
PRX QUANTUM 3, 030345 (2022)

Quantum Computation of Molecular Structure Using Data from
Challenging-To-Classically-Simulate Nuclear Magnetic Resonance Experiments
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We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-
resolved measurements of spin-spin correlators, which can be obtained via nuclear magnetic resonance
(NMR). We focus on learning the anisotropic dipolar term of the Hamiltonian, which generates dynamics
that are challenging to classically simulate in some contexts. We demonstrate the ability to directly esti-
mate the Jacobian and Hessian of the corresponding learning problem on a quantum computer, allowing
us to learn the Hamiltonian parameters. We develop algorithms for performing this computation on both
noisy near-term and future fault-tolerant quantum computers. We argue that the former is promising as
an early beyond-classical quantum application since it only requires evolution of a local spin Hamilto-
nian. We investigate the example of a protein (ubiquitin) confined on a membrane as a benchmark of our
method. We isolate small spin clusters, demonstrate the convergence of our learning algorithm on one
such example, and then investigate the learnability of these clusters as we cross the ergodic to nonergodic
phase transition by suppressing the dipolar interaction. We see a clear correspondence between a drop in
the multifractal dimension measured across many-body eigenstates of these clusters, and a transition in
the structure of the Hessian of the learning cost function (from degenerate to learnable). Our hope is that
such quantum computations might enable the interpretation and development of new NMR techniques for
analyzing molecular structure.
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I. INTRODUCTION

Quantum computing researchers are struggling to find
near-term, “beyond-classical” applications of quantum
computers: problems whose solution has scientific or com-
mercial value but that cannot be solved on classical devices
alone. Fault-tolerant (FT) quantum computers able to solve
valuable beyond-classical problems in chemistry [1–4]
and materials science [5–7] are predicted to be years
away, leaving us in the noisy intermediate-scale quan-
tum (NISQ) era [8]. And, while initial quantum experi-
ments beyond classical [9,10] or on the beyond-classical
boundary [11,12] have proven to be of great interest, it has
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been difficult to extend these to solve practical problems in
other fields. This is due to the large error rates on quantum
computers, and to the overhead that comes from map-
ping non-native problems onto a quantum computer. Here,
non-native means problems beyond studying statics and
dynamics of local spin systems, such as fermionic quan-
tum simulation, linear algebra, or optimization. Algorithms
to solve these problems incur costs in circuit compila-
tion [13–16] and measurement [17–20], creating a gap in
hardware requirements before these can achieve beyond-
classical results. Before this gap is crossed, it makes sense
to focus on those practical applications that do not require
this overhead.

Nuclear magnetic resonance (NMR) spectroscopy has
been a lauded cornerstone of analytical and organic chem-
istry since its discovery 80 years ago [21,22], being
applicable to any molecule or material containing atoms
with nonzero nuclear spin. In a NMR experiment, these
spinful nuclei are excited by a radio-frequency pulse
and allowed to evolve for some period of time under a
typically strong (multiple tesla) magnetic field, yielding a
small time-dependent response in said magnetic field. This
response, or free induction decay, contains information
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about its generating nuclear spin Hamiltonian, which itself
contains information about the chemical structure of the
molecule or material under probe. The nuclear spin Hamil-
tonian is typically a strongly interacting quantum Hamil-
tonian due to its strong dipolar coupling (making it one of
the earliest suggested candidates for a quantum computer
[23–27]). From accurate knowledge of the dipolar cou-
plings between different spins, one can infer the real-space
molecular structure. However, when molecules are free
to quickly rotate (e.g., when in solution), this interaction
averages out, leaving only chemical shifts (local fields),
a weak electron-mediated Heisenberg coupling term [27],
and residual incoherent (classical) processes. Such Hamil-
tonians can be easily classically analyzed (sometimes even
by intuition), one of the reasons why NMR has shown
such success to this day. However, NMR spectra are con-
siderably more complex for systems that are not free to
tumble in all directions (as they are in a solution [28]):
e.g., solid-state materials [29,30], molecules in gels [31],
stuck on surfaces [32], or in membranes [33,34]. Spec-
trum prediction can also pose a challenge for experi-
ments operating in low magnetic field such as “zero-field
NMR” experiments [35–39], which promise more afford-
able and practical NMR technologies not requiring huge
magnetic fields. These systems present a region of param-
eter space where data cannot be analyzed by classical
computers, yielding a potential area for beyond-classical
quantum computation. This ability to analyze classically
intractable data sets could enable new types of NMR tech-
niques to characterize previously difficult-to-characterize
systems.

Quantum dynamics are generated by a system’s Hamil-
tonian; from a sufficient set of experimental data, it should
be possible to learn the Hamiltonian that generated it.
Hamiltonian learning is the inverse problem to predicting
experimental outcomes given a system’s Hamiltonian [40],
and is well established in the field of quantum informa-
tion as an approach to device characterization. Sufficiently
small devices may be characterized via classical post-
processing of experimental data via Bayesian [41,42] or
machine-learning methods [43–45]. Exact classical meth-
ods are intractable in large systems whenever the forward
problem becomes beyond classical, but this can be avoided
when possible by careful experiment design. For example,
given sufficient control, one can dynamically decouple a
small subsystem from its environment, even in the pres-
ence of large background magnetic fields, and then learn
the global structure piece by piece [46–48]. It is also pos-
sible to learn Hamiltonians from expectation values of
thermal or long-time average states, which are more easy to
classically approximate [49,50]. These methods also allow
one to learn a Hamiltonian from highly accurate measure-
ments at ultrashort periods of time, where eiHt � 1 + iHt
is a nearly exact approximation. However, when none of
the above methods are viable, the Hamiltonian learning

problem becomes classically challenging, giving a poten-
tial beyond-classical quantum computing application. This
still requires that the experiment yield sufficient data that
the Hamiltonian can be inferred.

If a quantum system is chaotic, or ergodic, following
some perturbation its state will explore its entire Hilbert
space, showing little dependence on the precise Hamil-
tonian parameters and washing out long-time correlation
functions [51]. This suggests that the criteria for a system
to be learnable is that it correspond to the breakdown of
ergodicity. This breakdown has been well studied in many-
body physics for many years, most famously in the case of
many-body localization [52,53], and corresponds to many
interesting phenomena such as area law entanglement scal-
ing [54,55] and the emergence of fractal many-body wave
functions [56–60]. To the best of our knowledge, little has
been done to tie these fundamental physics concepts to the
notion of learnability of a quantum system.

When considering quantum Hamiltonian learning as a
beyond-classical experiment, there are actually two classi-
cally intractable quantum computations being performed.
The first is the Hamiltonian evolution itself (e.g., NMR
experiment), which is an analog experiment being per-
formed by the spectrometer and the sample. This produces
a set of data that is beyond classical whenever the exper-
iment is beyond classical. (To be beyond classical does
not require an experiment to be hard for the complex-
ity class BQP [Bounded-error Quantum Polynomial-time];
many of the experiments considered in this work would lie
within the complexity class DQC-1 [Deterministic Quan-
tum Computing with 1 clean qubit] to simulate [46,61].) A
key part of this work lies in identifying those NMR exper-
iments that are classically challenging to simulate, which
is one quality distinguishing our work from previous sug-
gestions to study classically tractable NMR signals on a
quantum device [62]. The second classically intractable
quantum computation is to learn the quantum Hamilto-
nian from the experimental data, which can be executed
on a digital quantum computer. We assume that, for the
foreseeable future, the connection between the spectrom-
eter and the computer are classical. This prevents the
quantum Hamiltonian learning technique of Refs. [63–
65] or algorithms that require access to the quantum state
[66,67] being implemented. (Access to a quantum con-
nection between spectrometer and computer would be of
immense interest if it could be achieved, as it could pro-
vide additional exponential speedups [67].) Alternatively,
one can approach this problem by generating classically
hard spectra (from a quantum simulation or NMR experi-
ment) and using this to train a classical machine agent to
infer Hamiltonians from spectra in the same phase (in a
manner similar to Ref. [68]). However, this requires access
to this additional training data.

Given a sample and a NMR spectrometer, chemists
have many techniques at their disposal to infer molecular
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structure without requiring quantum computing assistance:
magic-angle spinning [69,70], dipolar decoupling pulse
schemes [71,72], polarization transfer methods [73], and
choices of different spin species and use of heteronuclear
NMR couplings [74]. However, these methods average
out information about a system that is potentially valu-
able for characterization (which, when required, must be
recovered by complicated recoupling techniques [75,76] in
solid-state NMR or by inducing anisotropy of molecular
orientations in solution NMR [77,78]). Here we show that
quantum computers can provide an extra tool in the NMR
toolbox, and in doing so open up a realm of novel NMR
experiments that have not been available before.

In this paper we propose a protocol to learn the nuclear
spin Hamiltonian of a molecular or material system using
a digital quantum computer and time-resolved measure-
ments from a NMR spectroscopy experiment. We expect
this protocol to present a beyond-classical quantum com-
putation (in lieu of classical access to additional data such
as a training set for a machine-learning algorithm) when
the dataset from the NMR experiment is hard to classi-
cally simulate. In Sec. II, we design quantum algorithms
to estimate the cost function, Jacobian, and Hessian of the
learning problem. We attempt to identify those systems
and situations where a beyond-classical application can be
found, following some general discussions of learnability
in Sec. III. In Sec. IV, we describe and cost circuits to
implement our quantum algorithms in both fault-tolerant
and NISQ cost models. We find that in both cost mod-
els the effect of integration error can be logarithmically
suppressed or better, and that the ability to run deep coher-
ent circuits in FT yields polynomial speedups in terms of
various problem parameters: the duration and error in the
experiment to be simulated, and the desired error in the
final gradient itself. In Sec. V, we identify NMR spec-
troscopy of proteins in or on membranes as one potential
application, as the physical pinning of these systems to the
membrane prevents the tumbling that would wash away
strong correlations in solution. In Sec. V A, we study an
example protein, ubiquitin, as a benchmark with known
molecular structure. We identify sets of clusters of 1H
spins within this molecule with strong intracluster cou-
pling and weak coupling to the environment that should
produce a strongly coupled signature able to be studied
by a quantum device. We calculate the multifractal dimen-
sion of small clusters to study their ergodic to nonergodic
phase transition as the dipolar term is suppressed (e.g., by
magic-angle spinning or decoupling pulse schemes), and
find the “quantum-feasible” region to require a suppres-
sion factor between around α = 5 and α = 100 (assuming
a background magnetic field of 23.5 T, corresponding to
a proton frequency of 1 GHz). This gives a large win-
dow within which quantum computers could be expected
to assist in NMR interpretation. We demonstrate the appli-
cation of our learning algorithm to small clusters within

this region, demonstrating its convergence on a small spin
cluster in the presence of sampling noise. Finally, we show
a direct correspondence between the loss of ergodicity (as
measured in the multifractal dimension of ubiquitin spin
clusters as their dipolar coupling is suppressed) and the
onset of learnability (as measured by the analytical Hes-
sian of our learning problem at the global minimum). To
the best of our knowledge, this is the first demonstration
of a clear connection between the notion of fractal eigen-
states in a quantum system and its learnability by quantum
or classical means.

II. QUANTUM-ASSISTED HAMILTONIAN
LEARNING

We now consider the problem of learning a Hamiltonian
H of some system from a set of time-resolved experimental
data Sx(t), where x indexes different sets of experiments.
As the Hamiltonian of a system dictates the time dynamics,
this is a natural thing to learn from time series data; we
discuss later how one can infer molecular structure from
a Hamiltonian of nuclear spins. Each experiment consists
of an initial state preparation ρx, time evolution by H plus
an external time-dependent driving field Hx(t), and final
measurement of some observable Ox. The signal Sx(t) is
then given by

Sx(t) = Trace[Ux(t, 0)ρxU†
x(t, 0)Ox], (1)

where Ux(t2, t1) is the time evolution operator generated by
the Hamiltonian H + Hx(t) from t = t1 to t2, i.e.,

Ux(t2, t1) = T exp
{

i
∫ t2

t1
[H + Hx(t)]dt

}
, (2)

where T is the time-ordering operator. Note that one
may consider ρx = ρ and Ox = O independent of the
experiment x by encoding preparation and measurement
terms onto the driving Hamiltonian Hx(t). (As we discuss
later, this is often an accurate description of a real-world
NMR experiment.) Alternatively, if the driving Hamilto-
nian Hx(t) is only used for preparation and measurement,
this may be encoded entirely in ρx and Ox, setting Hx(t) =
0 and Ux(t2, t1) = U(t2, t1) = eiH(t2−t1).

