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Arrays of transmons have proven to be a viable medium for quantum information science and quan-
tum simulations. Despite their widespread popularity as qubit arrays, there remains yet untapped potential
beyond the two-level approximation or, equivalently, the hard-core boson model. With the higher excited
levels included, coupled transmons naturally realize the attractive Bose-Hubbard model. The dynamics
of the full model has been difficult to study due to the unfavorable scaling of the dimensionality of the
Hilbert space with the system size. In this work, we present a framework for describing the effective
unitary dynamics of highly excited states of coupled transmons based on high-order degenerate pertur-
bation theory. This allows us to describe various collective phenomena—such as bosons stacked onto a
single site behaving as a single particle, edge localization, and effective longer-range interactions—in a
unified, compact, and accurate manner. A further benefit of our approach is that boson stacks can be nat-
urally interpreted as interacting quasiparticles, enabling transmon arrays to be used to explore and study
additional lattice models besides the standard Bose-Hubbard one. While our examples deal with one-
dimensional chains of transmons for the sake of clarity, the theory can be readily applied to more general
geometries.
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I. INTRODUCTION

Superconducting quantum devices have arisen as a
practical platform for creating and studying synthetic
quantum matter [1] through, for example, the realiza-
tions of a Mott insulator [2] and many-body localiza-
tion [3–7], as well as for probing the propagation of
single- and many-body quantum information [8–11]. Their
remarkable progress has been made possible by universal
single-site control, high-accuracy measurements, scalabil-
ity, and connectivity, all combined with low dissipation
and decoherence rates [12,13]. There does, however, still
remain potential, which is largely unutilized. Namely,
the Hilbert space beyond the two-level approximation,
ignored when the devices are operated as qubits. The total
Hilbert-space dimension is a critical resource in quan-
tum computing and quantum simulations [14]. To increase
it, the first strategy is to simply have more precious
quantum hardware [15–19]. The second strategy—the one
we are interested in here—is to utilize larger parts of
the Hilbert spaces of the existing physical equipment.
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The most popular superconducting quantum device is
the transmon [20,21], an anharmonic oscillator whose two
lowest states are typically operated as a qubit. In an array,
the hopping rate J between the transmons is weak com-
pared to the anharmonicity U of an individual transmon.
As a consequence, the quantum dynamics of the sys-
tem can be predicted with relatively good accuracy using
the hard-core boson model [10,22], provided the initial
state has no higher-level occupancies. In other words, the
hard-core boson model is the many-body version of the
two-level truncation. Notably, most of the experimental
quantum dynamics studies have limited themselves to this
case where no transmon is initially excited above the qubit
subspace [3,6,8,10,11,16].

It has been experimentally demonstrated that the higher
excited states of a transmon are almost as well con-
trollable and measurable as the ones in the qubit sub-
space [23–28]. With the higher levels included, coupled
transmons naturally realize the attractive Bose-Hubbard
model [3,29–31]. As coupled anharmonic oscillators, sets
of transmons obey bosonic many-body statistics, yield-
ing vastly larger Hilbert spaces compared to those of the
qubit arrays. The dynamics of bosonic models can there-
fore become computationally expensive to study when the
system sizes are increased even moderately [32] compared
to the minimal examples presented here. On the other
hand, going beyond the hard-core bosons would provide
novel experimental and theoretical possibilities to study
richer quantum dynamics [33]. In order to unlock these
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prospects, we present here a systematic framework for
describing effective unitary dynamics of highly excited
states of coupled transmons based on high-order degen-
erate perturbation theory. Our main focus here is on uni-
tary dynamics, ignoring any nonunitary effects caused, for
example, by dissipation and dephasing processes in trans-
mons. To assess the feasibility of this assumption, a brief
comparison between the time scales of the examined uni-
tary dynamics and the realistic transmon qubit dissipation
and dephasing times T1 and T2 will be given in the final
section.

Generally speaking, the Bose-Hubbard model is a well-
studied system [34]. Much of the analysis, however, per-
tains to optical lattices, in contrast to the superconducting-
circuit perspective taken here. Particularly the simplest
case of a pair of bosons has garnered a wealth of the-
oretical [35–39] and experimental [40–42] attention. We
concentrate here on exploring the collective dynamics of
stacks of multiple bosons, which can be identified as quasi-
particles, and their interactions both with each other and
with single bosons. Some many-body effects, such as edge
localization [43], correlated hopping [44], and effective
longer-range interactions [45,46], have also been previ-
ously discussed. All of these effects and more, we argue,
can be described accurately, compactly, and in a unified
manner using perturbation theory appropriate for exper-
imentally relevant parameter values of transmon arrays.
Furthermore, we go beyond the earlier studies by focusing
on multiple bosons at single lattice sites, corresponding to
the dynamics of highly excited transmon states within the
arrays. Note that the many-body energy-level spectrum of
the repulsive Bose-Hubbard model is a mirror image of
that of the attractive one, and in both cases the most intense
focus has been on the properties of the ground states and
the low-lying excited states [31,34]. In contrast, we resolve
here dynamics and structure of states also in the midenergy
spectrum.

The paper is organized as follows. Section II consid-
ers the transmon array, the attractive Bose-Hubbard model,
and qualitative characteristics thereof within the parameter
regime relevant to superconducting quantum devices. In
Sec. III, we introduce the formalism of high-order degen-
erate perturbation theory, which is then applied in Secs.
IV–VI to derive effective Hamiltonians and unitary quan-
tum dynamics for higher excited states, that is, for multiple
bosons, in one-dimensional (1D) transmon arrays. Our
focus is on collective effects, such as bosons stacked onto
a single site behaving as a single particle, edge localiza-
tion, and effective longer-range interactions. In Sec. VII,
we discuss in more detail the effects of realistic disorder in
transmon arrays and the generalization of the phenomena
to two-dimensional (2D) arrays before concluding in Sec.
VIII. The main text concentrates on the physical concepts
and phenomena, whereas details and derivations are given
in Appendices A–E.

(a) (b)

(c)

FIG. 1. (a) Energy-level spectrum of a transmon chain of
length L = 6 containing a total of N = 4 bosons, as described by
the attractive Bose-Hubbard model (1). In this work, we are inter-
ested in the many-body dynamics beyond the hard-core bosons,
meaning that we consider also the states below the topmost
energy band. (b) Schematic representation of an effective hop
of a stack of bosons described by the operator K̂4 [see Eq. (7)]
within the lowest anharmonicity manifold, together with the vir-
tual hops through the higher manifolds involved in the process.
(c) Schematic of a chain of L capacitively coupled transmons.

II. TRANSMON ARRAYS AND THE ATTRACTIVE
BOSE-HUBBARD MODEL

An array of superconducting transmon devices
[Fig. 1(c)] can be described using the disordered Bose-
Hubbard model with attractive interactions [3,29–32],
defined by the Hamiltonian

Ĥ = ĤJ + ĤU + Ĥω

=
∑

〈�1,�2〉
�J�1�2

â†
�1

â�2
−

∑

�

�U�

2
n̂�(n̂� − 1) +

∑

�

�ω�n̂�

(1)

when written in the basis of local bosonic annihilation
â�, creation â†

�, and occupation number n̂� = â†
�â� opera-

tors. Here, ĤJ allows the excitations to move from one
lattice site to a neighboring one, ĤU takes into account
local attractive interactions between the excitations, and
Ĥω represents the potential energy landscape provided
to the excitations by the transmon array. Typically [16,
20,21], the on-site energy ω�/2π ∼ 5 GHz, the interac-
tion strength U�/2π ∼ 200 MHz, and the hopping rate
J�1�2/2π ∼ 10 MHz. The parameters of the model there-
fore satisfy the hierarchy J�1�2 � U� � ω�. Finally, � is
the reduced Planck constant.
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For the majority of this paper, we concern ourselves
with a chain of length L of identical transmons with con-
stant nearest-neighbor hopping rate, that is, we set ω� = ω,
U� = U, and J�1�2 = J . In reality, small unintentional vari-
ations in the manufacturing process are inevitable, leading
to some disorder in all the parameters. Since the on-site
energy ω dominates the interaction U and the hopping
J , a priori the most significant disorder term is Ĥδω/� =∑

� δω�n̂�. Here the distribution of the deviations δω� =
ω� − ω can be approximated as uniform [32], with the
half-width Dω measuring the disorder strength. With flux
tuning, however, the on-site energies can be adjusted, and
values as low as Dω/2π ∼ 100 kHz are currently achiev-
able [2], leading to Dω � J . It is therefore more likely
that disorder in U, which is essentially impossible to con-
trol after the device is made, is the actual limiting factor.
The corresponding term in the Hamiltonian is given by
ĤδU/� = −∑

� δU�n̂�(n̂� − 1)/2, and at least in current
devices the disorder strength characterizing the deviations
δU� = U� − U is usually no less than DU/2π ∼ 1 MHz.
Nevertheless, with ad hoc tuning of the on-site energies ω�,
the effective disorder in the interaction strength U� can—at
least in some cases—be made smaller. We discuss this
briefly in Sec. VII, after the analysis of the ideal system.

The model (1) conserves the total number of bosons
N̂ = ∑

� n̂�, and thus, in the absence of dissipation, we can
separately study the eigenspaces N̂ = N . Since Ĥω ∝ N̂ , it
simply shifts all the energies by the same amount without
affecting the states, and can therefore be omitted.

Under the assumption J � U, the total anharmonicity
Â = −∑

� n̂�(n̂� − 1)/2 is approximately conserved. This
key observation helps us simplify the analysis consider-
ably. To see why, let us consider the energy spectrum
of the system, depicted in Fig. 1(a). If the hopping fre-
quency J vanished altogether, we would have Ĥ = �UÂ,
and the spectrum would consist of a small number of
highly degenerate lines determined by the possible values
A of the anharmonicity operator Â. Each such anharmonic-
ity manifold is spanned by the Fock states |n1, n2, . . . , nL〉,
with n� bosons at site �, satisfying the conditions

∑
� n� =

N and
∑

� n�(n� − 1) = −2A. The lowest anharmonicity
A = −N (N − 1)/2, and thus also the lowest energy, is
achieved if all the bosons sit at a single site. We denote
these states with the shorthand notation |N�〉, omitting all
the zero occupations. Second lowest in anharmonicity are
the states |(N − 1)�, 1m〉 where all but one of the bosons
are located at the same site. The greatest anharmonicity,
A = 0, belongs to the states where no site is occupied by
more than one boson.

Turning on 0 < J � U, the main effect of the hopping
ĤJ is to couple together the states within each anhar-
monicity manifold. This lifts the degeneracies, leading
to a spectrum with discrete, well-separated bands around
the energies �UA, as shown in Fig. 1(a). To leading
order, the states within each such band still belong to

the corresponding anharmonicity manifold, while differ-
ent bands remain uncoupled. Importantly, unlike in the
absence of hopping when a state with definite A does not
evolve in time apart from a trivial phase factor, there can
now be nontrivial dynamics within each anharmonicity
manifold. Since ĤJ can move only one boson to an adja-
cent site, it is not necessarily able to couple states with
equal A directly. For example, to couple the states |N�〉
within the the lowest anharmonicity manifold requires at
least N one-boson hops. This means that the coupling has
to be indirect, mediated by the states in the other anhar-
monicity manifolds as depicted by the dashed arrows in
Fig. 1(b). Each jump needed decreases the magnitude of
the coupling strength by a factor of J/U. The nearest-
neighbor coupling strength between the states |N�〉 is there-
fore approximately U(J/U)N . The higher-order coupling,
in turn, leads to dynamics, which is slow even compared
to J , and hence it is easy to overlook curious phenomena
if not careful.

When considering dynamics, the relevant anharmonicity
manifolds are picked by the initial state. A lot of attention
has been paid to the highest manifold with no multibo-
son occupancies at any site. This situation can be effec-
tively described with the so-called hard-core boson model
[10,22]. But by choosing the initial state appropriately, one
can equally well study any of the other manifolds, each
with a different effective model.

In this paper, we derive general expressions for the effec-
tive Hamiltonians describing the dynamics induced by the
weak hopping within each anharmonicity manifold. These
are especially convenient when combined with numeri-
cal analysis since the reduced Hilbert-space size allows
simulation of bigger systems when compared to the full
Hamiltonian. In addition, a lot of intuition regarding the
qualitative physics of the system can be gained by examin-
ing the effective models analytically. We apply the effective
theory to study the lower end of the spectrum, where one
can observe various interesting many-body effects. For the
sake of clarity, we focus on dynamics starting from initial
states where only one or two sites are occupied by some
number of excitations. It should be noted, however, that
the same methods, and indeed some of the results, can be
directly applied to cases with three or more occupied sites.

III. HIGH-ORDER DEGENERATE
PERTURBATION THEORY

Since the Hamiltonian Ĥ of Eq. (1) is independent of
time, any initial state |�0〉 is propagated by the exponen-
tial e−iĤ t/�. Denoting the eigenvalues and eigenstates of Ĥ
by E and |E〉, respectively, we can write the state of the
system at time t as |�(t)〉 = ∑

E e−iEt/� 〈E|�0〉 |E〉. This
is an exact expression but requires solving the full eigen-
value problem. To proceed, we make use of the assumption
J � U and expand both the energies and the states in
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powers of J/U as

E =
∞∑

n=0

E(n), |E〉 =
∞∑

n=0

|E(n)〉 , (2)

respectively, with E(n), |E(n)〉 ∼ (J/U)n. Keeping only the
leading-order term in amplitude, we obtain

|�(t)〉 = e−iĤefft/� |�0〉 + O (J/U) , (3)

where the effective Hamiltonian

Ĥeff =
∑

E

E |E(0)〉 〈E(0)| (4)

generates the dominant part of the dynamics. Note that at
this point, we still retain the full energy inside Ĥeff. This
is crucial since it affects the phase of the state rather than
the magnitude. Depending on the initial state, the system
may possess interesting physics at slower time scales, and
thus truncating the energies too early completely wipes
out these phenomena from the analysis. The higher-order
states, on the other hand, contribute only to |�(t)〉 with
terms that are small in magnitude, and can thus be safely
omitted.

