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Quantum correlations are at the core of current developments in quantum technologies. Certification
protocols of entanglement and steering, suitable for continuous-variable non-Gaussian states are scarce
and generally highly demanding from an experimental point of view. We propose a protocol based on
Fisher information for witnessing steering in general continuous-variable bipartite states, through homo-
dyne detection. It proves to be relevant for the detection of non-Gaussian steering in scenarios where
witnesses based on Gaussian features like the covariance matrix are shown to fail.
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I. INTRODUCTION

In 1935 Einstein, Podolsky, and Rosen introduced what
came to be known as the EPR paradox [1], challeng-
ing, through the argument of local realism, the complete-
ness of quantum mechanics. In his early response [2,3],
Schrédinger addressed the issue of spooky action, trou-
bled by the paradox arising from the capability of one part
of a bipartite system to instantaneously steer the state of
the other through appropriate local measurements. These
works received notorious attention after the seminal paper
by Bell [4], who proposed a strong test for locality itself. In
2007, Wisemann et al. [5] provided an operational bench-
mark for steering, from which they proved that the set of
states that manifest steering are a strict subset of the set
of entangled states and a strict superset of those that vio-
late Bell inequalities. This definition can be understood in
terms of a scenario where two parties, Alice and Bob, share
a state. Alice has to convince Bob that the state they share
is entangled, while Bob does not actually trust Alice, i.e.,
he does not assume her measurements to be in accordance
with the constraints imposed by quantum physics. Alice
will communicate the results of her measurements and then
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Bob can measure the state on his part of the system. When-
ever Bob can verify the presence of a quantum correlation
based only on the information provided by Alice and his
own measurement results, we say that there is quantum
steering from Alice to Bob.

The relevance of the characterization of steering goes
beyond the interest in fundamental questions as it is a rele-
vant resource in quantum information protocols [6,7], like
one-sided device-independent quantum key distribution
[8—10], certification of random number generators [11,12],
quantum metrology [13], and quantum channel discrimina-
tion [14]. These one-sided device-independent approaches
to quantum information protocols are settled in between
the fully device-independent protocols that require the
violation of Bell inequalities for certification, and the
entanglement-based protocols, which are less restrictive,
but also slightly less secure [15—17].

The problem of steering characterization for Gaussian
states has been widely studied [18,19], and a well-defined
measure has been established [20—22], based on the sym-
plectic spectrum of the conditioned covariance matrix.
However, for many applications in quantum technologies,
one requires non-Gaussian states. For example, non-
Gaussian features are necessary to reach a quantum
computational advantage [23], and for quantum error
correction [24]. Any application that relies on entan-
glement distillation must be non-Gaussian [25] and
common entanglement distillation protocols effectively
create non-Gaussian quantum correlations [26,27]. Such
non-Gaussian quantum correlations become particularly
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relevant in quantum metrology, where they often lead to
an improvement in sensitivity [28-31].

A general characterization of steering in non-Gaussian
scenarios has been elusive so far. One possible approach
relies on conditional quantum state tomography and
semidefinite programming [32]. Alternatively, many pro-
tocols are based on second-order correlations [18], and for
non-Gaussian states, these protocols require non-Gaussian
measurements [33]. The latter is twofold undesired. First,
it is appealing to rely strictly on Gaussian continuous-
variable (CV) measurements, such as homodyne detec-
tion. Second, we want to probe the non-Gaussian features
of the state, and thus must avoid introducing any addi-
tional non-Gaussian features through the measurement. In
this spirit, we aim for a general protocol purely based
on homodyne detection. Even though methods based on
hierarchies have been proposed [34], these can require sig-
nificant experimental and computational overhead when
high-order moments are involved. Thus, rather than only
focusing on moments of the measurement outcomes, our
protocol will exploit the full measurement statistics.

We tackle the problem of witnessing quantum steering
with a toolbox based on quantum metrology [30,31,35].
The steering capacity in a bipartite system was formally
linked to an enhancement in the capability to estimate cer-
tain parameters [13]. We adapt this approach to the exper-
imental context and limitations of CV quantum optics and
show its relevance for non-Gaussian states. For that, we
consider single-photon-subtracted states as a probe system.
In the context of non-Gaussian states, photon subtraction,
offers an experimentally feasible way to attain Wigner neg-
ativity in a controlled way [36,37]. This approach offers
a very flexible way to generate different kinds of states
[38] and in particular purely non-Gaussian features can
be studied by appropriately choosing the mode in which
the photon is subtracted [36]. These states are a rele-
vant probe since pure photon-subtracted squeezed vacuum
states have been shown to manifest quantum steering that
cannot be detected by variance-based criteria [39]. We also
show that our metrological approach detects more non-
Gaussian steerable states than the entropic criterion of Ref.
[40], even though the latter also exploits full homodyne
statistics.

II. PROTOCOL

A. Protocol for general quantum states

We now formulate the steering detection scheme as a
metrological protocol, following Ref. [13]. We consider
the scenario in which Bob attempts to estimate a phase
€ generated by a Hamiltonian A that acts on his side
of the system. Without any further information than that
which he can extract from direct measurements in the dis-
placed state p7 = exp(—ig H) p? exp(i€H), the maximal
precision that he can achieve using an arbitrary unbiased

estimator &g is limited by the quantum Fisher information
(QFI) Fyp(p® ,H), the central quantity in quantum metrol-
ogy [30,31,35]. In the present scenario, where the param-
eter to be estimated is implemented by a unitary transfor-
mation, generated by a Hamiltonian, there is a practical
expression for the QFI for a state p% = Y, relr) (rl:

82

Fo(p® H) = 4Tr[p®H*] — rj|H|rk)| )

(1)

Note that this expression requires us to know the eigen-
values r; and associated eigenvectors |r;). However, in
many physical systems, and notably CV systems where the
density matrix is infinite dimensional, these quantities are
often not known.

The QFI represents the sensitivity of state 4% under
small perturbations generated by H. This idea is formal-
ized in the quantum Cramér-Rao bound on the variance of
the estimator

1
Var(§est) > ——————, 2
ar(&est) > nFQ(,éB,H) (2)

where 7 is the number of repetitions of the measurement
protocol. The inequality can be saturated by choosing the
optimal measurement observable and estimator.

Nevertheless, Bob’s state might be correlated with
another system. Let us assume that Alice possesses this
second party, and will assist Bob in his estimation pro-
tocol by sending him information about her measure-
ment setup and outcome. Alice’s assistance may improve
Bob’s estimation precision even when correlations are
purely classical. Local complementarity sets a limit to this
improvement that can only be overcome when there is
quantum steering [13]. The average sensitivity attainable
by Bob following assistance by Alice, is upper bounded
by the conditional QFI

FY A= max [ p@)FY@. ida, )
Xv alX

and we introduce the assemblage as a function .4 that maps
the observable X and one of its measurement outcomes a
to

Ala, X):=palX)p? ;. (4)

where p(al)? ) is the probability distribution for Alice’s
outcomes a after measurement of the observable X, and
ﬁfl P is the conditioned state on Bob’s side that is obtained
after such a measurement.

In this context the confirmation of quantum steer-
ing consists in showing that assemblage (4) cannot be
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described with a hidden state model given by

Aa,X) = / dip )p(alX, )68, (5)

Note, moreover, that the implementation of a local phase
& preserves the structure of the local hidden state model.
If the state Bob and Alice share is consistent with the
structure of Eq. (5), the following inequality holds [13]:

FRU (A ) < avarg (A, ). (6)

B|A
Here Va l

variance

(A, i) represents the quantum conditional

VarZ (A, £):=min / p@X)Var(pll. Hyda  (7)
X

that is obtained after minimization over all possible mea-
surement setups by Alice. Here we encounter the variance
of H in the state ,o 2 given by

Var(py, o H):=Tel[p}  [1*) = Telpy Y. (8)

Together with the Cramér-Rao bound,
implies the uncertainty relation [13]

inequality (6)

Var(§e) Vary (A, H) > % ©)

between the phase displacement estimator &.y and its
generator A, whose violation constitutes an EPR paradox.