To define our learning problem, we write our system
Hamiltonian in the form

H =
∑

n

hnVn, (3)

where the hn are a set of parameters and Vn a set of Her-
mitian operators. We then consider the case where some or
all of the hn are unknown, and we wish to estimate these by
a set {h̄n}; this defines our learning problem. Given some
prior {h(0)n } with standard deviation wn, and assuming that
each datapoint Sx(t) is drawn from a normally distributed
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experimental population with standard deviation σ 2
x,t, the

maximum-likelihood estimation of the true parameters can
be found by minimizing the cost function

C[H̄ ] =
∑

n

(h̄n − h(0)n )
2

2ω2
n

+
∑

x,t

(S̄x(t)− Sx(t))2

2σ 2
x,t

, (4)

where S̄x(t) = Trace[Ūx(t, 0)ρxŪ†
x(t, 0)Ox] is the estimated

signal with our estimates of the parameters h̄n. (Through-
out this work, we use bars to denote quantities derived
from estimated parameters rather than hidden ones.)
Though S̄x(t) cannot be estimated on a classical device,
implementing it on a quantum computer simply requires
a circuit to simulate the time evolution Ūx(t, 0). However,
performing such an optimization gradient-free on a higher-
dimensional surface is a costly endeavor. The first key
result of this work is to give practical forms for the gradient
and Hessian of Eq. (4):

dC[H ]
dh̄n

= 1
w2

n
(h̄n − h(0)n )+

∑
x,t

i
σ 2

x,t
[S̄x(t)− Sx(t)]J̄ n

x (t),

(5)

d2C[H ]
dh̄ndh̄m

= δnm

w2
n

−
∑

x,t

1
σ 2

x,t
{J̄ n

x (t)J̄
m
x (t)

+ 2[S̄x(t)− Sx(t)]K̄n,m
x (t)}. (6)

Here we define

J̄ n
x (t) =

∫ t

0
ds j̄ n

x (t, s), (7)

j̄ n
x (t, s) = Trace[Ox[V̄n,x(t, s), ρ̄x(t)]], (8)

K̄n,m
x (t) =

∫ t

0
ds

∫ s

0
dr kn,m

x (t, s, r), (9)

k̄n,m
x (t, s, r) = Trace[Ox[V̄n,x(t, s), [V̄m,x(t, r), ρ̄x(t)]]],

(10)

where V̄n,x(t, s) = Ūx(t, s)VnŪ†
x(t, s) is the (estimated)

operator Vn evolved forwards in time from s to t, and
ρ̄x(t) = Ūx(t, 0)ρxŪ†

x(t, 0) is the (estimated) state ρx at time
t. As the term dependent on K̄n,m

x (t) in Eq. (6) disappears in
the limit S̄x(t) → Sx(t), it may be practical when near the
global minimum of C[H ] to approximate

d2C[H ]
dh̄ndhm

= δnm

w2
n

−
∑

x,t

J̄ n
x (t)J̄

m
x (t)

σ 2
x,t

, (11)

which may be obtained at no extra cost to the gradient
estimation [assuming that S̄x(t) and J̄ n

x (t) are measured
to the same relative precision]. This is important, as we

can approximate the covariance matrix � of our final
estimation of the {h̄n} as

� = [∇2
h C]−1. (12)

These equations may be alternatively derived via optimal
control theory, which yields a conjugate field to the state
ρ̄x(t) that is generated by deviations S̄x(t)− Sx(t) �= 0 and
propagates backwards in time via the Schrödinger equation
(see Appendix C for details).

III. QUANTUM AND CLASSICAL LEARNABILITY

In the following sections, we describe how the proce-
dure outlined in Sec. II may be developed into a complete
quantum-assisted algorithm to learn Hamiltonian param-
eters via gradient optimization. However, there are two
issues that limit the usefulness of our proposal to imple-
ment these algorithms on a quantum computer. We sum-
marize these issues and give a sketch of the region in
parameter space where the techniques we develop in this
work are relevant in Fig. 1.

The first issue is that the experimental data taken may
not contain enough information to learn the desired cou-
plings at all. A large amount of nature is chaotic, or
ergodic—where the system tends to approximately explore
its entire phase space. In such ergodic systems, properties
such as local correlation functions die off quickly without
any dependence on the internal structure [11,51]. When
this is the case, the set of, e.g., local spin-spin correlations
generated by two different Hamiltonians may be indistin-
guishable up to corrections smaller than any experimental
noise. This makes learning impossible. Given sufficient
local disorder (relative to the strength of spin-spin inter-
actions), systems tend to localize, yielding a nonergodic
many-body localized regime characterized by an absence
of transport [52]. In a nuclear spin system, a lack of trans-
port corresponds to spin precession without diffusion or
decoherence. This is to say that most NMR experiments
are performed in the localized phase (yielding sharp spec-
tral lines), though the many-body localized ergodic phase
transition has been recently observed in a NMR experi-
ment [79]. (By contrast, the delocalized phase is associated
with either peak broadening or sharp peaks correspond-
ing to delocalized effective spins; see, e.g., Ref. [37].)
When spin precession can be observed for long times, or
other local correlators do not decay, time-resolved mea-
surements may be used to distinguish between, and thus
learn, different Hamiltonians. In certain systems, between
the fully localized and ergodic regimes there has been
proposed an intermediate nonergodic regime, where the
system explores a large fraction of its Hilbert space but
does not completely thermalize [56–59]. In other systems,
prethermal regions have been proposed, where thermal-
ization occurs at exponentially large timescales, making
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FIG. 1. Sketch of the “phases of learnability” of a quantum
Hamiltonian. In the red region, the set of experimental data is
insufficient to distinguish candidate Hamiltonians. This becomes
increasingly likely for systems beyond a localization transition
(red dashed line), as after this point experiments such as local
correlators tend to provide little information about the system
structure. In the blue region, the experimental data is sufficient
to learn the system’s structure, but the data processing may be
achieved classically, rendering a quantum computer unnecessary.
This classical processing may either be achieved by the system
being well approximated by a classically computable model, or
by the experiment having sufficient control (gray dashed line)
to isolate smaller subsystems. At the limit of good control, an
experiment has the ability to dynamically decouple individual
terms (blue dashed line), after which techniques such as those
in Refs. [46,48] can be used to estimate terms individually. A
simpler limit is to simply have the ability to address individual
(or small frequency regions of) spins in the system (green dashed
line), which renders the system more learnable.

these systems local for all practical purposes [80], a phe-
nomenon that has also been observed in NMR [81]. In
these situations, some learning should also be possible.
The transition to ergodicity and the loss of learnability
may be mitigated somewhat given the ability to perform
more complicated experiments (e.g., magic-angle spinning
[69,70], decoupling pulses [76], or other composite pulse
sequences [82]). We summarize these notions going from
left to right in Fig. 1. Here, the x axis denotes a rough
measure of ergodicity of an arbitrary system (e.g., the
localization length left of the localization transition, and
the rate of entanglement growth on the right). This can in
principle be changed by experimental control (i.e., by sup-
pressing the dipolar interaction strength), which suggests
that the localization transition should not be a vertical line.

The second issue we face is that a quantum computer
may not be required to interpret the spectrum of a given

Hamiltonian: it may be entirely possible to solve the learn-
ing problem with a classical device [83–87]. While this
reduction in complexity is a good thing for the experiment
in question; nevertheless, it limits the utility of using quan-
tum computers in that context. The Hamiltonian learning
problem may be solved classically for two reasons. Firstly,
the Hamiltonian itself may be classically simulatable, or
approximately simulatable. For example, in a many-body
localized system, the forward-scattering approximation or
other perturbative expansions may be sufficiently accurate
for learning. This suggests that a quantum computer will
find the most relevance studying either intermediate non-
ergodic phases that are not completely localized, or the
region in the proximity of a direct many-body localization
transition where the localization length is too large for clas-
sical simulation. The second reason why the Hamiltonian
learning problem may be solved classically is if the exper-
iment is controllable enough to isolate smaller subsystems
or otherwise simplify the system. This can, for instance, be
achieved if one has the ability to spatially resolve individ-
ual spins with a magnetic field. In this case it is possible
to apply dynamic decoupling pulse sequences that isolate
local Hamiltonian terms while canceling out the remainder
in an experiment [46–48], making local characterization
possible. We summarize these notions along the y axis
of Fig. 1; as one gains more control over an experiment,
it becomes possible to learn Hamiltonians in more sys-
tems classically, until the barrier of dynamic decoupling
is reached and all Hamiltonians are classically learnable.

These two concerns leave our quantum Hamiltonian
learning algorithm with only a “goldilocks” zone of appli-
cability. We are interested in those experiments where we
have some control over our input state and Hamiltonian,
but not those where enough control is available to isolate
individual terms. We are also interested in those experi-
ments where our system is somewhat delocalized, but not
completely. Experimentally, this can be summarized by
saying that we can study those systems where some sig-
nal can be extracted, but where that signal is complicated
by features (e.g., spectral line shifts) that cannot be easily
understood perturbatively.

A. Robustness of learning

Assuming access to the derivatives in Sec. II, one
may in principle solve the Hamiltonian learning problem
using many well-known gradient-based or Hessian-based
optimization techniques. [Using the approximate Hessian
in Eq. (11) for minimization results in the well-known
Levenberg-Marquardt algorithm [88,89].] One may ask
whether this can be made robust, to avoid being stuck
in local minima. Similar questions have been asked and
answered previously for single parameter estimation [46],
quantum phase estimation [90], and device calibration
[91,92]. We give a sketch of an argument here for the
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robustness of our algorithm given a time-independent
Hamiltonian [Hx(t) = 0] that works under the assumption
that we start with an initial guess h(0)n sufficiently close to
our true parameters hn. We stress that this is not a proof,
and examining the landscape around the global minimum
of our learning problem is a clear target for future work.

In this case, we may work in the eigenbasis |ξa〉 of
the system Hamiltonian H |ξa〉 = Ea|ξa〉. Inserting two res-
olutions of the identity, our signal then takes the form
Sx(t) = ∑

a,b sa,b
x (t), where

sa,b
x (t) = 〈ξa|ρx|ξb〉〈ξb|Ox|ξa〉ei(Ea−Eb)t. (13)

If our estimate deviates by some parameter hn → h̄n =
hn + δ then to lowest order in perturbation theory our
estimated signal takes the form

S̄x(t) =
∑
a,b

s̄a,b
x (t)+ δX , (14)

s̄a,b
x (t) = sa,b

x (t)e
itδ(〈ξa|Vn|ξa〉−〈ξb|Vn|ξb〉), (15)

X =
∑

a,b,c,a�=c

e−iEbt(eiEat − eiEct)

Ea − Ec

× 〈ξc|ρx|ξb〉〈ξb|Ox|ξa〉〈ξa|Vn|ξc〉

+
∑

a,b,c,b�=c

eiEat(e−iEbt − e−iEct)

Eb − Ec

× 〈ξa|ρx|ξc〉〈ξc|Vn|ξb〉〈ξb|Ox|ξa〉. (16)

Note here that X is independent of δ. The second term in
our cost function [Eq. (4)] takes the form

∑
x,t

(S̄x(t)− Sx(t))2

2σ 2
x,t

=
∑

x,t

1
σ 2

x,t

[
δX +

∑
a,b

s(a,b)
x (t)

× (1 − eitδ(〈ξa|Vn|ξa〉−〈ξb|Vn|ξb〉))
]2

.

(17)

This oscillates as a function of δ with a frequency
bounded by 4t max〈ξa|Vn|ξa〉, which is independent of
the system size. This implies that we know that local
minima in our parameter space must be separated by
at least [4t max〈ξa|Vn|ξa〉]−1 ≤ [4t maxn ‖Vn‖]−1. Flipping
this around, let us suppose that we know that our ini-
tial guess h(0)n of our parameters hn lies within some
δ ≤ ∑

n |hn − h(0)n |; we can perform robust Hamiltonian
learning by first learning H from only experiments at times

t < tmax = π

4δmaxn ‖Vn‖ . (18)

After converging on this data we may estimate the vari-
ance of our parameter guess [using Eq. (6)], refine our

estimate of δ, and increase the range of allowed t. Assum-
ing that estimation at each tmax yields an error δnew ≤
cπ/(4 maxn ‖Vn‖tmax) for some c < 1, repeating this pro-
cedure over multiple orders will converge to some final
error ε in O(log(1/ε)) iterations of this procedure. If our
initial uncertainty

∑
n |hn − h(0)n | grows with the system

size (which can simply be due to the increase in the num-
ber of parameters), this will necessarily shrink the initial
choice of tmax by the same amount. However, for a local
Hamiltonian, we expect the number of parameters and the
magnitude of terms to only grow linearly in N .

The ability to estimate out to large times allows us to
avoid learnability issues in localized systems where small
long-range couplings contribute mostly to the off-diagonal
part of the Hamiltonian (and thus do not affect the eigen-
structure significantly). However, it is of no help in ergodic
systems where signals Sx(t) disappear quickly with t. As
we will see, in those (ergodic) systems learning anything
would be a significant challenge. It is further limited in
a real NMR experiment by decoherence due to interac-
tion with the environment. This gives a dephasing time T2
beyond which all signal quickly decays back to its ther-
modynamic average. This in turn is a natural cutoff as the
longest-possible experiment (and simulation) time worth
learning from. If this decoherence time is too short, it
will in turn place restrictions on our ability to learn weak
couplings to high accuracy.

