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We investigate topological order on fractal geometries embedded in n dimensions. We consider the
n-dimensional lattice with holes at all length scales the corresponding fractal (Hausdorff) dimension of
which is DH = n − δ. In particular, we diagnose the existence of the topological order through the lens
of quantum information and geometry, i.e., via its equivalence to a quantum error-correcting code with a
macroscopic code distance or the presence of macroscopic systoles in systolic geometry. We first prove
a no-go theorem that ZN topological order cannot survive on any fractal embedded in two spatial dimen-
sions and with DH = 2 − δ. For fractal-lattice models embedded in three dimensions (3D) or higher spatial
dimensions, ZN topological order survives if the boundaries on the holes condense only loop or, more
generally, k-dimensional membrane excitations (k ≥ 2), thus predicting the existence of fractal topologi-
cal quantum memories (at zero temperature) or topological codes that are embeddable in 3D. Moreover,
for a class of models that contain only loop or membrane excitations and are hence self-correcting on an
n-dimensional manifold, we prove that ZN topological order survives on a large class of fractal geometries
independent of the type of hole boundary and is hence extremely robust. We further construct fault-tolerant
logical gates in the Z2 version of these fractal models, which we term fractal surface codes, using their
connection to global and higher-form topological symmetries equivalent to sweeping the corresponding
gapped domain walls. In particular, we discover a logical controlled-controlled-Z (CCZ) gate corresponding
to a global symmetry in a class of fractal codes embedded in 3D with Hausdorff dimension asymptotically
approaching DH = 2 + ε for arbitrarily small ε, which hence only requires a space overhead �(d2+ε),
where d is the code distance. This in turn leads to the surprising discovery of certain exotic gapped bound-
aries that only condense the combination of loop excitations and certain gapped domain walls. We further
obtain logical Cp Z gates with p ≤ n − 1 on fractal codes embedded in n dimensions. In particular, for the
logical Cn−1Z in the nth level of the Clifford hierarchy, we can reduce the space overhead to �(dn−1+ε).
On the mathematical side, our findings in this paper also lead to the discovery of macroscopic relative
systoles in a class of fractal geometries.
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I. INTRODUCTION

Topology, geometry, and symmetry play crucial roles
in the progress of modern physics. Concerning topol-
ogy in particular, the rapid development of condensed-
matter physics and the theory of quantum computing and
information in recent decades have established a deep
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connection between seemingly distant fields including
topological order, quantum error correction, and fault-
tolerant quantum computation [1–8].

At the heart of the above connection is quantum entan-
glement. A many-body quantum system having topo-
logical order possesses long-range entanglement, which
means that it has a sharp distinction from a product state, as
it cannot be prepared from such a state via a local constant-
depth circuit [9]. Such long-range entanglement ensures
that local noise cannot decohere the logical information
stored nonlocally across the system. In this sense, one can
view a system with topological order as a quantum error-
correcting code, which is protected against any local noise
with support up to the order of the code distance. Thus,
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such a system can serve as a topological quantum mem-
ory. Well-known candidates for such topological memories
include exotic materials with passive topological protec-
tion, such as fractional quantum Hall states [2,6], quantum
spin liquids [10,11], and Majorana wires [12], as well
as active quantum error-correcting codes using topologi-
cal codes, including toric (surface) codes [3,13,14], color
codes [15–18], and non-Abelian codes [19–23] supported
on conventional qubits such as superconducting qubits and
trapped ions.

As another manifestation of this deep connection, the
code distance of a topological memory must be macro-
scopic to ensure topological degeneracies [24,25], another
key signature of topological order. More concretely, this
means that the distance needs to grow with the system size,
such that the splitting of ground-state degeneracies and the
logical error rate induced by the perturbation of the envi-
ronment can be exponentially suppressed and vanish in the
thermodynamic limit.

To date, the majority of the studies of topological
order are typically associated with a manifold, includ-
ing the situation of a lattice forming the cellulation of
a manifold. Hence, in this context, the main physical
properties only depend on the topological properties of
the manifold, rather than the geometry. For example, in
two-dimensional (2D) topological order, the topological
degeneracies depend only on the genus of a closed man-
ifold [2]. This is related to the fact that topological orders
can typically be described by a topological quantum field
theory (TQFT) [6], which is usually defined on an n-
dimensional manifold. As an example, the path integral
of the Turaev-Viro topological quantum field theory is a
3-manifold topological invariant [26]. A natural question
arises as to whether or not there exist topological order
and long-range entanglement on exotic geometries beyond
manifolds and what role geometry, rather than topology,
plays in this context.

An obvious candidate for such geometries is fractal
geometry, which is nowhere differentiable and hence is
in sharp contrast to a continuum model. There are sev-
eral other fundamental or practical motivations to consider
topological orders on fractal geometries besides the con-
ceptual extension of TQFT. First, from the information-
theoretical perspective, it has been realized that an encoded
classical memory with local interactions supported on a
fractal geometry can exist in nature. In particular, it can
be formed by an Ising model supported on a fractal lattice,
such as a Sierpiński carpet [27–30]. Therefore, a natural
question to ask is whether or not a topological quantum
memory supported on a fractal geometry could also exist in
nature, i.e., be embeddable in 3D. In this paper, we answer
this question in the affirmative.

More interestingly, by punching holes in a topolog-
ical quantum memory to form a fractal geometry, one
could significantly reduce the space-time overhead of

fault-tolerant quantum computation. This is essentially a
form of the code puncturing idea in error correction. In
particular, our motivation here is not only to reduce the
resource cost for memory storage but mainly the cost
of performing fault-tolerant logical gates. Currently, the
major approaches in fault-tolerant quantum computation
utilize topological stabilizer codes such as 2D surface
codes and color codes. However, topological stabilizer
codes in 2D can only perform fault-tolerant logical gates
within the Clifford group [31] and, hence, to have a univer-
sal logical gate set one needs to perform magic-state distil-
lation, which leads to a huge space-time overhead [32,33].
An alternative approach is to perform code switching to
a higher-dimensional topological stabilizer code equipped
with fault-tolerant non-Clifford logical gates [34,35], yet
such switching methods also incur high space-time over-
heads [36]. This requirement for higher-dimensional codes
to obtain non-Clifford gates arises due to the Bravyi-König
bound [31]. This bound states that a topological stabi-
lizer code supported on an n-dimensional lattice can only
have local constant-depth logical gates within the nth level
of the Clifford hierarchy. Such a result would suggest a
lower bound in the space overhead �(Ln) for gates in the
nth level but outside the (n − 1)th level [17,18,34,35,37–
41]. Yet, by trading space for time, there exist methods
to simulate the action of higher-dimensional codes using
lower-dimensional space resources, such as simulating the
action of a third-level gate using only 2D spatial resources
[42,43]. However, these methods are intrinsically based
on underlying 3D code models, which is in contrast to
the code we present here, the space overhead of which
has Hausdorff dimension DH = 3 − δ or, more generally,
DH = n − δ.

Next, one may consider the stability of topological order
under large spatial disorder (e.g., in the presence of islands
of trivial phases). The spatial disorder can contain holes
(trivial phases) at all length scales and is hence similar to
the situation of a fractal lattice. This problem is also related
to the issue of fabrication errors in a topological quantum
error-correcting code [44]; for example, the presence of
islands of corrupted or unusable qubits or couplers at all
length scales.

The mathematical essence behind the above questions
and motivations is systolic geometry (see, e.g., Ref. [45]).
In particular, the connection between the code distance and
the systole (i.e., the shortest length of a noncontractible
cycle) of a cell complex has first been discovered in the
context of quantum codes defined on the cellulation of
manifolds by Freedman, Meyer, and Luo [46,47]. In other
words, the existence of the macroscopic code distance,
i.e., topological order, is equivalent to the existence of
the macroscopic systole, which should also grow with
system size. This connection has been further extended
to recent studies of certain quantum low-density parity-
check (LDPC) codes defined on hyperbolic manifolds [48]
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or even cell complexes built from expander graphs [49],
which also provide examples of nontrivial quantum many-
body states supported on complexes beyond the manifold.
These nontrivial states can be considered as a general-
ization of the toric code states and cannot be prepared
from a product state via a local constant-depth circuit
applied on the cell complexes; hence they also possess
long-range entanglement. In particular, they also exhibit
macroscopic combinatorial systoles and code distances.
Therefore, geometrically speaking, searching for topologi-
cal order and long-range entanglement on fractal geome-
tries is also equivalent to searching for the existence of
macroscopic systoles. The potential practical advantage of
fractal geometries, compared with hyperbolic manifold or
expander-graph approaches, is that they can still be real-
ized with geometrically local physical systems embedded
in low dimensions (e.g., in 3D) and thus can more easily be
implemented with topological materials existing in nature
or near-term qubit technology.

The main motivation and scope of this paper, as well
as the correspondence between different fields mentioned
above, are summarized in Fig. 1.

A. Main contributions

In this paper, we use two complementary descriptions to
study the existence of topological order on fractal geome-
tries: (1) the TQFT description—in particular, the physical
pictures of gapped boundaries and condensation of anyons,
strings, and membranes; and (2) homology theory, espe-
cially relative homology [50], providing a mathematical

Topological order

Quantum error-correcting code Systolic geometry

protected degeneracies

macroscopic distance

macroscopic systole 
and relative homology

global and higher-form symmetries
and sweeping of gapped domain walls

fault-tolerant logical gates

stability against large spatial disorder

Fractal geometry

protection against fabrication errors
             code puncturing

exotic gapped boundaries

codes with non-Pauli stabilizers

FIG. 1. A summary of the motivation and scope of this paper
and the correspondence among the three fields at the inter-
face of fractal geometry. Items with the same color indicate the
equivalence of concepts in different fields.

description of gapped boundaries in Abelian topologi-
cal orders [13] and the corresponding relative systoles
[51], which are the conceptual extension of systoles to
the shortest length of noncontractible cycles connecting
boundaries.

Quite surprisingly, the TQFT description, which has
commonly been considered to be suitable mainly for the
manifold case, can be extended well to the case of frac-
tal geometries. The key is to start with an n-dimensional
(nD) topological order or an (n+1)D TQFT and then punch
holes with gapped boundaries at all length scales. The frac-
tal geometries along with the types of gapped boundaries
determine the preservation of long-range entanglement and
hence the fate of the topological order. First, we prove a
no-go theorem for the existence of ZN topological order
on a fractal embedded in two dimensions with Hausdorff
dimension DH = 2 − δ by showing the absence of macro-
scopic distance. This is attributed to the presence of short
logical strings [i.e., with O(1) length] connecting nearby
gapped boundaries due to the condensation of anyons
on these boundaries. This also shows the absence of a
macroscopic relative systole.

When considering fractals embedded in 3D and in Haus-
dorff dimension DH = 3 − δ or, equivalently, puncturing
holes in a 3D ZN topological order, the situation becomes
more subtle and interesting. A 3D ZN topological order
supports two types of excitations: particlelike excitations,
denoted e, and looplike excitations, denoted m. The type of
boundary along the holes results in two different scenarios:
(1) We show that if the boundaries of the holes inside the
fractal are so-called e-boundaries on which e-particles can
condense, there are always short logical strings connect-
ing nearby gapped boundaries, leading to the absence of
macroscopic code distance or relative systoles. Therefore,
topological order does not exist in this type of model. (2) In
contrast, if the hole boundaries are so-called m-boundaries
on which m-loops can condense, no short logical string
or membrane can connect such boundaries for a partic-
ular class of fractals called simple fractals such that all
the holes inside are equivalent to 3D balls. Hence, in this
case, the code distance or relative systole is macroscopic
and topological order can exist. This provides an answer
to a major question posed above: a topological quan-
tum memory supported on a fractal geometry can indeed
exist in nature, i.e., be embeddable in 3D, either in the
form of a passive memory using ZN spin liquid materi-
als at a temperature much smaller than the gap (T � �)
or in the form of an active error-correcting code consist-
ing of conventional qubits. We further construct a class
of models supported on such simple fractals with Haus-
dorff dimension DH = 3 − δ, where 0 < δ < 1, which can
asymptotically approach DH = 2 + ε for arbitrary small ε.
The code distance in the whole class of models remains
invariant as the shortest length of the logical string oper-
ator, which is the order of the linear size: d = O(L). We
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call this class of models 3D fractal surface codes for
simplicity.

Even more interestingly, these fractal codes still pre-
serve the capability of performing a fault-tolerant logical
non-Clifford gate, i.e., the logical controlled-controlled-Z
(CCZ) gate, as in the case of 3D surface codes [18,40].
The logical gates in both the fractal codes embedded in n
dimensions and the usual nD surface codes can be under-
stood via a TQFT picture. In general, a large class of
fault-tolerant logical gates, including transversal logical
gates and, more generally, local constant-depth circuits,
is associated with an on-site topological symmetry asso-
ciated with multiple copies of topological orders or, more
generally, a symmetry-enriched topological order [52],
as has been pointed out in Ref. [53]. These symmetries
can either be global symmetries that act on the entire
system or higher-form (q-form) symmetries that act on
a codimension-q submanifold Mn−q [53–57]. Moreover,
applying these logical gates, or topological symmetries, is
equivalent to sweeping certain gapped domain walls that
are one dimension lower than the corresponding symme-
tries [53–57]. When considering three copies of 3D Z2
fractal surface codes, one can first apply a transversal
CCZ gate, equivalent to a global topological symmetry on
three copies of Z2 topological orders. This is equivalent
to sweeping the CCZ domain wall across the system. The
domain wall will remain attached on all the hole bound-
aries, which leads to the discovery of new types of exotic
gapped boundaries and maps the original codes to new
codes. We hence call this operation a transversal logical
map, in contrast to the usual transversal logical gate, which
keeps the code space invariant. These exotic boundaries
are interesting in their own right, since they only allow the
combination of m-loops and CCZ domain walls to condense
on them and correspond to a parent Hamiltonian with non-
Pauli stabilizers. A subsequent lattice-surgery method with
additional ancilla code blocks can map the new compos-
ite code back to the original code space and complete
the logical CCZ gate. The space overhead in the presented
scheme can be lowered to �(L2+ε) = �(d2+ε), which is
surprising given that all known methods for implement-
ing a non-Clifford constant-depth logical gate are based on
codes the space overheads of which are intrinsically�(L3)

[16,18,39–43], as suggested by the Bravyi-König bound.
We can further extend our classification of topologi-

cal order and logical gates to those supported on fractals
embedded in n dimensions or, equivalently, puncturing
holes in n-dimensional topological order. Note that one
can classify n-dimensional ZN topological orders with the
dimensions of their two types of excitations using the
bilabel (i, n − i) (with i ≤ n − i), which states that the
world volume of e-excitation and the corresponding log-
ical operator are i-dimensional and that of the m-excitation
is (n − i)-dimensional. We summarize our classification in
two different scenarios:

(1) i = 1. The e-excitation is particlelike and the corre-
sponding logical operator is stringlike. In this case,
topological order is still absent if the hole bound-
aries are e-boundaries that allow e-particles to con-
dense on them. On the other hand, we prove that for
a simple fractal (with holes being equivalent to n-
balls) embedded in nD with m-boundaries, topolog-
ical order does exist. We hence construct a class of
nD fractal surface codes with Hausdorff dimension
n − δ (0 < δ < 1) that can asymptotically approach
DH = n − 1 + ε. Interestingly, in a similar way to
the 3D case, the nD fractal surface codes support
fault-tolerant logical CpZ gates, with p ≤ n − 1. In
particular, the logical CnZ gate involves applying
the global symmetry in n copies of Z2 topologi-
cal orders, while other logical CpZ gates for p < n
are single-shot transversal logical gates correspond-
ing to p-form symmetries in n − p copies of Z2
topological orders. The logical gate CnZ belongs to
the nth level of the Clifford hierarchy and requires
minimal space overhead �(Ln−1+ε) = �(dn−1+ε),
again improving on the space overhead of �(Ln) as
suggested by the Bravyi-König bound.

(2) i ≥ 2. No particlelike excitation or stringlike log-
ical operator exists and, as such, the topological
memory is expected to be self-correcting when sup-
ported on a manifold. Quite interestingly, we show
that in this case topological order can exist in sim-
ple fractals independent of the boundary type (e or
m) of each hole inside. This reveals that topological
order in a self-correcting model is not only protected
against thermal noise and hence stable at finite tem-
perature (in contrast to the 2D topological order,
which is unstable at finite temperature) but it can
also be extremely robust under large spatial disorder
or fabrication errors. We also construct a family of
such fractal codes with Hausdorff dimension n − δ
(0 < δ < 1). We prove that the transversal logical
gate or the logical gate composed of a constant-
depth circuit in multiple copies of (i, n − i) surface
codes or color codes in n dimensions is preserved in
the corresponding fractal codes and lies within the
nth level of the Clifford hierarchy. The gain in our
case is that the Hausdorff dimension can be lowered
to DH = n − 1 + ε. We note that a fractal topolog-
ical model embedded in four dimensions (4D) has
been proposed before, which uses the specific con-
struction of a homological product of two classical
codes [58]. The fractal models that we study in this
paper are more general, especially in the context of
capturing the essence of the spatial disorder.

Besides the physics discovery in this paper, our main math-
ematical contributions are the extension of systolic geom-
etry to the context of fractals and proof of the existence of
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macroscopic relative systoles in simple fractals embedded
in three and higher dimensions.

B. Outline of the paper

In Sec. II, we introduce the precise definition of topolog-
ical order and its relation to the code distance of a quantum
error-correcting code as well as the systolic geometry. In
Sec. III, we introduce the definition of quantum mod-
els defined on fractals and prove the no-go theorem of
topological order existing in a fractal embedded in 2D.
In Sec. IV, we first introduce the TQFT and stabilizer
descriptions of 3D topological order, while the correspond-
ing algebraic topology description with chain complexes
and homology is introduced in Appendix B. We then
prove the no-go theorem of topological order on arbi-
trary fractals embedded in 3D with their hole-boundaries
being e-boundaries. We then use the TQFT and the corre-
sponding stabilizer descriptions to prove the existence of
topological order on a simple fractal embedded in 3D with
all the holes having m-boundaries, while leaving the more
mathematically concise proof based on algebraic topology
to Appendix C. The former way is more inclined toward
condensed-matter physicists, while the latter is more suit-
able for quantum information theorists or mathematical
physicists. In addition, we construct the family of 3D frac-
tal surface codes with Hausdorff dimension 2 < DH < 3.
In Sec. V, we extend the theory to n dimensions, discuss
the topological order both with and without stringlike logi-
cal operators, and leave the rigorous proof to Appendix D.
In Sec. VI, we discuss fault-tolerant logical gates in 3D
fractal surface codes, with the detailed construction of lat-
tice models presented in Appendix A and generalization to
nD fractal surface codes presented in Appendix E.

II. DEFINITION OF TOPOLOGICAL ORDER AND
ITS RELATION TO QUANTUM CODES AND

SYSTOLIC GEOMETRY

We consider a local physical system of qudits occupy-
ing the sites of an n-dimensional lattice L with linear size
L and governed by a geometrically local Hamiltonian H .
The associated physical Hilbert space is a tensor product
of local Hilbert spaces, H = ⊗

j Hj , where j is the site
label of L. We provide the following definition of topolog-
ical order (TO), which is commonly used in the literature
[7,24,25,59].
Definition 1: Topological order is a local physical system
the ground-state subspace of which forms a quantum error-
correcting code with a macroscopic code distance.

One can also rephrase the above definition more for-
mally into the following mathematical condition for topo-
logical order [24,25]: There exist d = O(La) for some
constant a > 0 and sufficiently large L such that

PCOAPC = cPC. (1)

Here, PC is the projector onto the ground-state subspace
HC ⊂ H or, equivalently, the code space, OA represents
any local operator supported in a region A involving fewer
than d sites, and c is some complex number. “Sufficiently
large L” also requires that the system size L is much larger
than the correlation length ξ , i.e., L � ξ .

We note that the correlation ξ of a gapped phase of
matter is defined through the exponentially decaying corre-
lation function 〈OiOj 〉 − 〈Oi〉〈Oj 〉 ∝ e−|
ri−
rj |/ξ , where Oi
is a local operator at site i and 
ri is the associated position
vector.

In the above condition, the code distance d scales as La,
i.e., a power law of the linear size of the system, and is
hence macroscopic [60]. Definition 1 and the condition in
Eq. (1) ensure that any local operator cannot induce a tran-
sition between or distinguish two orthogonal ground states
and hence coincides with the traditional definition of topo-
logical order in the literature of condensed-matter physics
[2,3,6,59,61,62], i.e.,

〈a|OA|b〉 ∝ δa,b + O(e−L/ξ ), (2)

where |a〉 and |b〉 label the ground states or, equivalently,
the logical states. Hence this leads to the topologically pro-
tected degeneracies: a local perturbation can only lift the
ground-state degeneracy in kth-order perturbation theory,
where k increases with the system size L. The generaliza-
tion of the above definition to a continuous system is also
straightforward.

As we see, the definitions of topological order and quan-
tum error-correcting codes are deeply connected and the
key is the presence of a macroscopic code distance. On
the other hand, the connection between a class of quan-
tum codes and systolic geometry has been established in
Ref. [46]. One can define a quantum code on the cellula-
tion of a manifold or, more generally, a cell complex. The
code distance corresponds to the systole, i.e., the shortest
cycle, in a manifold or a cell complex. A simple example
is illustrated in Fig. 2 for the case of a torus, where the
1-systole is the shortest 1-cycle around the narrow handle.
The formal definition including the generalization to the i-
systole is given in Sec. B. In this paper, we need to further
extend this connection to include the case of a manifold

d

FIG. 2. The 1-systole on a torus sys1(T
2) = d is equivalent

to the code distance of a 2D quantum error-correcting code or
topological order defined on the torus, such as the toric code
model.
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with boundaries, where the code distance corresponds to
the relative systole [51], i.e., the shortest relative cycle that
connects two boundaries.

Throughout this paper, we consider the possible exis-
tence of topological order on various fractal geome-
tries. A fractal embedded in an n-dimensional manifold
Mn will have Hausdorff dimension DH = n − δ, with
0 < δ < n. Some well-known fractals are as follows:
the Sierpiński carpet (DH = 1.8928), the Sierpiński tri-
angle (DH = 1.585), and the Apollonian gasket (DH =
1.3057) are embedded in R2, while the Menger sponge
(DH = 2.7268) and the Sierpiński tetrahedron (DH = 2)
are embedded in R3. As one can see, in contrast to the
torus case, it is very easy to have short cycles or rela-
tive cycles almost everywhere in these fractal geometries.
Therefore, determining the existence of topological order
in this context is equivalent to determining the existence
of macroscopic systoles and, equivalently, a macroscopic
code distance.

III. ABSENCE OF ZN TOPOLOGICAL ORDER ON
FRACTALS EMBEDDED IN 2D

In this section, we show that there is no (intrinsic) ZN
topological order that can survive on a fractal embedded in
a 2D surface.

We start by introducing a simple example of fractal
embedded in 2D, the Sierpiński carpet, as shown in Fig. 3.
The Sierpiński carpet, as in the case of most fractals, can
be defined recursively. We start with a square patch with
linear size L in R2, as shown in Fig. 3(a). In the first iter-
ation, we punch a square-shaped hole in the center, with
the linear size being one third of the entire square patch,
i.e., L/3, as shown in Fig. 3(b). One can then consider
the division of the largest square patch into nine square
patches with the same size as the hole, i.e., with linear
size L/3. In the second iteration, we punch a hole in the
center of the eight square patches without holes, while
the linear size of this hole is one third that of the hole in
the previous iteration, i.e., L/9. We then repeat the above
iteration and dig holes with linear size L/27 in the third
iteration, as shown in Fig. 3(d). We denote the shape in

each iteration as SC(3, 1, l), where “3, 1” represents the rel-
ative linear size of each square patch and that of the hole
inside the square patch that is punched in each iteration.
Here, l refers to the lth iteration, which is also called the
level of the Sierpiński carpet. Hence we can call SC(3, 1, l)
the (3,1) Sierpiński carpet at level l. The fractal SC(3, 1) is
defined as the limit of the sequence SC(3, 1, l) at an infinite
level, i.e., SC(3, 1) ≡ liml→∞SC(3, 1, l). We also call the
new holes introduced at the lth iteration as level-l holes.
We can now calculate the Hausdorff dimension of SC(3, 1)
in the following way: when we increase the linear size of
the fractal by a factor of 3, the volume (area in the 2D
case) increases by a factor of 8. Therefore, the Hausdorff
dimension is DH = ln(8)/ln(3) ≈ 1.8927. We can gener-
alize the above Sierpiński-carpet sequence to more general
cases such as SC(p , q, l), where p and q are both integers.

We now investigate the possible existence of topologi-
cal orders on fractals embedded in 2D. We first consider
the simplest type of topological order, i.e., ZN topological
order.

In the case of N = 2, one can construct an exactly
solvable microscopic lattice model, i.e., the Z2 toric code
model in 2D, with the Hamiltonian being

H2DTC = −J
∑

v

Av − J
∑

p

Bp ,

with Av =
⊗

j∈{ev}
Xj , Bp =

⊗

j∈{ep }
Zj , (3)

where Av is the vertex stabilizer with all the Pauli X oper-
ators supported on the edges connected to the vertex v
(denoted by {ev}) and Bp is the plaquette or face stabilizer
with all the Pauli Z operators supported on the edges sur-
rounding the plaquette p (denoted by {ep}). Violation of
vertex and plaquette stabilizers creates e- and m-anyons,
respectively. When defining such a model on the 2D square
lattice, both Av and Bp are four-body operators, as illus-
trated in Fig. 4(a). The generalization to the ZN toric code
model in any spatial dimension is discussed in Sec. III
of the Supplemental Material [63]. Note that in the case
of exactly solvable topological stabilizer models, such as

(a) (b) (c) (d)

FIG. 3. The recursive definition of the Sierpiński carpet SC(3, 1). In the lth iteration, we punch level-l holes with linear size 1/3l

and obtain the Sierpiński carpet at level l. One approaches the Sierpiński carpet as l → ∞.
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the toric code, one has zero correlation length, i.e., ξ = 0,
while in the more general case the topological order has
finite correlation length ξ .

Now, we consider the properties of the gapped bound-
aries. There are two types of gapped boundary in a
single copy of a 2D toric code model: the e-boundary
and the m-boundary, which condense e-anyons and m-
anyons, respectively. In terms of microscopic realization,
one can implement the e-boundaries with the so-called
rough boundaries that have dangling edges sticking out, as
shown in the upper and lower boundaries in Fig. 4(a). The
rough boundaries in this example have three-body bound-
ary Z stabilizers, while the X stabilizers are taken away
from the rough boundaries. Similarly, one can implement
the m-boundaries with the so-called smooth boundaries
that have no dangling edges, as shown in the left and right
boundaries in Fig. 4(a). The smooth boundaries in this
example have three-body boundary X stabilizers, while the
Z stabilizers are taken away from the smooth boundaries.
A square patch of toric code with both e- and m-boundaries
on opposite sides forms the so-called surface code, which
encodes a single logical qubit. The logical Z- and X -strings
(denoted by Z and X ) connect the e-boundaries and m-
boundaries, respectively, and are illustrated in Fig. 4(a).
Since the e and m charges condense on the e and m bound-
aries, respectively, these logical strings are Wilson lines
(world lines) of the e- and m-anyons.

