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The implementation of time-evolution operators on quantum circuits is important for quantum simula-
tion. However, the standard method, Trotterization, requires a huge number of gates to achieve desirable
accuracy. Here, we propose a local variational quantum compilation (LVQC) algorithm, which allows us to
accurately and efficiently compile time-evolution operators on a large-scale quantum system by optimiza-
tion with smaller-size quantum systems. LVQC utilizes a subsystem cost function, which approximates
the fidelity of the whole circuit, defined for each subsystem that is as large as the approximate causal cones
generated by the Lieb-Robinson (LR) bound. We rigorously derive its scaling property with respect to the
subsystem size and show that the optimization conducted on the subsystem size leads to the compilation
of whole-system time-evolution operators. As a result, LVQC runs with limited-size quantum comput-
ers or classical simulators that can handle such smaller quantum systems. For instance, finite-ranged and
short-ranged interacting L-size systems can be compiled with O(L0)- or O(log L)-size quantum systems
depending on the observables of interest. Furthermore, since this formalism relies only on the LR bound,
it can efficiently construct time-evolution operators of various systems in generic dimensions involving
finite-, short-, and long-ranged interactions. We also numerically demonstrate the LVQC algorithm for
one-dimensional systems. Through the employment of classical simulation by time-evolving block dec-
imation, we succeed in compressing the depth of the time-evolution operators up to 40 qubits by the
compilation for 20 qubits. LVQC not only provides classical protocols for designing large-scale quan-
tum circuits but also sheds light on applications of intermediate-scale quantum devices in implementing
algorithms in larger-scale quantum devices.

DOI: 10.1103/PRXQuantum.3.040302

I. INTRODUCTION

The implementation of time-evolution operators under
a large-scale Hamiltonian is one of the most important
tasks in noisy intermediate-scale quantum (NISQ) devices
[1] and larger fault-tolerant quantum computers to exploit
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their computational power. The task is computationally
hard for classical computers; despite the enormous effort
made toward its efficient computation, it generally takes
resources that are exponential in their system size. On the
other hand, quantum computers are capable of executing it
in polynomial time [2]. It is also important for comput-
ing eigenvalues and eigenstates of a system on a quan-
tum computer; the quantum phase-estimation algorithm
[3–5] uses controlled time-evolution operators to gener-
ate them. Recent hardware with tens of qubits has realized
its proof-of-principle demonstrations for systems such as
Fermi-Hubbard models [6], discrete time crystals [7,8],
and various equilibrium and nonequilibrium phenomena
[9–11].
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Trotterization is one of the simplest implementations,
which has been extensively investigated theoretically [2,
12–17] and employed in various experiments such as
in Refs. [6,9,11,18,19]. Despite recent developments, it
may involve a huge number of gates when applied to a
large-scale problem with over 50 qubits. For example, in
Ref. [17] it has been estimated that we need 1015–1018

gates to perform time evolution of simple molecules. Even
for the simpler Heisenberg model, it is estimated that
106–107 elementary rotation gates are needed [15]. These
estimates are well beyond the reach of current quantum
devices, the gate infidelities of which are on the order of
1%. Moreover, it is problematic even for an ideal fault-
tolerant quantum computer because the execution of 1015

gates would require years even if it could perform 108 gates
per second.

It is therefore vital to develop methods that can com-
press the circuits for time evolution. The so-called qubiti-
zation technique [20] has achieved an optimal scaling in
the number of gates needed. However, it requires ancilla
qubits and a relatively large number of controlled gates and
seems to be difficult in the NISQ era (see, e.g., Ref. [21]).
When focusing on algorithms that require no or few ancilla
qubits, Refs. [22,23], for example, have presented depth-
compression methods for Trotter expansion based on some
algebraic structures. Another promising approach is to use
the framework of variational quantum algorithms [24–40].
These are exemplified by variational quantum simulation
[25–33], and quantum compilations employing variational
quantum diagonalization [34–36]. Among other methods,
quantum-assisted quantum compiling (QAQC) [37,38] and
its variant [39] comprise one of the promising ways to
obtain approximate time-evolution operators with a com-
pressed circuit depth. QAQC uses a variational quantum
circuit V to approximate a target unitary U. Importantly, the
authors have employed a local cost function instead of the
naive global fidelity measure Tr(U†V) to avoid the barren-
plateau problem. While QAQC is available for a generic
target unitary gate U on L qubits, it seems to be problem-
atic for depth compression that the target U itself should
be accurately implemented on quantum circuits.

In this paper, we develop a local variational quantum
compilation (LVQC) protocol to search an accurate and
efficient quantum circuit for constructing large-scale local
Hamiltonian dynamics with limited-size quantum devices
or possibly with classical simulation of such limited-size
quantum circuits. To formulate the protocol, we focus on
the Lieb-Robinson (LR) bound [41], which dictates that
the dynamics under a local Hamiltonian have approxi-
mate causal cones. We compose subsystem cost functions
for every subsystem, which measure the local difference
between the target unitary gate and the ansatz. Exploit-
ing the LR bound, we rigorously derive scaling of the cost
functions, which is validated when the subsystem size is
as large as the approximate causal cone. These results lead

[Local Compilation (classical simulator or NISQ device)]

[Quantum execution of time evolution)]

Compilation size

FIG. 1. An overview of the local variational quantum com-
pilation (LVQC) protocol. We optimize the cost functions for
the compilation size L̃, determined by the Lieb-Robinson (LR)
bound. For finite-ranged and short-ranged interacting cases, this
typically gives L̃ � O(L0) or L̃ � O(log L). We can directly
implement a large-scale time-evolution operator with the optimal
parameter θopt. LVQC can be completed by classical simulation
with some approximation or NISQ devices, without implement-
ing the target exp(−iH (L)τ ) itself.

to our LVQC protocol as described in Fig. 1; we opti-
mize a local-compilation cost function, corresponding to
the average of the subsystem cost functions over the sub-
systems. This cost function can be computed with an at
most 2L̃-qubit quantum device or a corresponding classi-
cal simulator, where L̃ (< L system size) denotes the scale
of the causal-cone size. Finally, we construct a quantum
circuit that approximates the target time-evolution opera-
tor for the system size L based on the resulting optimal
parameters.

We also conduct a classical numerical demonstration of
LVQC to compress the depth of the ideal time-evolution
operators. We adopt a one-dimensional (1D) Heisenberg
model and optimize the cost function for subsystems
by approximately computing it with time-evolving block
decimation (TEBD) [42,43]. We successfully compose a
depth-5 time-evolution operator for 40 qubits by the local
compilation for 20-qubit systems. This achieves an aver-
age gate fidelity of 0.9977, which is much better than that
of the same-depth Trotterization, which is 0.8580. In addi-
tion, by computing the stroboscopic dynamics of ferro-
magnetic states with local excitations or domain walls, the
optimal ansatz obtained by LVQC reproduces the dynam-
ics with size and time scales twice and ten times as large
as those used in the compilation, respectively.

We emphasize some advantages of LVQC. First, it
requires at most 2L̃-qubit quantum devices as large as
the causal-cone size, which is comparably smaller than
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the whole-system size L. There is no need to prepare the
ideal target unitary gate for size L in our protocol. Second,
our formulation relies only on the existence of the LR
bounds. LVQC is available for broad systems involving
finite-ranged, short-ranged, and long-ranged interactions
in generic dimensions, with the help of the recent devel-
opments in the LR bound [44–52]. We expect that LVQC
can be applied for executing large-scale time-evolution
operators in the following ways:

(1) Classical local compilation with approximations
and quantum execution in NISQ or larger
systems.

(2) Quantum local compilation by NISQ devices and
quantum execution in larger quantum devices.

The first case is exemplified by our numerical results
based on TEBD. LVQC ensures the small-size compila-
tion that is sometimes accessible with classical simulators
employing some approximations. In that case, we can
classically compile time-evolution operators without suf-
fering noise and statistical errors and we can simulate
large-scale quantum systems that are inaccessible only
with classical simulators; long-time behavior beyond the
coherence time will be observed in programmable quan-
tum simulators by the optimized time-evolution opera-
tors. The second case is rather a long-term perspective.
To simulate quantum materials with generic dimensions
or interactions by NISQ devices or larger fault-tolerant
quantum computers, the local-system size for the com-
pilation will become at least hundreds or thousands of
qubits. Such an intermediate scale required for LVQC will
be just within the scope of NISQ devices in the near
future and hence our results should contribute to bridging
the gap between NISQ devices and larger-scale quantum
computers.

The rest of this paper is organized as follows. In Sec. II,
we introduce QAQC and the LR bound as the prelimi-
naries for our results. We devote Secs. III, IV, and V to
providing the main results. In Sec. III, we introduce the
subsystem cost function, derived from the local cost func-
tions of QAQC, and rigorously prove its scaling property
by the LR bounds. In Sec. IV, we formulate the LVQC pro-
tocols for, respectively, translationally invariant systems
and other generic systems. The above scaling yields the
local compilation of large-scale Hamiltonian dynamics for
both cases, while the protocol is simplified in the former
case. Finally, we show its numerical verification in Sec. V
and conclude this paper in Sec. VI.

II. PRELIMINARIES

In this section, we review some preliminary studies
in order to derive our results on LVQC for large-scale
Hamiltonian dynamics.

A. Quantum-assisted quantum compiling (QAQC)

QAQC [37] is a quantum-classical hybrid algorithm to
obtain a variational quantum circuit V(θ) with parame-
ters θ , which approximates a target unitary operator U.
In Ref. [37], the authors have introduced several cost
functions C(U, V) that should be minimized to obtain an
optimal parameter θopt such that U � V(θopt). The cost
functions C(U, V) should satisfy the following proper-
ties:

(1) (Computability) We can efficiently compute C(U, V)
with a quantum computer.

(2) (Faithfulness) C(U, V) is always non-negative and it
becomes zero if and only if U and V are equivalent.

(3) (Operational meaning) C(U, V) provides constraints
on some operationally meaningful value.

The first cost function is a global one, defined by

CHST(U, V) = 1 − 1
4L |Tr[U†V]|2, (1)

where U and V are defined on an L-qubit lattice�. This can
be measured by means of the Hilbert-Schmidt test (HST).
In the HST, we use an 2L-qubit lattice �A ∪�B (each of
�A and �B is a copy of �) and initialize the state by the
Bell state |�+〉AB, defined by

|�+〉AB =
⊗

j ∈�
|�+〉Aj Bj

, (2)

|�+〉Aj Bj
= 1√

2
(|00〉 + |11〉)Aj Bj . (3)

The state |�+〉Aj Bj
represents the Bell pair of the j th sites

Aj and Bj , respectively, in �A and �B. Then, we apply U
and V∗, respectively, to the subsystems A and B, resulting
in the state

ρAB(U, V) = (UA ⊗ V∗
B) |�+〉AB 〈�+|AB (UA ⊗ V∗

B)
†, (4)

and perform the Bell measurements for every j th pair
Aj and Bj . This is equivalent to measuring �1�2 . . . �L,
where �j is defined by

�j = |�+〉Aj Bj
〈�+|Aj Bj

. (5)

Finally, since Eq. (1) can be rewritten as

CHST(U, V) = 1 − Tr[�1�2 . . . �LρAB(U, V)], (6)

we can efficiently compute CHST(U, V) with a 2L-qubit
quantum device. The term Tr[�1�2 . . . �LρAB(U, V)] is
schematically depicted in Fig. 2(a). The cost function
CHST(U, V) is faithful in that it satisfies 0 ≤ CHST(U, V) ≤ 1

040302-3



KAORU MIZUTA et al. PRX QUANTUM 3, 040302 (2022)

(a)

(b)

FIG. 2. A schematic picture of the way to compute the global
and local cost functions. In each figure, the application of a Bell
pair |�+〉Aj Bj

indicates the taking of contractions on the j th
pair Aj and Bj , which we represent by the red solid lines. (a)
A schematic picture of Tr[�1 . . . �LρAB(U, V)], which gives the
global cost function CHST via Eq. (6). (b) A schematic picture of
Tr[�j ρAB(U, V)], which gives the local cost function CLHST via
Eq. (8).

and in that it becomes zero if and only if there exists ϕ ∈ R

such that U = eiϕV.
The second cost function is local and is defined by

CLHST(U, V) = 1
L

L∑

j =1

C(j )LHST(U, V), (7)

where each term is given by

C(j )LHST(U, V) = 1 − Tr[�j ρAB(U, V)], (8)

for j = 1, 2, . . . , L. They satisfy 0 ≤ CLHST(U, V) ≤ 1 and
0 ≤ C(j )LHST(U, V) ≤ 1 by their definitions. We can com-
pute them on a 2L-qubit quantum device by means of
the local Hilbert-Schmidt test (LHST), in which we per-
form Bell measurement of the j th pair, Aj and Bj , on the
state ρAB(U, V) for C(j )LHST(U, V) and take its average for
CLHST(U, V). The term Tr[�j ρAB(U, V)] is described by
Fig. 2(b). In terms of faithfulness, C(j )LHST(U, V) satisfies the
following property:

C(j )LHST(U, V) = 0 if and only if
∃ϕ ∈ R, ∃W : unitary, such that UV† = eiϕI{j } ⊗ W,

(9)

where I{j } denotes the identity operator acting on the j th
qubit. This indicates that the action of U corresponds
to that of V on the j th site. Thus, the cost function
CLHST(U, V) becomes zero if and only if there exists ϕ ∈ R

such that U = eiϕV.