IV. QUANTUM ALGORITHMS

In this section, we outline algorithms to efficiently cal-
culate our cost function C[H ] and its first and second
derivatives using a quantum computer. Quantum algorithm
optimization is significantly different when targeting noisy
near-term versus fault-tolerant long-term devices; we
present algorithms for both situations. In either case, we
discretize the integral in Eq. (7) as

∫ t

0
dsf (s) ∼

I−1∑
i=0

zif (si), (19)

where the weights zi > 0 are chosen such that
∑

i zi = t.
[A two-dimensional discretization is similarly possible for
the integral Kn,m

x (t).] There are many possible methods
for choosing both the weights and the points si; one may
use a simple trapezoidal or midpoint rule, or more com-
plicated Gaussian quadrature methods, or one may take a
Monte Carlo approach and choose the points at random.
Each method incurs a discretization error that goes to 0 as
I → ∞. For both the FT and NISQ quantum methods that
we propose, cost depends primarily on [

∑
i zi] = t, and has

only at most a logarithmic dependence on I . This allows us
to choose our method of integration for simplicity or ease
in circuit design.
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A. Algorithms for near-term quantum computers

In the current NISQ era we want to run the shortest
quantum circuits possible for any application. To this end,
we propose estimating the signal S̄x(t), and the integrands
j̄ n
x (t) and k̄n,m

x (t) on a quantum computer, and perform-
ing the integration and summation to yield dC[H ]/dhn and
d2C[H ]/dhndhm classically. The signal S̄x(t) is already in
the form where it can be read as the expectation value
of a quantum state following the application of a unitary
circuit (Fig. 2, top). This requires that it take the form
Trace[U�U†M] for a quantum state �, unitary U , and
hermitian operator M. [This can be compared directly
to Eq. (1).] The integrands j̄ n

x (t) [Eq. (8)] and k̄n,m
x (t)

[Eq. (10)] are not quite of this form. However, the inte-
grands may be put in the correct form by adding control
qubits to enlarge the Hilbert space, and then using the so-
called generalized Hadamard test; this results in the middle
and bottom circuits of Fig. 2. This circuit construction uses
the identity

iTrace[O[U, ρ]]

= 2Trace[(c-U)(|+〉〈+| ⊗ ρ)(c-U†)(Y ⊗ O)] (20)

Preparation of x

Time evolution
by Ux (t,s)

Perturbation by Vn

Measurement of Ox

FIG. 2. Circuits to estimate the signal S̄x(t) (top) and the inte-
grands j̄ n

x (t, s) (middle) and k̄n,m
x (t, s, r) (bottom) that are required

to calculate the first and second derivatives of our cost func-
tion C[H ] [Eq. (4)]. For ease of viewing, we suppress labels in
the circuits themselves (see the legend for clarification). Circuits
assume access to a preparation of ρ, and a means to simulate
Ux(t, s) (without control) and to implement controlled perturba-
tions Vn. The desired integrand can be found to be the expectation
value of the product of the indicated operators, which (in NISQ)
must be read out by repeated preparation and measurement.

to transform a commutator into the above form (with
Y ⊗ O = M, c-U = U , and |+〉〈+| ⊗ ρ = �). Here the
symbol c-U := I ⊕ U denotes the unitary U controlled by
the control qubit. These circuits require only local control
of the Vn unitary (see below) and uncontrolled time evo-
lution, making them rather NISQ friendly (using, e.g., the
randomized Trotterization methods of Ref. [93] to simulate
the time evolution). We assume in Fig. 2 that the terms Vn
are unitary (i.e., tensor products of Pauli operators for pairs
of spins), but if this is not the case, one may write Vn as a
linear combination of unitary operators, execute the cir-
cuits for each unitary component separately, and sum the
resulting expectation values to yield the desired result [94].

The circuits in Fig. 2 assume the ability to prepare the
initial states ρx. In the applications we consider in this
paper, these will be mixed diagonal states in the computa-
tional basis. The measurement operators Ox will similarly
be diagonal in the computational basis. Preparing mixed
states requires that we average over many pure state prepa-
rations. Consider the case where we prepare a computa-
tional basis state |n〉, then perform a circuit U and measure
the expectation values of a set of Ox in parallel, yielding a
set of estimates of 〈n|U†OxU|n〉. If we have repeated this
independently for all computational basis states, and each
ρx is diagonal in the computational basis, we can write

Trace[UρxU†Ox] =
∑
m,n

〈n|ρx|m〉〈m|U†OxU|n〉

=
∑

n

〈n|ρx|n〉〈n|U†OxU|n〉. (21)

As we know the initial distributions 〈n|ρx|n〉, the estima-
tions of 〈n|U†OxU|n〉 may be used to compute the target
trace. In practice, we do not need to prepare all states;
it suffices to sample from a distribution proportional to
|〈n|ρx|n〉|. In state-of-the-art quantum experiments this
presents a small difficulty, as uploading a new pulse
sequence to reprepare each state may be impractical. One
solution may be to initially prepare qubits in the |+〉 basis
and measure them prior to performing a simulation, which
results in a new preparation each time.

Repeating the above procedure at multiple points si and
ri allows for parallel estimation of J̄ n

x (t) or K̄n,m
x (t) via

Eq. (19) (for fixed n and m). In principle, in NISQ we are
free to draw these times at random from the ranges [0, t]
and [0, s] and choose the initial state. (In practice, chang-
ing evolution times is more difficult than choosing initial
states; making this scheme more practical is an impor-
tant direction for future work.) In this case, each choice
of starting state and time produces an independent random
variable and Hoeffding’s inequality may be applied. For
the estimation of J̄ n

x (t), M repetitions of our experiment
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yields an estimator J̄ n
x (t) that satisfies

P
(∣∣J̄ n

x (t)− J̄ n
x (t)

∣∣ > ε
) ≤ 2e−Mε2/2‖Ox‖2t2 , (22)

and the number of samples required to estimate this at a
constant failure rate scales as M = Õ(ε−2‖Ox‖2t2) (where
we use Õ to denote asymptotic complexity suppressing
polylogarithmic factors). Similarly, for the estimation of
K̄n,m

x (t), M repetitions of our experiment yields an estima-
tor K̄n,m

x (t) that satisfies

P
(∣∣K̄n,m

x (t)− K̄n,m
x (t)

∣∣ > ε
) ≤ 2e−Mε2/‖Ox‖2t4 , (23)

and the number of samples required to estimate this at a
constant failure rate scales as M = Õ(ε−2‖Ox‖2t4). This
scaling in t is to be expected, as the integrals tend to scale
as J n

x (t) ∼ t, Kn,m
x (t) ∼ t2. [To see this, note that the diag-

onal terms of
∫ t

0 dsV̄n,x(t, s) in the Hamiltonian basis grow
linearly in t [95,96].] This implies that we may estimate
J̄ n

x (t) and K̄n,m
x (t) to constant relative error with a number

of samples independent of t.
We now give an analysis of the complexity of this sam-

pling approach where we assume quantum simulation is
performed under a Hamiltonian query model. The no-
fast-forward theorem [97] requires a number of queries
of �(t) to execute each of the circuits in Fig. 2, so the
total gate counts to estimate J̄ n

x (t) and K̄n,m
x (t) to error

ε using these methods scale at best as Õ(ε−2‖Ox‖2t3)
and Õ(ε−2‖Ox‖2t5), respectively. By comparison, the total
query count to estimate S̄x(t) to error ε using the circuit in
Fig. 2 is bounded asymptotically as Õ(ε−2‖Ox‖2t). These
estimates need to be combined to estimate the deriva-
tive in Eq. (5). To compute the total cost to estimate this
to constant error, let us assume that J̄ n

x (t) ∼ t, S̄x(t) ∼ 1,
that σx,t ∼ σ and ‖Ox‖ ∼ 1 are independent of x and t,
and that we can optimize the number of repetitions of
each experiment to minimize the total query count. Let us
also assume that each experiment involves preparation and
measurement in a commuting basis, and let us assume no
covariance between parallel measurements. Then, we find
that the total number of queries required to estimate single
derivative terms to error ε is bounded asymptotically by
(see Appendix A for details)

Õ
(
σ−4ε−2Nx

[ ∑
sampled t

t3/2
]2)

, (24)

where Nx is the number of distinct experiments per-
formed. The evaluation of the sum over t depends on
whether Sx(t) are sampled logarithmically sparsely [in
which case

∑
t t3/2 ∼ T3/2 log(T)], or densely (in which

case
∑

t t3/2 ∼ T5/2), where T = max(t). In the former
case, the total number of queries is bounded asymptoti-
cally by Õ(σ−4ε−2NxT3), whilst in the latter it is bounded
asymptotically by Õ(σ−4ε−2NxT5).

B. Improved estimation of the gradient term on a
fault-tolerant quantum computer

In a fault-tolerant cost model, it is preferable to per-
form the integration, multiplication, and summation over
t and x in the second term of Eq. (5) entirely coherently.
This because on an error-corrected quantum computer the
key resource to minimize is the total number of gates
(i.e., the sum of the gate count of each circuit applied)
rather than just the depth of the longest circuit. We now
outline how this may be achieved for the gradient term.
Assuming that ρx = Wx|0〉〈0|W†

x , and using the fact that
Trace(A) · Trace(B) = Trace(A ⊗ B), we have

∑
x,t

i
σ 2

x,t
S̄x(t)J̄ n

x (t)

∼
〈
0 ⊗ 0 ⊗ +

∣∣∣∣
∑
x,t,l

zl,t

σ 2
x,t
U0(x, t, sl,t)

∣∣∣∣0 ⊗ 0 ⊗ +
〉
, (25)

U0(x, t, s) = W†
xU†

x(t, 0)OxUx(t, 0)Wx

⊗ W†
xU†

x(s, 0)[|0〉〈0| − |1〉〈1| ⊗ Vn]

× U†
x(t, s)OxUx(t, s)[|0〉〈0|

⊗ Vn + |1〉〈1|]U(s, 0)Wx, (26)

where the approximation is the approximation from our
numerical integration. One can confirm that U0(x, t, s) is
unitary as long as Vn and Ox are unitaries (and if this is
not the case, they may be decomposed as a linear com-
bination of unitaries themselves). The second part of the
second term in Eq. (5) requires multiplying by the exper-
imental signal Sx(t). This signal then needs to be loaded
onto the device; if done naively, this could easily become
the dominant cost in our circuit. To lower this cost, we
make the reasonable assumption that Sx(t) consists of a
small number Nω � T of Fourier components

Sx(t) =
Nω∑
k=1

ax,k cos(tωx,k + φx), (27)

where φx = 0 or φx = π/2 and ax,k > 0 is expected from
the t = 0 behavior of our signal. Then, writing cos(tωx,k +
φx) = 1

2 (e
i(tωx,k+φx) + e−i(tωx,k+φx)), we have

∑
x,t

i
σ 2

x,t
Sx(t)J̄ n

x (t)

∼
〈
0 ⊗ +0 ⊗ +1

∣∣∣∣
∑
x,t,l,k

zl,tax,k

σ 2
x,t

U1(x, t, sl,t, k)
∣∣∣∣0

⊗ +0 ⊗ +1

〉
, (28)
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U1(x, t, s, k) = e−iZ1(tωx,k+φx)W†
xU†

x(s, 0)

× [|00〉〈00| − |10〉〈10| ⊗ Vn]

× U†
x(t, s)OxUx(t, s)

× [|00〉〈00| ⊗ Vn + |10〉〈10|]Ux(s, 0)Wx,
(29)

where we have labeled the operations acting on the differ-
ent control qubits 0 and 1. Under the above assumptions,
U1(x, t, s) is also a unitary operator. In the above, the
sl,t and zl,t points are our integration points and weights,
respectively (following Sec. IV A), but allowing for the
fact that the limits of integration (and thus both the points
we should sample over and the total width we need to
multiply by) are dependent on t. Both summations may
then be block encoded as linear combinations of uni-
taries [98]. These require control registers |x〉, |t〉, |l〉, and
|k〉 to encode the summation variables (as well as some
additional registers we introduce later), and SELECT and
PREPARE unitaries. (We assume here that our times |t〉
have some finite binary representation.) These registers
contain in turn nx ∼ log(Nx), nt ∼ log(KT), nl ∼ log(L),
and nk ∼ log(Nω) qubits, where 1/K is the precision to
which we store our times t; see Appendix B 2 for a detailed
analysis of the truncation and discretization error.

The SEL0 unitary selects the correct U0(x, t, sl,t) unitary
to implement based on the control register; in other words,

SEL0 =
∑
x,t,l

|x〉|t〉|l〉〈l|〈t|〈x|U0(x, t, sl,t).

Similarly,

SEL1 =
∑
x,t,l,k

|x〉|t〉|l〉|k〉〈k|〈l|〈t|〈x|U1(x, t, sl,t, k).