With these two types of boundary, one can also make
two types of hole, which we call the e-hole and the m-hole,
with their boundaries being the e (rough) and m (smooth)
boundaries, respectively, as illustrated in Fig. 4(b). These
holes can also encode logical information. For example, as
shown in Fig. 4(b), a pair of e-holes and a pair of m-holes
can both store one logical qubit. As one can see, logi-
cal string X 1 (Z1) encircles e-holes (m-holes), while the

X
X X

X

Z

Z Z

Z X
X

X

Z Z
Z

m-hole m-hole

e-hole e-hole

(a) (b)

FIG. 4. (a) The surface code and two types of gapped bound-
aries: the horizontal (vertical) e-boundaries (m-boundaries) con-
dense e-anyons (m-anyons) such that the logical Z-string (X -
string) can terminate on them. (b) Two types of holes. The
e-hole (m-hole) has e-boundaries (m-boundaries), which trap a
logical X -loop (Z-loop) around it, and allows a logical Z-string
(X -string) to terminate on it.

Z1 (X 1) strings connect the e-holes (m-holes). One might
consider the hole encoding as a “blessing” for quantum
information storage and processing. However, in the con-
text of fractal topological orders, the fact that these holes
can encode logical information becomes a “curse.”

With the understanding of the basic properties stated
above, we now put the surface code on a fractal. A neces-
sary question to consider is how to associate the boundary
conditions to the holes. Without losing generality, we
begin with putting the surface code introduced above on
the level-0 Sierpiński carpet SC(3, 1, l = 0), i.e., a square
patch with linear size L, with e (rough) boundaries on
the top and bottom sides and m (smooth) boundaries on
the left and right sides, as shown in Fig. 5(a). A pair
of macroscopic logical operators Z and X is shown in
Fig. 5(e). We say that Z and X are macroscopic since
they have size O(L) and hence they are macroscopic in
the thermodynamic limit L → ∞. This initial surface code
has macroscopic code distance, i.e., d = O(L). On top of
the level-1 Sierpiński carpet SC(3, 1, l = 1), one makes a
level-1 m-hole with linear size L/3 in the center, i.e., a
hole with m (smooth) boundaries, as shown in Fig. 5(b).
The introduction of the m-hole leads to the encoding of
an additional logical qubit, with the corresponding logical
operators being the Z1-string circulating the m-hole and the
X1-string connecting the hole boundary and the outer m-
boundary of the surface code, as shown in Fig. 5(f). Note
that the logical string X 1 intersects with the macroscopic
logical string Z once or an odd number of times (if bend-
ing the strings). Hence, the algebraic intersection of the
operator support can be written as

supp(Z) ∩ supp(X 1) = 1, (4)

where “supp” represents the support of an operator and
“∩” denotes the algebraic intersection. This means, in the
case of Z2 topological order, that the logical operators
X 1 and Z anticommute, i.e., {X 1, Z} = 0. This anticom-
mutation relation is replaced by the group commutator
Z X 1Z

†
X

†
1 = e2π i/N in the general case of ZN topological

order. In any case, the two operators X 1 and Z fail to com-
mute, i.e., [X 1, Z] �= 0. The consequence is that an error
in the form of X 1 changes the logical information stored
in the macroscopic logical operator Z and hence splits the
corresponding topological degeneracy, which also means
that the X code distance dX corresponding to the original
macroscopic logical qubit is decreased to the length of X 1
instead of the original length of X , i.e., dX = L/3. Note
that the overall code distance of the macroscopic logical
qubit is the minimum of the X -distance and the Z-distance,
i.e., d = min(dX , dZ) = L/3.

We then go to the next iteration, i.e., SC(3, 1, l = 2), by
introducing another eight level-2 m-holes with linear size
L/9, as shown in Fig. 5(c). This leads to the introduction
of another eight logical qubits, with the representatives of
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(a) (b) (c) (d)
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FIG. 5. (a)–(d) The recursive definition of the fractal models with the external boundaries of the surface code and m-holes inside.
(e)–(h) The logical string operators in each iteration. (f)–(h) Any representative of the macroscopic logical Z-string, such as Z illustrated
in the figure, always intersects with a short logical X -string, which will have O(1) length in the final iteration, as illustrated in (h) in
this example. This leads to an O(1) code distance.

the logical operators shown in Fig. 5(g), where the logi-
cal string Zi encircles the ith hole and the logical string
X i connects m-holes either to the outer boundaries or to
the neighboring m-holes. As we can see, any represen-
tative of the macroscopic logical Z-strings, such as Z in
Fig. 5(g), always intersects with some short logical X -
strings, such as X 5 in Fig. 5(g). In the case of both Z2
and, more generally, ZN topological order, we have the fol-
lowing noncommutation relation: [Z, X 5] �= 0. This further
reduces the X -distance dX of the original macroscopic log-
ical operator in the surface code at level 0 to the length of
X 5, i.e., dX = L/9.

For any actual physical system on a lattice, the itera-
tion continues until the size of the smallest hole reaches
the lattice constant of the underlying spin model, i.e., O(1),
or more generally the order of the correlation length, i.e.,
O(ξ), if we have nonzero ξ in either a lattice model or
continuum topological quantum matter. Note that in the
case of exactly solvable models such as the toric code,
one has zero correlation length, i.e., ξ = 0. Since, for any
topological order, ξ is a constant independent of the sys-
tem size, we can always replace O(ξ) with just O(1) in
the case of a lattice model. For the continuum case, if
we represent lengths in the unit of correlation length ξ ,
then we can again replace O(ξ) with O(1). For simplicity,
we consider the case in which the level-3 hole [illustrated
in Fig. 5(d)] has reached the size of the lattice constant

or the correlation length, i.e., L/27 = O(1). As shown in
Fig. 5(h), we can pick any representative of the macro-
scopic logical Z-string, denoted by Z, which will always
intersect with a size-O(1) logical string X i. Therefore, the
code distance of the originally “macroscopic” logical qubit
is determined by its X -distance, i.e., d = dX = O(1). For
similar reasons, any logical qubit in this code has O(1)
distance. Due to the absence of a macroscopic code dis-
tance, we can say that there is no topological order in this
particular fractal geometry.

We can also comprehend this result in terms of super-
selection rules and the robustness of topological degen-
eracies. The absence of macroscopic code distance, i.e.,
d = O(1), tells us that for a local operator OA supported
in region A such that |supp(A)| = O(1), one can obtain a
nonzero off-diagonal matrix element 〈a|OA|b〉 = c when
OA is a short-distance logical operator X i connecting
neighboring boundaries. Here, c is a constant indepen-
dent of the overall system size L and a �= b label different
degenerate ground-state sectors. This is in contrast to the
superselection rule in the presence of topological order in
2D such that 〈a|OA|b〉 ∝ δa,b + O(e−d/ξ ) with d = O(L),
meaning that the coupling between different ground-state
sectors (a �= b) is either exponentially suppressed with sys-
tem size L when the correlation length ξ is nonzero or
always stays zero in the case of zero correlation length,
i.e., ξ = 0. This also leads to the exponential suppression
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(a)

(b)

...

...

FIG. 6. (a) The exponential suppression of the ground-state
degeneracy under a perturbation in the Hamiltonian of the con-
ventional surface code defined on SC(3, 1, l = 0). (b) On the
Sierpiński-carpet model defined on SC(3, 1, l → ∞), a perturba-
tion in the Hamiltonian can lead to the splitting of the extensive
ground-state degeneracy at a scale comparable to the gap.

of the ground-state degeneracy splitting O(�e−L/ξ ) in the
presence of topological order [2,3,64], where � is the
many-body gap. On the other hand, the degeneracy split-
ting in the case of the Sierpiński-carpet model is instead
O(�) and hence is independent of the linear system size L,
as illustrated in Fig. 6 and explained in detail in Sec. II of
the Supplemental Material [63].

In all of the above discussion, we show the absence of
topological order on a Sierpiński carpet with m-holes. Due
to the e-m duality symmetry of the toric code, topological
order is also absent on a Sierpiński carpet with e-holes.
Furthermore, topological order is also absent in the general
case in which there are holes of both types in the Sierpiński
carpet and, even more generally, in the case in which a
single hole can have multiple types of boundary. All of the
above situations are illustrated in Fig. 7.

It is obvious that such a no-go result is not limited to a
particular type of fractal, in this case, the Sierpiński car-
pet. We hence state and then prove the following no-go
theorem.

Theorem 1: ZN topological order cannot survive on a
fractal embedded in a 2D Euclidean space R2 [65].

Proof. We consider generic fractals embedded in 2D,
including the case of random fractals as illustrated in
Fig. 8. The holes in the fractal can be simply connected,

(a) (b)

(c)

e e

e e e

e e e

e e

e e

e

em

m m

m

e

e

m m

FIG. 7. (a)–(c) Three fractal models with only e-holes, both
e- and m-holes, and holes with alternating e- and m-boundaries,
respectively. In all three cases, a macroscopic logical string X or
Z is intersected by a short dual logical string with O(1) length,
leading to an O(1) code distance.

such as the holes in the Sierpiński carpet, or more generally
not simply connected, i.e., with some “islands” circulating
inside, as indicated in Fig. 8(a). However, one can sim-
plify the situation of nonsimply connected holes to the
situation of simply connected holes just by ignoring the
islands inside, since they do not affect the states outside. A
generic hole can either have a single e- or m-boundary or
alternating e- and m-boundaries, as illustrated in Fig. 8.

A key property of a fractal is self-similarity. There-
fore, holes at a characteristic linear scale λ are separated
by a characteristic distance cλ, where c is a constant
independent of the scale λ. Therefore, holes at the O(1)
characteristic linear scale are also separated with O(1) dis-
tance. We can hence conclude that for any given point in
the fractal geometry, when moving radially inside a finite
angle �θ and within the O(1) radius, one must encounter
a hole or an outer boundary. This hole could either be a
hole at O(1) scale [based on the O(1) characteristic dis-
tance between holes at O(1) scale] or a hole at larger scale
if it happens to be there.

Now, we consider a pair of dual macroscopic logical
strings X and Z crossing at a single point p as shown in
Fig. 8(a), which is a prerequisite for topological order to
exist in this setup. Then, the point p must have a neigh-
boring hole or outer boundary at O(1) distance on each
side of string X and string Z. Now we can assign one or
multiple boundaries of either e or m type to each of the
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FIG. 8. An illustration for the proof of Theorem 1 with a
generic random fractal embedded in R2. (a) The holes are col-
ored in gray and, in general, have possibly alternating types of
boundary. The holes can also contain “islands” (white) within
them, which can simply be ignored. A pair of macroscopic logi-
cal strings X and Z intersect at a single point p . (b) The different
scenarios within the O(1) radius from the intersection point p
with different configurations of hole boundaries.

holes or outer boundaries under consideration. With any
assignment, either X will have one hole or outer boundary
on each side of the string containing m-boundaries within
O(1) distance to p or Z will have one neighboring hole
or outer boundary on each side of the string containing e-
boundaries within O(1) distance, as illustrated in Fig. 8(b).
This implies that either X will cross a short logical oper-
ator Zi with O(1) length connecting two e-boundaries or
Z will cross a short logical operator X i with O(1) length
connecting two m-boundaries.

Note that in the above discussion we consider any possi-
ble pair of macroscopic logic operators and the conclusion
holds for an arbitrary choice of logical basis. We also use
the fact that the logical operators always need to be string-
like operators, which is guaranteed in the ZN topological
order in 2D. This is because, in this theory, the logical oper-
ators are described by the first ZN -homology group and
any logical operator corresponds to a nontrivial 1-cycle
(stringlike), which is explained in detail in Sec. B.

Therefore, we can conclude that the code distance of the
corresponding code defined on the fractal is d = O(1) and
hence no ZN topological order exists on a fractal embedded
in 2D. �

Although our current proof is limited to the ZN topo-
logical order, the generalization of the no-go theorem to
arbitrary types of existing 2D topological orders in the
literature supported on fractals with Hausdorff dimension
DH = 2 − δ (δ > 0) should be straightforward and will be
discussed in future work. The generalization can be done
via extending to cases such as the non-Abelian topolog-
ical order or, more generally, to all 2D TOs captured by

modular tensor categories [66]. The essence of the no-
go results is that all these 2D TOs have stringlike logical
operators.

IV. TOPOLOGICAL ORDER ON FRACTALS
EMBEDDED IN 3D

A. ZN topological order in 3D

In 3D, we consider a class of topological orders
described by a particular type of ZN gauge theory called
the BF theory, which is also a TQFT. The action of this
theory is as follows:

SBF =
∫

N
2π

b(2) ∧ da(1). (5)

Here, the 1-form a(1) and 2-form b(2) are both compact
U(1) gauge fields describing the e-particle and m-loop
(closed string) degree of freedom, respectively. A ZN
fusion rule exists for both the e-particle and the m-string,
respectively. The corresponding gauge group is G = ZN .
This theory can describe the deconfined phase of a 3D
type-II superconductor with a charge-N condensate, or a
3D ZN spin liquid. A particle-loop braiding correspond-
ing to a process that carries a particle e in a closed path
le around a loop m induces a quantized Aharanov-Bohm
phase 2π/N · Hopf(m, le). Here, Hopf(m, le) is the Hopf
invariant corresponding to the particle world line le and the
loop m. This type of topological order is the ZN topological
order.

In the N = 2 case, one can construct the following
exactly solvable microscopic model, i.e., the Z2 toric code
model on a 3D lattice L, with the following Hamiltonian:

H3DTC = −J
∑

v

Av − J
∑

p

Bp ,

with Av =
⊗

j∈{ev}
Xj , Bp =

⊗

j∈{ep }
Zj . (6)

Here, Av is the vertex stabilizer with all the Pauli X oper-
ators supported on the edges connected to the vertex v
(denoted by {ev}), while Bp is the plaquette or face sta-
bilizer with all the Pauli Z operators supported on the
edges surrounding the plaquette p (denoted by {ep}). Vio-
lation of Av corresponds to e-particle excitations, while
violation of Bp corresponds to m-loop excitations, as is
explained in detail later. When defining such a model on
the cubic lattice, the vertex stabilizers are six-body oper-
ators and the plaquette stabilizers are four-body operators
on faces lying in the x-y, y-z, and x-z planes, respectively,
as shown in Fig. 9. Generalization of the above Hamilto-
nian to the ZN toric code model is presented in Sec. III of
the Supplemental Material [63].
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FIG. 9. The six-body vertex operators and three types of four-
body plaquette stabilizers lying in the y-z, x-y, and x-z planes,
respectively, in the 3D toric code model defined on a cubic
lattice.

B. The TQFT and stabilizer descriptions

We now start with an axiomatic presentation of the
TQFT, accompanied with illustrations of the correspond-
ing exactly solvable 3D toric code model in Eq. (6), using
the stabilizer language. We consider a TQFT Hilbert space
HM defined on a closed 3-manifold M, which provides a
low-energy effective theory of the corresponding topolog-
ical phase of matter. The TQFT Hilbert space HM is also
isomorphic to the code space HC of the quantum error-
correcting code corresponding to the exactly solvable toric
code model, i.e., HM ∼= HC. In the case when the man-
ifold has a boundary ∂M , the TQFT Hilbert space (code
space) is generalized to HM,∂M ∼= HC.

In the TQFT and gauge-theory picture, one has a Z2
fusion rule in the N = 2 case for both the e-particle and
m-string:

, (7)

, (8)

Here, the e-fusion rule in Eq. (7) states that two e-particles
fuse into the vacuum sector I. This suggests that one can
create (annihilate) a pair of e-particles out of (into) the par-
ticle vacuum, i.e., the ground-state sector, via application
of a string operator We connecting the two particles, which
corresponds to the Wilson line (world line) of particle e
as shown in Fig. 10(a). This property can also be illus-
trated with the exactly solvable lattice model in Eq. (6). As
shown in Fig. 11, a pair of vertex excitations on vertices
(v1, v2) corresponding to two e-particles can be created
(annihilated) by a Z-string operator We = Z⊗ := ⊗

j∈se
Zj

along the string se formed by sequence of connected edges,
where the locations (v1, v2) of the e-particles are on the two
boundaries of the string: (v1, v2) = ∂se.

The m-fusion rule in Eq. (8) states that two m-string
segments can locally fuse into the vacuum sector I. One
should consider m and I as the local charge of this par-
ticular string segment. This fusion rule also implies that
one can create two semicircles with m charges and shared

m

(a)

(b)

e

eeeeeeeeee
ee e

m

m

FIG. 10. An illustration of the Z2 fusion rules of the e-particles
and m-strings, respectively. (a) A pair of e-particles can be cre-
ated out of the vacuum I via a Wilson line We in between,
which corresponds to a Z-string operator Z⊗ in the 3D toric code
model. (b) A pair of m-strings forming an m-loop can be created
out of the vacuum I via a Wilson sheet Wm in between, which
corresponds to an X -brane operator X ⊗ in the toric code.

ending points (equivalent to a thin m-loop) out of the vac-
uum I via a membrane operator Wm, which corresponds
to the Wilson sheet (world sheet) describing the expansion
history of the m-loop, as shown in Fig. 10(b). Now, we
can again illustrate this property via the exactly solvable
lattice model in Eq. (6). As shown in Fig. 11, a collec-
tion of plaquette excitations along a loop of plaquettes or
faces (denoted by lm) corresponding to a m-loop excita-
tion can be created by a membrane operator Wm = X ⊗ :=⊗

j∈Am
Xj acting on the edges j ∈ Am. Consistent with the

TQFT picture, one can consider the membrane operator
X ⊗ being supported on a surface Am, where the loop lm
(the location of the m-loop excitation) forms the boundary
of this membrane: lm = ∂Am [67].

XXXXX X

Z

Z

ZZ

e

m

eZZ eeeeeeeeeeeeeeee
XX

FIG. 11. The lattice realization of Fig. 10 with the 3D toric
code model. A pair of e-particle excitations (red) are created from
the ground state by a Z-string operator (four Pauli Z operators
on the red edges) and the vertex stabilizers occupied by the e-
particles are violated. An m-loop excitation (blue) is created from
the ground state by an X -brane operator (four Pauli X operators
on the blue edges) and the plaquettes (blue) penetrated by the
m-loop are violated.
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We emphasize that when studying the lattice model
given in Eq. (6), we always consider the lattice analogs of
continuous strings, loops, and membranes (abbreviated as
branes from now on). We also note that the Wilson oper-
ators We and Wm only take the forms of Z-string Z⊗ and
X -brane X ⊗ in the case of the exactly solvable toric code
model in Eq. (6) but not in the more general case of other
models in the same phase described by the same ZN gauge
theory (TQFT). For brevity, we sometimes use Z⊗ and X ⊗
to represent the Wilson operators even when discussing the
more general case but readers should be aware of their lim-
itation to the exactly solvable model and should replace
them with We and Wm in the general case of gauge theory
and TQFT.

Now, we continue with other axioms in the TQFT. The
world lines of e-particles We and world sheets of m-loops
Wm in the (3+1)D Z2 gauge theory obey the following
diagrammatic relations:

,
(9)

,

(10)

,
(11)

,
(12)

,

(13)

(14)

Here, Eqs. (9) and (10) state that the world line of the e-
particle and the world sheet of the m-loop are equivalent
under local continuous deformation, i.e., they correspond
to the same physical observable in the TQFT Hilbert space
HM or, equivalently, the code space HC. Equations (11)
and (12) state that a world line of an e-anyon and a
world sheet of a m-loop topologically equivalent to a cir-
cle S1 and a sphere S2, respectively, are equivalent to
the vacuum sector I in the TQFT Hilbert space HM or,
equivalently, to logical identity I in the code space HC.

Note that both the loop and the sphere can be shrunk to
nothing under continuous local deformation. This prop-
erty can also be interpreted in the following relations in
the context of the exactly solvable model: PCZ⊗cPC = I
and PCX ⊗sPC = I , where PC represents the projector onto
the code space or, equivalently, the ground-state subspace
HC, Z⊗c represents the Z-string along a contractible cir-
cle, and X ⊗s represents the X -brane wrapping around a
sphere. We note that Eqs. (9) and (10) can be derived
from the fusion rules Eqs. (7) and (8) along with Eqs. (11)
and (12). Similarly, we can also derive Eqs. (11) and (12)
from the fusion rules along with the relations Eqs. (9)
and (10) or, equivalently, derive the fusion rules from
Eqs. (9)–(12).

The relations in Eqs. (13) and (14) show how two world
lines of the e-particle or two world sheets of the m-loop
can be recoupled, which can also be derived from the
fusion rules in Eqs. (7) and (8) along with the relations
Eqs. (11) and (12). One can think of these relations as a
(3+1)D generalization of the 2-2 Pachner moves (F-moves)
in (2+1)D TQFT, i.e., higher-dimensional Pachner moves.
Due to the Abelian nature of this theory, all the relations in
Eqs. (9)–(14) can also be understood as equivalence rela-
tions in the Z2 homology group, which are discussed in
Sec. B. In particular, relations of the world lines of the e-
particle correspond to the equivalence relations of the first
homology and the relations of the world sheets of the m-
loop correspond to the equivalence relations of the second
homology.

Now, we show that the relations in Eqs. (9)–(14) can
all be understood in the context of the exactly solvable 3D
toric code model of Eq. (6) in terms of the stabilizer prop-
erties. In particular, the left-hand sides of these relations
differ from the right-hand sides by multiplying a stabilizer
Si ∈ S , as illustrated in Fig. 12. In particular, we can see
that the bending of a Z-string corresponding to Eq. (9) is
achieved by multiplying two plaquette Z stabilizers in the
example shown in Fig. 12(a). Similarly, a closed Z-loop
corresponding to Eq. (11) is equivalent to the multiplica-
tion of three plaquette Z stabilizers in the example shown
in Fig. 12(b) and hence equal to a logical identity, i.e.,
PCZ⊗PC = I . Furthermore, as an illustration for Eq. (13),
two parallel vertical Z-strings can be recoupled into two
U-shaped strings by multiplying a vertical plaquette Z sta-
bilizer in the example shown in Fig. 12(c). For the world
sheet of the m-string, we see that the local deformation
of the X -brane corresponding to Eq. (10) is achieved by
multiplying four vertex X stabilizers (highlighted by blue
hexagons on the vertices) in the example illustrated in
Fig. 12(d). Furthermore, a closed X -brane (sphere) corre-
sponding to Eq. (12) is equivalent to the multiplication of
four X stabilizers in the example illustrated in Fig. 12(e)
and hence is a logical identity, i.e., PCX ⊗PC = I . Finally,
as an illustration for Eq. (14), two parallel horizontal X -
branes can be recoupled into two U-shaped branes by
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FIG. 12. An illustration of the TQFT relations Eqs. (9–14) with the 3D toric code model of Eq. (6). (a) The bending of a Z-
string by multiplying two plaquette Z stabilizers (orange) corresponding to Eq. (9). The dashed lines indicate the previous Z-string
location before bending. (b) A closed Z-loop can be shrunk to a logical identity by multiplying three plaquette Z stabilizers (orange)
enclosed by the loop corresponding to Eq. (11). (c) The recoupling of two Z-strings via multiplying a plaquette Z stabilizer in between
corresponding to Eq. (13). (d) Local bending of the X -brane by multiplying four vertex X stabilizers (blue hexagons) corresponding
to Eq. (14). (e) A closed X -brane topologically equivalent to a sphere can be shrunk into a logical identity by multiplying four vertex
X stabilizers corresponding to Eq. (12). (f) The recoupling of two X -branes by multiplying vertex X stabilizers corresponding to
Eq. (14).

multiplying 24 X stabilizers in between in the example
shown in Fig. 12(f).

Besides the basic relations given in Eqs. (9)–(14), we
can also derive the following relation for a general con-
figuration of a Wilson-brane (world-sheet) operator Wm

supported on a genus-g surface M2
g:

(15)

The first equality essentially utilizes the idea of the “pants”
decomposition of a generic closed surface, which decom-
poses M2

g into a disjoint union of a pair of pants in most
region and two cylinders on the left and right ends, respec-
tively. A pair of pants is homeomorphic to a 3-punctured
sphere—i.e., a sphere with three disks being removed,
S2 \ (D2 ∪ D2 ∪ D2)—and a cylinder is homeomorphic to
a 2-punctured sphere. The Wilson-brane operator Wm can
hence be decomposed as a direct product of the branes act-
ing on the pair of pants and cylinders with their punctures
being filled by putting additional “caps” on them. To reach
the decomposition, we also use the following recoupling

relation:

(16)

which is essentially a variant of the brane recoupling rela-
tion in Eq. (14) with a rotation of the central axis by 2π .
Now, the pair of pants and cylinders with filled punc-
tures are just all equivalent to 2-spheres S2. Therefore, the
Wilson-brane operator Wm supported on a genus-g surface
can just be decomposed into a tensor product of spherical
branes, which then equal the vacuum sector I or a logical
identity according to Eq. (12). In the case of the exactly
solvable toric code model, one can show that this X -brane
equals a logical identity by multiplying a product stabi-
lizer supported on the volume enclosed by the genus-g
surface M2

g .
As a crucial ingredient for understanding the situations

in the presence of fractals, we now consider the gapped
boundaries in this TQFT. Similar to the (2+1)D case, there
are also two types of gapped boundary in the (3+1)D
ZN gauge theory: the e-boundary and m-boundary, which
condense the e-particle and the m-string or -loop, respec-
tively, as illustrated in Fig. 13. In particular, as shown
in Fig. 13(b), a partial m-loop can terminate at the m-
boundary before fully condensing onto the boundary. The
condensation property also means that the Wilson-line
operator (world line) of the e-particle We can terminate
at the e-boundary, while the Wilson-brane operator (world
sheet) of the m-string Wm can terminate at the m-boundary.
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FIG. 13. (a) An e-particle excitation can condense on the
e-boundary when applying a Wilson-line operator We, which cor-
responds to a Z-string operator Z⊗ in the 3D toric code. (b)
An m-string excitation can condense on the m-boundary when
applying a Wilson-sheet operator Wm, which corresponds to an
X -brane operator X ⊗ in the 3D toric code.

In the case of the exactly solvable toric code model, these
terminated Wilson-line and -brane operators correspond
to terminated Z-strings and X -branes, respectively, i.e.,
We = Z⊗ and Wm = X ⊗. In addition to the relations of
Wilson operators in the bulk Eqs. (9)–(14), we also have
the following relations for the Wilson operators on the
boundaries:

(17)

(18)

which state that the world line of e-particle We and the
world sheet of m-string Wm attached to the e- and m-
boundaries, respectively, can be completely absorbed into
the boundary and are hence equivalent to the vacuum
sector or a logical identity.

We now consider the microscopic realizations of these
gapped boundaries in the 3D toric code model. As illus-
trated in Fig. 14(a), we choose the top and bottom faces
to be e-boundaries. This can be achieved by removing all
the X -type boundary stabilizers such that they will not
be violated when an e-particle disappears on the bound-
ary. These boundaries are also called rough boundaries,
since dangling edges are sticking out of the boundaries.
The boundary stabilizers are three-body Z-type stabiliz-
ers, formed by two dangling edges perpendicular to the
boundary and one edge parallel to the boundary. The four
side faces are chosen to be m-boundaries, which can be
achieved by removing all the Z-type boundary stabilizers
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FIG. 14. The logical Z-string and the logical X -brane opera-
tors are illustrated on (a) the discrete lattice and (b) the continu-
ous TQFT pictures, respectively. They intersect on a single edge
(purple) in the lattice picture or at a single point (yellow cross)
in the TQFT picture. The dangling edges on the top and bot-
tom faces (red) in (b) symbolize the rough boundaries and are
sometimes omitted in the later figures for simplicity.

such that they will not be violated when an m-string disap-
pears on the boundary. These boundaries are also called
smooth boundaries, since the boundaries are formed by
smooth surfaces without dangling edges. The boundary
stabilizers are five-body X -type stabilizers, formed by four
edges parallel to the boundary and one edge going inward.