In the QAQC in Ref. [37], the authors employ either or
the combined cost function

Cα(U, V) = αCHST(U, V)+ (1 − α)CLHST(U, V), (10)

with 0 ≤ α ≤ 1. It is faithful and it possesses an opera-
tional meaning in terms of the average gate fidelity, defined
by

F̄(U, V) =
∫

ψ

| 〈ψ |U†V|ψ〉 |2dψ , (11)

where ψ is a Haar random state.
This indicates the expected fidelity between U |ψ〉 and

V |ψ〉 averaged over a Haar random state |ψ〉 and it is
bounded from below by the resulting cost functions as
follows [37,53,54]:

F̄(U, V) = 1 − 2|�|

2|�| + 1
CHST(U, V), (12)

F̄(U, V) ≥ 1 − 2|�|

2|�| + 1
· |�|CLHST(U, V), (13)

where |�| denotes the number of sites in the lattice�. The
cost functions of QAQC can be efficiently computed on a
2L-qubit quantum device based on Eqs. (6) and (8). As an
alternative way to compute them, we prove the following
lemma, which dictates that we can nontrivially reduce the
resource for cost evaluation to L qubits (for the derivation,
see Appendix A).

Lemma 1. CHST(U, V) and CLHST(U, V) for L-qubit uni-
taries U and V can be evaluated efficiently within an
additive error ε with O(1/ε2) runs of an L-qubit device.

It should be noted that the algorithm to achieve Lemma
1 involves Monte Carlo sampling and induces an increased
(though constant) overhead compared to the case where
we use 2L qubits. In any cases, the bottleneck of QAQC
for compressing time-evolution operators is to implement
the target U itself on at least L-qubit quantum systems for
cost evaluation. Our protocol can avoid this problem by
compiling with smaller quantum systems with the size L̃,
as large as the approximate causal cone by the LR bound,
as discussed in Sec. IV,

B. Lieb-Robinson bound

The LR bound dictates that any local observable cannot
spread out faster than a certain finite velocity (called the
Lieb-Robinson velocity) under a local Hamiltonian [41].
This can be interpreted as the emergence of approximate
causal cones in quantum mechanics.
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Let us describe it more precisely. We focus on a local
Hamiltonian on a lattice �, given by

H =
∑

X ⊆�
hX , (14)

where hX denotes a term nontrivially acting on a domain
X ⊆ �. Let ‖ · ‖ denote the operator norm. Here, we
assume:

(1) (Extensiveness) The local energy scale at every site
is bounded by a finite value g:

∑

X ;X �j

‖hX ‖ ≤ g, for anyj ∈ �. (15)

(2) (Locality of interactions) At most k-body interac-
tions are involved with k = O(1):

hX = 0, if |X | > k. (16)

(3) (Range of interactions) Interactions are finite ranged
with distance dH = O(1):

hX = 0, if ∃j , j ′ ∈ X such that dist(j , j ′) > dH .
(17)

Let us consider the local observables Oj and Oj ′ acting on
j and j ′, respectively, and assume that they are normalized
as ‖Oj ‖ = ‖Oj ′‖ = 1. Then, the inequality

‖[U(τ )†Oj U(τ ), Oj ′]‖ ≤ Ce−(dist(j ,j ′)−vτ)/ξ , (18)

U(τ ) = e−iHτ (19)

holds for a fixed time τ . Here, the constant velocity v and
the constant length ξ are determined only by the extensive-
ness g, the locality k, and the range dH , while the constant
C depends additionally on τ (C typically increases linearly
in τ [41]).

This suggests that U(τ )†Oj U(τ ) approximately acts
on the domain inside the approximate causal cone {j ′ ∈
� | dist(j , j ′) ≤ vτ } and that the components outside of it
are exponentially suppressed in the distance from j . As a
result, it can be expected that U(τ )†Oj U(τ ) is well repro-
duced by the local Hamiltonian inside the approximate
causal cone. Let H (L′,j ) denote the local Hamiltonian com-
posed of hX , the support X of which has distance from j
smaller than L′/2 [for the exact definition, see Eqs. (23)
and (24)]. In fact, we can derive the following inequality

from the LR bound (see Ref. [50] and Appendix B):

‖U(τ )†Oj U(τ )− eiH (L′ ,j )τOj e−iH (L′ ,j )τ‖ ≤ εLR, (20)

εLR = C′
∫ ∞

L′/2−dH

e−(x−vτ)/ξdx = e−O(l0/ξ), (21)

where l0 is defined by L′ = 2(l0 + dH + vτ). The integra-
tion comes from the summation all over the lattice out of
the approximate causal cone.

This relation enables us to approximate the local cost
function (7) for a large size L by that for the smaller
size L′ with an arbitrarily small error e−O(l0/ξ) when L′ is
sufficiently large compared to vτ .

III. APPROXIMATION OF LOCAL COST
FUNCTIONS BY LIEB-ROBINSON BOUND

In this section, we provide the first main result, where
we compose the subsystem cost functions and show their
scaling property by the LR bound. The subsystem cost
functions are obtained by the restriction of systems to
smaller subsystems for the local cost function CLHST. We
clarify the approximate causal cone from the LR bound
and the exact causal cone from the ansatz in the local cost
functions. They lead to two formulas, which are, respec-
tively, raised as Propositions 2 and 3 below. As a result,
we obtain how the error between the subsystem cost func-
tions and CLHST scales in the subsystem size L̃ and we
validate the approximation of CLHST by the subsystem
cost functions with proper L̃. As we see in Sec. IV, these
results enable the LVQC protocol for the whole-system
Hamiltonian dynamics.

First, we specify the setup and the notation. We consider
a local and extensive Hamiltonian with finite-ranged inter-
actions, H , on a lattice� [see Eqs. (15)–(17)]. Throughout
the main text, we focus on a 1D L-qubit system, as � =
{1, 2, . . . , L}, but the extension to other cases is straightfor-
ward (see Appendix B). We explicitly write the system size
L like H (L) and consider the target time-evolution oper-
ator U(L) = exp(−iH (L)τ ). For simplicity, we employ a
brickwork-structured ansatz, with the depth d in the form
of

V(L)(θ) =
d∏

i=1

[(
∏

k

V(2)2k,2k+1(θi,k)

)(
∏

k

V(2)2k−1,2k(θ
′
i,k)

)]
,

(22)

as described in Fig. 3. Here, V(2)j ,j ′ represents an arbitrary
parametrized two-qubit gate on the neighboring sites j
and j ′ and the parameter set θ is composed of {θi,k}i,k and
{θ ′

i,k}i,k.
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Depth 1

FIG. 3. The brickwork-structured ansatz V(L)(θ), defined by
Eq. (22). For translationally invariant systems, we choose the
variational parameter set θ = {θi,k, θ ′

i,k}i,k so that θi,k and θ ′
i,k,

respectively, become independent of the position k. The yel-
low region represents the j -centered L̃-size domain �(L̃,j ), which
is utilized for the composition of the restricted ansatz V(L̃,j )(θ)

based on Eq. (32).

Now, we derive two rigorous relations on the local
cost function for each j th site, C(j )LHST(U

(L), V(L)), using the
approximate causal cone from the LR bound and the exact
causal cone from the locality of the ansatz. The first of
these, which is derived from the LR bound, validates the
evaluation of the cost function with a local Hamiltonian
acting only on qubits around the j th site. To be precise,
when we define the j -centered L′-size domain �(L′,j ) and
the restricted Hamiltonian H (L′,j ) by

�(L′,j ) = {j ′ ∈ � | |j − j ′| ≤ L′/2}, (23)

H (L′,j ) =
∑

X ;X ⊆�(L′ ,j )
hX , (24)

for the L-qubit Hamiltonian H (L) = ∑
X ;X ⊆� hX , they are

related to the local cost functions C(j )LHST(U
(L), V(L)) by the

following proposition.

Proposition 2. Let the restriction size L′ be chosen by

L′ = 2(l0 + dH + vτ), (25)

with a tunable parameter l0, the range of the Hamilto-
nian dH , and the LR velocity v. Then, the time-evolution
operator under the restricted Hamiltonian, defined by

U(L′,j ) = e−iH (L′ ,j )τ ⊗ I�\�L′ ,j , (26)

provides the following inequality:

C(j )LHST(U
(L), V(L)) ≤ C(j )LHST(U

(L′,j ), V(L))+ 3
4
εLR. (27)

Here, the term εLR is defined by Eqs. (20) and (21) and it
is exponentially small in the tunable parameter l0 as εLR =
e−O(l0/ξ).

Proof. From the definition in Eq. (8), we obtain

|C(j )LHST(U
(L), V(L))− C(j )LHST(U

(L′,j ), V(L))|
= |Tr[�j {ρAB(U(L), V(L))− ρAB(U(L′,j ), V(L))}]|
= | 〈�+|(U(L)

A ⊗ V(L)∗B )†�j (U
(L)
A ⊗ V(L)∗B )|�+〉AB

− 〈�+|(U(L′,j )
A ⊗ V(L)∗B )†�j (U

(L′,j )
A ⊗ V(L)∗B )|�+〉AB |.

(28)

Considering that the projection to the Bell state is
expanded by

�j = (|�+〉 〈�+|)Aj Bj

= 1
4
(IAj Bj + XAj XBj − YAj YBj + ZAj ZBj ), (29)

the right-hand side of Eq. (28) is bounded by

1
4

∑

O=X ,Y,Z

‖U(L)†
A OAj U(L)

A − U(L′,j )†
A OAj U(L′,j )

A ‖

× ‖V(L)TB OBj V(L)∗B ‖ 〈�+|�+〉AB

≤ 3
4
εLR. (30)

The above inequality comes from Eq. (20), the LR bound
for the local observable. Finally, we obtain the relation

|C(j )LHST(U
(L), V(L))− C(j )LHST(U

(L′,j ), V(L))| ≤ 3
4
εLR, (31)

which implies the inequality given in Eq. (27). �
This proposition says that the restriction of the Hamil-

tonian to a smaller region hardly alters the local cost func-
tions. The difference is bounded by the LR bound error εLR.
Equivalently, the diagram of Fig. 2(b), which gives CLHST,
can be approximated by that of Fig. 4(a), which gives the
restricted version. We note that this proof relies only on
the existence of the LR bound and hence Proposition 2
is also valid for generic locally interacting systems in any
dimension. For 1D systems with finite-ranged interactions,
we have εLR = exp(−O(l0/ξ)) with L′ = 2(l0 + dH + vτ)

from Eq. (21). Based on this proposition, we can accu-
rately determine the upper bound of the local cost function
C(j )LHST(U

(L), V(L)) by evaluating C(j )LHST(U
(L′,j ), V(L)).