The task we face, then, is to calculate the zeroth-order
eigenstates of the Hamiltonian (1) together with the cor-
responding energies to a sufficiently high order so as not
to miss anything important while simultaneously keeping
in mind experimental limitations. As we see, these two
problems are closely intertwined.

The unperturbed Hamiltonian is given by the interac-
tion term ĤU ∝ Â, and so we know that each state |E(0)〉
has a definite anharmonicity, allowing us to concentrate on
one anharmonicity manifold at a time. Note that only the
states with a component along the initial state are impor-
tant. Starting from a Fock state, for example, requires just
a single anharmonicity manifold to be taken into account.

To proceed, we employ the standard degenerate pertur-
bation theory [31,47], see Appendix A for details. To this
end, let A be the anharmonicity manifold we are interested
in and let Ac be its complement. Furthermore, we define
the projectors P̂A and Q̂A = Î − P̂A to the spaces A and
Ac, respectively, with Î denoting the identity operator. Pro-
jecting the time-independent Schrödinger equation into A
then leads to the equation

ĤA(E) |EA〉 = E |EA〉 , (5)

with |EA〉 = P̂A |E〉. The projected Hamiltonian ĤA(E)

can be written as

ĤA(E) = �UA +
∞∑

m=1

K̂m(E), (6)

where A is the anharmonicity of A and

K̂m(E) = P̂AĤJ [Ŵ(E)ĤJ ]m−1P̂A, (7)

Ŵ(E) = [Q̂A(E − ĤU)Q̂A]−1. (8)

The operator K̂m can be interpreted as a weighted mth-
order hopping Hamiltonian since operating with K̂m on a
Fock state from A produces a linear combination of all the
possible Fock states within A, which are exactly m single-
boson hops away from the original state. Each m-hop
sequence or trajectory connecting two states contributes to
the corresponding weight in the linear combination. More
weight is given to trajectories for which the intermediate
states are close in energy to the actual value E (measured
using the unperturbed Hamiltonian). Moreover, and per-
haps more importantly, all the intermediate states on a
trajectory need to lie in Ac due to the presence of the pro-
jectors Q̂A in Eq. (8), otherwise the weight is zero. This
allows for a nice graphical way to understand the most
important terms in Eq. (5) via virtual hopping processes,
see Fig. 1(b). A similar diagrammatic approach has been
used to calculate various ground-state expectation values
in the repulsive Bose-Hubbard model [48–56] and other
lattice models [48,51,57].

Equation (5) is still exact. It can be used to calculate
the full energies E of such eigenstates that belong to A
in the limit of vanishing J , and at the same time, it gives
the projections of the states inside A. If necessary, one can
then use these to obtain also the components of the states in
Ac. Here we are interested only in the zeroth-order states,
which always lie in A, and thus Eq. (5) is sufficient. Note
that the projected Hamiltonian depends on the energy, and
thus the problem is nonlinear. The dimensionality of the
Hilbert space is, however, reduced from the original value
of

(N+L−1
N

)
to the dimensionality of A.

If we now let Ĥ (n)
A ∼ (J/U)n denote the part of the pro-

jected Hamiltonian that is obtained by expanding ĤA(E) in
energy and keeping all the terms, which are of nth order in
J/U, Eq. (5) implies that the zeroth-order eigenstates can
be solved iteratively from

Ĥ (n)
A |E(0)〉 = E(n) |E(0)〉 , (9)

where n = 1, 2, . . . denotes the order. First, we solve the
eigenvalue problem of Ĥ (1)

A . If there are eigenvalues, which
are nondegenerate, the corresponding states are proper
eigenstates and they need no further treatment. If there are
still degeneracies left, we proceed to second order. There,
we can solve the eigenvalues and eigenstates of Ĥ (2)

A sepa-
rately in all the different degenerate eigenspaces of Ĥ (1)

A ,
again turning a single eigenvalue problem into multiple
smaller ones. This procedure is then continued until all the
degeneracy is lifted or we reach such a high order that the
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time scale required to observe the resulting dynamics is too
slow to be relevant. Note that the process yields the energy
of each state up to the order where the degeneracy with the
rest of the states is broken. These are the natural cut-off
points in the sense that moving to higher orders reveals no
fundamentally new physics in the system.

In the following, we consider a few examples both in
order to demonstrate the power of the effective Hamilto-
nian method presented here and to showcase some interest-
ing phenomena found in transmon arrays beyond the qubit
approximation.

IV. COLLECTIVE MOTION OF A BOSON STACK

Let us first consider dynamics starting from an initial
state where all the N bosons in the system are stacked
onto the same site �0, that is, |�0〉 = |N�0〉. In this case, the
only relevant anharmonicity manifold A is the lowest one,
spanned by the states |N�〉 with � = 1, . . . , L. Note that the
dimensionality of A is independent of N and grows lin-
early in L, as opposed to the exponential growth of the full
Hilbert space. The analysis here is closely related to the
calculation of the ground state of the model within the W
phase [31].

For the sake of convenience, let us define new cre-
ation and annihilation operators α̂

†
� and α̂� that create and

destroy the whole stack at site �, respectively. That is,
α̂

†
� |0〉 = |N�〉, where |0〉 denotes the vacuum state with no

excitations. The corresponding number operator, counting
the number of N -particle stacks instead of the number of
bosons, is defined as ν̂� = α̂

†
� α̂�.

Following then the procedure set out in the previous
section—see Appendix B for details—we find that the
effective Hamiltonian consists of only two relevant parts.
First of all, the stack is able to move around just like
an individual boson due to the presence of the nearest-
neighbor hopping Hamiltonian

ĤJ̃ /� = J̃
L−1∑

�=1

(α̂
†
�+1α̂� + α̂

†
� α̂�+1), (10)

where the effective hopping frequency is given by

J̃ = (−1)N−1 N
(N − 1)!

(
J
U

)N−1

J . (11)

We can therefore think of the stack as a single quasipar-
ticle whose effective mass increases exponentially as a
function of N . Unlike the bare bosons, however, the quasi-
particle sees the transmon chain as inhomogeneous due to
boundary effects. More precisely, the effective Hamiltonian

contains the on-site term

Ĥω̃/� =
L∑

�=1

ω̃|�−�b|ν̂�, (12)

where |� − �b| denotes the shortest distance from site � to
the boundary (for example, |1 − �b| = |L − �b| = 1) and,
to leading order, the effective on-site frequencies ω̃� satisfy

ω̃� − ω̃�+1 = N
(N − 1)2�−1

(
J
U

)2�−1

J . (13)

Note that the boundary effects and the effective hopping
behave differently as a function of N .

Using the effective Hamiltonian

Ĥeff = ĤJ̃ + Ĥω̃, (14)

it is now easy to solve qualitatively the dynamics of
the system in the lowest anharmonicity manifold spanned
by the states |N�〉. The quasiparticle can move within a
region where it has enough kinetic energy to overcome
the local potential energy difference between the neighbor-
ing sites. Thus, if the initial site �0 is within the distance
�N/2	 − 1 from a boundary, it is frozen in place. Other-
wise, it moves among the L − 2(�N/2	 − 1) middlemost
sites. This motion is practically free since the deviations
in ω̃� decrease exponentially when moving away from
the boundary. Numerical simulations using the full Hamil-
tonian (1) confirm this behavior, see Fig. 2. By setting
N = 2, we recover the well-known doublon dynamics
[35–42]. Note that these do not possess bound states since
the depth of the potential well at the end of the chain is of
the same order as the effective hopping frequency. Still, the
edges affect the motion to some degree. Edge localization,
too, is a familiar phenomenon [43]. We could not, how-
ever, find any explicit mention of larger stacks being able
to localize also further away from the edges. The dynam-
ics for N = 3 has been discussed, for example, in Refs.
[44,46].

It is perhaps worth mentioning that in principle, there is
also a term in the effective Hamiltonian, which can move
the quasiparticle trapped at site �0 near one end of the chain
to the corresponding site L − �0 + 1 near the other end,
but the strength of this coupling is of order N |L − 2�0 +
1|. Even at its fastest, such a phenomenon would require
time intervals of approximately 1 s to be observable, and
is therefore too slow to be of practical importance, at least
for now.

The origins of both ĤJ̃ and Ĥω̃ can be understood
intuitively by considering the virtual hopping processes
discussed in the context of Eq. (6), see also Fig. 1(b).
The simplest trajectories connecting two states in A are
the ones where we simply transfer all the N bosons at
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(a)

(b)

(c)

(d)

FIG. 2. Edge localization and slow collective hopping of a
boson stack. (a),(c) The local occupations 〈n̂�〉 as a function of
the site index � and time t. (b),(d) The occupation of the site
� = 1 (b) and the site � = 2 (d) as a function of time t, simu-
lated using the full Hamiltonian of Eq. (1) (solid yellow) and
the effective Hamiltonian of Eq. (14) (dotted black). The initial
state is |31〉 = |3000〉 in (a)–(b) and |32〉 = |0300〉 in (c)–(d). The
simulation parameters in this and all the following figures are
J/2π = 10 MHz and U/2π = 250 MHz. Note the two time axes
in (a),(c), one in SI units (left axis) and the other in the natural
units 2π/J̃ of the effective hopping rate (right axis).

some site, one by one, to an adjacent site. These give
rise to ĤJ̃ . There are of course more complicated trajec-
tories establishing similar nearest-neighbor couplings, but
these require at least N + 2 single-boson hops, leading to
much weaker—and consequently insignificant—coupling
strengths. Likewise, the longer-range hopping processes
directly connecting sites farther apart are too weak to have
any practical effect.

In addition to figuring out how different states are con-
nected to one another, we also need to analyze trajectories
connecting each state to itself, leading to Ĥω̃. If instead
of an open chain we had a closed ring, then every site
would be on an identical footing. Whatever the actual self-
coupling strengths were, they would always be equal, and
thus the on-site term would simply reduce to some irrele-
vant constant. In a chain, however, this is not the case since
the boundaries break the symmetry of the system by ren-
dering those hopping processes where a boson leaves the
chain impossible. To see this more concretely, let us con-
sider the second-order corrections to the diagonal energies.
These stem from all such trajectories where we first take
one boson from the stack to an adjacent site and then back.
In the bulk of the chain, each site has two neighbors, left
and right. The end sites, on the other hand, have only one
neighbor each. This difference in the number of available

adjacent lattice sites leads to higher energy at the edges.
More generally, consider the states |N�〉 and |N�+1〉 at order
2�, with � < �L/2	. There is now a single trajectory distin-
guishing these two, impossible for the former state due to
the presence of the left edge: the one where a lone boson
first travels � sites to the left and then comes back. All the
other ones are identical. This leads to the energy at site �

being higher than at site � + 1. Needless to say, the same
conclusions can also be drawn for adjacent sites near the
other end the chain.

V. INTERPLAY BETWEEN A BOSON STACK AND
A SINGLE BOSON

We saw above that a stack of N bosons can be treated as
a single massive quasiparticle. How do these quasiparticles
interact with individual bosons? To answer this, let us con-
sider the initial state |�0〉 = |N�N0 , 1�10〉. The anharmonic-
ity manifold A is now spanned by the states |N�N , 1�1〉,
where �N , �1 = 1, . . . , L and �1 
= �N . This means that it
is indeed well founded to refer to the quasiparticle and the
boson throughout the time evolution.

The effective Hamiltonian can be split into two parts.
To start with, there are the single-particle Hamiltonians
ĤJ and Ĥω̃ + ĤJ̃ generating the free motion of the boson
and the quasiparticle, respectively. In addition, there are
interactions between the particles strongly modifying the
dynamics. Due to the very structure of A, the boson and the
quasiparticle cannot occupy a same site, and so there is a
hard-core repulsion between the two. This can be modeled
with the effective on-site interaction

ĤŨ/� = Ũ
2

L∑

�=1

n̂�ν̂�, (15)

where Ũ → ∞. Similar to the always-on ZZ interaction
of the qubits [58,59], there is also a nearest-neighbor
interaction

ĤV/� = V
L−1∑

�=1

(n̂�+1ν̂� + ν̂�+1n̂�) (16)

between the particles, with the interaction strength

V = −
(

2N
N − 2

− N + 1
N

− N
N − 1

) (
J
U

)
J . (17)

In the case of N = 2, we need to drop out the term with the
vanishing denominator. Finally, we have two interesting
coupling terms. The tunneling Hamiltonian

ĤT/� = T
L−1∑

�=2

(â†
�+1ν̂�â�−1 + â†

�−1ν̂�â�+1) (18)
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makes it possible for the boson to hop over the quasiparti-
cle. The tunneling rate is given by

T = − 1
N (N − 1)

(
J
U

)
J . (19)

The exchange Hamiltonian

Ĥ	/� = 	

L−1∑

�=1

(â†
�+1α̂

†
� â�α̂�+1 + â†

�α̂
†
�+1â�+1α̂�), (20)

on the other hand, allows neighboring particles to swap
sites. Here, the exchange rate is

	 = (−1)N N (N − 1)

(N − 2)!

(
J
U

)N−2

J . (21)

There is one special case, namely �N0 = L/2 + 1 and
N > 3, when the effective Hamiltonian contains additional
terms, but even then the qualitative physics can be under-
stood well using the terms above as we see below. More
details can be found in Appendix C.

