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We investigate practical dense coding by imposing locality restrictions on decoders and symmetry
restrictions on encoders within the resource theory of asymmetry framework. In this task, the sender Alice
and the helper Fred preshare an entangled state. Alice encodes a classical message into the quantum state
using a symmetric preserving encoder and sends the encoded state to Bob through a noiseless quantum
channel. The receiver Bob and helper Fred are limited to performing quantum measurements satisfying
certain locality restrictions to decode the classical message. We are interested in the ultimate dense cod-
ing capacity under these constraints. Our contributions are summarized as follows. First, we derive both
one-shot and asymptotic optimal achievable transmission rates of the dense coding task under different
encoder and decoder combinations. Surprisingly, our results reveal that the transmission rate cannot be
improved even when the decoder is relaxed from one-way local operations and classical communication
(LOCC) to two-way LOCC, separable measurements, and partial transpose positive measurements of the
bipartite system. Second, depending on the class of allowed decoders with certain locality restrictions, we
relax the class of encoding operations to superquantum encoders in the general probability theory frame-
work and derive dense coding transmission rates under this setting. For example, when the decoder is
fixed to a separable measurement, theoretically, a positive operation is allowed as an encoding operation.
Remarkably, even under this superquantum relaxation, the transmission rate still cannot be lifted. This
fact highlights the universal validity of our analysis on practical dense coding beyond quantum theory.
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I. INTRODUCTION

Dense coding (also known as superdense coding) is a
quantum communication protocol that communicates clas-
sical bits of information by transmitting quantum bits
(qubits), assuming that the sender and receiver preshare
an entangled resource [1–12]. In this protocol, the sender
encodes classical messages into part of the preshared
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resource and sends it to the receiver via a noiseless quan-
tum channel. The receiver decodes messages by perform-
ing measurements of the bipartite system. Dense coding
has been accredited as a building block in quantum infor-
mation theory. Subsequent studies investigated the dense
coding protocol when the quantum channel or the pre-
shared quantum state is noisy. However, two practical
aspects of dense coding severely limit its usage, rendering
dense coding impossible at a large scale.

One practical aspect concerns decoding operations in
dense coding. Indeed, existing researches assume that the
unique receiver holds the receiving system transmitted
from the sender as well as the other entanglement system
HF called the helper. However, it may cause an experi-
mental difficulty because this type of decoder requires a
joint measurement across two systems: the receiver’s sys-
tem and the helper’s system. In particular, if the receiver
has only the receiving system and the helper is far from
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the receiver, this measurement requires a noiseless quan-
tum communication channel, which is extremely difficult
for experimental realization. Therefore, it is natural from
a practical viewpoint to impose locality conditions on
the available set of decoding measurements between the
receiving system and the helper.

For example, suppose that the receiver has only the
receiving system and can classically and freely commu-
nicate to the helper. They may adopt the available set
of one-way local operations and classical communica-
tion (LOCC) measurements. When the receiver and the
helper can classically and freely communicate with each
other, they can adopt the set of two-way LOCC measure-
ments. Since this class of measurements does not need
quantum communication, it is experimentally easier. As
larger classes of decoders, they can even adopt separable
measurements and partial transpose positive (PPT) mea-
surements. Though these two classes of measurements
do not possess a clear operational interpretation yet, they
have simple mathematical characterizations. Hence, they
are helpful in proving the impossibility part. In this paper,
we show that the class of one-way LOCC measurements
can achieve the same performance as the class of mea-
surements in the dense coding task. More specifically, the
class of one-way LOCC measurements can extract suffi-
cient benefit from shared entanglement without the use of
joint measurements across two distinct parties, although
one-way LOCC measurements are much more accessi-
ble than other complicated measurements. Since one-way
LOCC measurements are more experimentally feasible,
this result is an experimentally friendly demonstration of
the advantage of entanglement assistance in dense coding
protocols.

Indeed, enormous research has imposed locality con-
ditions on quantum information processing tasks such as
quantum state discrimination and quantum state verifica-
tion [13–59]. However, few papers have addressed the
locality issue that naturally emerges in dense coding [11],
and this problem remains largely open.

Another practical aspect concerns encoding operations
in dense coding. The sender commonly chooses unitary
operations in the system HA as encoding operations. How-
ever, it is not easy to implement arbitrary unitaries on
the sender’s system in practice. The time evolution in the
quantum system can be characterized as unitary eitH with
Hamiltonian H . Practically, the one-parameter subgroup
{eitH } can be easily implemented. When several types of
Hamiltonian can be implemented, the subgroup generated
by them can also be implemented. In this way, it is natural
to restrict our encoding operations to a certain subgroup,
under desirable symmetry constraints [60,61]. In partic-
ular, using this type of encoding operation, we demon-
strate the practicality of the class with one-way LOCC
measurements by a physically implementable example
in Sec. V C.

Dense Coding

Symmetry Locality

?

FIG. 1. The intersection of dense coding, symmetric encoders,
and local decoders remains largely unknown. Better understand-
ing this intersection would inspire more practical dense coding
protocols.

In this paper, we study in depth the intersection of dense
coding, symmetric encoders, and local decoders, wishing
to explore the fundamental limits on symmetric encoders
and local decoders and seek more practical dense coding
protocols. See Fig. 1 for an illustration.

Recently, various studies addressed how quantum theory
can be characterized in the context of general probability
theory (GPT). Most of them discussed it in the context
of state discrimination by extending the class of quan-
tum measurements to a larger class of measurement in
the framework of GPT [62–66], [66–80]. Specifically, Arai
et al. [65] clarified that a superquantum measurement, i.e.,
a measurement in such an extended class, can distinguish
two nonorthogonal states when our measurement belongs
to the dual cone of the cone of separable operators. It
was also shown that a similar phenomenon happens even
when the cone of our measurements is very close to the
cone of quantum theory [64,65]. This clarifies how quan-
tum theory can be characterized in the framework of GPT.
Also, Popescu and Rohrlich [67] showed the possibility
of an unphysical state under the framework of GPT by
introducing the PR box. In this paper, we go one step fur-
ther to investigate dense coding with the framework of
GPT. Though this line of research might not be meaning-
ful from the practical perspective, it offers novel theoretical
contribution to the foundation of quantum theory.

In fact, a positive map can generate an unphysical state
from an entangled state when it is not a completely posi-
tive map. This is a reason why the set of positive maps is
not considered as a class of quantum operations and it is
described by the set of completely positive maps. Hence,
a positive map can be considered as a superquantum oper-
ation when it is not a completely positive map. Therefore,
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it is a natural question whether such a superquantum oper-
ation enhances quantum information processing. In fact,
the difference between positive maps and completely pos-
itive maps has not been studied in the context of quantum
information processing. That is, such a study clarifies what
property is essential for the analysis of quantum infor-
mation processing in a broad setting, including quantum
theory. From this aim, we address this question in the
framework of GPT. In this paper, we focus on the informa-
tion transmission problem as a typical model of quantum
information processing. When a superquantum operation
is allowed as an encoding operation in addition to a con-
ventional quantum operation, the decoder needs to be
restricted to a smaller class of measurements under the
framework of GPT.

To consider the effect of an unphysical state generated
by a superquantum operation, it is natural to consider the
following situation; the sender and the receiver share an
entangled state |�AF〉 and the encoding operation is lim-
ited to an operation on the sender’s system HA, while
a superquantum operation is allowed as an encoder. The
decoder is restricted to a smaller class of measurements
on the composite system under a suitable locality condi-
tion, which is chosen under the framework of GPT. Since
this encoding scheme may generate an unphysical state,
this problem setting clarifies the power of a superquantum
encoder. In fact, several papers [64] studied state discrim-
ination in the framework of GPT, but no study discussed
the channel coding in the framework of GPT. In this sense,
this analysis opens a new direction to the study of the
foundation of quantum theory.

This paper is organized as follows. In Sec. II, we briefly
explain the problem formulation of this paper. In Sec. III,
we set the notation and prepare the basic knowledge used
in the paper. In Sec. IV, we first formally define the abstract
dense coding task. Then, we generalize the problem set-
ting by considering various available sets of encoders
constrained by resource theory of asymmetry and various
available sets of decoders with locality conditions. Finally,
we show that all these capacities are equal and derive a
single-letter capacity formula. In Sec. V, we consider as
examples various unitary groups of practical interest—the
irreducible case, including the full unitary group; quantum
coherence, including the one-generator case with a cer-
tain condition, e.g., a two-mode squeezed vacuum state;
and Schur duality—to illustrate the dense coding power
within different specialized resource theories of asymme-
try. Finally, in Sec. VI we extend the obtained results to
the case of a nonquantum preshared state within the frame-
work of GPT. We defer all proofs to the appendices. In
Appendix A, we summarize the lemmas and tools fre-
quently used in the paper. In Appendix B, we prove an
upper bound on the asymmetry of assistance and its reg-
ularized version. In Appendix C, we prove the weak and
strong converse bounds on the (enhanced) dense coding

capacities. In Appendix D, we prove our main result—the
dense coding capacity theorem under locality conditions.
We do so by first giving an one-shot characterization to
the dense coding capacity with one-way LOCC decoders.
This is done by showing an achievability bound in terms
of the smooth Rényi entropy that is the most difficult
part in this paper. Then, we derive the capacity formu-
las for the asymptotic dense coding capacities under the
locality conditions. In Appendix E, we prove the dense
coding theorem with local decoders even when superquan-
tum encoding operations are allowed. In Appendix F,
we prove the achievability (under certain conditions) and
strong converse parts regarding the nonquantum preshared
state extension.

II. BRIEF EXPLANATION OF THE
FORMULATION

As explained in the Introduction, we restrict our encod-
ing operations to a certain subgroup in the simplest set-
ting. We assume that the encoding operation is given
as a (projective) unitary representation U of a group G
on HA. When the preshared entangled state is |�AF〉
and our encoding operation is restricted to these uni-
taries, our channel can be written as the classical-quantum
(CQ) channel g �→ Ug |�AF〉. Since this CQ channel has
a symmetric property for group G, we say that it is a
CQ-symmetric channel. Recently, Korzekwa et al. [60]
studied such a channel model in the context of resource
theory of asymmetry without considering shared entangle-
ment. In fact, resource theory of asymmetry is a topic to
study physical resources for information processing, and
has been actively studied by many researchers [12,81–91].
This method has also been used to measure the degree of
noncommutativity in the context of quantum hypothesis
testing [92], [93, Section 2.4].

The class of CQ-symmetric channels is a quantum gen-
eralization of a regular channel [94], which is a useful
class of channels in classical information theory. This class
of classical channels is often called generalized additive
[95, Section V] or conditional additive [95, Section 4]
and contains a class of additive channels as a subclass.
Such a channel appears even in wireless communication
by considering binary phase-shift keying modulations [96,
Section 4.3]. Its most simple example is the binary sym-
metric channel. Hayashi [97, Section VII-A-2] studied its
quantum extension with an additive group and discussed
the capacity and the wire-tap capacity with the seman-
tic security. Since this class has an excellent symmetric
property, algebraic codes achieve the capacity [94,96–99].
Since an algebraic code has less calculation complexity
in comparison with other types of code, this fact shows
the usefulness of this class of classical channels. As the
class of CQ-symmetric channels is a quantum version of
classical channels, and the encoding operation class of
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group representation of a subgroup yields a CQ-symmetric
channel, this encoding operation class is a natural class of
encoders.

To consider superquantum encoders, we need to expand
the above class of encoding operations because these uni-
taries are conventional quantum operations. To this end,
we focus on the property of these unitaries. These uni-
tary encoding operations have invariant states, which can
be characterized by the average operation G of the given
(projective) unitary representation. In the case of the full
unitary and the discrete Weyl-Heisenberg groups, the aver-
age operation G maps all densities to the completely
mixed state. When the group is composed of diagonal
unitaries, the average operation G is the dephasing chan-
nel. Interestingly, the average operation G satisfies the
property G ◦ Ug = Ug ◦ G = G for g ∈ G, where Ug(ρ) :=
UgρU†

g . Hence, as a larger class of encoding operations,
we can consider the set of completely positive and trace-
preserving (CPTP) maps {E}E that satisfies the symmetric
preserving condition

G ◦ E = E ◦ G = G. (1)

Therefore, we assume that our encoders are restricted to
the above class of CPTP maps as another problem setting.

From condition (1), we can define a class of trace-
preserving positive maps (but not completely positive) as a
larger class of encoders. Indeed, when we focus on a basis
commutative with invariant states, the transpose operation
satisfies condition (1). Hence, this class of encoders con-
tains a typical superquantum operation. In addition, since
our measurement class is restricted, this class is theoreti-
cally allowed as a class of encoding operations under the
framework of GPT.

Suppose that our measurement class is smaller than the
set of quantum measurements allowed in quantum theory.
In that case, a larger class of states is allowed, i.e., a larger
class of encoding operations is theoretically permitted in
this framework. The reason is that the probability distri-
bution of the measurement outcome is well defined in this
relaxation. In other words, the non-negativity of the prob-
ability of the measurement outcome is guaranteed even
under this relaxation. For example, when our measurement
is restricted to a separable measurement, even when the
encoding operation is relaxed to a positive map, the non-
negativity of the probability of the measurement outcome
is guaranteed, while the resultant state of the encoding is
not necessarily positive definite. That is, the separability
of our measurement guarantees the non-negativity of the
probability of the measurement outcome. In this way, we
can extend our encoding operation to such superquantum
operations under condition (1) when a particular locality
condition is imposed on our decoding measurement.

In this paper, we introduce 21 classes of dense cod-
ing codes by considering various classes of encoders and

TABLE I. Overview of the notation used throughout this paper.

Symbol Definition

C, R, R+ Complex, real, and non-negative real numbers
A, B, F , . . . Quantum systems and the associated Hilbert

spaces
L (H) Set of linear operators on system A
P(H) Set of positive semidefinite operators on

system A
D(H) Set of density operators on system A
C (A → B) Set of completely positive trace-preserving

maps
D (ρ‖σ) Quantum relative entropy of ρ and σ
H(ρA), H(A)ρ Von Neumann entropy of quantum state ρA
˜Dα , Dα Sandwiched and Petz quantum Rényi

divergences
FG Set of symmetric states with respect to a

group G
G Twirling operation of a group G
AG(ρ) Asymmetry of assistance of quantum state ρ
A∞

G (ρ) Regularized asymmetry of assistance of ρ
Ec Set of available encoders under constraint c
Dc Set of available decoders under constraint c
CεE,D(�AF) One-shot ε-dense coding capacity of �AF

CE,D(�AF) Dense coding capacity of a pure state �AF

C†
E,D(�AF) Strong converse dense coding capacity of �AF

decoders. These classes are classified into three groups
depending on the class of decoders. The first group com-
prises classes whose decoder has no support by HF .
The second group comprises classes whose decoder is
a global measurement. The remaining group comprises
classes whose decoder has support from HF and the local-
ity condition on the bipartite system. As our main result,
we show that every group class has the same capacity. That
is, if a class belongs to the same group as another class,
these two classes have the same capacity. Hence, when
the available decoder is one of the bipartite decoders with
locality conditions, even when the class of our encoders
is extended to a larger class, e.g., trace-preserving positive
maps with condition (1), the capacity cannot be improved.

III. PRELIMINARIES

In this section, we first set the notation. Then we review
the mathematical tool of quantum entropies and group
representation. Finally, we review the resource theory
of asymmetry and introduce two new asymmetry mea-
sures: asymmetry of assistance and its regularized version.
We summarize the notation used throughout the paper in
Table I for reference.