The setup with the particular boundary choice in Fig. 14
is often called the 3D surface code. This code contains
a logical Z-string operator Z = W

e
corresponding to the

Wilson line of the e-particle in the TQFT picture. In the
corresponding exactly solvable lattice model, this logical
Z operator corresponds to Pauli Z operators supported on
a string se, i.e., Z := ⊗

j∈se
Xj . The model also contains

a logical X -brane operator X = W
m

corresponding to the
Wilson brane of the m-string Wm. In the exactly solvable
model, this logical X operator corresponds to Pauli X
operators supported on the brane Am, i.e., X := ⊗

j∈Am
Xj .

Both the lattice and TQFT pictures of these logical opera-
tors are shown in Figs. 14(a) and 14(b), respectively.

C. The fractal-cube geometry and simple fractals

We now start to consider the possible existence of topo-
logical orders on fractals embedded in 3D. We begin with
a simple construction that serves as an important exam-
ple in the following discussions: the fractal-cube geometry
FC(3, 1) defined recursively in Fig. 15. Here, “3,1” repre-
sents the relative linear size of each cubic region and the
hole punched in each iteration, which can be considered
as a 3D generalization of the Sierpiński carpet SC(3, 1). In
the illustration in Fig. 15, the top and bottom faces (hori-
zontal) are e-boundaries and the rest of the faces (vertical)
are m-boundaries, similar to the case of a 3D surface code
shown in Fig. 14. In general, one can also consider the frac-
tal cube defined on a 3D torus T3 or 3D sphere S3, as is also
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FIG. 15. A 3D fractal surface code defined on the fractal-cube geometry FC(3, 1) (at levels l = 1, 2, and 3). The illustrated model
contains only m-holes (blue). The outer boundaries are the same as those of the 3D surface codes, with the top and bottom faces being
e-boundaries, while the rest are m-boundaries.

discussed below. In the specific example shown in Fig. 15,
we assign m-boundaries on all the holes inside the bulk
and from now on we call these holes m-holes. In a gen-
eral setup, these holes can also have e-boundaries and are
called e-holes instead.

In the fractal-cube geometry, all the holes in the system
are topologically equivalent (homeomorphic) to a 3-ball
D3 and hence simply connected. We call such a fractal a
simple fractal.
Definition 2: A simple fractal embedded in n dimen-
sions is a fractal obtained by punching n-dimensional holes
homeomorphic to n-balls Dn in an n-dimensional manifold.

D. Fractals formed by e-holes (no-go theorem)

We first consider fractals where all the holes inside are
e-holes, i.e., assigned with e-boundaries. In this case, the e-
particles can condense on the e-boundaries of these holes.
Therefore, there exist logical Z-string operators connect-
ing the boundaries of two e-holes, which are Wilson-line
(world-line) operators of e-particles.

We start with the special case of a simple fractal, i.e., all
e-holes in the system (Nh in total) are homeomorphic to a
3-ball D3 and hence are simply connected. One example
of such a simple fractal is the fractal-cube geometry with
e-holes, as illustrated in Fig. 16. Indeed, each cubic e-hole
is homeomorphic to a 3-ball D3 as shown in Fig. 17(a).
In this case, a similar “curse” to the 2D case occurs: each
e-hole (homeomorphic to D3) can trap a X -brane logi-
cal operator X i (associated with the ith e-hole). This is
because the closed X -brane is homeomorphic to a 2-sphere
S2, which is equivalent to the boundary of the e-hole (3-
ball), i.e., S2 = ∂D3 and can hence enclose the e-hole, as
shown in Fig. 17(b). Meanwhile, there is a Z-string log-
ical operator Zi connecting the ith and (i + 1)th e-holes,
as illustrated in Figs. 16 and 17(b). In addition, the logi-
cal operator Z0 corresponds to the Z-string connecting the
top e-boundary on the surface to the first e-hole, while ZNh
corresponds to the Z-string connecting the Nhth e-hole to

the bottom e-boundary on the surface. Now, we denote the
macroscopic logical Z-string connecting the top and bot-
tom boundaries as Z. It has a length of O(L). We note that
the logical Z-strings mentioned above are not all indepen-
dent, due to the following constraint: Z = ∏Nh

i=0 Zi. For the
case of Z2 gauge theory or toric code, pairs of logical oper-
ators satisfying the anticommutation relations {Zi, X i} = 0
(for 1 ≤ i ≤ Nh) correspond to Nh logical qubits. We also
denote one of the macroscopic X -logical branes as X [with
a size of O(L2)]. The logical pair satisfying the anticommu-
tation relation {Z, X } = 0 defines the main logical qubit
that is already present in the absence of the holes. How-
ever, due to the anticommutation relation {Zi, X } = 0 for a
certain microscopic logical string Zi with O(1) length, we
know that the distance (for the Z-type error or noise) of any
of the logical qubits (independent of any different choice of
logical basis) is dZ ∼ O(1). Therefore, none of the degen-
eracies in the system is topologically protected, similar to
the 2D Sierpiński-carpet case and topological order does
not exist.

e

e

FIG. 16. A 3D fractal model defined on the fractal-cube geom-
etry FC(3, 1) with only e-holes (red). A pair of macroscopic log-
ical operators X and Z intersects at a single point (yellow cross).
The macroscopic logical X is intersected by an O(1)-length dual
logical string Zi, leading to an O(1) code distance.
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FIG. 17. (a) A cubic hole is topologically equivalent to a 3-
ball D3 with its boundary being the 2-sphere S2. (b) An e-hole
can trap a logical X -brane and let a logical Z-string terminate on
it due to condensation of e-anyons on its e-boundary. A pair of
e-holes can encode a single logical qubit, similar to the situation
of the 2D surface code in Fig. 4(b).

In general, the absence of topological order can be
extended well beyond the case of simple fractals and we
can have the following generic no-go theorem.

Theorem 2: ZN topological order does not exist on a
fractal embedded in 3D with only e-holes [68].

Proof. In the generic situation, the e-holes are not neces-
sarily simply connected as in the case of the simple fractal.
However, this issue does not necessarily complicate our
proof. We start with an arbitrary macroscopic logical brane
X . As discussed in the proof for the 2D case, due to self-
similarity of a fractal, for any point on the fractal geometry,
when moving along any direction n̂ within O(1) distance,
one must encounter either a hole or the outer boundary.
Therefore, for any point p on X , there must exist one
e-boundary on each side of X . Thus, there also exists a
short logical string Zi with O(1) length connecting these
two nearby e-boundaries having O(1) separation, as can be
illustrated in Fig. 16 without loss of generality. This short
string necessarily intersects an odd number of times with
the macroscopic logical brane X and has a single algebraic
intersection, i.e.,

supp(Zi) ∩ supp(X ) = 1, (19)

where “∩” denotes the algebraic intersection. There is
hence an anticommuting relation in the case of Z2
gauge theory: {Zi, X } = 0. This anticommutation relation
is replaced by the group commutator Zi X Z

†
i X

† = e2π i/N

in the general case of ZN gauge theory (with N = 2 being
the special case giving the above anticommutator), where
2π/N is just the Aharanov-Bohm phase in this theory, as
mentioned above in Sec. IV A. In either case, one obtains
a noncommuting relation:

[Zi, X ] �= 0. (20)

This means that a logical Z error can be caused by an O(1)
Z-type error (noise). Therefore, the distance corresponding
to the logical Z error is only dZ ∼ O(1), which also leads to
the overall code distance being d = min(dX , dZ) ∼ O(1).

The above statement is independent of the choice of log-
ical basis. Note that in the above proof, we use the fact
that the logical X operator has to be branelike. This is a
key property of Z2 gauge theory, since the logical X oper-
ators are associated with the second ZN -homology group
and hence correspond to nontrivial 2-cycles. We can hence
conclude that no topological order exists on such a fractal
geometry. �

E. Fractals formed by m-holes: Existence of
topological order

We now switch to discussing the case of fractals with
m-holes. In particular, we focus on the setup where the m-
holes in the fractal are homeomorphic to 3-balls D3, i.e.,
the simple 3D fractal as defined above in Definition 2. One
example of such a simple 3D fractal is the fractal-cube
geometry FC(3, 1) introduced in Fig. 15.

In this scenario, we can claim the following theorem.

Theorem 3: ZN topological order exists on a simple
fractal embedded in a 3D manifold with only m-holes.

In the following, we provide three alternative proofs
of the above theorem. The first two are based on the
TQFT and stabilizer descriptions, while the last one is
based on homology theory and is extended to the higher-
dimensional theories in Sec. V. The purpose of introducing
different proofs is to explicitly show different aspects of
the underlying physical meaning and pave the way for
different types of generalization of the current results in
future work. We focus on proving the case of Z2 topolog-
ical order (a special case being the Z2 toric code) with a
gapped boundary configuration shown in Fig. 15, i.e., with
e-boundaries on the top and bottom faces of the cube and
m-boundaries on the rest of the faces. The generalization to
the cases of ZN topological order with the corresponding
exactly solvable model being the ZN toric code (see Sec.
III of the Supplemental Material [63]) and situations of a
periodic boundary condition, i.e., a 3-torus T3, is straight-
forward and is also discussed below. For convenience, we
just call the Wilson-line (world-line) operators of e-particle
We as Z-string Z⊗ and the Wilson-brane (world sheet)
operators of m-string Wm as X -brane X ⊗, as in the case
of the exactly solvable 3D toric code model. The reader
should keep in mind that our proof also applies to the more
general case of the TQFT description in the absence of an
exactly solvable model.

Proof 3a. In this setup, the e-particle cannot condense on
the m-holes, so Z-strings (Wilson lines of e-particle We)
cannot terminate on these holes. On the other hand, a
Z-loop also cannot enclose any m-holes due to simple topo-
logical constraints. A Z-loop Z⊗ (supported on S1) orbiting
around an m-hole (D3) can always be shrunk into a triv-
ial point via a gauge transformation (local deformation)
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according to Eq. (11), which also corresponds to multiply-
ing Z-plaquette stabilizers in the exactly solvable model
as shown in Fig. 11(b). This property is shown by the
following relation:

(21)

which claims that the Z-loop is a logical identity in the
code (ground) space, i.e., PCZ⊗PC = I . Mathematically,
this can also be interpreted by the following property of
the homology groups of a 2-sphere, i.e., the boundary of
the m-hole as a 3-ball (S2 = ∂D3):

Hi(S2) =
{

Z, i = 0 or 2;
0, i = 1.

(22)

Here, “0” represents the trivial group containing a single
identity element. H1(S2) = 0 corresponds to a loop S1 on
the sphere S2 and is trivial (contractible), meaning that a
loop S1 cannot enclose a sphere S2 (the boundary of m-
holes).

Therefore, in the case of the fractal cube with top and
bottom e-boundaries (Fig. 15) or any simple fractal with
the same boundary conditions, the only nontrivial logical
string operator Z = W

e
must connect the top and bottom

e-boundaries, where the e-particles can condense. This
string is hence macroscopic and corresponds to a distance
dZ ∼ O(L). In the meantime, there is a macroscopic brane
operator X = W

m
terminated at the m-boundaries on the

four vertical faces, with a potential distance dX ∼ O(LDH )

(if no other shorter logical X -brane exists). Here, DH is the
Hausdorff dimension of a representative of the brane oper-
ator with the smallest operator support, which is itself a 2D
fractal. For example, in the case of the fractal cube shown
in Fig. 15, the smallest brane is a 2D Sierpiński carpet with
Hausdorff dimension DH = log 8/ log 3 ≈ 1.893.

The macroscopic logical string operator Z connecting
the top and bottom e-boundaries has a single algebraic
intersection with the macroscopic logical brane operator
X (and hence with an odd number of geometric intersec-
tions), i.e.,

supp(Z) ∩ supp(X ) = 1. (23)

In the case of Z2 topological order, we obtain an anti-
commutation relation {Z, X } = 0. This anticommutation
relation is replaced by the group commutator Z X Z

†
X

† =
e2π i/N in the general case of ZN topological order, where
2π/N comes from the Aharanov-Bohm phase introduced
in Sec. IV A.

We can also see from Eq. (22) that H2(S2), correspond-
ing to a noncontractible 2-brane, can enclose the sphere

S2 an integer number of times. However, although the X -
brane X ⊗ (the Wilson brane of m-string Wm) can enclose
the m-hole, it is still trivial, since it can be absorbed onto
the boundary of the m-hole due to the condensation of an
m-string and hence disappear. This can be achieved via a
gauge transformation (local deformation) as follows:

(24)

which corresponds to multiplying X stabilizers in the
exactly solvable model. The first equality in Eq. (24) is due
to the multiplication of a partial spherical X -membrane
attached to the m-hole, which is itself a logical identity
in the code space HC according to Eq. (18) and corre-
sponds to a stabilizer in the exactly solvable model. The
second equality is due to the absorption of the attached
partial spherical X -membrane into the m-boundary, which
is hence equivalent to the vacuum sector I, again due
to Eq. (18). The entire Eq. (24) states that the X-brane
X ⊗ wrapping around the m-hole is trivial and equiva-
lent to a logical identity in the code (ground) space, i.e.,
PCX ⊗PC = I .

Now, the only remaining question is whether there exists
any microscopic logical brane operator X j with support
of O(1) or, more generally, less than O(dX ), which does
not commute with the macroscopic string operator Z, i.e.,
[Z, X j ] �= 0.

We know that a logical X -brane operator has to be a
closed brane, i.e., it contains no boundary corresponding to
the string excitation. It can only terminates at m-boundaries
due to the condensation of the m-string. Since the X -brane
X ⊗ does not have any boundary, its intersections on the
m-boundaries must also be closed curves, i.e., a union of
closed loops: S1 ∪ S1 ∪ S1 ∪ S1 · · · ≡ ∪j S1

(j ). Note that a
closed loop is homeomorphic (topologically equivalent) to
a circle S1. In general, these closed loops can either be
nonoverlapping, i.e., S1

(i) ∩ S1
(j ) = ∅ (for any i and j ), or

overlapping, i.e., crossed at a certain discrete set of points
and hence S1

(i) ∩ S1
(j ) �= ∅. There is no essential difference

between these two cases, since one can always remove
the intersection between the loops via local deformation,
which is equivalent to gauge transformation or stabilizer
multiplication.

The simplest configuration satisfying the above con-
straints is a cylindrical X -brane operator connecting two
m-holes, as shown in Fig. 19(a). As mentioned earlier
and illustrated in Fig. 19(b), the m-holes in these simple
fractals are homeomorphic (topologically equivalent) to 3-
balls (D3), with the boundaries being 2-spheres (S2). The
support of the X -brane is a cylindrical surface S1 × D1,
i.e., decomposed by the circle S1 and a line segment D1
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FIG. 18. (a) A pair of macroscopic logical-operator represen-
tatives on the 3D fractal surface code defined on the fractal-cube
geometry FC(3, 1) with m-holes: the logical string Z and the log-
ical brane X . (b) The minimal area representative of the logical
brane X is interrupted by the m-holes and hence has the shape of
a Sierpiński carpet with area scaling O(LDH ), where DH = 1.893
is the Hausdorff dimension of the 2D Sierpiński carpet.

(a one-dimensional disk), as illustrated in Fig. 19(c). If
we include the inner region as well, we obtain a solid
cylinder D2 × D1 (with the cross section being a 2-disk
D2), which is homeomorphic to a 3-ball D3. Now, the
configuration in Fig. 19(a) is equivalent to two 3-balls
connected by a solid cylinder, i.e., D3 ∪D2 D3 ∪D2 D3, as
shown Fig. 19(e). Here, we use the notation from surgery
theory, where D3 ∪D2 D3 means that two 3-balls (D3) are
glued together along a common (identified) disk (D2)
region. In Fig. 19(e), we have a ball glued to a solid cylin-
der and then glued to another ball, along two identified
disks. The boundary of this configuration is a connected
sum of three 2-spheres, i.e., S2#S2#S2. Here, the con-
nected sum (#) between two 2-manifolds means cutting

out two disks D2 on the two manifolds and gluing the two
manifolds by identifying the boundaries of the two disks,
i.e., two circles S1. As we can see from the first equality
in Fig. 19(e), the gluing of the two balls with the solid
cylinder is equivalent to a single solid cylinder D2 × D1,
which is also equivalent to a 3-ball D3, with the bound-
ary being 2-sphere S2, as shown by the second equality.
Therefore, as shown by the rightmost image in Fig. 19(e),
the X -brane operator X ⊗ has the support of a sphere with
two disk regions (corresponding to m-boundaries) cut out:
supp(X ⊗) = S2 \ (D2 ∪ D2).

We now consider the intersection of the X -brane opera-
tor X ⊗ and the macroscopic logical string Z, as illustrated
in Fig. 19(f). As one can see, the geometric intersection
number between the Z-string and the X -cylindrical sur-
face is always even and the algebraic intersection number
is always 0, i.e.,

supp(Z) ∩ supp(X ⊗) = 0. (25)

The zero comes from the cancellation of positive-
intersection and negative-intersection numbers. When
choosing a direction of the string, one has a positive-
(negative-) intersection number +1 (−1) when the string
goes into (out of) the surface, labeled as + (−) in
Fig. 19(f). One can further understand this by deform-
ing the boundary of this configuration to an X -brane with
the support of a 2-sphere with two disks corresponding
to the m-boundary cut out. The Z-string can intersect
with the 2-sphere except in the two m-disk regions, i.e.,
the region S2 \ (D2 ∪ D2). However, we know that the
algebraic intersection number is a topological invariant
in the sense that one can perturb the intersection point
of the Z-string with the 2-sphere without affecting the
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FIG. 19. An illustration for Proof 3a. (a) A local X -brane connecting two m-holes. (b) The equivalence of the m-hole to a 3-ball
D3 with the boundary being a 2-sphere S2. (c) The equivalence of the X -brane to a cylinder S1 × D1. (d) The filled (solid) cylinder is
equivalent to a 3-ball D3. (e) Gluing two 3-balls with a solid cylinder in between is equivalent to a solid cylinder, while its boundary
is equivalent to a connected sum of three 2-spheres. Exclusion of the two m-boundaries leads to a 2-punctured sphere with two disks
D2 being removed, i.e., S2 \ (D2 ∪ D2). (f) The intersection of the macroscopic logical string Z and the X -brane is equivalent to the
intersection of the string with a 2-punctured sphere. The algebraic intersection is always zero since the string enters and leaves the
interior of the punctured sphere the same number of times.
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algebraic intersection number. This means that the alge-
braic intersection of the string with the punctured sphere
S2 \ (D2 ∪ D2) is the same as the algebraic intersection
with the sphere S2, since one can perturb the intersection
point away from the two disks. The algebraic intersection
number is hence zero if there is no e-particle source inside
the sphere. This is because the Z-string has to go into and
come out of the sphere the same number of times, lead-
ing to cancellation of the algebraic intersection numbers.
A source of an e-particle is only possible if there are e-
holes enclosed by the X -brane, which is excluded in the
considered scenario. Alternatively, one can also consider
the intersection of the string with the punctured sphere as
a more restrictive case (excluding the two disk regions)
of the general situation of the intersection with the entire
sphere; therefore, the algebraic intersection number must
be the same.

In the above example, the intersection of the X -brane
with the m-holes is a single circle, S1. In more general
cases, the intersection can be a union of nonoverlapping
or crossed circles, ∪j S1

(j ). In these cases, the X -brane can
be decomposed as a tensor product of several connected
components

∏
j X ⊗

j each X ⊗
j intersects with the m-hole on

a circle S1. We can hence analyze the intersection of the
string Z and each brane X ⊗

j separately.
We now consider the most generic situation, as illus-

trated in Fig. 20. The X -brane connects multiple m-holes
with a complicated topology. As mentioned above, we can
first decompose the X -brane into a tensor product of multi-
ply connected components

∏
j X ⊗

j , as shown in Fig. 20(a).
Each connected component X ⊗

j along with the surface of
the m-holes (S2) forms a generic orientable closed sur-
face (2-manifold) M2 as illustrated by the first connected
component in Fig. 20(a). Such a generic surface M2 can
also have nonzero genus as illustrated in the figure, which
is more general than the cylinder case considered above.
The macroscopic logical string Z is excluded from the
boundary of the m-holes Bj and hence only intersects in the
rest of the region on the X -brane, i.e., M2 \ (∪jBj ). Note

that different from the simple case of cylindrical X -brane,
each excluded boundary Bj is not necessarily a disk D2 but,
in general, a punctured sphere with several disk regions cut
out, i.e., Bj = S2 \ (∪iD2

(i)), as illustrated in Fig. 20(a). In
the previously discussed special case of a punctured sphere
with a single disk removed, this punctured sphere is just a
disk, i.e., S2 \ D2 = D2.

However, as mentioned before, such a reduced configu-
ration is just a more restrictive case of the generic situation
of the intersection between the string Z and the entire
closed surface M2, so the algebraic intersection number
in the reduced configuration M2 \ (∪jBj ) should just be
the same as the one in the case of the entire generic closed
surface M2. We note that the Z-string has to go into and
come out of the interior of the closed surface the same
number of times, since there is no e-hole and a source
of Z-strings inside the closed surface does not exist, as
illustrated in Fig. 19(f). Therefore, in the most generic
situation, the intersection property in Eq. (25) is still sat-
isfied: the geometric intersection number is even and the
algebraic intersection number is 0.

In sum, these local X -branes will always commute with
the macroscopic logical string, i.e., [Z, X ⊗

j ] = 0, and hence
cannot lead to any logical error. Therefore, the X -distance
of the code is macroscopic, i.e., dX = O(LDH ), which is
determined by the size of the minimum support of the
macroscopic logical brane X , where DH is the Hausdorff
dimension of such a brane, as mentioned before. The over-
all code distance is hence d = min(dX , dZ) = O(L) and
remains macroscopic. �

Proof 3b. In the above proof, we focus on the intersection
property between the local closed X -branes attached to the
m-holes and the macroscopic logical Z-string. In this alter-
native proof, we focus on proving that any of such local
closed X -branes is equivalent to a logical identity in the
code (ground) space, i.e.,

m
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m m
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m
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FIG. 20. (a) The generic situation considered in Proofs 3a and 3b, where a local X -brane operator connects multiple m-holes and
can be decomposed as a tensor product of several connected components. (b) The macroscopic logical string Z has zero algebraic
intersection with the local X -brane, since the string enters and leaves the interior of the punctured closed 2-manifolds formed by the
X -brane operator the same number of times.
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PCX ⊗
j PC = I . (26)

This property can be easily shown either using the basic
TQFT relations stated above or through the stabilizer
properties in the exactly solvable toric code model.

We first consider the simple case of a cylindrical X -
brane connecting two m-holes as shown in Fig. 19. We
have the following relation between equivalent configura-
tions:

(27)

The first equality applies the recoupling relation in Eq. (16)
twice on the left and right ends of the cylinder, respec-
tively. With this recoupling, one can split the cylindrical
X -brane into a piece equivalent to a sphere S2 in the center
and two partial spheres attached to the m-holes. The two
attached partial spheres are then shrunk into logical iden-
tities in the next equality due to the m-string condensation
relation in Eq. (18). Now, the central spherical X -brane can
again be shrunk into a logical identity in the last equality
due to the relation in Eq. (12).

We can also derive the above equivalence relation in
a slightly different way. As mentioned before, any local
deformation of the string and brane operator is equivalent
to a gauge transformation, also corresponding to multiply-
ing stabilizers in the case of the exactly solvable model.
The cylindrical X -brane intersects with the m-hole on a
circle S1. We can then continuously shrink this intersec-
tion circle to a single point p and then detach the X -brane
from the m-hole boundary, followed by shrinking it further
into the vacuum sector, as shown by the following relation:

(28)

We can now consider the most general case where the
X -brane along with the m-hole boundaries together form
a generic closed surface (2-manifold) M2 as shown in

Fig. 20. The whole X -brane can be locally deformed into
vacuum as shown in the following:

.

(29)

The first equality uses the detaching move in either of
Eqs. (27) or (28). The second equality uses the relation
in Eq. (15) that the X -brane supported in any closed
genus-g surface is equal to a vacuum (a logical identity).
Therefore, we prove the property stated in Eq. (26), i.e.,
any local X -membrane connecting different m-holes is a
logical identity.

In the case of the exactly solvable model, one can mul-
tiply all the X stabilizers inside the closed surface M2,
which cancels the whole X -brane. Therefore, we can see
that such a local X -brane is just a stabilizer and hence
equals a logical identity. �

F. Construction of a family of fractal codes with
Hausdorff dimension 3 − δ

In this section, we construct a class of fractal codes
defined on simple fractals with m-holes and tunable
Hausdorff dimension 3 − δ, where 0 < δ < 1. Most inter-
estingly, the Hausdorff dimension can asymptotically
approach 2 + ε for arbitrary small ε.

One can generalize the specific fractal-cube geome-
try FC(3, 1) in Fig. 15 to a family of fractal geometries
FC(p , q) as illustrated in Fig. 21. We start by generaliz-
ing the Sierpiński-carpet fractal SC(3, 1) shown in Fig. 3 to
SC(p , q), as illustrated in Figs. 15(a)–15(c). In the first iter-
ation (l = 1), one divides the large level-0 (l = 0) square
equally into p × p small level-1 (l = 1) squares, with each
one having the linear size 1/p of the large level-0 square.
One then punches a level-1 hole region in the center occu-
pying q × q squares. Therefore, the linear size ratio of the
level-1 hole and the level-0 square is q/p , where q = 4
and p = 6 in the illustration of Figs. 15(a)–15(c). Now,
we are left with the remaining p2 − q2 level-1 square and
we denote the present geometry as SC(p , q, l = 1). In the
next iteration (l = 2), we repeat the procedure of the pre-
vious iteration inside each level-1 square and reach the
geometry SC(p , q, l = 2) and then proceed further. In the
lth iteration, we divide each level-l square equally into
p × p level-(l + 1) squares and punch a hole in the cen-
ter occupying q × q squares and we obtain the geometry
SC(p , q, l). The fractal is generated asymptotically when
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FIG. 21. (a)–(c) The iterative construction of a family of Sier-
piński carpets SC(p , q), shown via an illustration of SC(6, 4)
and Hausdorff dimension DH = 1.672. (d)–(f) The iterative con-
struction of a family of 3D fractal surface codes defined on a
fractal-cube geometry FC(p , q) and with m-holes inside, shown
via an illustration of FC(6, 4) and Hausdorff dimension DH =
2.804.

having an infinite number of iterations, i.e., SC(p , q) ≡
liml→∞ SC(p , q, l).

We next generate the general fractal-cube geom-
etry FC(p , q) in a similar manner as shown in
Figs. 21(d)–21(f), where p = 6 and q = 4 are illustrated
in this case. In the lth iteration, we divide each level-l
cube equally into p × p × p level-(l + 1) cubes with lin-
ear size 1/p of a level-l cube and punch an m-hole in
the center occupying q × q × q cubes and we obtain the
geometry FC(p , q, l). The fractal-cube geometry is gen-
erated asymptotically, i.e., FC(p , q) ≡ liml→∞ FC(p , q, l).
Note that there are certainly different pairs of (p , q) that
represent the same fractal, if we multiply both p and q by
the same constant.