At this stage, however, measurement of the cost func-
tions requires 2L-qubit quantum devices or L-qubit quan-
tum devices with sampling due to the existence of V(L).
To overcome this obstacle, we employ causal cones of
the ansatz V(L) and show that C(j )LHST(U

(L′,j ), V(L)) can be
evaluated with smaller-size quantum devices without any
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(a) (b) (c)

Compilation size

FIG. 4. (a) A diagrammatic description of Tr(�j ρAB(U(L′,j ), V(L))). This gives an approximate upper bound of the local cost function
C(j )LHST(U

(L), V(L)) via Proposition 2. (b) Part of the gates composing Tr(�j ρAB(U(L′,j ), V(L))), designated by the green region in (a). Only
the orange two-qubit gates in V(L)† are active, while the other gray and white two-qubit gates vanish due to their positions being out
of the causal cones. (c) A schematic picture of the active region in the ansatz V(L). All the active two-qubit gates are included in the
yellow domain. Its height determines the proper compilation size L̃.

approximation. For the j -centered L̃-site domain �L̃,j , let

us define a restricted ansatz V(L̃,j )(θ) by

V(L̃,j )(θ)

=
d∏

i=1

[(
∏

k

(L̃,j )V(2)2k,2k+1(θi,k)

)(
∏

k

(L̃,j )V(2)2k−1,2k(θ
′
i,k)

)]
,

(32)

from the depth-d ansatz V(L)(θ) of Eq. (22). Here, the
symbols �(L̃,j )

k represent the product over k such that the
support of V(2)2k,2k+1(θi,k) (for the first one) or V(2)2k−1,2k(θi,k)

(for the second one) is included in the domain �L̃,j (see
Fig. 3). Then, we obtain the following proposition.

Proposition 3. We consider the same situation as that
of Proposition 2. We assume 4d ≥ L′ for the depth-d L-
site ansatz V(L)(θ), and rewrite the depth as d = L′/4 + d′
(d′ ≥ 0 is chosen so that d becomes an integer). For L̃ sat-
isfying L̃ ≥ L′ + 2d′ + 1, where the right-hand side repre-
sents the size of the approximate causal cones, the depth-d
L̃-site ansatz V(L̃,j )(θ) satisfies the following equality:

C(j )LHST(U
(L′,j ), V(L)) = C(j )LHST(Ũ

(L′,j ), V(L̃,j )). (33)

Here, Ũ(L′,j ) represents the restriction of U(L′,j ) to the
domain �L̃,j , which is given by

Ũ(L′,j ) = e−iH (L′ ,j )τ ⊗ I�L̃,j \�L′ ,j . (34)

Remark.—The assumption 4d ≥ L′ is not essentially
required to prove this proposition. Rather, it serves as a
guideline to construct the ansatz V(L). When we employ
the brickwork-structured ansatz given by Eq. (22), a local
observable acting on a single qubit generally spreads to 4d-
qubit operators. Hence, we should use d such that 4d ≥ L′

to capture the correlation within the LR bound and thereby
accurately approximate the time evolution. It is straightfor-
ward to generalize the above proposition to smaller d with
a slight modification of L̃.

Proof. We employ the causal cones of quantum circuits
here. Let us focus on Tr[�j ρAB(UL′,j , V(L))], which can be
schematically depicted by Fig. 4(a). To visualize the causal
cone, we pick up a part of the circuit belonging to the right
half in the figure (the light-green region), which results in
Fig. 4(b). The light-blue squares in Fig. 4(b) represent local
operators on j th sites composing�j , given by Eq. (29). We
also note that V(L)∗B in Fig. 4(a) is translated into V(L)†, since
its input and output are exchanged.

Each local two-qubit gate in the ansatz V(L)† can be clas-
sified into one of three groups by its effect on the local cost
function. The first group is depicted by the white (non-
painted) two-qubit gates in Fig. 4(b). Since these local
gates and the corresponding ones in V(L)TB cancel each other
by the contraction in the lower layer of Fig. 4(a), they do
not affect Tr[�j ρAB(U(L′,j ), V(L))]. This cancellation is due
to the locality of �j and is independent of U(L′,j )

A appear-
ing in the upper layer. The second group, composed of
the gray two-qubit gates, are also inactive, because they
can be contracted to identity in the upper layer. In contrast
to the first group, its cancellation originates from the size
restriction of the Hamiltonian H (L) to H (L′), validated by
the LR bound. The last group is composed of the yellow
gates residing within the causal cones. Only these two-
qubit gates are relevant for Tr[�j ρAB(U(L′,j ), V(L))], which
can be schematically depicted as Fig. 4(c).

Finally, we determine the proper compilation size L̃. The
active region, composed of the two causal cones spreading
from the left and the right side [see (i) and (ii) in Fig. 4(c)],
is designated by

|y| ≤ min{2(d − x)+ L′/2 + 1, 2x}, 0 ≤ x ≤ d. (35)
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When the compilation size L̃ surpasses its height, that is,
when

L̃ ≥ L′

2
+ 2d + 1 = L′ + 2d′ + 1, (36)

the restricted ansatz V(L̃,j )(θ) includes all the two-qubit
gates in the active region. Therefore, we have

Tr[�j ρAB(U(L′,j ), V(L))]

= Tr[�j ρAB(e−iH (L′ ,j )τ ⊗ I�\�L′ ,j , V(L̃,j ) ⊗ I�\�L̃,j
)]

= Tr[�j ρAB(e−iH (L′ ,j )τ ⊗ I�L̃,j \�L′ ,j , V(L̃,j ))], (37)

where we use the fact that the contraction over �\�L̃,j
gives identity for the last equality. By using the definitions
of the local cost function C(j )LHST and the restricted time
evolution Ũ(L′,j ) [see Eqs. (8) and (34), respectively], we
complete the proof of Proposition 3. �

Let us define the subsystem cost function by C(j )LHST

(Ũ(L′,j ), V(L̃,j )), which can be measured by a 2L̃-qubit quan-
tum device or a L̃-qubit quantum device with Monte
Carlo sampling based on Lemma 1. Propositions 2 and 3
yield that the local cost function C(j )LHST(U

(L), V(L)) can be
approximated by the subsystem cost function and they also
dictate the scaling property of the subsystem cost func-
tion in the subsystem size L̃. Importantly, L̃ ≥ L′ + 2d′ +
1 = 2(l0 + dH + vτ)+ 2d′ + 1 can be independent of the
whole-system size L and significantly smaller than L. We
note that the coefficient of the depth d in L̃ comes from the
brickwork structure of the ansatz V(L). We can obtain the
same result for any other ansatz by changing the coefficient
in L̃ as long as it is local.

IV. LOCAL VARIATIONAL QUANTUM
COMPILATION OF A LARGE-SCALE

HAMILTONIAN DYNAMICS

In this section, we formulate the LVQC of large-
scale Hamiltonian dynamics as the second main result. In
our protocol, we construct an approximate time-evolution
operator for the large size L by optimizing the cost func-
tions defined on the smaller size L̃. Based on Propositions
2 and 3, we provide two different formulations for trans-
lationally invariant cases (Sec. IV A) and generic cases
(Sec. IV B).

A. Local compilation for translationally invariant
systems

We first deal with translationally invariant cases under
periodic boundary conditions (PBC). Throughout this
section, we denote such a translationally invariant Hamil-
tonian and its time-evolution operator for the size L as

H (L)
PBC and U(L)

PBC. Then, it is reasonable also to impose trans-
lation invariance and PBC on the ansatz, denoted by V(L)PBC.
To be precise, we assume that the variational parameter set
θ = {θi,k, θ ′

i,k}i,k is independent of the position k. The num-
ber of parameters in V(L)PBC(θ) depends only on the depth d.
Based on Propositions 2 and 3, we can derive the following
theorem, which also shows the protocol of LVQC.

Theorem 4. We define the local-compilation cost function
by

C(L̃)α (θ) = αCHST(U
(L̃)
PBC, V(L̃)PBC(θ))

+ (1 − α)CLHST(U
(L̃)
PBC, V(L̃)PBC(θ)), (38)

for a certain α ∈ [0, 1], which is defined on an L̃-size trans-
lationally invariant systems under PBC. Assume that, after
the minimization of C(L̃)α (θ), the optimal parameter set θopt
gives the upper bound of the local and global cost functions
as

CLHST(U
(L̃)
PBC, V(L̃)PBC(θopt)) < εLHST, (39)

CHST(U
(L̃)
PBC, V(L̃)PBC(θopt)) < εHST. (40)

When we choose the smallest even number larger than
2(l0 + dH + vτ)+ 2d′ + 1 as the compilation size L̃, the
time-evolution operator for an L-qubit system (L ≥ L̃) is
approximated as

CLHST(U
(L)
PBC, V(L)PBC(θopt)) ≤ εLHST + 3

2
εLR, (41)

CHST(U
(L)
PBC, V(L)PBC(θopt)) ≤ L

(
εHST + 3

2
εLR

)
, (42)

with the usage of the same parameter set θopt.

Proof. We first derive Eq. (41) from Eq. (39). We combine
translation symmetry with the scaling property of the sub-
system cost functions, represented by Propositions 2 and 3.
As a result, we obtain the relation for any j ,

CLHST(U
(L)
PBC, V(L)PBC) = C(j )LHST(U

(L)
PBC, V(L)PBC)

≤ C(j )LHST(Ũ
(L′,j ), V(L̃,j ))+ 3

4
εLR.

(43)

Here, Ũ(L′,j ) and V(L̃,j ) are constructed from U(L)
PBC and

V(L)PBC by the restriction to L′- and L̃-size systems, respec-
tively [see Eqs. (34) and (32)]. They have open boundary
conditions (OBCs) as illustrated in Fig. 5 and therefore
do not straightforwardly relate to U(L̃)

PBC and V(L̃)PBC. To
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FIG. 5. A schematic version of Fig. 4(b) for translationally
invariant systems under PBC. The blue and red solid lines,
respectively, represent identical sites.

recover the PBC, we adopt the following strategy. Figure 5
gives a schematic picture of part of the gates composing
Tr[�j ρAB(ŨL′,j , V(L̃,j ))], similar to Fig. 4(b). First, we add
two-qubit gates V(2)

L̃,1
to each layer of the restricted ansatz

V(L̃,j ), represented by the light-blue squares at the bound-
aries in Fig. 5. When the parameter set of each V(2)

L̃,1
is the

same as that of the two-qubit gate in the same layer, it
reproduces the translationally invariant ansatz under PBC,
V(L̃)PBC. Since local gates outside of the causal cones do not
alter the local cost function at all, we obtain the following
relation:

CLHST(U
(L)
PBC, V(L)PBC) ≤ C(j )LHST(Ũ

(L′,j ), V(L̃)PBC)+ 3
4
εLR. (44)

We also recover the PBC of the target unitary Ũ(L′,j ).
Let us consider the two Hamiltonians H (L̃)

PBC and H (L′,j ),
which, respectively, provide the time-evolution operators
U(L̃)

PBC and Ũ(L′,j ). Since the Hamiltonian H (L′,j ) becomes

the restriction of H (L̃)
PBC from the domain �L̃,j to the one

denoted by �L′,j , we can again employ the inequality
Eq. (20) generated by the LR bound,

‖U(L̃)†
PBCOj U(L̃)

PBC − Ũ(L′,j )†Oj Ũ(L′,j )‖ ≤ εLR, (45)

for any local normalized observable at a j th site, Oj .
This implies that we can apply Propositions 2 and 3 by
substituting U(L̃)

PBC for U(L), which results in

C(j )LHST(Ũ
(L′,j ), V(L̃)PBC) ≤ C(j )LHST(U

(L̃)
PBC, V(L̃)PBC)+ 3

4
εLR

< εLHST + 3
4
εLR. (46)

Combining this inequality with Eq. (44), we arrive at the
relation of CLHST, given by Eq. (41).

Next, we derive Eq. (42), which gives an upper bound
of the global cost function CHST. We employ the following
inequality [37]:

CLHST(U, V) ≤ CHST(U, V) ≤ |�|CLHST(U, V), (47)

where two unitary gates, U and V, are defined on a
lattice �. Under the assumption of Eq. (40), we have
CLHST(U

(L̃)
PBC, V(L̃)PBC(θopt)) < εHST from the first inequality

in Eq. (47). Using the above result for the local cost func-
tion CLHST, Eq. (41), we obtain CLHST(U

(L)
PBC, V(L)PBC(θopt)) ≤

εHST + 3
2εLR. Finally, considering |�| = L for a 1D sys-

tem, the second inequality in Eq. (47) implies Eq. (42). �
This theorem tells us that the optimal parameter set

θopt for the L̃-size local-compilation cost function can be
directly employed to construct the approximate larger-
scale time evolution by U(L)

PBC � V(L)PBC(θopt). Its accuracy
can be guaranteed by Eq. (41) or Eq. (42). The error con-
sists of two parts: the first terms, εLHST and εHST, are due
to a limited expressive power of the ansatz V(L̃)PBC; the sec-
ond term, εLR, is the intrinsic error induced by this LVQC
protocol. They can be improved by using more expressive
ansatz and using a larger compilation size L̃, respectively.