A. Notation

For a finite-dimensional Hilbert space H, we denote
by L (H) and P(H) the linear and positive semidefinite
operators on H. Quantum states are in the set D(H) :=
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{ρ ∈ P(H)| Tr ρ = 1} and we also define the set of sub-
normalized quantum states D•(H) := {ρ ∈ P(H)|0 <
Tr ρ ≤ 1}. For two operators M , N ∈ L (H), we say that
M ≥ N if and only if M − N ∈ P(H). On the other
hand, we denote by {M ≥ N } the projector onto the space
spanned by the eigenvectors of M − N with non-negative
eigenvalues. The identity matrix is denoted as 1, and the
maximally mixed state is denoted as π . Multipartite quan-
tum systems are described by tensor product spaces. We
use Latin capital letters to denote the different systems
and subscripts to indicate what subspace an operator acts.
For example, if MAB is an operator on HAB = HA ⊗ HB
then MA = TrB MAB is defined as its marginal on system
A. Systems with the same letter are assumed to be iso-
morphic: A′ ∼= A. By convention, we use letters in front of
alphabet letters such as A and B to represent quantum sys-
tems and letters after alphabet letters such as X and Y to
represent classical systems. We say that ρXA is a classical-
quantum state if it is of the form ρXA = ∑

x pX (x)|x〉〈x|X ⊗
ρx

A, where pX is a probability distribution, {|x〉}x is an
orthonormal basis of HX , and {ρx

A ∈ D(HA)}x. A linear
map N : L (HA) → L (HB) maps operators in system A
to operators in system B. If NA→B(MA) ∈ P(HB) when-
ever MA ∈ P(HA), NA→B is positive. Let idA denote the
identity map acting on system A. If the map idR ⊗NA→B is
positive for every reference system R, NA→B is completely
positive (CP). If Tr[NA→B(MA)] = Tr MA for all operators
MA ∈ L (HA), NA→B is trace preserving (TP). If NA→B is
completely positive and trace preserving (CPTP), we say
that it is a quantum channel or quantum operation. We
denote by C (A → B) the set of quantum channels from
A to B. A positive operator-valued measure (POVM) is
a set {�m} of operators satisfying, for all m, �m ≥ 0 and
∑

m�m = 1. Denote by C, R, and R+ the complex, real,
and non-negative real numbers, respectively.

B. Quantum entropies

Let ρ ∈ D(H) and σ ∈ P(H) such that the support of
ρ is contained in the support of σ . The quantum relative
entropy is defined as

D (ρ‖σ) := Tr[ρ(log ρ − log σ)], (2)

where logarithms are in base 2 throughout this paper.
The Shannon entropy of a probability distribution pX is
defined as H(pX ) := −∑

x pX (x) log pX (x). The von Neu-
mann entropy of ρ is defined as H(ρ) := − Tr ρ log ρ.
Let ρAB ∈ D(HA ⊗ HB) be a bipartite quantum state. The
quantum mutual information and conditional entropy of
ρAB are respectively defined as

I(A:B)ρ := D (ρAB‖ρA ⊗ ρB) , (3)

H(A|B)ρ := −D (ρAB‖1A ⊗ ρB) . (4)

Trivializing system B, H(A|B)ρ yields an alternative
definition of the von Neumann entropy as H(A)ρ . In this
paper, we use such notation interchangeably. The quantum
information variance is defined as [100]

V (ρ‖σ) := Tr[ρ(log ρ − log σ)2] − D (ρ‖σ)2 . (5)

The varentropy (aka variance and information variance) of
ρ is defined as

V(ρ) := V (ρ‖1) = Tr[ρ(log ρ)2] − H(ρ)2. (6)

Let α ∈ (0, 1) ∪ (1, ∞); the one-parameter Petz quantum
Rényi divergence is defined as [101] (we refer the inter-
ested reader to Ref. [102, Chapter 4] and Ref. [103, Secs.
3.1 and 5.4] for a comprehensive study of Dα):

Dα (ρ‖σ) := 1
α − 1

log Tr[ρασ 1−α]. (7)

As another version, we focus on the one-parameter sand-
wiched quantum Rényi divergence ˜Dα defined as [104–
107]

˜Dα (ρ‖σ) := 1
α − 1

log Tr[(σ (1−α)/2αρσ (1−α)/2α)α]. (8)

Interestingly, both quantum Rényi divergence recovers the
quantum relative entropy by taking the limit α → 1:

lim
α→1

Dα (ρ‖σ) = lim
α→1

˜Dα (ρ‖σ) = D (ρ‖σ) . (9)

The quantum Rényi entropy of ρ is defined as

Hα(ρ) := −Dα (ρ‖1) = 1
1 − α

log Tr ρα . (10)

Equation (9) yields limα→1 Hα(ρ) = H(ρ). The Petz con-
ditional Rényi entropy of a bipartite state ρAB is defined
as

Hα(A|B)ρ := −Dα (ρAB‖1A ⊗ ρB) . (11)

C. Group representation

As a preparation to explain the resource theory of asym-
metry, we summarize the basic fact in group representa-
tion. Let H be a Hilbert space and G be a group. For an
element g ∈ G, a unitary operator Ug is given. The map
U : g �→ Ug is called a unitary representation of G on H
when

UgUg′ = Ugg′ (12)

for g, g′ ∈ G [93]. In addition, the map U is called a pro-
jective unitary representation of G on H when there exists
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θ(g, g′) for g, g′ ∈ G such that [93]

UgUg′ = eiθ(g,g′)Ugg′ . (13)

In particular, the above type of a projective unitary rep-
resentation is called a projective unitary representation
associated with {θ(g, g′)}g,g′∈G.

A (projective) unitary representation U of G on H is
called irreducible when there is no subspace K ⊂ H such
that UgK ⊂ K for g ∈ G and {0} �= K. Two (projective)
unitary representations U1, U2 of G on H1,H2 are called
equivalent when there exists a unitary V from H1 to H2
such that VU1,gV† = U2,g for g ∈ G. A (projective) uni-
tary representation U of G on H is called completely
reducible when it is a direct sum representation of (projec-
tive) irreducible unitary representations. It is known that
any unitary representation U of G on H is completely
reducible when G is a compact group [108, Lemma 2.3].

Let Ĝ be the set of indices that identifies an irreducible
unitary representation of G. That is, given an element k ∈
Ĝ, we have an irreducible unitary representation Uk of G
on Hk. Then, any unitary representation U of a compact
G on H is equivalent to a unitary representation on the
representation space

⊕

k∈Ĝ

Hk ⊗ C
nk , (14)

where nk is called the multiplicity of the irreducible
unitary representation Uk. However, when the multiplic-
ity nk is not one, the multiplicity causes a technical
difficulty. Hence, we introduce the following assump-
tion. We explain the importance of this assumption in
Sec. IV G, after we present the main results. In fact, as
explained in Sec. V, several typical examples satisfy this
assumption.

Assumption 1 (Multiplicity-free condition). We say that
a unitary representation U of a group G on H is
multiplicity-free when there exists a subset S ⊂ Ĝ such
that the unitary representation U on H is equiva-
lent to a unitary representation on the representation
space

⊕

k∈S

Hk. (15)

We assume that our unitary representation satisfies the
multiplicity-free condition throughout this manuscript.

The above discussion can be extended to projective uni-
tary representations. Let Ĝ[{θ(g, g′)}g,g′∈G] be the set of
indices to identify an irreducible projective unitary rep-
resentation of G associated with {θ(g, g′)}g,g′∈G. Then,

Eq. (14) is generalized as follows. Any unitary representa-
tion U of a compact G on H associated with {θ(g, g′)}g,g′∈G
is equivalent to a unitary representation on the representa-
tion space

⊕

k∈Ĝ[{θ(g,g′)}g,g′∈G]

Hk ⊗ C
nk , (16)

where nk is called the multiplicity of the irreducible uni-
tary representation Uk. Hence, we define the property
“multiplicity-free” for a projective unitary representation
U in the same way.

A state σ ∈ D(H) is symmetric with respect to G if it
holds that

Ug(σ ) ≡ UgσU†
g = σ for all g ∈ G. (17)

That is, the symmetric states are invariant under G.
Throughout this paper, we assume that the group G is fixed
and omit the explicit reference to this group. The set of
symmetric states is denoted as FG and will be treated
as free states in the resource theory of asymmetry. Con-
versely, a state ρ ∈ D(H) is asymmetric, or resourceful, if
there exists some g ∈ G such that UgρU†

g �= ρ. When the
group G is a finite group, the G-twirling operation G over
G is defined as

G(ρ) := 1
|G|

∑

g

UgρU†
g . (18)

When the group G is a compact group, the above definition
can be generalized as

G(ρ) :=
∫

G
UgρU†

gν(dg), (19)

where ν is the Haar measure. Operation G maps all states
in D(H) to symmetric states, i.e.,

G(ρ) ∈ FG for all ρ ∈ D(H). (20)

What is more, G is symmetry preserving in the sense that
it maps any symmetric state to itself: G(σ ) = σ for any
symmetric state σ ∈ FG. One can interpret G as a resource
destroying map [109] in the sense that it leaves resource-
free states unchanged but erases the resource stored in all
resourceful states.

Lemma 1. Let G is a compact group. A (projective)
unitary representation U is multiplicity-free if and only if

G(ρ)G(σ ) = G(σ )G(ρ) (21)

for two states ρ, σ on H.
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Proof. Assume that a (projective) unitary representa-
tion U is multiplicity-free, as required in Eq. (15). Let
�k be the projection to the space Hk. Then, G(ρ) =
⊕

k∈S Tr(�kρ)�k/Tr�k, which implies Eq. (21). Con-
versely, assume that a (projective) unitary representation U
is not multiplicity-free. Then, a state ρ is written as

⊕

k ρk,
where ρk is a positive semidefinite operator on Hk ⊗ Cnk .
Then, G(ρ) = ⊕

k∈S �k/Tr�k ⊗ (TrHk ρk). For nk > 1,
TrHk ρk and TrHk σk are not commutative with each other
in general. Hence, we obtain the desired statement. �

The above definition generalizes naturally to a tensor
product system H⊗n composed of n copies of H. The
group in H⊗n is G×n and we adopt the notation g ≡
g1 · · · gn and Ug ≡ Ug1 ⊗ · · · ⊗ Ugn for each gi ∈ G. Sym-
metric states are defined to be those satisfying UgσUg = σ

for all Ug ∈ G×n. Correspondingly, the twirling operation
in H⊗n is G⊗n.

D. Resource theory of asymmetry

Asymmetry of quantum states plays an important role
not only in the development of modern physics but also in
quantum information processing tasks [81]. In this section,
we briefly summarize the resource theory of asymmetry
[12,81–90], which is a special case of a general formal-
ism named the quantum resource theory [110]. We remark
that the resource theory of asymmetry is an abstract
resource theory that encapsulates many nice properties
of commonly studied resource theories in the literature
[111,112].

The relative entropy of asymmetry [83] is a commonly
used measure that quantifies the degree of asymmetry of
quantum states and is defined as

RG(ρ) := min
σ∈FG

D (ρ‖σ) . (22)

It turns out that the twirled state G(ρ) achieves the min-
imum in Eq. (22) and yields a simple expression for
the relative entropy of asymmetry in terms of the von
Neumann entropy [83, Proposition 2], i.e.,

RG(ρ) = D (ρ‖G(ρ)) = H(G(ρ))− H(ρ). (23)

This quantity is the minimum relative entropy between
ρ and the set of invariant states and is called the rela-
tive entropy of G-frameness [91, Proposition 2]. Using
this quantity, Hayashi [93, Theorem 2.9] showed the
Pythagorean theorem for quantum relative entropy in the
sense of group invariant space. When G is a commutative
group generated by the logarithm of another density matrix
σ , Hiai and Petz [92] considered this quantity as the degree
of noncommutativity between ρ and σ . They showed that
the regularization of this quantity goes to zero when ρ and
σ are given as n-tensor products. This fact was used in the
proof of quantum Stein’s lemma for quantum hypothesis

testing [92]. Gour et al. [91, Corollary 11] extended this
fact to the case when the group is the n-tensor product of
any group representation. In this sense, quantity (23) takes
various roles in quantum information.

Inspired by the entanglement of assistance [113] in the
resource theory of entanglement [114] and the coherence
of assistance [115] in the resource theory of coherence
[112], we introduce here the asymmetry of assistance of
a quantum state ρ as

AG (ρ) := max
ρ=∑

x pX (x)|ψx〉〈ψx |

∑

x

pX (x)D (|ψx〉〈ψx|

× ‖G(|ψx〉〈ψx|))
= max

ρ=∑

x pX (x)|ψx〉〈ψx |

∑

x

pX (x)H (G(|ψx〉〈ψx|)) ,

(24)

where ψx ≡ |ψx〉〈ψx|, the maximum ranges over all possi-
ble pure state decompositions of ρ, and the second equality
follows from Eq. (23). Correspondingly, the regularized
asymmetry of assistance of ρ is defined as

A∞
G (ρ) := lim sup

n→∞
1
n

AG(ρ
⊗n). (25)

In the following proposition, we show that both AG and A∞
G

are upper bounded by the quantum entropy of the twirled
state, and thus that the regularization is well defined. The
proof can be found in Appendix B.

Proposition 2. Let ρ ∈ D(H) be a quantum state. It holds
that

AG(ρ) ≤ A∞
G (ρ) ≤ H(G(ρ)). (26)

When G is the commutative group composed of diago-
nal unitaries, and ρ is a pure state, Chitambar et al. [115]
discussed AG (ρ) and A∞

G (ρ). Regarding Eq. (26), they
showed that the equality in the second inequality for the
general case [115, Theorem 4] and the equality in the first
inequality for the qubit case [115, Theorem 5]. In addi-
tion, they showed that there exists a pure state ρ that does
not satisfy the equality in the first inequality when the
dimension of H is not smaller than 4. They stated that the
equality in the first inequality is an open problem in the
qutrit case.

IV. DENSE CODING CAPACITIES

A. The general dense coding framework

We first describe the most general dense coding frame-
work. Let the preshared entangled state between Alice and
Fred be |�〉AF , the set of available encoders by Alice be
E, and the set of available decoders by Bob and Fred be

030346-7



MASAHITO HAYASHI and KUN WANG PRX QUANTUM 3, 030346 (2022)

D. The abstract dense coding protocol can be described
as follows. Alice randomly samples a message m from the
message alphabet M and then applies an encoding chan-
nel Em

A→A ∈ E to the resourceful state �AF . This leads to
the classical-quantum state

1
|M|

∑

m

|m〉〈m|M ⊗ Em
A→A(|�〉〈�|AF). (27)

After encoding, Alice sends the encoded state to Bob via
a noiseless quantum channel idA→B where A ∼= B. After
receiving the quantum state, Bob and Fred perform a joint
measurement DBF→̂M ≡ {m̂

BF}m̂ ∈ D to infer the encoded
message m. See Fig. 2 for an illustration of the dense
coding protocol. The decoding operation results in the
classical-classical quantum state

∑

m,m̂

q
̂MM (m̂|m)|m〉〈m|M ⊗ |m̂〉〈m̂|

̂M , (28)

where the conditional distribution q
̂MM is defined as

q
̂MM (m̂|m) := Tr[m̂

BFEm
A→A(|�〉〈�|AF)]. (29)

We call C ≡ ({Em}m,D) ∈ (E, D) a dense coding code
for the resourceful quantum state �AF under the avail-
able encoder-decoder pair (E, D) with cardinality |C| ≡
|M|. We quantify the performance of C by computing the
decoding error

e(C) := 1 − 1
|M|

∑

m

q
̂MM (m|m), (30)

and use s(C) := 1 − e(C) to denote the success probabil-
ity of decoding. In general, smaller decoding error implies
better code. However, to achieve small e(C), one has to
encode with small size |C|. This motivates us to define
the dense coding rate that quantitatively measures the
communication capacity of the code:

r (C) := log |C|. (31)

Fix ε ∈ [0, 1). The one-shot ε-dense coding capacity
of �AF under available encoder-decoder pair (E, D) is
defined to be the maximum bits of messages that can be
transmitted such that the decoding error is upper bounded
by the error threshold ε.