Inequality (6) can be thought of as a way to witness
steering through its relevance for metrological tasks. The
extent to which a given assemblage violates the inequality
is captured by the steering witness

Smax(A) = max  [F"(AH) — 4Varg (A, )],
{H,Tr(H?)=1}
(10)
where [x]" = max{0,x}. Moreover, Reid’s criterion [41]

can be derived as a weaker version of this witness. It can
be shown [13] that

([H, M) 552

BlA A H
( = VarBlA (A, M)

(11

holds for arbitrary assemblages A and observables H and
M. Combined with inequality (6), we introduce the fol-
lowing measure for the violation of Reid’s variance-based

steering witness:

([H, M) 5]

S = AN

— 4Va B'A(A H)i|
(12)

This witness is very commonly used to witness steering
in Gaussian states with quadrature operators [41]. Further-
more, Eq. (11) directly implies that Spax (A) = Sz(A).

{H,Tr(H?)=1} [

B. Homodyne protocol for continuous-variable systems

In this section, we translate the general protocol of
the previous section to the specific context of multimode
quantum optics [36,42]. We rely on quadrature displace-
ments as the phase estimation probe, which can be easily
implemented by shifting the Wigner function [43] in phase
space. Experimentally, such a displacement results in a
simple shift of the measured quadrature histograms, which
implies that the effect of the parameter can be easily “sim-
ulated” in postprocessing. This will allow us to develop a
framework to witness steering based entirely on homodyne
detection.

Our starting point is the M-mode electric field operator

M
E+(r,t) = Zej&juj(r,t), (13)

Jj=1

where the u;(r,f) are a set of orthonormal solutions of
Maxwell equations (classical modes), €; is a constant
that carries the dimensions of the field, and the a; are
the annihilation operators corresponding to modes u; of
the bosonic field. In CV quantum optics the fundamental
observables are the real and complex components of these
operators, defined as

G =222, (14)
where ¢; and p; are the amplitude and phase quadratures of
the electric field, respectively, which satisfy the canonical
commutation relation [&j, ﬁk] = 2i8; . The measurement
outcomes for these observables are represented in optical
phase space, which has a symplectic structure associated
with the form

M
Q:@(‘l) _01>. (15)
j=1

We can now define vectors of quadrature operators

-

=@up1 - qump) (16)

and translate the commutation relation to [X;, Xx] = 2iS2.
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To represent quantum states in optical phase space, we
resort to a quasiprobability distribution, the Wigner func-
tion. Even though this representation can reach negative
values and is thus not a joint probability distribution for
quadratures, its marginals describe the probabilities of
measurement outcomes for individual quadrature observ-
ables [36]. We focus on states of a bipartite system that are
completely described by its Wigner function W(xX, @ Xz)
in a phase space of dimension R?” @ R>" | where ¥4 (¥5)
stands for the phase space coordinates of subsystem 4 (B)
that consists of m (m") modes.

A direct application of the protocol in Sec. Il A would
require us to obtain the QFI F3. This is in general a noto-
riously difficult task as it involves the reconstruction of
the density matrix, which is often unfeasible in a CV set-
ting. However, the QFI is lower bounded by its classical
counterpart

Fo(p® . H) = FZ[P]. (17)
The classical Fisher information (FI) characterizes the best
precision that can be obtained for estimating & by using the
results of a specific measurement. It is defined as

oL
FEP]= f P |s>< 8(?5)) dg,

(18)
where L(q|&) = log[P(g|&)] represents the logarithmic
likelihood associated with the probability density of mea-
surement outcomes ¢, after implementation of the param-
eter £. More formally phrased, P(g|§) = Tr[ﬁg I1,], where
ﬁq forms a positive operator-valued measure such that
f ﬁqdq = 1. For CV systems, it is natural to choose A

to be a quadrature operator, and ﬁq = |q){q| to correspond
to homodyne measurements.

Relation (17) is particularly appealing as it shows that
any violation of inequality (6) based on the classical FI is
a lower bound for the exact violation based on the QFI.
The downside of relying on the classical FI is that one may
fail to witness steering that could otherwise be detected by
using a better measurement scheme. However, the classi-
cal FI already provides a strict improvement over Reid’s
criterion (12). We show that this improvement is sufficient
to witness non-Gaussian steering.

In what follows we summarize the protocol to witness
steering for a bipartite CV system; see Fig. 1. We have
two sets of modes that are, in principle, mutually entan-
gled: one in possession of Alice and one in possession of
Bob. In her modes, Alice performs a homodyne detection
that is characterized by a normalized vector / in Alice’s
phase space, which means that she measures the quadra-

ture f/A =/ TX. When she obtains the measurement result
Xo, Bob’s state will be transformed into a state described

D

¢
\“ﬁ

>
e*Tch_ir

FIG. 1. Metrological protocol on which we base the witness-
ing of steering for bipartite CV states. Alice performs homodyne
detection on the mode she owns and communicates to Bob the
quadrature she chose to measure and its outcome. Based on this
information, Bob tunes the local oscillator (LO) to choose what
quadrature to measure in order to better estimate the displace-

ment & generated by D(S ) = exp[—i§ eTQx/Z] such that the
Hamiltonian is given by 4 = &7 QF /2.

by the conditional Wigner function

WP 351y = xo)
Jozm WG4 @ Fp)8(f T34 — x0)diy
Jromgpan' W4 @ Xp)S(f TX4 — x0)dX4dxp

(19)

Bob estimates a local quadrature displacement W84 (X) —
WBA(Xp — £¢) on his subsystem. The parameter of inter-
est & here corresponds to the extent of this displgcement,
which is generated by the Hamiltonian A = &7 Q%/2 with
¢ anormalized vector in Bob’s phase space. In the spirit of
Eq. (10), to witness steering, we optimize over all possible
choices of displacement axis, and thus maximize over e.

To study Bob’s sensitivity for such an estimation, we
evaluate the quantities involved in inequality (10), but we
replace the QFI with the classical FI (18). To compute the
classical FI, we fix the observable M. A logical choice i is
to measure the displaced quadrature, given by M=¢"%.
This means that P(g | £) in Eq. (18) is the marginal of the
Wigner function (19) along the phase space axis é. The
probability of obtaining an outcome ¢ when measuring the
quadrature along ¢ is given by

P (@) = / 8@ - QWP Gyl = xo)dip. (20)

The displaced profile is obtained by the map g > ¢ — & on
the marginal distribution, such that we can write

PP -(ql§) = PP :(q—©). 1)

The resulting conditional classical FI for a fixed choice of
Bob’s displacement and measurement (determined by ¢),
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optimized over all homodyne observables (f ) on Alice’s
side, is defined as

F, .A, = max PA( 4 = X())FS [P a]dXo.
2 feRZm R ~olf
(22)

Here, P, (x’:1 = xo) is the marginal of the Wigner function
along the quadrature measured by Alice. To check whether
there is some mode in Alice’s subsystem that can steer
Bob’s, the optimization runs over all possible choices of
f . One could refine the question and restrict f to the phase
space of one specific mode to test whether this particular
mode can steer Bob’s subsystem.

To compute the conditional variance of the genera-
tor ¢ Q%/2, we also use a marginal of the conditional
Wigner function (19). From definition (7), we find that the
conditional variance is given by

B =ToZ
7€ Qx)dxo, (23)

where Var(ﬁf 7 ¢ QX) is the variance of the quadrature
0

corresponding to the generator é' Q%. To compute this
quantity, we introduce the probability of obtaining an out-
come p when we measure the quadrature along the axis
Qe:

folfg ) / 8(e' Qip —p)W lA()_éB|x§ = xo)dx3.
RrR2m’
(24)

This distribution allows us to compute

Var(ﬁff,éTQ?c): / *P] +(p)dp
R

2
~([oPi0m). o9
R

In other words, Alice first chooses a mode and quadrature
to measure. Bob then also chooses a mode and a quadrature
to measure depending on Alice’s choice. Alice commu-
nicates her measurement outcomes to Bob, and Bob will
group his measurement outcomes depending on Alice’s
result.