We can now calculate the Hausdorff dimension for
FC(p , q) and obtain

DH (FC, p , q) = ln(p3 − q3)

ln p
. (30)

For the first example, FC(3, 1), illustrated in Fig. 15, we
have DH (FC, 3, 1) = ln(26)/ ln(3) = 2.965, For the exam-
ple of FC(6, 4), illustrated in Figs. 21(d)–21(f), we have
DH (FC, 6, 4) = 2.804, which is significantly lower than
that of FC(3, 1). As discussed above, the Z-distance is the
shortest length of all the logical Z-string representatives
and is hence dZ = O(L). Meanwhile, the X -distance for
FC(p , q) is the minimal area of all the logical X -brane
representatives, which is just the area of the Sierpiński car-
pet SC(p , q) as illustrated in Fig. 18, and scales as dX =
O(LDH (SC,p ,q)), where DH (SC, p , q) = ln(p2 − q2)/ln p is
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FIG. 22. The Hausdorff dimensions DH of a subfamily of
fractal-cube geometries FC(p , p − 2).

the Hausdorff dimension of the Sierpiński carpet. As men-
tioned before, for FC(3, 1), one has dX = O(L1.893), while
for FC(6, 4), one has dX = O(L1.672). The overall code
distance for all FC(p , q) is d = min(dX , dZ) = dZ = O(L).
The space overhead of the fractal surface codes defined
on the fractal cube FC(p , q) is hence O(LDH (FC,p ,q)) =
O(dDH (FC,p ,q)). For FC(3, 1), one has a space overhead of
O(L2.965), while for FC(6, 4), one has a space overhead of
O(L2.804).

By varying the ratio p/q, one can construct fractal codes
with Hausdorff dimension DH = 3 − δ, where 0 < δ < 1.
In particular, when continuing to increase p/q, one can
asymptotically approach the Hausdorff dimension DH =
2 + ε with arbitrary small ε. For simplicity, we consider a
subclass of fractals in this family where we take q = p − 2,
i.e., we leave a single array of cubes on each side in each
iteration, and keep increasing p to make the ratio p/q =
p/(p − 2) grow. The Hausdorff dimension DH of this sub-
class of fractal FC(p , p − 2) is plotted in Fig. 22. One
can see that DH drops drastically with p above DH = 2.5
and that the drop slows down around DH = 2.4, while
p stays reasonably small for DH = 2.3. It then asymp-
totically approaches 2 + ε, with all the code parameters
approaching those of the 2D surface code. The Hausdorff
dimensions and corresponding X -distances and the overall
code distances for a set of different fractal codes are listed
in Table I for detailed comparison.

V. TOPOLOGICAL ORDER ON FRACTALS
EMBEDDED IN nD

A. General models in nD

We consider a class of topological orders in n dimen-
sions described by the BF theory:

SBF =
∫

N
2π

b(n−i) ∧ da(i), (31)
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TABLE I. The Hausdorff dimensions and code distances of a
set of fractal surface codes defined on the fractal-cube geome-
tries FC(p , q) (including the generalization to the ZN cases),
compared with those of the 2D and 3D surface codes.

DH dX d = dZ

3D surface code 3 O(L2)

FC(3, 1) 2.965 O(L1.893)

FC(4, 2) 2.904 O(L1.792)

FC(5, 3) 2.849 O(L1.723)

FC(6, 4) 2.804 O(L1.672)

FC(7, 3) 2.958 O(L1.896)

FC(7, 5) 2.767 O(L1.633)

FC(10, 8) 2.688 O(L1.556)

FC(15, 13) 2.611 O(L1.486) O(L)
FC(30, 28) 2.507 O(L1.398)

FC(100, 98) 2.385 O(L1.299)

FC(500, 498) 2.288 O(L1.223)

FC(5000, 4998) 2.210 O(L1.163)

FC(105, 105 − 2) 2.156 O(L1.120)

FC(1010, 1010 − 2) 2.078 O(L1.060)

FC(1020, 1020 − 2) 2.039 O(L1.030)

FC(1080, 1080 − 2) 2.0097 O(L1.0075)

2D surface code 2 O(L)

which generalizes the 3D action in Eq. (5). We have two
types of compact U(1) gauge fields coupled to each other,
i.e., the i-form gauge field a(i) coupled to an (n − i)-form
gauge field b(n−i). In our convention, we require i ≤ n − i,
such that a(i) always has a lower form than b(n−i). In our
definition, the two types of excitation are called e and m.
Their corresponding Wilson operators, W(i)

e and W(n−i)
m , are

i- and (n − i)-dimensional branes.
We focus on the N = 2 case, where we can construct

exactly solvable microscopic models, i.e., the Z2-toric
code models in nD. The generalization to ZN -toric codes
is straightforward and can be found in Sec. III of the Sup-
plemental Material [63]. Now we rely on the language
of the chain complex to describe these models (for an
introduction, see Appendix B).

For a general description, we consider the following
chain complex:

Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1, (32)

where Ci represents the chain group, which is a vector
space with the bases corresponding to the i-cells. The
qubits are placed on the i-cells, with the X -type stabilizers
associated with the (i − 1)-cells and the Z-type stabiliz-
ers with the (i + 1)-cells. We call such a model a (i, n −
i)-toric code and the corresponding topological phase a
(i, n − i)-Z2 topological order (or, more generally, ZN ). In
our convention, we require that i ≤ n − i.

The generalized Z2 toric code can be described by the
following Hamiltonian (for the ZN models, see Sec. III of

the Supplemental Material [63]):

HTC = −
∑

q

A(i−1)
q −

∑

r

B(i+1)
r ,

with A(i−1)
q =

⊗

j∈δe(i−1)
q

Xj , B(i+1)
r =

⊗

j∈∂e(i+1)
r

Zj . (33)

Here, A(i−1)
q is the X stabilizer with all the Pauli X oper-

ators supported on the coboundaries of the (i − 1)-cell
labeled by q, i.e., δe(i−1)

q , while B(i+1)
r is the Z stabilizer

with all the Pauli Z operators supported on the boundaries
of the (i + 1)-cell labeled by r, i.e., ∂e(i+1)

r . In the special
case of i = 1, we have qubits placed on the edges (1-cell),
A(0)q corresponding to the vertex stabilizer (0-cell), and B(2)r
corresponding to the plaquette or face stabilizer (2-cell).

According to the chain complex of Eq. (32), the logical
Z operators, i.e., the Wilson operators corresponding to the
world volume of the e-excitation, can be associated with
the ith homology Hi(L; Z2) = Ker(∂i)/Img(∂i+1) and has
support on an i-brane.

To define the logical X operator, we introduce the dual
chain complex of Eq. (32):

C∗
n−i−1

∂∗n−i←−− C∗
n−i

∂∗n−i+1←−−− C∗
n−i+1. (34)

The logical X operator, i.e., the Wilson operator cor-
responding to the world volume of the m-excitation, is
associated with the (n − i)th homology on the dual-cell
complex Hn−i(L∗; Z2) = Ker(∂∗n−i)/Img(∂∗n−i+1) and has
support on an (n − i)-brane.

In the special case of i = 1, the logical Z operators are
string (Wilson-line) operators, i.e., corresponding to the
world lines of e-particles, and hence are associated with
the first homology H1(L; Z2). The logical X operators
are (n − 1)-branes corresponding to the world volume of
m-excitations and are associated with the (n − 1)th homol-
ogy on the dual-cell complex Hn−1(L∗; Z2). In other cases
(i ≥ 2), both the logical Z and logical X operators are
branes. The e-excitations are either loops (for i = 2) or
(i − 1)-branes. The m-excitations are (n − i − 1)-branes.

B. Theorems for n-dimensional simple fractals

1. Cases with stringlike logical operators (i = 1)

In the case where the theory contains particle excitations
and, equivalently, stringlike logical operators, we have a
ZN gauge theory and a generalized toric code model with
i = 1 in Eq. (33), i.e., described by the following chain
complex:

C2
∂2−→ C1

∂1−→ C0. (35)

We can then generalize Theorem 1 to the n-dimensional
case.
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Theorem 4: The (1, n − 1)-ZN topological order exists on
a simple fractal embedded in an n-dimensional manifold
with m-holes.

Now, we first discuss the essence of this theorem.
Recall that a simple n-dimensional fractal consists of n-
dimensional simply connected holes that are homeomor-
phic to n-dimensional balls Dn, as defined previously in
Definition 2. The m-hole in this case is an n-ball Dn,
with its boundaries being m-boundaries corresponding to a
(n − 1)-sphere (Sn−1 = ∂Dn), onto which m-loop or -brane
excitations can condense, while e-particle excitations can-
not.

The e-particle cannot condense on the m-holes, which
corresponds to the fact that its world line, the Z-string, can-
not terminate on the m-holes. Mathematically, this means
that there is no nontrivial (noncontractible) relative 1-cycle
in the bulk region connecting the holes. Meanwhile, the
Z-loop also cannot enclose an n-dimensional hole, similar
to the n = 3 case discussed before. A Z-loop (S1) orbiting
around an m-hole (Dn) can always be shrunk into a trivial
point via gauge transformation, for example, by multiply-
ing Z-plaquette stabilizers in the exactly solvable case of
the toric code model, i.e.,

(36)

This can also be interpreted by the following mathematical
property of the homology groups of a (n − 1)-sphere, i.e.,
the boundary of the m-hole (Sn−1 = ∂Dn):

Hi(Sn−1) =
{

Z, i = 0 or n − 1;
0, otherwise.

(37)

Here, H1(Sn−1) = 0 corresponds to a loop S1 (absolute
1-cycle) on the sphere Sn−1 and is trivial (contractible),
meaning that a loop cannot enclose a sphere Sn−1 (the
boundary of m-holes). In sum, these properties suggest that
there are no nontrivial relative or absolute 1-cycles in the
bulk region either encircling or connecting the holes. This
means that there exists no additional logical qubit due to
the presence of the m-holes and hence no microscopic logi-
cal Z or logical X exists. Hence one obtains a macroscopic
distance and topological order exists. The rigorous proof
based on algebraic topology is shown in Appendix D 1.

2. Cases without stringlike logical operators (i ≥ 2):
Self-correcting quantum memories

We now consider other general situations, i.e., topo-
logical orders or codes without particle excitations and
stringlike logical operators (i ≥ 2) . These systems are also
expected to be self-correcting quantum memories when

supported on a manifold, since the logical operators are
all branes. In these cases, we have the following theorem.

Theorem 5: The (i, n − i)-ZN topological order exists on
a simple fractal embedded in an n-dimensional manifold
with a certain type of boundary on each hole for 2 ≤ i ≤
n − i, independent of the boundary type on each hole [69].

We now discuss the essence of this theorem. Recall that
in a simple fractal, all the holes are homeomorphic to an
n-dimensional ball Dn. A key feature in the case without
particle excitations (i ≥ 2) is that neither Z- nor X -branes,
i.e., world volumes of the e- or m-excitations, can enclose
the holes. In other words, neither the e-hole nor the m-hole
can encode any logical qubit in this case. This is because
the boundary of the holes are (n − 1)-dimensional spheres:
Sn−1 = ∂Dn. For i ≥ 2, we have i < n − 1 and n − i <
n − 1. Therefore, both Z- and X -branes have dimensions
lower than n − 1, the dimension of the hole boundary, and
hence can always be shrunk to a single point via gauge
transformation, i.e., for 1 < i < n − 1, we have

(38)

(39)

Mathematically, this is a manifestation of the trivial ith-
and (n − i)th-homology groups on Sn−1:

Hi(Sn−1) ∼= Hn−i(Sn−1) = 0 when 1 < i < n − 1, (40)

as summarized in Eq. (37). Therefore, no microscopic
logical operator can exist in this case and one obtains
a macroscopic distance, which declares the existence of
topological order. The rigorous proof based on algebraic
topology is shown in Appendix D 2.

Note that there is a significant difference from the i =
1 case, i.e., the (1, n − 1)-ZN topological order. In the
i = 1 case, the X -brane (the world volume of the m-
excitations) has dimension n − 1, which can then enclose
the hole, since H n−1(Sn−1) = Z as summarized in Eq. (37).
To trivialize the X -brane enclosing the holes, we have
to choose the holes equipped with m-boundaries, such
that the enclosing X -brane is turned into a trivial rela-
tive cycle that can be absorbed onto the m-hole. On the
other hand, an e-hole traps a nontrivial logical X -brane.
Similar to the 3D case, there is also a no-go result for
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the existence of (1,n − 1)-ZN topological order when the
holes in the fractal have e-boundaries, which can be proven
by a straightforward generalization of Theorem 2. Never-
theless, in the case of i ≥ 2, we can choose an arbitrary
boundary on each hole, either e or m, which does not affect
the trivial cycles or cocycles around them.

C. Construction of a family of fractal codes with
Hausdorff dimension n − δ

Here, we construct a family of fractals and the cor-
responding codes with Hausdorff dimension DH = n − δ,
where 0 < δ < 1, which approaches DH = n − 1 + ε with
arbitrary small ε asymptotically. We consider both the
(1, n − 1)− and (i, n − i)-fractal surface codes supported
on these fractals.

We construct the generalization of the 2D and 3D frac-
tals shown in Fig. 21 and call them fractal hypercube
geometries embedded in n dimensions, which is denoted
by FC(n)(p , q). These fractals can be constructed in the
following way: in the lth iteration, we divide each level-
l n-dimensional hypercube equally into pn level-(l + 1)
hypercubes with linear size 1/p of a level-l hypercube
and punch a hole in the center occupying qn cubes and
we obtain the geometry FCn(p , q, l). The fractal hypercube
geometry is generated asymptotically, i.e., FC(n)(p , q) ≡
liml→∞ FC(n)(p , q, l). The Hausdorff dimension of this
fractal and the corresponding codes can be expressed as

DH (FC(n), p , q) = ln(pn − qn)

ln p
. (41)

In the case of the (1, n − 1)-surface code, we put m-
boundaries on the (n − 1)-dimensional hypersurfaces of
all the holes. The external boundaries are specified above
in Sec. V B 1. The Z-distance is just the minimal length
of all logical Z-string representatives and is hence dZ =
O(L). Meanwhile, the X -distance of this code is deter-
mined by the minimal volume of all logical X -brane
representatives, which is just the volume of the fractal
hypercube embedded in (n − 1) dimensions, FCn−1(p , q),
i.e., dX = O(LDH (FC(n−1),p ,q)), where DH (FC(n−1), p , q) =
ln(pn−1 − qn−1)/ln p . The overall code distance is chosen
from the smaller one of dX and dZ and is hence d = dZ =
O(L). The space overhead of this family of codes is hence
O(LDH (FC(n−1),p ,q)) = O(dDH (FC(n−1),p ,q)). As in the 3D case,
when increasing the ratio of p/q, one can keep reduc-
ing the Hausdorff dimension DH = n − δ (i.e., increase δ)
and asymptotically approach DH = n − 1 + ε for arbitrary
small ε. The space overhead can hence asymptotically
approach O(Ln−1+ε) = O(dn−1+ε).

In the case of the (i, n − i)-fractal surface code (2 ≤ i ≤
n − i), we can choose either an e- or an m-boundary on
each hole, as has been proved in Sec. V B 2. The Z- and X -
distances are determined by the minimal volume of all of

the logical Z-brane (the world volume of the e-excitations)
and X -brane (the world volume of the m-excitations) rep-
resentatives, respectively. We can hence have the range
of the Z-distance being LDH (FCi,p ,q) ≤ dZ ≤ Li. The lower
bound is achieved in the case when all the holes have e-
boundaries such that the m-excitations can condense on
these boundaries and the Z-branes terminate on them.
In this case, the minimal-volume Z-branes are the frac-
tal hypercube geometry FC(i)(p , q). The upper bound is
achieved when all the holes have m-boundaries such that
the Z-branes cannot terminate on them and the minimal-
volume Z-branes are just the i-dimensional hypersurface.
Similarly, the range of the X -distance is LDH (FCn−i,p ,q) ≤
dX ≤ Ln−i, where the lower (upper) bound is achieved
when are the holes have m-boundaries (e-boundaries).

Since, in our convention, the logical Z-brane (e-type)
has lower or equal dimension than the logical X -brane
(m-type), i.e., i ≤ n − i, we could set all holes hav-
ing m-boundaries if we aim to maximize the overall
distance. In this case, the e-branes cannot terminate
on these holes and we hence have the maximized Z-
distance dZ = O(Li). In the situation that the X -brane has
larger dimension, i.e., i < n − i, we always have dZ < dX
(since DH (FCn−i, p , q) < n − i − 1 ≤ i) and the overall
distance is just d = min(dX , dZ) = dZ = O(Li), which is
the same as the (i, n − i)-surface code defined on a mani-
fold but requires lower space overhead, i.e., O(LDH (FCn,p ,q))

[asymptotically approaching O(Ln−1+ε)]. In the situation
that the logical X -brane and Z-brane have the same dimen-
sion, i.e., i = n − i, we have dX < dZ , and the overall
distance is d = dX = O(LDH (FCn−i,p ,q)).

A summary of the various types of fractal codes defined
on the fractal hypercube geometry, including the class
with and without stringlike logical operators, is given in
Table II.

VI. FAULT-TOLERANT QUANTUM
COMPUTATION WITH FRACTAL CODES

A. Non-Clifford logical gates for 3D fractal codes

1. A brief review of non-Clifford gates in 3D surface
codes

It has been realized that a non-Clifford logical CCZ gate
can be applied to a stack of three copies of 3D surface
codes with different orientations and cellulations of a 3-
manifold [18,40]. Similarly, a transversal T gate can be
applied to a single copy of a 3D color code defined on a
tetrahedron [35].

We begin with a generic picture of the transversal
controlled-Z (CZ) and CCZ gates between three copies of
3D surface codes by ignoring the detailed lattice structures.
We consider a stack of 3D surface codes that are oriented
in three directions, namely the pair of e-boundaries (red)
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are perpendicular to the z, x, and y directions, respec-
tively, as shown in Fig. 23. The logical Z-strings (red)
terminate on the two opposite e-boundaries. The logical
X -branes (dark blue) are parallel to the e-boundaries and
terminate on the m-boundaries (light blue). This specific
alignment of the three 3D surface codes is carefully cho-
sen such that it satisfies the condition for a transversal
CCZ gate [40]. The reason behind the varying choice in
orientation of the different copies of the code can be under-
stood from the desired action of the logical CCZ gate. By
definition, logical CCZ must map logical X on one code
copy to the product of that same logical X and the logical
CZ on the other two codes; that is, CCZ : X a → X aCZb,c,
for any choice of different labels a, b, c. As such, if for
a given code block a, the logical X resides in the x-y
plane, then there must exist a logical CZ gate, CZb,c, that
can be applied transversally within that plane for the code
blocks b and c and, as such, their logical Z-string operators
must be parallel to that plane. By iterating this argument
for all three code blocks, one concludes that the logical Z
must be in orthogonal directions for all three code blocks,
resulting in the orientation outlined above and presented in
Fig. 23.

We outline the requirements for a transversal logical CCZ
gate in much more detail in Sec. V of the Supplemental
Material [63] and discuss the corresponding microscopic
construction of the three copies of 3D-surface-code models
given by Ref. [40] in Appendix A.

2. Connection between transversal gates and
domain-wall sweeping: A TQFT description

To facilitate later discussions, we now introduce the
TQFT picture for transversal gates. It has been realized in
Refs. [53–57] that transversal gates are related to certain
global symmetry or subsystem symmetry in the corre-
sponding topological order and are equivalent to sweeping
certain gapped domain walls across the system. It has
been further pointed out in Ref. [53] that, in general,
one can consider transversal gates as on-site topologi-
cal symmetries in a symmetry-enriched topological (SET)
order [52].

We consider a generic type of topological order that can
be classified as being equivalent to multiple copies of ele-
mentary topological orders or, equivalently, code blocks C,
where C can also be mathematically interpreted as a cer-
tain tensor category representing such topological order
[70]. We also call this setup a stack code. The generic
topological order that we consider is hence represented as
C × C · · · × C. We say that this type of topological order
is a symmetry-enriched topological order with on-site per-
mutation symmetry between different copies C. In the rest
of this paper, we consider the elementary topological order
to be the toric code [71]. For example, we consider a stack
of three copies of 3D toric codes, equivalent to a single
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FIG. 23. The arrangement of a stack of three 3D surface codes for the application of a transversal logical CCZ gate. (a) The pairs of
e-boundaries are chosen to be perpendicular to the z, x, and y directions, respectively. (b) The three copies are stacked together such
that the corresponding qubits acted on by the transversal CCZ gate in each copy are aligned with each other. (c) The alignment of the
three pairs of logical operators. All logical Z-strings are perpendicular to each other and the same is true for the logical X -branes.

copy of 3D color code, which can be classified as a 3D
Z2 × Z2 × Z2 topological order.

We denote certain transversal gates—or, more generally,
a geometrically local constant-depth quantum circuit—as
U. In the case of a transversal gate, we can represent it
as U = ⊗

j Uj , where j is the horizontal site label for
transversally aligned qubits (in the case of multiple copies
of code blocks C), where Uj only acts on individual qubits
or couples of aligned qubits in different code blocks with
the same label j . Note that Uj does not couple qubits within
the same code block C. If we relax the transversal condi-
tion to local constant-depth quantum circuits, U still maps
any local operator O to another local operator O′ in the
O(1) neighborhood, i.e., UOU† = O′. Now, for U to be a
logical gate, it should satisfy the following condition:

U : HC → HC, (42)

i.e., it preserves the code (ground) space HC. For our dis-
cussion, we write the parent Hamiltonian of the topological
order as

H = H bulk + H boundary ≡ −
∑

i

Sbulk
i −

∑

k

Sboundary
k .

(43)

Here, H bulk and H boundary represent the bulk and boundary
Hamiltonians, while Sbulk

i and Sboundary
k represent the local

stabilizers or, more generally, interaction terms (for non-
stabilizer models) on the bulk and the boundary, respec-
tively. To satisfy the condition in Eq. (42), we need the
parent Hamiltonian to be preserved under the unitary up to
a logical identity, i.e.,

PC(UHU†)PC = PCHPC, (44)

where PC is the projector onto the code (ground) space HC.
In the case that U is a transversal gate, we say that U is an
on-site topological symmetry for a translationally invariant

system if

PC(UH bulkU†)PC = PCH bulkPC

⇐⇒ PC(USbulk
i U†)PC = PCSbulk

i PC. (45)

In the more general case of a constant-depth circuit, the
above conditions can also be generalized accordingly and
we say that U corresponds to certain type of topolog-
ical symmetry for a translationally invariant system. In
general, U can be a global symmetry, meaning that the
constant-depth circuit is applied to the entire system, or a
higher-form (q-form) symmetry [72,73], where the circuit
is applied to a codimension-q submanifold Mn−q. Note
that global symmetry is also a 0-form symmetry according
to the above definition.

Now the presence of the boundary breaks translational
invariance and we have to impose the invariance of the
boundary Hamiltonian under the action of U in order to
satisfy the condition in Eq. (42), i.e.,

PC(UH boundaryU†)PC = PCH boundaryPC

⇐⇒ PC(USboundary
i U†)PC = PCSboundary

i PC. (46)

We denote the ith gapped boundaries of the system as Bi.
The above condition can also be expressed as

U : Bi → Bi, for ∀i. (47)

An alternative physical picture of transversal gates or,
more generally, constant-depth circuits that corresponds to
the topological symmetry is that the application of U is
equivalent to sweeping a corresponding gapped domain
wall w across the system, as illustrated in Fig. 24. Dur-
ing the domain-wall-sweeping process, the region R that
is swept by the wall is applied to a constant-depth circuit
restricted in region R (denoted by UR). When the domain
wall w has been swept across the whole system, the entire
U is applied and the domain wall hits on the boundaries
Bi. If U is a logical gate, i.e., satisfying the condition in
Eq. (42), then the domain wall w should condense on all
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sweep

domain wall

boundary

FIG. 24. An illustration of the correspondence between a
transversal logical gate (or a local constant-depth circuit) U and
domain-wall sweeping in 2D. The application of UR in a region
R is equivalent to sweeping the corresponding gapped domain
wall w to the boundary of the region R. When passing through
the codimension-1 domain wall w across the entire system, the
domain wall condenses on the external boundaries Bi and one
effectively applies the global symmetry U to the entire system
corresponding to the transversal logical gate (or constant-depth
circuit). The external boundaries Bi are required to be invariant
under the action of U according to Eq. (47).

the boundaries, i.e.,

w : Bi → wBiw† = Bi, for ∀i, (48)

which is equivalent to the condition in Eq. (47). We note
that throughout this paper, the physical picture of domain-
wall sweeping is purely used for the purpose of conceptual
understanding, while the actual logical gates implemented
in our protocols are always constant-depth circuits, applied
in a single shot.

In 2D topological orders, the domain wall is codimen-
sion 1 (dimension 1). In general, the codimension is d −
dw, where d is the space dimension of the topological order
and dw is the dimension of the domain wall. In the 2D
case, one has d = 2 and dw = 1. In 3D topological orders,
there are two generic types of gapped domain walls, the
codimension-1 (dimension-2) wall and the codimension-
2 (dimension-1) wall, as shown in Fig. 25. When particle
and string excitations go through a codimension-1 domain
wall, both types can get transformed. This is illustrated
in Fig. 25(a), where both a contractible-loop (closed-
string) excitation and a noncontractible-string excitation
either going through a torus cycle or connecting oppo-
site boundaries (in the case with gapped boundaries) are
shown. The world sheet of the noncontractible-loop exci-
tation corresponds to a logical brane operator. On the other
hand, the particle excitation can always circumvent the
codimension-2 domain wall, as illustrated in Fig. 25(b).
This can be understood via the intersection dimension
ds + dw − d = −1, where ds = 1, dw = 1, and d = 3 rep-
resent the dimensions of the world line of a particle
(i.e., a string operator), the domain wall, and the space,
respectively. Negative intersection dimension means that
no generic interaction can occur between the world line

domain wall

domain wall

(a) (b)

FIG. 25. (a) Both the particle and string (loop) excitations
get transformed when passing the codimension-1 domain wall
(green) in 3D. (b) A particle excitation cannot be transformed by
the codimension-2 domain wall (pink) in 3D, since the particle
can generically avoid such a wall. The string (loop) gets trans-
formed by the wall only at the intersection point between the
string and the wall, where a new particle (purple) is generated.

of a particle and the codimension-2 domain wall, a reflec-
tion of the fact that two lines in 3D will generically avoid
each other. Even where two lines cross each other in 3D,
an infinitesimal perturbation can remove that intersection.
Due to this topological constraint, particle excitation can-
not be transformed by a codimension-2 domain wall. In
contrast, a string excitation will generically intersect with
a codimension-2 domain wall, as illustrated in Fig. 25(b).
This can be understood via the intersection dimension
db + dw − d = 0, where db = 1 is the dimension of the
world sheet (i.e., brane) of a string excitation. The zero-
intersection dimension means that the intersections are
points, which cannot be removed by an infinitesimal per-
turbation. One can see that when a contractible-loop exci-
tation or noncontractible-string excitation goes through the
domain wall, the intersection point becomes a new parti-
cle excitation while the rest of the loop or string remains
unchanged.