In Fig. 3, we show how this can be implemented using
oracular access to Ux(t, s), Ox, and Wx (which we shortly
give implementations for). The PREPa unitaries prepare
the corresponding control states

|�0
c 〉 = 1√

λ0

∑
x,t,l

√
zl,t

σ 2
x,t

|x〉|t〉|l〉, (30)

λ0 =
∑
x,t,l

∣∣∣∣ zl,t

σ 2
x,t

∣∣∣∣, (31)

|�1
c 〉 = 1√

λ1

∑
x,t,l,k

√
zl,tax,k

σ 2
x,t

|x〉|t〉|l〉|k〉, (32)

λ1 =
∑
x,t,l,k

∣∣∣∣zl,tax,k

σ 2
x,t

∣∣∣∣, (33)

from an initial state |0〉 on the control register. [Note
that the absolute value in Eqs. (31) and (33) are techni-
cally unnecessary as all summands are positive.] We omit

SEL0

SEL1

PREP0

PREP1

FIG. 3. Circuit diagrams of the fault-tolerant oracles SEL0,
SEL1, PREP0, and PREP1 described in this text. See the text for
details. Black circles on multiqubit registers denote complex con-
trol procedures. Square boxes denote classical input to the system
via quantum read-only memory (QROM) and coherent alias sam-
pling (CAS) [15]. Subscripts are omitted from gates for ease of
reading. The dashed circles on the control for U in the SELa cir-
cuits indicate control that is only needed if the time evolution
during an experiment changes between experiments.

garbage registers in these steps for simplicity. Given these,
one can check that

〈0|PREP†
0 SEL0 PREP0|0〉 ∼ 1

λ0

∑
x,t

i
σ 2

x,t
S̄x(t)J̄ n

x (t), (34)

〈0|PREP†
1 SEL1 PREP1|0〉 ∼ 1

λ1

∑
x,t

i
σ 2

x,t
Sx(t)J̄ n

x (t), (35)

where the circuits act on the combined system and con-
trol register set. For a = 0, 1, we may then use the overlap
estimation algorithm of Ref. [99] to estimate these values
to error εa with confidence 1 − δ using O(log(δ−1)ε−1

a )

queries to PREPa, SELa; see Appendix B 1 for a review
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of this algorithm. The number of additional gates used
in Ref. [99] is negligible compared to the cost of block
encoding. Setting εa = O(ε/λa) allows us to obtain an
estimate of dC[H ]/dhn that is within ε with confidence
1 − δ. When we have sampled at time t,

∑
i zl,t = t, so if

we assume that |Sx(t)| ≤ 1 and σx,t = σ , we have λ1 =
λ2 = (Nx/σ

2)
∑

sampled t t. The number of oracle calls to
PREPARE and SELECT then scales as [in comparison to
Eq. (24)]

Õ
(
σ−2ε−1Nx

∑
sampled t

t
)

. (36)

To make a heuristic comparison to the NISQ results, we
again consider an oracular model. Our SELECT oracles
require time evolution by up to T = max(t), so a quantum
simulation algorithm with linear scaling in the evolution
time would make O(T) queries to the Hamiltonian ora-
cle. Thus, in the sparse sampling case the total number
of oracle calls is bounded by O(σ−2ε−1NxT2) (a saving
of σ−2ε−1T), while in the dense sampling case the total
number of oracle calls is O(σ−2ε−1NxT3) (a saving of
σ−2ε−1T2). We expect much larger savings for simulat-
ing concrete Hamiltonians using fault-tolerant quantum
algorithms, as NISQ approaches [93,94] typically cannot
achieve linear scaling in the simulation time and also have
worse scaling in the target precision.

The complexity of the SELECT unitaries is dictated
by the need to implement the controlled time evolu-
tions

∑
x,t,l |x〉|t〉|l〉〈l|〈t|〈x|Ux(sl,t, 0) and

∑
x,t,l |x〉|t〉|l〉〈l|〈t|〈x|Ux(t, sl,t). (We discuss the initial preparation

∑
x |x〉

〈x|Wx later.) There are a wide range of fast quantum algo-
rithms for simulating time evolution [97,100–103]; which
choice is optimal depends on the details of the Hamil-
tonian being studied. Here, we give an example imple-
mentation of the SELECT unitaries using higher-order
product formulas, following the analyses developed in
Ref. [104]. We expect higher-order formulas to provide the
fastest approach for simulating many spin Hamiltonians
[104,105], at least asymptotically. We assume for practi-
cal purposes here that our time evolution is experiment
independent—Ux(t, s) = U(t, s) = eiH(t−s). This removes
the need to consider the |x〉 register in our implementa-
tion of SELECT. Our implementation requires that we fix
the discretization of the integral in Eq. (7). We choose
L points sl,t = tl/L, with even weights wl = t/L. The
error in this approximation can be shown to be bounded
by O(t2‖Ox‖‖[H , Vn]‖/L), which is negligible if L �
t2‖Ox‖‖[H , Vn]‖; see Appendix B 2 for details. The con-
trolled time evolution parts of the SELECT unitary then
take the form

c-U(s, 0) =
L∑

l=0

T∑
t=0

|l〉|t〉〈t|〈l|e−iltH/L, (37)

c-U(t, s) =
L∑

l=0

T∑
t=0

|l〉|t〉〈t|〈l|e−i(L−l)tH/L. (38)

We implement this by dividing the total time interval [0, t]
into R Trotter steps and implementing a higher-order prod-
uct formula in each step. To ensure that the simulation has
error at most η, we take [104]

R = X1T(X2T/η)o(1), (39)

where the lowercase o(1) here represents a constant that
can be taken to be arbitrarily small, and the X1 and X2
coefficients depend on the system size and graph connec-
tivity. For a linear chain of N qubits, we have X1 ∼ 1 and
X2 ∼ N [106]. By contrast, assuming a model of clustered
Hamiltonians [107]

H =
∑
K

∑
k,k′∈K

Hk,k′ +
∑
K �=L

∑
k∈K,l∈L

Hk,l, (40)

where Hk,l � Hk,k′ whenever k, k′ ∈ K �= L � l, we have
X1 ∼ �ind, X2 ∼ �, where

�ind = max
L

max
l∈L

∑
K

∑
k∈K

‖Hk,l‖, (41)

� =
∑
K,L

∑
k∈K,l∈L

‖Hk,l‖. (42)

Alternatively, we can apply a partial Trotter decomposition
without splitting the terms within each cluster [107]. This
reduces the Trotter error to instead scale with X2 ∼ �int,
where

�int =
∑
K �=L

∑
k∈K,l∈L

‖Hk,l‖ � �. (43)

Each cluster can then be simulated using either product for-
mulas or more advanced quantum algorithms. We expect
that such a hybrid approach can improve the runtime of
our approach, but a detailed study of such an improvement
is out of the scope of the present paper and will be left as a
subject for future work.

To analyze how the error of quantum simulation affects
the accuracy of the overlap estimation, we use the block-
diagonal structure of Eqs. (37) and (38). We see that the
controlled time evolution has error at most η provided
that quantum simulation is performed with accuracy η. To
achieve an accuracy of ε in the estimate of overlap, we set
ηa = O(ε/λa) for a = 0, 1. This sets the minimum number
of Trotter steps R in Eq. (39).

We now explain how to add the double control by the
|l〉 and |t〉 registers to a general product formula Sp . (The
single control by the |t〉 register also required for the SELa
oracle can be implemented by the following techniques as
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well.) The near-linear dependence of the evolution time
in R and requirement that L � O(t2) imply that we need
L � R. This in turn implies that lt/L is not necessar-
ily an integer multiple of t/R. For simplicity, we assume
that L, R are powers of 2, and write lt/L = rt/R + q for
0 ≤ q < t/R. We write q′ = qR/t < 1, and then lR/L =
r + q′ gives the number of integer (r) Trotter steps and
the fractional remainder q′. Because L and R are powers
of 2, the integers r and q′ are already stored in the first
log(R) and the last log(L)− log(R) bits of the l register,
and may be identified by renaming l as (r, q′). The integer
part (r) determines the number of times for which Sp(t/R)
needs to be applied: controlling S2br

p (t/R) by the brth bit of
the |r〉 control register and the |t〉 register implements the
unitary

∑
r,t

|r〉|t〉〈t|〈r|Sr
p(t/R), (44)

where here the |t〉 register dictates the angle of rotation of
each component of the product formula. For example, we
would directly implement

∑
t |t〉〈t|eitθZi bitwise, using the

btth bit of the t register to control a rotation by ei2bt/2nt θZi .
This has a gate complexity polylogarithmic in the input
parameters, and so we neglect it. We can similarly imple-
ment the final fractional Trotter step controlled by the |q′〉
register; i.e., we implement the unitary

∑
q′,t

|q′〉|t〉〈t|〈q′|Sp(tq′/R). (45)

This also has a similar cost that is polylogarithmic in the
input parameters. The final scaling of our doubly con-
trolled time evolution is then identical up to logarithmic
factors to the cost of implementing the Trotter evolution
without control.

Our above implementation of controlled quantum sim-
ulation is developed and optimized specifically for prod-
uct formulas. Another possible circuit implementation
that works for not only product formulas but also more
advanced quantum simulation algorithms is to use a binary
representation of the evolution time and simulate for time
2k with integer k; see Ref. [108] for details. In any case,
the complexity only scales logarithmically with the input
parameters and the overhead is negligible. This justifies the
comparison between the oracular models in Eqs. (36) and
(24), as long as the PREPARE and controlled-Wx circuits
have lower costs than SELECT.

A naive implementation of the Trotter steps requires that
we exponentiate all the terms in the Hamiltonian. For the
clustered model in Eq. (40), this implies a gate complexity
of O(N 2) to implement each Trotter step. However, this
may be improved by truncating Hamiltonian terms with
very small magnitudes or by switching to an advanced

quantum simulation algorithm. We also need to synthesize
the rotation gates with respect to a fault-tolerant gate set,
but the overhead in the circuit synthesis is asymptotically
negligible.

The PREP0 and PREP1 oracles require loading the coef-
ficients in Eqs. (30) and (32), respectively, onto a quantum
register. As we have chosen a uniform integration mea-
sure, the integration weights for both PREP0 and PREP1
are independent of the value of the l register, which may be
prepared by simply applying a Hadamard gate to all qubits.
The remainder of our PREPARE oracles relies heavily on
the quantum read-only memory (QROM) and the coher-
ent alias sampling (CAS) technique of Ref. [15], which
can be used to perform the mappings |j 〉|0〉 → |j 〉|aj 〉 and

(1/
√

Nd)
∑

j |j 〉 → (1/
√∑

j aj )
∑

j
√aj |j 〉 with Õ(Nd)

Toffoli gates, where Nd is the number of unique data-
points or indices j . This is important as we do not assume
that our times t are chosen uniformly, so preparing the
|t〉 register is nontrivial. If we index our times by some
uniform index j , i.e., writing t = tj , we can use QROM
to map |j 〉|0〉 → |j 〉|tj 〉. [This requires the |j 〉 register be
of size nd = log(Nd).] Coherent alias sampling allows us
to prepare the state (1/

√
λ1)

∑
j ,x(

√
tj /σx,tj )|j 〉|tj 〉|x〉, with

a cost equal to the number of unique datapoints. Com-
bining this with the prepared |l〉 register above yields
the PREP0 oracle. If σx,t = σt (i.e., all separate exper-
iments are performed with the same error, which is a
reasonable assumption), this has an identical cost of Nd.
We assume that Nd scales at worst linearly in T (i.e.,
for dense sampling), and so the cost of implementing
the PREP0 oracle is bounded by Õ(T) and dominated
in the block encoding by the additive cost of the SEL0
oracle. The PREP1 oracle differs from the PREP0 ora-
cle only by the additional amplitudes ax,k. These may
be mapped onto the device using coherent alias sam-
pling at a cost scaling as NxNω. This cost is additive to
the Nd cost above, and as we expect NxNω � Nd, we
expect this oracle to also be dominated by the cost of
SEL1.

As an additional part of the SEL1 subroutine, we need
to implement the controlled Z rotation e−iZ2(tωx,k+φx). The
classical values ωx,k and φx here need to be loaded onto the
quantum device. In order to do this, we rely on the QROM
technique of Ref. [15]. Given the set of Nω classical data-
points fx,k = 2πωx,k to some fixed precision, QROM can be
used to perform the mapping |k〉|x〉|0〉 → |k〉|x〉|fx,k〉, using
Õ(NωNx) Toffoli gates. We can similarly map φx onto
a single qubit, |x〉|0〉 → |x〉|bx〉, where bx = 0 if φx = 0
and bx = 1 if φx = π/2, at a cost of Õ(Nx) Toffoli gates.
These mappings are more appropriate to implement dur-
ing the PREP1 step, so we shall insert them there. Then,
in the SEL1 subroutine, we may assume access to these
registers, in which case the controlled-Z rotation may
be implemented by arithmetic of the same form as in
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product formulas at a cost polylogarithmic in the size of the
|fx,k〉 and |t〉 registers. We may alternatively use the phase
gradient method described in Ref. [109].

It remains to describe a preparation scheme for ρx =
Wx|0〉〈0|W†

x . This is especially important to consider as ρx
is not a pure state, so it is impossible to prepare it from an
initial register with a unitary operation on an N -qubit quan-
tum register. We require Wx to be a unitary operation for
the expectation value estimation algorithm, as it requires
repeated access to Wx and W†

x (or equivalently the ability
to reflect around ρx). To solve this problem, we expand
the size of our system register, and prepare a purified
state |ψx〉 = Wx|0〉 such that, for all observables O within
our original system, Trace[Oρx] = Trace[O ⊗ I |ψx〉〈ψx|].
This requires that we at most double the number of qubits
of our system N , and for all operations other than Wx and
W†

x we can ignore the additional qubits. As we will see
below, for applications in NMR, we are mostly interested
in preparing states such as

ρx = 1
2 (I + Zjx ), (46)

which is the maximally mixed state on all qubits except
qubit jx. To achieve this with an additional N qubits, we
begin with N copies of the Bell state (1/

√
2N )(|00〉 +

|11〉)⊗N , which can be prepared using only Clifford gates.
We then perform a Toffoli gate with x and the jxth qubit as
controls and jx + N as the target, followed by a Hadamard
gate on the jxth qubit controlled by x. Each controlled
Hadamard can be implemented using a single Toffoli gate
[4, Fig. 17]. This prepares the state

|x〉|ψx〉 = 1√
2N−1

|0jx 0jx+N 〉
∏
j �=jx

(|0j 0j +N 〉 + |1j 1j +N 〉),

(47)

which has our desired properties. More generally, any
thermal state of the classical one-dimensional (1D) Ising
model can be prepared as a 2N -qubit thermofield double
state with perfect fidelity using a depth-N/2 circuit [110].