Definition 3 (One-shot ε-dense coding capacity). Let
|�〉AF be a bipartite pure quantum state and ε ∈ [0, 1). The
one-shot ε-dense coding capacity of �AF under available
encoder-decoder pair (E, D) is defined as

CεE,D(�AF) := sup
C∈(E,D)

{r(C) | e(C) ≤ ε}. (32)

m
message

m̂|Ψ〉AF
shared

resource

available encoders
Em ∈ E

available decoders
D ∈ D

m̂

Em
A→A idA→B

DBF→̂M

FIG. 2. A dense coding protocol for the shared resourceful
quantum state �AF under the available encoder-decoder pair
(E, D). In this protocol, Alice possesses system A (red line),
Bob possesses system B (blue line), and Fred possesses system
F (purple line).

The dense coding capacity of �AF under available
encoder-decoder pair (E, D) is then defined to be the
one-shot ε-dense coding capacity of �⊗n

AF by taking the
limits n → ∞ and ε → 0. This capacity quantifies the ulti-
mate number of bits that can be reliably transmitted per
copy of �AF in the asymptotic regime, under available
encoder-decoder pair (E, D).

Definition 4 (Dense coding capacity). Let |�〉AF be a
bipartite pure quantum state. The dense coding capacity
of �AF under available encoder-decoder pair (E, D) is
defined as

CE,D(�AF) := inf
ε>0

lim sup
n→∞

1
n

CεE,D(�
⊗n
AF ). (33)

Analogously, the strong converse dense coding capacity
of �AF is defined to be the one-shot ε-dense coding capac-
ity of �⊗n

AF by taking the limit n → ∞ and satisfying the
constraint that ε < 1. This capacity quantifies the extent
to which we can sacrifice the decoding error to achieve a
larger dense coding rate in the asymptotic regime, under
available encoder-decoder pair (E, D).

Definition 5 (Strong converse dense coding capacity).
Let |�〉AF be a bipartite pure quantum state. The strong
converse dense coding capacity of �AF under available
encoder-decoder pair (E, D) is defined as

C†
E,D(�AF) := sup

ε<1
lim sup

n→∞
1
n

CεE,D(�
⊗n
AF ). (34)

In the following sections, we introduce various available
classes of encoders E and decoders D within the resource
theory of asymmetry framework.

B. Quantum and superquantum encoders

Practically, it is not easy to implement arbitrary quantum
operations for an encoder. Hence, it is natural to restrict
Alice’s encoding operation to a particular class of oper-
ations. For example, when a Hamiltonian H is fixed, the
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unitary operation eitH can be easily implemented. Noting
that the set {eitH }t forms a group representation, this exam-
ple can be generalized as follows. Given a group G and
its unitary (projective) representation Ug , we assume the
following available set of Alice’s encoding operations:

Eg := {Ug | g ∈ G} (35)

with Ug defined in Eq. (17). We note that Eg remains as
our first and smallest set of encoders.

However, in general, the dephasing operation can be
easily experimentally implemented, yet it is not included
in Eg . This motivates us to enlarge Eg to encapsulate phys-
ically implementable quantum operations. Along this line,
Korzekwa et al. [60] proposed enlarging Eg to the fol-
lowing available set of encoding operations that commute
with G:

Ecp := {E ∈ C (A → A)cp | E ◦ G = G = G ◦ E} (36)

with C (A → A)cp the set of CPTP maps from A to A. This
class is larger than Eg . When the Hamiltonian is H and the
set Eg is given as the set {eitH }t, the dephasing operation is
contained in Ecp, matching our requirement.

To investigate the power of superquantum encoders, we
introduce the following class of encoding operations:

Ep := {E ∈ C (A → A)p | E ◦ G = G = G ◦ E} (37)

with C (A → A)p the set of trace-preserving and positive
maps from A to A. From the perspective of resource the-
ory of asymmetry, each quantum operation E ∈ Ep can
encode information (both classical and quantum) into some
degrees of freedom of resourceful states that can be com-
pletely destroyed by G. Since C (A → A)p is strictly larger
than C (A → A)cp, there is a possibility of enhancing the
dense coding capacity by using the set of encoders Ep over
Ecp.

In addition, as an intermediate set between C (A → A)p
and C (A → A)cp, we introduce the set C (A → A)ppt as

C (A → A)ppt := {E ∈ C (A → A)p | Tr

× [(idF ⊗E)(|�〉〈�|)ρ] ≥ 0} (38)

for any PPT state ρ on HAF , where� is a maximally entan-
gled state on the bipartite system HAF . As another virtual
setting, we may also consider the set of encoders

Eppt := {E ∈ C (A → A)ppt | E ◦ G = G = G ◦ E}. (39)

By studying the above two classes of encoders, we can
clarify whether superquantum encoders can enhance clas-
sical information transmission with a preshared resource-
ful quantum state. We can show the following inclusion

hierarchy for the four classes of encoders defined above:

Eg ⊂ Ecp ⊂ Eppt ⊂ Ep . (40)

Indeed, the set of positive maps from the two-dimensional
system to itself is generated by the CPTP maps and the
transpose operation [116]. This fact shows the equality
Eppt = Ep . However, Horodecki, [117] and Skowronek
[118] showed that the set of positive maps from the three-
dimensional system to itself requires infinitely many gen-
erators. This fact indicates the possibility of enhancing the
dense coding capacity by using the set of encoders Ep over
Eppt when dimHA ≥ 3.

C. Decoders under locality conditions

Many studies investigated dense coding protocols under
the assumptions that entanglement is preshared and arbi-
trary encoding and decoding operations are allowed. How-
ever, even when the sender and the receiver share an
entangled state, it is not easy to implement a general joint
measurement across two quantum systems—the message
receiver HB and the entanglement receiver HF . Hence, it
is natural to impose locality conditions for the decoders.

As a typical case, we can consider the one-way LOCC
decoders D→ where the classical communication flows
from the entanglement receiver HF to the message receiver
HB. In this case, the entanglement receiver Fred first
measures the shared state at hand and then shares the infor-
mation with the message receiver Bob via classical com-
munication. Conditioned on the information, Bob decodes
the message using local decoders. Aiming to improve the
dense coding capacity, we also introduce the two-way
LOCC decoders D↔, where the two-way LOCC opera-
tions can be realized by combinations of local operations
and classical communications between the two systems.
We remark that (one-way) LOCC decoders are the most
natural set of quantum operations in distributed quantum
information processing.

Motivated by the resource theory of quantum entangle-
ment [114], we may further enlarge the set of available
decoder POVMs with respect to the bipartite system B:F
to improve the communication rate by considering sepa-
rable decoders (also known as separable measurements)
Dsep and PPT decoders (also known as PPT measure-
ments) Dppt. Intuitively, a joint measurement is a sepa-
rable (PPT) measurement if all of its POVM elements
can be implemented by separable operations (PPT oper-
ations). Although the separable decoders Dsep and the PPT
decoders Dppt are theoretical objects, they are useful in
proving the converse part in coding theorems.

Finally, we consider two special cases covering the
commonly studied dense coding tasks. First, we investi-
gate the local decoders D

�
in which Bob decodes the

message encoded by Alice without help from Fred (the
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entanglement receiver), which we call nonassisted decod-
ing. Second, we investigate the global decoders Dglb in
which Bob and Fred work together to decode the message
encoded by Alice. We do not impose any locality condi-
tion on the joint measurements they can carry out. Note
that global decoders are used in the seminal dense coding
protocol originally proposed by Bennett and Wiesner [1].

We conclude the following inclusion hierarchy for the
six classes of decoders defined above:

D
�

⊂ D→ ⊂ D↔ ⊂ Dsep ⊂ Dppt ⊂ Dglb. (41)

D. Landscape of dense coding capacities

In the above two sections, we have proposed four classes
of available encoders—Eg , Ecp, Eppt, Ep—and six classes
of available decoders—D

�
, D→, D↔, Dsep, Dppt, Dglb.

However, it is not the case that the arbitrary encoder-
decoder pair chosen from the available sets can
form a valid code for the resourceful quantum state
�AF . More precisely, consider the encoder-decoder
pair (E, D) where E ∈ {Eg , Ecp, Eppt, Ep} and D ∈
{D

�
, D→, D↔, Dsep, Dppt, Dglb}. The encoding opera-

tions {Em}m chosen from E by Alice and the decoder
POVM {m}m chosen from D by Bob and Fred yield the
conditional values q

̂MM defined in Eq. (29). To guarantee
that q

̂MM is a conditional distribution [and the corre-
sponding code C = ({Em}m, {m}m) is a valid dense coding
code], it must hold that

q
̂MM (m̂|m) = Tr[m̂

BFEm
A→A(|�〉〈�|AF)] ≥ 0 (42)

for arbitrary m, m̂ ∈ M. This physical constraint rules
out the possible combinations (Eppt, Dglb), (Ep , Dppt),
(Ep , Dglb), since these encoder-decoder pairs may lead
to negative values. Conversely, all other possible pairs
(E, D) (21 pairs in total) are valid encoder-decoder pairs
for the dense coding protocol. For reference, we outline
the landscape of investigated dense coding capacities in
Table II.
Remark 1: In the extreme case where the measurement
outcomes on HF are completely ignored, i.e., only local
decoders D

�
are available, we recover the communication

capacities of �A previously investigated in Ref. [60].
We summarize in the following inclusion relations for

the dense coding capacities defined above. Let |�〉AF be a
bipartite pure quantum state. It holds that

CE,D(�AF) ≤ C†
E,D(�AF) (43)

for E ∈ {Eg , Ecp, Eppt, Ep} and D ∈ {D
�

, D→, D↔, Dsep,
Dppt, Dglb}, except for the unphysical pairs (Eppt, Dglb),
(Ep , Dppt), (Ep , Dglb). The relation hierarchy for the
capacities CE,D(�AF) is illustrated in Fig. 3. Also, we
have the same relation hierarchy for the strong converse
capacities C†

E,D(�AF).

CEg,D∅ CEcp,D∅ CEppt,D∅ CEp,D∅

CEg,D→ CEcp,D→ CEppt,D→ CEp,D→

CEg,D↔ CEcp,D↔ CEppt,D↔ CEp,D↔

CEg,Dsep CEcp,Dsep CEppt,Dsep CEp,Dsep

CEg,Dppt CEcp,Dppt CEppt,Dppt

CEg,Dg CEcp,Dg

FIG. 3. The relation hierarchy for the dense coding capacities
CE,D(�AF) investigated in this paper, where x → y means that
x ≤ y in the hierarchy.

E. Enhanced version with one-way LOCC

In the above dense coding framework, if we fix the avail-
able decoders to D→, i.e., the one-way LOCC decoders,
this specific setting has an equivalent description called the
environment-assisted classical communication via quan-
tum resources, originally motivated by the intensively
studied environment assistance framework [113,115,119–
131]. The detailed dense coding procedure using one-way
LOCC decoders is illustrated in Fig. 4.

Inspired by Fig. 4, we propose here a hypothetical and
enhanced dense coding framework with one-way LOCC
decoders, in which both Alice and Bob have access to
Fred’s outcome, as illustrated in Fig. 5. This hypothetical
setting yields upper bounds on the standard dense coding
with one-way LOCC decoders. The dense coding power of
�AF is enhanced compared to the setting depicted in Fig. 4

m
message

|Ψ〉AF
shared

resource

available encoders
Em ∈ E

m̂Em
A→A idA→B Dx

B→̂M

ΛF→X

FIG. 4. A dense coding protocol for the shared resourceful
quantum state �AF under one-way LOCC decoders (shaded
area). In this protocol, Alice possesses system A (red line), Bob
possesses system B (blue line), and Fred possesses system F
(purple line).
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TABLE II. Landscape of the dense coding capacities investigated in this paper. We are able to show that the capacities in bold are
actually equal and derive single-letter capacity formulas for all these capacities under Assumption 1.

Encoder E

Quantum encoder Superquantum encoder

Decoder D Eg Ecp Eppt Ep

Local D
�

CEg ,D�
(�AF) CEcp,D�

(�AF) CEppt,D�
(�AF) CEp ,D�

(�AF)

One-way LOCC D→ CEg ,D→(�AF) CEcp,D→(�AF) CEppt,D→(�AF) CEp ,D→(�AF)

LOCC D↔ CEg ,D↔(�AF) CEcp,D↔(�AF) CEppt,D↔(�AF) CEp ,D↔(�AF)

Separable Dsep CEg ,Dsep(�AF) CEcp,Dsep(�AF) CEppt,Dsep(�AF) CEp ,Dsep(�AF)

PPT Dppt CEg ,Dppt(�AF) CEcp,Dppt(�AF) CEppt,Dppt(�AF) ✗
Global Dglb CEg ,Dglb(�AF) CEcp,Dglb(�AF) ✗ ✗

since Alice possesses additional information (from Fred).
Following Definitions 3, 4, and 5, we can define analo-
gously corresponding enhanced dense coding capacities
introduced in Fig. 5 as

˜CεE,D→(�AF), ˜CE,D→(�AF), ˜C†
E,D→(�AF), (44)

respectively, where E ∈ {Eg , Ecp, Eppt, Ep}. Throughout
this paper, we use the letter ˜C with a tilde to represent the
enhanced dense coding capacity. We conclude the follow-
ing weak and strong converse bounds on the (enhanced)
dense coding capacities. See Appendix C for the proof.

Theorem 1. Let |�〉AF be a bipartite pure quantum state
and ε ∈ [0, 1). It holds that

CεE,D→(�AF) ≤ ˜CεE,D→(�AF), (45a)

CE,D→(�AF) ≤ ˜CE,D→(�AF) ≤ A∞
G (�A), (45b)

C†
E,D→(�AF) ≤ ˜C†

E,D→(�AF) ≤ H(G(�A)), (45c)

where E ∈ {Eg , Ecp, Eppt, Ep}. In the above relations, A∞
G

is defined in Eq. (25), �A = TrF �AF , and the operation G
is defined in Eqs. (18) and (19).

m
message

|Ψ〉AF
shared

resource

Em|x ∈ E

m̂Em|x
A→A

idA→B Dx
B→̂M

ΛF→X

FIG. 5. An enhanced dense coding protocol for the shared
resourceful quantum state �AF under one-way LOCC decoders.
In this protocol, Alice possesses system A (red line), Bob pos-
sesses system B (blue line), and Fred possesses system F (purple
line).

F. Main results

1. Dense coding capacities under locality conditions

Our main result concerns the dense coding capacities
under various locality conditions—D→, D↔, Dsep, Dppt.
In a word, we show that all these capacities are equal
and derive a single-letter capacity formula. Before stat-
ing the result, we outline some notation first. We assume
that the (projective) unitary representation U on HA is
multiplicity-free (cf. Assumption 1). The Hilbert space HA
is decomposed as

⊕

k∈K Hk. Hence, any pure state �AF on
the bipartite system HA ⊗ HF can be written as

�AF =
∑

k∈K

√

PK(k)�AF ,k, (46)

where {PK(k)}k is a probability distribution and each�AF ,k
is a pure state on the bipartite system Hk ⊗ HF . The
twirled state on the bipartite system HA ⊗ HF is given as

ξAF := (GA ⊗ idF)(�AF) =
∑

k∈K
PK(k)πk ⊗ ρF ,k, (47)

where ρF ,k := TrA�AF ,k and πk is the maximally mixed
state on Hk. The multiplicity-free condition guarantees the
relation

H(ξAF) = H((GA ⊗ idF)(�AF))

= H
(

∑

k

PK(k)πk

)

+
∑

k

PK(k)H(ρF ,k)

= H(A)ξ + H(F|K)ξ . (48)

What is more,

H(A)ξ = H
(

∑

k

PK(k)πk

)

=
∑

k∈K
PK(k) log dk + H(PK), (49)

where dk is the dimension of the irreducible subspace Hk.
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Our main result is summarized as follows, and the proof
can be found in Appendix D.