Finally, in analogy to the general definition (10), which
optimizes over all Hamiltonians, we optimize our homo-
dyne steering witness over all possible displacement vec-
tors. This leads to the final witness

>T Qj +
max |:F ol (.,4, ‘ 5 x> Varp (A, eTQx):|

Shom ( A) — e
eeR2m
(26)

max

for quantum steering with the specialized homodyne-
based protocol. Note that we have used the fact that
4varl (A4,27Q%/2) = Varl (4,27 Q%).

Even though our protocol is formulated in a fully multi-
mode context, it will effectively detect quantum steering
between two optical modes, one given by f on Alice’s
side and one given by ¢ on Bob’s system. Optimizing over
the possible choices of f and e gives us a sufficient crite-
rion for steering from Alice to Bob, but one can make the
protocol more general by measuring multiple quadratures
simultaneously on both Alice’s and Bob’s side of the sys-
tem. Because this extension is technically rather involved,
but physically straightforward, we present it separately in
the Appendix.

Witness (26) for our homodyne-based protocol is a
lower bound for the steering witness proposed in Ref. [13]
that relies on the QFI. At the same time, we can define
a version of Reid’s criterion (12) restricted to homodyne
measurements by setting 4 = ¢' 2% and M = ¢"%, which
leads to
ghom 4y — [ 1 B 4 =T O3 T

2 (A) = max | ————= — Var, (A, é Q)| .
ser2m rhom(.A eT )
27

Here, we find the quantity Var’“! (4,27%)~! that quan-
tifies the sensitivity of estimating & based only on the

average measurement outcome of ¢T%. Because of the
relation between the method of moments and the Fisher
information [31], this is always smaller than the sensitiv-
ity set by the FI. We thus find the hierarchy Sh™(A) <
Shom( Ay < S, .«(A). Interestingly, there are states for

max

which Shom(A) < Skr(A) as the general version of Reid’s

max
criterion allows for highly non-Gaussian operators H
and M.

Finally, it is interesting to explicitly compare Si°™(A)
and S"°m(A) for Gaussian states. When Alice conditions
on a homodyne measurement, she performs a Gaussian
operation on the state. When the global state is Gaussian,
Alice’ s measurement will create a Gaussian conditional

state ,0 7 on Bob’s subsystem [44]. Because the state is

Gaussmn it is characterized by a Gaussian Wigner func-
tion and its marginals are also Gaussian. Therefore, the
probability distribution Pfolf(qlf) in Eq. (21) is Gaus-
sian and only its mean value depends on the parameter &.
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In this case, a simple calculation shows that F, EB [Pf0 V;] =

1 /Var(,ﬁf 7 ET;c). This leads us to the following identity
0
for Gaussian states:

eTQR ;
F50§1<A, > ): max /R Py, = xo)

fERZm
1
X ———dyy.  (28)
Var(,éﬁ) 7 eTx)

A second important element for Gaussian states is that
Var(,éf ., e Q%) is independent of actual measurement
result xy on Alice’s side [44]. In other words, we find that

STk
FBA (A, ¢ x) = max

5 1 —_—. (29)
hom 2 fer? Var(p? . eTx)
xolf
From the same argument, it follows that
1 (30)
—————— = max —,
Vargo (A€T3)  Jer Var(pF - €T)
X0
which ultimately shows that
Shom(A) = Shom(A)  for Gaussian states. (31)

This shows that our metrological formalism based on
quadrature measurements can only outperform Reid’s cri-
terion based on quadrature variances when we are dealing
with non-Gaussian states.

Reid’s criterion as captured by Si°™(A) is also a lower
bound for a different steering witness that can be derived
from Ref. [40]. In this work, an entropy-based witness is
introduced, constructed based on the Shannon entropies of
the distributions Pfo 7 (¢) and pfolf ®):

WP, =x0 == [ P @ losP? @da. (D)
R
HPW, =x0) == [ P logPh  p)dp. G3)
r Yol xolf
We can then define

W(A,2'%) = min / P4, = xo)h(PIY, = xo)dxo,
R

S er2m

(34

HP(A,eTQR) = min / Py, = xo)h(PI, = x0)dxo.
R

2 cR2m

(35)

The original steering criterion that was proposed can be
translated to our context as

IBA(A, TR + HB4(A,TQR) < log2me).  (36)
It is particularly useful to note that
eTOR eTx
Varg? (A, == | Varpit [ A, —=
2 2
oM (AeTH 2P (AET Q%)
> (37)

(2me)?

When we combine this with the entropic inequality (36),
we can propose the steering witness
R 2B (AT QF)—1 7+
_hpBlAdg 4 5TE e ’
Sy (A) = max |:27're1 W(ATD —]
ser2m’ 2

(38)

In the limit for Gaussian states, we find that Sy (A) =
S}’{’m (A). For more general states, we find that Sy (A) >
Shom(A). To compare the metrological witness to the
entropic one, we combine a relation between the Fisher
information and Shannon entropy [45] with Jensen’s
inequality to prove that

(39)

ST A3
e QXx BlA, 4 2T%
Ffolf1 (.A, 5 ) > el 2 AR,
However, the variance and entropy power are also related
to each, which was, for example, used to obtain inequality
(37). This leads to the inequality

(40)

hom

> Y BlA STody

Bl eT Qx eZh (Ae' Qx)—1

Var; A, > .
2

When we combine inequalities (39) and (40), we can-
not establish a clear relation between the entropic wit-
ness Sy(A) and the metrological witness S?n‘;‘,‘(‘(A). We
explore which one of these two witnesses, based on the
same homodyne measurement statistics, performs better
for non-Gaussian states.

In Sec. IV, we explore the potential of the metrological
protocol for an important class of two-mode non-Gaussian
states, presented in Sec. III, under ideal detection condi-
tions. Details about the experimental estimation of these
quantities for realistic detection schemes are provided in
Sec. V.

II1. MODE-SELECTIVE PHOTON SUBTRACTION

The protocol described in the previous section is valid
for any CV system, regardless of the nature of the state that
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p v Alice
/‘\/‘\ \\/A/\\
— . Bob

FIG. 2. Parameterized probe states: the non-Gaussian state
obtained by subtracting one photon from one mode of a two-
mode squeezed state is passed through a beam splitter with a
tunable transmissivity T = sin®(9).

we consider, as long as we have access to the marginals
of the Wigner function along the desired axes in the
phase space of each of the subsystems. In this section
we introduce the probe states that we consider through-
out this paper, namely, photon-subtracted states. Different
approaches can be followed to describe the generation of
these states and obtain their Wigner function [36,46—48].

We focus on two-mode photon-subtracted states, where
one mode is sent to Alice and the other to Bob. These states
are generated through the setup sketched in Fig. 2: two
single-mode squeezed-vacuum states, squeezed in oppo-
site quadratures, are mixed on a balanced beam splitter to
generate an EPR state. A single photon is subtracted in one
of the two output modes, and the resulting state is mixed
on a second beam splitter with a variable reflectivity cos 6.

To accommodate losses and other experimental imper-
fections, we consider an arbitrary Gaussian two-mode state
without mean field. We start by considering the state in the
basis of EPR modes, which we denote 4’ and B’, such that
we have

—xTr132
Qm)2/det V'’

where Vis the 4 x 4 covariance matrix of the state and X =
X4y ®Xp = (xq,pa,Xp,pp) | contains the coordinates in
phase space. Subsequently, we subtract a photon in the first
mode A’, such that the relevant Wigner function is given by
[36]

We(x) = (41)

[Py (L — V" HX|I2 = Tr(Py V1) +2
Tr(Vy — 1)

W (3) = Wo (),
(42)
where P is a projector on the first mode, given by

Py = 43)

SO~ O
[N elelBel
S oo O

1
0
0
0

and V4 1s the covariance matrix for the reduced state of the
first mode, given by Vy = Py VPy.