The dynamics of the system now depends quite strongly
on the initial state. Let us first assume that N > 3. If the
stack is initially at any site �N0 
= L/2 + 1, the dynamics
includes two time scales. On the time scale of 2π/J , the
boson travels freely between the boundary and the quasi-
particle, reflecting elastically on impact. On the time scale
of 2π/T, the boson can additionally tunnel from one side
of the quasiparticle to the other. The actual strength of
this tunneling is determined not only by T but also by
the initial state, for the energy levels of the boson need to
match at least partially on both sides of the effective dou-
ble well. In the symmetric case of �N0 = (L + 1)/2, the
levels perfectly coincide and thus the boson can change
sides completely. In every other case, mixing of the states
between the two wells is much weaker and can, to a decent
approximation, be neglected altogether. Figure 3(a) shows
that the analytically predicted tunneling rate matches with
the numerical simulations. The exchange plays no role
here. Note that the motion of the quasiparticle is com-
pletely blocked. This can be understood to a large extent
with a simple physical argument. Initially, the quasiparti-
cle is delocalized and symmetric in the reciprocal space
[31], meaning that it essentially has zero momentum. In
order for the momentum to be conserved, the quasiparticle
needs to be able to move in both directions simultane-
ously. Due to one of its neighboring sites being effectively
always occupied by the boson on the time scale of 2π/J̃ ,
the quasiparticle has to stay still.

The sole exception to the above occurs when �N0 =
L/2 + 1. In this case, the second-order tunneling process is
completely prevented by energy conservation. The boson
can still swap sides, but this needs to be now accompa-
nied by a simultaneous movement of the quasiparticle,

4(a)

(b) (d)

(c)

FIG. 3. Single-boson tunneling and boson-quasiparticle
exchange. (a),(c) The local occupations 〈n̂�〉 as a function of the
site index � and time t. (b),(d) The occupation of the site � = 1
as a function of time t, simulated using the full Hamiltonian of
Eq. (1) (solid yellow) and the effective Hamiltonian of either
Eq. (18) (b) or Eq. (20) (d) (dotted black). The initial state is
|140〉 in (a)–(b) and |41〉 in (c)–(d). Note the different time scales
involved in the two processes, one determined by the tunneling
rate T and the other by the exchange rate 	.

brought about by the exchange term. There are again two
time scales involved in the dynamics. As above, the boson
bounces back and forth between the quasiparticle and an
edge on the time scale of 2π/J . In addition, on the time
scale of 2π/	, the quasiparticle moves between the two
sites L/2 + 1 and L/2, exchanging sides with the boson.
This is confirmed by numerical simulations, see Fig. 3(b).

If N = 3, both tunneling and exchange—being of the
same order—contribute to the dynamics, making the sim-
ple qualitative picture more fuzzy. If N = 2, the exchange
process is of first order and thus occurs at the same time
scale as the motion of the boson. In this case, the quasi-
particle can also move longer distances due to the second-
order effective hopping ĤJ̃ , leading again to more involved
dynamics.

All the terms above emerge naturally when we think in
terms of the virtual hopping processes. The noninteracting
terms ĤJ and Ĥω̃ + ĤJ̃ are clear from the earlier discus-
sion. As already mentioned, ĤŨ stems from the structure
of A, for there are no states where all the bosons sit at
the same site. The off-site interaction ĤV has similar ori-
gins as the boundary term Ĥω̃ (see also the discussion in
Sec. VI): if the particles are at adjacent sites, there are two
second-order trajectories coupling the state to itself having
an intermediate state where all the N + 1 bosons are at the
same site, unlike in the case of more distant particles.
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To couple states where the boson is on the opposite sides
of the quasiparticle, we need at least two virtual hops. The
leading-order term, coupling together the states |N�, 1�−1〉
and |N�, 1�+1〉, consists of two trajectories. In one of these,
we take the boson at site � − 1, move it to site � with all
the other bosons, and then move one of these to site � + 1.
In the other, we move one boson from site � to site � + 1,
and then move the single boson from site � − 1 to site �.
These are the only possibilities with two hops, and lead to
the tunneling Hamiltonian ĤT. Finally, a completely new
coupling, bringing about the exchange term Ĥ	, can be
produced using a trajectory of length N − 1. Starting from
the state |N�, 1�±1〉, we move all but one of the bosons from
site � to site � ± 1, establishing a coupling with the state
|N�±1, 1�〉.

VI. INTERACTING BOSON STACKS

As a final example, let us consider the dynamics of
two quasiparticles of possibly different size in order to see
how they interact. To this end, we take the initial state
to be of the form |�0〉 = |N�N0 , M�M0〉, with 2 ≤ M ≤ N .
The anharmonicity manifold A contains trivially the states
|N�N , M�M 〉, where �N , �M = 1, . . . , L and �M 
= �N . Unlike
in the previous examples, however, it is now possible that
there are also other states, which share the same anhar-
monicity. This is interesting since it means that collisions
between quasiparticles may, at least in principle, actually
break them and produce either bare bosons or different
kinds of quasiparticles. Having said that, in most cases,
conservation of energy prevents this process completely.
And even in the rare occasions mixing between the non-
trivial and trivial states does happen, it is usually quite
weak a phenomenon. For more details, see Appendix D.
In the following discussion, we ignore the nontrivial states
altogether.

Like above, the effective Hamiltonian describes inter-
acting two-body physics. In the case of equal-size stacks,
the noninteracting part is simply given by ĤJ̃ + Ĥω̃, cf.
Eq. (14). If M < N , we need separate single-quasiparticle
Hamiltonians for both of the quasiparticles because the
parameters depend on the size. The free motion is again
heavily altered by interactions.

Assuming first that M = N , the quasiparticles interact
via the term [cf. Eq. (16)]

ĤV/� =
L∑

�1=1

∑

�2 
=�1

V|�2−�1|ν̂�1 ν̂�2 , (22)

where the interaction strength is given by

V� = 2N 3

(N − 1)2�−1

(
1 − � − 1

N
2N − 1
2N − 3

) (
J
U

)2�−1

J .

(23)

(b)

(a)

(d)

(c)

FIG. 4. Long-range quasiparticle-quasiparticle repulsion and
exchange of distinguishable quasiparticles within a bound pair.
(a),(c) The local occupations 〈n̂�〉 as a function of the site index
� and time t. (b),(d) The occupation of the site � = 3 as a func-
tion of time t, simulated using the full Hamiltonian of Eq. (1)
(solid yellow) and the effective Hamiltonian formed by adding
the interaction term of either Eq. (22) (b) or Eq. (24) (d) to the
effective single-quasiparticle Hamiltonian (14) (dotted black).
The initial state is |31, 33〉 in (a)–(b) and |41, 33〉 in (c)–(d).

Unlike the attractive interaction ĤU between the bare
bosons, ĤV is nonlocal, and so the interaction between
quasiparticles can be of longer range. A qualitative picture
of the dynamics is simple to paint. The hopping term tries
to move a quasiparticle to an adjacent site, but this is only
possible if it is strong enough to overcome not only the
local potential energy barrier but also the mutual interac-
tion between the quasiparticles. Thus, in addition to being
restricted individually by the boundary effects as described
in Sec. IV, quasiparticles approaching each other from dis-
tance never get closer than �N/2	 sites from one another,
whereas for initial separations no more than �N/2	 − 1
sites, they form an immobile bound pair. This behavior is
again in accordance with numerics as depicted in Fig. 4(a).

If M = N − 1, the interaction term ĤV of Eq. (22) is
instead replaced by the long-range exchange Hamiltonian
[cf. Eq. (20)]

Ĥ	/� =
L∑

�1=1

∑

�2 
=�1

	|�2−�1|β̂
†
�2

α̂
†
�1

β̂�1 α̂�2 , (24)

where α̂
†
� and β̂

†
� are the creation operators for the N -boson

and M -boson quasiparticles, respectively, and

	� = (−1)�−1 N
(N − 1)�−1

(
J
U

)�−1

J (25)
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is the exchange rate. Compared to the case of M = N
above, the qualitative dynamics here differs in two ways.
First, the range of the repulsive interaction between the
quasiparticles is now increased, preventing approaching
particles from getting closer than N − 1 sites from one
another. The critical range for bound-state formation is
correspondingly increased to N − 2 sites. As a new phe-
nomenon, we can observe exchange oscillations within
these otherwise stationary bound pairs, that is, the quasi-
particles change positions at rate given by 	�. This is
shown in Fig. 4(b).

As the size difference N − M further increases, both
types of interactions discussed above are present in the
effective Hamiltonian, but with modified strengths V�/U ∼
(J/U)2� and 	�/U ∼ (J/U)(N−M )�. Qualitatively speak-
ing, there is nothing new in the dynamics. A long-range
repulsion again prevents colliding quasiparticles from get-
ting closer than �M/2	 sites away from each other. Con-
versely, quasiparticles bind together if the initial distance
between them is at most �M/2	 − 1 sites. For realistic val-
ues of N and M , exchange oscillations inside these pairs
can only show up when the quasiparticles are at adjacent
sites. The corresponding exchange rate is given by

	1 = (−1)N−M−1
(

N
M

)
(N − M )2

(N − M )!

(
J
U

)N−M−1

J . (26)

The smallest values of N and M allowing exchange over
two sites are 7 and 5, respectively, and the resulting dynam-
ics would be of fourth order in J/U. In principle, it is also
possible to observe the motion of a bound pair, but the
time scales involved are too long for this to be of practical
interest, and we therefore do not explore it further here.

As a final remark, we want to point out that there are
also cases where the dynamics is much more complicated
to analyze than in the ones discussed above due to the
different effects competing with each other. For example,
if M = 2, N = 3, and the initial separation between the
quasiparticles is |�N0 − �M0| = 2, one can observe effects
arising from boundaries, exchange, and effective hopping
simultaneously, with none clearly dominating the others.

Both of the interaction terms can once again be
derived by studying the virtual boson hops. Consider first
ĤV. It actually has similar origins as Ĥω̃. To see this,
let us assume that N − M 
= 1 and examine the states
|N�0 , M�0+�〉 and |N�0 , M�0+�+1〉 at order 2�. Forgetting the
possible boundary effects, which are already taken into
consideration, there are a total of

(2�

�

)
trajectories setting

these apart. Namely, the ones where lone bosons from
each of the stacks first move m and � − m sites towards
one another, respectively, with m = 0, . . . , �, and then back
where they originated from. The reason the two states are
energetically distinct is that in the case of the former, the
bosons actually meet at site �0 + m, while in the case of
the latter, they are always located at different sites. The

leading-order energy difference V� can, in fact, be calcu-
lated in closed form for any N and M , see Appendix D for
details.

The exchange term is more straightforward to under-
stand. If we take the state |N�0 , M�0+�〉 and move N − M
bosons from �0 to �0 + �, we end up with |N�0+�, M�0〉,
establishing a coupling between the two. For general N −
M , however, the number of trajectories is much larger than
above, and calculating the coupling constant 	� analyti-
cally is therefore tricky unless either N − M = 1 or � = 1.
Luckily, these are practically the only relevant instances
for us.

VII. DISORDER AND TWO-DIMENSIONAL
ARRAYS

A. Disorder in transmon parameters

Until now, we have studied an ideal system, ignoring the
inevitable disorder in the model parameters stemming from
the imperfections in real transmon devices. Following the
discussion of Sec. II, we here concentrate on the effects
of variations in the single-transmon parameters ω� and U�,
and thus take the disorder Hamiltonian to be ĤD = Ĥδω +
ĤδU. Note that with random δω� and δU�, the degener-
acy of the states within a given anharmonicity manifold
is broken by ĤD. The important question is whether or not
this is enough to affect the dynamical phenomenon under
examination in a significant manner. Details on the general
analysis can be found in Appendix A 3.

In the case of a single stack of bosons, we find (see
Appendix B) that it is actually possible to compensate
the disorder in U� by adjusting ω�. In fact, if ω� = (N −
1)U�/2, the disorder Hamiltonian ĤD vanishes within the
anharmonicity manifold spanned by the states |N�〉. Never-
theless, even with perfect control of ω�, one cannot get rid
of the disorder in U� completely. This is because virtual
boson hops can take us outside the initial manifold, and
there the number of bosons at any given site is no longer
guaranteed to be either N or zero. Remember, however,
that each virtual jump involved adds a factor of J/U to the
weight of the process, therefore effectively reducing the
disorder strength. Putting things together, we can define
an effective disorder strength D = max{Dω, (J/U)2DU},
where we understand Dω in a slightly wider sense to
mean the precision with which the on-site energies can
be controlled (without flux tuning, Dω is just the regular
manufacturing disorder in ω�). As a rough rule of thumb,
the motion of the stack is now frozen if D 
 J̃ , heavily
modified if D ∼ J̃ , and only slightly changed if D � J̃ .

The above can be readily applied in the case of two
equal-sized stacks. Note that disorder favors bound pairs,
and so being able to observe motion is the more challeng-
ing problem. If the second stack is of different size, or we
add just a single boson, a bit more care is needed since the
disorder in U� cannot be entirely eliminated in the whole of
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the initial anharmonicity manifold simply by adjusting ω�.
In general, the effective disorder strength is then increased
to D = max{Dω, DU}. However, in the phenomena we con-
centrate on in this paper—tunneling and exchange—one
quasiparticle is always either still or moves only between
two sites. This restores our ability to control the disorder
in U� through ω�, and thus D = max{Dω, (J/U)2DU}, see
Appendices C and D for details. Again, 2π/D gives the
critical time scale of observable dynamics.

State-of-the-art transmon arrays [2,10,11,16,19] exhibit
anharmonicity disorder of strength DU/2π ≈ 1 MHz −
10 MHz. On the other hand, the on-site tuning precision
is at best limited to Dω/2π ∼ 100 kHz. This means that
even with quite a large hopping rate of J/U ∼ 1/10, the
effective disorder strength is, at least in the cases consid-
ered above, given by D = Dω. Thus, disorder currently sets
the upper bound of approximately 10 μs to experimentally
observable phenomena.

B. Generalization to two-dimensional lattices

The above results regarding the effective dynamics of
transmon chains via high-order perturbation theory are
readily generalizable to two-dimensional lattices, although
with some differences to be kept in mind. The effective
hopping Hamiltonian of the quasiparticle simply inherits
the geometry of the lattice, that is, it is obtained from the
hopping Hamiltonian ĤJ with the replacements J → J̃ ,
â� → α̂�. Since the trajectory determining the effective
hopping frequency includes just moving bosons from one
site to an adjacent one, the value of J̃ does not depend on
the dimensionality of the lattice and is thus always given
by Eq. (11). Distinct couplings between the sites can also
be incorporated into the model straightforwardly by setting
J → J�1�2 .