V. APPLICATION TO NUCLEAR MAGNETIC
RESONANCE SPECTROSCOPY

We now focus on the application of our quantum
learning algorithm to NMR spectroscopy. In a NMR
experiment, a sample of a molecule, crystal, or other
material is placed in a strong magnetic field, which inter-
acts with the magnetic moment of any spinful nucleus.
These also couple to each other through dipole-dipole
and electron-mediated interactions, making the full spin

Hamiltonian [28]

H =
∑

i

χiSi · B +
∑
i�=j

Ji,j Si · Sj

+
∑
i�=j

�i,j

[
Si · Sj − 3

|ri,j |2 (Si · ri,j )(Sj · ri,j )

]
. (48)

Here, ri,j = ri − rj is the vector between the ith and
j th nuclei, Si is the spin vector, B is the external mag-
netic field, χi = γiδi is the shielded magnetogyric ratio
of the ith nucleus (with δi the chemical shift and γi the
unshielded magnetogyric ratio), �i,j = μ0γiγj �/8π |ri,j |3
is the dipole-dipole interaction strength (with μ0 the vac-
uum permeability and � Planck’s constant), and Ji,j is
the electron-mediated coupling strength. Assuming that
our nuclei are spin-1/2, Si = 1

2 (Xi, Yi, Zi). (Simulation of
nuclei with spin > 1/2 is also possible on a quantum com-
puter with only small overhead [111].) As the coupling
constants �i,j depend directly on the physical distance
|ri,j | between the molecular spins, knowledge of these dis-
tances is sufficient to infer the molecular geometry (mod-
ulo global translations, rotations, and reflections) [112]. A
NMR spectroscopy experiment follows the protocol out-
lined in Sec. II. The system begins at thermal equilibrium,
is perturbed by one or more magnetic field pulses, and has
its free-induction decay read out (which is equivalent to
measuring

∑
i Xi). In this formalism the starting state ρx

and measurement operator Ox are the same for all experi-
ments [which differ in their choice of Hx(t)]. However, the
external perturbation is often chosen to polarize the initial
state and flip spins in the end, making the signal Sx(t) a
local spin-spin correlation measurement. (We discuss how
to implement this in a strongly correlated system shortly.)

Whether a NMR-relevant spin Hamiltonian lies within
the ergodic, classically feasible, or quantum-feasible
regimes in Fig. 1 depends on the relative energy scales of
the terms in Eq. (48). These are typically

β−1 � Bχ � B|χi − χj | ∼ �i,j � Ji,j , (49)

where β is the inverse temperature of the system, and χ =
(1/N )

∑
i χi. Only terms coupled to the dipolar term (�i,j )

and the electron-mediated interaction (Ji,j ) generate classi-
cally challenging dynamics, so one of them must be large
for us to lie outside the classically feasible region of Fig. 1.
However, in solution a molecule tumbles rapidly, averag-
ing out the dipolar term to 0. In a strong magnetic field,
the remaining Hamiltonian can be treated perturbatively
and solved classically, rendering our quantum learning
algorithm unnecessary. Previous proposals [62] that sug-
gested using quantum computers to learn the structure of
molecules in solution suffer from this applicability issue.
[Note that in zero- or ultralow-field NMR [35,36,38,39]
Eq. (49) does not hold; in these experiments Bχ � Ji,j and
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quantum computers may have a role to play in learning
structure.]

We propose to instead study systems where molecules
are out of solution and not free to move. Indeed, NMR
is used in a wide range of systems out of solution: gels
[31], surfaces [32], proteins in or on membranes [33,34,
113,114], and in the solid state [28]. In these systems the
uniform magnetic field interaction term Bχ is still the dom-
inant energy scale, and terms that do not commute with this
cancel out, leaving

H = B
∑

i

χiZi +
∑
i�=j

Ji,j Si · Sj

+
∑
i�=j

�i,j (3 cos2(φi,j )− 1)[Si · Sj − 3ZiZj ], (50)

where φi,j is the angle between B and ri,j . (This is com-
monly known as the secular approximation.) This approx-
imation requires φi,j to be well defined (e.g., by stack-
ing membranes so that all proteins are similarly aligned
with the magnetic field). Simulating randomly scattered
molecules would require classical averaging over many
such alignments, presenting an additional simulation chal-
lenge (and in practice broadening out spectral lines). In
solid-state NMR experiments one typically removes the
dipolar coupling by magic-angle spinning; spinning at a
high frequency around an angle θ = 54.74◦ to the mag-
netic field. This spinning suppresses the dipolar term by
a factor (3 cos2(θ)− 1) ∼ 0 as long as the spinning fre-
quency is much higher than the dipolar coupling strength.
Combining this with frequency-selective dipolar recou-
pling [115] has achieved remarkable success in biochem-
istry (see, e.g., Ref. [116]). However, this is not typically
achievable to high precision for proton NMR, where dipo-
lar couplings are typically of the order of 30–40 KHz [117]
(by comparison, the highest frequency centrifuges are
around 100 KHz [33]). Even when magic-angle spinning
is combined with decoupling pulse schemes, significant
residual coupling in proton-NMR spectra can be observed
[33,118,119]. (Moreover, suppressing the dipolar coupling
term removes valuable structural information about a sys-
tem.) Proton NMR in solutions has achieved great success
in biochemistry, but the folding of proteins can be quite
different in vitro versus in vivo. For example, a large num-
ber of proteins in cell walls and membranes are folded
precisely according to this external environment, and lose
their shape in solution [33,34]. This suggests that learn-
ing the structure of proteins confined in or on membranes
via proton NMR is a potentially valuable beyond-classical
quantum computing application.

Proposing to study systems with strong dipolar coupling
presents a challenge in designing realistic state preparation
and measurement schemes. As the temperature is larger
than all energy scales in our experiment, our initial state

is a thermal state

ρth = e−βH ∼ 1 −
∑

i

βBχiZi, (51)

and we must perturb this in order to generate any sig-
nal at all. (The approximation here is quite good, as even
for a 23.5-T background magnetic field βBχ ∼ 10−4.)
We have two external handles to perturb our system: the
ability to apply time-dependent rf pulses to modulate the
background magnetic field B, and magic-angle spinning
[69,70]. The latter is a double-edged sword; we cannot
alter the direction of the magnetic field nor the spinning
sample on the timescale of our system, so it is only prac-
tical to use this to suppress the dipolar coupling by a fixed
amount for the entire experiment. However, this may be
adjusted during the experiment via dipolar decoupling and
recoupling pulse schemes [71,72,75,76,115]. As a simple
example, consider the four-step Waugh-Huber-Haeberlen
scheme [120,121], which consists of (1) a rest of time dt
and a π/2 pulse around the x axis, (2) a rest of time dt
and a −π/2 pulse around the y axis, (3) a rest of time
2dt and a π/2 pulse around the y axis, and (4) a rest of
time dt, a −π/2 pulse around the x axis and a final rest of
time dt. By performing a Magnus expansion to first order
in dt on the above combined unitary scheme, the dipolar
term averages to zero. (This is true of any scheme that
rotates the X , Y, Z Pauli spins to the z axis of the mag-
netic field for equal periods of time.) Once the dipolar
field is sufficiently suppressed, individual spins may be
flipped by, e.g., applying a low-amplitude magnetic field
oscillating at a frequency ω that addresses spins for which
Bχi = ω. This simple scheme is likely difficult to achieve
sensitivity below about 1 KHz, but this may be improved
by frequency-selective pulsing schemes [71,122] such as
the DANTE (delays alternating with nutations for tailored
excitation) scheme [123]. After applying such a scheme,
the perturbation to the system is roughly

ρ − ρth = βB
∑

|χiB−ω|<δω
χiZi, (52)

where δω gives the accuracy of the technique. In a NMR
experiment the signal is rescaled by the factor β in
Eq. (52). However, in a quantum computation we may
divide by β before performing our estimation, which
makes the error requirements in our final signal indepen-
dent of β. Approximations in the above can be accounted
for in our learning scheme by adjusting the starting state,
or by incorporating the pulse sequence into the unitary Ux,
giving an additional advantage over classical Hamiltonian
inference.
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A. Determining the structure of ubiquitin as an
example application

A significant body of literature on protein structures
already exists, which we can use as a benchmark for our
quantum learning algorithm. The protein ubiquitin, named
for its abundance throughout eukaryotic organisms, was
discovered in 1975 [124,125]. The structure of ubiquitin is
well known, making it a good benchmark. The protein con-
tains over 600 protons, but these tend to cluster (in terms of
their relative coupling strengths, which correspond to their
location in space); we propose to divide the full molecule
into smaller clusters that may be studied individually. This
corresponds to assuming our experimental signature

Sx(t) =
∑

cluster c

Sx,c(t), (53)

and we can either subtract the contribution of individual
pieces from the total signal, or learn this linear combina-
tion in a single step. The latter has a linear overhead in
the number of pieces, and does not require larger quan-
tum computers or longer circuits. In practice, we do not
need to determine the clustering ahead of time; clusters
will present themselves as minibands in the spectrum that
cannot be separated as in Eq. (53), and we may account
for these in our learning algorithm by allowing our opti-
mization to adjust the number of spins in any given
band.

To investigate this clustering, we write the ubiquitin
molecule as a graph (with edges weighted by the dipo-
lar interaction strength). We take the atomic coordinates

of ubiquitin in solution from previous NMR data (pro-
tein data bank ID 1D3Z), and proton chemical shifts from
the Biological Magnetic Resonance Data Bank (BMRB),
entry 17769 (both in turn taken from Ref. [126]). For sim-
plicity, we assume that all magnetically active nuclei in
our protein are 1H, and that all other magnetically active
nuclear species are shifted far enough in frequency from
the 1H nuclei that their spin dynamics can be neglected.
(This is a simplification of the system in question, and
would likely need to be corrected for accurate simula-
tion.) We then define a cluster as any connected subgraph
where all edges are higher weight than any edges (in the
larger graph) that point from the subgraph out. (The above
definition in principle removes some edges from the sub-
graph that correspond to couplings in the cluster. However,
upon identification of the cluster we consider all cou-
plings between the spins regardless of their size.) Such
subgraphs may be found by thresholding; setting a trun-
cation threshold Vmin and eliminating all couplings lower
than this threshold in the nuclear spin Hamiltonian cuts the
graph of spins into a set of disconnected subgraphs, each
of which is a cluster. In the ubiquitin molecule (Fig. 4), by
adjusting this Vmin we can first split off a 466-spin central
core of the molecule (left), and then a 238-spin backbone
(middle top), and finally a 60-spin cluster (middle bottom).
Given its size, we expect the problem of learning the 60-
spin cluster Hamiltonian to lie around the beyond-classical
boundary. To investigate the cluster’s coupling to its envi-
ronment, we plot the distribution of coupling strengths
(Fig. 4, right) both within the full molecule, within the
60-spin cluster, and between the cluster and the rest of
the molecule. We see that the mean coupling within the

FIG. 4. Finding spin clusters within the ubiquitin protein using data from Ref. [126]. Left: a 466-spin cluster connected at a coupling
of 10 KHz (the total protein has 692 H atoms). Middle top: a 238-spin subset of this cluster, connected at a coupling of 12 KHz. Middle
bottom: a smaller 60-spin subset of this cluster, connected at a coupling of 14 KHz. Black lines and red dashed lines between spins
indicate strong and medium-strength couplings within the cluster. Red dashed region in all three clusters is an eight-spin subcluster
studied in this text. Right top: histogram of couplings within the 60-spin cluster and to the environment. Right bottom: an enlarged
view of the histogram tail to show the distribution of the dominant couplings.
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FIG. 5. Learning small couplings of a six-spin cluster within
ubiquitin given a fixed backbone from a noisy dataset with stan-
dard deviation 10−3. The system is learned from a dataset of 21
points equally spaced between 0 and 2 ms (assuming a 23.5-T
background magnetic field, and a dipolar suppression of α = 10).
Absolute error in individual parameters (blue faint lines) and the
mean absolute error (black line) are plotted at each iteration of
the conjugate gradient algorithm.

ubiquitin cluster is around 2 to 3 times all couplings to the
environment, and the majority of couplings to the environ-
ment are more than 10 times smaller than the couplings
within the cluster. We believe that this is sufficiently weak
that these couplings may be treated perturbatively, though
verifying this is a clear task for future study.

We now demonstrate our Hamiltonian learning algorithm
for a small cluster of six spins in the ubiquitin molecule
(Fig. 5). We assume that we have access to magic-angle
spinning or dipolar decoupling techniques to suppress our
dipolar field by a factor α = 10, and that the background
field is 23.5 T. To simulate the proposal that we know the
protein backbone and are focused on learning long-range
couplings, we start from a Hamiltonian [Eq. (50)] where all
couplings larger than some Vmin are known precisely, and
set ourselves the task of learning smaller couplings. This
leaves 12 couplings to learn (we treat XX + YY and ZZ
couplings independently), which we initialize at 0. To sim-
ulate sampling noise from the quantum computer, to each
query of the device for Sx(t) or the gradient we add a nor-
mally distributed error term with a value of 10−3. Using the
conjugate gradient optimization algorithm implemented in
scipy [127], we find that our learning problem converges to
a total error of 0.008 KHz in only 11 iterations (a relative
error of 0.2%).