Now, we discuss what compilation size should be used
to achieve an accuracy of O(ε) for a quantity of inter-
est. When we focus on some local observables under the
approximate time evolution V(L)PBC(θopt), the local cost func-
tion CLHST plays a significant role, since it guarantees
the local equivalence with U(L)

PBC by Eq. (9). To be more
precise, CLHST = O(ε) implies additive error O(ε) in the
expectation values of the local observables. We wish to
choose the compilation size L̃ = 2�l0 + dH + vτ + d′ +
1/2� so that εLR = e−O(l0/ξ) can be neglected. Therefore, in
this case, L̃ can be taken as O(ξ log(1/ε))+ 2dH + 2vτ +
2d′, which is independent of the whole-system size L.

On the other hand, in the cases where we require the
accuracy in terms of global observables, the average gate
fidelity F̄ has operational meaning. 1 − F̄ = O(ε) implies
an accuracy of O(ε) in the expectation values of any
observables. When the L̃-size optimization is achieved as
in Eqs. (39) and (40), the combination with Eq. (12) or
Eq. (13) ensures its lower bound as

F̄(U(L)
PBC, V(L)PBC(θopt)) ≥ 1 − 2|�|

2|�| + 1
× L

(
εLHST + 3

2
εLR

)

≥ 1 − 2|�|

2|�| + 1
× L

(
εHST + 3

2
εLR

)
.

(48)

Therefore, to achieve 1 − F̄ = O(ε), we should choose
the compilation size L̃ satisfying LεLR = e−O(l0/ξ)+log L =
O(ε), which results in L̃ = O(ξ log (1/ε)+ ξ log L)+
2dH + 2vτ + 2d′. Upon this choice of the compilation
size, we should continue the optimization of C(L̃)α (θ) until
εLHST or εHST becomes much smaller than O(L−1) and then
we can obtain the preferred accuracy.
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Let us discuss the feasibility of the local optimiza-
tion, given by Eqs. (39) and (40). The form of the cost
function is quite similar to that of QAQC and hence we
can adopt various strategies for the optimization; either a
gradient-based or a gradient-free parameter update is avail-
able [37]. Not only does reduction in the compilation size
make optimization easier compared to other variational
methods such as QAQC but also it sometimes enables
classical optimization free from statistical errors, as numer-
ically demonstrated in Sec. V. In addition, even when the
variational parameters fail to converge or find the opti-
mal solution, the compression will be successful to some
extent. Theorem 4 itself is valid for arbitrary parameters
θ from the derivation. Therefore, by starting the optimiza-
tion with a certain good choice of the known initial ansatz,
we can improve its efficiency if several parameter updates
achieve the lower cost function. For instance, as discussed
in Sec. V, we can compose the ansatz so that it includes the
Trotterization. By setting the initial ansatz to the Trotteri-
zation, it is expected that we can almost always find more
efficient implementation compared to Trotterization.

To summarize, our protocol starts with choosing a
proper compilation size L̃. L̃ should taken to be compara-
ble to the approximate causal-cone size by the LR bound,
2(ξ + dH + vτ + d′), or a bit larger than it, depending on
the desired error. After minimizing the local-compilation
cost function C(L̃)α (θ), which can be evaluated using a clas-
sical simulator or a quantum device with at least L̃ qubits,
we can directly apply the optimal parameter set θopt to
obtain the approximate time evolution U(L)

PBC � V(L)PBC(θopt).
This reduction in the size makes NISQ devices or classi-
cal simulators employing some approximation (see Sec. V)
suitable for the compilation. LVQC can be employed for
various purposes, such as depth compression and calibra-
tion of U(L), without implementing the target U(L) itself. In
other words, it is sufficient to prepare U(L̃), which is the
time-evolution for smaller systems. This is clearly one of
the principal advantages of our protocol. We summarize
the results in Fig. 1.

B. Local compilation for generic systems without
translation invariance

Here, we develop the LVQC protocol for 1D finite-
ranged systems without translation invariance. The result
is not essentially altered from the translationally invariant
cases but they have different cost functions.

We directly use Propositions 2 and 3 to derive the pro-
tocol. For the brickwork-structured ansatz V(L)(θ) (not
necessarily translationally invariant), we define the local-
compilation cost function for generic cases by

C(L̃)(θ) = 1
L

L∑

j =1

C(j )LHST(Ũ
(L′,j ), V(L̃,j )(θ)), (49)

where we directly use the subsystem cost functions
C(j )LHST(Ũ

(L′,j ), V(L̃,j )(θ)). With the help of Propositions 2
and 3, we immediately obtain

|CLHST(U(L), V(L))− C(L̃)(θ)|

≤ 1
L

L∑

j =1

|C(j )LHST(U
(L), V(L))− C(j )LHST(Ũ

(L′,j ), V(L̃,j ))|

≤ 3
4
εLR. (50)

We also use the relation given in Eq. (47), which results in

CHST(U(L), V(L)) ≤ L
(

C(L̃)(θ)+ 3
4
εLR

)
. (51)

Therefore, we obtain the following theorem, which desig-
nates the protocol for generic cases.

Theorem 5. We variationally minimize the local-
compilation cost function C(L̃)(θ). When the optimal
parameter set θopt gives C(L̃)(θopt) ≤ εLHST, the cost func-
tions for the size L are bounded by

CLHST(U(L), V(L)(θopt)) ≤ εLHST + 3
4
εLR, (52)

CHST(U(L), V(L)(θopt)) ≤ L
(
εLHST + 3

4
εLR

)
. (53)

The average gate fidelity is bounded from below as fol-
lows:

F̄(U(L), V(L)(θopt)) ≥ 1 − 2|�|

2|�|+1 × L
(
εLHST + 3

4
εLR

)
.

(54)

Based upon this theorem, we can perform the local
compilation in a similar way to translationally invariant
systems, while the cost function is replaced by Eq. (49).
We have the same compilation size L̃ = 2�l0 + dH + vτ +
d′ + 1/2� with l0 such that εLR or LεLR becomes suffi-
ciently small. After the local optimization that achieves
εLHST � 1 or LεLHST � 1, we use the optimal param-
eter set θopt for the L-size time-evolution operator as
schematically shown in Fig. 1.

We also remark on an extension of our protocol to other
generic cases. Our protocol relies only on the existence
of the LR bound, given by Eq. (20), and the locality of
the ansatz. Thus, the extension to higher-dimensional sys-
tems, in which we change the form of εLR and replace the
coefficient L in Eqs. (42) or (53) by |�| ∼ LD, is straight-
forward. We can also consider short-ranged or long-ranged
interactions since they, respectively, show an exponential
or polynomial decay of the error εLR (Note that we require
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additional conditions when considering long-ranged inter-
actions for the existence of the LR bound, as discussed
in Appendix B 4.) The compilation size L̃ increases at
most in O(log L) (for finite-ranged and short-ranged inter-
actions in generic dimensions) or in O(Lσ ) with σ < 1
(long-ranged interactions in generic dimensions). We can
expect a significant reduction in the compilation size for a
broad class of locally interacting systems to compile large-
scale time-evolution operators. For a detailed discussion,
see Appendix B.

C. Efficient computation of long-time-scale dynamics

In our compilation protocol, we optimize the time evo-
lution for a certain fixed time τ . By repeatedly apply-
ing the compressed time evolution V(L)(θopt), we can
also efficiently simulate the longer-time-scale stroboscopic
dynamics at t = nτ (n ∈ N).

Let us evaluate the error when we compute the longer
time scale with the compressed gates V(L)(θopt). By using
the relation ‖Un − Vn‖F ≤ n‖U − V‖F for the Frobenius
norm ‖·‖F , the global cost function CHST satisfies the
following inequality [34]:

CHST(Un, Vn) � n2CHST(U, V), (55)

where the condition n2CHST(U, V) � 1 is supposed. When
we optimize the local-compilation cost function and obtain
C(L̃)(θopt) ≤ εLHST based on Theorem 5, the resulting cost
function for size L and time t = nτ is bounded by

CHST(U(L)(nτ), [V(L)(θopt)]n) � Ln2
(
εLHST + 3

4
εLR

)
.

(56)

To make it much smaller than 1, we slightly modify
the protocol. First, we choose the compilation size L̃ so
that Ln2εLR becomes negligible. The typical scale of L̃ is
given by

L̃ � 2(ξ + dH + vτ)+ ξ log L + 2ξ log n, (57)

by Eq. (21). Then, the local optimization of C(L̃)(θ) should
be continued until Ln2εLHST � 1 is achieved. We note that
the compilation size L̃ is hardly affected by the time of
interest, t = nτ , as it increases in proportion to log n.

V. NUMERICAL DEMONSTRATION OF DEPTH
COMPRESSION

Here, we numerically demonstrate LVQC and, in par-
ticular, we try to compress the depth of a large-scale
time-evolution operator by the compilation. For simplicity,
we concentrate on 1D systems and rely on classical simu-
lation by TEBD, based on matrix product states (MPSs)
[42,43,55,56].

We first introduce the model and the ansatz. We adopt
an antiferromagnetic (AFM) Heisenberg model on a 1D
lattice, defined by

H (L)
AFM =

L−1∑

j =1

(Xj Xj +1 + Yj Yj +1 + Zj Zj +1). (58)

We employ OBC to make it easier to simulate by MPS.
The target of the depth compression is the time-evolution
operator U(L) = exp(−iH (L)

AFMτ)with a fixed time τ . On the
other hand, we give the ansatz V(L)(θ) by the brickwork-
structured circuit under OBC, designated by Eq. (22). We
parametrize each of two-qubit gates in it by

V(2)j ,j +1(η, ζ ,χ , γ ,φ)

=

⎛

⎜⎜⎝

1 0 0 0
0 e−i(γ+ζ ) cos η −ie−i(γ−χ) sin η 0
0 −ie−i(γ+χ) sin η e−i(γ−ζ ) cos η 0
0 0 0 e−i(2γ+φ)

⎞

⎟⎟⎠ ,

(59)

in the basis of {|00〉 , |01〉 , |10〉 , |11〉}, where η, ζ , χ , γ ,
and φ denote the variational parameters. This form is cho-
sen so that V(2)j ,j +1 can represent any two-qubit gate preserv-
ing the total Z spin, which is a symmetry of HAFM [6,10].
We note that the brickwork structure of the ansatz with
depth d is the same as that of the standard Trotterization,

U(L)
trot,d ≡

(
e−iH (L)

evenτ/de−iH (L)
oddτ/d

)d
, (60)

where Hodd [Heven] represents terms composed of interac-
tions between (2k − 1)th and 2kth sites [2kth and (2k +
1)th sites] in HAFM. The depth-d ansatz includes the Trot-
terization with the same depth. Expecting the approximate
translation symmetry of the model, we employ a single
parameter set (η, ζ ,χ , γ ,φ) within each layer. With this
setup, the number of independent variational parameters
becomes 10d for the depth-d ansatz.

We examine how U(L) is approximated by the shallow-
depth circuit V(L)(θopt) with the optimal parameter set
obtained in the smaller size L̃ and compare its performance
with that of Trotterization. We assess them for different
depths determined on the basis of the number of two-
qubit gates as Eqs. (22) and (60), in which we do not
take any hardware-specific detail into account. For the
optimization in LVQC, we apply the protocol for transla-
tionally invariant systems under PBC based on the approx-
imate translation symmetry of the model. To be precise,
based on Theorem 4, we minimize the local cost function
C(L̃/2)LHST(U

(L̃), V(L̃)(θ)), which is expected to approximate the

local-compilation cost function C(L̃)α=0(θ). Then, with the
optimal parameters θopt, we compute the cost functions
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CLHST(U(L), V(L)(θopt)) and CLHST(U(L), V(L)(θopt)) to eval-
uate how well the ansatz V(L)(θopt) reproduces U(L). We
deal with size L = 40, time τ = 0.5, and an ansatz depth d
up to 5.