In a two-dimensional array, the boundary effects are sim-
ilar to a 1D chain, but more possibilities arise from the
increased dimensionality. For example, in a rectangular
array, there are now two distinct groups of boundary sites,
namely, the corners and the edges. This stems from the
different number of neighbors each site possesses. Thus,
putting a stack of N ≥ 3 particles initially into a corner
site shows no dynamics at all [Fig. 5(a)], whereas taking
the initial site to be one of the edge sites allows move-
ment of the stack within that edge [Fig. 5(b)]. Similarly
as with the one-dimensional case, the dynamics within the
sites that are neither edges nor corners is practically free,
and described by the effective hopping rates J̃ of Eq. (11)
[Fig. 5(c)].

Finally, when considering the interaction between two
quasiparticles, the strength is determined by the geodesic
(Manhattan) distance on the underlying graph. The dynam-
ics of an unbound pair is also more complex due to the fact
that the quasiparticles can now move past each other.

(a) (b)

(c)

(a) (b) (c)

FIG. 5. Two-dimensional boundary effects for a single quasi-
particle initially located at (a) a corner |31,1〉, (b) an edge |31,2〉,
and (c) a nonedge site |32,2〉 of a 4 × 4 transmon array. (a)–(c)
The total occupation 〈n̂d〉 = ∑d

ij 〈n̂ij 〉 of all the sites, which are a
Manhattan distance d away from the initial location as a function
of time t.

VIII. CONCLUSIONS

In this work, we studied unitary dynamics of weakly
coupled transmon arrays, concentrating specifically on the
phenomena brought about by the higher excited states of
the individual transmons. The key observation considering
many-body dynamics beyond the qubit approximation or,
equivalently, beyond the hard-core boson model, was the
approximate conservation of the interaction energy stem-
ming from the anharmonicity of the transmons. Based on
this, we were able to resolve the dynamics using high-order
degenerate perturbation theory, whose accuracy we then
benchmarked with exact numerics.

The main results demonstrated various many-body
effects, which we presented in closed form using effec-
tive Hamiltonians. For example, bosons initially stacked
onto the same site behave as a single quasiparticle whose
effective hopping frequency depends exponentially on the
boson number N . In other words, a highly excited state
of a transmon does not disintegrate into several less-
excited states, but instead just moves from one transmon
to another. The quasiparticles also experience effective
off-site interactions with other quasiparticles, individual
bosons, and the edges and corners of the arrays. The
presented approximation significantly reduces the dimen-
sionality of the Hilbert space since the dynamics and the
energy levels can be solved independently within each
anharmonicity manifold. Most importantly, the dynamics
generated by the closed-form effective Hamiltonians were
found to be accurate well up to the time scales relevant to
any given subspace. This allows us to explore the largely
ignored portion of the Hilbert space of a transmon array
going beyond the hard-core boson model. For practical
observation of the presented phenomena, ability to prepare
and measure highly excited transmon states, that is, local
boson occupation density, at high fidelity is an essential

040314-10



BEYOND HARD-CORE BOSONS. . . PRX QUANTUM 3, 040314 (2022)

requirement. In general, our results are readily applica-
ble also to other similar systems, such as cold atoms in
optical lattices [60,61], which are modeled by the Bose-
Hubbard model with low parameter disorder and operated
in the limit J/U � 1 where interactions dominate over the
hopping rate.

Our focus here was on unitary dynamics. Naturally, dis-
sipation and dephasing of transmons will generate notable
effects whose detailed numerical and analytical considera-
tion is a subject of future research. To elucidate the exper-
imental feasibility of quasiparticle dynamics in transmon
arrays, let us focus here on a simple time-scale analy-
sis. Treating a multilevel transmon ideally as a harmonic
oscillator, a quasiparticle made of N photons has a decay
rate of �(N ) = N�(1) due to bosonic enhancement. Here,
�(1) = T−1

1 is the single-particle decay rate. Similarly, the
dephasing rate between the consecutive states |N + 1〉 and
|N 〉 would scale as �

(N ,N−1)

2 = �(N−1)/2 + �
(0,1)

2 , where
�

(0,1)

2 = T−1
2 refers to the dephasing rate in the qubit sub-

space. With realistic transmons [20,24,26], the scaling of
the decay rate follows quite well that of an ideal harmonic
oscillator, but the coherence of the excited states is reduced
due to their enhanced susceptibility to charge noise. In
state-of-the-art quantum simulation devices [2,10,11,16,
19,62], the qubit-subspace dissipation and dephasing rates
are given by T1 = 10 μs − 30 μs and T2 = 1 μs − 3 μs,
respectively, resulting in the estimates of 1/�(N ) � 3 μs −
10 μs and 1/�

(N ,N−1)

2 � 1 μs − 3 μs for the higher-
excited-state dissipation and dephasing times when N ≤ 3.
The effective rates for the quasiparticle dynamics scale as
(J/U)N implying that with realistic transmon parameters
|J |/2π ≈ 10 MHz − 40 MHz and U/2π = 200 MHz −
300 MHz, the time scales of the many-body dynamics
achieved (see Figs. 2–4) are of the order of 0.3 μs − 10 μs,
rendering experimental realization of the presented phe-
nomena possible using state-of-the-art transmon arrays.
Furthermore, quantum-information-oriented transmon sys-
tems [26,63] have recently reported decay and dephasing
times as high as T1,2 ≈ 70 μs, which would already yield
an ample window to observe the quasiparticle dynamics.

Various potential applications also arise. For example,
transmon populations beyond the qubit subspace can be
measured with high fidelity either using a direct disper-
sive circuit QED readout [26] or by supplementing it
with conditional pulses [24]. This combination of having
periodic high-fidelity measurements and rich many-body
dynamics makes transmon arrays a promising experimen-
tal platform for realizing measurement-induced entangle-
ment phase transitions [64–68], complementing ion traps
[69,70]. On the other hand, for the sake of simplicity,
the array geometries in this work have been kept quite
basic. An interesting direction to extend the presented
analysis is towards more complex geometries, such as
kagome [71] or non-Euclidian [72], for instance to probe
intriguing flat-band physics. Furthermore, versatile

many-body dynamics provides a good basis for studying
nonequilibrium many-body dynamics, such as dynami-
cal quantum phase transitions [73]. We also expect that
our results and concepts on quasiparticle dynamics can
be useful in understanding and solving significant design
challenges in quantum processor architectures similarly as
the concepts of many-body localization has been applied to
the protection-operation dilemma of quantum computing
with transmon arrays [74].
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APPENDIX A: HIGH-ORDER DEGENERATE
PERTURBATION THEORY

1. Projected Schrödinger equation

Let us consider a general Hamiltonian Ĥ = Ĥ0 + Ĥ1
consisting of two parts, a “trivial” part Ĥ0 whose eigen-
problem we can solve, and some perturbation Ĥ1. Let E0
be the eigenspace of Ĥ0 related to some eigenvalue E0, that
is, E0 is the space spanned by all the states |E0〉 satisfying
Ĥ0 |E0〉 = E0 |E0〉. Finally, let P̂0 be the projection opera-
tor to E0 and Q̂0 = Î − P̂0 the projection operator to the
complement Ec

0 of E0.
Projecting the time-independent Schrödinger equation

Ĥ |E〉 = E |E〉 of the full Hamiltonian into E0 and Ec
0 ,

respectively, and using the identities Î = P̂0 + Q̂0, Ĥ0P̂0 =
P̂0Ĥ0 = E0P̂0, we obtain

P̂0Ĥ1P̂0 |E〉 + P̂0Ĥ1Q̂0 |E〉 = (E − E0)P̂0 |E〉 , (A1)

Q̂0(E − Ĥ0 − Ĥ1)Q̂0 |E〉 = Q̂0Ĥ1P̂0 |E〉 . (A2)

Solving the second equation for Q̂0 |E〉 (we assume that the
effect of Ĥ1 is sufficiently small to avoid any divergence
issues) and using this in the first equation gives us

P̂0Ĥ1

{
Î +

[
Q̂0(E − Ĥ0 − Ĥ1)Q̂0

]−1
Q̂0Ĥ1

}
P̂0 |E〉

= (E − E0)P̂0 |E〉 , (A3)

Q̂0 |E〉 =
[
Q̂0(E − Ĥ0 − Ĥ1)Q̂0

]−1
Q̂0Ĥ1P̂0 |E〉 . (A4)

The first equation here is a generalized eigenvalue equation
(note that E appears also on the left-hand side) determin-
ing the projection of the eigenstate within E0. After solving
for P̂0 |E〉 and E, the second equation can then be used to
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straightforwardly calculate the projection of the eigenstate
within the rest of the Hilbert space.

As a final step, we apply the general formula

(M̂ + N̂ )−1 = (Î + M̂−1N̂ )−1M̂−1 =
∞∑

m=0

(M̂−1N̂ )mM̂−1

(A5)

to the inverse operators appearing in Eqs. (A3) and (A4),
yielding

∞∑

m=0

Âm(E)P̂0 |E〉 = (E − E0)P̂0 |E〉 , (A6)

Q̂0 |E〉 =
∞∑

m=1

B̂m(E)P̂0 |E〉 , (A7)

where the Âm(E) and B̂m(E) operators are

B̂m(E) =
{[

Q̂0(E − Ĥ0)Q̂0

]−1
Ĥ1

}m

P̂0, (A8)

Âm(E) = P̂0Ĥ1B̂m. (A9)

Equation (5) then follows trivially from Eq. (A6).

2. Degenerate perturbation theory

Let us then discuss in general terms how Eq. (5) can be
solved within a given anharmonicity manifold A. Expand-
ing the states |EA〉 and the energies E in powers of J/U
as |EA〉 = |E(0)

A 〉 + |E(1)
A 〉 + . . . and E = E(0) + E(1) + . . .,

respectively, and collecting terms of equal order together
yields

n∑

j =0

Ĥ (n−j )
A |E(j )

A 〉 =
n∑

j =0

E(n−j ) |E(j )
A 〉 (A10)

for n = 0, 1, 2, . . .. Here Ĥ (k)
A is used to denote the kth-

order term of ĤA(E). Note that this is not the same as K̂k,
which, while explicitly of kth order, still depends on the
energy. As usual, we need to proceed order by order. In
this paper, we are not interested in the higher-order states,
and so we concentrate only here on solving for |E(0)

A 〉.
At zeroth order, we obtain trivially E(0) = �UA, that is,

all the states share the common zeroth-order energy. Noth-
ing is revealed about the states |E(0)

A 〉, all we know at this
point is that they lie within A.

At first order, we have

Ĥ (1)
A |E(0)

A 〉 = E(1) |E(0)
A 〉 . (A11)

We therefore see that the first-order energies are given by
the eigenvalues of the d × d matrix Ĥ (1)

A , where d is the

dimension of A. If the spectrum of Ĥ (1)
A happens to be

nondegenerate, as is the case in most textbook examples,
then the eigenstates of Ĥ (1)

A are the proper zeroth-order
eigenstates |E(0)

A 〉 and no further analysis is needed. This
is because we can now uniquely tell apart the states based
on their energies, and thus taking the limit J/U → 0 is no
longer problematic.

In the situations we study, however, degeneracy is
always present also at first order. In this case, just like
the unperturbed Hamiltonian ĤU splits the whole Hilbert
space into different anharmonicity manifolds according to
its eigenvalues, the effective first-order Hamiltonian Ĥ (1)

A
splits each anharmonicity manifold further into (possibly)
smaller subspaces according to its eigenvalues. Higher-
order analysis can then be performed separately in each of
these instead of considering the whole A at once since we
know that each state |E(0)

A 〉 always belongs to exactly one
such subspace (the nondegenerate case discussed above
is simply a special case of this, with d one-dimensional
subspaces).

At second order, we have

Ĥ (2)
A |E(0)

A 〉 + Ĥ (1)
A |E(1)

A 〉 = E(2) |E(0)
A 〉 + E(1) |E(1)

A 〉 .
(A12)

Note the appearance of the first-order states on both sides
of the equation. Although they might seem problematic,
we can get rid of them quite easily. After picking one
of the first-order energies E(1) to concentrate on, we can
project Eq. (A12) to the corresponding eigenspace, as we
discussed above. But since Eq. (A11) holds for all states
within the eigenspace, we have the identity Ĥ (1)

A = E(1)Î ,
and thus the terms involving the first-order state cancel out.
We are therefore left with

Ĥ (2)
A |E(0)

A 〉 = E(2) |E(0)
A 〉 . (A13)

This is again an eigenvalue equation, and exactly the same
arguments that were presented at first order hold also here.

By following this procedure of always projecting to one
of the still degenerate subspaces, Eq. (A10) simplifies to

Ĥ (n)
A |E(0)

A 〉 = E(n) |E(0)
A 〉 , (A14)

which is, at every order, an eigenvalue equation. We con-
tinue until either all the degeneracies are lifted, in which
case we know exactly all the states |E(0)

A 〉, or we reach some
predetermined limit nmax above which it is not necessary to
go due to the slowness of the resulting dynamics.

Expressed in terms of the operators K̂m defined in Eq.
(7), we can write

Ĥ (n)
A =

n∑

m=1

K̂ (n−m)
m (A15)
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for n ≥ 1. Here the notation K̂ (k)
m again means that we

expand K̂m(E) in energy and take the kth term, so that
K̂ (k)

m is of (m + k)th order. For example, since K̂1(E) =
P̂AĤJ P̂A is independent of E, only K̂ (0)

1 is nonzero. Impor-
tantly, no matter the value of k, if K̂ (k)

m is nonzero, it
contains exactly m hopping Hamiltonians ĤJ . This implies
that Ĥ (n)

A is capable of performing at most n single-boson
hops.