In the ideal setting of Fig. 2, we can describe the
covariance matrix as

7‘1—|—1/7’2 0 1/1"2—}"1 0
1 0 I’2+1/V1 0 1’2—1/}"1
V=s11/m-n 0 r+1/n o |
0 ry — % 0 r+1/r
(44)
where r; = 10%/19 with s, representing the squeezing

parameter of the squeezed mode i = 1, 2, given in decibels
(dB), and the squeezing is applied in opposite quadratures.

Photon losses can be described in an open quantum
system approach, as an interaction of the system with
the environment [49]. When the losses are the same in
both modes, the effect can be entirely absorbed within the
covariance matrix, regardless of whether they act before
or after the photon subtraction. The effect of losses can
then be modeled by modifying the covariance matrix in
the following way:

Vi (1 —np)V+nl 45)
with n € [0, 1] representing the amount of loses.

We apply a tuneable beam splitter after the local pho-
ton subtraction. The parameter 6, which parameterizes
the non-Gaussian states, determines the transmissivity
of the beam splitter [T = sin®(9) € [0, 1]], whose effect
on the quadratures of the phase space is described by the
matrix

cos(0) 0 sin(0) 0
_ 0 cos(h) 0 sin(@)

MO =|_gno) 0  cos®) 0
0 —sin(09) 0 cos(0)

(46)

The Wigner function of the resulting state that is sent to
Alice and Bob is then written as

Wy (X4 @ Xp) = W~ (M (©)'%). (47)
The set of non-Gaussian probe states include # = 0 and
0 =m/2, i.e., zero transmissivity and zero reflectivity,
which leave the state untouched (up to a swap of the
modes). In the former case, the photon is subtracted in
Alice’s mode, whereas in the latter case it is subtracted in
Bob’s mode. Here, we expect an enhancement of Gaus-
sian quantum correlations of the EPR state through the
generation of non-Gaussian features. On the other hand,
0 = /4 would undo the correlations in the absence of
photon subtraction. However, if a photon is subtracted, the
second beam splitter delocalizes the non-Gaussian features
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of the state over Alice’s and Bob’s modes. In this case, we
witness a purely non-Gaussian quantum correlation, exclu-
sively generated after photon subtraction, as no correlation
is encoded in the covariance matrix of the corresponding
state. This implies that Gaussian protocols like those based
on Reid’s criteria are expected to fail to witness steering.

IV. IDEAL DETECTION OF NON-GAUSSIAN
QUANTUM STEERING

In this section we consider the protocol established in
Sec. 1I for detection of steering using as probe states the
photon subtracted states introduced in Sec. III. We first
consider ideal results, neglecting the effect of any losses
in the system. After that, we study the effect of losses in
each possible scenario in an analytical way.

A. Gaussian witnesses for quantum steering

Before considering the non-Gaussian scenario, with the
double purpose of validating the protocol and setting up
comparison for the forthcoming results, we analyze steer-
ing in Gaussian two-mode squeezed states (i.e., before
photon subtraction in Fig. 2).

Because Alice and Bob only control a single mode, we
can simplify our notation compared to Sec. Il B, by naming
the measured quadratures on Bob’s side

-
A -TR

g:=e'x, (43)

pi=e' Q. (49)
Alice’s choice of a phase space axis is equivalent to
choosing an angle ¢ such that she measures
X4(p):=cos @44 + singpa, (50)

which means that x4 (@) is any quadrature in Alice’s mode.
In Fig. 3, we present the results obtained when we con-
sider an EPR state by setting equal squeezing values, i.e.,
s =81 = 5, in Eq. (44). We analyze the violation of the
metrological inequality after homodyne detection by Alice,
considering the largest possible violation obtained over
all possible choices of the quadrature on Bob’s side over
which the displacement takes place, as prescribed by the
maximization in Eq. (26). As there is no global phase
dependence in the EPR state, Alice is completely free to
choose one measurement setting ¢. Bob will thus have to
choose ¢ such that § is maximally correlated with X,(¢).
This choice immediately fixes the second quadrature p that
Bob will measure through Eq. (49). The largest value of the
steering witness (26) will then be obtained if Alice chooses
a second measurement setting that measures the quadrature
that is most strongly correlated with p. A key property of
the state is that the correlation between Alice’s and Bob’s
measurements is the strongest when they measure the same

’ - I&?agl(ﬂ) 1
L BlIA 5 i
Fh(l)m(ﬂ’ %)
Var g (A, ) -i

s (dB)

FIG. 3. Witnessing steering in two-mode squeezed states with
equal squeezing in both modes as a function of the squeezing
level s. We show the results using the steering witness (26),
which is in this case identical to Reid’s criterion S}‘{’m (A) (recall
that any value larger than zero implies quantum steering). We
choose Alice’s measurement settings (50) as ¢ = 0 and ¢ = 7/2
to achieve a maximal value of the steering witness (see the main
text). An optimization is performed over all possible choices of
the generator of displacements on Bob’s side.

quadrature (i.e., when their homodyne measurements are in
phase), which means that Alice’s second setting should be
setto ¢ + /2.

In Fig. 4, we show the effect of photon losses (45) for the
same type of states as in Fig. 3, for 3-dB squeezing. The
latter is relevant to further understand the relation between
Gaussian and non-Gaussian steering and the fundamental
differences that can arise between one and the other.

B. Quantum steering after local photon subtraction

Moving now to the non-Gaussian realm, the natu-
ral first scenario to consider is the subtraction of one

0.8/ ]

—— S (A) ]

B|A 2 ]

0.4/ Fam(A.2)

Vargn (A, p)

0.0’\ L L T T i
0.0 02 04 06 08

n

FIG. 4. Effect of losses in the steering witness (26) for a two-
mode squeezed state, as considered in Fig. 3 for a level of
squeezing of s = 3 dB.
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photon in one of the two correlated modes A" or B', in
the previously considered Gaussian scenario. This corre-
sponds to & = 0 or 6§ = /2 in the tuneable beam splitter
in Fig. 2. A recent result shows that Gaussian steer-
ing before photon subtraction is a sufficient condition for
remotely generating Wigner negativity [50]. In the follow-
ing we explore a complementary property and investigate
how local photon subtraction affects the steering of the
state.

States obtained by local photon subtraction are nonsym-
metric. Wigner negativity, for example, is only present in
the reduced state of the mode complementary to that where
the photon is subtracted. However, the Wigner negativity
of the two-mode Wigner function is larger than the single-
mode Wigner negativity [51], which indicates the presence
of nonlocal effects. In the same way, one would expect
that steering, which is intrinsically a one-sided property,
should not behave in the same way in both directions, i.e.,
steering from the mode where the photon is subtracted to
the complementary mode is expected to be different from
the steering in the opposite direction. To check this, in
Fig. 5 we show the steering witness, as measured in the
two directions. For the green curves, we use Reid’s cri-
terion (27), which leads to strongly asymmetric results,
as no EPR steering from the mode where the photon is
subtracted is observed. Yet, remarkably, the metrological
witness (26) not only witnesses steering from the photon
subtracted mode, but actually leads to a larger value for
the steering witness. This observation contrasts with what
one would expect from Reid’s criterion, thus clearly show-
ing new non-Gaussian behavior. In a more operational
sense, this result shows that non-Gaussian steering from
the photon-subtracted mode to the complementary mode
can considerably enhance the inference of displacements
in the complementary mode. The entropic witness (38) is
also shown to detect steering from the photon-subtracted
mode, but only when there is sufficient squeezing in the ini-
tial squeezed modes. This means that there is non-Gaussian
steering that can be detected by the metrological witness,
but not by the entropic one. Furthermore, we observe that
the metrological witness systematically produces larger
values than the entropic one (both coincide for Gaussian
steering).

In Fig. 6, we consider the effect of losses, as we did
previously for Gaussian states. The goal is to understand
how resilient the witnesses are and how they are connected
to the Gaussian scenario. As discussed in Sec. III, uni-
form losses in photon-subtracted states can be modeled by
modifying the initial Gaussian covariance matrix as if the
losses occurred at this initial stage. In other words, we ana-
lyze how photon subtraction affects Fig. 4, with the remark
that steering is not symmetric, as we already discussed in
Fig. 5.