First, we show the numerical results for the depth
compression in the intermediate size L̃. The compilation
size L̃ = 2�l0 + dH + vτ + d′ + 1/2� should be at least
as large as dH + vτ + 2d under d = L′/4 + d′. The AFM
Heisenberg Hamiltonian H (L)

AFM has the range of interac-
tions, dH = 1, and now we are assuming that d = 5. Since
vτ is expected to be not so large under τ = 0.5, we choose
L̃ = 20. We compute the cost function C(L̃/2)LHST(U

(L̃), V(L̃))
based on Eq. (8) with a 2L̃-qubit MPS. The bond dimen-
sion b for the MPS is determined so that the entanglement
entropy during the dynamics, given by S(τ ) � constant ×
τ in this model, becomes smaller than log2 b. We choose
the bond dimension b = 30 here, since we confirm that
it can accurately reproduce the dynamics with the larger
bond dimension up to 60 or the exact dynamics of smaller
systems up to 12 sites. For implementing U(L̃), we employ
the Trotterization U(L̃)

trot,d with a sufficiently large depth
d = 100. We variationally minimize the cost function by
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
implemented in SciPy [57] with the maximum iteration set
to 128. The initial parameter set θ is chosen as θd

trot, so
that the ansatz V(θd

trot) becomes equivalent to the Trotter-
ization with the same depth, Utrot,d, except for the global
phase.

Figure 6(a) shows the history of the cost function during
the optimization in L̃ = 20, represented by the yellow (d =
3), blue (d = 4), and red (d = 5) solid lines in the panel.
For comparison, we also compute the cost functions for
shallow-depth Trotterization C(L̃/2)LHST(U

(L̃), V(L̃)(θd
trot)) with

various values of d, as described by the dashed lines. For
each depth d = 3, 4, and 5, the ansatz with the resulting

optimal parameter set θopt overwhelms the same-depth
Trotterization. For instance, the depth-5 ansatz V(L̃)(θopt)

provides the cost value 7.80 × 10−5, which is as large
as that for the depth-40 Trotterization, 8.48 × 10−5. In
other words, we successfully compress the time-evolution
operator from depth 40 to depth 5 under compilation size
L̃ = 20.

Next, we examine how the larger-scale time-evolution
operator U(L) is approximated by our protocol. Hereafter,
we concentrate on the depth-5 ansatz and employ the
corresponding optimal parameter set as θopt. Considering
the approximate translation invariance, the size-extended
ansatz V(L)(θopt) is constructed by copying the two-qubit
gate of V(L̃)(θopt) in the spatial direction. We again approx-
imate U(L) by the large-depth Trotterization U(L)

trot,d=100 and
compute the cost functions as described in Fig. 6(b). As
stated in Theorem 4, the local cost functions CLHST and
C(L/2)LHST (the purple and brown solid lines) hardly increase
when we employ θopt in L̃ = 20 for the larger-scale ansatz
with L ≥ 20. Reflecting the fact that Theorem 4 yields the
loose bound proportional to L, the global cost function
CHST (the red solid line) experiences a gradual increase in
L but remains sufficiently small compared to 1. Any cost
function for the ansatz with θopt is comparably smaller than
that with θd=5

trot , the parameter set for reproducing the Trot-
terization with the same depth, d = 5 (see the blue, orange,
and light-green solid lines).

We also assess the average gate fidelity. Based on
Eqs. (12) and (13), we ensure that the ansatz extended to
L = 40 qubits has F̄(U(L), V(L)(θopt)) ≥ 0.9977, while the
same-depth Trotterization provides F̄(U(L), V(L)(θd=5

trot )) ≥
0.8580. Therefore, our protocol succeeds in implement-
ing the time-evolution operator for the larger-scale 20 ≤
L ≤ 40 with the limited depth by exploiting the local
compilation on the size L̃ = 20.

(a) (b)

FIG. 6. (a) The history of the cost function C(L̃/2)LHST(U
(L̃), V(L̃)(θ)) in the intermediate size L̃ = 20. The yellow, blue, and red solid

lines, respectively, represent the results for the depth of the ansatz d = 3, 4, 5. The dashed lines represent the corresponding cost
functions for the Trotterization with various depths d. (b) The cost functions C(U(L), V(L)(θ)) for increasing L. The ansatz compiled
by LVQC, V(L)(θopt), is obtained by the optimization using only L̃ = 20 qubits. We evaluate the depth-5 LVQC result and the depth-5
Trotterization by θd=5

trot , by comparing the same kind of cost functions (e.g., the blue one should be compared with the red one). For any
choice of the cost functions, LVQC achieves an approximately 100 times smaller value of the cost function than that of Trotterization.
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Finally, we demonstrate how well the compressed time-
evolution operator V(L)(θopt) reproduces the dynamics of
larger-scale systems under the exact time-evolution oper-
ator U(L). By applying V(L)(θopt) or its inverse repeatedly,
we can approximately simulate the stroboscopic dynamics
at time t ∈ τZ, which is larger than the original time scale
τ , with a smaller-depth circuit. Furthermore, it should be
noted that our protocol can capture larger-scale phenomena
in the size L despite the compilation in L̃ < L. To confirm
this numerically, we simulate the stroboscopic dynamics,
which involve a time scale and a size scale larger than
τ = 0.5 and L̃ = 20, respectively.

As the simplest cases, we prepare the following two
initial states:

|ψ(L)
LE (0)〉 = X(L−L̃)/2X(L+L̃)/2 |0〉⊗L , (61)

|ψ(L)
DW(0)〉 =

⎛

⎝
(L+L̃)/2∏

j =(L−L̃)/2

Xj

⎞

⎠ |0〉⊗L , (62)

for the size L = 40. They, respectively, represent ferro-
magnetic states having two local excitations (for |ψLE(0)〉)
and two domain walls (for |ψDW(0)〉) with distance L̃ =
20. Then, we evaluate the expectation value of ZL/2 evolv-
ing under the Hamiltonian H (L)

AFM. Intuitively, it is expected
that two distant local excitations or domain walls at the
(L − L̃)/2th and (L + L̃)/2th sites, respectively, propagate
in both left and right directions under the Hamiltonian
H (L)

AFM and the central site j = L/2 observes their colli-
sions. Thus, the change in the expected value of ZL/2 can
be employed as a diagnosis for the larger-scale dynam-
ics involving at least L̃ + 1 sites, which is larger than the
compilation size.

Figure 7 shows the numerical results for the approxi-
mate stroboscopic dynamics obtained by the compilation.
With the depth-5 ansatz V(L)(θopt) obtained by the opti-
mization in the size L̃ = 20, we compute the state and its
local observable, given by

|ψ(L)(nτ)〉 = V(L)(θopt)
n |ψ(L)(0)〉 , n ∈ N, (63)

ZL/2(nτ) = 〈ψ(L)(nτ)|ZL/2|ψ(L)(nτ)〉 . (64)

We employ MPS with the bond dimension 60 for sim-
ulating the dynamics from the initial states |ψLE(0)〉 or
|ψDW(0)〉, which are depicted as orange dots in Figs. 7(a)
and 7(b), respectively. We also compute the dynamics
under the large-depth Trotterization U(L)

trot,d=100 as the accu-
rate dynamics for the comparison (see the blue solid
lines). In both cases, the compilation results reproduce the
accurate dynamics well up to t ≤ 10τ = 5, with the mean-
square errors 5.27 × 10−6 and 1.29 × 10−6 [58]. We con-
clude that our prescription exploiting the intermediate-size
L̃ and the fixed time τ provides an appropriate shallow-
depth time-evolution operator that is useful for larger-scale

(a) (b)

FIG. 7. The real-time dynamics of ZL/2 (a) from the ferromag-
netic initial state with two local excitations |ψ(L)

LE (0)〉 and (b)
from the one with two domain walls |ψ(L)

DW(0)〉. The orange dots
represent the stroboscopic dynamics at t ∈ τZ under V(L)(θopt),
implemented with the depth 50 up to t = 5. This well corre-
sponds to the blue line, which shows accurate dynamics under
the Trotterization with sufficiently large depth 100 per τ = 0.5.

quantum systems in both space and time. We also remark
that the optimal parameter obtained here is expected to be
useful for even larger-scale quantum simulations beyond
the size considered in this work, from the size dependence
in Fig. 6(b). Our numerical results suggest the feasibility of
using the classical local compilation to design large-scale
quantum circuits, in addition to the possible quantum local
compilation by NISQ devices.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we develop LVQC, in which we conduct
local optimization for intermediate-scale quantum sys-
tems designated by the Lieb-Robinson bound and obtain
an approximate time-evolution operator of larger-scale
quantum systems. Since the approximation error of the
local cost function supporting our protocol relies only
on the Lieb-Robinson bound, it has broad applicability
to finite-ranged, short-ranged, and long-ranged interacting
large-scale systems in generic dimensions. LVQC begins
with the local compilation by intermediate-scale quantum
devices or corresponding classical simulators and ends
up with the quantum execution of the compiled larger-
scale dynamics. Therefore, not only it unveils a classical
approach to designing large-scale quantum circuits but it
should also play a significant role in bridging the gap
between NISQ device techniques and the practical use of
larger quantum devices as the long-term goal.

We end this paper by providing some future directions.
The first is to seek for the possibility of the local compi-
lation in classical ways. While we refer to our protocol
as “quantum” compilation, Theorems 4 and 5 are not
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limited to the context of variational quantum algorithms,
where we optimize a parametrized quantum circuit in a
quantum-classical hybrid manner. Our numerical demon-
stration based on TEBD involving up to 40 qubits is indeed
a good example for using a classical simulator for LVQC.
Other sophisticated techniques [e.g., tensor-network-based
methods for two-dimensional (2D) systems] will also be
important for executing our protocol on classical com-
puters. In future, we might also be able to use exact
brute-force classical simulators for LVQC. This is because,
for finite-ranged or short-ranged systems with vτ = O(L0),
LVQC ensures the classical efficient evaluation of the cost
function in time eO(L̃) = poly(L) given that it is sufficient to
take L̃ = O(log L) in this case. Although current classical
devices are still not capable of simulating quantum systems
with size L̃, which typically becomes more than tens of
qubits, in future LVQC may be available without resorting
to approximate simulators. Note that this does not contra-
dict the existing result, which states that the evaluation of
the cost functions CLHST and CHST in polynomial accu-
racy with respect to the system size L for general unitaries
is a DQC1-hard problem [37] (DQC1 refers to problems
that are efficiently solvable by one clean qubit and other
noisy qubits [59]), since we restrict ourselves to certain
short-time local Hamiltonian dynamics and shallow depth
ansatzes (for details, see Appendix C).

The second significant task for the future is to apply
LVQC to various problems in condensed-matter physics
and quantum chemistry, including higher-dimensional
cases, short-ranged interacting cases, and long-ranged
interacting cases. Several programmable quantum simu-
lators, such as superconducting qubits [60] and Rydberg
atoms [61], have recently achieved a few hundred qubits
with high controllability and two dimensionality and they
will be available for both the local compilation and the
quantum execution of the compressed time evolution. For
instance, it may be possible to observe long-time dynam-
ics beyond the current coherence time on such compiled
quantum simulators by the classical local compilation for
tens of qubits. While the current knowledge of the LR
bound and thereby LVQC can cover a variety of models
in condensed-matter physics (e.g., the Hubbard model), it
is also of great importance to explore the performance of
LVQC for quantum chemistry problems such as molecules
and crystals. Although we lack knowledge about the LR
bound for the bare Coulomb interaction of approximately
1/r, we can also try the protocol itself for such sys-
tems. Considering that the Coulomb interaction is often
screened by electrons and nuclei and that several methods
relying on the locality (e.g., the density-matrix renormal-
ization group [62,63] and the divide-and-conquer method
[64]) are successful, our LVQC will serve such struc-
tured quantum materials as a tool to accurately and effi-
ciently extract their properties by the power of quantum
computers.
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APPENDIX A: PROOF OF LEMMA 1

The quantity that we wish to evaluate is

〈�j 〉 = 〈�+|AB (UA ⊗ V∗
B)

†�j (UA ⊗ V∗
B) |�+〉AB . (A1)

Noting that (UA ⊗ V∗
B) |�+〉AB = (UAV†

A ⊗ IB) |�+〉AB and
�j can be decomposed as a sum of Pauli operator by
Eq. (29), it is sufficient to evaluate

〈�+|AB (VAU†
A ⊗ IB)(OAj ⊗ OBj )(UAV†

A ⊗ IB) |�+〉AB ,
(A2)

for O = X , Y, Z to obtain 〈�j 〉. Therefore, if we have
efficient means to evaluate

F(WA, PA, PB)

:= 〈�+|AB (W
†
A ⊗ IB)PA ⊗ PB(WA ⊗ IB) |�+〉AB

(A3)

for arbitrary L-qubit unitary WA and Pauli operator PA and
PB, we can obtain 〈�j 〉. Here, we provide an efficient
algorithm to estimate Eq. (A3).