We now discuss the symmetry and domain-wall-
sweeping picture of the transversal CZ and CCZ in a stack
of three 3D toric codes, i.e., a 3D Z2 × Z2 × Z2 topologi-
cal order. The CZ wall on code blocks 1 and 2, denoted by
s(2)1,2, is a codimension-2 (dimension-1) gapped domain wall
with a string shape. When sweeping it across a noncon-
tractible brane-shaped submanifold M2 wrapping around
the 3-torus, it applies a transversal gate CZ1,2 supported
on the brane that corresponds to a 1-form symmetry. The
CZ domain wall applies the following mapping to the
excitations going through it:

s(2)1,2 : m1 → m1e2, m2 → e1m2, (49)

while keeping the point excitation e1 and e2 invariant
under the mapping, as illustrated in the upper panel of
Fig. 26(a). It is related to the following mapping on the
logical operators:

CZ1,2 : X 1 → X 1Z2, X 2 → Z1X 2, (50)

030338-27



ZHU, JOCHYM-O’CONNOR, and DUA PRX QUANTUM 3, 030338 (2022)

sweepsweep
(a) (b)

FIG. 26. (a) Sweeping the CZ domain wall s(2)1,2 (pink) across
a noncontractible codimension-1 submanifold M2 (gray) gives
rise to a transversal logical gate CZ1,2 applied along this subman-
ifold. When passing the m1-string (loop) in copy 1 across the wall
s(2)1,2, a new particle e2 (orange) in copy 2 is generated at the inter-
section point. Therefore, a logical brane X 1 is transformed into
the product of itself and an additional string Z⊗

2 (yellow), which
becomes the logical string Z2 when the sweeping is completed,
as illustrated in the lower panel. (b) Sweeping the codimension-
1 CCZ domain wall s(3)1,2,3 across the system gives rise to the
transversal logical gate CCZ1,2,3. An m1-string (loop) gets trans-
formed to an m1s(2)2,3-string (loop) when passing across the wall.
Therefore, a logical brane X 1 is transformed into the product of
itself and an additional brane CZ⊗

2,3 (pink), which becomes the
logical brane CZ2,3 when the sweeping is completed.

as illustrated in the lower panel of Fig. 26(a). Note that
in a 3D toric code with periodic boundary conditions,
there are three logical qubits. For simplicity, we only list
one conjugate pair of logical operators in code 1 and the
corresponding pair in code 2.

In terms of the microscopic model H (discussed in detail
in Appendix A), we also need it to satisfy the conditions in
Eq. (45) in order for CZ1,2 to be a 1-form symmetry. Since
the Z stabilizers are obviously invariant under the action
of CZ1,2 (diagonal in the Z basis), we only investigate the
action of CZ1,2 on the X stabilizers Aq;a, where q labels the
stabilizer and a = 1, 2 is the label of the toric code copy.
One hence obtains the following mapping:

CZ1,2Aq;aCZ
†
1,2 ≡ CZ1,2

( ⊗

j∈Aq;a

Xj
)

CZ
†
1,2

=
⊗

j∈Aq;a

Xj ;a

⊗

k∈Aq;a

Zk;b, (51)

where a, b is an arbitrary permutation of 1, 2. Here, k
labels the sites on copy b aligned with the sites in stabi-
lizer Aq;a in copy a. In the microscopic model presented in
Appendix A, the additional term

⊗
k∈Aq;a

Zk;b is a stabilizer
and hence is a logical identity, i.e., PC

(⊗
k∈Aq;a

Zk;b
)
PC =

I , satisfying the requirement in Eq. (45). One should expect
that Eq. (51) also holds if we replace the logical CZ1,2 with
transversal CZ gates acted on a contractible closed brane,
denoted by CZ⊗

1,2, which is hence also a 1-form symmetry.
Moreover, it is also a logical identity, i.e., PCCZ⊗

1,2PC =
I , since it does not apply any logical gate. We hence
obtain the following TQFT relations in the code (ground)
space HC:

,
(52)

(53)

Note that the second relation can be derived from the first
relation by multiplying the left CZ brane with a CZ sphere,
which suggests that the CZ brane can be freely deformed,
including the case of the logical brane CZ1,2. This is just a
signature of the 1-form symmetry.

Next, the CCZ wall on all three copies, denoted by s(3)1,2,3,
is a codimension-1 (dimension-2) gapped domain wall
with a brane shape. When the domain wall is swept across
the system, a global transversal CCZ gate is applied, corre-
sponding to a global symmetry transformation. A transla-
tionally invariant 3D Z2 × Z2 × Z2 topological order has
a global on-site CCZ symmetry, if the bulk parent Hamilto-
nian (discussed in detail in Appendix A) is invariant under
such symmetry transformation up to a logical identity.
Since the Z stabilizers are obviously invariant under the
action of the transversal CCZ gate (diagonal in the Z basis),
we again investigate the mapping of the X stabilizers Aq;a:

CCZ1,2,3Aq;aCCZ
†
1,2,3 ≡ CCZ1,2,3

( ⊗

j∈Aq;a

Xj ;a
)

CCZ
†
1,2,3

=
⊗

j∈Aq;a

Xj ;a

⊗

k∈Aq;a

CZk;b,c, (54)

where a, b, c is an arbitrary permutation of 1, 2, 3. Note
that the product of neighboring X stabilizers (including
the case of a single X stabilizer) is just a closed X -brane
in the TQFT picture as illustrated in Fig. 12(e). There-
fore, the additional term generated by the CCZ conjugation,⊗

k∈Aq;a
CZk;b,c, is supported on the region in copies b and c

aligned with the X stabilizer Aq;a and hence the closed X -
brane. Thus,

⊗
k∈Aq;a

CZk;b,c is just a closed CZ brane and
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hence is a logical identity according to Eq. (52). The con-
dition in Eq. (45) is hence satisfied and the transversal CCZ
gate is indeed a global symmetry.

The CCZ domain wall applies the following mapping to
the excitations going through it:

s(3)1,2,3 : m1 → m1s(2)2,3, m2 → m2s(2)3,1, m3 → m3s(2)1,2, (55)

while keeping the point excitations e1, e2, and e3 invariant,
as illustrated in the upper panel of Fig. 26(b). It is related
to the following mapping on the logical operators:

CCZ1,2,3 : X 1 → X 1CZ2,3, X 2 → X 2CZ3,1, X 3 → X 3CZ1,2,
(56)

as illustrated in the lower panel of Fig. 26(b). Note that
only one conjugate pair of logical operators in each copy
among three existing pairs is shown.

Thus far, we have focused on the case of 3D toric codes,
i.e., the system is defined on a 3-torus (T3) without any
boundary. We now consider the situations with boundaries.
When there are gapped boundaries, the domain wall should
condense on each boundary, i.e., it should satisfy the
condition in Eq. (48), such that the transversal gate—or,
more generally, the constant-depth circuit—corresponds to
a logical gate.

In the case of CZ1,2, we need to make sure that the
two interacting copies have opposite e- and m-boundary
types, i.e., permitting the following boundary types for a
stack code with two copies of toric codes: Bi = (e1, m2) or
(m1, e2). The mapping of the gapped boundary under the
domain-wall action is as follows:

s(2)1,2 : (e1, m2)→ (e1, e1m2) ≡ (e1, m2),

(m1, e2)→ (m1e2, e2) ≡ (m1, e2). (57)

Note that (e1, e1m2) in the first line means that the bound-
ary condenses both e1 and a composite excitation e1m2,
which is equivalent to the boundary (e1, m2) up to a
basis change (i.e., different choices of generators). This
is because, due to the Z2 fusion rule e × e = I, a com-
posite of e1 and e1m2 is just m2 (i.e., e1 × e1m2 = m2),
which should still condense on the boundary. The second
line in Eq. (57) is just symmetric to the first line up to
a permutation of the two copies of the codes. We note
that for the stack of three 3D surface codes considered
in Fig. 23 for the purpose of applying the CCZ gate, any
gapped boundary has the form (ma, mb, ec), where a, b, c
is any permutation of 1, 2, 3. Also, opposite boundaries
have the same form. The CZ domain walls s(2)a,c and s(2)b,c con-
dense on the (ma, mb, ec)-boundary according to the above

(a)

(b)

FIG. 27. The existence of transversal logical CZ and CCZ gates
in a stack of three 3D surface codes is ensured by the conden-
sation of their corresponding domain walls S(2)a,c and S(3)1,2,3 on the
boundary (ma, mb, ec).

arguments, i.e.,

s(2)a,c : (ma, mb, ec)→ (ma, mb, ec)

s(2)b,c : (ma, mb, ec)→ (ma, mb, ec), (58)

as illustrated in Fig. 27(a). One can also represent
this boundary with the redundant notation (ma, mb, ec) ≡
(ma, mb, ec, s(2)a,c , s(2)b,c), since s(2)a,c and s(2)b,c condense on the
boundary just like ma, mb, and ec. A CZ gate is supported on
a membrane connecting two opposite boundaries. There-
fore, both CZa,c and CZb,c are allowed.

Now, in the case of CCZ1,2,3 applied to a stack of three
3D surface codes, we need the boundary type to be the
form (ma, mb, ec) as mentioned in the above paragraph. The
mapping of the boundary under the domain-wall action is
as follows:

s(3)a,b,c : (ma, mb, ec) ≡ (ma, mb, ec, s(2)a,c , s(2)b,c)

→ (mas(2)b,c , mbs(2)c,a , ec, s(2)a,c , s(2)b,c) ≡ (ma, mb, ec, s(2)a,c , s(2)b,c)

≡ (ma, mb, ec), (59)

implying that s(3)a,b,c also condense on the (ma, mb, ec)-
boundary and hence keep it invariant, as illustrated
in Fig. 27(b). Note that the equivalence between
(mas(2)b,c , mbs(2)c,a , ec, s(2)a,c , s(2)b,c) and (ma, mb, ec, s(2)a,c , s(2)b,c) in the
above equation is due to the fact that the composite
of mas(2)b,c (mbs(2)c,a) and s(2)a,c (s(2)c,a) is ma (mb), where we
use the fact that two domain walls fuse into vacuum
s(2) × s(2) = I.
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3. Exotic gapped boundaries generated by the CCZ
domain wall

In the above discussion, we require the transversal
gate—or, more generally, constant-depth circuits U—to
implement a logical gate in the code space HC, which
needs to preserve all the gapped boundaries, equivalently
requiring the gapped domain wall w to condense on all
boundaries Bi. However, this is not the only interesting
situation. If the domain wall w does not condense on the
boundary Bi, it is attached on the boundary, leading to a
change of the boundary to some other boundary type:

B′
i = wBiw†. (60)

The transversal gate or the constant-depth circuit hence
applies a transversal logical map or locality-preserving
logical map, which not only operates the logical qubits but
also maps the original code space to a different code space
H′. More interestingly, the generated boundary B′

i can be
some other more exotic boundary type, different from the
usual e- and m-type boundaries. This is exactly the situ-
ation when applying a logical CCZ gate on the 3D fractal
codes.

As discussed in Sec. IV, the fractal codes have holes
with m-boundaries in the bulk. Therefore, for a stack code
with three copies of 3D fractal codes, the corresponding
hole boundaries can only be (m1, m2, m3). In the follow-
ing, one can see that neither the CZ nor the CCZ domain
wall condenses on the (m1, m2, m3)-boundaries. We first
consider the CZ wall s(2)1,2 acting on this boundary:

s(2)1,2 : (m1, m2, m3)→ (m1e2, e1m2, m3), (61)

implying that s(2)1,2 cannot condense on the boundary. Sim-
ilarly, s(2)1,3 and s(2)2,3 also cannot condense on this boundary.
Now, the CCZ domain wall applies the following mapping
to this boundary:

s(3)1,2,3 : (m1, m2, m3)→ (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2). (62)

Note that since s(2)1,2 and s(2)2,3 do not condense on the
(m1, m2, m3)-boundary, a rewriting similar to Eq. (59) is
impossible. We point out that (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2) is a
new type of codimension-1 (dimension-2) boundary gener-
ated by attaching the CCZ domain wall s(3)1,2,3 on the gapped
boundary (m1, m2, m3), since the domain wall does not
condense on the boundary. Interestingly, the usual e- and
m-type excitations cannot individually condense on this
new boundary, as opposed to the previously known gapped
boundaries in 2D and 3D. Only a combination of the m-
string in one copy and the CZ domain wall s(2) in the other
two copies with the same boundary support as the m-string
can condense on the (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundary. This

new type of boundary is beyond the standard classification
of gapped boundaries using the Lagrange subgroup [74].

One can also understand the property of the exotic
(m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundary via an intuitive domain-
wall attachment picture. This exotic boundary is a compos-
ite of a domain wall and a boundary, i.e., the CCZ domain
wall s(3)1,2,3 is attached on the (m1, m2, m3)-boundary, as
illustrated in Fig. 28(a). One can hence imagine placing
the domain wall s(3)1,2,3 slightly away from the (m1, m2, m3)-
boundary, as shown in Fig. 28(b). One can first ver-
ify that any e- and m-type excitations cannot condense
on the exotic composite boundary. After penetrating the
domain wall s(3)1,2,3, particle ea (a = 1, 2, 3) is mapped to
s(3)1,2,3 : ea → ea and cannot condense on the (m1, m2, m3)-
boundary. Similarly, ma is mapped to s(3)1,2,3 : ma →
mas2

b,c (a, b, c can be any permutation of 1, 2, 3) after
penetrating the domain wall and also cannot condense
on the (m1, m2, m3)-boundary. On the other hand, exci-
tation mas(2)b,c is mapped to s(3)1,2,3 : mas(2)b,c → ma after pen-
etrating the domain wall and can now condense on the
(m1, m2, m3)-boundary, as shown in Fig. 28(c). When
considering the world sheet of the excitations mas(2)b,c ,
one can conclude that only the composite logical oper-
ator X aCZb,c can terminate at the (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-
boundary, while X a alone cannot terminate, as illustrated
in Fig. 28(d). This can be understood again via the domain-
wall attachment picture: the composite logical operator
X aCZb,c penetrating the domain wall is mapped into X a
and can then condense on the (m1, m2, m3)-boundary.

Finally, we note that when attaching the s(2)1,2-domain
wall to the (m1, m2, m3)-boundary, one also generates
a new type of codimension-2 (dimension-1) bound-
ary (m1e2, e1m2, m3) nested on the usual (m1, m2, m3)-
boundary, as illustrated in Fig. 29. This nested boundary
is exotic since the string excitation m1 (m2) can only
condense on the line-shaped nested boundary along with
the particle excitation e2 (m1). Of course, such an exotic
codimension-1 boundary also exists in the absence of the
third copy, i.e., a (m1e2, e1m2) codimension-2 boundary
nested on the usual (m1, m2)-boundary.

In summary, when applying global or 1-form topologi-
cal symmetries U on a system with boundaries, new types
of gapped boundaries are generated if the corresponding
gapped domain walls do not condense on the original
boundaries, i.e., do not satisfy the conditions in Eqs. (47)
and (48).

4. Fractal topological orders and codes with the exotic
(m1s(2)

2,3, m2s(2)
3,1, m3s(2)

1,2)-holes

In order to implement a logical CCZ gate, we first need
to apply a transversal CCZ gate in a stack of 3D fractal
codes with the particular gapped boundary configuration
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attach
sweep

(a) (b)

(c) (d)

FIG. 28. (a) The application of a transversal CCZ effectively sweeps the domain wall s(3)1,2,3 across the system and attaches it to the
(m1, m2, m3)-boundary without being condensed, generating an exotic (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundary (green). (b) The e-particle and
m-string alone cannot condense on the (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundary (shown on the right), which can be considered as a compos-
ite of the s(3)1,2,3-wall and the (m1, m2, m3)-boundary (shown on the left). The ea-particle and ma-string get transformed into ea and
mas2

b,c when passing the domain wall first and hence cannot condense on the remaining (m1, m2, m3)-boundary. (c) The mas(2)b,c-string
can condense on the exotic (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundary, since it gets transformed to an ma-string when passing the S3

1,2,3-wall
and can then condense on the remaining (m1, m2, m3)-boundary. (d) The product of logical branes X aCZb,c can terminate on the
(m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundary, since it gets transformed to X a when passing the S3

1,2,3-wall and then terminates on the remaining
(m1, m2, m3)-boundary.

on its outer surface: (ma, mb, ec) (a, b, c is an arbitrary per-
mutation of 1, 2, 3), as shown in Fig. 23, while the hole
boundaries are chosen to be (m1, m2, m3). The transversal
gate is defined as C̃CZ = ⊗

j CCZj ;1,2,3. Here, we use C̃CZ

instead of CCZ as before to emphasize that this transversal

attach
sweep

FIG. 29. The application of a transversal CZ along a
codimension-1 submanifold (gray) effectively sweeps the s2

1,2-
domain wall across the submanifold and attaches the wall onto
the (m1, m2, m3)-boundary, generating a codimension-2 bound-
ary (m1e2, e1m2, m3) nested on the (m1, m2, m3)-boundary.

gate is not a logical gate. The application of C̃CZ corre-
sponds to pushing the CCZ domain wall s(3)1,2,3 across the
entire system. As discussed above, the CCZ domain wall
condenses on all of the outer boundary (ma, mb, ec) but not
on the hole boundary (m1, m2, m3). Therefore, after apply-
ing the transversal CCZ gate, the CCZ domain wall s(3)1,2,3 is
attached to the (m1, m2, m3)-boundaries and turns all the
hole boundaries into (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2), as illustrated
in Fig. 30.

We now discuss the parent Hamiltonian or, equivalently,
the stabilizers of the stack code and the new code gen-
erated by applying C̃CZ. The original Hamiltonian of the
stack code can be divided into three parts:

H = H bulk + H o.b. + H h.b.

≡ −
∑

i∈bulk

∑

a

Sbulk
i;a −

∑

j∈o.b.

∑

a

So.b.
j ;a −

∑

k∈h.b.

∑

a

Sh.b.
k;a ,

(63)

where H bulk (Sbulk
i;a ), H o.b. (So.b.

j ;a ), and H h.b. (Sh.b.
k;a ) represent

the bulk, outer-boundary, and hole-boundary terms in the
parent Hamiltonian H (stabilizer group S = 〈{Si;a}〉) and
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transversal CCZ

sweep

domain-wall
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-hole -hole
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(a)
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FIG. 30. The application of a transversal CCZ gate on a stack
of three fractal surface codes effectively sweeps the s(3)1,2,3-
domain wall across the system and attaches the wall onto
all the (m1, m2, m3)-holes (blue) in the bulk, producing new
(m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-boundaries (green) on these holes, which
couple the three codes together as previously illustrated in
Fig. 28.

a = 1, 2, 3 labels the ath copy of the 3D fractal codes.
After applying the transversal CCZ gate, the original Hamil-
tonian will be conjugated by C̃CZ, leading to the parent
Hamiltonian of the new code:

H̃ = C̃CZ H C̃CZ†. (64)

Note that C̃CZ is a Hermitian operator, i.e., C̃CZ† = C̃CZ.
Similarly, the original code space is mapped to a new code
space:

C̃CZ : H → H̃. (65)

We choose the bulk and outer-boundary Hamiltonians
(H bulk and H o.b.) and the corresponding stabilizers (Sbulk

i
and So.b.

i ) to be exactly the same as in the case of imple-
menting transversal logical CCZ in a stack of 3D surface
codes with the construction in Ref. [40] (illustrated in
Fig. 23), which satisfies the transversal-logical-CCZ-gate
conditions in Eqs. (SV.5) and (SV.6) in Sec. V of the Sup-
plemental Material [63] and also the generic conditions for
transversal logical gates in Eqs. (45) and (46). The latter
means that the bulk and outer-boundary Hamiltonian and
stabilizers are invariant under the conjugation of C̃CZ up to

a logical identity:

PC(C̃CZ H bulk C̃CZ†
)PC = PCH bulkPC

⇐⇒ PC(C̃CZ Sbulk
i,a C̃CZ†

)PC = PCSbulk
i,a PC,

PC(C̃CZ H o.b. C̃CZ†
)PC = PCH o.b.PC

⇐⇒ PC(C̃CZSo.b.
j ;a C̃CZ†

)PC = PCSo.b.
j ;a PC. (66)

In other words, C̃CZ is an on-site topological symmetry in
the bulk and outer boundary. Note that PC here projects
onto the original code space H.

Nevertheless, C̃CZ does not keep the (m1, m2, m3)-hole
boundary invariant, as discussed in the previous subsec-
tion. This means that the boundary Hamiltonian H h.b. and
the corresponding stabilizers Sh.b.

i;a on the hole boundaries
(i.e., the first layer on the surface of the hole) are, in gen-
eral, not invariant up to a logical identity when conjugated
by C̃CZ. As in all previous cases, we denote the two types
of stabilizers, the X and Z stabilizers, as Ah.b.

q;a and Bh.b.
p;a ,

respectively. The Z stabilizers Bh.b.
p;a on the hole boundaries

remain invariant under the conjugation of C̃CZ, since C̃CZ is
diagonal in the Z basis. On the other hand, the X stabilizers
in copy a, Ah.b.

q,a , will be transformed under the conjugation
of transversal CCZ as follows:

Ãh.b.
q;a = C̃CZAh.b.

q;a C̃CZ† ≡ C̃CZ
( ⊗

j∈Ah.b.
q;a

Xj ;a
)

C̃CZ†

=
⊗

j∈Ah.b.
q;a

Xj ;a

⊗

k∈Ah.b.
q;a

CZk;b,c, (67)

where a, b, c is an arbitrary permutation of 1, 2, 3. Note that
in the new hole-boundary stabilizer Ãh.b.

q;a , the part in copy
a is kept invariant as Ah.b.

q;a , while an additional CZ inter-
action is applied between copy b and c with the site label
k ∈ Ah.b.

q;a aligned with the corresponding site j in copy a
within the support of the boundary X stabilizer Ah.b.

q;a . Note
that although the three copies of 3D fractal codes are inde-
pendent in the original stack code, these three copies of
fractal codes are coupled together along the hole bound-
aries via the CZ interactions in the new stabilizers Ãh.b.

q;a after
the CCZ conjugation. For a detailed illustration using the
lattice model, see Appendix A.

Interestingly, this new model H̃ is a non-Pauli stabi-
lizer model with non-Pauli boundary stabilizers. All the
stabilizers are contained in the non-Pauli stabilizer group

S̃ = 〈{S̃i;a}〉 ≡ 〈{Sbulk
i;a , So.b.

j ;a , S̃h.b.
k;a }〉

≡ 〈{Abulk
q;a , Bbulk

p;a , Ao.b.
q′;a, Bo.b.

p ′;a, Ãh.b.
q′′;a, Bh.b.

p ′′;a}〉. (68)

Note that since the stabilizers in the original stabilizer
group S all commute, they continue to commute when
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FIG. 31. Logical operators in the new stack code with exotic
hole boundaries (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2) (green). The logical Z-
strings remain the same as those in the original stack code. A
logical X -brane can only terminate on the outer boundaries.
The combined logical brane X 1CZ2,3 can instead terminate on
the exotic hole boundaries and its minimal support forms a
Sierpiński carpet as shown.

conjugated by C̃CZ. Therefore, all the stabilizers in S̃
commute.

Note that in the new stack code with exotic hole bound-
aries, the centralizer group C(S̃) is generated by the ele-
ments in the non-Pauli stabilizer group S = 〈{Si;a}〉 and the
logical operators Za and X aCZb,c (a, b, c are a permutation
of 1, 2, 3). On the other hand, the standard logical operator
X a is no longer in the centralizer group C(S). The canoni-
cal logical operators of this code that commute with all the
stabilizers Si;a are contained in the quotient group C(S)/S .
As illustrated in Fig. 31, the standard logical operator
X 1 can still terminate on the (m1, m2, e3)-boundary on the
outer surface but not on the exotic (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-
hole boundary as explained in the previous subsection. On
the other hand, the combined logical operator X 1CZ2,3 can
also terminate on the exotic hole boundary and is hence
able to vertically move across the whole system. This is
because X aCZb,c commutes with all the non-Pauli stabiliz-
ers on the hole boundary, while X a does not commute with
all of them.

5. Logical CCZ and CZ gates in 3D fractal codes

We now discuss the entire protocol for implementing the
logical CCZ gate, as listed below:

(1) Transversal CCZ. As mentioned in Sec. VI A 4, we
first apply a transversal CCZ gate to a stack of
three fractal codes as shown in Fig. 30, which
maps the original code space H to the new code
space H̃ with the exotic (m1s(2)2,3, m2s(2)3,1, m3s(2)1,2)-hole
boundaries coupling the three copies of fractal codes
together.

(2) Lattice merging along e-boundaries. To complete
the logical gate, we must return the quantum infor-
mation to the original code space H. We propose
using lattice surgery to complete this process.We
discuss the lattice surgery between one of the code
copies within the coupled stack fractal code and
an ancilla fractal code, as illustrated in Fig. 32.
Although the logical information of each copy in a
stack code block is, in general, entangled with each
other copy and also with other code blocks, we still
explain the protocol by denoting logical informa-
tion in the first copy as |ψ〉A = α|+〉A + β|−〉A for
simplicity, yet the protocol also applies in the more
general case. The ancilla fractal code is prepared in
the logical state |0〉B, which is completed by prepar-
ing all of the physical qubits of that code block in the
|0〉 state and measuring out the X stabilizers fault
tolerantly by repeating their measurements d times
(rounds).
The two lattices are merged by introducing an extra
set of physical ancilla qubits ⊗j |j 〉 placed between
the two codes [see Fig. 32(a)]. The merging process
involves measuring the X stabilizers between these
two code copies. Besides the stabilizers in the orig-
inal codes, there are two new types of stabilizers,
the four-body Z stabilizers and six-body X stabi-
lizers, as shown in Fig. 32(b). The eigenvalues of
the four-body Z stabilizers are the product of the
eigenvalue of the original three-body boundary Z
stabilizers (+1) and the ancilla Z eigenvalue (+1),
which remains +1, and are therefore immediately
certain (in the absence of errors). On the other hand,
the newly introduced X stabilizers have completely
unknown eigenvalues. When performing measure-
ments, they will have a random distribution of ±1
eigenvalues. The −1 eigenvalues correspond to the
generation of e-particle excitations. Measuring all
the new interface X stabilizers and taking the prod-
uct of their outcome is equivalent to the measure-
ment of the joint parity of the X -logical operators
in these two codes, i.e., X AX B, which is a product
of all the interface X stabilizers as illustrated in the
right panel of Fig. 32(b). The parity X AX B = 1(−1)
corresponds to an even (odd) number of e-particle
excitations at the interface. We must perform d
rounds of syndrome measurements to ensure the
fault tolerance of the protocol in the presence of
measurement errors [75]. During these d rounds, the
vertex stabilizers at the boundary of the holes in the
original fractal code block will now be non-Pauli
stabilizers due to the action of the transversal gate,
yet they can still be measured fault tolerantly using
syndrome-extraction circuits that mirror that in the
usual local Pauli-stabilizer model. After d rounds,
one can fault tolerantly decode and correct the errors
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FIG. 32. The lattice-surgery protocol to transform the logical information inside one of the code copies within the coupled stack
fractal code (top) to an ancilla fractal code block (bottom). (a) Initialization of the ancilla qubits (white balls) between the two codes
in state |0〉. (b) Lattice merging via d rounds of syndrome measurement and subsequent decoding. Two types of new stabilizers are
introduced at the interface: the four-body Z stabilizers (red) with +1 eigenvalues and the six-body X stabilizers (blue) with unknown
eigenvalues and hence a random ±1 measurement outcome. The measurement outcome of the new interface X stabilizers equivalently
gives the measurement outcome of the joint parity of logical operators: X AX B (supported on the highlighted blue vertical edges).
(c) The merged code after d rounds of measurement. (d) The lattice-splitting protocol. The unknown stabilizers at the interface are
the three-body Z stabilizers that have a random ±1 measurement outcome, which can be inferred by the projective measurement of
the ancilla qubits in the Z basis (MZ). The (−1)-eigenvalue corresponds to the m-loop excitations, which can be corrected with a
single-shot decoding process even in the presence of measurement error.

and hence clean up all the e-particle excitations at
the interface. Conditioned on the measurement out-
come of the joint parity X AX B, the merging map can
be expressed as follows:

M̂+ = |+〉M 〈++|AB + |−〉M 〈−−|AB,

if X AX B = +1

M̂− = |+〉M 〈+−|AB + |−〉M 〈−+|AB,

if X AX B = −1, (69)

where |ψ〉M represents the logical qubit state of the
merged code as illustrated in Fig. 32(c). The logi-
cal state is then transformed by the lattice-merging
map as

M̂± : (α|+〉A + β|−〉A)|0〉B → α|+〉M + β|−〉M .
(70)

The merged state is independent of the parity eigen-
value X AX B = ±1 because of the specific choice
of state |0〉B in the ancilla code block. As we can
see from the above expression, the initial logical
information |ψ〉A is transferred to the merged code
block as |ψ〉M .The other two copies in the coupled
stack code are merged with the other two indepen-
dent ancilla code blocks along the corresponding e-
boundaries in the other two directions, as illustrated
in Fig. 33.