There are some remarkable features observed in Fig. 6.
In the first place, as we previously observed in Fig. 5 in

FIG. 5. Steering in photon-subtracted states corresponding to
the choices of & =0 and 6 = 7/2 in the tuneable beam split-
ter in Fig. 2. Solid curves correspond to A4 steering B, whereas
dashed lines correspond to the scenario where B is steering 4.
In green we show the observations arising from the application
of Reid’s criterion S};"m (A) in Eq. (27). In this case, no steering
from the mode where the photon is subtracted can be observed.
In blue, we plot the steering witness S'°m(A) in Eq. (26) for the
same set of states and we can see that a violation of the inequal-
ity is attained in the direction where no Gaussian EPR steering is
observed through Reid’s criteria, and remarkably, this violation is
larger than in the opposite direction. This represents a remarkable
signature of non-Gaussian steering. In orange we finally show
that the entropic witness can pick up on steering from B to A
only when there is a sufficient amount of steering. On the one
hand, this clearly highlights the capabilities of the entropic wit-
ness to detect non-Gaussian steering. On the other hand, it also
shows that the metrological witness can detect steering in param-
eter regimes where the entropic witness cannot. We also observe
that in both directions Si™(A) < Sy (A) < SO (A).

max

the absence of losses, steering from the photon-subtracted
mode seems to be stronger than the steering from the
complementary mode, in the sense that a larger violation
of inequality (6) is attained. Nevertheless, when we con-
sider the effect of losses, we observe a much faster decay
in the former that renders it harder to witness in a real
experiment. For the entropic witness (38), we see a some-
what slower decay. However, given that the initial value
of the witness in the absence of losses is much smaller
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FIG. 6. Steering in photon-subtracted states corresponding to

the choices of 6 = 0 and 6 = /2 in Fig. 2, after uniform loss n
[Eq. (45)]. In particular, we consider the photon subtraction in a
5-dB squeezed state. In accordance with Fig. 5, we can observe
that in the absence of losses the violation of inequality (6) is
larger when we consider the steering from the photon-subtracted
mode than in the other direction. Yet, with increasing losses, the
former decreases much faster (vanishing at 18% losses) than the
steering from the complementary mode (vanishing at 50% losses,
as in Fig. 4). When comparing the metrological witness S1°™ (A)

max
to the entropic witness Sy (A), we observe that, for the steering

from 4 to B (where the steering resembles Gaussian steering)
and the larger values of 1, both witnesses coincide. However,
the metrological witness clearly outperforms the entropic one.
We even find parameter ranges where the metrological witness
detects steering that goes undetected by the entropic witness.

than for the metrological witness, we still find that the
entropic witness is less tolerant to losses. On the other
hand, regardless of the witness we use, steering from the
complementary mode goes away for the same amount of
losses as the Gaussian steering does. These observations,
together with the impossibility of witnessing the steering
from the photon-subtracted mode using Reid’s criterion,
lead us to interpret the steering from the complementary
mode as an enhanced type of Gaussian steering, while the
steering from the photon-subtracted mode appears to be
purely non-Gaussian, stronger, but less resilient to losses.
This behavior is equivalent for other values of squeezing,
and the amount of losses required to destroy the steering
from the photon-subtracted state increases with it.

C. Purely non-Gaussian quantum steering

The most striking shortcomings of considering Gaus-
sian measurements of steering do naturally arise when we
consider purely non-Gaussian correlations. In the present
section we analyze the steering in the state obtained after
setting & = m /4 in the second beam splitter in Fig. 2. The
final state is equivalent to the state that would be obtained
by subtracting a single photon from a superposition of the

- Sfrg)aI;I (‘?{95 z )

4

s (dB)

FIG. 7. Witnessing non-Gaussian steering for the state gener-
ated by having 6 = 7 /4 in the second beam splitter in Fig. 2.
In green we show the absence of violation of Reid’s criterion,
expressed in the form of witness (27). In blue and orange we
observe how an increasing violation of the metrological and
entropic inequalities, respectively, are obtained as the squeezing
level increases, starting from a finite value of witnesses (26) and
(38) for arbitrarily low squeezing.

two initially uncorrelated squeezed modes, which is a non-
local non-Gaussian operation. The non-Gaussian nature of
these correlations can be seen in the Wigner function (42),
whose Gaussian part factorizes for 6 = /4. In Fig. 7,
we show the analysis of the steering as a function of the
squeezing level for this scenario. We consider, as before,
two equally squeezed modes, squeezed in opposite quadra-
tures, i.e., setting | = r, in Eq. (44). We show how Reid’s
criterion fails to witness any quantum steering in this case,
while we witness steering through witnesses (26) and (38).
Even for arbitrarily low amounts of squeezing we find that
these witnesses do not tend to zero, which is fundamen-
tally different to the scenario obtained after local photon
subtraction. Thus, we observe that, by means of a nonlo-
cal non-Gaussian operation, a finite amount of steering is
created for arbitrarily low squeezing. This observation is
in agreement with that obtained when measuring entan-
glement in this kind of non-Gaussian state [36], and can
intuitively be understood in the following way: for an arbi-
trarily low amount of squeezing, both modes are to good
approximation a superposition of vacuum and two-photon
Fock states. After photon subtraction in a balanced super-
position of the two, we obtain an entangled two-mode
state, given by (|01) + |10))/«/§, which is a Bell state.

In this case of purely non-Gaussian steering, both the
metrological and entropic witnesses have been shown to
be effective. However, in Fig. 8 we explore how both wit-
nesses behave in the presence of losses. As for Fig. 6,
we once again find that the metrological witness is more
resilient to losses. Similar plots can be produced for all
squeezing levels, showing the same behavior.
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FIG. 8. Effect of photon losses on purely non-Gaussian steer-
ing, quantified by both the metrological witness (blue solid
curve) and the entropic witness (dashed orange curve) for the
state generated with & = /4 in the second beam splitter in
Fig. 2.

Summing up all our comparisons between the entropic
and metrological witnesses, we conclude that there are
cases where the metrological witness can detect steering
that goes undetected by the entropic witness. We find
no opposite case, leading us to suggest that, for single-
photon-subtracted states, the metrological witness tends to
outperform the entropic one. Therefore, we focus our atten-
tion on the metrological witness in the remainder of this
article.

In Fig. 9, we show how witness (26) behaves for these
states under the effect of uniform photon losses. The
behavior is very different to what we observe in the Gaus-
sian scenario. First, we observe a very weak resilience to
noise compared to the former one. Yet, the most strik-
ing feature is that this resilience decreases as the level
of squeezing (and thus steering) increases, contrary to
what happens in the correlated basis (6§ = 0), even for the
steering from the mode in which the photon is subtracted.

Finally, in Fig. 10, we show a comparison of how the
witness (26) behaves in the different scenarios that we have
considered, namely, the Gaussian case and the photon-
subtracted states obtained by the procedure described in
Fig. 2 for 8 = 0, considering both steering from Alice
to Bob and from Bob to Alice, and for the purely non-
Gaussian case 6 = /4.

V. REALISTIC DETECTION OF NON-GAUSSIAN
QUANTUM STEERING

The approach followed so far considers the ideal sce-
nario in which we can condition the state in Bob’s steered
mode on a definite outcome of Alice’s measure. Yet,
clearly, the latter is equivalent, from an experimental point
of view, to having access to an infinite amount of data,

Ny A~ O

4l s (dB)
Shom(A)
21l
0L
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FIG. 9. Effect of photon losses on purely non-Gaussian steer-
ing for the state generated with 6 = /4 in the second beam
splitter in Fig. 2. We observe a reduction in the resilience to noise
as the level of squeezing in the initial states increase. The latter
might be linked to the fact that the effect of losses is more severe
in single-mode squeezed states the larger the squeezing is [52].

namely, to sample the whole continuum of possible out-
comes. In this section we approach the problem in a more
realistic fashion, by discretizing the set of Alice’s measure-
ment outcomes, in a way that we no longer condition Bob’s
state on a single outcome but rather on a mixture of the
conditioned states belonging to a given bin on Alice’s side.