3. Effect of disorder

How does disorder in transmon parameters affect the
zeroth-order eigenstates and the dynamics? To answer
this, we need to add the disorder Hamiltonians Ĥδω =
�

∑
� δω�n̂� and ĤδU = −�

∑
� δU�n̂�(n̂� − 1)/2 alongside

the hopping Hamiltonian ĤJ in the definition of K̂m in
Eq. (7). Here δω� = ω� − ω and δU� = U� − U are the
deviations of the on-site energies and the interaction ener-
gies from the constant values ω and U at different sites �,
respectively. We ignore here the disorder in J since it can
be thought of as a small correction to the already small
perturbation parameter J . The total disorder Hamiltonian
is therefore given by ĤD = Ĥδω + ĤδU.

Replacing ĤJ → ĤJ + ĤD in Eq. (7) and using the fact
that ĤD commutes with ĤU, we obtain

K̂1(E) = P̂AĤJ P̂A + P̂AĤDP̂A, (A16)

K̂m(E) = P̂AĤJ [Ŵ(E)(ĤJ + ĤD)]m−2Ŵ(E)ĤJ P̂A,
(A17)

where m = 2, 3, . . . and the definition of Ŵ(E) remains
unchanged from Eq. (8). Here it is important to note the
two different manifestations of disorder. First, K̂1 depends
solely on the disorder within the anharmonicity manifold
A. All the other operators K̂m, on the other hand, contain
only the projection of ĤD outside of A (due to the pro-
jectors contained in the weight operator Ŵ). It is therefore
natural to define two separate disorder strengths, DA and
D′

A, so that P̂AĤDP̂A ∼ �DA and Q̂AĤDQ̂A ∼ �D′
A.

Let us then assume that DA/U ∼ (J/U)n and D′
A/U ∼

(J/U)n′
for some n, n′ ∈ N. We allow for n ≥ n′ since it

might be possible to reduce the disorder within A by tuning
the on-site energies. Performing the perturbation analysis
as above, we see that P̂AĤDP̂A makes its first appearance
at nth order (through K̂1), while Q̂AĤDQ̂A first appears at
order n′ + 2 (through K̂3). Due to the irregular structure of
the on-site energies and interactions, all the degeneracy is
thus broken (at least almost surely) at order min{n, n′ + 2}.

The above discussion invites us to define the effective
disorder strength Deff

A = max{DA, D′
A(J/U)2}. Roughly

speaking, all the dynamical effects of the pure system
occurring at time scales slower than approximately 2π/Deff

A
are wiped away by the disorder. Dynamics at the time scale

approximately 2π/Deff
A is expected to be significantly mod-

ified, while faster dynamics should remain more or less the
same.

4. One-boson problem

We refer to the dynamics of a lone boson in several occa-
sions, and it is therefore good to briefly recall some of the
properties of the one-boson problem.

Let us consider a chain of length L with constant nearest-
neighbor hopping frequency J and on-site energies �ω�.
The interaction term ĤU is now identically zero since there
are no other bosons to interact with. The Hamiltonian is
therefore given by

Ĥ/� =
L∑

�=1

ω�n̂� + J
L−1∑

�=1

(â†
�+1â� + â†

�â�+1). (A18)

Written in matrix form in the basis |1�〉, � = 1, . . . , L, we
have

H/� =

⎛

⎜⎜⎜⎜⎜⎜⎝

ω1 J
J ω2 J

J ω3 J
. . . . . . . . .

J ωL−1 J
J ωL

⎞

⎟⎟⎟⎟⎟⎟⎠
. (A19)

This is a symmetric tridiagonal matrix with nonzero off-
diagonal elements, and thus the spectrum is always nonde-
generate [75]. For general values of ω�, the eigenvalues
and eigenstates have no closed-form analytical expres-
sions.

In the special case of constant ω� = ω, the Hamilto-
nian is a tridiagonal Toeplitz matrix whose eigenproblem
is analytically solvable [76]. The eigenvalues are given by

εk/� = ω + 2J cos
(

πk
L + 1

)
(A20)

for k = 1, . . . , L, and the corresponding eigenstates by

|εk〉 =
√

2
L + 1

L∑

�=1

sin
(

π�k
L + 1

)
|1�〉 . (A21)

In the language of operators, defining

â� =
√

2
L + 1

L∑

k=1

sin
(

π�k
L + 1

)
ĉk (A22)

turns the Hamiltonian into

Ĥ/� =
L∑

k=1

[
ω + 2J cos

(
πk

L + 1

)]
ĉ†

k ĉk, (A23)
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while the functional form of the total number operator N̂ =∑L
�=1 â†

�â� = ∑L
k=1 ĉ†

k ĉk remains unchanged.

APPENDIX B: COLLECTIVE MOTION OF A
BOSON STACK

1. Degenerate states

The anharmonicity of the initial state |N�0〉 is −N (N −
1)/2. Clearly all the states |N�〉, � = 1, . . . , L, share the
same value, but are there any other Fock states |n1n2 . . . nL〉
in this manifold when the total number of bosons is fixed?
Well,

N 2 =
L∑

�=1

n�

L∑

m=1

nm =
L∑

�=1

n2
� +

L∑

�=1

∑

m 
=�

n�nm

≥
L∑

�=1

n2
�, (B1)

and the equality clearly holds only if n�nm = 0 for all
�, m = 1, . . . , L, m 
= �, since the n� are non-negative. But
this condition is equivalent to n� = Nδ��′ for some �′,
and so there are no nontrivial states in the anharmonicity
manifold.

2. Perturbation analysis

Let us then apply Eq. (9) inside the anharmonicity man-
ifold A = span{|N�〉 |� = 1, . . . , L}, and make use of the
representation, Eq. (A15), of Ĥ (n)

A . Before any actual cal-
culations, we notice that the states are not coupled until
N th order: In order for the matrix element 〈N�′ |K̂m|N�〉 to
be nonzero, we need to transfer N bosons from site � to site
�′. Since K̂m contains m hopping Hamiltonians, we need m
to be at least N for this to be possible. This means that
up to N th order, the matrix Ĥ (n)

A is diagonal. To simplify
the analysis further, we note that the diagonal elements
〈N�|K̂m|N�〉 vanish for odd values of m since moving the
bosons around and coming back to the same configuration
always requires an even number of hops.

The zeroth-order energy is given by E(0)/� = −UN (N −
1)/2. At first order, we find E(1) = 0. In fact, at odd orders
below N all the energies vanish. This can be seen using
induction. In the matrix

∑n
m=1 K̂ (n−m)

m at some odd n, all
the odd-m terms vanish identically as discussed above. All
the even-m terms, on the other hand, need to be expanded
to odd order < n in energy. But since all the previous odd-
order energies vanish, these terms are all zero, proving our
claim.

At second order, we have

K̂ (0)

2 |E(0)
A 〉 = E(2) |E(0)

A 〉 . (B2)

Since all the states had the same first-order energy, this
equation is to be solved within the full space A. When the

matrix K̂ (0)

2 = P̂AĤJ Ŵ(0)ĤJ P̂A operates on a basis state
|N�〉, it first generates the Fock states |(N − 1)�, 1�±1〉,
which are one hop away, weights them by Ŵ(0) = Ŵ(E(0)),
generates all the possible Fock states, which are one hop
away from these intermediate states, and finally picks only
the ones, which are within A. But this shows at once that
the edge sites � = 1, L are different from all the other ones
since one of the sites � ± 1 does not belong to the chain.
That is, a boson at a boundary site can only move to one
direction. This increases the energy of an edge site, leading
to

K̂ (0)

2 |N�〉 = −�U
(

J
U

)2 2N
N − 1

|N�〉 (B3)

for � = 2, . . . , L − 1, and

K̂ (0)

2 |N�〉 = −�U
(

J
U

)2 N
N − 1

|N�〉 (B4)

for � = 1, L.
The anharmonicity manifold A is therefore split

into two parts at second order, span{|N1〉 , |NL〉} and
span{|N2〉 , . . . , |NL−1〉}. The states |N1〉 and |NL〉 are L − 1
sites away from each other, and therefore the degener-
acy between them is not lifted until [(L − 1)N ]th order,
at which they couple together. Since the energy difference
is so minute, the time interval required for observing any
dynamics between the two states is too long to be of any
practical interest. We can therefore treat the states |N1〉 and
|NL〉 as proper zeroth-order eigenstates |E(0)

A 〉. Thus, if the
initial state is localized at the boundary (�0 = 1, L), it will
stay there and no dynamics is observed at sensible time
scales.

Analyzing the space span{|N2〉 , . . . , |NL−1〉} further, we
find that the behavior observed at second order repeats
at every even order less than N . That is, the two sites
closest to the boundaries always have higher energy than
the middle ones, and the subspace splits again into two
smaller parts, one spanned by the two “edge” states and
the other by the rest. For example, assuming that N > 6,
fourth order separates the states |N2〉 and |NL−1〉 from the
states |N3〉 , . . . , |NL−2〉, while sixth order splits the latter
ones into two groups, the states |N3〉 and |NL−2〉, and the
states |N4〉 , . . . , |NL−3〉. For sufficiently short chains, the
degeneracy can be completely broken before the coupling
plays any role (or almost, if there are even number of sites).

The energy difference 
E(2n) between the two sets of
states at each order 2n < N is straightforward to calculate
since it always stems from a single source: the ability to
move one boson from the stack n steps towards the nearest
boundary and then back. Thus, if � is any site closer to the
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middle of the chain than the site n, we have


E(2n) ≡ 〈Nn|Ĥ (2n)
A |Nn〉 − 〈N�|Ĥ (2n)

A |N�〉

= − 〈N�| �J â†
�â�−1

n−1∏

m=1

Ŵ(0)
�J â†

�−mâ�−m−1

×
1∏

m=n

Ŵ(0)
�J â†

�−mâ�−m+1 |N�〉

= −(�J )2n
√

N
2
[−�U(N − 1)]−(2n−1)

= �UN
(N − 1)2n−1

(
J
U

)2n

. (B5)

At N th order, there is a coupling between the neighbor-
ing states |N�〉, |N�±1〉. The coupling strength is again
straightforward to calculate since the process involves only
shifting the bosons individually to the adjacent site. That is,

�J̃ ≡ 〈N�+1|Ĥ (N )
A |N�〉

= 〈N�+1|�J â†
�+1â�

[
Ŵ(0)

�J â†
�+1â�

]N−1
|N�〉

= (�J )N
N−1∏

m=0

√
N − m

√
m + 1

×
N−2∏

m=0

[−�U(m + 1)(N − m − 1)]−1

= (−1)N−1 �UN
(N − 1)!

(
J
U

)N

. (B6)

If we now write the matrix Ĥ (N )
A in the basis of the remain-

ing degenerate states |N�〉, � = �N/2	, . . . , L − �N/2	 +
1, we obtain

H (N )
A /� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ω + 
 J̃
J̃ ω J̃

J̃ ω J̃
. . . . . . . . .

J̃ ω J̃
J̃ ω + 


⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(B7)

Here, ω is some constant value irrelevant for determining
the state while 
 = 
E(N/2)/� if N is even and 
 = 0 if
N is odd. But this is simply the Hamiltonian of a single
particle in a chain of length L − 2�N/2	 + 2 with hopping
frequency J̃ and on-site energies ω + 
 at the ends and
ω in the middle, written in the basis |1�〉. The remaining
degeneracy is thus completely lifted.

We have therefore seen that a stack of bosons behaves
exactly like a single individual boson in a chain with mod-
ified hopping frequency and on-site energies. Using the

notation of the main text, we can combine all of the above
analysis into the effective Hamiltonian

Ĥeff = Ĥω̃ + ĤJ̃ , (B8)

where the effective on-site Hamiltonian Ĥω̃ defined in
Eq. (12) takes into account the boundary effects while the
effective hopping Hamiltonian ĤJ̃ defined in Eq. (10) gives
the N th order coupling. Note that only the relative val-
ues of the effective on-site energies ω̃� at adjacent sites are
important if we study the dynamics starting from a definite
Fock state |N�0〉. Knowing these is enough to determine
the zeroth-order eigenstates, and the possible differences
in the actual values of ω̃� only show up in the global phase
of the time-evolved state.

3. Disorder

Finally, let us briefly analyze the effect of disorder on
the motion of the stack. Following the general discussion
of Appendix A 3, we need to consider both P̂AĤDP̂A and
Q̂AĤDQ̂A. The former enters the perturbation analysis as
is (through K̂1), while the leading term containing the latter
is P̂AĤJ Ŵ(0)ĤDŴ(0)ĤJ P̂A (through K̂3). Now,

P̂AĤDP̂A |N�〉 = �
� |N�〉 , (B9)

P̂AĤJ Ŵ(0)ĤDŴ(0)ĤJ P̂A |N�〉 = �
′
� |N�〉 , (B10)

where


� = N
[
δω� − δU�

2
(N − 1)

]
, (B11)


′
� = N

N − 1

(
J
U

)2 [
δU�−1 + 2δU� + δU�+1

2

+ 
�−1 + 2(N − 1)
� + 
�+1

N (N − 1)

]
. (B12)

We see that if the on-site energies can be tuned locally,
it is, at least in principle, possible to make 
� arbitrarily
small even if we cannot control the local interactions. More
precisely, 
� vanishes if we set δω� = δU�(N − 1)/2. But
doing so still leaves us with nonzero 
′

�, meaning that the
disorder in U� cannot be completely eliminated via ω�.

As discussed in Appendix A 3, disorder begins to affect
the dynamics of the stack when either 
� or 
′

� start to
approach the magnitude of J̃ . Without flux tuning, δω�

dominates δU�. On the other hand, if flux tuning is avail-
able, there is still some experimental lower bound, which
limits how accurately ω� can be adjusted. In both cases
we can write 
� ∼ NDω if we understand Dω to mean
either the inherent manufacturing disorder in the on-site
energies of the devices or the accuracy with which ω� can
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be controlled, depending on the situation. Similarly, we
have 
′

� ∼ (J/U)2(DU + Dω), where DU is the disorder
in the local interaction strengths due to the manufacturing
process. These relations, together with the definition of J̃ ,
can then be used to estimate whether disorder prevents the
motion of the stack.