Theorem 2 (Dense coding capacity under locality con-
ditions). Let |�〉AF be a bipartite pure quantum state. It
holds under Assumption 1 (the multiplicity-free condition)
that

CE,D(�AF) = C†
E,D(�AF) = A∞

G (�A) = H(G(�A))

= H(A)ξ (50)

for E ∈ {Eg , Ecp, Eppt, Ep} and D ∈ (D→, D↔, Dsep, Dppt)

except for (Ep , Dppt). In the above relations, A∞
G is defined

in Eq. (25), �A = TrF �AF , and the operation G is defined
in Eqs. (18) and (19). In addition, since ξA is defined in
Eq. (47), the entropy H(A)ξ can be written as Eq. (49).
What is more, the strong converse bound holds without
Assumption 1.

We highlight the importance of Theorem 2 as follows.

1. It reveals the fact that, even when we enlarge the
available encoder-decoder pair up to (Ep , Dsep) or
(Eppt, Dppt), we cannot improve the dense coding
capacity compared to minimal encoder-decoder pair
(Eg , D→), where the available encoders are the uni-
tary encoding operations and the available decoders
are the one-way LOCC measurements.

2. It shows that the dense coding capacities under
locality conditions all satisfy the desirable strong
converse property. That is, for arbitrary dense cod-
ing code C ∈ (E, D), where E ∈ {Eg , Ecp, Eppt, Ep}
and D ∈ (D→, D↔, Dsep, Dppt) except for (Ep ,
Dppt), the decoding error necessarily converges to
one in the asymptotic limit whenever the coding
rate exceeds the optimal rate H(G(�A)). We thus
conclude that H(G(�A)) is a very sharp dividing
line between the coding rates that are achievable
and those that are not, ruling out the possibility of
error-rate trade-off in this dense coding task.

3. It establishes an interesting equivalence among
three different quantities at first glance: the opera-
tionally defined dense coding capacity CE,D(�AF)

(33), the mathematically defined regularized asym-
metry of assistance A∞

G (�A) (25), and the quantum
entropy of the twirled quantum state H(G(�A)).
In this way, we provide the asymmetry measure
A∞

G with an operational meaning in terms of dense
coding tasks.

Moreover, as a direct result of Theorems 1 and 2, we
conclude that even if Alice has access to the measure-
ment outcomes sent by Fred (cf. Fig. 5 for the enhanced
dense coding framework), the dense coding capability can-
not be improved when compared to the standard dense

coding framework, where only Bob can access the mea-
surement outcomes sent by Fred, when one-way LOCC
decoders are available. This result, in some sense, indicates
that Alice can choose the encoding operations completely
independent of the encoded state and yields an “universal
encoding” strategy under the same notation as Theorem 2.

Corollary 6. Let |�〉AF be a bipartite pure quantum state.
It holds that

˜CE,D→(�AF) = ˜C†
E,D→(�AF) = A∞

G (�A)

= H(G(�A)) = H(A)ξ , (51)

where E ∈ {Eg , Ecp, Eppt, Ep}.

2. Dense coding capacities with local decoders

When only the local decoders D
�

are available, we can
derive the following coding theorem under the same nota-
tion as Theorem 2. Note that our results on local decoders
recover as a special case Theorem 3 of Ref. [60], in which
the E = Ecp case was considered. See Appendix E for the
proof.

Theorem 3 (Dense coding capacity with local decoders).
Let |�〉AF be a bipartite pure quantum state. It holds under
Assumption 1 (the multiplicity-free condition) that

CE,D�
(�AF) = C†

E,D�

(�AF)

= H(G(�A))− H(�A)

= D (�A‖G(�A)) (52)

for E ∈ {Eg , Ecp, Eppt, Ep}.

3. Dense coding capacities with global decoders

When the global decoders Dglb are available, we actu-
ally identify an variant of the well-known dense coding
task [1–9,11,12] in which the available encoders in system
A are constrained by the twirling operation GA. Note that
the following result has previously been discovered in Ref.
[60, Theorem 3].

Proposition 7 (Dense coding capacity with global
decoders). Let |�〉AF be a bipartite pure quantum state.
It holds that

CEg ,Dglb(�AF) = CEcp,Dglb(�AF)

= H((GA ⊗ idF)(�AF)). (53)

4. Comparisons of the dense coding capacities

Now we compare the dense coding capacities investi-
gated above to witness the power of different decoders.
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Using Eq. (48), Theorem 3 can be rewritten in terms of
ξAF as

CE,D�
(�AF) = C†

E,D�

(�AF)

= H(G(�A))− H(�A)

= H(A)ξ − H(F)ξ , (54)

and Proposition 7 can be rewritten in terms of ξAF as

CEg ,Dglb(�AF) = CEcp,Dglb(�AF)

= H((GA ⊗ idF)(�AF))

= H(A)ξ + H(F|K)ξ . (55)

Comparing Eqs. (50) and (54), we can see that the dense
coding capacity under locality conditions can be inter-
preted as the sum of the amount of asymmetry H(A)ξ −
H(F)ξ reserved in the quantum state �A and the amount
of assistance H(F)ξ from the nonlocal decoders D ∈
{D→, D↔, Dsep, Dppt}. On the other hand, Eqs. (50) and
(55) together imply that H(F|K)ξ can be viewed as
the merit of global decoders compared to the nonlocal
decoders D ∈ {D→, D↔, Dsep, Dppt}.

G. Role of Assumption 1

Assumption 1 plays a crucial role in deriving the above
results. To see the importance of Assumption 1, we dis-
cuss a fundamental lemma related to group representation
theory, which will be used in our proof of Theorem 2.

We consider a pure state |ψ〉 in a general representation
space H of a representation Ug of a group G. We con-
sider an irreducible decomposition H = ⊕

k∈K Hk of H,
where Hk is an irreducible representation space. We denote
the projection to Hk by �k. Then, we have the following
lemma.

Lemma 8. When Assumption 1 holds, we have

G(|ψ〉〈ψ |) =
∑

k∈K
G(�k|ψ〉〈ψ |�k). (56)

Proof. Assumption 1 guarantees the uniqueness of the
decomposition H = ⊕

k∈K Hk. Since UgG(|ψ〉〈ψ |) =
G(|ψ〉〈ψ |)Ug , Schur’s lemma guarantees that G(|ψ〉〈ψ |)
is written as

∑

k ck�k with coefficients ck. Hence, the
cross term with respect to the irreducible decomposition
H = ⊕

k∈K Hk vanishes after application of G. Therefore,
we have

G(|ψ〉〈ψ |) =
∑

k∈K
�kG(|ψ〉〈ψ |)�k =

∑

k∈K
G(�k|ψ〉〈ψ |�k).

(57)

This completes the proof. �

Indeed, when Assumption 1 does not hold, relation (56)
does not hold in general. In this case, after application
of G, there are terms across several irreducible spaces
Hk1 , . . . ,Hkl , which are equivalent irreducible spaces.
Lemma 8 plays an essential role in our direct part. Specif-
ically, this lemma is used to prove Lemma 15, which is
presented in step 4 of the proof of Theorem 6 given in
Appendix D. On the other hand, Theorem 6 concludes the
one-shot direct part of Theorem 2.

V. EXAMPLES

In this section, we compute the dense coding capacities
CEg ,D�

(�AF), CEg ,D→(�AF), CEg ,Dglb(�AF) for special-
ized resource theories of asymmetry of practical interest.
Note that, by Theorems 2 and 3 and Proposition 7, it
suffices to evaluate these three capacities.

A. Dense coding power of purity

First, we consider the case when the (projective) uni-
tary representation U is irreducible on HA. For example,
G can be the group of unitary matrices on HA. Also, when
G is the discrete Weyl-Heisenberg group on HA, the corre-
sponding U forms an irreducible projective unitary repre-
sentation. In this case, the twirling operation G becomes
the completely depolarizing channel such that G(ρA) =
1A/dA for all ρA ∈ D(HA), where dA is the dimension of
system A. Correspondingly, the induced resource theory is
known as the resource theory of purity [111,132,133]. For
this resource theory, we have

CEg ,D�
(�AF) = log dA − H(�A), (58a)

CEg ,D→(�AF) = log dA, (58b)

CEg ,Dglb(�AF) = log dA + H(�A), (58c)

where the first equality follows from a special case of
Theorem 3, the second equality follows from Theorem 2,
and the last equality follows from Proposition 7. Compar-
ing Eqs. (58a)–(58c), we obtain a strict communication
power hierarchy among different classes of decoders in
the dense coding task, whenever �A is mixed and thus its
quantum entropy is strictly positive:

CEg ,D�
(�AF) < CEg ,D→(�AF) < CEg ,Dglb(�AF). (59)

B. Dense coding power of coherence

When G is a group of unitaries diagonal in a given basis
{|b〉} of system A (i.e., it is a subgroup of commuting
unitaries), G becomes the completely dephasing channel
�(ρA) = ∑

b 〈b| ρA |b〉 |b〉〈b| for all ρA ∈ D(HA) and we
recover the intensively studied resource theory of coher-
ence [112]. In this case, the encoders do not change the
diagonal elements of the quantum state on the given basis
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B but only affect the off-diagonal elements. In investigat-
ing the dense coding task under this resource theory we
ask how much classical information can be encoded into
quantum coherence resources. We have

CEg ,D�
(�AF) = H(�(�A))− H(�A), (60a)

CEg ,D→(�AF) = H(�(�A)), (60b)

CEg ,Dglb(�AF) = H(�(�A)), (60c)

where the first equality follows from a special case of
Theorem 3, the second equality follows from Theorem 2,
and the last equality follows from Proposition 7 and the
fact that [115, Theorem 4]

D (�AF‖�A(�AF)) = H(�(�A)), (61)

whenever �AF is pure. The fact that CEg ,D→(�AF) =
CEg ,Dglb(�AF) remarkably shows that global decoding
has no advantage over one-way LOCC decoding for the
dense coding task within the resource theory of quan-
tum coherence. When the reduced density �A is diagonal,
CEg ,D�

(�AF) evaluates to 0, indicating that incoherent
quantum states have no communication power under our
setting.

Indeed, the above discussion can be applied even when
group G is the one-dimensional group R in the follow-
ing case. Consider a diagonal Hermitian operator H whose
diagonal elements are different. Then, we consider the uni-
tary representation of R as t �→ eitH . Each one-dimensional
space generated by a diagonal element is a different irre-
ducible component. Hence, we can apply the above dis-
cussion. When each diagonal element of H is an integer,
the above can be considered as the unitary representation
of the compact group [0, 2π).

C. Two-mode squeezed vacuum state

We apply the discussion for dense coding power of
coherence to the case when the preshared quantum state
�AF is a two-mode squeezed vacuum (TMSV) state, which
is given as

|�〉AF =
∞

∑

n=0

√

N n/(N + 1)n+1 |n〉A |n〉F , (62)

where n is the mean photon number and N is the average
energy constraint. We compare our result with Ref. [134,
Sec. IV], which addressed the special case of dense coding
capacity CEg ,Dglb(�AF) using global measurements in this
example. In this case, similar to Ref. [61], the encoder is
given by the application of time evolution U(t), where U(t)
is defined as exp(it

∑∞
n=0 n|n〉〈n|). Therefore, this problem

can be considered a special case of the dense coding power
of coherence.

In contrast, from the practical viewpoint, we impose the
locality condition to our decoder. Then, state �AF defined
in Eq. (62) satisfies the relation H(�(�A)) = H(�A) =
(N + 1) log(N + 1)− N log N . Hence, Eqs. (60a)–(60c)
are simplified as

CEg ,D�
(�AF) = 0, (63a)

CEg ,D→(�AF) = (N + 1) log(N + 1)− N log N , (63b)

CEg ,Dglb(�AF) = (N + 1) log(N + 1)− N log N . (63c)

That is, the comparison between Eqs. (63b) and (63b)
shows that the dense coding capacity given in Ref. [134,
Sec. IV] can be attained by a one-way LOCC decoder,
which does not need any joint measurement across the
receiving system and the system of the helper. Further-
more, due to Eq. (63a), if only local decoders D

�
are

available, Alice cannot transmit classical information to
Bob via the quantum state�AF in Eq. (62). This fact shows
the importance of one-way LOCC, i.e., one-way LOCC
extensively improves the communication speed. Since the
TMSV state is a physically implementable system and the
encoding can be implemented by a simple Hamiltonian
∑∞

n=0 n|n〉〈n|, this is a useful example to clarify the merit
of the one-way LOCC decoder.

D. Dense coding power of Schur duality

Assume now that HA = H⊗N , where H is a d-
dimensional Hilbert space and N is the number of identical
parties. That is, A is an N -partite system with equal local
dimensions d. Group U (H) has the unitary representation
{U⊗N }U∈U (H) on HA. Let S(N ) be the set of permutations
π : [N ] → [N ]. Let π ∈ S(N ) be a permutation, and let
Wπ be the permutation unitary in HA induced by π . Such a
unitary reorders the output systems according to π . In this
case, HA is decomposed to

H =
⊕

k

Uk ⊗ Vk, (64)

where Uk is an irreducible space of group U (H) and Vk is
an irreducible space of the permutation group S(N ).

When group G is chosen as U (H) in a similar way to
Ref. [91, Sec. IV-D], the multiplicity-free condition is not
satisfied because the dimension of Vk shows the multiplic-
ity of representation Uk. When group G is chosen as S(N ),
the multiplicity-free condition is not satisfied because the
dimension of Uk shows the multiplicity of representa-
tion Vk. However, when group G is chosen as U (H)×
S(n), the multiplicity-free condition is satisfied because the
spaces Uk ⊗ Vk are different irreducible spaces. We empha-
size that Ref. [91] considered mainly the quantum channel
coding satisfying group symmetry but did not investigate
the dense coding problem under locality conditions.
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In the following, we choose d = 2 and �A = ρ⊗N

with ρ being a density matrix on H = C2 as an exam-
ple to evaluate the dense coding capacities CEg ,D�

(�AF),
CEg ,D→(�AF), and CEg ,Dglb(�AF). Also, we assume that
the eigenvalues of ρ are p and 1 − p with 1 ≥ 2p . Then,
H(�A) = H(F)ξ = Nh(p), where h is the binary entropy.
In this case, the irreducible space is labeled by k =
0, . . . , �N/2�. The dimension of the irreducible space Hk
is (N + 1 − k)(

(N
k

) − ( N
k−1

)

), where
( N
−1

)

is defined to be 0.
Then we have

PK(k) =
((

N
k

)

−
(

N
k − 1

))

qk, (65)

where qk := [pk(1 − p)N−k+1 − pN−k+1(1 − p)k]/
(1 − 2p). Hence,

H(K)ξ = −
�N/2�
∑

k=0

PK(k) log PK(k), (66)

H(A)ξ = −
�N/2�
∑

k=0

PK(k) log
qk

N + 1 − k
. (67)

Therefore,

CEg ,D�
(�AF) = −

�N/2�
∑

k=0

PK(k) log
qk

N + 1 − k
− Nh(p),

(68a)

CEg ,D→(�AF) = −
�N/2�
∑

k=0

PK(k) log
qk

N + 1 − k
, (68b)

CEg ,Dglb(�AF) = H(A)ξ + H(F|K)ξ

=
�N/2�
∑

k=0

PK(k) log(N + 1 − k)
((

N
k

)

−
(

N
k − 1

))

+ Nh(p). (68c)

We visualize these dense coding capacities as func-
tions of N in Fig. 6. From this figure, we can see the
dense coding power hierarchy of different decoders: the
less the locality constraint on the decoders, the larger the
corresponding dense coding capacity.