(3) Lattice splitting along e-boundaries. The next step
is to split the merged code again, as illustrated
in Fig. 32(d). This is achieved by projective mea-
surements of the qubits (white) introduced at the
interface in the Z basis. The measurement results
will be a random distribution of ±1 and hence
the three-body boundary stabilizers will have the

-hole

FIG. 33. The lattice surgery performed between the new cou-
pled stack fractal code with three ancilla fractal codes along three
directions in order to transfer the three logical qubits encoded in
the coupled stack fractal code into the three ancilla code blocks.
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corresponding random ±1 eigenvalues, which cor-
responds to m-loop excitations at the interface. One
could also do d rounds of measurement to clean
up these excitations but in this case a single-shot
measurement and decoding suffice. This is because
3D toric code can correct Pauli X errors (m-loop
excitations) in a single shot [16]. The details of the
single-shot error correction property of the fractal
code will be discussed in an upcoming paper. The
lattice-splitting map can be expressed as

Ŝ = |++〉AB 〈+|M + |−−〉AB 〈−|M .

After the lattice splitting, the merged logical state
is mapped again into a logical state distributed over
two codes:

Ŝ : α|+〉M + β|−〉M → α|++〉 + β|−−〉

= 1√
2
|0〉A (α|+〉B + β|−〉B)

+ 1√
2
|1〉A

(
α|+〉B − β|−〉B

)
, (71)

where we represent the logical states in the X basis.
(4) Measure out the original code in the Z basis. The

final step is to measure out the logical qubit infor-
mation of the original stack code in the Z basis. In
the illustrated example, copy 1 of the original code
is measured out and the logical state of the new code
hence becomes

α|+〉B + (−1)Mzβ|−〉B ≡ (ZB)
Mz |ψ〉B, (72)

where Mz is the measurement result of copy 1 in
the original stack code. In the convention used here,
Mz = 0 and 1 correspond to |0〉A and |1〉A, respec-
tively. Therefore, after the measurement, one can
just apply a logical Z correction ZB to the new code
conditioned on the measurement value Mz = 1 [76].
We can see that the logical information in the first
copy |ψ〉A is successfully transferred to the ancilla
copy as |ψ〉B. Similarly, the logical information in
the other two copies in the coupled stack code is
transferred to the other two ancilla code blocks, as
illustrated in Fig. 33. Since the three ancilla copies
are the same as the original three copies of the
uncoupled 3D fractal codes, we have successfully
mapped the new code space H̃ to the original code
space H, with a logical CCZ gate being applied.

Finally, we point out that a logical CZ gate between any
two copies of 3D fractal surface codes in the stack code
can be implemented instantaneously as a transversal CZ
gate, without the need of subsequent lattice surgery. This

FIG. 34. A transversal logical gate CZ2,3 between copy 2 and
copy 3 in the stack code hence be chosen to be applied on a brane
perpendicular to the z direction, avoiding all the holes. Similarly,
CZ1,2 and CZ1,3 can be applied on a brane perpendicular to the y
and x directions, respectively.

is because the transversal CZ gate generates a 1-form sym-
metry [see Eq. (53)] and can hence be chosen to act on a
brane avoiding all the (m1, m2, m3)-holes, as illustrated in
Fig. 34, which is surprisingly convenient.

The generalization of the logical non-Clifford gates in
nD fractal surface codes is presented in Appendix E.

VII. DISCUSSION AND OUTLOOK

Throughout this paper, we obtain several surprising
results. First, it is remarkable that one can still describe
topological orders on the fractal geometries using a TQFT
picture, especially with the condensation properties of
the gapped boundaries. Although a fractal geometry is
nowhere differentiable and hence significantly different
from a usual continuum model, one can still start from a
continuum model defined on a manifold and start punch-
ing holes on it at all length scales. The boundary properties
of the holes become extremely important, since the hole
boundaries are present everywhere in the system. The sur-
vival of the topological order is hence equivalent to the
preservation of macroscopic code distance, which is in turn
determined by the interplay of the condensation types of
the hole boundaries and the corresponding systolic geom-
etry. The key mathematical objects considered here are the
relative systoles [51] in the presence of boundaries and
the corresponding relative-homology theory. In particular,
the condensation properties of gapped boundaries in an
nD Abelian topological order can be captured by relative
homologies.

From the condensed-matter-physics perspective, our
results predict the existence of ZN spin liquids and topo-
logical order supported on a fractal-like structure embed-
ded in 3D. This could be experimentally realized in porous
materials supporting quantum spin liquids [10] or in a syn-
thetic quantum many-body system such as the Rydberg-
atom array, where a 2D quantum spin liquid has already
been observed recently [11].

As mentioned in Sec. I, fabrication errors forming
islands of corrupted or unusable qubits at all length scales
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and is hence similar to the situation of a fractal lat-
tice. For the practical purpose of scaling up active error
correction in a qubit architecture, such errors remain a
significant engineering challenge in the lithography pro-
cess of making solid-state qubit chips, e.g., in the context
of superconducting- or semiconducting-qubit technology
[77–79]. This problem is particularly urgent due to the
issues of frequency collision and crosstalk errors between
qubits, which makes the yield (success rate) for fabri-
cating a chip with zero collision (equivalently, no cor-
rupted region) exponentially decrease with the system size
[78,80], a daunting challenge for scaling up error correc-
tion. On the theory side, it has been realized that the error
threshold of 2D surface code decays exponentially when
increasing the fabrication errors and vanishes far below
the percolation threshold [44], which is consistent with our
result that ZN topological order and macroscopic code dis-
tance is absent in a setup with holes at all length scales,
as can be seen from Fig. 8. Therefore, a natural question
arises: whether intrinsic stability against large fabrication
errors is possible in certain topological codes; in particular,
in the extreme condition near the percolation transition.

In this regard, our result suggests that a 3D architec-
ture is significantly more robust against fabrication errors
compared to a 2D architecture. Given a 3D qubit lattice
with clusters of corrupted or unusable regions at all length
scales due to various sources of fabrication errors, includ-
ing the dominant problem of frequency collisions, one can
simply ignore the qubits within such clusters and imple-
ment an error-correcting code, with the boundary on these
clusters being a (smooth) m-boundary; that is, a bound-
ary that condenses only looplike excitations. The choice
of boundary type is simply a choice of the measurement
circuits of the boundary stabilizers. Although our proof for
the 3D case is restricted to simply connected holes, it is
not a necessary condition and the theory can be generalized
in future work. This defect-tolerance property at all length
scales can significantly improve the yield (success rate) of
fabricating a qubit device and potentially solve the prob-
lem of exponential decay of the device yield with system
size [78,80] at a fundamental level.

It might be tempting to think that the behavior of topo-
logical order on a fractal with Hausdorff dimension DH =
n − δ (0 < δ < 1) just stands somewhere between (n −
1)D and nD topological orders, which is unfortunately not
true at all. In the fractal case, the presence of holes at all
length scales may just completely destroy the long-range
entanglement. In fact, we show that if the corresponding
ZN topological order has particle excitations or, equiva-
lently, string logical operators, it cannot survive in a fractal
geometry with generic hole boundaries embedded in any
dimension. In order to preserve topological order, the hole
boundaries can only be m-boundaries, i.e., those that con-
dense loop excitations in 3D and (n − 1)-brane excitations
in nD (n ≥ 4). On the other hand, quite surprisingly, ZN

topological order without particle excitations defined in
those self-correcting models can generically survive in a
large class of fractals independent of the types of hole
boundaries. Again, although our current proof is limited
to fractals formed with simply connected holes, it is not
a really necessary condition and hence will be general-
ized in future work. This property suggests that topological
order in the self-correcting models has extreme robustness
against spatial disorder or fabrication errors. By analogy
with the stability of the topological order in the self-
correcting memory at finite temperature, a similar stability
of topological order also exists in the presence of disorder.
Note that it has been realized in Ref. [81] that single-shot
error correction is resilient to fabrication errors. Thus, the
presented results point to the possible existence of a similar
resilience in the case of self-correcting models. Moreover,
one can further explore the general time-correlated noise
that encompasses the situation of slowly fluctuating fabri-
cation defects in the self-correcting models. Finally, it is
also an open question whether the self-correcting proper-
ties are still preserved on the fractal geometry, which will
be further explored in future work.

Perhaps the most exciting discovery in this paper is that,
using a form of the code-puncturing idea, we can signif-
icantly reduce the space overhead of implementing fault-
tolerant non-Clifford logical gates and hence universal
quantum computation. In particular, using the 3D fractal
surface code, the logical CCZ gate can be implemented with
space overhead O(d2+ε)with arbitrarily small ε, where d is
the code distance. In addition, a code-switching protocol to
2D surface code allows the implementation of all Clifford
gates and hence forms a universal gate set. For example,
this code switching can be implemented straightforwardly
with the lattice surgery between the 3D fractal surface code
and the 2D surface code, similar to the lattice-surgery pro-
tocol presented in Sec. VI A 5. The current protocol for the
logical CCZ gate presented in this paper requires O(d) time
overhead during the process of lattice surgery. An impor-
tant improvement will be to establish whether it is possible
to reduce the time overhead to O(1) in order to achieve an
overall O(d2+ε) space-time overhead for a universal gate
set by utilizing the single-shot error-correction properties
[16] in the 3D fractal surface code. This will be addressed
in future work along with the detailed study of decoding
and error-threshold simulations. Another relevant question
is whether one can also fold the fractal lattice into a lattice
occupying less than L3 volume, thus not only reducing the
qubit overhead but also the overhead corresponding to the
space occupied by the memory in the dilution refrigerator.

A particularly interesting conceptual development in
this paper is the exploration of the connection between
logical gates and global or higher-form topological sym-
metries, which is also equivalent to sweeping gapped
domain walls. In particular, the logical gates implemented
in the fractal codes relax the previous conditions imposed
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in Refs. [53–57] that the gapped boundaries in the sys-
tem need to remain invariant when applying the sym-
metries. From the TQFT perspective, this leads to the
discovery of exotic gapped boundaries that only condense
the combination of loop excitations [or, more generally,
the (n − 1)-brane] and certain gapped domain walls and is
hence beyond the standard framework of the Lagrangian-
subgroup description [74]. From the quantum computing
perspective, this leads to the use of topological symme-
tries as a transversal logical map, which applies the logical
gate but maps the code space to a new one. Subsequent
operations (such as lattice surgery in this work) can be
performed to map the new code back to the original code
and hence complete the logical gate. An interesting poten-
tial direction will be to formulate and classify the global
and higher-form topological symmetries, the correspond-
ing domain walls, and the exotic gapped boundaries, such
as those studied in the present paper, in the language of
higher categories.
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APPENDIX A: LATTICE CONSTRUCTION OF
THE STACK CODE AND AN EXAMPLE OF THE

(m1, m2, m3)-HOLE

In this appendix, we provide an explicit example of con-
structing an m-hole in three iterations of the 3D toric code.
In order to construct a stack of 3D toric codes that enables
the implementation of a transversal CCZ in the bulk, we can
follow the construction of Vasmer and Browne [40]. In this
implementation, shown in Fig. 35, the three copies will be
asymmetric in that one of the copies will have weight-6
X stabilizers in the bulk (yellow in the figure) while the
two other copies will have weight-12 X stabilizers (given
in red and blue). This choice is made in order to guarantee
that when one takes the mutual intersection of one X stabi-
lizer from each of the three code copies, the intersection is
always even. One can simply verify this by checking that a
red and blue stabilizer only ever intersect along a weight-4
face and that all such faces will intersect their neighboring
yellow octahedra at an even number of qubits.

Figure 35 shows the stack code, where we introduce an
(m1, m2, m3)-hole on the right side of the lattice. That is,
all of the X stabilizers have their support cut to the right
of the hole. Note that the stabilizers from the yellow block
will have boundary stabilizers the support of which is cut
to now be weight-5, while the weight-12 red and blue sta-
bilizers, the support of which falls within the hole, have
their support cut down to just the weight-4 face that lives
along the boundary of the hole. At the top right of Fig. 35,

ƒj CCZj;1,2,3

FIG. 35. An illustration of an (m1, m2, m3)-boundary in a stack of three copies of 3D toric codes. The boundary is on the right of the
lattice, where the support of the stabilizers is reduced. The code the X stabilizers of which are given by the yellow octahedra have the
support of their stabilizers reduced to be weight-5, while the red and blue stabilizers, of codes 2 and 3, have weight-4 face stabilizers
on the boundary. For illustrative purposes, we show to the right how the stabilizers would normally have larger support—these qubits
are faded out. On the right side, after the application of ⊗j CCZj ;1,2,3, the bulk X stabilizers are preserved while those the supports of
which were cut at the boundary of the hole are now transformed to be of the form explained in Fig. 36.
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we give faded-out versions of what the stabilizers would
normally support and all qubits that are transparent can be
thought of as bulk qubits that one measures out in the X
basis in order to construct the hole (and, as such, reduce
the support of the associated X stabilizers).

Finally, it is now simple to verify that the CCZ gate will
no longer preserve the boundary stabilizers. If one consid-
ers the weight-4 face stabilizers on the boundary of the
hole, they intersect each of the other weight-4 stabiliz-
ers on the boundary of different color at a single qubit.
Therefore, the requisite condition for the preservation of
the X stabilizers will no longer be satisfied as this over-
laps with any of the weight-5 yellow stabilizers at a single
location. This is visually represented by the purple opera-
tor in Fig. 36(c). Upon completion of the transversal CCZ
gate, the resulting stabilizers will remain the same in the
bulk. However, the boundary stabilizers will undergo the
following mapping:

⊗

j

CCZj ;1,2,3 :
⊗

j∈Ah.b.
i;a

Xj ;a −→
⊗

j∈Ah.b.
i;a

Xj ;a

⊗

k∈Ah.b.
i;a

CZk;b,c,

⊗

j∈Bh.b.
i;a

Zj ;a −→
⊗

j∈Bh.b.
i;a

Zj ;a, (A1)

(a)

(b) (c)

FIG. 36. An example of the action of a transversal CCZ gate
on the X stabilizers of a code. (a) We demonstrate the action
of a transversal CCZ gate on the yellow weight-6 stabilizers in
code block 1. Under the action of CCZ, Pauli X on one qubit is
mapped to a product of X and CZ on the other two code copies.
This product is represented in green. We can break this product
into two components, one comprised of the original X stabi-
lizer and a resulting tensor product of CZ on the other two code
blocks, which is represented in purple here. (b) The action of
CZ on the qubits in the octahedron will result in a logical iden-
tity in the bulk, as the support of this operator mutually overlaps
with two qubits from the intersection of any two red and blue
weight-12 stabilizers—these qubits are symbolized in pink. (c)
On the boundary, the overlap of the weight-5 CZ operator will
only overlap with a single qubit from the intersection of the red
and blue faces—as such, this does not satisfy the requirements to
be a logical identity operator.

where Ah.b.
i,a here is a boundary stabilizer of the hole. In

the bulk, the term on the right-hand side,
⊗

k∈Abulk
i;a

CZk;b,c,
would be a 1-form symmetry of the code and would be
equivalent to a logical identity; however, this is no longer
the case on the boundary, as such there is no way to sep-
arate this term out from the modified stabilizer. Thus, the
stabilizers along the boundary now must include a CZ sup-
port on the other two code blocks, which is the reason
behind requiring a more complicated implementation of
logical CCZ in the presence of (m1, m2, m3)-holes.

APPENDIX B: THE ALGEBRAIC TOPOLOGY
DESCRIPTION: INTRODUCTION OF CHAIN
COMPLEXES AND HOMOLOGY THEORY

To describe the more general situations of three- and
higher-dimensional topological order in a more concise
way, here we introduce the mathematical framework of
the chain complex. We focus on the explanation of the Z2
chain complexes, while the generalization to the ZN chain
complex is straightforward and also discussed below.

The lattice L considered in this work is, mathematically
speaking, an n-dimensional cell complex. We call the i-
dimensional elements of the cell complex i-cells, denoted
by e(i)α : 0-cells are vertices, 1-cells are edges, 2-cells are
faces, 3-cells are volumes, and so on. We now define a
vector space over Z2: Ci = Ci(L; Z2), which is an Abelian
group under componentwise addition modulo 2 and is
hence called a chain group. The element of this vector
space ci ∈ Ci is called i-chain, defined as ci =

∑
α zαe(i)α ,

where zα ∈ {0, 1} is a Z2 coefficient. The generalization
to the ZN and Z cell complex is straightforward by pro-
moting zα to ZN and Z (integer) coefficients, respectively,
with the corresponding chain group denoted by Ci(L; ZN )

and Ci(L; Z). Note that the usual homology group con-
sidered in the general cases corresponds to the homology
group over Z, i.e., Ci(L) ≡ Ci(L; Z). In the following dis-
cussion, the notation Ci applies to all the three cases (Z2,
ZN , and Z) mentioned above.

We now define the boundary map ∂i as

∂iCi → Ci−1, (B1)

which can also be abbreviated as ∂ for simplicity. Here, ∂ici
is an (i − 1)-chain that is the boundary of ci. The boundary
map satisfies the following identity:

∂i ◦ ∂i+1 = 0, (B2)

which can also be abbreviated as ∂2 = 0, i.e., the boundary
of a boundary is zero.

To define the homology group that describes the logical
operators, we introduce the following chain complex:

Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1. (B3)
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A chain ci is called a cycle if it is in the kernel of the
boundary map ∂i, namely ∂ici = 0. We define the subgroup
of i-cycles as Zi := Ker(∂i) ⊂ Ci. We call an i-chain ci
a boundary, if there exits an (i + 1)-chain ci+1 such that
ci = ∂i+1ci+1. This means that ci is in the image of the
boundary map ∂i+1, i.e., ci ∈ Img(∂i+1). We define the sub-
group of i-boundaries as Bi := Img(∂i+1) ⊂ Ci. One can
see that the boundary ci is also an i-cycle, since ∂ici =
(∂i ◦ ∂i+1)ci+1 = 0 due to Eq. (B2). We hence have Bi ⊂
Zi. We also call the boundary ci a trivial cycle since it is
contractible. The trivial cycles generate continuous defor-
mation of a particularnoncontractible cycle, which forms a
homology class. We hence define the ith-homology group
Hi with its elements being the corresponding homology
class:

Hi := Zi/Bi = Ker(∂i)/Img(∂i+1), (B4)

i.e., formed by the cycles quotient the boundaries.
To represent the X -type logical operators later, we also

introduce a dual description: the cochain complex. We
define the dual vector space of Ci as the Abelian group Ci.
The elements in this group ci ∈ Ci are called the cochain.
Throughout this paper, the chain and cochain are consid-
ered isomorphic to each other, i.e., Ci ∼= Ci. We also define
the dual of the boundary map, i.e., the coboundary map
δi, as

δiCi → Ci+1, (B5)

which can also be abbreviated as δ for simplicity. The
coboundary map satisfies the following identity:

δi ◦ δi−1 = 0. (B6)

Since both δ and ∂ are linear maps between vector spaces,
one can define their transpose as the induced maps on the
dual vector spaces and we obtain the following relation:

δi = ∂T
i+1, (B7)

which can also be interpreted as the transpose relation of
their matrix representation. This relation also implies that
the ranks of these two linear maps are the same:

rank(δi) = rank(∂i+1). (B8)

Now, we introduce the cochain complex as the dual of the
chain complex in Eq. (B11):

Ci+1 δi←− Ci δi−1←−− Ci−1. (B9)

We then define the subgroup of i-cocycles as Zi :=
Ker(δi) ⊂ Ci. We also define the subgroup of i-
coboundaries as Bi := Img(δi−1) ⊂ Ci. We can hence

define the ith-cohomology group as

H i := Zi/Bi = Ker(δi)/Img(δi−1). (B10)

We now apply the homology theory to the description of
topological orders and codes. As the example studied in
this section, we consider that the Z2 (or, in general, ZN )
topological order in 3D is supported on a 3-manifold M3

with a corresponding cellulation L. We hence have the
following chain complex associated with L,

C2
∂2−→ C1

∂1−→ C0, (B11)

as well as its dual cochain complex,

C2 δ1←− C1 δ0←− C0, (B12)

with the identification Ci ∼= Ci. We put qubits—or, more
generally, N -level qudits—on the edges (1-cells) of L.
The physical Hilbert space is hence H = C

C1(L;ZN ) =
(CN )⊗|E|, where one sets N = 2 for the qubit (Z2) case.
The total number of qubits (qudits), i.e., the total num-
ber of edges |E|, equals the vector-space dimension or,
equivalently, the rank of the 1-chain group, i.e., |E| =
dim[C1(L)] = rank[C1(L)] [82].

For the corresponding Z2 toric code model in 3D, we
associate the X stabilizers with the 0-cells (vertices) and
the Z stabilizers with the 2-cells (faces or plaquettes). More
concretely, each Z stabilizer is supported on the boundary
of a face or plaquette: Bp = ⊗

j∈∂1p Zj (where p labels the
face or plaquette), while each X stabilizer is supported on
the coboundary of a vertex: Av =

⊗
j∈δ0v Xj .

For a system defined on a closed 3-manifold, such as
a 3D torus T3, the logical Z-string operators Z([c1]) =⊗

j∈[c1] Zj are supported on a class of nontrivial 1-
cycles belonging to the first homology group: [c1] ∈
H1(L) = Ker(∂1)/Img(∂2). The logical X -brane operators
X ([c1]) = ⊗

j∈[c1] Xj are supported on a class of nontriv-
ial 1-cocycles belonging to the first-cohomology group:
[c1] ∈ H 1(L) = Ker(δ1)/Img(δ0).

As an alternative way to describe logical X -brane oper-
ators, we can also consider using the dual-cell complex
(lattice) of L. The dual-cell complex L∗, which is a dual
cellulation of an n-dimensional manifold Mn, is obtained
by replacing any i-cell in L with a (n − i)-cell, leading
to the following identification of the chain groups: Ci ∼=
C∗

n−i
∼= Ci. One hence obtains the following chain complex

on L∗ in 3D as a dual description of Eq. (B11):

C∗
1

∂∗2←− C∗
2

∂∗3←− C∗
3. (B13)

The logical X -brane operators X ([c∗2]) = ⊗
j∈[c∗2] Xj are

supported on a class of nontrivial 2-cycles on the dual com-
plex (lattice) L∗ belonging to the second homology group:
[c∗2] ∈ H2(L∗) = Ker(∂∗2 )/Img(∂∗3 ).
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In the presence of gapped boundaries, the logical oper-
ators are associated with the relative-homology groups
Hi(L,Ba), where Ba denotes a subcomplex corresponding
to the gapped boundary of type a [13]. Simply speaking,
the relative homology can be considered as the absolute
(ordinary) homology of a modified complex (L′) of the
original complex L such that the corresponding boundary
subcomplex Ba is identified into a single point. Mathemat-
ically, this can be expressed as

Hi(L,Ba) ∼= Hi(L/Ba) (for i > 0), (B14)

where L/Ba denotes the quotient space equivalent to
the modified complex L′. A more precise definition and
detailed discussion of the relative homology and its cor-
respondence with gapped boundaries can be found in Sec.
I of the Supplemental Material [63]. In the example of a
3D surface code, the logical Z-string operator Z([c1]) is
associated with the nontrivial relative 1-cycle belonging
to the first relative-homology group, i.e., [c1] ∈ H1(L,Be),
where Be denotes the e-boundary. Note that relative i-
cycles refer to cycles terminated on the boundaries (see the
explanation in Sec. I of the Supplemental Material [63]),
in contrast to the absolute (ordinary) i-cycles in the bulk,
as introduced above in the case of closed manifolds. On
the other hand, the logical X -brane operator X ([c∗2]) is
associated with nontrivial relative 2-cycles belonging to
the second relative-homology group on the dual complex
(lattice) L∗, i.e., [c∗2] ∈ H2(L∗,B∗

m), where B∗
m denotes the

dual subcomplex corresponding to the m-boundaries.
We can now also relate the code distance d with the

combinatorial systoles of a cell complex L [46]. Given
an n-dimensional cellulated manifold Mn, together with
its cellulation L and dual cellulation L∗, we may define
its combinatorial i-systole sysi(L) as the lowest number of
i-cells of L that form a nontrivial cycle in the homology
group Hi(L) and the dual combinatorial (n − i)-systole
sysn−i(L∗) as the lowest number of (n − i)-cells of L∗
that form a nontrivial cycle in Hn−i(L∗). The continu-
ous version of this is just the geometric systole of the
manifold Mn: the i-systole is defined as sysi(Mn) :=
infα �=0 i-area(α), where α is a smooth nontrivial oriented
i-cycle with class [α] �= 0 ∈ Hi(Mn). The dual systole of
the manifold is just sysn−i(Mn).

Similarly, we can define the combinatorial relative
i-systole sysi(L,B) as the lowest number of i-cells
of L that form a nontrivial relative cycle terminated
at the boundaries B in the relative-homology groups
Hi(L,B). The continuous version, i.e., the geometric rel-
ative i-systole can be defined accordingly: sysi(Mn,B) :=
infα �=0 i-area(α), where α is a smooth nontrivial oriented
relative i-cycle with class [α] �= 0 ∈ Hi(Mn,B).

In terms of the fractals F considered in this paper, one
can define the absolute and relative systoles in a similar
fashion. In particular, as mentioned previously, we define

the fractal F iteratively by punching holes in a mani-
fold Mn with decreasing length scales at each iteration
l. Therefore, at the lth iteration, the considered geom-
etry F(l) is just a punctured manifold with boundaries
B(l) and one can hence define the absolute and rela-
tive geometric systoles of the corresponding manifold as
sysi[F(l)] and sysi[F(l),B(l)]. The geometric systoles of
the fractal are hence defined in the limit of infinite itera-
tion, i.e., sysi(F) = liml→∞ sysi[F(l)] and sysi(F ,B) =
liml→∞ sysi[F(l),B(l)]. One can also simply define the
combinatorial systole of F through a finite cellulation L
of F .

Note that in the above discussions, we are defining
the absolute- and relative-homology groups and the cor-
responding systoles in the general situations, i.e., over
Z coefficients. When associating them with the quan-
tum codes defined on qubits or qudits, we can sim-
ply define them over Z2 or ZN coefficients. For exam-
ple, we can denote the corresponding absolute or rela-
tive Z2-homology groups and Z2-systoles as Hi(L; Z2),
Hi(L,B; Z2), sysi(L; Z2), sysi(L,B; Z2), etc.