APPENDIX C: INTERPLAY BETWEEN A BOSON
STACK AND A SINGLE BOSON

1. Degenerate states

The anharmonicity of the initial state |N�N0 , 1�10〉 is
−N (N − 1)/2. Clearly all the states |N�N , 1�1〉 with
�N , �1 = 1, . . . , L and �1 
= �N share the same value, but
are there any other Fock states |n1n2 . . . nL〉 in this mani-
fold when the total number of bosons is fixed? Well, the
anharmonicity of the states |(N + 1)�〉 is −(N + 1)N/2 
=
−N (N − 1)/2. For all the other states, we can assume
that the maximum value of n�, attained at some site �̃, is
N − m, with 1 ≤ m ≤ N − 1. First, if m = N − 1, every
n� is either zero or one, and the anharmonicity vanishes.
For m < N − 1, we obtain

L∑

�=1

n2
� = (N − m)2 +

∑

�
=�̃

n2
� ≤ (N − m)2 + (m + 1)2

= N 2 − 2m(N − m − 1) + 1 < N 2, (C1)

where we apply the inequality (B1) on the first line [this
inequality is actually stricter, since here we also have
the restriction n� ≤ nl̃, whereas Eq. (B1) was derived for
unconstrained n�. However, this milder version is enough
for our purposes]. There are therefore no nontrivial states
in the anharmonicity manifold A.

2. Perturbation analysis

Let us then apply Eq. (9) inside the anharmonicity mani-
fold A = span

{|N�N , 1�1〉 |�N , �1 = 1, . . . , L; �1 
= �N
}
,

and make use of the representation (A15) of Ĥ (n)
A . In the

following, unless otherwise mentioned, we assume that
N > 2.

a. First-order analysis

At first order, we need to solve

P̂AĤJ P̂A |E(0)
A 〉 = E(1) |E(0)

A 〉 . (C2)

Due to the presence of the additional boson, the matrix
P̂AĤJ P̂A does not vanish identically as it did when there
was only the quasiparticle present, and there are thus
first-order corrections to the energy.

We see that P̂AĤJ P̂A has a block-diagonal structure:
for a fixed value of �N , the states with �1 < �N form a
coupled block, as do the states with �1 > �N . There is

no coupling between the blocks since it would require
more than one application of the hopping Hamiltonian.
For example, if L = 4, we have six separate blocks with
no coupling between them: {|N100〉 , |N010〉 , |N001〉},
{|1N00〉}, {|0N10〉 , |0N01〉}, {|10N0〉 , |01N0〉}, {|00N1〉},
and {|100N 〉 , |010N 〉 , |001N 〉}.

Within each such block, the problem simply reduces to a
one-boson problem, but the effective length of the chain is
now determined by the location of the quasiparticle. Con-
tinuing the example with L = 4, the matrix elements of
P̂AĤJ P̂A within {|N100〉 , |N010〉 , |N001〉} are exactly the
same as for a single particle in a chain of length three. The
quasiparticle thus acts as an effective boundary, which the
boson cannot cross.

For a fixed value of �N , the effective length of the chain
is �N − 1 if the boson is to the left of the quasiparticle and
L − �N if the boson is to the right. Using Eq. (A20), the
first-order energies are thus

E(1)

−,k−,�N
/� = 2J cos

(
πk−
�N

)
, (C3)

E(1)

+,k+,�N
/� = 2J cos

(
πk+

L − �N + 1

)
, (C4)

where k− = 1, . . . , �N − 1; k+ = 1, . . . , L − �N ; and �N =
1, . . . , L. The subscript − (+) refers to the case where
the boson is to the left (right) of the quasiparticle. The
corresponding eigenstates are

|ε−,k−,�N 〉 =
√

2
�N

�N −1∑

�1=1

sin
(

π�1k−
�N

)
|N�N , 1�1〉 , (C5)

|ε+,k+,�N 〉 =
√

2
L − �N + 1

L∑

�1=�N +1

sin
[
π(�1 − �N )k+

L − �N + 1

]

× |N�N , 1�1〉 . (C6)

Remember, however, that these are not necessarily the true
zeroth-order states of our full problem. Just like we ini-
tially grouped the Fock states into different anharmonicity
manifolds according to their zeroth-order energies, here
we need to group the states |ε±,k±,�N 〉 according to their
first-order energies. All we know at this point is that the
zeroth-order eigenstates |E(0)〉 are some linear combina-
tions of the states belonging to the same eigenspace of
the first-order Hamiltonian P̂AĤJ P̂A, and the weights of
these superpositions are determined at higher orders. In our
example of L = 4, there are, for example, four states with
zero first-order energy: (�N = 1, k+ = 2), (�N = 2, k− =
1), (�N = 3, k+ = 1), and (�N = 4, k− = 2). There are thus
four zeroth-order states, which have vanishing first-order
energy, each some linear combination of the states (C5)
and (C6) with the above parameters.
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Let us then consider the initial state |N�N0 , 1�10〉. Due
to symmetry, no generality is lost if we assume �10 <

�N0. The initial state now belongs to the same block with
�N0 − 2 other states |N�N0 , 1�1〉 with �1 < �N0, and is thus
involved in �N0 − 1 eigenstates |ε−,k−,�N0〉 of Eq. (C5).
More precisely, we have

|N�N0 , 1�10〉 =
√

2
�N0

�N0−1∑

k−=1

sin
(

π�10k−
�N0

)
|ε−,k−,�N0〉 .

(C7)

The final part of the first-order analysis is to find the
eigenspaces these states belong to, that is, find all the
states, which have energies 2�J cos(πk−/�N0), k− =
1, . . . , �N0 − 1, respectively. This is not a trivial task since
it involves solving rational equations of the form k/L =
k′/L′. What we can do, however, is to first rule out some of
the states and proceed from there.

Specifically, let us show that the blocks where the
position of the quasiparticle differs by one (�N vs
�N ± 1) while the boson stays on the same side of
the quasiparticle always belong to different eigenspaces.
In our example of L = 4 this means that the blocks
{|N100〉 , |N010〉 , |N001〉}, and {|00N1〉} share no com-
mon first-order energies with the block {|0N10〉 , |0N01〉}.
Let us here prove this fact when the boson is to the left
of the quasiparticle. The other case can be proved with
exactly the same logic. Now,

2J cos
(

πk−
�N

)
= 2J cos

(
πk′

−
�N ± 1

)

⇔ k−
�N

= k′
−

�N ± 1

⇔ k− = ±(k′
−−k−)�N ,

implying that k− has to be a multiple of �N . But this is
impossible since k− = 1, . . . , �N − 1, proving our claim. It
turns out that this small observation gets us really far, as
we see in the following.

The different blocks of states become coupled at dif-
ferent orders, providing possible channels for mixing of
the states within a given first-order eigenspace. But we
need only to worry about the couplings, which are of equal
or less order than where we want to eventually proceed
to in our analysis. Since the motion of the quasiparticle
in isolation would occur at order N , it is also the natu-
ral order up to which we want to carry our analysis here.
Neglecting couplings weaker than (N + 2)nd order, we
end up with the coupling diagram of Fig. 6. The verti-
cal N th-order couplings between neighboring blocks (light
gray arrows), even though in principle there, are never
actually active since, as we saw above, the blocks share
no states with common first-order energies and there are

FIG. 6. Schematic representation of the block structure of the
states at first order in a chain with a quasiparticle and a boson,
here presented for L = 4. In the left (right) column, the boson
is located to the left (right) of the quasiparticle. The arrows rep-
resent possible couplings between blocks at orders less than or
equal to N + 2. As discussed in the text, the vertical gray arrows
are never active since the corresponding blocks do not share any
first-order energies. Moreover, depending on the particular first-
order eigenspace under consideration, either the red or the blue
arrows are inactive due to the same reason. This means that up
to (N + 2)nd order, the zeroth-order eigenstates are always a
mixture of states from exactly two blocks.

thus no states within one eigenspace to couple to. Due to
exactly the same reason, either the horizontal second-order
couplings (red arrows) or the diagonal (N − 1)st order
couplings (blue arrows) are always inactive, depending on
the eigenspace considered.

To see this, arrange the blocks in an array like in Fig. 6
and denote by bij the block on the ith row and j th col-
umn, with i = 1, . . . , L and j = 1, 2. Since the initial state
belongs to the left column, pick any block bi1 and choose
one of the first-order states (C5) from there. Now, if the
horizontally adjacent block bi2 has a state with matching
energy, then we know from the earlier analysis that the
blocks b(i±1)2 cannot have such states, and therefore the
row i is isolated from all the other blocks. Similarly, if
the block b(i−1)2 has a state with the same energy, the block
bi2 does not, and therefore the pair of blocks bij , b(i−1)2 is
isolated from every other block.

Finally, we note that for fixed �N , the energies (C3) are
nondegenerate, as are the energies (C4). In other words,
each block has no two states with equal energies, and the
higher-order analysis is thus reduced to a number of two-
state problems.

To sum up, the first-order analysis tells us that the num-
ber of zeroth-order eigenstates of the full Hamiltonian
contributing to the initial state |N�N0 , 1�10〉 with �10 < �N0
is between �N0 − 1 and 2(�N0 − 1). The states fall into
three categories, one for each k− = 1, . . . , lN0 − 1: (i) If
k(i)
+ ≡ k−(L − �N0 + 1)/�N0 ∈ {1, . . . , L − �N0}, there are

two eigenstates, which are linear combinations of the states
|ε−,k−,�N0〉 and |ε+,k(i)

+ ,�N0
〉. (ii) If k(ii)

+ ≡ k−(L − �N0 +
2)/�N0 ∈ {1, . . . , L − �N0 + 1}, there are two eigenstates,
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which are linear combinations of the states |ε−,k−,�N0〉 and
|ε+,k(ii)

+ ,�N0−1〉. (iii) If neither of the conditions hold, there is
a single eigenstate given simply by |ε−,k−,�N0〉.

For states in categories (i) and (iii), the quasiparticle
always stays in the initial position �N0, but for states in
category (ii), it is possible that the quasiparticle moves to
�N0 − 1.

b. States of category (ii)

Going forward in perturbation theory, let us first
consider the states belonging to category (ii), since
this turns out to be a special case. To this end, let
us assume that k(ii)

+ ≡ k−(L − �N0 + 2)/�N0 ∈ {1, . . . , L −
�N0 + 1} for some k− = 1, . . . , �N0 − 1. As we saw above,
we can restrict our analysis to the two-dimensional man-
ifold spanned by the states |ε−,k−,�N0〉 and |ε+,k(ii)

+ ,�N0−1〉.
The states couple at (N − 1)st order, so in order to mix,
the degeneracy has to stay intact up to that order. In other
words, if these two states have different energies at any
order below (N − 1)st, they are not entangled, and are
both individually zeroth-order eigenstates. But intuitively
it seems clear that the degeneracy can only be maintained
if there is enough symmetry present, that is, the effective
lengths of the chains �N0 − 1 and L − �N0 + 1 and the
wave numbers k− and k(ii)

+ have to be equal, respectively.
In this case, possible when �N0 = L/2 + 1, the states are
identical at every order from the point of view of perturba-
tion theory. The case N = 3 is of course exceptional since
the coupling occurs already at second order. Let us check
that our intuition is indeed correct.

A direct calculation shows that the diagonal elements of
the 2 × 2 matrix H (2)

A are given by

〈ε−,k−,�N |Ĥ (2)
A |ε−,k−,�N 〉

= −�U
(

J
U

)2 {
(2 − δ�N ,L)N

N − 1
− 2

�N

× sin2
(

πk−
�N

) (
2N 2 − 1

N (N − 1)
− 2N

N − 2

)}
, (C8)

〈ε+,k+,�N |Ĥ (2)
A |ε+,k+,�N 〉

= 〈ε−,k+,L−�N +1|Ĥ (2)
A |ε−,k+,L−�N +1〉 . (C9)

Using these, we can now find out the condition for the
degeneracy to remain intact by setting 〈ε−,k−,�N0 |Ĥ (2)

A |
ε−,k−,�N0〉 equal to 〈ε+,k(ii)

+ ,�N0−1|Ĥ
(2)
A |ε+,k(ii)

+ ,�N0−1〉. A
straightforward analysis reveals that this can only be true
if �N0 = L/2 + 1, proving our earlier intuition right.

Let us therefore assume that �N0 = L/2 + 1 and N > 3.
In this case, we actually see that all the relevant zeroth-
order eigenstates fall into category (ii) since we have

k(ii)
+ = k−. No orders less than N − 1 provide us any further

information regarding the eigenstates since the degener-
acy between |ε−,k−,L/2+1〉 and |ε+,k−,L/2〉 is not lifted due
to symmetry.

At order N − 1, we finally obtain coupling between the
states. Clearly the matrix H (N−1)

A is of the form
(

a b
b a

)
,

where a and b are real. This immediately tells us that the
zeroth-order eigenstates are given by

|E(0)

±,k〉 = |ε−,k,L/2+1〉 ± |ε+,k,L/2〉√
2

(C10)

for k = 1, . . . , L, and so any initial state |ε−,k,L/2+1〉 will
oscillate between itself and |ε+,k,L/2〉 at angular frequency

�k ≡ 2
�

〈ε+,k,L/2|Ĥ (N−1)
A |ε−,k,L/2+1〉

= 4(−1)k+1

L/2 + 1
sin2

(
πk

L/2 + 1

)
	, (C11)

where

	 ≡ 〈NL/2, 1L/2+1|Ĥ (N−1)
A /�|1L/2, NL/2+1〉

= 〈NL/2, 1L/2+1| J â†
L/2âL/2+1

×
(

Ŵ(0)
�J â†

L/2âL/2+1

)N−2
|1L/2, NL/2+1〉

= J (�J )N−2
N−2∏

m=0

√
N − m

√
m + 2

×
N−2∏

m=1

[−�Um(N − m − 1)]−1

= (−1)N U
N (N − 1)

(N − 2)!