VI. EXTENSION TO A NONQUANTUM
PRESHARED STATE

In the above dense coding framework, we assume that
the preshared resource on the bipartite system HAF is a
bipartite quantum state (positive semidefinite operator with
unit trace). However, if the decoders are limited to separa-
ble measurements Dsep or PPT measurements Dppt, it is

Local

One-way LOCC

Global

D
en

se
 c

od
in

g 
ca

pa
ci

ty

FIG. 6. Three dense coding capacities—CEg ,D�
(�AF) with

local encoders, CEg ,D→(�AF) with one-way LOCC decoders,
and CEg ,Dglb(�AF) with global decoders—as functions of N ,
where N is the number of identical parties. We set parameter
p = 1/4.

theoretically possible that the state on the bipartite system
HAF is not a quantum state. That is, we can loosen the
positive semidefiniteness constraint.

As a demonstrative example, we assume that the
available decoders are separable measurements Dsep. We
denote the cone composed of separable operators on the
bipartite system HAF by SEP and the dual cone by SEP∗.
Then, we define the set S(SEP∗) := {ρ ∈ SEP∗ | Tr ρ =
1}. For the preshared “resource” ρAF ∈ S(SEP∗), we can
analogously define the dense coding capacities

CεE,D(ρAF), CE,D(ρAF), C†
E,D(ρAF), (69)

˜CεE,D→(ρAF), ˜CE,D→(ρAF), ˜C†
E,D→(ρAF), (70)

where E ∈ {Eg , Ecp, Eppt, Ep} and D ∈ {D→, D↔, Dsep}
in the same way as Sec. IV.

Similarly, we denote the cone composed of PPT opera-
tors on the bipartite system HAF by PPT and the dual cone
by PPT∗. Then, we define the set S(PPT∗) := {ρ ∈ PPT∗ |
Tr ρ = 1} ⊂ S(SEP∗). For the preshared “resource” ρ ′

AF ∈
S(PPT∗), we can define in the same way the dense coding
capacities

CεE,Dppt
(ρ ′

AF), CE,Dppt(ρ
′
AF), C†

E,Dppt
(ρ ′

AF), (71)

where E ∈ {Eg , Ecp, Eppt}.
Regarding the above nonquantum preshared state exten-

sion, we have the following strong converse theorem,
much like the strong converse parts of Theorems 1 and 2.
See Appendix F for the proof.

Theorem 4 (Strong converse part). For ρAF ∈ S(SEP∗)
and ρ ′

AF ∈ S(PPT∗), it holds that

˜C†
Ep ,D→(ρAF) ≤ H(G(ρA)), (72)
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C†
Ep ,Dsep

(ρAF) ≤ H(G(ρA)), (73)

C†
Eppt,Dppt

(ρ ′
AF) ≤ H(G(ρ ′

A)). (74)

However, we are not able to prove the direct part as that
of Theorem 2 for the nonquantum preshared state exten-
sion except that some additional conditions are satisfied.
The result is summarized in the following theorem. See
Appendix F for the proof.

Theorem 5 (Direct part). Assume that the (projective)
unitary representation U on HA satisfies Assumption 1
(the multiplicity-free condition). Given ρAF ∈ S(SEP∗)
and ρ ′

AF ∈ S(PPT∗), we choose purifications�AF and�AF
of ρA and ρ ′

A, respectively. It holds that

(a) if there exists a trace-preserving positive opera-
tion EF ∈ C (F → F)p such that EF(ρAF) = �AF ,
we have

H(G(ρA)) ≤ CEg ,D→(ρAF); (75)

(b) if there exists a trace-preserving operation E ′
F ∈

C (F → F)ppt such that E ′
F(ρ

′
AF) = � ′

AF , we have

H(G(ρ ′
A)) ≤ CEg ,D→(ρ

′
AF). (76)

VII. CONCLUSION

In this paper, we have investigated practical dense
coding thoroughly by imposing locality restrictions on
decoders and symmetry restrictions on encoders within the
resource theory of asymmetry framework. In this task, the
preshared entangled state is fixed, the encoding operations
are constrained by the resource theory of asymmetry, and
the decoding measurements are restricted to local measure-
ments. When the group representation characterizing the
resource theory of asymmetry satisfies the multiplicity-free
condition, we have derived both one-shot and asymptotic
optimal achievable transmission rates of the dense cod-
ing task. What is more, we have studied the ultimate
limit on the transmission rate when the encoding opera-
tions are relaxed to the most general operations allowed
in the framework of GPT as superquantum encoders, and
a particular locality condition is imposed on the decod-
ing measurements. Our results revealed that this relaxation
does not improve the transmission rate. Furthermore, we
have shown that the same conclusion holds even when the
initial state is not a quantum state but satisfies a particular
fundamental condition.

Many interesting problems remain open. Firstly, we
have imposed the multiplicity-free condition in Assump-
tion 1 when proving the direct part of Theorem 2. It would
be interesting to relax this condition. Secondly, we may
consider the case when a specific locality condition, for

example, the separability condition, is imposed on the ini-
tial state, and a class of superquantum measurements is
allowed as the decoding measurement. Under this condi-
tion, the encoder can be relaxed to the class Eppt or Ep . It
is challenging to clarify whether this relaxation can yield
higher transmission rates or not. Thirdly, under the same
constraints for encoders and decoders, we can consider
the dense coding capacities where any preshared entangled
state is allowed between Alice and Fred, but the communi-
cation channel between Alice and Bob is a noisy quantum
channel. It is interesting to clarify whether superquantum
encoders can enhance the capacity in this setting. Lastly,
we have imposed encoder constraints by using condition
(1), which is related to the group symmetry. It is possi-
ble to consider the same setting with encoders given by
CPTP maps C (A → A)cp, trace-preserving and positive
maps C (A → A)p , or C (A → A)ppt without condition (1).
It is another interesting problem to derive the capacity
in this setting because our method does not work in this
extended setting.
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APPENDIX A: USEFUL LEMMAS AND TOOLS

The following lemmas are intensively applied in our
proofs.

Lemma 9 (Audenaert et al. [135]). Let A and B be
two non-negative Hermitian matrices. Denote by {A ≥ B}
and {A > B} the projectors onto the spaces spanned by
the eigenvectors of A − B with non-negative and positive
eigenvalues, respectively. For arbitrary s ∈ [0, 1], it holds
that

Tr[A{B ≥ A}] + Tr[B{A > B}] ≤ Tr[A1−sBs]. (A1)

Lemma 10 (Pinching lemma; Lemma 3.10 of Ref. [103]).
Let {�m}m be a POVM of size d in the Hilbert space H.
For arbitrary quantum state ρ ∈ D(H), it holds that

d
(

∑

m

�mρ�m

)

≥ ρ. (A2)

1. Operator convex and concave functions

We briefly recover the definitions of operator
convex and concave functions here to make the paper self-
contained. We refer interested readers to Ref. [102, Section
2.5] and Ref. [103, Appendix A.4] for more details. A
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function f : R+ → R is called operator convex if, for
arbitrary M , N ∈ P(H) and λ ∈ [0, 1], it holds that

f (λM + (1 − λ)N ) ≤ λf (M )+ (1 − λ)f (N ). (A3)

Conversely, if Eq. (A3) holds with the inequality reversed
then function f is called operator concave. In the fol-
lowing lemma, we give a concrete example of operator
concave functions frequently used in this paper.

Lemma 11. The function t �→ tα is operator convex when
α ∈ [1, 2] and operator concave when α ∈ (0, 1].

Finally, we present the classical-quantum channel cod-
ing theorem. We consider a set of classical inputs X . For
an element x, we have a state Wx on a quantum system H.

Lemma 12 (Ref. [136, Eq. (9)]). We consider n uses of
a CQ channel x �→ Wx. Given an integer M and a dis-
tribution PX on X , we define the average state W :=
∫

X WxPX (dx). Then, there exist M elements x1, . . . , xM

of X n and a decoder POVM {�j }M
j =1 such that

1
M

M
∑

j =1

Tr W(n)
xi
(I −�j ) ≤ 4M s

∫

X
Tr W1−s

x W
s
PX (dx)

(A4)

with an arbitrary s ∈ [0, 1].

APPENDIX B: PROOF OF PROPOSITION 2

The first inequality follows by definition. To show the
second inequality, note that H(G(ρ)) upper bounds AG(ρ)

due to the concavity of quantum entropy:

AG(ρ) = max
ρ=∑

x pX (x)|ψx〉〈ψx |

∑

x

pX (x)H(G(ψx))

≤ max
ρ=∑

x pX (x)|ψx〉〈ψx |
H

(

G
(

∑

x

pX (x)ψx

))

= H(G(ρ)). (B1)

This yields

A∞
G (ρ) := lim sup

n→∞
1
n

AG(ρ
⊗n) ≤ lim

n→∞
1
n

H(G⊗n(ρ⊗n))

= H(G(ρ)), (B2)

where the last equality follows from the fact that the
quantum entropy is additive with respect to the tensor
product.

APPENDIX C: PROOF OF THEOREM 1

Proof. Equation (45a) follows by definition.
The first inequality in Eq. (45b) follows by definition.

Now we show the second inequality in Eq. (45b), which
is commonly called the weak converse bound. Consider
an enhanced dense coding protocol depicted in Fig. 5.
By definition, we must search exhaustively over all pos-
sible POVMs in the environment to optimize the quan-
tity ˜CεE,D→(�AF), which is notoriously difficult. Luckily,
it can be shown that Fred can restrict measurements to
rank-one POVMs yet still achieve the same informa-
tion transmission performance [119]. On the other hand,
rank-one POVMs at Fred’s side are in one-to-one corre-
spondence with pure state decompositions of �A by the
Schödinger-Hughston-Jozsa-Wootters theorem [137,138]

�A =
∑

x

pX (x)|ψx
A〉〈ψx

A|, (C1)

where pX (x) is a probability distribution and {∣∣ψx
A

〉}x
is a set of pure states (not necessarily orthonor-
mal). As a result, the task becomes how well Alice
and Bob can encode classical information using the
pure state ensemble {pX (x),ψx

A} on average. For each
conditional state ψx

A, Alice performs a conditional
encoding operation Em|x

A→A ∈ E. In the single-shot case,
the conditional mutual information between Alice’s
message and Bob’ state is evaluated as

∑

x

PX (x)
1

|M|
∑

m∈M
D

(

Em
A→A(ψ

x
A)

∥

∥

∥

∥

1
|M|

∑

m′∈M
Em′

A→A(ψ
x
A)

)

≤
∑

x

PX (x)
1

|M|
∑

m∈M
D

(

Em
A→A(ψ

x
A)

∥

∥G(ψx
A)

)

(a)=;
∑

x

PX (x)
1

|M|
∑

m∈M
D

(

Em
A→A(ψ

x
A)

∥

∥Em
A→A ◦ G(ψx

A)
)

(b)≤
∑

x

PX (x)
1

|M|
∑

m∈M
D

(

ψx
A

∥

∥G(ψx
A)

)

=
∑

x

PX (x)D
(

ψx
A

∥

∥G(ψx
A)

)

≤ AG(�A)

≤ A∞
G (�A), (C2)

where (a) follows from the fact that Em|x
A→A ∈ E and (b) fol-

lows from the data processing inequality for the relative
entropy with respect to the trace-preserving positive oper-
ations [139, Theorem 1]. Hence, when state �⊗n

A is given,
the conditional mutual information between Alice’s mes-
sage and Bob’s state is upper bounded by nA∞

G (�A). Com-
bining Fano’s inequality [140], we can show the inequality
˜CE,D→(�AF) ≤ A∞

G (�A).
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The first inequality in Eq. (45c) follows by definition.
Now we show the second inequality in Eq. (45c), which
is commonly called the strong converse bound. It can
be shown by use of a metaconverse technique origi-
nally invented in Ref. [141] and further investigated in
Ref. [142, Chapter 3] (see also Refs. [143–145] for more
applications of this technique). Roughly speaking, this
metaconverse method guarantees that a quantum diver-
gence satisfying certain reasonable properties induces an
upper bound on the success probability of the commu-
nication protocol. Here we adopt the Petz Rényi diver-
gence Dα [101], which meets all required properties
(cf. Sec. III B). In Proposition 13 below (which will be
proved shortly), we upper bound the success probability
of any one-shot enhanced code C ∈ (E, D→) in terms of
the Rényi entropy, then the strong converse bound fol-
lows by considering block coding. More precisely, since
limα→1 H 2−α(G(�A)) = H(G(�A)) and Hα is continuous
and monotonically decreasing in α, Eq. (C3) guarantees
that, for arbitrary log |C| > H(G(�A)), there exists some
α ∈ (1, 2) for which the exponent [(1 − α)/α](log |C| −
H 2−α(G(�A))) is strictly positive, resulting in the suc-
cess probability decaying exponentially fast to 0. This
concludes that H(G(�A)) is a strong converse bound. �

Proposition 13. Let E ∈ {Eg , Ecp, Eppt, Ep}. Any enhanced
dense coding code C ∈ (E, D→) as illustrated in Fig. 5
obeys the following bound for arbitrary α ∈ (1, 2):

s(C) ≤ exp
{

α − 1
α

(H 2−α(G(�A))− log |C|)
}

(C3)

with Hα the Rényi entropy defined in Eq. (10).

Proof. Step 1. We first introduce the notation used in the
proof of Eq. (C3). Let {�x}x∈X be the measurement carried
out by Fred. Set pX (x) := Tr[�x�F ] andψx

A := TrF [(1A ⊗
�x)�AF ]/pX (x). We define the two quantum states

ρMXA := 1
|M|

∑

m

|m〉〈m|M ⊗
∑

x

pX (x)|x〉〈x|X

⊗ Em|x(ψx
A), (C4)

σMXA := πM ⊗
∑

x

pX (x)|x〉〈x|X ⊗ G(ψx
A), (C5)

where ρMXA serves as a test state. For given ψx
A, we choose

a pure state decomposition as ψx
A = ∑

y PY|X (y|x)ψx,y
A .

Then, we have

ρMXYA := 1
|M|

∑

m

|m〉〈m|M ⊗
∑

x,y

pXY(x, y)|x, y〉〈x, y|X

⊗ Em|x(ψx,y
A ), (C6)

σMXYA := πM ⊗
∑

x,y

pXY(x, y)|x, y〉〈x, y|XY ⊗ G(ψx,y
A ).