In the above discussion, we make a connection between
the exactly solvable stabilizer models (toric codes) with
the chain-complex description. However, we note that this
connection exists even beyond the exactly solvable mod-
els, i.e., we can associate the TQFT description, namely the
Z2 gauge theory, with the mathematical structure of the Z2
chain complex and Z2-homology theory. In short, we have
the following isomorphism between the three descriptions:

Z2 toric code ∼= Z2 gauge theory ∼= Z2-homology,
(B15)

which obviously also generalizes to the ZN case.

APPENDIX C: PROOF OF TOPOLOGICAL
ORDER ON 3D SIMPLE FRACTALS BASED ON

ALGEBRAIC TOPOLOGY

In this appendix, we present an even more concise proof
of Theorem 3 in Sec. IV E based on algebraic topology,
without the need to investigate the detailed shape of the
local branes as in the previous two proofs in Sec. IV E,
i.e., Proofs 3a and 3b. In addition, we also prove a theorem
about the relative systolic geometry in 3D simple fractals.

Proof 3c. Since we are focusing only on Abelian topo-
logical orders in this paper, the mathematical structure of
our theory can be completely captured by the homology
and relative-homology groups. The ground-state subspace
(code space) of the Z2 topological order and codes in 3D
can be expressed as

HC = C
H1(L,Be;Z2), (C1)

where H1(L,Be; Z2) represents the first relative-homology
group. Here, the argument L represents the lattice, Be
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represents all the e-boundaries, and Z2 means that we
are considering the homology over the Z2 coefficients.
Note that Eq. (C1) also includes the situation without
e-boundaries, i.e., Be = 0, and in that case we are inves-
tigating the absolute first homology group H1(L; Z2). One
can easily generalize Eq. (C1) to the case of ZN topolog-
ical order by replacing the Z2-homology group with the
ZN -homology group: H1(L,Be; ZN ). To deepen our under-
standing, in the following we investigate three variants
for the setup of L that have the same fractal structure in
the bulk but different choices of external boundary con-
ditions (or, in other words, background manifolds): (1)
the fractal surface code LFSF introduced earlier in Fig. 5,
with the background manifold being the usual 3D sur-
face code and the corresponding relative-homology group
being H1(LFSF,Be; Z2); (2) the punctured 3-torus fractal
geometry L(T3), with the fractal supported on a back-
ground manifold corresponding to a 3D torus T3 with a
periodic boundary condition (a 3D cube with opposite
faces being identified and hence Be = ∅) and the corre-
sponding absolute-homology group being H1(L(T3); Z2);
and (3) the punctured 3-sphere fractal geometry L(S3),
with the fractal supported on a background manifold cor-
responding to a 3D sphere S3 (a 3D cube with all of
its boundary being identified to a single point and hence
Be = ∅) and the corresponding absolute-homology group
being H1(L(S3); Z2).

As mentioned in the previous proofs, all the holes in
the bulk are m-holes, so there are no e-boundaries in
the bulk onto which the e-particle could condense. This
means that there is no nontrivial (noncontractible) relative
1-cycle (that could end on the e-boundaries) in the bulk
region connecting the holes. According to Eq. (22), one has
H1(S2) = 0, which suggests that the absolute (ordinary) 1-
cycle around any m-hole (with the boundary being S2) in
the bulk is also trivial (contractible).

A rigorous way to prove the triviality of any local
relative or absolute 1-cycle in the bulk is to directly
compute the first relative-homology group of the entire
complex L: H1(L,Be; Z2). To begin with, we consider
the setup of a punctured 3-sphere fractal geometry L(S3)

mentioned above such that there is no external bound-
ary, i.e., Be = ∅. We then aim to compute the absolute-
homology group H1(L(S3); Z2). Note that topologically
speaking, this punctured 3-sphere fractal geometry is
just a 3-sphere with a set of 3-balls D3 (the m-holes)
inside cut out, i.e., L(S3) = S3 \ (D3 ∪ D3 ∪ · · · ∪ D3) =
S3 \ ∪j D3

(j ). One can hence use a “divide-and-conquer”
strategy to compute the homology of the entire complex
from the homology of the individual piece. In particular,
this can be achieved via the Alexander duality [50]:

H̃i(Sn \ X ) ∼= H̃ n−i−1(X ), (C2)

where X denotes an arbitrary submanifold. Here, H̃
denotes reduced (co)homology, which is just a slightly
modified version of the usual (co)homology: for i > 0,
these two are the same, i.e., Hi = H̃i and H i = H̃ i; for
i = 0, one has Hi = H̃i ⊕ Z and H i = H̃ i ⊕ Z in the gen-
eral case for the Z coefficients. The additional contribu-
tion Z is replaced by Z2 (or ZN ) for the Z2 (or ZN )
(co)homology. The essence of the Alexander duality is that
it converts the computation of homology of the manifold
Sn \ X to the computation of the cohomology of its com-
plement X in S3. When applying the Alexander duality to
our case, we can convert the homology of L(S3) into the
cohomologies of individual 3-balls D3:

H1(S3 \ ∪j D3
(j ); Z2) ∼= H 1(∪j D3

(j ); Z2)

∼= H 1(D3 ∪ D3 ∪ · · · ∪ D3; Z2)

∼= H 1(D3; Z2)⊕ H 1(D3; Z2)⊕ · · · ⊕ H 1(D3; Z2)

= 0 ⊕ 0 ⊕ · · · ⊕ 0 = 0, (C3)

as illustrated in Fig. 37. Here, we use only the usual homol-
ogy instead of the reduced homology, since we have i > 0
and n − i − 1 > 0. The third line follows from the fact that
the cohomology of a union of disjoint submanifold can be
decomposed into the direct sum of the homologies of the
individual submanifolds [50]. The final line follows from
the fact that H 1(D3) = H1(D3) = 0, since any 1-cocycle
or 1-cycle is contractible and hence trivial in a 3-ball. We
hence prove that any absolute 1-cycle in the punctured
3-sphere and the corresponding first homology group are
trivial, i.e., H1(L(S3); Z2) = 0.

We next consider the setup of a punctured 3-torus frac-
tal geometry L(T3), which is homeomorphic to a 3-torus
cutting out a set of 3-balls, i.e., L(T3) = T3 \ ∪j D3

(j ). Note
that any n-dimensional manifold Mn can be presented as
a connected sum of itself and a n-sphere:

Mn = Mn#Sn, (C4)

FIG. 37. An illustration for the application of the Alexander
duality: the first homology of the punctured 3-sphere (with inte-
rior holes homeomorphic to 3-balls D3) is isomorphic to the first
homology of the union of the 3-balls D3.
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FIG. 38. An illustration of the homology decomposition using a connected sum. (a) An illustration of Eq. (C4) in the 2D case. The
connected sum of a 2-torus T2 and a 2-sphere S2 is obtained by cutting out a 2-ball (disk) D2 on each piece and gluing them together
by identifying the boundaries of the 2-ball on each piece, i.e., a circle S1. Note that the 2-sphere with a disk cut out is just a disk:
S2 \ D2 = D2. (b) An illustration of Eq. (C4) in the context of a 3D toric code, where the opposite sides of the cube are identified and
hence represent a 3-torus. The connected sum of a 3-torus T3 and a 3-sphere S3 is obtained by cutting out a 3-ball D3 on each piece and
gluing them together by identifying the boundaries of the 3-ball on each piece, i.e., a 2-sphere S2. Note that the 3-sphere with a 3-ball
cut out is just a 3-ball: D3 = S3 \ D3, which gets glued into the 3-torus. (c) An illustration of Eq. (C5), i.e., decomposing the homology
of the punctured 3-torus T3 \ ∪j D3

(j ) to that of a connected sum of a punctured sphere S3 \ ∪j D3
(j ) and a 3-torus. (d) An illustration of

Eq. (C6), i.e., decomposing the relative homology of the punctured fractal surface code to that of a connected sum of the 3D surface
code and a punctured sphere. The relative first homology of the 3D surface code is equivalent to the absolute first homology of the
3D surface-code geometry, with its e-boundaries being identified into a single point: i.e., L3DSF/Be. The logical string Z (red) hence
becomes a nontrivial absolute 1-cycle traveling around the entire complex.

where Sn acts like a zero element in the connected sum.
In nD, the connected sum (#) between two n-manifolds
means cutting out two n-balls Dn on the two manifolds
and gluing the two manifolds by identifying the bound-
aries of the two balls, i.e, two (n − 1)-spheres Sn−1, where
a 2D example with a 2-torus, i.e., M2 = T2, is illustrated
in Fig. 38(a). In our context, a 3-torus can also be pre-
sented as a connected sum of a 3-torus and a 3-sphere,
i.e., T3 = T3#S3, as illustrated in Fig. 38(b). Here, the two
pieces glued together are a torus with a 3-ball cut out, i.e.,
T3 \ D3, and a 3-sphere with a 3-ball cut out that is equiva-
lent to a 3-ball, i.e., S3 \ D3 = D3. Similarly, the punctured
3-torus can also be expressed as a connected sum of a 3-
torus and a large punctured 3-sphere with radius of O(L),
i.e., L(T3) = T3 \ ∪j D3

(j ) = T3#S3 \ ∪j D3
(j ), as illustrated

in Fig. 38(c). Using the Mayer-Vietoris sequence [50], one
can express the first homology of the connected sum of two
3-manifolds as a direct sum of the first homology of each
3-manifold, i.e.,

H1(L(T3); Z2) = H1(T3#S3 \ ∪j D3
(j ); Z2)

∼= H1(T3; Z2)⊕ H1(S3 \ ∪j D3
(j ); Z2)

= (Z2 ⊕ Z2 ⊕ Z2)⊕ 0 = Z2 ⊕ Z2 ⊕ Z2. (C5)

The last line in the above equation uses the homology
of a 3-torus, i.e., H1(T3; Z2) = Z2 ⊕ Z2 ⊕ Z2, where each

copy of Z2 comes from the contribution of one of the
noncontractible 1-cycles in the 3-torus through which the
macroscopic logical Z-strings (the world lines of the e-
particle) can travel. These macroscopic logical strings have
a minimal length corresponding to the Z-distance dz =
O(L), since they need to circumvent the m-holes along the
way without terminating on them.

We now consider the setup of a 3D fractal-surface-
code geometry LFSF. Topologically speaking, it is equiv-
alent to a usual 3D surface-code geometry L3DSF with
a set of 3-balls cut out, i.e., LFSF = L3DSF \ ∪j D3

(j ). By
using the fact in Eq. (C4), we can present L3DSF as a
connected sum of itself and a 3-sphere, i.e., L3DSF =
L3DSF#S3. We can then present the 3D fractal-surface-code
geometry as LFSF = (L3DSF#S3) \ ∪j D3

(j ) = L3DSF#(S3 \
∪j D3

(j )), namely the connected sum of the 3D surface code
and a large punctured sphere with radius of O(L). Now, we
can compute the first relative homology of this connected
sum with the following homology decomposition:

H1(LFSF,Be; Z2) ∼= H1(LFSF/Be; Z2)

∼= H1((L3DSF/Be)#(S3 \ ∪j D3
(j )); Z2)

∼= H1(L3DSF/Be; Z2)⊕ H1(S3 \ ∪j D3
(j ); Z2)

∼= H1(L3DSF,Be; Z2)⊕ 0 = Z2. (C6)
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Note that L′ = LFSF/Be and L′′ = L3DSF/Be are modi-
fied complexes obtained from identifying the e-boundaries
of the fractal surface code and the 3D surface code
into a single point and the corresponding connected sum
(L3DSF/Be)#(S3 \ ∪j D3

(j )) is illustrated in Fig. 38(d). The
last equality uses the homology of the 3D surface code, i.e.,
H1(L3DSF,Be; Z2) = Z2. For both the fractal and the usual
3D surface codes, the single Z2 comes from the relative 1-
cycle connecting the e-boundaries on the top and bottom
faces of the cube, which is also equivalent to the absolute
1-cycle when the rough boundaries of the fractal and the
usual 3D surface codes are all identified to a single point,
i.e., corresponding to the quotient complex L′ = LFSF/Be
and L′′ = L3DSF/Be, as illustrated in Fig. 38(d). This 1-
cycle is the support of the macroscopic logical string Z
that has minimal length corresponding to the Z-distance
dZ = O(L).

Note that we compute the first (relative) homology
groups on L in all three setups. It would seem that we also
need to compute all the second relative-homology groups
on the dual cellulation L∗, i.e., H2(L∗, Bm, Z2), which is
equivalent to the central parts in Proofs 3a and 3b. How-
ever, due to the intrinsic symmetries in homology, we do
not really need to directly compute the second relative
homology. The essence of this simplification is due to a
generalized version of the Poincaré duality for a manifold
with boundary, i.e., the Poincaré-Lefschetz duality.

The Poincaré duality states that, for any n-dimensional
orientable closed manifold M (compact and without
boundary), the ith-cohomology group is isomorphic to the
(n − i)th-homology group:

H i(M) ∼= Hn−i(M). (C7)

When formulating this theorem in terms of the cellulation
L of the manifold M, it becomes

H i(L) ∼= Hn−i(L∗), (C8)

where L∗ represents the dual-cell complex of L. The above
two formulations are equivalent, since both L and L∗ are
cellulations of the same manifold M and their homologies
are equal to the homology of the manifold. As a general-
ization to the case with boundaries, the Poincaré-Lefschetz
duality states that, for any n-dimensional orientable com-
pact manifold M with boundary B, the ith relative coho-
mology (homology) group is isomorphic to the (n − i)th
absolute-homology (cohomology) group:

H i(M) ∼= Hn−i(M,B), Hi(M) ∼= H n−i(M,B), (C9)

with the equivalent formalism for the cellulation being

H i(L) ∼= Hn−i(L∗,B∗), Hi(L∗) ∼= H n−i(L,B). (C10)

In our case, we consider our fractal lattice L as a cel-
lulation of an orientable compact punctured 3-manifold

M3 (n = 3) and the corresponding cellular homology
over Z2 or, more generally, ZN . We start with the punc-
tured 3-sphere fractal geometry L(S3). We show above in
Eq. (C3) that the absolute first homology (corresponding
to logical Z-string) is trivial, i.e., H1(L(S3); Z2) = 0. The
Poincaré-Lefschetz duality hence leads to

H 1(L(S3); Z2) ∼= H2(L∗(S3),B∗
m; Z2). (C11)

We now use the property that the ith homology and coho-
mology of the same complex are isomorphic to each other
[50], i.e.,

H i(L) ∼= Hi(L). (C12)

This isomorphism is also reflected in the ranks (dimen-
sions) of the (co)homology groups and can be simply
explained as follows. According to Eqs. (B4) and (B10),
we have

dim Hi(L) = dim Ker∂i − dim Img∂i+1

= (dim Ci − rank∂i)− rank∂i+1

= (dim Ci − rankδi)− rankδi−1

= dim Kerδi − dim Imgδi−1 = dim H i(L).
(C13)

The second line of the above equation comes from the
rank-nullity theorem for the boundary map, i.e., rank∂i +
dim Ker∂i = dim Ci, where rank∂i = dim Img∂i. The third
line uses the isomorphism Ci ∼= Ci and Eq. (B8). The
fourth line uses the rank-nullity theorem for the cobound-
ary map. We hence also obtain the equality of the ranks
(equal to the vector-space dimensions), i.e., rankHi(L) =
rankH i(L). For the Z2 case, the equality of the ranks alone
already ensures the isomorphism of the homology groups.
Therefore, we obtain the following property:

H2(L∗(S3),B∗
m; Z2) ∼= H1(L(S3); Z2) = 0. (C14)

This means that the second relative homology in the dual
complex (lattice) L∗, which corresponds to the logical X -
brane, is also trivial. Indeed, in the case of punctured 3-
sphere fractal geometry, the ground (code) space can be
expressed as

HC = C
H1(L(S3);Z2) ∼= C

H2(L∗(S3),B∗
m;Z2) = C

1, (C15)

which has only a single ground state and hence no degen-
eracy. Still, it is expected that there is long-range entan-
glement in the ground-state wave function, which cannot
be prepared by a constant-depth local circuit from a trivial
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product state. The number of logical qubits k is determined
by the rank or dimension of the homology groups, i.e.,

k = dim H1(L(S3); Z2) = dim H2(L∗(S3),B∗
m; Z2) = 0.

(C16)

The essence of the Poincaré-Lefschetz duality in this con-
text is revealed in Eq. (C15) as the equivalence of two
logical basis choices, i.e., the logical Z (electric) basis
and the logical X (magnetic) basis, to represent the same
ground space HC, which is essentially a Fourier trans-
form. The physical interpretation of this duality is just the
electromagnetic (e-m) duality in the Z2 gauge theory. It is
hence not surprising that computing only the first homol-
ogy is sufficient in order to know about the absence of
logical degrees of freedom in the bulk, including logical
Z-strings and logical X -branes.

We now switch to the case of the punctured 3-torus frac-
tal geometry L(T3). According to the Poincaré-Lefschetz
duality, Eqs. (C5) and (C12), we hence obtain

H2(L∗(T3),B∗
m; Z2) ∼= H1(L(T3); Z2) = Z2 ⊕ Z2 ⊕ Z2.

(C17)

Hence the ground (code) space can be expressed as

HC = C
H1(L(T3);Z2) ∼= C

H2(L∗(T3),B∗
m;Z2) = C

Z
⊕3
2 = C

23
,

(C18)

with the number of logical qubits being

k = dim H1(L(T3); Z2) = dim H2(L∗(T3),B∗
m; Z2) = 3.

(C19)

Note that all the nontrivial contribution Z
⊕3
2 in H2(L∗(T3),

B∗
m; Z2) from Eq. (C17) comes from the three homology

classes associated with macroscopic brane operators X 1,2,3
traveling through the 3-torus. The three homology classes
contain representatives parallel to the x-y, x-z, and y-z
planes, respectively. This can be seen from the homol-
ogy decomposition dual to Eq. (C5), i.e., H2(L∗(T3); Z2)

= H2(T3; Z2)⊕ H2(L∗(S3),B∗
m; Z2) = H2(T3; Z2) ⊕ 0,

where the last equality uses the trivial relative second
homology of the punctured sphere from Eq. (C14). In
combination with Eq. (C5), it shows that the nontriv-
ial homology classes only come from those of the usual
3-torus, i.e., and can hence only be macroscopic. From
Fig. 38(c), we can see that the minimal support of these
macroscopic branes, e.g., X 1, is lower bounded by the min-
imal size of the membrane outside the ball region cut out,
which is at least proportional to the linear system size L.
We can hence obtain the lower bound of the X -distance
as dX ∼ �(L). One can also obtain an exact scaling of the
X -distance as dX = O(LDH ), where DH is the Hausdorff
dimension of the minimal-area fractal brane operator, as

we calculate in the case of the fractal-cube geometry. In
sum, there is neither any nontrivial absolute 1-cycle nor
any relative 2-cycle with O(1) distance in the presence of
m-holes in the fractal.

Finally, we come back to the fractal-surface-code geom-
etry LFSF, where we have both the e- and m-boundaries.
We now use a more general version of the Poincaré-
Lefschetz duality: let M be an orientable compact n-
dimensional manifold and let B = B1 ∪ B2 be its bound-
ary decomposed as a union of two orientable compact
(n − 1)-dimensional manifolds B1 and B2 with a common
boundary ∂B1 = ∂B2 = B1 ∩ B2. Then, the following iso-
morphism holds:

H i(M,B1) ∼= Hn−i(M,B2). (C20)

In the context of the fractal surface code, the Poincaré-
Lefschetz duality for the cellulation translates to

H 1(L,Be; Z2) ∼= H2(L∗,B∗
m; Z2). (C21)

Now, by using the isomorphism in Eq. (C12), we can
obtain H 1(L,Be) ∼= H 1(L/Be) ∼= H1(L/Be) ∼= H1(L,Be).
Combined with Eq. (C6), this leads to the following
expression:

H2(L∗
FSF,B∗

m; Z2) ∼= H1(LFSF,Be; Z2) = Z2. (C22)

The ground (code) space can then be expressed as

HC = C
H1(LFSF,Be;Z2) ∼= C

H2(L∗
FSF,B∗

m;Z2) = C
Z2 = C

2,
(C23)

with the number of logical qubits being

k = dim H1(LFSF,Be; Z2) = dim H2(L∗
FSF,B∗

m; Z2) = 1.
(C24)

The nontrivial contribution Z2 in H2(L∗
FSF,B∗

m; Z2)

comes from the macroscopic logical brane X termi-
nating at the four external e-boundaries. This can
be seen from the homology decomposition dual to
Eq. (C6), i.e., H2(L∗

FSF,B∗
m; Z2) = H2(L∗

3DSF,B∗
m; Z2)⊕

H2(L∗(S3),B∗
m; Z2) = H2(L∗

3DSF; Z2)⊕ 0. In combination
with Eq. (C6), it shows that the nontrivial homology
classes only come from that of the usual 3D surface code
L3DSF and can hence only be macroscopic. As shown in
Fig. 38(d), we can again obtain the lower bound of the X -
distance as dX ∼ �(L) or an exact scaling dX = �(LDH ),
similar to the case of the 3-torus. In sum, no nontrivial rel-
ative 1-cycle or relative 2-cycle with O(1) distance exists
in the presence of m-holes in the fractal.

Although we only prove the case of Z2 topological
order, the above proof can be directly adapted to the case
of ZN topological order simply by replacing all the Z2 in
the above expressions with ZN . �

030338-44



TOPOLOGICAL ORDER ON FRACTAL GEOMETRIES PRX QUANTUM 3, 030338 (2022)

Besides the above theorem for topological orders and
codes, Proof 3c is also a rigorous proof for the following
mathematical theorem.

Theorem 6: There exists a class of simple fractals L
embedded 3D with boundary Bm on its interior holes, such
that both its absolute 1-systole sys1(L) and its dual rela-
tive 2-systole sys2(L∗, B∗

m) are macroscopic, i.e., scale as
a power law of the linear size L of the fractals.

This theorem is stated for the situation in which the
background manifold is a 3-torus or a more generic
closed 3-manifold with nonzero first Betti number. It can,
of course, be extended to the case of relative 1-systole
sys1(L,Be) when there is another boundary type Be on the
external surface. Also, this theorem holds for the cases of
Z-, Z2-, and ZN -systoles and the proof simply follows by
replacing all the Z2 in the above expressions with Z or ZN .

APPENDIX D: PROOF OF TOPOLOGICAL
ORDER ON nD SIMPLE FRACTALS

In this appendix, we provide rigorous proofs of Theorem
4 in Sec. V B 1 and Theorem 5 in Sec. V B 1. In addi-
tion, we also prove theorems about the relative systolic
geometry on nD simple fractals.

In contrast to what we have done in 3D, where we have
constructed three different proofs for Theorem 2, here we
just use one way, based on algebraic topology generaliz-
ing Proof 3c in Appendix C, which is quite concise in the
higher-dimensional case. For clarity, we focus on the case
of Z2 topological order and the generalization to the ZN
case is straightforward.

1. Cases with stringlike logical operators (i = 1)

In this section, we first present the proof of Theorem 4
as follows.

Proof. Similar to the 3D case, the ground-state subspace
(code space) of the Z2 topological order can be written as

HC = C
H1(L,Be;Z2), (D1)

where H1(L,Be; Z2) represents the first relative Z2-
homology group. Here, the argument L represents the
n-dimensional lattice and Be represents all the (n − 1)-
dimensional e-boundaries. The generalization to the ZN
topological order can be done simply by replacing H1
with the ZN -homology group H1(L,Be; ZN ). In the fol-
lowing, we directly compute the relative-homology group
H1(L,Be; Z2).

As in the 3D case, we consider setups with three dif-
ferent background topologies in our discussions: (1) the
n-dimensional fractal surface code LFSF—we choose the
background manifold to be topologically equivalent to

an n-dimensional hypercube, with two of its (n − 1)-
dimensional hypersurfaces on the opposite sides being
the e-boundaries onto which the e-particles can condense
whereas the m-loop or -brane excitations cannot, while
the other (2n − 2) of its (n − 1)-dimensional hypersur-
faces are m-boundaries with the opposite condensation
property as just introduced above, and we also call this
code a (1, n − 1)-fractal surface code; (2) the punctured
n-torus L(Tn)—the background manifold is chosen as
an n-dimensional torus Tn; and (3) the punctured n-
sphere L(Sn)—the background manifold is chosen as an
n-dimensional sphere Sn.

We now discuss the setups of the three types of back-
ground topologies mentioned above. The simplest case is
the punctured n-sphere L(Sn). In this case, there is no e-
boundary in the system at all, i.e., Be = ∅. The geometry is
equivalent to an n-sphere with a set of interior holes home-
omorphic to n-balls Dn cut out, i.e., L(Sn) = Sn \ (Dn ∪
Dn ∪ · · · ∪ Dn) = Sn \ ∪j Dn

(j ). We can again use a “divide-
and-conquer” strategy to compute the homology group. In
particular, we apply the Alexander duality in Eq. (C2) and
obtain

H1(Sn \ ∪j Dn
(j ); Z2) ∼= H n−2(∪j Dn

(j ); Z2)

∼=
⊕

j

H n−2(Dn
(j ); Z2) =

⊕

j

0 = 0, (D2)

where the equality in the second line is due to the fact that
the (n − 2)-cocycle in an n-ball is contractible and hence
trivial. Using the Poincaré-Lefschetz duality, we obtain
the isomorphism H 1(L(Sn); Z2) ∼= Hn−1(L∗(Sn),B∗

m; Z2)

as a higher-dimensional generalization of Eq. (C3). Com-
bined with Eq. (C12), we can obtain that the dual (n − 1)th
relative-homology group (on the dual-cell complex L∗)
corresponding to the X -brane is also trivial:

Hn−1(L∗(S3),B∗
m; Z2) ∼= H1(L(S3); Z2) = 0. (D3)

Therefore, there is no nontrivial logical Z-string or X -
brane in this fractal. The ground-state subspace (code
space) is hence one-dimensional,

HC = C
H1(L(S3);Z2) ∼= C

Hn−1(L∗(S3),B∗
m;Z2) = C

1, (D4)

meaning that it encodes zero logical qubits and there is a
single ground state. Nevertheless, it is expected that there
is still long-range entanglement in the ground-state wave
function, as in the 3D punctured sphere.