B. Learnability of spin clusters in ubiquitin

It remains to demonstrate that spin clusters in a ubiquitin
protein confined on a membrane [113,114] will generate
a NMR signal within the region of quantum feasibil-
ity in Fig. 1. In order to study this, we investigate the

participation entropy [60]

S1 =
∑
α

|ψ2
α | log(|ψ2

α |) (54)

of eigenstates |ψ〉 = ∑
α ψα|α〉 of small clusters in the

ubiquitin protein. By adjusting our threshold Vmin in the
clustering protocol described above, we identify a col-
lection of 127 clusters of N = 5–12 spins in ubiquitin.
We do not expect the spectra of the ubiquitin Hamilto-
nian to be represented by a disjoint sum of some of these
clusters (which would make it classically simulatable):
the truncation is simply performed to give an ensem-
ble on which to study, and we expect that the spectra
from some of these clusters in the larger spin environ-
ment would differ significantly from those of the truncated
piece. The dipolar couplings in these Hamiltonians may
be suppressed relative to their chemical shifts by magic-
angle spinning or decoupling pulse schemes; we simulate
this numerically by dividing the dipolar term by a variable
suppression factor α. For the Hamiltonian of each clus-
ter [Eq. (50)], we calculate the mean participation entropy
S1 across the middle half of the spectrum at P = N/2,
half-filling as we increase the dipolar term suppression
by a factor α. [For odd-sized clusters of N = 5, 7, 9, 11
spins, we take P = (N − 1)/2 filling.] In an ergodic sys-
tem where nearly all computational basis states contribute
nearly equally to each eigenstate, the participation entropy
scales as S1 = − log[dim(H)] = − log[

(N
P

)
]. For the sys-

tems considered, this is roughly S(ergodic)
1 ∼ −0.63N . By

comparison, a completely localized system has a constant
(or logarithmically growing) participation entropy. As we
increase α and the system becomes nonergodic, the par-
ticipation entropy follows a trend S1 ∼ D1S(ergodic)

1 , where
the multifractal dimension D1 = D1(α) characterizes the
fraction of the Hilbert space explored by an eigenstate [60].

In Fig. 6 we plot the multifractal dimension of our 127-
spin clusters as we suppress the dipolar term by a factor α.
Our quantum-feasible region corresponds to a multifrac-
tal dimension D1 < 1, while our classically feasible region
corresponds to a multifractal dimension D1 � 1. We see
a clear region between suppression factors of α ∼ 5 and
α ∼ 100 where our system begins to localize and the mul-
tifractal dimension quickly drops, but the system is not
completely localized and classically simple. In the thermo-
dynamic limit this transition is discontinuous [60], but as
we are interested in finite system sizes, we believe that the
observed trend of D1 as we cross this localization transition
is relevant to our situation. On either side of the localiza-
tion transition, local disorder will make individual clusters
either more ergodic or more local than the mean, which
implies that the boundaries between degenerate, quantum
feasible, and classically feasible are not sharp as a function
of the dipolar suppression. (This can be seen in the insets
of Fig. 6.)
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FIG. 6. Plot of the multifractal dimension of small clusters of
spins in the ubiquitin molecule as the dipolar term is suppressed
in a background 23.5-T field. Points in the main plot are extracted
from a linear fit of the mean participation entropy of the different
clusters as a function of the system size, as demonstrated in the
two insets for suppression factors 2 and 100. From these fits, the
multifractal dimension can be estimated. The coloring of the plot
indicates the expected quantum and classical learnability of the
system as the dipolar term is suppressed, corresponding to the
different regions in Fig. 1.

The ergodic to nonergodic phase transition observable
in the Hamiltonian eigenstructure maps immediately to the
learnability of the NMR spin Hamiltonian. This can be
studied in the Hessian of the Hamiltonian learning prob-
lem at complete convergence, given by Eq. (11). As the
Hessian corresponds to the Fisher information of the sys-
tem, small eigenvalue-eigenvector pairs (λ, �v) correspond
to “floppy modes” in our parameter space; linear com-
binations of parameters that may be adjusted in tandem
without significantly altering our signal. Large eigenvalue-
eigenvector pairs correspond to combinations of parame-
ters that are well learned. In Fig. 7 we study the typical
eigenstructure of the Hessians of clusters of 5–8 spins.
We see a clear transition that corresponds exactly to the
ergodic to nonergodic phase transition identified in Fig. 6.
On the left-hand side, corresponding to the ergodic phase,
the typical maximum eigenvalue (Fig. 7, top) of the ensem-
ble shows a clear exponential decay in system size, imply-
ing that learning in a large system will be nigh impossible.
Moreover, the typical participation in these systems,

exp
(

−
∑

j

v2
j log v2

j

)
, (55)

grows quickly (Fig. 7, bottom), implying that these modes
correspond to global data rather than specific couplings.
By contrast, when the system is strongly localized, the
largest eigenvalues are roughly constant in the system size,
and correspond to linear combinations of only one or two
parameters. As the system shifts between these two phases,
we see a continuous improvement in learnability, where it

FIG. 7. Eigenvalue and eigenvector participation data for Hes-
sians of the Hamiltonian learning problem for small spin clusters
in ubiquitin. [Data are taken as the set of 〈Zi(t)Zj (0)〉 and
〈Xi(t)Xj (0)〉 correlators using a set of equally spaced times
between t = 0 and t = 5 ms in the absence of sampling noise,
implying that units of the Hessian eigenvalues are arbitrary.] Top:
typical (geometric mean) largest Hessian eigenvalue for different
system sizes as the dipolar term is suppressed. Inset shows the
typical Hessian spectrum for each suppression factor over clus-
ters of eight spins—the light green line in the main plot is taken
from the indicated cut through the inset. Bottom: typical (geo-
metric mean) eigenvector participation [Eq. (55)] for the same
dataset. Inset shows the participation across the entire Hessian
spectrum for clusters of eight spins; each datapoint in the light
green line in the main plot corresponds to a geometric mean over
a single line in the inset.

appears we can learn some of but not all of the system.
This can be observed in the full eigenspectrum data (Fig. 7,
top inset). We note that the largest eigenvalues also corre-
spond to smaller typical participation, which suggests that,
when a system is on the ergodicity boundary, we can learn
some local couplings rather than just global information.
This result demonstrates the importance of having access
to the Hessian when solving the learning problem, as it tells
which of the converged parameters can be relied upon.

VI. CONCLUSION

In this work we introduced a new method for learn-
ing an unknown quantum Hamiltonian of a spin system
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from time-resolved measurements of the system. We con-
structed and costed circuits within NISQ and FT frame-
works to estimate gradients of the cost function of this
learning problem, finding clear asymptotic speedups when
one is not constrained by poor coherence in NISQ devices.
We outlined an application for these algorithms in classi-
cally intractable NMR experiments, and proposed a spe-
cific region in the NMR field (when dipolar couplings are
strong and cannot be simply removed) as an area where
beyond-classical computations may be very useful. Taking
the ubiquitin protein as an example, we identified small
clusters of spins in the larger 1H dipolar coupling matrix,
demonstrated the convergence of our learning algorithm
on a toy example, and investigated the cluster-environment
coupling and the learnability of the system as the dipolar
coupling is suppressed.

As part of this work, we identified a direct correspon-
dence between the ergodic to nonergodic phase transition
and the learnability of a Hamiltonian from time-resolved
experimental data. The latter was clearly observable in
the structure of the Hessian of the learning problem. We
believe this to be a more general result than in the NMR
problems that we have studied in this work. As far as we
know, this is the first link demonstrated between the onset
of wave-function fractality and the onset of learnability of
the generating Hamiltonian.

Our work opens a new field of quantum computing
applications, leaving clear directions for future study. Our
learnability data suggests that not all dipolar coupling
parameters (that encode the 3D protein structure) may
be learnable using the simple spin-spin correlations mea-
sured in this work. Developing future experiments to target
the parameters relevant for structure calculations in NMR
systems will be highly relevant in the future. A related
question (which we have not yet determined the answer
to) pertains to the conditions (if any) under which this
problem is classically difficult. While we can rely on the
fact that inference of NMR spectra from strongly corre-
lated problems appears difficult (and the forward problem
of generating the spectra is at least DQC1-hard [46,61]),
we do not know of a complexity-theory result explaining
when the inverse problem is as difficult. Also, the pro-
tocol we propose in Sec. III A can, in principle, avoid
trapping in local minima; however, this is not optimized
or fully costed. We suggest that, following Ref. [46], it
may be possible to define a protocol using our methods
that learns at the Heisenberg limit (when learning is pos-
sible). It is also unclear precisely how well our protocol
behaves in a system with a large number of unknown cou-
plings, and whether we will have problems with vanishing
gradients as our system size grows. (We note however that
this is avoided somewhat in NMR problems where we start
with a reasonable guess of our Hamiltonian parameters.)
Another clear direction for future work is to consider learn-
ing Hamiltonian parameters from the Fourier transform

of the spectra Sx(t) instead of the time-resolved data, as
spectral information is typically more robust to noise than
amplitude data. It also remains to determine what the cost
is to optimize a real-world NMR experiment from a real-
istic initial guess. This understanding can be furthered
by small- and midscale quantum experiments (such as
recently performed in Ref. [128]) on simulated or exper-
imental hardware. Finally, thanks to the generality of our
Hamiltonian learning techniques, it should be possible to
extend these methods to the design of new NMR experi-
ments, or to interpret data from other types of experimental
procedures used to probe condensed matter, high-energy
physics, chemistry, and materials science. We look forward
to further explorations of what new possibilities for quan-
tum experiments and data analysis these techniques can
bring to the scientific community.
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APPENDIX A: OPTIMIZING QUERY COUNTS
FOR NISQ ALGORITHMS

In this section we derive Eq. (24) by optimizing the allo-
cation of oracle calls across a set of NISQ experiments.
This is a slightly atypical approach; typically, in a NISQ
experiment one attempts to optimize the number of exper-
iments (or shots) to achieve some target error ε [17,129]
rather than working with an oracular model. However, this
optimization allows us to make a fair comparison between
the results of Secs. IV A and IV B. Propagating variance
through Eq. (5) yields

Var
[

dC[H ]
dhn

]
=

∑
x,t

1
σ 4

x,t
{Var[S̄x(t)]J̄ n

x (t)
2

+ Var[J̄ n
x (t)][S̄x(t)− Sx(t)]2}. (A1)

As our estimate of J̄ n
x (t) is bounded, assuming that ‖Ox‖ =

1 the bound in Eq. (22) yields an estimator for J̄ n
x (t)

with variance ε2 using M = t2ε−2 repetitions of the cir-
cuit. We now assume that we may measure Sx(t) and J n

x (t)
for different x in parallel. This is realistic for our NMR
application, and will save a factor Nx in the asymptotic
scaling. As the number of oracle calls per circuit scales as
t, we can achieve a variance Var[J̄ n

x (t)] = ax,t,J t3C−1
t,J using

Ct,J oracle calls (for some t and x-independent constant
ax,t,J ). Estimating S̄x(t) with a variance ε2 requires sim-
ply repeating the corresponding circuit (Fig. 2, top) ε−2

times, and so with Ct,S oracle calls we achieve a variance
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Var[S̄x(t)] = ax,t,StC−1
t,S (for some t and x-independent con-

stant ax,t,S). As [S̄x(t)− Sx(t)] is independent of t (being
bounded by 2 when ‖Ox‖ = 1), and J̄ n

x (t) scales linearly in
t (as discussed in the main text), assuming that σx,t = σ we
have

Var
[

dC[H ]
dhn

]
=

∑
x,t

1
σ 4

[
ax,t,St3

Ct,S
+ ax,t,J t3

Ct,s

]
, (A2)

where we have absorbed the constants of the S̄x(t) and
J̄ n

x (t) scalings into ax,t,S and ax,t,J . To optimize this,
we adopt the same Lagrangian approach introduced for
measurement optimization in Ref. [129]. We write a
Lagrangian

L = λ

{ ∑
x,t

1
σ 4

[
ax,t,St3

Ct,S
+ ax,t,J t3

Ct,J

]
− Var

[
dC[H ]

dhn

]}

+
∑

x,t

(Cx,t,J + Cx,t,S), (A3)

and then differentiate with respect to our free parameters
Cx,t,J and Cx,t,S and solve for the result being equal to 0:

∂L
∂Ct,S

= 1 −
∑

x λax,t,St3

σ 4C2
t,S

= 0

→ Ct,S = λ1/2
[∑

x

ax,t,S

]1/2

t3/2σ−2, (A4)

∂L
∂Ct,J

= 1 −
∑

x λax,t,J t3

σ 4C2
t,J

= 0

→ Ct,J = λ1/2
[ ∑

x

ax,t,J

]1/2

t3/2σ−2. (A5)

Substituting into the expression for a variance Var[dC[H ]/
dhn] = ε2 yields

ε2 = λ−1/2σ−2
∑

t

{[ ∑
x

ax,t,J

]1/2

t3/2

+
[ ∑

x

ax,t,S

]1/2

t3/2
}

, (A6)

and rearranging for λ yields

λ = ε−4σ−4
{∑

t

([∑
x

ax,t,J

]1/2

t3/2

+
[∑

x

ax,t,S

]1/2

t3/2
)}2

. (A7)

Finally, we can write the total number of oracle calls as

C =
∑

x,t

(Cx,t,S + Cx,t,J ) = ε−2σ−4
{∑

t

([∑
x

ax,t,J

]1/2

t3/2

+
[∑

x

ax,t,S

]1/2

t3/2
)}2

; (A8)

as ax,t,J and ax,t,S are constants, we asymptotically
have

∑
x ax,t,J ,

∑
x ax,t,S ∼ O(Nx). Substituting this into

Eq. (A8) immediately yields Eq. (24).

APPENDIX B: FAULT-TOLERANT APPROACH
TO THE BACKWARDS PROBLEM

In this appendix, we expand on the circuitry and cost
analysis of the fault-tolerant estimation of the gradient of
the Hamiltonian learning problem in Sec. IV B.