(C7)

Given a code ({Em|x}, {m̂|x}) depending on x, the positive
operator

T :=
∑

m

∑

x

|m〉〈m|M ⊗ |x〉〈x|X ⊗ m|x (C8)

satisfies

Tr TρMXA = 1
|M|

∑

m

p
̂MM (m|m) = s(C), (C9)

Tr TσMXA = 1
|M|

∑

x

pX (x)Tr
[

∑

m

m|xG(ψx
A)

]

(a)= 1
|M|

∑

x

pX (x)Tr[G(ψx
A)] = 1

|M| , (C10)

where (a) follows from the fact that, for each x, the con-
ditional decoding operation {m|x}m∈M forms a POVM.
Applying the data processing inequality of Dα to the binary
measurement {T, I − T}, we have

s(C)α
(

1
|C|

)1−α
+ (1 − s(C))α

(

1 − 1
|C|

)1−α

≤ e(α−1)Dα(ρMXA‖σMXA). (C11)

Step 2. Now we show the key result (C3). Consider the following chain of inequalities:

s(C)α|C|α−1 = s(C)α
(

1
|C|

)1−α

(a)≤ s(C)α
(

1
|C|

)1−α
+ (1 − s(C))α

(

1 − 1
|C|

)1−α
(C12)
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(b)≤ e(α−1)Dα(ρMXA‖σMXA)

(c)≤ e(α−1)Dα(ρMXYA‖σMXYA)

(d)≤ 1
|M|

∑

m

∑

x,y

pXY(x, y)e(α−1)Dα
(

Em|x(ψx
A)

∥

∥

∥G(ψx
A)

)

(e)= 1
|M|

∑

m

∑

x,y

pXY(x, y)
∫

G
e(α−1)Dα

(

UgEm|x(ψx,y
A )U†

g

∥

∥

∥UgG(ψx,y
A )U†

g

)

ν(dg)

(f)= 1
|M|

∑

m

∑

xy

pXY(x, y)
∫

G
e(α−1)Dα

(

UgEm|x(ψx,y
A )U†

g

∥

∥

∥G(ψx,y
A )

)

ν(dg)

= 1
|M|

∑

m

∑

x,y

pXY(x, y)Tr[(Ug(Em|x(ψx,y
A ))U†

g)
αG(ψx,y

A )1−α]ν(dg)

(g)≤ 1
|M|

∑

m

∑

x,y

pXY(x, y)Tr[(Ug(Em|x(ψx,y
A ))U†

g)G(ψ
x,y
A )1−α]ν(dg)

= 1
|M|

∑

m

Tr
∑

x,y

pXY(x, y)
[( ∫

G
Ug(Em|x(ψx,y

A ))U†
g

)

ν(dg)G(ψx,y
A )1−α

]

= 1
|M|

∑

m

Tr
∑

x,y

pXY(x, y)[G ◦ Em|x(ψx,y
A )G(ψx,y

A )1−α]

(h)= Tr
[

∑

x,y

pXY(x, y)G(ψx,y
A )2−α

]

(i)≤ Tr
[

G
(

∑

x,y

pXY(x, y)ψx,y
A

)2−α]

= e(α−1)H2−α(G(�A)). (C13)

Here

1. inequality (a) follows since the added term is non-
negative,

2. inequality (b) follows from Eq. (C11),
3. inequality (c) follows from the data processing

inequality of Dα for the partial trace operation
TrY,

4. inequality (d) follows from the joint convexity for
e(α−1)Dα , which was proved in Ref. [102, Proposi-
tion 4.8],

5. equality (e) follows from the fact that Dα is invariant
with respect to the unitary channel,

6. equality (f) follows from the definition of G,
7. inequality (g) follows from the inequality xα ≤ x for

x ∈ [0, 1] and α > 1,
8. equality (h) follows from the equation G ◦ Em|x = G

since Em|x ∈ E, and
9. inequality (i) follows from the fact that t �→ t2−α

is operator concave when α ∈ [1, 2) as given in
Lemma 11.

Rearranging the above inequality leads to Eq. (C3). �

APPENDIX D: PROOF OF THEOREM 2

Based on Proposition 2, Eq. (43), and Theorem 1, to
show Theorem 2, it suffices to show the inequalities

C†
Eppt,Dppt

(�AF), C†
Ep ,Dsep

(�AF) ≤ H(G(�A))

≤ CEg ,D→(�AF), (D1)

The second inequality of Eq. (D1) is known as the direct
part (or the achievability part), meaning that there exist
encoding operations from Eg and one-way LOCC decod-
ing measurements from D→ for which the rate H(G(�A))

is achievable. We show this direct part in Appendix D 1.
Note that the proof of the one-shot direct part remains
the most difficult part in this work. The first inequality of
Eq. (D1) is known as the strong converse bound, meaning
that H(G(�A)) is an upper bound on all possible achiev-
able coding rates even if coding rate and decoding error
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trade-offs are allowed. We show this strong converse part
in Appendix D 2.

1. Direct part under the multiplicity-free condition

In this section, we prove the second inequality of
Eq. (D1) under Assumption 1 (the multiplicity-free condi-
tion). We first present a one-shot direct part and then apply
it to the asymptotic regime.

a. One-shot direct part

We first introduce some new notation used only for the
proof of this one-shot direct part. With out loss of general-
ity, the purification of the shared resourceful quantum state
�A can be chosen with the form

|�〉AF := 1√
N

∑

n∈N

∣

∣ψA,n
〉 |n〉F , (D2)

where N is some alphabet, N ≡ |N | ≥ rank(�A) is the
size of the alphabet, {|n〉} is an orthonormal basis of F , and
{∣∣ψA,n

〉} is a set of pure states (not necessarily orthonor-
mal) of A. Also, rank(�A) expresses the rank of state �A.
In this purification, system F is N dimensional. We remark
that such uniform purification is always possible as long
as N ≥ rank(�A) [146, Exercise 5.1.3]. Under this purifi-
cation, we have �A = (1/N )

∑

n∈N |ψA,n〉〈ψA,n|. For each
pure conditional state ψA,n, define its twirled version as
ρA,n := G(ψA,n). Correspondingly, the twirled state of �A
is

ρA := G(�A) = 1
N

∑

n∈N
G(|ψA,n〉〈ψA,n|) = 1

N

∑

n∈N
ρA,n.

(D3)

Then, state ξAF defined in Eq. (47) of the main text has the
equivalent expression

ξAF = 1
N

∑

n∈N
ρA,n ⊗ |n〉〈n|F . (D4)

Note that ξA = ρA. ξAF can be obtained from |�〉AF by first
dephasing F in the orthonormal basis and then twirling
system A via G. We evaluate here various Petz-Rényi
entropies of ξAF that are useful for later analysis:

Hα(F|A)ξ := −Dα (ξAF‖1F ⊗ ξA)

= 1
1 − α

log
1

Nα

∑

n∈N
Tr[ραA,nρ

1−α
A ], (D5a)

Hα(A|F)ξ := −Dα (ξAF‖1A ⊗ ξF)

= 1
1 − α

log Tr
[

1
N

∑

n∈N
ραA,n

]

, (D5b)

Hα(A)ξ := 1
1 − α

log Tr ραA. (D5c)

We focus on two convex functions −sH 1+s(AF)ξ +
sH 1−s(F|A)ξ and −sH 1+s(A)ξ ). The maximum of them,
i.e., max(−sH 1+s(AF)ξ + sH 1−s(F|A)ξ , −sH 1+s(A)ξ ) is
also a convex function. We define the Legendre transfor-
mation of the convex function as

Lξ (R) := max
0≤s≤1

sR + min(sH 1+s(AF)ξ

− sH 1−s(F|A)ξ , sH 1+s(A)ξ ). (D6)

Now we are ready to state the one-shot direct coding
theorem, which characterizes the one-shot ε-dense coding
capacity CεEg ,D→(�AF), where the available encoders are
the unitary representations Eg and the available decoders
are the one-way LOCC measurements D→.

Theorem 6 (One-shot direct part). Let |�〉AF be a bipartite
pure quantum state and ε ∈ [0, 1). When the (projective)
unitary representation U on HA satisfies Assumption 1 (the
multiplicity-free condition), it holds that

−L−1
ξ (− log ε) ≤ CεEg ,D→(�AF), (D7)

where Lξ is defined in Eq. (D6) and the one-shot ε dense
coding capacity CεEg ,D→(�AF) is defined in Eq. (32).

Proof. We prove Theorem 6 in five steps.
Step 1. The following argument relies on the two-

universal hash function elaborated in Ref. [147, Section
5.4]. We introduce a measurement induced by the two-
universal hash function. Let T ⊂ N be a strict subset of
N and set T := |T |. Let F̂ : N → T be a linear surjective
two-universal hashing function. Then, we define the ran-
dom variable T̂ := F̂(N̂ ), where N̂ is the uniform random
variable on N . The hashing function f splits system F into
T nonoverlapping subspaces S f ,t with the corresponding
subspace projectors

� f ,t :=
∑

n∈f −1(t)

|n〉〈n|F . (D8)

Note that {n ∈ f −1(t)} is of the same size for each t and
is given by L := N/T. As such, each subspace S f ,t is L
dimensional. Fix the pair ( f , t). Let Q f ,t := {Q f ,t

A,n}n∈f −1(t)
be a POVM on A. Define the δ function

δ f ,t := 1 − 1
L

∑

n∈f −1(t)

Tr[Q f ,t
A,nρA,n]. (D9)

Roughly, δ f ,t quantifies how well the measurement Q f ,t

detects the twirled states lying inside the subspace
projected by � f ,t . Choosing different pairs ( f , t) , we are
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able to construct a list of POVMs Q f ,t such that Q f ,t
A,n and ρA,n are commutative for each n and the expected value (with

respect to both f and t) of the δ function is upper bounded as

EF̂ ,T̂δ
F ,T = 1 − EF̂

1
N

∑

n∈N
Tr[QF̂ ,F̂(n)

A,n ρA,n]

(a)≤ 1
N

∑

n∈N
Tr[ρA,n{ρA,n ≥ LρA}]

+ Tr[LρA{ρA,n < LρA}]
(b)≤ Ls′

N

∑

n∈N
Tr[ρ1−s′

A,n ρ
s′
A ]

(c)= Ls′

N
N 1−s′es′H1−s′ (F|A)ξ

(d)= T−s′es′H1−s′ (F|A)ξ , (D10)

where s′ ∈ [0, 1], (a) follows from the Hayashi-Nagaoka inequality [148], (b) follows from Lemma 9, which is a well-
known inequality in hypothesis testing, (c) follows from Eq. (D5a), and (d) follows from L = N/T. Based on the same
construction, we can estimate the following expectation with respect to both F̂ and T̂:

EF̂ ,T̂ Tr
[(

1
L

∑

n∈F̂−1(T)

ρA,n

)1+s]

= EF̂ Tr
[

1
N

∑

n∈N
ρA,n

(

1
L
ρA,n + 1

L

∑

n′( �=n)∈N :F̂(n′)=F(n)

ρA,n′

)s]

(a)≤ Tr
[

1
N

∑

n∈N
ρA,n

(

1
L
ρA,n + EF̂

1
L

∑

n′( �=n)∈N :F̂(n′)=F(n)

ρA,n′

)s]

= Tr
[

1
N

∑

n∈N
ρA,n

(

1
L
ρA,n + L − 1

L
ρA

)s]

≤ Tr
[

1
N

∑

n∈N
ρA,n

(

1
L
ρA,n + ρA

)s]

(b)≤ Tr
[

1
N

∑

n∈N
ρA,n

(

1
Lsρ

s
A,n + ρs

A

)]

= 1
Ls Tr

[

1
N

∑

n∈N
ρ1+s

A,n

]

+ Tr[ρ1+s
A ]

(c)= 1
Ls e−sH1+s(A|F)ξ + e−sH1+s(A)ξ . (D11)

Here s ∈ [0, 1], (a) follows from the concavity of x �→ xs when s ∈ (0, 1] as given in Lemma 11 and the Jensen inequality,
(b) follows from (x + y)s ≤ xs + ys for x, y > 0, and (c) follows from Eqs. (D5b) and (D5c).

Step 2. We prepare a useful lemma that holds under Assumption 1 (the multiplicity-free condition) as follows. This
lemma will be shown in step 5 below. Assume that the (projective) unitary representation U on HA is multiplicity-free.
Then, the Hilbert space HA can be decomposed as

⊕

k∈K Hk. Let {QA,l}L
l=1 be a POVM on HA such that each QA,l is a

projection onto the invariant subspace
⊕

k∈Sl
Hk, where {Sl}L

l=1 are disjoint subsets of K. That is, each QA,l projects into
the subspace

⊕

k∈Sl
Hk.
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Define the corresponding conditional projection operator in AF as

QAF :=
L

∑

l=1

QA,l ⊗ |l〉〈l|F , (D12)

where {|l〉}L
l=1 is an orthonormal basis of F . Assume that Alice and Fred preshare the pure bipartite state

|ψAF〉 := 1√
L

L
∑

l=1

|ψA,l〉 ⊗ |l〉F , (D13)

and define the averaged state σ A as

σ A := 1
L

L
∑

l=1

QA,lG(|ψA,l〉〈ψA,l|)QA,l

= 1
L

L
∑

l=1

∑

k∈Sl

G(�kQA,l|ψA,l〉〈ψA,l|QA,l�k), (D14)

where the second inequality follows from Lemma 8. We have the following result regarding the one-way LOCC classical
communication capability of |ψAF〉, which will be shown in step 5 below.
Lemma 14. Let M be the message size. Let E ≡ (g1, . . . ,gM ) be a random coding such that each codeword gm is chosen
independently and uniformly from G. We use the typewriter font g to indicate that it is a random variable. For a chosen
encoder (g1, . . . , gM ), there exists a one-way LOCC decoder such that the resulting protocol C’s expected decoding error
is upper bounded as

EEe(C(E)) ≤ 8M s

(1 − δ)s
Tr[σ 1+s

A ] + 2δ (D15)

with s ∈ (0, 1) and δ defined as

δ := 1 − 〈ψAF |QAF |ψAF〉 = 1 − 1
L

L
∑

l=1

〈ψA,l|QA,l|ψA,l〉

= 1 − 1
L

L
∑

l=1

G(|ψA,l〉〈ψA,l|), (D16)

where the second equation follows from Eqs. (D12) and (D13), and the final equation follows from the invariant property
of QA,l for the group action.

Step 3. We prove Theorem 6 by applying Lemma 14 to the measurement induced by the two-universal hash function.
That is, we adopt the random coding argument and show that the expected decoding error for protocols generated by
randomly selecting codewords according to the uniform distribution and measurements according to the two-universal
hash function is upper bounded.