First, we analyze this scenario in an analytic way, to
understand the limitations of this procedure. Later, keeping
in mind the results from the former analysis, we con-
sider the more realistic scenario, in which we study the
protocol by simulating homodyne detection with rejection
sampling.

4+ a T 4
A 10

5l Shon (A") 7
— St (AG) )

s (dB)

FIG. 10. Comparison of the behavior of the steering witness
in the different scenarios considered so far. Here A; denotes
the assemblage corresponding to the Gaussian state; Ag—(o/4)
denote the assemblages corresponding to the states generated
through the choices 6 = {0, /4} in the tuneable beam splitter
in Fig. 2; .AngB(BﬁA) denote the two nonequivalent directions in
which steering can occur in the case § = 0—the convention is
the same as in Fig. 5.
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A. Conditioning on finite data

Following the previous idea, the measurement outcomes
that Alice communicates are rather determined by a his-
togram than by a probability density of continuous quadra-
ture measurement outcomes. Therefore, we partition the
real line corresponding to the outcomes of the quadrature
measured by Alice in a series of n bins

I={,...,7,}, (51)
such that R = (J, Z; and we note that Zj = [[;_1, [x) with
lp = —oco and [, = co. The probability of measurement
outcomes now is described by

I
Pylx4(p) € Ii] = / P 4[x4(p) = xo]dxo, (52)
k—1

where x4(¢) stands for the quadrature measured by Alice,
for which we keep the notation introduced in Sec. IV for
two-mode states. An assemblage then gives a discrete sum
of the form

AT 34(9) = Palxalp) € TPS,,»  (53)

where

Ik
Pl = [ Pylx4(9) = x01% | ,dxo (54)
k—1

is the conditional state on Bob’s side after the measurement
by Alice of quadrature x4 (¢) falls in bin Z;. This state is a
mixture of all the conditional states conditioned on definite
quadrature outcomes, with a weight given by the marginal
probability density P[x,(¢)].

The conditional FI now has to be calculated considering
the discrete assemblage

FA4A ) =

d1sc

max ZPA[XA(QO) € Ik]FB[ Ik\w]

(35)

where FPIPY,,] is computed according to Eq. (18), with

Zk| v (x|§) belng the marglnal along the displaced quadra-
ture, characterized by ¢, conditioned on the dlsplacement
&. This probability density can be obtained as sz ,(xl€) =
flk 1 Pylxq(p) = xO]Pkap (x|&)dxy. Because of the convex-
ity of the FI, we find that

FENA B < FPA (A B, (56)
where F Bl (A, H ) is the conditional FI when no coarse

graining 1s considered.

If we consider the estimation of displacements & along
the position quadrature g in Eq. (48), generated by the
Hamiltonian H = p /2, using Eq. (49),

Fﬁi(A >=w;noa;< ZPA [ea() € 7] / Pl =8

« {alog[ zk|¢(q_$)]} d
as q:

(57)

where we have made use of the identity Ik|¢(Q|§)

P2 ,(q— ).
The conditional variance of the generator p /2 is calcu-
lated in a similar way,

Vari (A 3) = min Y Pulxa(p) € T,]
k

2 9el0,27)
5 D
X Var(pgkl(p, 5), (58)

where the variance Var(,é%{‘ »P/2) in the conditional state

ﬁ§k| , in Eq. (54) is calculated in full analogy to Eq. (25).

For the examples in Fig. 11, the (typically unequal)
sizes of the different bins are optimized to maximize the
witness. Because the photon-subtracted states have no
mean field, we choose bins that are symmetric around the
origin to reflect the structure of the exact quadrature statis-
tics. We show the behavior of the steering witness (10)
against the level of squeezing of the initial two-mode state
for the case of purely non-Gaussian steering corresponding
to the choice & = /4 in the second beam splitter in Fig. 2.
Being able to witness steering in this challenging regime
while considering realistic discretization of the measure-
ment results is particularly encouraging for the prospect of
experimental implementations of this method.

In Fig. 12 we analyze how binning the spectrum of out-
comes of Alice’s measurements affects the capability to
witness the steering under the influence of photon losses.
As expected, measurements with fewer bins, which lead
to weaker violations of witness (6), also show a smaller
tolerance to losses.

B. Detecting quantum steering on homodyne data

In this section we present a realistic analysis of the pro-
tocol that we have presented. So far, we have considered
in an exact way the marginals of the Wigner functions.
In an experimental implementation we would have to
infer these probability densities from the outcomes of the
homodyne measurements, or compute directly some of the
quantities involved. To study such a scenario, we simu-
late experimental data through rejection sampling from the
theoretical probability densities.
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FIG. 11. Effect of discretization of the quadrature outcomes on
Alice’s side on the witness of steering for the two-mode photon-
subtracted state with 6 = /4 in the tuneable beam splitter in
Fig. 2. Below five bins it is not possible to witness steering as we
fail to capture important features of the probability density. Nev-
ertheless, a good violation of inequality (6) is possible starting
from five bins.

As we have observed so far, in the states that we have
considered the largest violations are obtained when consid-
ering displacements along the g or p quadratures, condi-
tioned on measurements in the same quadrature on Alice’s
side. This is particularly suited for an experimental imple-
mentation as simultaneous locking of the local oscillators
in the phase and amplitude quadrature is already possible
in homodyne detection schemes. Therefore, the data that
we simulate for each measurement are sampled from the
joint probability distribution of the same quadratures of
both Bob’s and Alice’s modes, which can be theoretically
obtained by integrating the Wigner function (47) over the
remaining quadratures. To better represent realistic experi-
mental settings, the states that we consider will be slightly
different from those that we analyzed before. In particu-
lar, the squeezing of the two modes will not be exactly

1.5} 1
L0 %)Iét.inuous
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FIG. 12. Effect of losses in the witness of steering in the same
kind of states as in Fig. 11 for a level of squeezing of 4 dB. As
expected, the steering witness is reduced with increasing losses,
but again, for a reasonably low number of bins, such as 13, the
resilience is almost the same as in the pure loss-free scenario.

0,00 o
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FIG. 13. Schematic representation of the analysis of the sim-
ulated data. The histogram in the top represents the outcome
statistics of measurements of Alice’s position quadrature. The
panels below each represent the conditional statistics of the posi-
tion quadrature of Bob’s mode, corresponding to each of the bins
of Alice’s histogram. Wide tails, compared to the rest of the bins,
are considered in order to guarantee sufficient statistics for the
reconstruction of the states conditioned on less likely outcomes.

the same. Thus, the choice of quadratures previously men-
tioned is not the optimal one, but it will always provide a
lower bound for the actual value of the witness.

In what follows, we discuss the protocol for the analysis
of the data. Let us consider the simultaneous measurement
of the momentum quadrature. The ideal reconstruction of
the assemblage implies the inference of the probability
density on Alice’s side, and for each possible outcome, the
reconstruction of the conditioned state. As mentioned in
the previous subsection, this is an unfeasible experimental
task, even more so if we consider the fact that one actually
undersamples the tails of the distributions on Alice’s side,
in a way that reconstructing the statistics of its correspond-
ing conditioned state is impossible. To overcome this issue,
we have to build a histogram on Alice’s side, and analyze
Bob’s statistics conditioned on each bin of the histogram
(Fig. 13). It is important to remark that the histogram has to
be inhomogeneous: the bins in the tails must encompass a
larger region in order to avoid spurious contributions from
undersampled data.

