Theorem
V.1 and Appendix B we showed that the distillable rate
under F of any athermality resource is given by the
Umegaki relative entropy. When combining these two
results together we conclude that the rate of converting (by
F) many copies of a mixed state (ρA, γ A) to many copies
of a pure state (ψB, γ B) is given by

RateF

( (
ρA, γ A)→ (

ψB, γ B)
)

= D(ρA‖γ A)

D(ψB‖γ B)
. (150)

For the specific case that also ρA is pure, the above for-
mula indicates that the resource theory of pure athermality
is reversible under F. For the mixed-state case the problem
is still open.

As discussed above, under GPC and CTO, coherence
among energy level is a resource that cannot be measured
by the golden unit (|0〉〈0|X , uX

m) introduced in Ref. [44]
[see Eq. (41)] for athermality under GPO. The reason is
that this golden unit is quasiclassical, and it cannot be con-
verted by GPC (or CTO) to any athermality state that is
not quasiclassical (even if we take m = ∞). For this rea-
son, one has to specify another golden unit that quantifies
the coherence content of quantum athermality. We discuss
now a candidate of such a golden unit.

For a given athermality state (ρ, γ ) we can inter-
pret the state (P(ρ), γ ) as the nonuniformity contained
in (ρ, γ ). If fact, we saw in Theorem IV.3 that for
any ε > 0, DistillεGPC (ρ, γ ) = DistillεGPO (P(ρ), γ ), which
supports this assertion. It is somewhat less clear how
to characterize or isolate the time-translation asymmetry
contained in (ρ, γ ).
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Consider an athermality state (σ , γ ) with the property
that P(σ ) = γ . Such an athermality state has zero nonuni-
formity, and consequently it contains only time-translation
asymmetry. We can therefore call such states purely coher-
ent athermality states. In Corollary IV.2 we saw that the
purely coherent athermality state (ψγ , γ ), given by

|ψγ 〉 :=
m∑

x=1

√
gx|x〉 and γ =

m∑

x=1

gx|x〉〈x|, (151)

can be converted to any other purely athermality state
of the form (ρ, γ ), where ρ ∈ D(A) has the same diag-
onal as γ . Therefore, the athermality state (ψγ , γ ) can
be taken to be the golden unit for the coherence con-
tent of quantum athermality. Note however that unlike
the golden unit (|0〉〈0|, um) used for the nonuniformity
content of athermality, (ψγ , γ ) depends explicitly on the
Hamiltonian.

With this golden unit, we can now ask what is the coher-
ence cost of an athermality state (ρ, γ ). To compute the
asymptotic cost of preparing many copies, say n, of a given
athermality state (ρ, γ ) we can minimize the integers m, k
for which the conversion

(
ψγ , γ

)⊗k ⊗ (|0〉〈0|, u
)⊗m GPC−−→ (

ρ, γ
)⊗n (152)

is possible with a small error that vanishes in the limit n →
∞. We leave the investigation along these lines for future
work.
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APPENDIX A: POSSIBLE GAPS IN THE
ORIGINAL PROOF OF [10]

The proof given in Ref. [10] seems to have several gaps.
Here we point out one such gap, and discuss an implicit
assumption made in Ref. [10].

In Eqs. (35) and (37) of their Supplemental Material,
the authors of Ref. [10] consider two states

ρ⊗n =
∑

k,g

pk|�k,g〉〈�k,g| , ρn =
∑

pk|tk, sg〉〈tk, sg|,

(A1)

where for simplicity, the authors consider rank-2 state

ρ = p|φ1〉〈φ1| + (1 − p)|φ2〉〈φ2|. (A2)

In the first step of their protocol, one first creates the diago-
nal state ρn which has the same spectrum as ρ⊗n. Since ρn
is diagonal, its eigenvectors {|tk, sg〉} depend only on the
Gibbs state γ⊗n. The authors of Ref. [10] do not specify
in Eq. (37) (of their Supplemental Material) the range of k,
but from Eq. (45) in the Supplemental Material it becomes
clear that k ∈ Typρ := [np − √

n, np + √
n] [see the sen-

tence above Eq. (38) in the Supplemental Material of
Ref. [10] for the definition Typρ := [np − √

n, np + √
n]].

The author then moves to claim that “From the result of
the previous section it is not hard to see that this (i.e., the
cost of preparing ρn) can be done at a rate given by the
relative entropy distance of ρ to the Gibbs state, since in
the limit of many copies, the regularized relative entropy
distance is the same.” However, there exists a simple argu-
ment why, in general, the cost of preparing ρn is not equal
to D(ρ‖γ ), where γ is the Gibbs state.