First, we observe that the following equality holds:

F(WA, PA, PB)

= 1
2L

2L∑

i,j =1

〈i|A W†
APAWA |j 〉A 〈i|B PB |j 〉B (A4)
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= 1
2L

2L∑

i,j =1

Re
[
〈i|A W†

APAWA |j 〉A 〈i|B PB |j 〉B

]
, (A5)

where we use the definition of the Bell state |�+〉AB =
∑2L

i=1 |i〉A |i〉B /
√

2L and that F(WA, PA, PB) is real. Now,
a Monte Carlo approach can be employed to evaluate the
sum of Eq. (A5).

The algorithm that we propose is as follows. First, sam-
ple x from the uniform distribution on {1, 2, . . . , 2L}. Let
αx |yx〉 = PB |x〉, where |yx〉 and αx ∈ {±1, ±i} is a com-
putational basis and a coefficient determined by x and PB.
Then, we estimate 〈yx| W†

APAWA |x〉 on an L-qubit quantum
device within an additive error ε. This can be achieved by
utilizing the following equalities that hold for an arbitrary
observable O:

2Re[〈y| O |x〉] = 〈+x,y | O |+x,y〉 − 〈−x,y | O |−x,y〉 , (A6)

2Im[〈y| O |x〉] = 〈+ix,y | O |+ix,y〉 − 〈−ix,y | O |−ix,y〉 ,
(A7)

where |±x,y〉 := (|x〉 ± |y〉)/√2 and |±ix,y〉 := (|x〉 ±
i |y〉)/√2. More precisely, for a given pair (x, yx), we
first evaluate expectation values 〈±x,yx | W†

APAWA |±x,yx 〉
or 〈±ix,yx | W†

APAWA |±ix,yx 〉 using N1 samples each and
then combine them according to the above formula. Let
an estimator of 〈yx| W†

APAWA |x〉 obtained by this proce-
dure be P̂A,x. Importantly, Var[P̂A,x] = O(1/N1). Finally,
we construct an estimator of F(WA, PA, PB) as

F̂(WA, PA, PB) := Re
[
αxP̂A,x

]
. (A8)

From this form of the estimator, it is sufficient to evaluate
only Re[〈y| O |x〉] (Im[〈y| O |x〉]) by Eqs. (A6) and (A7)
when αx is real (imaginary). Note that F̂(WA, PA, PB) is
defined by two random variables, x and P̂A,x.

To see that F̂(WA, PA, PB) is indeed an efficient unbi-
ased estimator, we analyze its expectation value and
variance. Let us assume that, for a fixed x, the ran-
dom variable Re[αxP̂A,x] follows a probability distribution
px(a). The probability that F̂(WA, PA, PB) takes a specific
value f is given by

∑
x px(f )/2L. Then, we can calculate

E[F̂(WA, PA, PB)] and E[F̂(WA, PA, PB)
2] as follows:

E[F̂(WA, PA, PB)]

=
∑

x

∑

f

f
px(f )

2L

= 1
2L

∑

x

Ea∼px(a)[a]

= 1
2L

∑

x

Re
[
〈yx|A W†

APAWA |x〉A 〈yx|B PB |x〉B

]

= 1
2L

∑

x,y

Re
[
〈y|A W†

APAWA |x〉A 〈y|B PB |x〉B

]

= F(WA, PA, PB), (A9)

E[F̂(WA, PA, PB)
2]

=
∑

x

∑

f

f 2 px(f )
2L

= 1
2L

∑

x

[
Vara∼px [a] +

∑

x

Ea∼px [a]2

]

≤ max
x

Vara∼px [a2] (A10)

+ 1
2L

∑

x

Re
[
〈yx|A W†

APAWA |x〉A 〈yx|B PB |x〉B

]2
.

(A11)

Equation (A9) shows that F̂(WA, PA, PB) is an unbiased
estimator of F(WA, PA, PB), the desired quantity. Combin-
ing the above with

Vara∼px(a)[a
2] = E[a2] − 〈yx| W†

APAWA |x〉2 = O(1/N1)

(A12)

for all x, we obtain

Var[F̂(WA, PA, PB)] ≤ O(1/N1)+ V , (A13)

where

V :=
∑

x

Re
[
〈yx|A W†

APAWA |x〉2
A 〈yx|B PB |x〉B

]2

−
(
∑

x

Re
[
〈yx|A W†

APAWA |x〉A 〈yx|B PB |x〉B

])2

(A14)

is the variance of this protocol when we can exactly
estimate Re[〈yx|A W†

APAWA |x〉A 〈yx|B PB |x〉B].
Since Re[〈yx|A W†

APAWA |x〉A 〈yx|B PB |x〉B] = O(1), V
is also O(1). This implies that a sample mean of N2 inde-
pendent samples of F̂(WA, PA, PB), which requires N =
N1N2 runs of quantum devices for its construction, has
variance O(1/(N1N2))+ O(1/N2). Therefore, it is suffi-
cient to take N1 = O(1), N2 = O(1/ε2) and thus N =
O(1/ε2) to obtain an estimate of F(WA, PA, PB) within an
additive error ε with high probability.
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The same strategy can be adopted to evaluate
CHST(U, V). In this case, the task is to estimate the
expectation value of �1�2 · · ·�L with respect to (UA ⊗
V∗

B) |�+〉AB. We use the fact that �1�2 · · ·�L can also be
expanded as a sum of Pauli operators:

�1�2 · · ·�L = 1
4L

∑

P∈{I ,X ,Y,Z}⊗L

cPP ⊗ P, (A15)

where cP = 1 when P has an even number of Y and
cP = −1 otherwise. This decomposition has an exponen-
tial number of Pauli operators and a naive approach where
we estimate expectation values of every Pauli operator
takes exponential time to L. However, we can take a Monte
Carlo approach to evaluating this sum by interpreting the
coefficient 1/4L as a probability.

The algorithm for evaluating CHST(U, V) is as follows.
First, we pick up a Pauli operator P ∈ {I , X , Y, Z}⊗L ran-
domly. Then, we estimate the expectation value of P ⊗ P
using the algorithm in the proof of Lemma 1. Repeating
the above procedure N3 = O(1/ε2) times while setting
N1, N2 = O(1), we obtain CHST(U, V) within an addi-
tive error ε with high probability, using N = N1N2N3 =
O(1/ε2) samples in total.

APPENDIX B: EXTENSION TO OTHER CASES

In the main text, we mainly focus on 1D systems with
finite-ranged interactions. Here, we discuss the extensions
of our results to other cases in terms of the range of
interactions and the dimension of systems.

From the derivation of Theorems 4 and 5 in the main
text, the range of interactions and the dimension affect
our results only via εLR in Eq. (20), which is derived
from the LR bound. To be precise, we should change the
choice of the intermediate size L′ = 2(l0 + dH + vτ) or
L̃ ≥ L′ + 2d′ + 1, which designates the restriction of the
Hamiltonian and the ansatz, so that the bound εLR can be
ignored. Thus, after deriving εLR caused by the Hamilto-
nian restriction in Appendix B 1, we devote Secs. B 2–B 4
to discussing an appropriate choice of the size for finite-
ranged, short-ranged, and long-ranged cases in generic
dimensions.

1. Hamiltonian restriction by Lieb-Robinson bound

We first discuss the error bound εLR in Eq. (20), caused
by the restriction of Hamiltonian to local terms around a
site j . Let us assume that a Hamiltonian H has the LR
bound designated by

‖[eiHτOX e−iHτ , OY]‖ ≤ ‖OX ‖ · ‖OY‖ · C(dist(X , Y), τ),
(B1)

for the local observables OX and OY, the supports of which
are, respectively, the subsets of the lattice, X and Y (⊆ �).

The distance between domains is defined by

dist(X , Y) = inf{dist(j , j ′) | j ∈ X , j ′ ∈ Y}. (B2)

We also define the distance between a site j and a domain
Y by dist(j , Y) = dist(X = {j }, Y).

Assuming the existence of the LR bound, we consider
the dynamics of the local observables. We define the
restriction of the Hamiltonian H (L) = ∑

X hX for generic
D-dimensional systems by

H (L′,j ) =
∑

X ;X ⊆�L′ ,j

hX , (B3)

�L′,j = {j ′ ∈ � | dist(j , j ′) ≤ L′/2}, (B4)

where L and L′ (≤L), respectively, represent the linear
scales of the lattices � and �L′,j . It is expected that the
dynamics of the local observables, eiH (L)τOj e−iH (L)τ , are
well described by the restricted Hamiltonian H (L′,j ) for
sufficiently large L′, and in fact, this has been proved in
Refs. [44–46] for the finite-ranged and short-ranged cases.
In order to cover long-ranged cases and make our paper
self-contained, we summarize and rederive the result in a
slightly different way below. After that, we derive a proper
choice of the compilation size L̃ for finite-ranged, short-
ranged, and long-ranged cases in generic dimensions.

Lemma 6. We assume the existence of the LR bound in
the form of Eq. (B1) on the Hamiltonian H (L), and define
the size of a domain X ⊆ � by

r(X ) = max{dist(j , j ′) | j , j ′ ∈ X }. (B5)

When the function C(r, t) is monotonically decreasing in
the distance r and monotonically increasing in the time τ ,
the inequality

‖eiH (L)τOj e−iH (L)τ − eiH (L′ ,j )τOj e−iH (L′ ,j )τ‖ ≤ εLR, (B6)

εLR = C1

∫ ∞

L′/2−rH

rD−1C(r, τ)dr + ε(rH ), (B7)

ε(rH ) = C2

∑

i∈�L′ ,j

∑

X ;X �i,r(X )>rH

‖hX ‖ (B8)

is satisfied, where the length scale rH is an arbitrary value
satisfying 0 ≤ rH ≤ L′/2, and the constants C1 and C2 are
independent of L and L′.
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Proof. The proof is mainly based on Ref. [50] but we make
a slight change so that it can cover short-ranged and long-
ranged interactions. First, we define a function f (t) by

f (t) = Oj − U(L′,j )
t U(L)†

t Oj U(L)
t U(L′,j )†

t , (B9)

U(L)
t = e−iH (L)t, U(L′,j )

t = e−iH (L′ ,j )t. (B10)

‖f (τ )‖ equals the left-hand side of Eq. (B6). Then, the
differentiation of f (t) in t immediately results in

f ′(t) = iU(L′,j )
t

[
U(L)†

t Oj U(L)
t , H (L) − H (L′,j )

]
U(L′,j )†

t .

(B11)

Considering that f (0) = 0, the operator norm ‖f (τ )‖ is
bounded from above as follows:

‖f (τ )‖ =
∥∥∥∥
∫ τ

0
f ′(t)dt

∥∥∥∥ ≤
∫ τ

0

∥∥f ′(t)
∥∥ dt

=
∫ τ

0

∥∥∥
[
U(L)†

t Oj U(L)
t , H (L) − H (L′,j )

]∥∥∥ dt. (B12)

From the definition of H (L′,j ), given by Eq. (B3), we obtain

H (L) − H (L′,j ) =
∑

X ;X ��L′ ,j

hX . (B13)

Introducing an arbitrary length scale rH , satisfying 0 ≤
rH ≤ L′/2, the summation over X , which is not a subset
of �L′,j , can be divided in the following way:

∑

X ;X ��L′ ,j

=
∑

X ∈XA

+
∑

X ∈XB(rH )

+
∑

X ∈XC(rH )

, (B14)

where each of XA, XB(rH ), and XC(rH ) is defined by

XA = {X | X ⊆ �\�L′,j }, (B15)

XB(rH ) = {X � �L′,j | X ∩�L′,j �= φ, r(X ) ≤ rH },
(B16)

XC(rH ) = {X � �L′,j | X ∩�L′,j �= φ, r(X ) > rH }.
(B17)

Using the triangular inequality of the operator norm,
Eq. (B12) is further bounded by

‖f (τ )‖ ≤ εAB(rH )+ εC(rH ), (B18)

εAB(rH ) =
∑

X ∈XA∪XB(rH )

∫ τ

0

∥∥∥
[
U(L)†

t Oj U(L)
t , hX

]∥∥∥ dt,

(B19)

εC(rH ) =
∑

X ∈XC(rH )

∫ τ

0

∥∥∥
[
U(L)†

t Oj U(L)
t , hX

]∥∥∥ dt. (B20)

We now evaluate the upper bound of εAB(rH ) and that of
εC(rH ), respectively.