Computing the conditional variance is a rather straight-
forward task. On the other side, the computation of the
FI from the discrete outcomes is more subtle. The most
common procedure to experimentally estimate the FI relies
on the computation of the Hellinger distance (statistical
distance) between the reference probability density and the
displaced ones [53-55].
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With a parameter-dependent probability density P(g|&)
and a reference P(¢q|0), the Hellinger distance is defined as

1
d (&) = 3 f (VP(qlE) — VPql0))’dg. (59
q

Expanding P(q|&) to first order in &, it is possible to show
that
2 Fo 3

dy(§) = gé +O0E), (60)
where F' is shorthand for the Fisher information Fe_o[P].
Hence, it is enough to perform a quadratic fitting of the
Hellinger distance to estimate the FI F. The latter is
particularly well suited for our analysis as the displaced
probability distributions can be obtained by just shifting
the reference one. Such a postprocessing displacement of
the measurement outcomes does not require experimen-
tally implementing the displacements, which is much more
demanding. In an experimental implementation we have
access to relative frequencies {F(g|&)} rather than the
exact probabilities P(q|&) required above. In this context
Eq. (60) is valid only as an approximation, given the fact
that F(ql&) = P(ql&) + 8 F (q|€), with §F(¢|€) a statisti-
cal fluctuation that arises due to finite sample size. Because
of normalization, Zq 8F(ql§) = 0, where the sum runs
over all possible values of g, which for CV systems will
be given by all possible bins in which the outcome of
the measurement might fall. If we define the histograms

S (0) = {F(ql0)}; and f (§) = {F(ql§)}, for a sample of n
experimental measurements, we have [53]

F
(d(f (0),f (£))) = co + (g + 02)52

+ O, 8F (q1€)*) (61)
with
N -1
Co = 4 s
" (62)
F(1+N)
02 ~ YY)
32n

where (d%,(f (0),f (§))) is the sample average of the
Hellinger distance between the two relative frequencies,
n is the number of measurements, and m is the number of
values of ¢ for which F(g|&) # 0. Observe that the previ-
ous formula converges asymptotically to (60). This implies
that the estimation of F' is asymptotically unbiased, with
the bias decreasing as 1/n.

In Figs. 14 and 15 we study the influence of losses
on the estimation of the steering witness (10) based on a
finite set of n = 10° data points. In most experiments, it
is unrealistic to have exactly the same squeezing in each
mode. Therefore, the specific values of the squeezing in
Alice’s and Bob’s initial states (at the left of Fig. 2) are
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FIG. 14. Numerical simulations of the effect of losses in the
witness of steering estimation (10). The state that we consider
is defined by the choice of # = 0 in the preparation scheme,
i.e., the state resulting after local photon subtraction in one of
two correlated squeezed modes, with inhomogeneous squeezing
s1 = 3.2 dB and s, = 2.6 dB. The plot in the top corresponds
to the steering from the mode complementary to that where the
photon is subtracted. The bottom plot corresponds to the steer-
ing from the mode where the photon is subtracted. Dashed lines
correspond to the exact analytical results obtained considering
binning on the steering side. Error bars correspond to statisti-
cal errors and uncertainties on the fit. We can observe that the
steering from the photon-subtracted state, which is not observed
using Gaussian criteria, vanishes somewhere between 3% and
4% losses, while the steering in the complementary direction
persists for larger losses.

chosen arbitrarily. We choose s; = 3.2 dB and s, = 2.6
dB since these lie in an experimentally relevant range. The
obtained violation is below the exact result ST (dashed
line) obtained when considering the exact Wigner function
of the system for the same set of parameters.

In Fig. 14, we investigate this system in the corre-
lated basis, i.e., the cases & = 0, where Bob subtracts a
photon. Subsequently, we analyze the steering from Alice
to Bob and from Bob to Alice. As before, the case where
Alice steers Bob can be studied using Reid’s criterion, as
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FIG. 15. Numerical simulations of the effect of losses in the

witness of steering estimation (10). The top panel represents
the state preparation with & = /4, i.e., delocalized photon sub-
traction from a two-mode squeezed state with inhomogeneous
squeezing s; = 3.2 dB and s, = 2.6 dB. Dashed lines correspond
to the exact analytical results obtained considering binning on the
steering side with a perfect measurement of the Fisher informa-
tion (as in Sec. V A), while points are obtained by inferring the
Fisher information from the finite data using the Hellinger dis-
tance method (see the text). Error bars correspond to statistical
errors and uncertainties on the fit. Contrary to the results showed
for homogeneous squeezing, here we can observe a remarkable
difference in the steering in the two complementary directions.

shown in Fig. 5(a), indicating that it is essentially a case
of Gaussian steering. Also in these simulations, based on a
finite number of data points, this Gaussian character trans-
lates to a much greater resilience against losses. However,
for steering from Bob to Alice—which cannot be wit-
nessed through Reid’s criterion—we observe a much more
detrimental effect of losses. Because non-Gaussian features
are typically very sensitive to losses, a possible origin of
this sensitivity is that the steering is dominated by non-
Gaussian features of the state. This conjecture is supported
by Fig. 6, which shows that the protocol is much more
loss resistant when the correlations have some Gaussian
features.

To fully explore the feasibility of our method for wit-
nessing non-Gaussian steering, we show the case for 8 =
/4 in Fig. 15. In this scenario, all the correlations in

the state (be it quantum or classical) originate from the
non-Gaussian part of the Wigner function (47) and no
quantum correlation can be witnessed based on its covari-
ance matrix. In other words, this is a state where all
quantum steering is purely non-Gaussian in nature. Again,
we observe a much more detrimental effect of losses com-
pared to the top panel of Fig. 14. However, due to the
asymmetry in the steering of the two modes, we observe
a much larger value for the steering witness when con-
sidering steering from the lesser squeezed mode to the
more squeezed modes. This higher value also comes with
a higher robustness to losses. From an experimental point
of view, the tolerable loss values remain very small in both
cases. Nevertheless, these simulations show that in suffi-
ciently pure systems it is possible to witness non-Gaussian
quantum steering using exclusively homodyne detection
with an experimentally feasible protocol.

VI. CONCLUSIONS AND OUTLOOK

We proposed a protocol for witnessing steering in CV
systems. The protocol is based on the metrological steer-
ing criterion first proposed in Ref. [13], and relies solely
on homodyne detection. The latter makes it suitable for
current experimental capabilities. The protocol is shown
to succeed in detecting quantum steering in non-Gaussian
states, even in scenarios where protocols based on Gaus-
sian features, like Reid’s criterion, are shown to fail,
when restricted to quadrature measurements. A compar-
ison between our metrological protocol and the entropic
witness presented in Ref. [40] shows that our protocol
consistently outperforms the entropic one. This adds to a
similar conclusion that was reached in Ref. [56] for a com-
parison between metrological and entropic entanglement
witnesses. It remains an interesting open question whether
there is a formal way of proving that the metrological wit-
ness is always larger than the entropic one. Such a proof
could potentially lead to new insights into the relation
between the Fisher information and entropy.

A realistic simulation of data from a continuous-variable
experiment includes the effects of loss, data discretization,
and the scalable extraction of the Fisher information. Our
results show that non-Gaussian quantum steering can be
detected with a feasible number of measurements. Even
for reasonably small numbers of samples (n = 10°), the
violation of inequality (6) can be observed with several
standard deviations, considering around 3 dB of squeez-
ing, albeit requiring rather low losses. Rather than a feature
of our specific protocol, the high sensitivity to losses for
these states might be an indication of the fragile nature of
non-Gaussian quantum steering. We should emphasize
that our metrological witness is based on the same
experimental implementation as Reid’s criterion for
quadrature operators. However, the postprocessing of the
measurement data is significantly more involved in our
approach.

030347-15



CARLOS E. LOPETEGUI et al.