(
J
U

)N−1

(C12)

is the coupling constant between the Fock states
|1L/2, NL/2+1〉 and |NL/2, 1L/2+1〉.

Since the actual initial state |1�10 , NL/2+1〉 is a superposi-
tion of the states |ε−,k,L/2+1〉 with different k [see Eq. (C7)],
the dynamics is a bit more involved than the above due to
the relative phase differences caused by E(1), . . . , E(N−2).
Namely,

|�(t)〉 ≈
√

2
L/2 + 1

L/2∑

k=1

sin
(

π�10k
L/2 + 1

)

× e−i[E(0)+E(1)
k +...+E(N−2)

k ]t/�

× e−iE(N−1)
+,k t/� |E(0)

+,k〉 + e−iE(N−1)
−,k t/� |E(0)

−,k〉√
2

,

(C13)
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where E(n)

k for n = 1, . . . , N − 2 are the common nth-order
energies of |E(0)

±,k〉. Now, unlike in the case of the sole
quasiparticle, these intermediate energies depend on the
summation index, and we cannot simply factor out an
insignificant phase factor.

We already calculate E(1)

k . The rest are formally simple,

E(n)

k = 〈ε−,k,L/2+1|Ĥ (n)
A |ε−,k,L/2+1〉 . (C14)

If the knowledge of the full state is important, one can cal-
culate these either numerically, symbolically, or by hand
if N is small enough. We do not study this any further
here, the important point is that on the time scale of 2π/	,
the quasiparticle can move between the sites L/2 + 1 and
L/2 while the boson performs much more rapid motion
between the quasiparticle and the boundary.

The fact that we do not calculate all the intermediate
energies also means that our knowledge of the effective
Hamiltonian is incomplete. The hopping Hamiltonian ĤJ
defined in Eq. (1) and the nearest-neighbor interaction ĤV
defined in Eq. (16) correctly reproduce the first-order and
second-order results, respectively. Similarly, the exchange
Hamiltonian Ĥ	 defined in Eq. (20) correctly couples the
states at (N − 1)st order. The sum of these three therefore
gives us the true zeroth-order states, but the energies are
incorrect. More generally, we must write

Ĥeff = ĤJ + ĤV + Ĥ	 + Ĥ ′
eff. (C15)

Here Ĥ ′
eff contains terms of order 3, . . . , N − 1, for exam-

ple, longer-range hopping terms for the boson. If N is not
too large, these can be written down analytically or sym-
bolically, but for numerical analysis it is easiest to just use
the definition (4) since we already know the states.

c. States of category (i) or (iii)

Let us then assume �N0 
= L/2 + 1 and N > 3. We
saw above that in this case, we do not have to
worry about the states of category (ii) since the states
|ε−,k−,�N0〉 , |ε+,k(ii)

+ ,�N0−1〉 never mix. The only nontrivial
possibility is therefore category (i).

Let us assume that k(i)
+ ≡ k−(L − �N0 + 1)/�N0 ∈

{1, . . . , L − �N0} for some k− = 1, . . . , �N0 − 1. Note that
we must have �N0 
= 1, L. In this case, we know that
there are two eigenstates, which are linear combinations
of the states |ε−,k−,�N0〉 and |ε+,k(i)

+ ,�N0
〉. Furthermore, since

these states are only two hops away from each other, the
eigenstates can be solved already at second order.

The off-diagonal term

〈ε+,k(i)
+ ,�N0

|Ĥ (2)
A |ε−,k−,�N0〉 = 2(−1)k−+1

√
�N0(L − �N0 + 1)

× sin2
(

πk−
�N0

)
� T (C16)

of the matrix H (2)
A is present due to the nonzero coupling

term

T ≡ 〈N�N0 , 1�N0+1|Ĥ (2)
A /�|1�N0−1, N�N0〉

= 〈N�N0 , 1�N0+1|
(

J â†
�N0+1â�N0Ŵ(0)

�J â†
�N0

â�N0−1

+ J â†
�N0

â�N0−1Ŵ(0)
�J â†

�N0+1â�N0

)
|1�N0−1, N�N0〉

= − U
N (N − 1)

(
J
U

)2

(C17)

between the Fock states |1�N0−1, N�N0〉 and |N�N0 , 1�N0+1〉,
describing tunneling of the boson through the quasiparticle.

How strong is the mixing between the states |ε−,k−,�N0〉
and |ε+,k(i)

+ ,�N0
〉? The familiar Rabi formula tells us that

starting from the former, the maximum probability of
observing the system in the latter is P−→+ = 1/{1 +
[(H−− − H++)/2|H+−|]2}, where we denote the matrix
elements of Ĥ (2)

A by H+− = 〈ε+,k(i)
+ ,�N0

|Ĥ (2)
A |ε−,k−,�N0〉 and

so on and so forth. Using Eqs. (C8), (C9), and (C16), we
obtain

P−→+ = 1

1 +
(√

�N0
L−�N0+1 −

√
L−�N0+1

�N0

)2 (
N 2

N−2 + 1
2

)2
.

(C18)

We see that the denominator is large in most cases. The
only exception is when the square root terms cancel each
other out, leaving P−→+ = 1. This happens when �N0 =
(L + 1)/2, that is, when the quasiparticle sits right in the
middle of the chain.

Now, the initial state |N�N0 , 1�10〉 is a linear combina-
tion of the states |ε−,k−,�N0〉 as shown by Eq. (C7). If
�N0 = (L + 1)/2, all the eigenstates belong to category (i)
and we expect the tunneling to be significant. In other
cases, some of the states are of category (iii), contribut-
ing nothing to the tunneling, and even for the states in
category (i) the effect is small. We can thus, to a good
approximation, ignore the tunneling if �N0 
= (L + 1)/2.

The effective Hamiltonian recreating the above results is
given by

Ĥeff = ĤJ + ĤV + ĤT, (C19)
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where the hopping Hamiltonian ĤJ defined in Eq. (1) again
gives the correct first-order behavior, while the nearest-
neighbor interaction term ĤV and the tunneling Hamilto-
nian ĤT, defined in Eqs. (16) and (18), respectively, take
care of the second-order analysis.

As a final note, if N = 2 or N = 3, we just need
to include the exchange Hamiltonian into the effective
Hamiltonian above.

3. Disorder

Let us briefly analyze the effect of disorder on pure tun-
neling and pure exchange. The special cases where both
are present can be handled similarly.

First, because tunneling is a second-order effect, we
need to consider only the operator P̂AĤDP̂A, which now
satisfies

P̂AĤDP̂A |N�N , 1�1〉

=
[
δω�N N − δU�N

2
N (N − 1) + δω�1

]
|N�N , 1�1〉 .

(C20)

In general, it is no longer possible to make P̂AĤDP̂A van-
ish identically in the whole of A just by adjusting ω�. This
is because the number of bosons at any given site can be
either N , one, or zero. In the current case, however, the
stack stays put and the situation is basically the same as in
the case of a single stack. We therefore see that the disorder
starts to affect the tunneling dynamics when Dω ∼ T.

A straightforward calculation shows that P̂AĤDP̂A can
be made arbitrarily small also in the subspace of A relevant
to the case of exchange by choosing

δωm =
{

N
2(N+1)

(
δUL/2N − δUL/2+1

)
if m ≤ L/2,

N
2(N+1)

(
δUL/2+1N − δUL/2

)
if m ≥ L/2 + 1,

(C21)

but now we cannot neglect Q̂AĤDQ̂A, which again first
appears as P̂AĤJ Ŵ(0)ĤDŴ(0)ĤJ P̂A. Based on the analysis
of the single stack, we therefore expect the disorder to start
to affect the exchange dynamics when the larger of Dω and
(J/U)2DU becomes comparable to 	.

APPENDIX D: INTERACTING BOSON STACKS

1. Degenerate states

The anharmonicity of the initial state |N�N0 , M�M0〉 is
−N (N − 1)/2 − M (M − 1)/2. Unlike in the two previ-
ous cases we have considered, the anharmonicity manifold
A does not necessarily contain only the trivial states
|N�N , M�M 〉. For example, in the case of N = M = 3, the
states |4110 . . . 0〉 etc. share the same anharmonicity of −6
as the trivial states.

The general problem of finding all the states with a given
anharmonicity seems to be quite hard, since it involves
solving a constrained multivariate equation among the pos-
itive integers. There are some facts, however, which can be
shown quite easily. Let |n1n2 . . . nL〉 be a nontrivial Fock
state with

∑L
�=1 n� = N + M and

∑L
�=1 n2

� = N 2 + M 2.
Without loss of generality, let us also assume M ≤ N .

First of all, at least three sites must have nonzero
occupation. If only one site was occupied with N + M
bosons, we would have (N + M )2 = N 2 + M 2, implying
the impossibility MN = 0. If two sites were occupied
with Ñ and N + M − Ñ bosons, respectively, we would
have Ñ 2 + (N + M − Ñ )2 = N 2 + M 2. But solving this
quadratic equation yields either Ñ = M or Ñ = N , which
are the trivial states.

Next, we see that none of the sites can have M or N
bosons. To see this, assume the contrary, say, n�0 = N for
some �0 (the case of n�0 = M follows exactly the same
logic). Then

∑
�
=�0

n2
� = M 2. But applying Eq. (B1), we

must have
∑

�
=�0
n2

� < M 2 (at least two of the remaining
n�s are nonzero, hence the strict inequality), leading to the
contradiction M < M .

Let us then order the sites according to their occupation
numbers, so that nl̃1

≥ n�̃2
≥ . . . ≥ n�̃L

. Then
∑L

�=1 n2
� =

n2
�̃1

+ ∑
�
=�̃1

n2
� = N 2 + M 2. Applying again Eq. (B1), we

have
∑

�
=�̃1
n2

� < (N + M − n�̃1
)2, and thus N 2 + M 2 −

n2
�̃1

< (N + M − n�̃1
)2. This is satisfied if either n�̃1

< M
or n�̃1

> N . The former is not a proper solution. If it
were, we would have N 2 + M 2 = ∑

� n2
� ≤ ∑

� n�n�̃1
=

n�̃1
(N + M ) < M (N + M ), which is clearly impossible

since M ≤ N . We therefore find n�̃1
≥ N + 1, that is,

maximum occupation is at least N + 1.
We can also bound the next-highest occupation

n�̃2
from above. Since

∑
� n2

� = N 2 + M 2, we have∑
�
=�̃1

n2
� = N 2 + M 2 − n2

�̃1
. But now

∑
�
=�̃1

n2
� ≥ n2

�̃2
+

1, while N 2 + M 2 − n2
�̃1

≤ N 2 + M 2 − (N + 1)2 ≤ M 2 −
2M − 1. We therefore must have n2

�̃2
+ 1 ≤ M 2 − 2M −

1, and so n2
�̃2

≤ (M − 1)2 − 3. Hence, we obtain the bound
n�̃2

≤ M − 2, that is, the second-highest occupation is at
most M − 2.

To recap, we have shown that a nontrivial Fock state
|n1n2 . . . nL〉 with total boson number N + M and anhar-
monicity −N (N − 1)/2 − M (M − 1)/2 must have at least
three occupied sites, the maximum occupation is at least
N + 1, and the second-highest occupation is not greater
than M − 2. If we find one such set of n�, then of course
all the different permutations among the sites are also valid
solutions.

The crucial question here is at what order do the nontriv-
ial states couple to the trivial ones. If this coupling occurs
at an order higher than 2, then the degeneracy between the
trivial and nontrivial states is almost certainly broken at
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second order (compare with the analysis of second-order
energies in the case of M = 1 in Appendix C) and we do
not need to worry about the nontrivial states at all.

Coupling at first order is not possible since we need to
move at least one boson from the site �̃1 and completely
clear at least the site �̃3. Similarly, second-order coupling
is not possible if more than three sites are occupied.

If three sites are occupied, second-order coupling is
possible if n�̃1

= N + 1 and n�̃3
= 1. This leaves n�̃2

=
M − 2, and the site �̃2 must lie between the sites �̃1 and �̃3.
We must, of course, satisfy (N + 1)2 + (M − 2)2 + 12 =
N 2 + M 2, and therefore M = (N + 3)/2.

In order to get a rough estimate for the amount of mix-
ing between the trivial and nontrivial states, let us consider
the pair of states |N�, M�+1〉, |(N + 1)�, (M − 2)�+1, 1�+2〉
at second order, with M = (N + 3)/2. The nontrivial
state here is of course coupled to other nontrivial states
already at first order and we should thus consider one
of the eigenstates, but this simplified analysis should get
us in the ballpark. Just like in the case of the quasi-
particle and the boson, we use the Rabi formula to cal-
culate the maximum probability of being in the state
|(N + 1)�, (M − 2)�+1, 1�+2〉 if we start from the state
|N�, M�+1〉. Assuming none of the sites is at the boundary,
we obtain

〈N�, M�+1|Ĥ (2)
A |N�, M�+1〉 = −�U

(
J
U

)2 [
N (N + 5)

N − 5
− N 2 + 3N + 3

N − 1
+ N + 3

N + 1

]
, (D1)

〈(N + 1)�, (M − 2)�+1, 1�+2|Ĥ (2)
A |(N + 1)�, (M − 2)�+1, 1�+2〉 = −�U

(
J
U

)2[N + 1
N

+ 5N + 7
N + 5

+ 2(N − 1)

N − 5
− N + 1

N − 1

]
,

(D2)

〈(N + 1)�, (M − 2)�+1, 1�+2|Ĥ (2)
A |N�, M�+1〉 = −�U

(
J
U

)2
[

−2
√

N + 3
N − 1

]
. (D3)

Here we assume N 
= M + 1. In the case N = M +
1 (and thus N = 5, M = 4), the degeneracy is bro-
ken already at first order since |N�, (N − 1)�+1〉 and
|(N − 1)�, N�+1〉 are coupled, producing first-order ener-
gies ±�JN , which are always greater in magnitude than
the first-order energies of the nontrivial states. The latter
must lie between ±3�J as can be seen, for example, by
using Weyl’s inequality [75].