For the first term εAB(rH ), we use the fact that
a domain X , which belongs to XA ∪ XB(rH ), satis-
fies dist(j , X ) ≥ L′/2 − rH from their constructions in
Eqs. (B15) and (B16). Using the LR bound given in
Eq. (B1) for the integrand, εAB(rH ) is bounded by

∑

X ∈XA∪XB(rH )

∫ τ

0
‖Oj ‖ · ‖hX ‖ · C(dist(j , X ), t)dt,

≤
∑

j ′;dist(j ,j ′)≥L′/2−rH

‖Oj ‖
∑

X ;X �j ′
τ‖hX ‖ · C(dist(j , j ′), τ),

≤ gτ‖Oj ‖
∑

j ′;dist(j ,j ′)≥L′/2−rH

C(dist(j , j ′), τ). (B21)

In the first inequality, we employ the monotonic-
ity of C(r, t), which validates the replacement by
C(dist(j , X ), t) ≤ C(dist(j , j ′), τ) for X � j ′ and t ≤ τ . For
the second inequality, we use Eq. (15). Concerning the
summation over j ′ in the last line, the number of sites
j ′ satisfying dist(j , j ′) � r is proportional to the surface
area SDrD−1 under the finite density ρ. Thus, the summa-
tion

∑
j ′;dist(j ,j ′)≥L′/2−rH

is expected to be approximated by∫∞
L′/2−rH

drρSDrD−1. In fact, following this intuition, when
C(r, t) is monotonically decreasing in r and the number of
sites per volume is finite, there exists a positive constant
C3 such that

[Eq. (B21)] ≤ gτ‖Oj ‖ · C3

∫ ∞

L′/2−rH

rD−1C(r, τ)dr,

(B22)

for generic D-dimensional systems [50]. Here, the constant
C3 depends only on the dimension and the density of the
lattice but not on L and L′. Defining the constant C1 by
C1 = gτ‖Oj ‖C3, εAB(rH ) is bounded from above by the
first term in the right-hand side of Eq. (B7).

For the second term εC(rH ), we soon arrive at

εC(rH ) ≤
∑

X ∈XC(rH )

2τ‖Oj ‖ · ‖hX ‖,

≤ 2τ‖Oj ‖
∑

i∈�L′ ,j

∑

X ;X �i,r(X )>rH

‖hX ‖, (B23)

where we use the definition of XC(rH ), given in Eq. (B17),
to derive the second inequality. When we choose a constant
C2 by 2τ‖Oj ‖, which is independent of L and L′, εC(rH ) is
bounded by ε(rH ) [see Eq. (B8)] from above.

Combining these upper bounds for εAB(rH ) and that of
εC(rH ), we obtain the bound ‖f (τ )‖ ≤ εLR by taking εLR
from Eq. (B7), thereby completing the proof of Lemma 6.

�
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Let us discuss in what conditions we can extend our
results to other cases. The change in the dimension and
the range of interactions only affects the proper choice
of the partial system size L′, which designates the linear
scale of the Hamiltonian restriction. Once L′ is deter-
mined, the remaining protocol is completely the same as
that of the 1D finite-ranged cases; we compile the dynam-
ics using a quantum system with size L̃ ≥ L′ + 2d′ + 1
[d = L′/4 + d′: the depth of the variational quantum cir-
cuit V(θ)]. Therefore, it is sufficient to make εLR small
enough with a proper-size L̃ based on Theorems 4 and 5.
Depending on the kind of observables on which we are
focusing, we have different conditions. When considering
local observables under the approximate circuit V(L)(θopt),
we require εLR � 1 to keep the local cost functions small
according to Eq. (41) or Eq. (52). In this case, to extend
our results, it is thus sufficient to choose a sufficiently large
L′ that makes εLR � 1 while keeping L′/L < 1, so that the
compilation size is smaller than L. On the other hand, when
a near-unity average gate fidelity is required for global
observables, we require that |�|εLR ∼ LDεLR � 1 based
on Eqs. (48) and (54). As a result, the sufficient condition in
that case is to achieve LDεLR � 1 with a sufficiently large
L′ while keeping L′/L < 1. In the following subsections,
we derive how εLR scales with respect to L′ in finite-
ranged, short-ranged, and long-ranged interacting cases to
confirm that our protocol can be applied to these setups.

2. Finite-ranged cases in generic dimensions

We consider finite-ranged cases in generic dimensions.
As introduced in Eq. (17), here we assume

hX = 0, if ∃j , j ′ ∈ X such that dist(j , j ′) > dH , (B24)

where dH designates the range of interactions. Finite-
ranged interacting systems have the LR bound C(r, t) =
C exp −(r − vt)/ξ under a fixed time t, with some con-
stants C, v, and ξ , as introduced in Eq. (18) [41].

Let us evaluate the bound εLR. We set L′ = 2(l0 + dH +
vτ) with a tunable scale l0 and choose the parameter rH in
Eq. (B7) as rH = dH (≤ L′/2). From the assumption of the
range of interactions, ε(rH ), defined by Eq. (B8), vanishes.
This results in the bound

εLR = C1

∫ ∞

l0+vτ
rD−1e−(r−vτ)/ξdr, (B25)

reproducing Eq. (21) in the main text. With some elemen-
tary integration using the gamma functions, we arrive at

εLR = C1e−l0/ξ
D−1∑

k=0

(D − 1)!
(D − 1 − k)!

(l0 + vτ)D−1−kξ k.

(B26)

Since the term in the summation is a polynomial of
degree D − 1 in l0 + vτ , there exists a positive constant

C4 satisfying

εLR ≤ C4(l0 + vτ)D−1e−l0/ξ

= C4 exp {−l0/ξ + (D − 1) log(l0 + vτ)} . (B27)

Since εLR exponentially decays in l0 with polynomial cor-
rections, both εLR and LDεLR can be arbitrarily small with
sufficiently large L′ such that L′/L < 1. Thus, we can
apply the LVQC protocol to finite-ranged cases, including
high-dimensional systems.

Next, let us discuss how to choose the appropriate com-
pilation size L̃. When focusing on local observables, we
demand εLR � 1, which results in the following choice:

(1) Choose l0 so that

exp {−l0/ξ + (D − 1) log(l0 + vτ)} (B28)

can be ignored compared to 1.
(2) Choose the compilation size by means of L̃ =

2�l0 + dH + vτ + d′ + 1/2�.

To make Eq. (B28) small enough, l0 should be at least
as large as ξ , which is the localization length of the
LR bound. Thus, our protocol typically requires the lin-
ear scale L̃ � 2(ξ + dH + vτ + d′) for evaluating the cost
functions. High-dimensional cases with D ≥ 2 have loga-
rithmic corrections in its exponent. Although a larger linear
scale is required compared to 1D cases, we can still expect
considerable decrease in the size.

On the other hand, when considering global observ-
ables, we demand LDεLR � 1. This brings an additional
exponent D log L to Eq. (B28). As a result, the typical
size for compilation becomes L̃ � 2(ξ + dH + vτ + d′ +
Dξ log L) to ensure high average gate fidelity for larger
quantum systems.

3. Short-ranged cases in generic dimensions

Let us discuss short-ranged interacting systems in
generic dimensions. In these cases, the range of interac-
tions is infinite but their strength is suppressed exponen-
tially in the distance as

∑

X ;X �j ,j ′
‖hX ‖ ≤ h exp

(−dist(j , j ′)/ζ
)

, ∀j , j ′ ∈ �,

(B29)

with some positive constants h and ζ , for the Hamiltonian
H (L) = ∑

X hX . The LR bound is the same as that of the
finite-ranged cases, C(r, t) = C exp −(r − vt)/ξ [44–46].

Now, we evaluate the bound εLR for short-ranged cases.
We choose the size L′ by L′ = 2(l0 + rH + vτ) with two
tunable parameters, l0 and rH . The first term of εLR in
Eq. (B7) is the same as that of the finite-ranged cases,
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resulting in the bound in Eq. (B27). The second term ε(rH )

is then bounded by

ε(rH ) ≤ C2

∑

i∈�L′ ,j

∑

i′∈�;dist(i,i′)>rH

∑

X ;X �i,i′
‖hX ‖

≤ C2h
∑

i∈�L′ ,j

∑

i′∈�;dist(i,i′)>rH

exp
(−dist(i, i′)/ζ

)
.

(B30)

We can again replace the summation over i and i′ by inte-
gration over D-dimensional real space, like the derivation
of Eq. (B22) from Eq. (B21). With the use of a proper pos-
itive constant C5, independent of L and L′, we arrive at the
following bound:

ε(rH ) ≤ C5(L′)D(rH )
D−1e−rH /ζ . (B31)

Finally, using the relation L′ = 2(l0 + rH + vτ), εLR satis-
fies the following inequality:

εLR ≤ C4(l0 + vτ)D−1e−l0/ξ

+ C6(l0 + rH + vτ)DrD−1
H e−rH /ζ , (B32)

where C4 and C6 are some positive constants independent
of L and L′.

Similar to finite-ranged cases, both εLR and LDεLR can
be arbitrarily small with properly increasing l0 and rH
under L′/L < 1. When we focus on local observables
for larger-scale dynamics demanding εLR � 1, we should
choose the compilation size L̃ in the following way:

(1) Choose l0 so that

exp {−l0/ξ + (D − 1) log(l0 + vτ)} (B33)

can be ignored compared to 1.
(2) Choose rH so that

exp
{
−rH

ζ
+ D log(l0 + rH + vτ)+ (D − 1) log rH

}

(B34)

can be ignored compared to 1, under the above
choice of l0.

(3) Choose the compilation size by means of L̃ =
2�l0 + rH + vτ + d′ + 1/2�.

In contrast to finite-ranged cases, the error εLR always has
logarithmic corrections in its exponent and has two inde-
pendent tunable parameters for the scale L̃. To make both
Eqs. (B33) and (B34) sufficiently small, the compilation
size L̃ should be at least as large as 2(ξ + ζ + vτ + d′),
ζ being the typical range of interactions, which gives the
typical size scale of short-ranged cases. When the high

average gate fidelity is required, we replace the protocol by
adding D log L to the exponents of Eqs. (B33) and (B34),
to achieve LDεLR � 1. Then, the typical compilation size
scale becomes L̃ � 2{ξ + ζ + vτ + d′ + D(ξ + ζ ) log L}.

4. Long-ranged cases in generic dimensions

The last case that we consider is a long-ranged Hamil-
tonian in generic dimensions. Here, we assume power-law
interactions, satisfying

∑

X :X �j ,r(X )≥R

‖hX ‖ ≤ h
Rα

, ∀j ∈ �, (B35)

for any sufficiently large distance R > 0, where h and α
denote some positive constants. One of the simplest cases
is the long-ranged transverse Ising model defined by

H =
∑

j ,j ′∈�,j �=j ′

Zj Zj ′

dist(j , j ′)D+α +
∑

j ∈�
Xj , (B36)

on a D-dimensional lattice �. While a series of recent
studies have succeeded in extending the LR bound to long-
ranged cases in different ways [47–52], we hereby focus
on one of their results, derived in Ref. [50]. When the
power α is larger than the dimension D, there exist positive
constants v, C7, and C8, such that

C(r, τ) ≤ C7 exp
(
vτ − r1−σ )+ C8

fσ (vτ)
rσα

, (B37)

for any σ satisfying (D + 1)/(α + 1) < σ < 1. Here,
fσ (x) is a monotonically increasing function in x indepen-
dent of L and can be regarded as a positive constant for
fixed τ and σ .