In the first stage, Fred performs the projective measurement {� f ,t}, dividing system F into T subspaces. When the
outcome is t, the postmeasurement state on AF is

|� f ,t
AF〉 := 1√

L

∑

n∈f −1(t)

∣

∣ψA,n
〉 |n〉F . (D17)

The outcome is communicated to Bob via a classical noiseless channel. Set Q f ,t
AF := ∑

n∈f −1(t) Q f ,t
A,n ⊗ |n〉〈n|F , which is the

conditional version of Q f ,t. One can check that

〈� f ,t
AF |Q f ,t

AF |� f ,t
AF〉 = 1

L

∑

n∈f −1(t)

〈ψA,n|Q f ,t
A,n|ψA,n〉 = 1 − δ f ,t. (D18)
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In the second stage, we apply Lemma 14 to the postmeasurement state |� f ,t
AF〉 with corresponding measurement Q f ,t to

implement classical communication from Alice to Bob. We can do so because measurement Q f ,t satisfies the prerequi-
site given in Lemma 14. Consequently, there exists a communication protocol with one-way LOCC decoder C(e, f , t)
depending on an encoder e, a hash function f, and t such that the decoding error ε(C(e, f , t)) satisfies the condition

EEε(C(E, f , t)) ≤ 8M s

(1 − δ f ,t)s
Tr

[(

1
L

∑

n∈f −1(t)

Q f ,t
A,nρA,nQ f ,t

A,n

)1+s]

+ 2δ f ,t. (D19)

Averaging over all possible randomly generated codewords E according to the uniform distribution, a two-universal hash
function F̂ , and the random variable T̂, we can upper bound the expected value of the decoding error as

EE,F̂ ,T̂ε(C(E, F̂ , T̂))

= Pr
(

δF̂ ,T̂ ≥ 1
2

)

EE,F̂ ,T̂|δF̂ ,T̂≥1/2ε(C(E, F̂ , T̂))

+ Pr
(

δF̂ ,T̂ <
1
2

)

EE,F̂ ,T̂|δF̂ ,T̂<1/2ε(C(E, F̂ , T̂)) (D20a)

(a)≤ Pr
(

δF̂ ,T̂ ≥ 1
2

)

+ Pr
(

δF̂ ,T̂ <
1
2

)

EE,F̂ ,T̂|δF̂ ,T̂<1/2ε(C(E, F̂ , T̂))

(b)≤ 2EF̂ ,T̂δ
F̂ ,T̂ + Pr

(

δF̂ ,T̂ <
1
2

)

EE,F̂ ,T̂|δF̂ ,T̂<1/2ε(C(E, F̂ , T̂))

(c)≤ 4EF̂ ,T̂δ
F̂ ,T̂

+ Pr
(

δF̂ ,T̂ <
1
2

)

EF̂ ,T̂|δF̂ ,T̂<1/2

{

8M s

(1 − δF̂ ,T̂)s
Tr

[(

1
L

∑

n∈F̂−1(T̂)

QF̂ ,T̂
A,nρA,nQF̂ ,T̂

A,n

)1+s]}

(d)≤ 4EF̂ ,T̂δ
F̂ ,T̂ + 2s+3M s

EF̂ ,T̂ Tr
[(

1
L

∑

n∈F̂−1(T̂)

QF̂ ,T̂
A,nρA,nQF̂ ,T̂

A,n

)1+s]

(e)≤ 4EF̂ ,T̂δ
F̂ ,T̂ + 2s+3M s

EF̂ ,T̂ Tr
[(

1
L

∑

n∈F̂−1(T̂)

ρA,n

)1+s]

(f)≤ 4T−s′es′H1−s′ (F|A)ξ + 2s+3 M s

Ls e−sH1+s(A|F)ξ + 2s+3M se−sH1+s(A)ξ

= 4e−s′[log T−H1−s′ (F|A)ξ ] + 2s+3e−s[H1+s(A|F)ξ+log N−log T−log M ] + 2s+3e−s[H1+s(A)ξ−log M ]

(g)= 4e−s′[log T−H1−s′ (F|A)ξ ] + 2s+3e−s[H1+s(AF)ξ−log T−log M ] + 2s+3e−s[H1+s(A)ξ−log M ], (D20b)

where

1. EX |B expresses the conditional expectation with respect to the variable X conditioned on B,
2. inequality (a) follows from the fact that the decoding error is less than 1,
3. inequality (b) follows from the Markov inequality [149, Eq. (3.31)] that Pr(δF̂ ,T̂ ≥ 1/2) ≤ 2EF̂ ,T̂δ

F̂ ,T̂,
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4. inequality (c) follows from Eq. (D19),
5. inequality (d) follows from the relation that δF̂ ,T̂ < 1/2 implies that (1 − δF̂ ,T̂)−s < 2s; note that this relation is the

essential reason why we divide the expectation into two regions—δF̂ ,T̂ ≥ 1/2 and δF̂ ,T̂ < 1/2—in Eq. (D20a), since
otherwise we cannot bound the term (1 − δF̂ ,T̂)−s,

6. inequality (e) follows from the fact that the measurement element satisfies 0 ≤ Q f ,t
A,n ≤ 1 and thus the mutual

commutativity property guarantees that Q f ,t
A,nρA,yQ f ,t

A,n ≤ ρA,n,
7. inequality (f) follows from the expectation estimations in Eqs. (D10) and (D11) with respect to the two-universal

hash function, and
8. equality (g) follows from the fact that ξF is the completely mixed state.

We set s′ = s in Eq. (D20b) and solve the equation with respect to the variable log T,

log T − H 1−s(F|A)ξ = H 1+s(AF)ξ − log T − log M , (D21)

yielding

log T = 1
2 (H 1−s(F|A)ξ + H 1+s(AF)ξ − log M ). (D22)

Based on these choices, we can conclude from Eq. (D20) that there exists a concrete communication protocol one-way
LOCC decoder C(e, f , t) for carefully chosen encoding e and the two-universal hash function f such that its decoding
error is upper bounded for s ∈ [0, 1] as

ε(C(e, f , t)) ≤ (4 + 2s+3)e−(s/2)[H1+s(AF)ξ−H1−s(F|A)ξ−log M ] + 2s+3e−s[H1+s(A)ξ−log M ]

≤ (4 + 16)e−(s/2)[H1+s(AF)ξ−H1−s(F|A)ξ−log M ] + 16e−s[H1+s(A)ξ−log M ]. (D23)

Since ε(C(e, f , t)) ≤ 1, we have

ε(C(e, f , t)) ≤ 36 min(1, max(e−(s/2)[H1+s(AF)ξ−H1−s(F|A)ξ−log M ], e−s[H1+s(A)ξ−log M ]))

≤ 36 min(1, max(e−(s/2)[H1+s(AF)ξ−H1−s(F|A)ξ−log M ], e−(s/2)[H1+s(A)ξ−log M ]))

= 36 min(1, e− min((s/2)[H1+s(AF)ξ−H1−s(F|A)ξ−log M ], s
2 [H1+s(A)ξ−log M ]))

= 36 min(1, e−(1/2)Lξ (− log M )). (D24)

That is,

−2 log
ε(C(e, f , t))

36
≥ Lξ (− log M ). (D25)

Since L is monotonically increasing, we have

−L−1
ξ

(

− 2 log
ε(C(e, f , t))

36

)

≤ log M . (D26)

Step 4. To show Lemma 14, we derive a key lemma using Lemma 8.
Define the Lth root of unity ζ := exp(2π i/L). From {|l〉F}L

l=1 we construct the induced Fourier basis measurement
{|bl′

F〉}L
l′=1 via

|bl′
F〉 := 1√

L

L
∑

l=1

ζ ll′ |l〉F , l′ = 1, . . . , L. (D27)

For each l′ = 1, . . . , L, defined the subnormalized pure quantum state
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|φA,l′ 〉 := 〈bl′
F |QAF |ψAF〉 = 1

L

L
∑

l=1

ζ−ll′QA,l|ψA,l〉, (D28)

whose norm can be calculated as

〈φA,l|φA,l〉 = 1
L2

L
∑

l=1

〈ψA,l|QA,l|ψA,l〉 = 1 − δ

L
, (D29)

where the last equality follows from the definition of δ (D16).
Fred now performs this Fourier basis measurement on |ψAF〉. After measurement, Fred holds the clas-

sical outcome l and Alice holds the postmeasurement pure state. This leads to the classical-quantum
state

σAF :=
L

∑

l=1

〈bl
F |ψ〉AF〈ψ |bl

F〉 ⊗ |l〉〈l|F . (D30)

Applying the pinching lemma (cf. Lemma 10) to the quantum state |ψAF〉 and the binary projective measurement
{QAF ,1AF − QAF} gives

|ψ〉〈ψ |AF ≤ 2QAF |ψ〉〈ψ |AFQAF + 2(1AF − QAF)|ψ〉〈ψ |AF(1AF − QAF). (D31)

Substituting Eq. (D31) into Eq. (D30) yields the following inequality regarding σAF :

σAF ≤
L

∑

l=1

〈bl
F |(2Q|ψ〉〈ψ |Q + 2(1 − Q)|ψ〉〈ψ |(1 − Q))|bl

F〉 ⊗ |l〉〈l|F

= 2
L

∑

l=1

|φA,l〉〈φA,l| ⊗ |l〉〈l|F + 2
L

∑

l=1

〈bl
F |(1 − QAF)|ψ〉〈ψ |(1 − QAF)|bl

F〉 ⊗ |l〉〈l|F . (D32)

From the unitary representation U of a group G, for each g ∈ G, we define the quantum state

g �→ Wg
BF := 1

1 − δ

L
∑

l=1

Ug|φA,l〉〈φA,l|U†
g ⊗ |l〉〈l|F , (D33)

where Ug is the unitary operator corresponding to g and φA,l is defined in Eq. (D28). In fact, relation (D29) guarantees
that Wg

BF is a quantum state for each g ∈ G. Then, we have the following lemma.
Lemma 15. The set of quantum states {Wg

BF}g∈G has the following averaged state with respect to the Haar measure ν:

WBF :=
∫

G
Wg

BFν(dg) = 1
1 − δ

σ A ⊗ πF . (D34)
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Proof. Using Lemma 8, we show Eq. (D34) as follows:

WBF :=
∫

G
Wg

BFν(dg)

=
∫

G

(

∑

l

(

1
1 − δ

Ug|φA,l〉〈φA,l|U†
g

)

⊗ |l〉〈l|F
)

ν(dg)

(a)=
L

∑

l=1

1
1 − δ

G(φA,l)⊗ |l〉〈l|F

(b)=
L

∑

l=1

1
1 − δ

∑

k

G(�kφA,l)⊗ |l〉〈l|F

=
L

∑

l=1

1
(1 − δ)L2

L
∑

l′=1

∑

k

G(�kQA,l′ψA,l′)⊗ |l〉〈l|F

= 1
(1 − δ)L2

L
∑

l′=1

∑

k

G(�kQA,l′ψA,l′)⊗
( L

∑

l=1

1
L

|l〉〈l|F
)

(c)= 1
1 − δ

σ A ⊗ πF . (D35)

Equality (a) follows from the definition of G, equality (b) follows from Lemma 8, and equality (c) follows from Eq. (D14).
�

Step 5. Now we show Lemma 14 using Lemma 15. Applying the direct part of the classical-quantum channel coding
theorem, i.e., Lemma 12, we conclude that there exist an encoder (g1, . . . , gM ) and a decoder � ≡ {m}M

m=1 in BF as a
one-way LOCC measurement from Fred to Bob such that the decoding error is upper bounded for arbitrary s ∈ [0, 1]:

decoding error := 1
M

M
∑

m=1

Tr[Wgm(1 − m)]

(a)≤ 4M s
∫

G
Tr[(Wg)1−sW

s
]ν(dg)

= 4M s
∫

G
Tr

[( L
∑

l=1

L
1 − δ

Ug|φA,l〉〈φA,l|U†
g ⊗ 1

L
|l〉〈l|F

)1−s

×
(

1
1 − δ

σ A ⊗ πF

)s]

ν(dg)

= 4M s
∫

G
Tr

[

∑

l

(

L
1 − δ

Ug|ψA,l〉〈ψA,l|U†
g

)1−s( 1
1 − δ

σ A

)s

⊗ 1
L

|l〉〈l|F
]

ν(dg)

(b)= 4M s
∫

G
Tr

[

∑

l

(

L
1 − δ

Ug|φA,l〉〈φA,l|U†
g

)(

1
1 − δ

σ A

)s

⊗ 1
L

|l〉〈l|F
]

ν(dg)

= 4M s Tr
[ ∫

G

(

∑

l

(

1
1 − δ

Ug|φA,l〉〈φA,l|U†
g

)

⊗ |l〉〈l|F
)

×
((

1
1 − δ

σ A

)s

⊗ IF

)

ν(dg)
]
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(c)= 4M s

(1 − δ)
Tr

[(

∑

l

σ A ⊗ 1
L

|l〉〈l|F
)((

1
1 − δ

σ A

)s

⊗ IF

)]

= 4M s

(1 − δ)1+s Tr
[

∑

l

σ 1+s
A ⊗ 1

L
|l〉〈l|F

]

= 4M s

(1 − δ)1+s Tr[σ 1+s
A ]. (D36a)

Inequality (a) follows from Lemma 12, equality (b) follows from Eq. (D29), implying that [L/(1 − δ)]Ug|φ〉〈φ|A,lU
†
g is a

normalized pure state, and equality (c) follows from Lemma 15.
Now we are ready to give a concrete protocol C achieving the decoding error concluded in Eq. (D15). In this protocol,

Fred adopts the Fourier basis measurement {|bl
F〉}L

l=1, Alice adopts the encoding (g1, . . . , gM ), and Bob adopts the decoder
� originally designed for the classical-quantum channel g �→ Wg

AF . This is a communication protocol with one-way LOCC
decoder for |ψAF〉 since � is essentially a one-way LOCC decoder from Fred to Bob. Thanks to the above analysis, we
can evaluate the decoding error of C as

e(C) := 1
M

M
∑

m=1

Tr[(UgmσAFU†
gm
)(1 − m)]

(a)≤ 1
M

M
∑

m=1

Tr
[

Ugm

(

2
L

∑

l=1

|φA,l〉〈φA,l| ⊗ |l〉〈l|F
)

U†
gm
(1 − m)

]

+ 1
M

M
∑

m=1

Tr
[

Ugm

(

2
L

∑

l=1

〈bl|(1 − Q)|ψ〉〈ψ |(1 − Q)|bl〉 ⊗ |l〉〈l|F
)

U†
gm
(1 − m)

]

(b)= 2(1 − δ)

M

M
∑

m=1

Tr[Wgm(1 − m)]

+ 1
M

M
∑

m=1

Tr
[

Ugm

(

2
L

∑

l=1

〈bl|(1 − Q)|ψ〉〈ψ |(1 − Q)|bl〉 ⊗ |l〉〈l|F
)

U†
gm
(1 − m)

]

(c)≤ 8M s

(1 − δ)s
Tr[σ 1+s

A ] + 2
M

M
∑

m=1

Tr
[ L

∑

l=1

〈bl|(1 − Q)|ψ〉〈ψ |(1 − Q)|bl〉 ⊗ |l〉〈l|F
]

(d)≤ 8M s

(1 − δ)s
Tr[σ 1+s

A ] + 2δ, (D37a)

where (a) follows from Eq. (D32), (b) follows from the definition of Wg
BF (D33), (c) follows from Eq. (D36) and m ≥ 0,

and (d) follows from the fact that {|bl
F〉} forms an orthonormal basis of F and the definition of δ (D16). This concludes

the proof of Theorem 6. �

Remark 2: Actually, our achievability proof (Theorem 6 and Lemma 14) is inspired by the proof of Theorem 1 of Smolin
et al. [121], which we refer to as SVW. In the following, we compare in detail the similarity and uniqueness between our
proof and SVW. In general, both proofs are composed of two parts. In the first part, we apply a surjective linear hash
function. This mimics choosing the typical subspaces in SVW. In the second part, Fred measures on a Fourier basis. This
is the one-shot correspondence to the Fourier basis measurement in SVW. However, our task is different from the task that
is considered in SVW. We need to invent different operations for both the sender and the receiver and manage a different
evaluation method for the decoding error probability. On the other hand, SVW does not assume uniform distribution on
the codewords a priori. However, we do have this assumption due to the special structure of the task under consideration.
This uniformity assumption renders a more complicated proof so that it becomes more difficult to derive an exponential
upper bound.
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b. Asymptotic direct part

Based on the one-shot direct part in Theorem 6, we can show the following coding theorem, which concludes the second
inequality of Eq. (D1).

Theorem 7 (Direct part). Let |�〉AF be a bipartite pure quantum state. When the (projective) unitary representation U on
HA satisfies Assumption 1 (the multiplicity-free condition), it holds that

H(G(�A)) ≤ CEg ,D→(�AF), (D38)

where G is the G-twirling operation defined in Eq. (18), �A = TrF �AF , and CEg ,D→(�AF) is defined in Eq. (32).