Using these matrix elements and the Rabi formula,
we see that the maximum probability Pnontriv of being in
the nontrivial state |(N + 1)�, (M − 2)�+1, 1�+2〉 is rather
small for realistic values of N . For N ≤ 10, we have the
following values for (N , Pnontriv): (3, 0.05), (7, 0.01), and
(9, 0.02).

All in all, the role of the nontrivial states is either nonex-
istent [if M 
= (N + 3)/2] or small [if M = (N + 3)/2],
and we ignore them in the following.

2. Perturbation analysis

Let us again apply Eq. (9), this time inside the
anharmonicity manifold A = span{|N�N , M�M 〉 |�N , �M =
1, . . . , L; �M 
= �N }. We can now utilize a lot of the knowl-
edge we have built when analyzing the two previous
cases.

a. M = N

When the stacks are of the same size, M = N , the
analysis is very much like in the case of only one stack. As
long as there are no couplings between the states (at orders
< N ), the boundaries affect in exactly the same way as ear-
lier, but this time separately for each stack. In addition, the
proximity of the two stacks also changes the energy of the
state.

The zeroth and first orders are trivial. At second
order, the state |N0 . . . 0N0 . . . 0〉 is higher in energy than
|0 . . . 0N0 . . . 0N0 . . . 0〉 due to the presence of the left
boundary, and the energy of the state |N0 . . . 0N 〉 is even
greater. The energy differences can be calculated simply
by adding the single-stack contributions calculated before.
Moreover, the energy of the state |0 . . . 0NN0 . . . 0〉 is dif-
ferent from that of the state |0 . . . 0N0 . . . 0N0 . . . 0〉 as can
be seen by direct calculation:

K̂ (0)

2 |N�, N�+1〉 = �U
(

J
U

)2

2N
N 2 − 2
N − 1

|N�, N�+1〉 ,

(D4)

K̂ (0)

2 |N�, N�+m〉 = −�U
(

J
U

)2 4N
N − 1

|N�, N�+m〉 , (D5)

where m > 1 and the sites are assumed to be more than
one site away from the edges of the chain in order for the
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boundary effects to not play any role. There is therefore
interaction between the quasiparticles, and it is of longer
range than the on-site one between the bare bosons. All in
all, the anharmonicity manifold A is split into multiple dis-
tinct parts according to the relative positions of the stacks
and the boundaries. And a similar thing occurs at every
even order below N .

Let us study the quasiparticle-quasiparticle interaction at
some order 2n < N in more detail. This is manifested by
the fact that the state |N�, N�+n〉 has different energy than
the states |N�, N�+n′ 〉 with n′ > n. The reason for this is
again straightforward to understand. Take one boson from
each stack and move them first towards each other by m =
0, . . . , n and n − m sites, respectively, and then back. After
the first phase, the two bosons sit at the same site if we start
from the state |N�, N�+n〉. But this is not the case for the
other states, leading to difference in energy. All the other
trajectories generated by Ĥ (2n)

A are the same for both of the
states and thus do not contribute to the difference.

To actually calculate this energy difference, we need
to consider every possible order we can make the single-
boson hops. This is easiest to do by representing the
process as a string of length 2n consisting of the letters
L and R, where L (R) means that we move the boson orig-
inating from the left (right) stack. For fixed m, the first n
letters should contain m times the letter L and n − m times
the letter R, as should also the latter half. For example,
the string LRLLLR represents a sixth-order process with
m = 2, where we first move a boson from the left stack
one site to the right, then a boson from the right stack one
site to the left, then move the first boson once more to the
right and then two times to the left back to the left stack,
and finally move the boson from the right stack one site to
the right back to where it started from.

First of all, we can write the energy difference 
E(2n)

between the states as


E(2n) ≡ 〈N�, N�+n|Ĥ (2n)
A |N�, N�+n〉

− 〈N�, N�+n+1|Ĥ (2n)
A |N�, N�+n+1〉

=
n∑

m=0


E(2n)
m , (D6)

where 
E(2n)
m denotes the energy difference for a fixed

value of m defined above. For m = 0, n, we obtain quite
straightforwardly


E(2n)

0 = 
E(2n)
n = �U

(
J
U

)2n N 3

(N − 1)2n−1 . (D7)

For m = 1, . . . , n − 1, we need to split the trajectories fur-
ther. To see this, let us consider strings starting and ending
with L. The energy difference now depends on the posi-
tions of the first and last occurrences of R in the string.

Let k be the index of the first R and 2n − k̃ the index of the
last. Furthermore, let 
E(2n)

mkk̃
denote the energy difference

for such a trajectory. Then, after a while, we obtain


E(2n)

mkk̃
= −�U

(
J
U

)2n 2N − 1
2N − 3

N 2

(N − 1)2n−1 2k+k̃−2n.

(D8)

We also need to calculate how many trajectories there
are with given m, k, and k̃. A little combinatorics shows
that this is given by

( n−k
m+1−k

)(n−1−k̃
m−k̃

)
. The first factor sim-

ply counts the number of possible arrangements of the
remaining letters L and R in the first half of the chain after
fixing the first k letters L · · · LR. And the second binomial
coefficient does the same for the latter half of the chain.
By performing the analysis also for strings starting and/or
ending with R, we can write


E(2n)
m = −�U

(
J
U

)2n 2N − 1
2N − 3

N 2

(N − 1)2n−1 2−2n+1

× (Sm + Sn−m)2 (D9)

for m = 1, . . . , n − 1, where

Sm =
m∑

k=1

(
n − 1 − k

m − k

)
2k. (D10)

Playing around a bit with the geometric series shows that
Sm + Sn−m = 2n, and so finally


E(2n) =
n∑

m=0


E(2n)
m

= 2�U
(

J
U

)2n N 3

(N − 1)2n−1

(
1 − n − 1

N
2N − 1
2N − 3

)
.

(D11)

At N th order, we finally obtain a coupling between the
states, lifting the remaining relevant degeneracy. Strictly
speaking, there is still some degeneracy left. For example,
all the states of the form |0 · · · 0NN0 · · · 0〉 with N ≥ 3,
which we separate out from the rest of the states at sec-
ond order have the same energy at sufficiently low orders.
The coupling between these is accomplished at order 2N ,
and this would allow the bound pairs to move provided the
chain is long enough so that the boundary effects would not
intervene. But since the coupling is so weak, the dynamics
would be too slow to be observable, and so we ignore the
phenomenon here.
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All the above can again be condensed into an effective
Hamiltonian, which now reads

Ĥeff = Ĥω̃ + ĤJ̃ + ĤV, (D12)

where the interaction Hamiltonian ĤV defined in Eq. (22)
takes into account the interaction between the quasiparti-
cles.

b. M = N − 1

If M = N − 1, there is a coupling between the states
|N�, M�+n〉 and |M�, N�+n〉 at order n. The coupling strength
is given by

� 	n ≡ 〈N�, M�+n|Ĥ (n)
A |M�, N�+n〉

= 〈N�, M�+n| �J â†
�â�+1

×
n−1∏

m=1

Ŵ(0)
�J â†

�+mâ�+m+1 |M�, N�+n〉

= (−1)n−1 N
(N − 1)n−1 � U

(
J
U

)n

. (D13)

This implies stronger interaction between the quasiparti-
cles than above.

At first order, for example, the eigenstates of Ĥ (1)
A can

be divided into two categories. First, we have the lin-
ear combinations (|N�, M�+1〉 + |M�, N�+1〉)/

√
2 for � =

1, . . . , L − 1 with energies E(1) = ±�	1. Second, we have
the zero-energy Fock states with the stacks farther apart.
The superposition states with different � couple to each
other at order 2M , but since this is again greater than N , we
ignore it here. Similarly, at every order n < M we break the
degeneracy between the states where the stacks are n sites
apart and the states where the distance between the stacks
is greater. Note that this occurs earlier than in the case of
equal-size quasiparticles, and so the analysis presented for
M = N is not relevant here.

The effective Hamiltonian now reads

Ĥeff = Ĥ (N )

ω̃
+ Ĥ (N )

J̃
+ Ĥ (M )

ω̃
+ Ĥ (M )

J̃
+ Ĥ	, (D14)

where the exchange Hamiltonian Ĥ	 defined in Eq.
(24) takes into account the exchange coupling discussed
above, and we need to include separate single-quasiparticle
Hamiltonians for both of the quasiparticles (denoted by the
superscripts) since the coefficients ω̃� and J̃ depend on the
size of the stack.

c. M < N − 1

In the case M < N − 1, the effective Hamiltonian con-
tains contributions from both ĤV and Ĥ	. Following

exactly the same reasoning as above in Appendix D 2 a,
we obtain

Vn ≡ 
E(2n) = 〈N�, M�+n|Ĥ (2n)
A |N�, M�+n〉

− 〈N�, M�+n+1|Ĥ (2n)
A |N�, M�+n+1〉

= NM (N − 1)(N − 3M + 1)

(N + M − 3)(N − M )(N − M + 1)(M − 1)2n−1

×
(

J
U

)2n

U + (M ↔ N ) , (D15)

where the latter term (M ↔ N ) is just the first term but
with M and N exchanged. A general expression for the
exchange rate 	� is trickier to calculate, but for experi-
mentally relevant values of N and M , the neighboring-site
exchange rate 	1 should be enough. For this, we obtain
(cf. the analysis in Appendix D 2 b above)

	1 ≡ 〈N�, M�+1|Ĥ (N−M )
A /�|M�, N�+1〉

= (−1)N−M−1
(

N
M

)
(N − M )2

(N − M )!

(
J
U

)N−M

U. (D16)

3. Disorder

Let us again study the effect of disorder on some dynam-
ical effects. A more detailed analysis can then be made on
a case-by-case basis.

First, disorder naturally helps in the formation of bound
pairs. If the stacks are of the same size, we can simply use
the results from the case of a single stack to estimate when
the dynamics comes to a halt. The case of different-sized
stacks requires a bit more care since we are, in general,
unable to make P̂AĤDP̂A to vanish identically simply by
adjusting ω�, making the system more sensitive to disorder.

Second, the exchange oscillations within bound pairs
respond to disorder like the exchange oscillations in the
case of a stack and a single boson. That is, the oscillations
start to cease when either Dω or (J/U)2DU comes close to
	n. To eliminate the disorder in the space spanned by the
two states |N�, Mm〉 and |M�, Nm〉, we need to set

δω� = δU�

N 2 + M 2 + NM − N − M
2(N + M )

− δUm
NM

2(N + M )
,

(D17)

δωm = δUm
N 2 + M 2 + NM − N − M

2(N + M )
− δU�

NM
2(N + M )

.

(D18)

APPENDIX E: NUMERICAL DETAILS

All numerical results presented in the main text are
computed using a numerically exact Krylov subspace
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method [77] implemented in the Julia programming
language [78]. The example simulations are computed
using the experimentally reasonable parameters J/2π =
10 MHz and U/2π = 250 MHz, see, e.g., Refs. [8,10].
For the spectrum of Figure 1, a larger value of J/2π =
20 MHz was used for the hopping frequency in order to
make the discreteness of the anharmonicity bands more
apparent. To elucidate the accuracy of the approximation,
in three of the figures of the main text we compare local
occupations computed using the full Hamiltonian (1) and
the relevant effective Hamiltonians.

APPENDIX F: DISORDER TUNING EXAMPLE

As discussed in Sec. VII and in the previous Appen-
dices, the effects of anharmonicity disorder can to some
extent be remedied via flux tuning. We here give a brief
simulated demonstration of this in action through two
examples shown in Fig. 7. In the simulations we add a
disorder term in Hamiltonian (1)

ĤD/� =
L∑

�=1

δU�n̂(n̂ − 1), (F1)

with randomly picked δU� ∈ [−5 MHz, 5 MHz]. In the
examples, we choose a chain of L = 6 transmons, and
randomly pick the values δU�/2π = {1.59, −1.75, 4.62,
−3.02, 3.81, 3.82} MHz. For the sake of simplicity, we
assume that any disorder in on-site energies and hopping
frequencies are negligible.

In the first example we have a single stack of N = 3
bosons; see Fig. 7(a). Clearly, the disorder is strong enough
to freeze the dynamics of the stack. We can, however,
restore the near-degeneracy of the anharmonicity manifold
relevant to a single stack of N bosons by tuning the on-site
energy terms, which realizable in superconducting qubits
with high-accuracy through magnetic flux controls,

Ĥtuning/� =
L∑

�=1

δω� = −
L∑

�=1

(N − 1)U�. (F2)

This allows the stack to move again approximately simi-
larly to the ideal, nondisordered case. As discussed before,
the dynamics are still modified by the disorder due to
the changes to the energies of the hopping paths via the
other anharmonicity manifolds. It should be noted that the
degree to which this kind of simple tuning restores the ideal
dynamics depends on the values of δU�.

In the second example, shown in Fig. 7(b), we have two
different size stacks with a stack of five bosons added to
the first example. Now, it is not possible to bring the whole
anharmonicity manifold to the nondisordered near degen-
eracy. Noting however, that the higher stack is, in this
example, bound to its initial location by the lower stack,

Ideal Disordered Tuned

T
im

e 
t (

µs
)

T
im

e 
t (

µs
)

Site Site Site

(a)

(b)

FIG. 7. The dynamics frozen by anharmonicity disorder and
partial recovery via tuning of on-site energies in a chain of L = 6
transmons. (a) A single stack of bosons with the initial state |32〉.
(b) Different size stacks with the initial state |32, 55〉. On the left
panels, we have the ideal, nondisordered case. The middle panels
show the dynamics of a disordered chain. On the right, we add
an on-site energy of ω� = −2δU�, thus approximately restoring
the nondisordered dynamics.

we can restore the nondisordered dynamics by targeting
the tuning only on the sites the lower stack can access. We
can do this by adding again the tuning term of Eq. (F2).
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