PRX QUANTUM 3, 030347 (2022)

The relevance of our protocol is not merely experimen-
tal. Non-Gaussian quantum correlations are notoriously
difficult to study in CV systems. For the most com-
plete descriptions of CV states, one generally resorts to
quasiprobability distributions. However, it is highly chal-
lenging to use such objects to study quantum correlations
(Bell inequalities are a notable exception [57,58]). The
techniques in Sec. II B provide a useful way to analytically
study the presence of metrologically useful non-Gaussian
quantum steering based purely on the marginal of the
Wigner function.
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APPENDIX: GENUINELY MULTIMODE
PROTOCOL

The protocol that was proposed in Sec. II B effectively
describes a witness for steering between two modes in a

J

larger multimode system. In this section, we provide an
extension of the protocol in a more general multimode
setting. The resulting steering witness is strictly better
for testing the steering between Alice and Bob, but it
comes with considerably more experimental overhead and
parameters to optimize.

First of all, let us consider Alice’s subsystem that con-
tains m modes. Rather than just choosing one axis f
in Alice’s phase space along which to measure, we can
choose any set of axes that are not connected to the
same mode. Formulated differently, for any mode basis
in Alice’s subsystem, we can measure one quadrature in
each mode and condition on the joint outcome for all these
measurements.

To formalize this idea, let us first consider an orthonor-
glal symplectic basis F of Alice’s phase space, given

y

F = QS s (AD)
where f; are all vectors in R? with M the number
of modes in the global system that contains both Alice
and Bob. One can think of F as one of the infinitely
many ways of identifying axes in Alice’s phase in a
way such that ﬁ and Qf; always belong to the same
mode (we could say that the axis generated by fk rep-
resents the measurements of the ¢ quadrature in this
mode and €2f; generates the axis that represents its p
quadrature).

The vectors fl, e fm by construction now correspond to
m axes in phase space that can be jointly measured. When
we perform such a measurement and postselect on a series
of measurement outcomes xi, . . ., x, for each one of these
axes, we find that Bob’s Wigner function is transformed
nto

> £ 7 mW_) @q m_s_'T—* - d_}
WA Gyl x,. .  — yy  J22n WO @) Tlicy 80 a — x0)da (A2)
Py} =1, =)
where we define
Py =x,. . X =x,) = /2 WG ®3p) [ |84 %4 — x)disdip. (A3)
Rm@Rm

Equation (A2) thus directly generalizes Eq. (19).

On Bob’s side of the system, we are now going
to use this Wigner function to study the effect of a
change in the mean field. One particular feature of such

k=1

(

displacement operations is that they are generated by a
quadrature operator, which means that they are always act-
ing along a well-defined axis ¢ in Bob’s phase space. The
parameter of interest thus affects Bob’s conditional state as
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WGl = x1, .. X = x) > WG — £ = xp, .. ) = x). (A4)

Because on Bob’s side we implement a parameter with a single-mode generator, the calculation of the conditional variance
generalizes in a straightforward fashion as

TR 1 . ]
Varﬂfn(A, > ):m}nzémPA(ﬂ = X1, =)

x Var(p? eTQR)dx, - - - dx,, (AS)

xl,...,Xmlfl,.--,fm’

B

where Var(,éx . ,eTQx) is the variance of the quadrature corresponding to the generator ' Qx. To compute this

LoeessXm |1 5eefm

quantity, we use exactly the same subspace of phase space as before, generated by all vectors orthogonal to Qeé:
Pl = (35 e R | eTQ¥p = 0). (A6)

We then calculate the measurement statistics for the quadrature ¢ Q% as

Pt xmlﬁ,.‘.,fm(p) = /;n WBlA()_éB|xZi =x1,...,)ﬂj” = x,,)dx5, (A7)

Xseees

where p denotes the values along the single remaining phase space axis generated by ¢ ' Qx. This distribution allows us to
compute

Var(p? e’ Q§)

xl,nwxmlflau-;fm’

2
_ 2pB R R _ DB R .
- \/Rp leau-axmlfla-“fm(p) dp <‘/RPPX1,-..J”1IIP1,A-~,fm(p) dp) ’ (A8)

In practice, this is still the variance of only one quadrature operator in Bob’s conditional state. From an experimental point
of view, this can be considered a significant advantage due to limited overhead.

The biggest difference appears on the level of the Fisher information. In Eq. (22), we only use the specific displaced
quadrature along the phase space axis e. However, more generally speaking, we can use any set of quadratures in Bob’s
subsystem to estimate the displacement strength £. To formalize this idea, we are going to consider the case where we
use m’ (the number of modes in Bob’s subsystem) jointly measurable quadratures to estimate &. To do so, we use the
Wigner function (A2) and integrate out all the complementary quadratures. To maximize the efficiency of the parameter
estimation, we always consider cases where the full displacement is contained within the set of quadratures that is used to
estimate it.

For this purpose, let us introduce a symplectic orthonormal basis G of Bob’s phase space R2" :

gz{élagélg--~a§m/59§m/}' (A9)
A crucial additional constraint that is imposed on this basis is that some o € R with Y, o = 1 exist such that
é:alél +"'—|—Olm/§m/. (AIO)

This demand is important, because we are going to measure quadratures along the phase space axes generated by
g1, ..,Zw. When doing so, we generalize Eq. (20) to

X{seeeXm [f15eeeofm

PE Q15 Gt =/2 18G5 — W™ Gald) =xi,.... 2} = x,)dip. (A1)
]Rm k:]
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The action of the displacement now becomes a bit more subtle, in the sense that

y P @ | §) =P

XY seeeXm [f15ens

X5 X |15 -ofm

(g1 —aoé,. ... qw —awé | §). (A12)

The Fisher information for estimating £ using this multivariate distribution can be calculated by a straightforward

extension of Eq. (18), such that we find that

L1 g 1)\
Br pB _ B L , ’ >Hdm . ,
Fe [PX1,.~JmU;1,~~fm] - /H;m/ PX1,..‘JmU’1,m,fm @155 g | 8( A dqy -~ dgy.

The conditional Fisher information then becomes

hom

BlA gk A I B pB
F A, > = max Py =X1,...,x4" = Xp)F [P
R}'"

(A13)

- dxy. (Al14)

X oo Jcml/‘—i,v--j}n]dx1 ’

Note that we maximize over all possible bases for Alice’s phase space F, as given by Eq. (A1).
Combining all the above elements now leads us to formulate a fully multimode version of the metrological witness

(26):

Shom(A) = max |:F B (A,

sep2n g hom

with the terms now defined through Egs. (A5) and (A14).
Furthermore, we note that we must maximize this value
over all possible choices of displacement directions and
subsequently all the possible ways of constructing a basis
G of Bob’s phase space according to Eq. (A9). Of course,
in practice, any displacement direction and measurement
basis that allows us to obtain a value of S'°7(A) that is
significantly larger than zero (significant as compared to
an experimental error bar) is sufficient to certify quantum
steering from Alice to Bob.

The steering witness in Eq. (A15) is guaranteed to
outperform the version in Eq. (26) in which Bob only
measures the displaced quadrature. However, it is clear
that having to optimize several homodyne detectors to
function simultaneously clearly requires much more exper-
imental overhead than using a single detector. This thus
imposes the question of whether there is a strict advantage
in using the multimode witness (A15), where Alice and
Bob measure all their quadratures simultaneously.

For Alice’s measurements, we explore the case where
no individual mode (regardless of the mode basis) can steer
Bob, but where we require the use of several modes at the
same time. On Bob’s side, the matter is more related to
metrology. Because the displacement is anyway generated
by a generator that acts on one specific mode, it is logical to
wonder whether only measuring the displaced quadrature
operator is sufficient to extract all information on &. There
is an argument to suggest that this is typically not the case.
When in the state given by Eq. (A2), the mode in which

TQ: R Lt
x) — Varﬂfn(A, eTch)]

: (A15)

(

the displacement acts is entangled to other modes; a mea-
surement of only the displaced quadrature will trace out the
other modes, which effectively leads to decoherence. This
suggests that in these cases Eq. (A15) could detect steering
that remains hidden when the simpler form (26) is used.
This can be verified by comparing the obtained FI to the
QFTI if the latter can be calculated.

A detailed study of all these extra effects would require
us to perform additional case studies for different kinds of
multimode states. However, such a study requires a more
dedicated effort and is considered to be beyond the scope
of this work.
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