We consider estimating the quantity

Nx∑
x=1

Nd∑
j =1

1
σ 2

x,tj

(
Trace(Oxρ̃x(tj ))−

Nω∑
m=1

ax,m cos(tjωx,m + φx)

)

×
∫ tj

0
ds Trace(Ox[Vn(tj , s), ρ̃x(tj )]) (B1)

on a fault-tolerant quantum computer for the backwards
problem. Here, operators V and ρ̃x are defined as

Vn(t, s) := e−i(t−s)H Vnei(t−s)H , ρ̃x(t) := e−itH |ψx〉〈ψx|eitH

(B2)

for some Hamiltonian H , an arbitrary term Vn in H , and an
x-dependent initial state |ψx〉.

Our approach depends on a quantum overlap estimation
algorithm that we review in Appendix B 1. To implement
this on a fault-tolerant quantum computer, we need to dis-
cretize the time integral and re-express the target quantity
as a linear combination of quantum overlaps. We also
need to truncate real parameters σx,tj , tj , ax,m, and ωx,m
to a finite number of digits to construct the quantum cir-
cuit. We analyze the truncation and discretization error in
Appendix B 2.

1. Quantum overlap estimation

To estimate Eq. (B1) on a fault-tolerant quantum com-
puter, we first re-express it as a linear combination of
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quantum overlaps:

∑
x,j

1
σ 2

x,tj

〈ψx|eitj H Oxe−itj H |ψx〉

×
∫ tj

0
ds[〈ψx|eitj H Oxe−i(tj −s)H Vne−isH |ψx〉

− 〈ψx|eisH Vnei(tj −s)H Oxe−itj H |ψx〉]

+
∑
x,j

1
σ 2

x,tj

∑
m

ax,m cos(tjωx,m + φx)

×
∫ tj

0
ds[〈ψx|eitj H Oxe−i(tj −s)H Vne−isH |ψx〉

− 〈ψx|eisH Vnei(tj −s)H Oxe−itj H |ψx〉]. (B3)

Then our goal is to find unitary operators SELa, quan-
tum states |�a〉 = PREPa|0〉, and positive numbers λa > 0
for a = 0, 1, such that the 〈�a|SELa|�a〉 compute the
desired linear combinations up to scaled-down factors of
λa; equivalently, we say that the target quantities are block
encoded by |�a〉 and SELa with scaled-down factor λa.
We describe how to construct such SELa and |�a〉 in
Sec. IV B.

We estimate the quantum overlap 〈�|SEL|�〉 using the
overlap estimation algorithm of Ref. [99]. Specifically, we
consider the two reflections

I − 2|�〉〈�|, I − 2SEL|�〉〈�|SEL†. (B4)

These reflections keep the two-dimensional subspace
span{|�〉, SEL|�〉} invariant, on which their product

(I − 2|�〉〈�|)(I − 2SEL|�〉〈�|SEL†) (B5)

has eigenvalues e±i2 arccos |〈�|SEL|�〉|. Therefore, we can per-
form quantum phase estimation on the above operator and
take the cosine of the outcome to estimate the ampli-
tude α ∼ |〈�|SEL|�〉|. To further retrieve the phase, we
introduce an ancilla qubit and estimate

β0 ∼ |〈+�|c-(SEL)|+�〉| = |1 + 〈�|SEL|�〉|
2

,

βπ/2 ∼ |〈+�|(eiπZ/4 ⊗ I)c-(SEL)|+�〉|

= |1 − i〈�|SEL|�〉|
2

, (B6)

where c-(SEL) is the controlled operation

c-(SEL) := |0〉〈0| ⊗ I + |1〉〈1| ⊗ SEL. (B7)

From these we obtain

y = 4β2
0 − α2 − 1

2
+ i

4β2
π/2 − α2 − 1

2
∼ 〈�|SEL|�〉.

(B8)

The standard quantum phase estimation outputs an esti-
mate of the eigenphase with accuracy ε by making O(1/ε)
queries to the reflections, succeeding with a constant prob-
ability greater than 1/2. The precision parameter ε directly
translates to a maximal error of O(ε) in the estimated over-
lap. To succeed with a higher probability, we can repeat
quantum phase estimation and take the median of the out-
comes. By Hoeffding’s inequality, the success probability
can be made arbitrarily close to one with only logarithmic
overhead. We thus obtain the following result.

Lemma 1 (Quantum overlap estimation): Given quan-
tum state |�〉 = PREP|0〉, unitary SEL, ε > 0, and 0 <
δ < 1, there exists a quantum algorithm with output y such
that

P(|y − 〈�|SEL|�〉| ≥ ε) < δ. (B9)

This algorithm makes O(log(1/δ)/ε) queries to PREP and
SEL [or their controlled version c-(PREP) and c-(SEL)],
and uses O(N polylog(1/ε, 1/δ)) additional gates, where
N is the number of qubits in the target system.

In the description of the above algorithm, we have
ignored the normalization factor λ > 0 introduced by
|�〉 = PREP|0〉 and SEL. To get the target quantity, we
need to multiply the outcome of quantum overlap esti-
mation by λ. To ensure that the estimation succeeds
with probability 1 − δ and accuracy ε, it then suffices to
make O(log(1/δ)λ/ε) queries to PREP and SEL and use
O(N polylog(λ, 1/ε, 1/δ)) additional gates.

It is instructive to compare the fault-tolerant approach
with the sampling-based approach that is more suit-
able to implement on near-term quantum devices. That
approach uses the generalized Hadamard test and pro-
duces an unbiased estimate of the real and imaginary parts
of 〈�|SEL|�〉 with constant variance. By Hoeffding’s
inequality, it suffices to take O(log(1/δ)λ2/ε2) samples
to estimate with accuracy ε and probability 1 − δ. Each
sample requires a constant number of queries to PREP
and SEL. Therefore, we get a factor of �(λ/ε) saving
by switching to the fault-tolerant quantum algorithm. See
Secs. IV A and IV B for further discussions of these two
approaches.

2. Truncation and discretization error

In this section, we analyze the error due to the trun-
cation of real parameters and discretization of the time
integral. We will see in Sec. IV B that this only introduces
a logarithmic overhead in the overall cost.

We first consider discretizing the integral as

∫ tj

0
dsf (s) ≈ tj

L

L−1∑
�=0

f
(
�

L
tj

)
, (B10)
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where

f (s) := Trace(Ox[e−i(tj −s)H Vnei(tj −s)H ,

e−itj H |ψx〉〈ψx|eitj H ]). (B11)

This discretization error can be made arbitrarily small by
choosing L sufficiently large. Here, we analyze how the
error scales as a function of L. Using the integral expansion

∫ tj

0
ds f (s)− tj

L

L−1∑
�=0

f
(
�

L
tj

)

=
L−1∑
�=0

∫ (�+1)tj /L

�tj /L
ds

(
f (s)− f

(
�

L
tj

))

=
L−1∑
�=0

∫ (�+1)tj /L

�tj /L
ds

∫ s

�tj /L
dτ f ′(τ ), (B12)

we have
∣∣∣∣
∫ tj

0
dsf (s)− tj

L

L−1∑
�=0

f
(
�

L
tj

)∣∣∣∣

≤
L−1∑
�=0

∫ (�+1)tj /L

�tj /L
ds

∫ s

�tj /L
dτ‖f ′‖max = t2j

2L
‖f ′‖max,

(B13)

where

‖f ′‖max := max
0≤s≤tj

|f ′(s)| (B14)

is the largest derivative of f within the time interval [0, tj ].
The derivative f ′(s) takes the form

f ′(s) := Trace(Ox[e−i(tj −s)H [iH , Vn]ei(tj −s)H ,

e−itj H |ψx〉〈ψx|eitj H ]), (B15)

which gives

‖f ′‖max ≤ 2‖[H , Vn]‖. (B16)

The above discretization only achieves first-order accu-
racy, but one can improve this by switching to a higher-
order scheme, which can reduce the cost of fault-tolerant
implementation; see [7, Appendix H] for details.

In the following, we evaluate this bound for a model of
clustered Hamiltonians acting on N sites:

H :=
∑
K

HK +
∑
K �=L

HK:L

=
∑
K

∑
k,k′∈K

Hk,k′ +
∑
K �=L

∑
k∈K,l∈L

Hk,l. (B17)

Here, each term from the Hamiltonian acts on at most
two sites and the sites are further grouped into clusters.

We use calligraphic capital letters such as K and L to
denote the clusters, and use k to denote an arbitrary sin-
gle site within K. Assuming that Hamiltonian terms are
normalized ‖Hk,l‖ ≤ 1, we have

‖f ′‖max ≤ 4�ind, �ind := max
L

max
l∈L

∑
K

∑
k∈K

‖Hk,l‖.

(B18)

Altogether, we have discretized Eq. (B1) with error at most

∑
x,j

1
σ 2

x,tj

∣∣∣∣Trace(Oxρ̃x(tj ))−
∑

m

ax,m cos(tjωx,m + φx)

∣∣∣∣

× 2t2j�ind

L
= O

(
λ�indT

L

)
, (B19)

where

λ := λ0 + λ1,

λ0 :=
∑
x,j

tj
σ 2

x,tj

, λ1 :=
∑
x,j ,m

ax,mtj
σ 2

x,tj

, T := max
j

tj .

(B20)

To achieve an accuracy of ε, it suffices to choose

L = O
(
λ�indT
ε

)
. (B21)

We take T and L to be powers of 2 to simplify our circuit
implementation.

We now consider the error due to the finite-digit trun-
cation of the real parameters σx,tj , tj , ax,m, and ωx,m. In
general, the error in σx,tj can be bounded under certain con-
tinuity assumptions with respect to the argument tj . Here,
we take σx,tj ≡ σ to be constant to simplify the analysis.
In our circuit implementation, the evolution time will be
loaded onto a quantum register using the QROM approach
of Ref. [15] as

|tlog T−1 · · · t1 t0〉|t−1t−2 · · · t− log K〉, (B22)

where we have again taken K to be a power of 2 to simplify
the implementation. Here, T is the maximum possible time
so log T bits suffice to represent the integer part of t. The
length of the decimal part should be chosen large enough
to represent the time sufficiently accurate. Specifically, for
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|t′ − t| ≤ 1/K , we have

‖e−it′H − e−itH‖ ≤ |t′ − t|‖H‖ = O
(

N�ind

K

)
, (B23)

which implies that
∣∣∣∣
∫ t′

0
ds f (t′, s)−

∫ t

0
ds f (t, s)

∣∣∣∣
≤

∣∣∣∣
∫ t′

0
ds f (t′, s)−

∫ t

0
ds f (t′, s)

∣∣∣∣
+

∣∣∣∣
∫ t

0
ds f (t′, s)−

∫ t

0
ds f (t, s)

∣∣∣∣
= O

(
N�indt

K

)
, (B24)

|g(t′)− g(t)| ≤ |t′ − t| max
τ

|g′(τ )| = O
(

N�ind

K

)
,

(B25)

for

f (t, s) := Trace(Ox[e−i(t−s)H Vnei(t−s)H ,

e−itH |ψx〉〈ψx|eitH ]), (B26)

g(t) := Trace(Oxe−itH |ψx〉〈ψx|eitH ). (B27)

Similarly, if t′j and ω′
x,m satisfy |t′j − tj | ≤ 1/K and

|ω′
x,m − ωx,m| ≤ 1/K , then

|cos(t′jω
′
x,m + φx)− cos(tjωx,m + φj )|

≤ |t′jω′
x,m − tjωx,m| = O

(
T + W

K

)
, (B28)

where T := maxj tj and W := maxx,m |ωx,m|. The coeffi-
cients in the Hamiltonian can be approximately prepared
using the coherent alias sampling approach also described
in Ref. [15]. Using that approach with log K qubits for the
inequality test, we have

∣∣∣∣ t′j /σ
′2

λ′
0

− tj /σ 2

λ0

∣∣∣∣ ≤ 1
KNd

,

∣∣∣∣a′
x,mt′j /σ

′2
j

λ′
1

− ax,mtj /σ 2
j

λ1

∣∣∣∣ ≤ 1
KNxNωNd

. (B29)

The total truncation error can now be bounded by

O
(
λN�ind

K
+ λ0N�ind

K
+ λ1(T + W)

K
+ Ndλ0

KNd

+ NxNωNdλ1

KNxNωNd

)
= O

(
λ(N�ind + T + W)

K

)
. (B30)

To ensure that this error is at most ε, it suffices to choose

K = O(poly(λ, N ,�ind, T, W, 1/ε)). (B31)

APPENDIX C: ALTERNATIVE DERIVATION OF
HAMILTONIAN DERIVATIVES VIA OPTIMAL

CONTROL THEORY

To derive Eq. (5) through optimal control theory, we
enforce the evolution of ρx(t) by H + Hx(t) variationally.
We introduce an auxiliary field κx(t) as a Lagrange vari-
able to enforce this condition, which transforms our cost
function to

C[H̄ , ρ̄, κ̄] =
∑

n

(h̄n − h(0)n )
2

2ω2
n

+
∑

x,t

1
2σ 2

x,t
(Trace[ρ̄x(t)Ox] − Sx(t))2

+ i
∑

x

∫ ∞

0
dt Trace

×
[
κ̄x(t)

(
∂ρ̄x(t)
∂t

− i[H̄ + Hx(t), ρ̄x(t)]
)]

.