We compute the upper bound of εLR based on Eq. (B7).
The intermediate size L′ is again given by L′ = 2(l0 +
rH + vτ) with two tunable parameters, l0 and rH . Substi-
tuting the above LR bound into Eq. (B7), the first term of
Eq. (B7) is bounded by

∫ ∞

l0+vτ
rD−1C(r, τ)dr ≤ C7evτ

∫ ∞

l0+vτ
rD−1e−r1−σ

dr

+ C8fσ (vτ)
∫ ∞

l0+vτ
rD−1−σαdr.

(B38)
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The first integral on the right-hand side is computed by the
substitution of s = r1−σ − (l0 + vτ)1−σ , which results in

C7evτ
∫ ∞

l0+vτ
rD−1e−r1−σ

dr

= C7evτ−(l0+vτ)1−σ

1 − σ

×
∫ ∞

0
{s + (l0 + vτ)1−σ }(D/(1−σ))−1e−sds

≤ C7evτ−(l0+vτ)1−σ

1 − σ

∫ ∞

0
{s + (l0 + vτ)1−σ }nDσ−1e−sds,

(B39)

with nDσ = �D/(1 − σ)� ∈ N. As we derive Eq. (B27)
from Eq. (B25) using the gamma functions, there exists
a positive constant C9, which is dependent only on D and
σ , such that

C1 × [Eq. (B39)] ≤ C9evτ−(l0+vτ)1−σ
(l0 + vτ)nDσ (1−σ)

≤ C9evτ−(l0+vτ)1−σ
(l0 + vτ)D+1−σ

(B40)

is satisfied. On the other hand, considering D − 1 − σα <

−1 from (D + 1)/(α + 1) < σ < 1, the second integral on
the right-hand side of Eq. (B38) is easily computed as

C8fσ (vτ)
∫ ∞

l0+vτ
rD−1−σαdr = C8fσ (vτ)

σα − D
(l0 + vτ)D−σα .

(B41)

We define a positive constant C10 by C10 = C8fσ (vτ)/
{C1(σα − D)} and then Eqs. (B40) and (B41) imply that

C1

∫ ∞

L′/2−rH

rD−1C(r, τ)dr

≤ C9evτ−(l0+vτ)1−σ
(l0 + vτ)D+1−σ + C10(l0 + vτ)D−σα .

(B42)

We note that this bound is independent of L and vanishes
with increasing l0 → ∞.

When the tunable parameter rH is sufficiently large,
the second term ε(rH ), defined by Eq. (B8), immediately
satisfies the following inequality:

ε(rH ) ≤ C2|�L′,j | · h
(rH )α

, (B43)

where we use the assumption of long-ranged interactions,
given in Eq. (B35). Considering that the volume |�L′,j | is
proportional to (L′)D, there exists a positive constant C11
such that ε(rH ) ≤ C11(l0 + rH + vτ)D · (rH )

−α . From the

assumption of α > D, this bound vanishes under rH → ∞
when the other parameter l0 is fixed.

Summarizing the results in Eqs. (B42) and (B43), we
obtain the bound of εLR for long-ranged cases in generic
dimensions as

εLR ≤ C9evτ−(l0+vτ)1−σ+(D+1−σ) log(l0+vτ)

+ C10(l0 + vτ)D−σα + C11 × (l0 + rH + vτ)D

(rH )α
.

(B44)

In contrast to the finite-ranged and short-ranged cases, the
bound εLR shows polynomial decay in L̃, which leads to
the absence of characteristic length. In addition, this also
alters the applicability of the LVQC protocol depending on
whether we focus on local or global observables for larger-
scale systems.

When we are interested in local observables, εLR � 1 is
demanded. Since εLR is independent of L, we can make
εLR arbitrarily small by increasing l0 and rH under the
constraint L′/L < 1. We can apply the LVQC protocol
as long as the LR bound exists (e.g., α > D is required
when we employ the LR bound in Ref. [50]). The proper
compilation size L̃ is organized into the following steps:

(1) Choose l0 so that both of

evτ−(l0+vτ)1−σ+(D+1−σ) log(l0+vτ) (B45)

and (l0 + vτ)D−σα become sufficiently small com-
pared to 1.

(2) Choose rH so that (l0 + rH + vτ)D/(rH )
α can be

ignored compared to 1, under the above choice of
l0.

(3) Choose the compilation size by L̃ = 2�l0 + rH +
vτ + d′ + 1/2�.

Here, we have options in the parameter σ satisfying (D +
1)/(α + 1) < σ < 1. Since the constants C9 and C10 are
divergent for σ around its lower and upper bounds [see
Eqs. (B39) and (B41)], a possible good choice may be σ =
{(D + 1)/(α + 1)+ 1}/2.

When we are interested in global observables, we
demand LDεLR � 1. The protocol to choose L′ is largely
the same as the above one, where each term in εLR is
replaced by the corresponding term in LDεLR. However,
due to the polynomial decay of εLR in l0 and rH , we should
impose additional conditions on the exponents α and D.
Let us discuss the asymptotic behavior of the compila-
tion size by defining the scaling l0 ∼ Lβ and rH ∼ Lδ with
β, δ < 1. Multiplying the right-hand side of Eq. (B44) by
LD, we have three terms that should decay. The first term
decays subexponentially in l0 but polynomially increases
in L. It can thus be made arbitrarily small by choosing suffi-
ciently large l0. With regard to the second term, we demand
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the convergence of LD(l0 + vτ)D−σα ∼ LD+β(D−σα) (here,
we assume that vτ is constant). As a result, the inequalities
σα − D > 0 and

D
σα − D

< β < 1 (B46)

should be satisfied. The relation β < 1 ensures reduc-
tion in the compilation size. The above inequality implies
that α > 2D and σ > 2D/α must be satisfied for suc-
cessful size reduction. Finally, the third term scales as
LD max(β,δ)−αδ+D. Taking the above constraints on β and σ ,
the sufficient condition for the vanishing third term is to
satisfy

σD
σα − D

< δ < 1. (B47)

To summarize, when demanding high average gate fidelity,
we can apply LVQC to long-ranged interacting systems
with the exponent α > 2D, which is stricter than what is
required for the existence of the LR bound. Then, the com-
pilation size L̃ is at least proportional to LD/(σα−D) with
2D/α < σ < 1.

Let us finally discuss concrete examples of systems
where we can apply LVQC successfully. With the usage
of the LR bound for the long-ranged cases derived in
Ref. [50], the constraint for the local observables, α >
D, tells us about the availability of LVQC to various
systems, such as 1D systems with dipole-type interac-
tions (α = 2, D = 1) and 1D or 2D systems with van
der Waals interactions (α = 5, D = 1 or α = 4, D = 2).
On the other hand, the constraint on global observables,
α > 2D, implies applicability to limited cases, such as 1D
systems with van der Waals interactions (α = 5, D = 1)
within the above examples. In both cases, the application
to long-ranged Hamiltonians of electrons from first prin-
ciples (i.e., α = 1 − D by Coulomb potentials) seems to
be difficult with the current knowledge of the LR bound.
Anyway, we expect applicability of LVQC to broader sys-
tems with the usage of other formulations on the LR bound
[47–49,51,52] or as its further development.

APPENDIX C: RELATION TO DQC1 HARDNESS
OF COMPUTING COST FUNCTIONS

In this appendix, we discuss how the LVQC proto-
col is related to the computational complexity of QAQC.
According to Ref. [37], the determination of the cost func-
tions belongs to DQC1-hard problems. This indicates that
efficient QAQC by classical computers is difficult. On the
other hand, our LVQC enables efficient evaluation of the
cost functions with a restricted size L̃ and, in some cases,
we can efficiently complete the protocol by MPS, as in
Sec. V. Here, we resolve this apparent contradiction.

We first introduce the complexity class, DQC1 (deter-
ministic quantum computation with one clean qubit)
[59]. Here, we concentrate on a 1D system (extension
to higher-dimensional systems is straightforward). In the
DQC1 model, we prepare an (L + 1)-qubit initial state,
composed of one clean qubit and with the other qubits
lying in a maximally mixed state, as

ρ = |0〉 〈0| ⊗
( |0〉 〈0| + |1〉 〈1|

2

)⊗L

. (C1)

Then, we apply a unitary gate U with the depth up to
poly(L) and obtain the following probability by measuring
the first clean qubit,

pz = Tr[(|z〉 〈z|)1UρU†], z = 0, 1. (C2)

We refer to the problem of determining the probability
pz with a multiplicative error ε < 1 as the DQC1 model.
DQC1 models were originally introduced to evaluate the
power of nuclear-magnetic-resonance quantum comput-
ers. Famous examples of DQC1-complete problems are
the estimation of spectral density [59], the trace of unitary
matrices [65], and the Jones polynomials [66]. Importantly,
in Ref. [67] it is proved that, if the probability pz can be
sampled with poly(L)-time classical algorithms, the poly-
nomial hierarchy will collapse to the second level. This
implies that efficiently simulating the DQC1 models in
classical ways is unlikely. Recently, in Ref. [37] it has been
revealed that the determination of the global cost function
CHST or the local one CLHST with an error ε < 1/poly(L)
is DQC1 hard for poly(L) depth unitaries U and V; any
DQC1 model can be reduced to the problem of determin-
ing the above cost functions. Based on this fact, quantum
compilation with the cost functions CHST or CLHST is also
expected to be difficult by classical computation.

LVQC seems to give contradictory results due to the
size reduction. Let us consider 1D systems with finite-
ranged interactions and assume that the compilation size
L̃ = 2�l0 + dH + vτ + d′ + 1/2� satisfies L̃ ∝ log L. We
can classically compute the cost function C(L̃)(θ) with
accuracy 1/poly(L) by employing matrices the dimension
of which is eO(L̃) ∼ poly(L) based on Eqs. (8) and (49).
It takes at most poly(L) time for its classical evalua-
tion. Considering that εLR is suppressed as εLR < e−O(L̃) =
1/poly(L), Propositions 2 and 3 (or the proof for Theorem
5) say that

|CLHST(U(L), V(L)(θ))− C(L̃)(θ)| < 3
4
εLR = 1/poly(L).

(C3)

Therefore, we can classically determine the local cost
function CLHST(U(L), V(L)(θ)) with polynomial time in
the system size L. Does this imply the collapse of the
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polynomial hierarchy or a fault in the LVQC formalism?
As the discussion below shows, the LVQC protocol leads
to neither conclusion.

We resolve the discrepancy depending on the size of the
causal cones generated by the LR bound, vτ . The first case
is where the time τ is constant. Then, the time-evolution
operator U(L) = e−iH (L)τ is not universal under the local-
ity. The LR bound allows us to regard it as a O(L0)-depth
circuit in terms of the local observable CLHST. Therefore,
while the local cost function CLHST(U(L), V(L)(θ)) can actu-
ally be obtained by poly(L)-time classical computation,
this case is not problematic. The second case is vτ ∝ Lκ ,
where we can expect the size reduction if we assume 0 <
κ < 1. In that case, the compilation size L̃ = 2�l0 + dH +
vτ + d′ + 1/2� is proportional to Lκ and cannot scale as
log L. Thus, the above discussion predicting the poly(L)-
time classical evaluation is precluded, which results in the
consistency of LVQC with the DQC1 hardness of deter-
mining the cost function CLHST. Similarly, LVQC appears
to allow classically efficient evaluation of the global cost
function CHST but there exists no conflict with its DQC1
hardness.

We emphasize some points throughout this discussion.
First, in some cases, local compilation by classical com-
puters remains possible. For finite-ranged or short-ranged
interacting systems under vτ = O(L0), LVQC can be com-
pleted with poly(L)-time classical computation. While we
employ an approximate classical algorithm relying on the
MPS in Sec. V, we expect that high-performance classical
computers in the future will achieve the compilation for the
size L̃ ∼ log L without resorting to any approximation. On
the other hand, we also note that intermediate-scale quan-
tum devices still play a significant role in the local compi-
lation. While the compilation size L̃ scales as log L in the
above cases under L → ∞, the remaining constant term is
not so small for current classical computers. For instance,
as in the numerical simulation in Sec. V, a typical 1D
spin chain with finite-ranged interactions requires L̃ = 20,
resulting in the compilation using 40-qubit quantum sys-
tems. It will be necessary to prepare hundreds or thousands
of qubits for higher-dimensional systems involving finite-,
short-, and long-ranged interactions. Since the DQC1 hard-
ness denies poly(L̃)-time classical simulation of the local
compilation, NISQ devices will be essential to compile
larger-scale time-evolution operators.
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