The argument goes as follows. Consider the two states ρ
and σ := VρV†, where V is some unitary matrix. Since the
eigenvalues of both ρ and σ are p and 1 − p , it follows that
the construction of ρn would be exactly the same whether
our initial state is ρ or whether it is σ . This is because ρn
does not depend explicitly on the eigenvectors of ρ (only
the eigenvalues). However, clearly, there exists a unitary V
such that

D(VρV∗‖γ ) �= D(ρ‖γ ). (A3)

Since ρn as defined above would be the same for both ρ and
σ := VρV∗ the cost rate of preparing ρn cannot be equal to
D(ρ‖γ ).

Another issue with the proof in Ref. [10] is that
the matrix in Eq. (31) of the Supplemental Material of
Ref. [10] is not a unitary matrix as claimed. Indeed, by
direct calculation

Uinv(Uinv)† =
∑

i,i′,j
uij ūi′j |Ei〉〈Ei′ |

× ⊗|h − Ei + Ej 〉〈h − Ei′ + Ej |
�= I . (A4)

Perhaps the intention of the authors of Ref. [10] is to
include a sum over h in the definition of Uinv, and allowing
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h to go from −∞ to +∞ so that

Uinv(Uinv)†

=
∑

i,i′,j
uij ūi′j |Ei〉〈Ei′ | ⊗

∞∑

h=−∞
|h − Ei + Ej 〉

× 〈h − Ei′ + Ej |

=
∑

i,i′,j
uij ūi′j |Ei〉〈Ei′ | ⊗

∞∑

h=−∞
|h − Ei〉〈h − Ei′ |

=
∑

i,i′
δi,i′ |Ei〉〈Ei′ | ⊗

∞∑

h=−∞
|h − Ei〉〈h − Ei′ |

= I . (A5)

Note that one has to allow for the Hamiltonian of the ref-
erence system to have an unbounded negative spectrum.
Such Hamiltonians are known to lead to instabilities of
the physical system, and occur, for example, in relation to
spin-statistics theorem. However, we point out, that in the
present paper the author assumes only ancillary systems of
finite dimensions and with Hamiltonians whose spectrum
is non-negative (i.e., bounded from below).

APPENDIX B: DISTILLATION UNDER GPC+SLAR

Lemma B.1: Let (ρ, γ ) be an athermality state, and let
F := GPC + SLAR. Then,

DistillF (ρ, γ ) = D (ρ‖γ ) . (B1)

Proof. Let {(ωRn , γ Rn)}n∈N an an SLAR and observe that
from (112) it follows that for any n ∈ N and any ε ∈ (0, 1)

DistillεGPC

(
ρ⊗n ⊗ ωRn , γ An ⊗ γ Rn

)

� Dε
min

(
ρ⊗n ⊗ ωRn

∥∥γ An ⊗ γ Rn
)

(54) → � Dε
min

(
ρ⊗n
∥∥γ An)+ Dmax

(
ωRn
∥∥γ Rn

)
, (B2)

Now, it is well known (see, e.g., Ref. [43]) that all quantum
relative entropies, in particular, Dmax, satisfy

Dmax(ω
Rn
∥∥γ Rn) � log

∥∥∥
(
γ Rn
)−1
∥
∥∥

∞

= log
(

Tr
[
e−βHRn

]
exp

(
β
∥∥H Rn

∥∥
∞
))

� β
∥∥H Rn

∥∥
∞ + log Tr

[
e−βHRn

]

� βcnα + log |Rn|,

where the last line follows from the fact that (ωRn , γ Rn)

is SLAR so there exists c > 0 independent of n, and α ∈

[0, 1) such that the maximal energy of system Rn does not
exceed cnα . Moreover, since |Rn| is polynomial in n we get
that for sufficiently large n, log |Rn| � βcnα . Taking the
supremum over all possible SLAR systems Rn we get that
for any ε > 0

lim
n→∞

1
n

DistillεF
(
ρ⊗n, γ An

)

= sup
{Rn}n∈N

lim
n→∞

1
n

DistillεGPC

(
ρ⊗n ⊗ ωRn , γ AnRn

)

� sup
α∈[0,1),c∈R+

lim
n→∞

1
n

(
Dε

min

(
ρ⊗n
∥∥γ An)+ 2βcnα

)

= D(ρA‖γ A). (B3)

This completes the proof. �
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