(C1)

This is now a functional; in addition to the finite real values
h̄n, it also takes as input any smooth matrix-valued func-
tions ρ̄x(t) and κ̄x(t). This implies that all dependence of C
on H is explicit; the dependence of ρ̄x(t) [and κ̄x(t)] will
emerge by the principle of least action. The solution to our
problem is given again by the minimum of the functional
C. Taking a functional derivative δC/δκ̄x(t) = 0 yields the
Schrödinger equation in its standard form

δC
δκ̄x(t)

= 0 → ∂ρ̄x(t)
∂t

= i[H̄ + Hx(t), ρ̄x(t)], (C2)

which yields the solution in the main text: ρ̄x(t) =
Ūx(t, 0)ρxŪ†

x(t, 0), Taking the functional derivative with
respect to ρ̄x(t) and setting this equal to 0 yields an update
rule for κ̄x(t):

∂κ̄x(t)
∂t

= −i[κ̄x(t), H ] − i
∑

t′

1
σ 2

x,t′
δ(t − t′)

× (Trace[ρ̄x(t′)Ox
] − Sx(t′))Ox, κx(+∞) = 0.

(C3)

This takes the form of an external field κ̄x(t) that propa-
gates back in time and is perturbed in a nonunitary way by
each measurement Sx(t′) that does not completely match
the predicted S̄x(t′). Substituting in the solution for ρ̄x(t)
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yields a solution for κ̄x(t):

κx(t) = i
∑
t′>t

1
σ 2

x,t′
Ū†

x(t, t′)OxŪx(t, t′)

× (Trace[ρ̄x(t)Ox] − Sx(t)). (C4)

To recover the update rule, we then take the partial deriva-
tive of C with respect to the parameters hn and set this to
zero:

∂C
∂ h̄n

= h̄n − h(0)n

ω2
n

+
∑

x

∫ ∞

0
dt Trace[κ̄x(t)[Vn, ρ̄x(t)]].

(C5)

Substituting in Eq. (C4) yields Eq. (5) as required. Follow-
ing a similar procedure to take second-order derivatives of
C with respect to ρ̄x(t) and κ̄x(t) yields Eq. (6) after some
rearrangement.

[1] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave
Wecker, and Matthias Troyer, Elucidating reaction mech-
anisms on quantum computers, PNAS 114, 7555 (2017).

[2] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R.
McClean, and Ryan Babbush, Qubitization of arbitrary
basis quantum chemistry leveraging sparsity and low rank
factorization, Quantum 3, 2018 (2019).

[3] Vera von Burg, Guang Hao Low, Thomas Häner, Damian
S. Steiger, Markus Reiher, Martin Roetteler, and Matthias
Troyer, Quantum computing enhanced computational
catalysis, Phys. Rev. Res. 3, 033055 (2021).

[4] Joonho Lee, Dominic W. Berry, Craig Gidney, William J.
Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan
Babbush, Even More Efficient Quantum Computations
of Chemistry Through Tensor Hypercontraction, PRX
Quantum 2, 030305 (2021).

[5] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James
McClain, Hartmut Neven, and Garnet Kin-Lic Chan,
Low-Depth Quantum Simulation of Materials, Phys. Rev.
X 8, 011044 (2018).

[6] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry,
Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang,
Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik,
Hartmut Neven, and Ryan Babbush, Improved fault-
tolerant quantum simulation of condensed-phase corre-
lated electrons via Trotterization, Quantum 4, 296 (2020).

[7] Yuan Su, Dominic Berry, Nathan Wiebe, Nicholas Rubin,
and Ryan Babbush, Fault-tolerant quantum simulations of
chemistry in first quantization, ArXiv:2105.12767 (2021).

[8] John Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[9] Frank Arute, et al., Quantum supremacy using a pro-
grammable superconducting processor, Nature 574, 505
(2019).

[10] Yulin Wu, et al., Strong quantum computational
advantage using a superconducting quantum processor,
ArXiv:2106.14734 (2021).

[11] Xiao Mi, et al., Information scrambling in computation-
ally complex quantum circuits, ArXiv:2101.08870 (2021).

[12] Xiao Mi, et al., Observation of time-crystalline eigenstate
order on a quantum processor, ArXiv:2107.13571 (2021).

[13] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-
Guzik, Simulation of electronic structure Hamiltonians
using quantum computers, Mol. Phys. 109, 735 (2011).

[14] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone,
Quantum Random Access Memory, Phys. Rev. Lett. 100,
160501 (2008).

[15] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan
Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler,
and Hartmut Neven, Encoding Electronic Spectra in
Quantum Circuits with Linear t Complexity, Phys. Rev.
X 8, 041015 (2018).

[16] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann,
A quantum approximate optimization algorithm, ArXiv:
1411.4028 (2014).

[17] D. Wecker, M. B. Hastings, and M. Troyer, Towards prac-
tical quantum variational algorithms, Phys. Rev. A 92,
042303 (2015).

[18] William J. Huggins, Jarrod McClean, Nicholas Rubin,
Zhang Jiang, Nathan Wiebe, K. Birgitta Whaley, and
Ryan Babbush, Efficient and noise resilient measurements
for quantum chemistry on near-term quantum computers,
ArXiv:1907.13117 (2019).

[19] Xavier Bonet-Monroig, Ryan Babbush, and Thomas E.
O’Brien, Nearly Optimal Measurement Scheduling for
Partial Tomography of Quantum States, Phys. Rev. X 10,
031064 (2020).

[20] Andrew Zhao, Nicholas C. Rubin, and Akimasa Miyake,
Fermionic partial tomography via classical shadows,
ArXiv:2010.16094 (2020).

[21] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch,
A new method of measuring nuclear magnetic moment,
Phys. Rev. 53, 318 (1938).

[22] Chris Boesch, Nobel prizes for nuclear magnetic reso-
nance: 2003 and historical perspectives, J. Magn. Res.
Imaging 20, 177 (2004).

[23] Seth Lloyd, A potentially realizable quantum computer,
Science 261, 1569 (1993).

[24] David G. Cory, Amr F. Fahmy, and Timothy F. Havel,
Ensemble quantum computing by NMR spectroscopy,
Proc. Natl. Acad. Sci. 94, 1634 (1997).

[25] Neil A. Gershenfeld and Isaac L. Chuang, Bulk spin-
resonance quantum computation, Science 275, 350
(1997).

[26] Lieven M. K. Vandersypen, Matthias Steffen, Gregory
Breyta, Costantino S. Yannoni, Mark H. Sherwood, and
Isaac L. Chuang, Experimental realization of Shor’s quan-
tum factoring algorithm using nuclear magnetic reso-
nance, Nature 414, 883 (2001).

[27] Lieven M. K. Vandersypen and Isaac L. Chuang, NMR
techniques for quantum control and computation, Rev.
Mod. Phys. 76, 00 (2004).

[28] A. E. McDermott and T. Polenova, Solid State NMR
Studies of Biopolymers, eMagRes Books (Wiley, 2012).

[29] D. Sakellariou, A. Lesage, P. Hodgkinson, and L. Ems-
ley, Homonuclear dipolar decoupling in solid-state NMR
using continuous phase modulation, Chem. Phys. Lett.
319, 253 (2000).

030345-22

https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.22331/q-2019-12-02-208
https://doi.org/10.1103/PhysRevResearch.3.033055
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.22331/q-2020-07-16-296
https://arxiv.org/abs/2105.12767
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2106.14734
https://arxiv.org/abs/2101.08870
https://arxiv.org/abs/2107.13571
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevX.8.041015
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevA.92.042303
https://arxiv.org/abs/1907.13117
https://doi.org/10.1103/PhysRevX.10.031064
https://arxiv.org/abs/2010.16094
https://doi.org/10.1103/PhysRev.53.318
https://doi.org/10.1002/jmri.20120
https://doi.org/10.1126/science.261.5128.1569
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1126/science.275.5298.350
https://doi.org/10.1038/414883a
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1016/S0009-2614(00)00127-5


QUANTUM COMPUTATION OF MOLECULAR STRUCTURE. . . PRX QUANTUM 3, 030345 (2022)

[30] P. K. Madhu, High-resolution solid-state NMR spec-
troscopy of protons with homonuclear dipolar decoupling
schemes under magic-angle spinning, Solid State Nucl.
Magn. Reson. 35, 2 (2009).

[31] E. Kolehmainen, Nonappa, Solid state NMR studies of
gels derived from low molecular mass gelators, Soft
Matter 12, 6015 (2016).

[32] F. Deng, J. Yang, and C. Ye, in Modern Magnetic Reso-
nance (Springer, Dordrecht, 2008).

[33] Vipin Agarwal, Susanne Penzel, Kathrin Szekely, Ric-
cardo Cadalbert, Emilie Testori, Andres Oss, Jaan Past,
Ago Samoson, Matthias Ernst, Anja Böckmann, and Beat
H. Meier, De novo 3D structure determination from sub-
milligram protein samples by solid-state 100 kHz MAS
NMR spectroscopy, Angew. Chem. 53, 12253 (2014).

[34] Davy Sinnaeve, in eMagRes, Vol. 9 (Wiley, Chichester,
2020).

[35] M. P. Ledbetter, C. W. Crawford, A. Pines, D. E. Wemmer,
S. Knappe, J. Kitching, and D. Budker, Optical detection
of NMR J-spectra at zero magnetic field, J. Magn. Res.
199, 25 (2009).

[36] T. Theis, P. Ganssel, G. Kervern, S. Knappe, J. Kitching,
M. P. Ledbetter, D. Budker, and A. Pines, Parahydrogen-
enhanced zero-field nuclear magnetic resonance, Nat.
Phys. 7, 571 (2011).

[37] M. P. Ledbetter, T. Theis, J. W. Blanchard, H. Ring, P.
Ganssle, S. Appelt, B. Bl umich, A. Pines, and D. Budker,
Near-Zero-Field Nuclear Magnetic Resonance, Phys. Rev.
Lett. 107, 107601 (2011).

[38] John W. Blanchard, Micah P. Ledbetter, Thomas Theis,
Mark C. Butler, Dmitry Budker, and Alexander Pines,
High-resolution zero-field NMR J -spectroscopy of aro-
matic compounds, J. Am. Chem. Soc. 135, 3607
(2013).

[39] Danila A. Barskiy, Michael C. D. Tayler, Irene Marco-
Rius, John Kurhanewicz, Daniel B. Vigneron, Sevil
Cikrikci, Ayca Aydogdu, Moritz Reh, Andrey N. Pravdi-
vtsev, Jan-Bernd Hövener, John W. Blanchard, Teng Wu,
Dmitry Budker, and Alexander Pines, Zero-field nuclear
magnetic resonance of chemically exchanging systems,
Nat. Commun. 10, 3002 (2019).

[40] Marcus P. da Silva, Olivier Landon-Cardinal, and David
Poulin, Practical Characterization of Quantum Devices
without Tomography, Phys. Rev. Lett. 107, 210404
(2011).

[41] Christopher E. Granade, Christopher Ferrie, Nathan
Wiebe, and D. G. Cory, Robust online Hamiltonian learn-
ing, New J. Phys. 14, 103013 (2012).

[42] Alexandr Sergeevich and Stephen D. Bartlett, Optimizing
qubit Hamiltonian parameter estimation algorithms using
PSO, Proc. CEC 2012, 1 (2012).

[43] Agnes Valenti, Guliuxin Jin, Julian Léonard, Sebastian D.
Huber, and Eliska Greplova, Scalable Hamiltonian learn-
ing for large-scale out-of-equilibrium quantum dynamics,
ArXiv:2103.01240 (2021).

[44] Przemyslaw Bienias, Alireza Seif, and Mohammad
Hafezi, Meta Hamiltonian learning, ArXiv:2104.04453
(2021).

[45] Antonio A. Gentile, Brian Flynn, Sebastian Knauer,
Nathan Wiebe, Stefano Paesani, Christopher E. Granade,
John G. Rarity, Raffaele Santagati, and Anthony Laing,

Learning models of quantum systems from experiments,
Nat. Phys. 17, 837 (2021).

[46] Rolando D. Somma and Sergio Boixo, Parameter estima-
tion with mixed-state quantum computation, Phys. Rev. A
77, 052320 (2008).

[47] Ashok Ajoy and Paola Cappellaro, Quantum Simulation
via Filtered Hamiltonian Engineering: Application to Per-
fect Quantum Transport in Spin Networks, Phys. Rev.
Lett. 110, 220503 (2013).

[48] Sheng-Tao Wang, Dong-Ling Deng, and Lu-Ming Duan,
Hamiltonian tomography for quantum many-body sys-
tems with arbitrary couplings, New J. Phys. 17, 093017
(2015).

[49] Eyal Bairey, Itai Arad, and Netanel H. Lindner, Learning a
Local Hamiltonian from Local Measurements, Phys. Rev.
Lett. 122, 020504 (2019).

[50] Tim J. Evans, Robin Harper, and Steven T. Flammia, Scal-
able Bayesian Hamiltonian learning, ArXiv:1912.07636
(2019).

[51] Mark Srednicki, The approach to thermal equilibrium in
quantized chaotic systems, J. Phys. A 32, 1163 (1999).

[52] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-
insulator transition in a weakly interacting many-electron
system with localized single-particle states, Ann. Phys.
321, 1126 (2006).

[53] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and
Maksym Serbyn, Many-body localization, thermaliza-
tion, and entanglement, Rev. Mod. Phys. 91, 021001
(2019).

[54] Maksym Serbyn, Zlatko Papić, and Dmitry A. Abanin,
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