Proof. We focus on the functions −sH 1+s(AF)ξ , sH 1−s(F|A)ξ , and −sH 1+s(A)ξ , which are convex functions for s. When
s is close to 0, using Taylor expansions with respect to s, they are approximated to −sH(AF)ξ + s2V(AF)ξ /2, sH(F|A)ξ +
s2V(F|A)ξ /2, and −sH(A)ξ + s2V(A)ξ /2, respectively. Hence,

min(sH 1+s(AF)ξ − sH 1−s(F|A)ξ , sH 1+s(A)ξ ) (D39)

is approximated as sH(A)ξ − s2Vξ /2, where Vξ := max(V(A)ξ + V(AF)ξ , V(F|A)ξ ). Thus, we have

s(−nH(A)ξ + √
nr)+ min(sH 1+s(AF)ξ⊗n − sH 1−s(F|A)ξ⊗n , sH 1+s(A)ξ⊗n)

= s(−nH(A)ξ + √
nr)+ snH(A)ξ − ns2

2
Vξ + o(ns2)

= √
nsr − ns2

2
Vξ + o(ns2)

= −n
2

Vξ

(

s − r√
nVξ

)2

+ r2

2Vξ
+ o(ns2). (D40)

Since the maximum of the above value for s is realized around s = r/
√

nVξ , we have

lim
n→∞Lξ⊗n(−nH(A)ξ + √

nr) = r2

2Vξ
, (D41)

which implies that

−L−1
ξ⊗n(− log ε) = nH(A)ξ − √−2nVξ log ε + o(

√
n). (D42)

Combining the above result with Theorem 6 yields Eq. (D38). �

2. Strong converse part

In the strong converse part, we show that H(G(�A)) is a strong converse bound for all the quantities mentioned in
Eq. (43) regardless of Assumption 1 (the multiplicity-free condition). This concludes the first inequality of Eq. (D1).

Theorem 8 (Strong converse part). Let |�〉AF be a bipartite pure quantum state. It holds that

C†
Eppt,Dppt

(�AF) ≤ H(G(�A)), (D43)

C†
Ep ,Dsep

(�AF) ≤ H(G(�A)), (D44)

where G is the G-twirling operation defined in Eq. (18), �A = TrF �AF , and C†
E,D is defined in Eq. (34).
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To show Theorem 8, we prepare the following lemma.

Lemma 16. For any ε > 0, we choose a sufficiently large
integer N such that any n ≥ N satisfies the following two
conditions.

(i) There exists a projection PA such that

[PA, Ug] = 0 for g ∈ Gn, (D45)

[PA,G(�A)
⊗n] = 0, (D46)

Tr PA ≤ en(H(G(�A))+ε), (D47)

Tr(I − PA)G(�A)
⊗n ≤ ε, (D48)

G(PA) = PA. (D49)

(ii) There exists a projection PF such that

[PF ,�⊗n
F ] = 0, (D50)

Tr PF ≤ en(H(�A)+ε), (D51)

‖PF�
⊗n
F PF‖ ≤ e−n(H(�A)−ε), (D52)

Tr(I − PF)�
⊗n
F ≤ ε. (D53)

Proof. In this proof, we employ the following notation.
Given a Hermitian matrix X with the diagonalization
∑

j xj |uj 〉〈uj |, we define the projection {X ≥ R} with a
constant R as

∑

j :xj ≥R |uj 〉〈uj |. We also define the pro-
jection {R′ ≥ X ≥ R} with constants R, R′ in the same
way.

The state G(�A) is written as
∑

k PK(k)πk, where πk
is the completely mixed state on Hk. Also, the reduced
density�F is written as

∑

f PF(f )|uf 〉〈uf |. Then, we have

∑

k

PK(k)(log dk − log PK(k)) = H(G(�A)), (D54)

−
∑

f

PF(f ) log PF(f ) = H(�F). (D55)

Because of the law of large numbers, for any ε > 0, we
choose a sufficiently large integer N such that any n ≥ N

satisfies the conditions

Pn
K

{

(k1, . . . , kn)

∣

∣

∣

∣

n
∑

i=1

log dki − log PK(ki) ≤ nR1

}

≥ 1 − ε, (D56)

Pn
F

{

(f1, . . . , fn)
∣

∣

∣

∣

nR3 ≤ −
n

∑

i=1

log PF(fi) ≤ nR2

}

≥ 1 − ε,

(D57)

where R1 := H(G(�A))+ ε, R2 := H(�F)+ ε, and R3 :=
H(�F)− ε.

Then, we choose the projections PA and PF as

PA := {G(�A)
⊗n ≥ 2−nR1}, (D58)

PF := {2−nR3 ≥ �⊗n
F ≥ 2−nR2}. (D59)

The projection satisfies Eq. (D46). Since G(�A)
⊗n is com-

mutative with Ug for g ∈ Gn, we have Eq. (D45). Since
G(�A)

⊗n is a constant on each irreducible space, we have
Eq. (D50). Condition (D56) implies condition (D48). Since

Tr PA2−nR1 ≤ Tr PAG(�A)
⊗n ≤ 1, (D60)

the definition R1 := H(G(�A))+ ε implies condition
(D47). In the same way, we have conditions (D50), (D51),
and (D53). The definitions of PF and R3 imply condition
(D52). �

Proof. The essential tool to prove Eqs. (D43) and (D44) is
the following inequality, which is shown in Ref. [103, Eq.
(8.217)]. We denote the transpose operation on F by τF .
For any bipartite positive semidefinite rank-one operator
X on HAF , we have the relation

|τF(X )| =
√

TrF X ⊗
√

TrA X . (D61)

In fact, Hayashi [103, Eq. (8.217)] showed Eq. (D61) by
using the transpose on a specific basis. While the map
τF depends on the choice of the basis, |τF(X )| does not
depend on it. Consider the map X �→ U†τF(UXU†)U by
using a unitary on HF . Then, we have

|U†τF(UXU†)U|2 = U†τF(UXU†)UU†τF(UXU†)U

= U†τF(UXU†)τF(UXU†)U

= U†|τF(UXU†)|2U

= U†
√

TrF X ⊗
√

TrA UXU†U

=
√

TrF X ⊗ (U†
√

U(TrA X )U†U)

=
√

TrF X ⊗
√

TrA X . (D62)

Hence, |τF(X )| does not depend on the choice of basis.
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We now show Eq. (D43) using Lemma 16. That is, for
any ε > 0, we choose a sufficiently large integer N such
that any n ≥ N satisfies the (i) and (ii). Conditions (D45)
and (D48) imply that

Tr(I − PA)�
⊗n
A ≤ ε. (D63)

Hence, [PA, PF ] = 0 and

Tr(I − PA ⊗ PF)�
⊗n
AF ≤ 2ε. (D64)

Let C = ({Em}, {m}) ∈ (Eppt, Dppt) be a code for the
state �⊗n

AF . Since m is a PPT operator and Em ∈ Eppt,
(Em)∗(m) is also a PPT operator, i.e.,

τF((Em)∗(m)) ≥ 0. (D65)

By applying Eq. (D61) to (I ⊗ PF)�
⊗n
AF (I ⊗ PF), evalua-

tion (D52) guarantees that

‖τF((PAPF)�
⊗n
AF (PAPF))‖

= ‖PA ⊗ IτF((I ⊗ PF)�
⊗n
AF (I ⊗ PF))PA ⊗ I‖

≤ ‖τF((I ⊗ PF)�
⊗n
AF (I ⊗ PF))‖

≤ e−n(H(�A)−ε). (D66)

Hence, we have

|τF((PA ⊗ PF)�
⊗n
AF (PA ⊗ PF))| ≤ e−n(H(�A)−ε)PA ⊗ PF .

(D67)

Then, we have

TrmEm((PA ⊗ PF)�
⊗n
AF (PA ⊗ PF))

= Tr(Em)∗(m)(PA ⊗ PF)�
⊗n
AF (PA ⊗ PF)

= Tr τF((Em)∗(m))τF((PA ⊗ PF)�
⊗n
AF (PA ⊗ PF))

(a)≤ Tr τF((Em)∗(m))|τF((PA ⊗ PF)�
⊗n
AF (PA ⊗ PF))|

(b)≤ Tr τF((Em)∗(m))e−n(H(�A)−ε)PA ⊗ PF

(c)= Tr(Em)∗(τF(
m))G(e−n(H(�A)−ε)PA ⊗ PF)

= Tr τF(
m)Em(G(e−n(H(�A)−ε)PA ⊗ PF))

= Tr τF(
m)G(e−n(H(�A)−ε)PA ⊗ PF)

= Tr τF(
m)e−n(H(�A)−ε)PA ⊗ PF

= e−n(H(�A)−ε) TrmPA ⊗ PF , (D68)

where (a), (b), and (c) follow from Eqs. (D65), (D67) and
(D49), respectively. Hence, we have

s(C) = 1
|M|

∑

m

TrmEm(�⊗n
AF )

(a)≤ 1
|M|

∑

m

TrmEm((PA ⊗ PF)�
⊗n
AF (PA ⊗ PF))+ 2ε

(b)≤ 1
|M|e−n(H(�A)−ε)

∑

m

TrmPA ⊗ PF + 2ε

= 1
|M|e−n(H(�A)−ε) Tr PA ⊗ PF + 2ε

(c)≤ 1
|M|e−n(H(�A)−ε)en(H(G(�A))+ε)en(H(�A)+ε) + 2ε

≤ 1
|M|en(H(G(�A))+3ε) + 2ε, (D69)

where (a), (b), and (c) follow from Eqs. (D48), (D53);
(D68); and (D47), (D51), respectively. Thus,

|M| ≤ 1
s(C)− 2ε

en(H(G(�A))+3ε), (D70)

which implies Eq. (D43).
Next, we show Eq. (D44). Let C = ({Em}, {m}) ∈

(Ep , Dsep) be a code for the state �⊗n
AF . Since m is a sepa-

rable operator and Em ∈ Ep , (Em)∗(m) is also a separable
operator. Hence, (Em)∗(m) is a PPT operator, i.e., we
have Eq. (D65). Therefore, in the same way, we can show
Eq. (D70), which implies Eq. (D44). �

APPENDIX E: PROOF OF THEOREM 3

Proof. Applying the channel coding theorem to the
classical-quantum channel g �→ Ug�AU†

g [103], we can
easily derive the capacity formula

CEg ,D�
(�AF) = D (�A‖G(�A)) . (E1)

Hence, to show Eq. (52), it is sufficient to show the strong
converse part

C†
Ep ,D�

(�AF) ≤ D (�A‖G(�A)) . (E2)

In almost the same way as Eq. (45c), the strong converse
argument (E2) can be shown by invoking the metaconverse
technique originally invented in Ref. [141] and further
investigated in Ref. [142, Chapter 3]. In Proposition 17
below (which will be proved shortly), we upper bound the
success probability of any one-shot code C ∈ (Ep , D

�
) in

terms of the sandwiched quantum Rényi entropy, then the
strong converse bound follows by block coding. Note that
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limα→1 ˜Dα (�A‖G(�A)) = D (�A‖G(�A)). What is more,
˜Dα is continuous and monotonically decreasing in α.
Applying the standard argument outlined in Refs. [141,
143], it follows from Proposition 13 that D (�A‖G(�A))

is actually a strong converse bound. �

Proposition 17. Any dense coding code C ∈ (Ep , D
�
)

obeys the following bound for arbitrary α ∈ (1, ∞):

s(C) ≤ exp
{

α − 1
α

(˜Dα (�A‖G(�A))− log |C|)
}

(E3)

with ˜Dα the sandwiched quantum Rényi entropy defined in
Eq. (8).

Proof. Given a code C = ({Em}m, {m̂}m̂) ∈ (Ep , D
�
), we

define the two quantum states

ρMA := 1
|M|

∑

m

|m〉〈m|M ⊗ Em(�A), (E4)

σMA := πM ⊗ G(�A), (E5)

where ξMXA serves as a test state. The positive operator

T :=
∑

m

|m〉〈m|M ⊗ m (E6)

satisfies

Tr TρMA = 1
|M|

∑

m

p
̂MM (m|m) = s(C), (E7)

Tr TσMA = 1
|M| Tr

[

∑

m

mG(�A)

]

(a)= 1
|M| Tr[G(�A)]

= 1
|M| , (E8)

where (a) follows from the fact that {m}m is a quantum
measurement. Applying the data processing inequality of

Dα to the binary measurement {T, I − T}, we have

s(C)α
(

1
|C|

)1−α
+ (1 − s(C))α

(

1 − 1
|C|

)1−α

≤ e(α−1)Dα(ρMA‖σMA). (E9)

Thus, we have

s(C)α|C|α−1 = s(C)α
(

1
|C|

)1−α
≤ s(C)α

(

1
|C|

)1−α

+ (1 − s(C))α
(

1 − 1
|C|

)1−α

≤ e(α−1)Dα(ρMA‖σMA)

= 1
|M|

∑

m

e(α−1)˜Dα(Em(�A)‖G(�A))

(a)= 1
|M|

∑

m

e(α−1)˜Dα(Em(�A)‖Em◦G(�A))

(b)≤ 1
|M|

∑

m

e(α−1)˜Dα(�A‖G(�A)), (E10)

where (a) follows from the condition Em ◦ G = G for arbi-
trary Em ∈ Ep [cf. the definition in Eq. (37)] and (b)
follows from the data processing inequality of the sand-
wiched quantum Rényi entropy for positive maps [139,
Theorem 2]. �

APPENDIX F: PROOFS OF THEOREMS 4 AND 5

Proof. Note that Eq. (72) can be shown in the same way as
Eq. (45c).

Now we show Eq. (73). For a state ρAF , we have a
trace-preserving positive operation EF on HF such that
ρAF = EF(�AF), where �AF is a purification of ρA. Let
C = ({Em}, {m}) ∈ (Ep , Dsep) be a code for state ρ⊗n

AF .
Since {E∗

F(
m)} is a separable measurement, where E∗

F is
the dual map of EF , we define a code Ĉ = ({Em}, {E∗

F(
m)})

in the encoder-decoder pair ∈ (Ep , Dsep) for state �⊗n
AF .

Since s(C) = s(Ĉ), Eq. (73) follows from Eq. (D44).
Next, we show Eq. (74). For a state ρ ′

AF , we have a
trace-preserving operation E ′

F ∈ C (F → F)ppt such that
ρAF = E ′

F(�AF). Let C = ({Em}, {m}) ∈ (Eppt, Dppt) be a
code for state ρ ′

AF
⊗n. Since {E ′

F
∗
(m)} is a separable mea-

surement, we define a code Ĉ ′ = ({Em}, {E ′
F

∗
(m)}) in the

encoder-decoder pair ∈ (Eppt, Dppt) for state �⊗n
AF . Since

s(C) = s(Ĉ ′), Eq. (74) follows from Eq. (D43). �

Proof. First, we show Eq. (75). Let C = ({Em}, {�x},
{m̂|x}) be a code in the encoder-decoder pair (Eg , D→)
for state �⊗n

AF . Since the operation EF is a trace-preserving
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positive operation, the operation EF
∗ is a unit-preserving

positive operation. Since {EF
∗(�x)} is a POVM on

H⊗n
F , we define a code Ĉ = ({Em}, {EF

∗(�x)}, {m̂|x}) in
the encoder-decoder pair (Eg , D→) for state ρ⊗n

AF . Since
s(C) = s(Ĉ), Eq. (75) follows from Eq. (D38).

Next, we show Eq. (76). Let C = ({Em′}, {�x ′}, {m̂|x ′})
be a code in the encoder-decoder pair (Eg , D→) for state
� ′

AF
⊗n. Since {E ′

F
∗
(�x)} is a POVM on H⊗n

F , we define
a code Ĉ ′ = ({Em′}, {E ′

F
∗
(�x ′)}, {m̂|x ′}) in the encoder-

decoder pair (Eg , D→) for state ρ ′
AF

⊗n. Since s(C) = s(Ĉ ′),
Eq. (76) follows from Eq. (D38). �
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