We then consider the (1, n − 1)-fractal surface code
supported on the complex LFSF, which has a back-
ground manifold with two e-boundaries and (n − 2) m-
boundaries. Topologically speaking, it is equivalent to the
usual (1, n − 1)-surface-code geometry LSF in n dimen-
sions with a set of n-balls cut out, i.e., LFSF = LSF \
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∪j Dn
(j ). Using Eq. (C4), we can present the fractal-surface-

code geometry as LFSF = (LSF#Sn) \ ∪j Dn
(j ) = LSF#(Sn \

∪j Dn
(j )), namely the connected sum of the nD surface code

and a punctured n-sphere. This connected sum can be
interpreted as cutting out a large n-ball Dn with radius
of O(L) inside the nD surface code LSF and gluing a
punctured n-ball (Sn \ ∪j Dn

(j )) into this hollow region,
analogous to the 3D case illustrated in Fig. 38(d). This
punctured ball is equivalent to a punctured n-sphere with
a n-ball cut out, i.e., (Sn \ ∪j Dn

(j )) \ Dn. Using the Mayer-
Vietoris sequence [50], we can now compute the first rel-
ative homology of this connected sum with the following
homology decomposition:

H1(LFSF,Be; Z2) ∼= H1(LFSF/Be; Z2)

∼= H1(LSF/Be#(Sn \ ∪j Dn
(j )); Z2)

∼= H1(LSF/Be; Z2)⊕ H1(Sn \ ∪j Dn
(j ); Z2)

∼= H1(LSF,Be; Z2)⊕ 0 = Z2. (D5)

From the decomposition, one can see that the only non-
trivial contribution Z2 comes from the (1, n − 1)-surface
code, corresponding to a single macroscopic logical string
Z connecting the opposite e-boundaries. According to the
Poincaré-Lefschetz duality in Eq. (C10) and the isomor-
phism in Eq. (C12), we have the dual (n − 1)th relative-
homology group as

Hn−1(L∗
FSF,B∗

m; Z2) ∼= H1(Ln
FSF,Be; Z2) = Z2. (D6)

By using the Poincaré-Lefschetz dual of the homology
decomposition in Eq. (D5), we obtain

Hn−1(L∗
FSF,B∗

m; Z2)

∼= Hn−1(L∗
SF,B∗

m; Z2)⊕ Hn−1(L∗(S3),B∗
m; Z2)

= Hn−1(L∗
SF,B∗

m; Z2)⊕ 0, (D7)

where the last equality uses Eq. (D3). We can see that the
only nontrivial contribution Z2 comes from the (1, n − 1)-
surface-code part Hn−1(L∗

SF,B∗
m; Z2), which corresponds

to a single macroscopic logical brane X (the world vol-
ume of the m-loop or -brane) connecting all the 2n − 2
external hypersurfaces with m-boundaries and intersects
with the macroscopic logical string Z at a single point (in
terms of algebraic intersection), leading to the anticom-
mutation relation {X , Z} = 0. The ground-state subspace
(code space) of the fractal surface code is HC = C

Z2 =
C

2, corresponding to a single logical qubit and twofold
ground-state degeneracy.

The discussion of the punctured n-torus geometry can be
found in Sec. IVA of the Supplemental Material [63].

It is clear from the above discussions that in both the
fractal-surface-code and the punctured-torus geometry (in

Sec. IVA of the Supplemental Material [63]), there are
only macroscopic logical operators. The Z-distance corre-
sponding to the minimal length of the macroscopic logical
Z-string is dZ = O(L) (where L is the linear size of the
system), since the Z-string needs to circumvent all the
m-holes. The X -distance corresponding to the minimal
volume of the macroscopic logical X -brane has a lower
bound determined by the minimal volume of the brane
outside the region of the large n-ball cut out and with a
radius of O(L), i.e., dX ∼ �(Ln−2) as a generalization of
the 3D case illustrated in Fig. 38(c,d). One can also obtain
an exact scaling of the X -distance as dX = O(LDH ), where
n − 2 < DH < n − 1 is the Hausdorff dimension of the
minimal-volume fractal logical X -brane, as is discussed
in detail in Sec. D 2. In sum, the distance of this code is
the smaller of the Z- and X -distances: d = min(dZ , dX ) =
O(L). No microscopic logical operator with O(1) distance
exists. Therefore, the corresponding code has macroscopic
code distance and hence topological order exists in these
fractal geometries. We note that the proof for the more gen-
eral case of the ZN topological order follows directly from
the above proof by simply replacing all the Z2 coefficients
with ZN in the relative- and absolute-homology groups, as
well as the relative- and absolute-cohomology groups. �

Similar to the 3D case, the above proof for topologi-
cal order also provides a rigorous proof for the following
mathematical theorem.

Theorem 7: There exists a class of simple fractals L
embedded in an n-dimensional manifold with boundary
Bm on its interior holes, such that both its absolute
1-systole sys1(L) and its dual relative (n − 1)-systole
sysn−1(L∗,B∗

m) are macroscopic, i.e., scale as a power law
of the linear size L of the fractals.

This theorem is stated for the situation in which the
background manifold is a n-torus (see Sec. IVA of the
Supplemental Material [63]) or a more generic closed n-
manifold with nonzero first Betti number. As in the 3D
case, the theorem holds for the cases of Z-, Z2-, and
ZN -systoles.

2. Cases without stringlike logical operators (i ≥ 2):
Self-correcting quantum memories

In this section, we first present the proof of Theorem 5
as follows.

Proof. The proof requires us to directly compute the
relative-homology groups Hi(L, Be; Z2) and Hn−i(L∗, B∗

m;
Z2) as shown below.

Similar to the i = 1 case, we now discuss setups with
three types of background manifolds, respectively. We start
with the punctured n-sphere L(Sn). We first decompose
L(Sn) as a connected sum of two n-punctured spheres
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= #

FIG. 39. An illustration of the decomposition of a punctured n-sphere Sn with both e-holes and m-holes into a punctured n-sphere
containing only e-holes and another containing only m-holes. One first constructs a spanning tree connecting all the e-holes and
then thickens the spanning tree into a punctured n-ball. The entire punctured n-sphere is hence equivalent to the gluing of two
punctured n-balls with only e-holes and m-holes, respectively, which is in turn equivalent to the connected sum of two punctured
n-spheres.

Le(Sn) and Lm(Sn) that only contain e-holes and m-holes,
respectively, i.e., L(Sn) = Le(Sn)#Lm(Sn). This decom-
position is enabled by the following construction and is
illustrated in Fig. 39. We first connect all the e-holes
with a spanning tree, which does not touch any of the
m-holes. This spanning tree is simply connected and by
thickening the tree and including the surrounding regions
of each e-hole we obtain a subsystem equivalent to a punc-
tured n-ball with all the interior e-holes cut out, i.e., Dn \
∪j∈e holeDn

(j ). Note that an n-ball can be obtained by cutting
out an n-ball from an n-sphere, i.e., Dn = Sn \ Dn. There-
fore, the subsystem we have just obtained can be viewed
as a punctured sphere Le(Sn) = Sn \ ∪j∈e-holeDn

(j ) with an
additional n-ball cut out. When cutting out this subsystem,
the remaining subsystem can also be viewed as a punc-
tured n-sphere (where the m-holes are cut out) Lm(Sn) =
Sn \ ∪j∈m-holeDn

(j ) with an additional large n-ball Dn cut out.
Therefore, the whole complex L(Sn) can be obtained from
gluing the two punctured n-spheres by cutting out a n-ball
Dn from each subsystem and identifying the boundaries of
the two n-balls, i.e., two (n − 1)-spheres Sn−1, which is
literally a connected sum of the two subsystems, i.e.,

L(Sn) = (
Sn \ ∪j∈e-holeDn

(j )

)
#
(
Sn \ ∪j∈m-holeDn

(j )

)
. (D8)

By analogy with the i = 1 case, we choose to compute
the absolute homology for the punctured n-sphere instead
of the relative homology since the former is much eas-
ier. Therefore, we aim to first compute Hi(Lm(Sn); Z2)

and Hn−i(L∗
e(S

n); Z2), and the rest can be obtained from
the Poincaré-Lefschetz duality. We again use the “divide-
and-conquer” strategy through the Alexander duality from

Eq. (C2) and obtain

Hi(Lm(Sn); Z2) = Hi(Sn \ ∪j∈m-holeDn
(j ); Z2)

∼= H n−1−i(∪j Dn
(j ); Z2) ∼=

⊕

j∈m-hole

H n−1−i(Dn
(j ); Z2)

=
⊕

j∈m-hole

0 = 0, (D9)

where we use the property H n−1−i(Dn; Z2) = Hn−1−i
(Dn; Z2) = 0 for 1 < i < n − 1 and n > 3, since any
absolute (n − 1 − i)-cocycle or (n − 1 − i)-cycle is con-
tractible in Dn. In a similar fashion, we can obtain

Hn−i(L∗
e(S

n); Z2) = Hn−i(Sn \ ∪j∈e-holeDn
(j ); Z2)

∼= H i−1(∪j Dn
(j ); Z2) ∼=

⊕

j∈e-hole

H i−1(Dn
(j ); Z2)

=
⊕

j∈e-hole

0 = 0, (D10)

where we use the property H i−1(Dn; Z2) = Hi−1(Dn;
Z2) = 0 for 1 < i < n − 1 and n > 3 and drop the
dual asterisk (“*”) after the first equality since the
(co)homology of a manifold is independent of the cel-
lulation. Now using the Poincaré-Lefschetz duality in
Eq. (C10) and the isomorphism in Eq. (C12), we obtain the
dual relative-homology groups Hn−i(L∗

m(S
n),B∗

m; Z2) ∼=
Hi(Lm(Sn); Z2) = 0 and Hi(Le(Sn),Be; Z2) ∼= Hn−i(L∗

e
(Sn); Z2) = 0. We can then compute the ith relative-
homology groups of the entire complex using the homol-
ogy decomposition of connected sum:

Hi(L(Sn),Be; Z2) ∼= Hi(Le(Sn)#Lm(Sn),Be; Z2)

= Hi(Le(Sn),Be; Z2)⊕ Hi(Lm(Sn); Z2) = 0. (D11)
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By using the Poincaré-Lefschetz duality again, we
can obtain Hn−i(L∗(Sn),B∗

m; Z2) ∼= Hi(L(Sn),Be; Z2) =
0, which shows that both the ith and the (n − i)th
relative-homology groups in this setup are trivial. In other
words, any absolute or relative i-cycle and (n − i)-cycle
in the punctured sphere is trivial. This leads to the one-
dimensional ground-state subspace (code space):

HC = C
Hi(L(Sn),Be;Z2) ∼= C

Hn−i(L∗(Sn),B∗
m;Z2) = C

1. (D12)

Therefore, no logical qubit or ground-state degeneracy
exists in this case but it is expected that the ground-state
wave function is long-range entangled as discussed before.

We now consider the case of the (i, n − i)-fractal-
surface-code geometry LFSF, with the background man-
ifold being a hypercube having 2i hypersurfaces with e-
boundaries and 2(n − i) hypersurfaces with m-boundaries.
One can write the background manifold as MSF = Di ×
Dn−i, i.e., a manifold product of an i-dimensional disk
(ball) and an (n − i)-dimensional disk (ball). We first con-
sider the logical operators in the (i, n − i)-surface code
without holes inside. A single logical i-brane Z (a relative
i-cycle) travels through the disk Di and terminates at all
the 2i hypersurfaces with e-boundaries. Similarly, a single
logical (n − i)-brane X [a relative (n − i)-cycle] travels
through the disk Dn−i and terminates at all the (2n − 2i)
hypersurfaces with m-boundaries.

We now start to compute the relative-homology group
of LFSF. Note that the fractal-surface-code geometry can
be expressed as a connected sum of the (i, n − i)-surface
code and a punctured n-sphere similar to the i = 1 case,
i.e., LFSF = LSF#(Sn \ ∪j Dn

(j )). We then use the following
homology decomposition of the connected sum:

Hi(LFSF,Be; Z2) ∼= Hi(LFSF/Be; Z2)

∼= Hi(LSF/Be#(Sn \ ∪j Dn
(j )); Z2)

∼= Hi(LSF/Be; Z2)⊕ Hi(Sn \ ∪j Dn
(j ); Z2)

∼= Hi(LSF,Be; Z2)⊕ 0 = Z2. (D13)

Here, the only nontrivial contribution Z2 comes from the
macroscopic logical i-brane Z. By using the Poincaré-
Lefschetz duality, we obtain the following expression for
the (n − i)th relative-homology group on the dual com-
plex:

Hn−i(L∗
FSF,B∗

m; Z2) ∼= Hi(LFSF,Be; Z2) = Z2. (D14)

This leads to the following ground-state subspace (code
space): HC = C

Z
⊕n
2 = C

2n
, which corresponds to n logical

qubits and a 2n-fold ground-state degeneracy. By using the
Poincaré-Lefschetz dual of the homology decomposition

in Eq. (D13), we obtain

Hn−i(L∗
FSF,B∗

m; Z2)

∼= Hn−i(L∗
SF,B∗

m; Z2)⊕ Hn−i(L∗(S3),B∗
m; Z2)

= Hn−i(L∗
SF,B∗

m; Z2)⊕ 0, (D15)

where the last equality uses Eq. (D14). We can see that the
only nontrivial contribution Z2 comes from the (i, n − i)-
surface-code part Hn−i(L∗

SF,B∗
m; Z2), which corresponds to

a single macroscopic logical (n − i)-brane X .
The discussion of the punctured n-torus geometry can be

found in Sec. IVB of the Supplemental Material [63].
In sum, we can see that in the case of the fractal-

surface-code and punctured-torus geometry (in Sec. IVB
of the Supplemental Material [63]), no microscopic logi-
cal operator with O(1) distance exists and all the logical
operators are macroscopic. Therefore, we prove the exis-
tence of the (i, n − i)-Z2 topological order in these fractal
geometries. Again, we can obtain the proof in the general
case of (i, n − i)-ZN topological order by simply replac-
ing all the Z2 coefficients with ZN in the relative- and
absolute-homology groups, as well as the relative- and
absolute-cohomology groups. �

Similar to the i = 1 case, the above proof for topologi-
cal order also provides a rigorous proof for the following
mathematical theorem.

Theorem 8: There exists a class of simple fractals L
embedded in an n-dimensional manifold with boundary
Be or Bm on each of the interior holes, such that both its
relative i-systole sys1(L,Be) and its dual relative (n − i)-
systole sysn−1(L∗,B∗

m) are macroscopic, i.e., scale as a
power law of the linear size L of the fractals.

This theorem includes the special case in which there is
only one boundary type, i.e., Be = ∅ or Bm = ∅. As in the
previous cases, the theorem holds for the cases of Z-, Z2-,
and ZN -systoles.

APPENDIX E: NON-CLIFFORD LOGICAL GATES
FOR n-DIMENSIONAL FRACTAL CODES

In this appendix, we extend the scheme of realizing non-
Clifford logical gates discussed in Sec. VI to n-dimensional
topological codes supported on a simple fractal. In partic-
ular, we consider the case of (1, n − 1)-toric codes with
particlelike excitations and stringlike logical operators and
the case of (i, n − i)-toric codes (i ≥ 2) without particlelike
excitations and stringlike logical operators.

1. Cases with stringlike logical operators (i = 1)

We begin by generalizing our construction of the logi-
cal CCZ gate in 3D fractals to a logical C⊗n−1Z gate in a
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stack of n copies of (1, n − 1)-surface codes supported on
n-dimensional simple fractals. We follow the treatment in
Ref. [18], where a logical C⊗n−1Z gate corresponding to
a local constant-depth circuit is constructed by applying a
logical Rn gate in a (1, n − 1)-color code and then disen-
tangling the color code into n copies of (1, n − 1)-surface
codes. In the following, we show that such a construction
can also be adapted to the case of fractal surface codes.

We start by introducing the construction of n-
dimensional color codes. Since any n-dimensional color
code belongs to the same phase as multiple copies
of n-dimensional Z2-toric codes, i.e., Z

×n
2 as stated in

Sec. VI A 2, one can also classify color codes with the bil-
abel (i, n − i), meaning that the Z and X logical operators
correspond to i- and (n − i)-dimensional branes, respec-
tively, where we have 1 ≤ i ≤ n − i. Therefore, there are
"n − 1/2# ways of defining an n-dimensional color code,
similar to the case of defining an n-dimensional toric code.
We consider an n-dimensional lattice L, which is a cell
complex and forms a tessellation of an n-dimensional man-
ifold. An additional constraint in the case of a color code is
that L needs to be (n + 1)-valent and its n-cells are (n + 1)-
colorable. We always put qubits on the vertices, i.e., the
0-cells, as opposed to the toric code case, where qubits are
put on an i-cell. The X and Z stabilizers are associated with
(n + 1 − i)-cells and (i + 1)-cells, respectively.

In this subsection, we only focus on the i = 1 case
such that the corresponding (1, n − 1)-color codes con-
tain string logical operators and particle excitations. In this
case, the X stabilizers Aq and Z stabilizers Bf are asso-
ciated with n-cells (volumes) labeled by q- and 2-cells
(faces) labeled by f , respectively. The color-code model
can be defined with the following parent Hamiltonian:

HCC = −
∑

q

Aq −
∑

f

Bf ,

with Aq =
⊗

j∈{vq}
Xj , Bf =

⊗

j∈{vf }
Zj , (E1)

where the {vq} represent all vertices in the n-cell labeled
by q and the {vf } represent all vertices in face f . We
denote the stabilizer group of the color code by CC(L) ≡
〈{Aq, Bp}〉. Similarly, we denote the stabilizer toric code on
lattice L as TC(L).

The equivalence between a color code and multiple
copies of toric codes has been established in Ref. [18] and
can be summarized by the following lemma.

Lemma 1: ([18]). Let CC(L) be a (1, n − 1)-color code
defined on an n-dimensional lattice L without boundaries
(n ≥ 2). The lattice L is (n + 1)-valent and is colored with
c0, c1, . . . , cn. Let X and Z stabilizers be supported on n-
cells and 2-cells, respectively. There exists a local Clifford

unitary V such that

V[CC(L)⊗ S]V† =
n⊗

i=1

TC(Li), (E2)

where S represents the stabilizer groups of decoupled
ancilla qubits and TC(Li) represents the stabilizer group
of the toric code defined on the shrunk lattice Li obtained
from L by shrinking n-cells of color ci. The local unitary V
can be chosen to be of the form

V =
⊗

c∈C0

Vc, (E3)

where C0 is the set of n-cells of color c0 in L and Vc is
a Clifford unitary acting only on qubits on vertices of the
n-cell c.

We also call V a disentangling unitary, since a single
n-dimensional color code CC(L) can disentangled into n
copies of toric code TC(Li) by V. The qubits in the color
code are all placed on the vertices, while the qubits in
the toric codes are all placed on the edges. Therefore, for
each n-cell c colored in c0, one needs to add E − V ancilla
qubits, where E and V denote the number of edges and ver-
tices in c. Due to the fact that lattice L is (n + 1)-valent,
one has E = nV/2 and E − V ≥ 0 for n ≥ 0. One can see
that, in the 2D case (n = 2), one has E − V = 0 and so
no ancilla qubits are needed. On the other hand, for three
and higher dimensions, one needs to introduce E − V > 0
ancilla qubits to disentangle the n copies of the toric codes.

The n + 1 colors of the n-cells in the color-code lat-
tice L are labeled as c0, c1, . . . , cn. One can obtain the
toric code lattice Li (i = 1, 2, . . . , n) by shrinking n-cells
with color ci in L. For a k-cell (0 ≤ k ≤ n), we can asso-
ciate it with n − k + 1 colors corresponding to the n-cells
to which it belongs. In this case, the toric code lattice
Li has a structure that is detailed as follows: (1) ver-
tices—centers of n-cells of color ci in L; (2) edges—edges
of color {c0, c1, . . . , cn}\{ci} in L; and (3) faces—faces in
L of color {c0, c1, . . . , cn}\{ci, cj } for all j �= i. The above
lattice information is enough to define the n-dimensional
toric code by associating qubits with edges, X stabilizers
with vertices, and Z stabilizers with faces.

Up to now, we have discussed how to disentangle a
translationally invariant n-dimensional color code into n
copies of toric codes. Now, we investigate the case with
boundaries. We say that each n-dimensional color-code
boundary ∂iL has color ci if all n-cells adjacent to ∂iL do
not contain color ci. We show an illustration of 2D color
code with boundaries in Fig. 40(a). In this example, the
2D color code has two types of boundaries, ∂LA and ∂LB
(these can also be labeled as ∂L1 and ∂L2) with colors
c1 = A and c2 = B, respectively, and hence is identical to
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FIG. 40. (a)–(c) Disentangling a 2D color code defined on a hexagonal lattice (qubits located on the vertices) into a tensor product
of two surface codes defined on triangular lattices (qubits located on the edges) by shrinking the color-A faces and color-B faces,
respectively, into a single vertex. The color-code boundary with color A (B) is turned into a rough (smooth) boundary condensing
e-anyons (m-anyons) in the first (second) copy of the surface code. (d)–(f) The effective TQFT picture of the lattice model in (a)–(c),
i.e., disentangling a square-patch color code into two square-patch surface codes. Two pairs of logical operators in the color code are
mapped into the corresponding pair of logical operators within each surface code.

the abstract picture of a square-patch color code with two
types of boundaries shown in Fig. 40(d). As one can see,
the faces (2-cells) adjacent to the boundary ∂AL (∂BL) only
have color B and C (A and C) but do not contain color
A (B).

We first discuss the disentangling unitary V acting on
this square-patch 2D color code with boundaries illustrated
in Fig. 40. It has been shown in Ref. [18] that there exists a
local unitary V to disentangle the square-patch color code
with boundary CC(L) into two independent copies of sur-
face codes (square-patch toric codes with two types of
boundaries), i.e., SF(LA)⊗ SF(LB), as shown in Fig. 40.
In particular, SF(LA) (SF(LB)) is obtained by shrinking the
faces with color A (B). We denote the anyon excitations
in SF(LA) and SF(LB) as {e1, m1} and {e2, m2}, respec-
tively. The corresponding two pairs of logical operators are
denoted by Z1,2 and X 1,2. As can be seen in Fig. 40(b)–(f),
SF(LA) (SF(LB)) has rough boundaries condensing e1 (m2)
on the left and right sides and smooth boundaries con-
densing m1 (e1) on the top and bottom sides. The logical

strings Z1,2 connect the rough boundaries, while the log-
ical strings X1,2 connect the smooth boundaries. We also
denote the corresponding logical operators in the original
color code as Z(1,2) and X (1,2). Since the 2D color code
CC(L) is equivalent to a stack of two surface codes up to
a local unitary, one can also label the color-code bound-
ary with the anyon condensation of the two surface code
layers, i.e., ∂LA ≡ (e1, m2) and ∂LB ≡ (m1, e2).

More generally, one considers an n-dimensional (1, n −
1)-color code on an n-dimensional hypercubic lattice L
with hyperfaces ∂Li perpendicular to the direction î (i =
1, 2, . . . , n) colored in ci. Such an n-dimensional color code
CC(Li) can be disentangled by a local unitary V with
additional ancilla qubits into n independent copies of n-
dimensional (1, n − 1)-surface codes, i.e.,

⊗n
i=1 SF(Li).

An illustration for the 3D case is shown in Fig. 41. In
particular, the lattice of the ith copy of surface code Li
is obtained by shrinking all the cells colored in ci in the
original color-code lattice L. Now, the particle and string
excitations in the ith copy of surface code SF(Li) are

V

(a) (b) (c) (d) FIG. 41. Disentangling a single 3D
color code into three copies of 3D
surface codes aligned in perpendicular
directions. The correspondence of the
logical operators in the color code and
the three surface codes is shown.
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labeled as ei and mi, respectively, with the correspond-
ing logical operators denoted by Zi and X i. The surface
code SF(Li) has two rough boundaries condensing ei par-
ticles, which are perpendicular to direction î. The logical
string Zi is along the direction î and connects the two rough
boundaries. The remaining n − 2 hypersurfaces are smooth
boundaries condensing mi-strings. The logical brane X i
is parallel to the rough boundaries and connects all the
smooth boundaries. We also denote the corresponding log-
ical operators in the original color code CC(L) as Z(i)

and X (i), which are along the same directions as Zi and
X i, respectively. Since the color code is equivalent to
a stack of surface codes up to a local unitary, we can
also label the 2n color-code boundaries by the condensa-
tion of excitations in the surface codes, i.e., for the ith
and (i + n)th boundaries (i = 1, 2, . . . , n), one has ∂iL =
∂i+nL = (m1, m2, . . . , mi−1, ei, mi+1, . . . , mn).

We now review the result from Ref. [18] that a transver-
sal Rn gate in an n-dimensional hypercubic color code is
equivalent to logical C⊗n−1Z up to a local unitary. The gen-
eralized phase gate can be defined as Rn = diag(1, e2π i/2n

),
with the more familiar special cases being R2 = S and
R3 = T, i.e., the phase (S) gate and the T gate. The n-
dimensional color-code lattice L is an (n + 1)-valent and
an (n + 1)-colorable lattice. It is known that the corre-
sponding graph G = (V , E) containing the vertices and
edges of L is a bipartite graph. Therefore, the vertices
of L can be divided into two groups, Va and Vb, i.e.,
V = Va ∪ Vb. In particular, vertices in Va are only adja-
cent to vertices in Vb and vice versa. We then define the
transversal Rn gate as

R̃n =
⊗

j∈Va

Rn(j )
⊗

j∈Vb

R−1
n (j ). (E4)

We now start to address the question of what logical gate
the transversal gate R̃n corresponds to in the hypercubic
color code and the corresponding stack of surface codes
after applying the local disentangling unitary V.

Here, we directly consider the general case in n dimen-
sions, while leaving the detailed illustration for the 2D case
to Sec. VI of the Supplemental Material [63]. Note that
both the Rn gate and C⊗n−1Z belong to the nth level of
the Clifford hierarchy but are outside the (n − 1)th level of
the Clifford hierarchy, which is reflected in the following
relations:

K[Rk, X ] = e−2π i/2k
Rk−1,

K[C⊗k−1Z, X ⊗ I⊗k−1] = I ⊗ C⊗k−2Z (E5)

for k ≥ 2 and where we use the group commutator
K[A, B] = ABA†B†.

We define the transversal Rn operators in Eq. (E4),
while the rest of the transversal operators R̃p (p = n − 1,

n − 2, . . . , 1) can be defined recursively:

R̃n−1 = K [̃Rn, X (1)],

R̃n−2 = K [̃Rn−1, X (2)],

· · ·
R̃1 = K [̃R2, X (d−1)] = Z(n). (E6)

The disentangling unitary V maps the logical operator in
the color code to those in the stack of n surface codes:

V : X (p) → VX (p)V† = X p , Z(p) → VZ(p)V† = Zp .
(E7)

By conjugating Eq. (E6) with the disentangling unitary V,
we hence obtain the following recursive relations:

I ⊗ C⊗n−2Z = K[I ⊗ C⊗n−1Z, X 1],

I⊗2 ⊗ C⊗n−3Z = K[I ⊗ C⊗n−2Z, X 2],

· · ·
I⊗n−1 ⊗ Zn = K[CZ, X n−1], (E8)

where we establish the following relation recursively (from
bottom to top):

VR̃pV† = C⊗p−1Z. (E9)

In particular, we can have the logical gate in the nth level of
the Clifford hierarchy: VR̃nV† = C⊗n−1Z. Although R̃p is a
transversal gate in the color code, VR̃pV† is not guaranteed
to be a transversal gate in the stack of surface codes. Still, it
is clear that VR̃pV† is a local constant-depth circuit applied
on the stack of p copies of surface codes that implements
the logical C⊗p−1Z gate.

One can understand the process of implementing VR̃pV†

as follows: one first applies the inverse of the disentan-
gling unitary, i.e., V†, to entangle the stack of n surface
codes

⊗n
i=1 SF(Li) into a single copy of nD color code

CC(L). Now, one applies R̃p , corresponding to a logical
gate C⊗p−1Z in the code space of the color code. One then
applies the disentangling unitary V again, which disentan-
gles the color code back to a stack of n surface codes and
maps R̃p into the logical gate C⊗p−1Z in the code space of
the stack code,

⊗n
i=1 SF(Li).

We now consider a stack code consisting of n copies
of n-dimensional fractal surface codes, defined on an n-
dimensional simple fractal with m-holes in each copy.
These fractal surface codes are constructed in the follow-
ing way: (1) we start from the surface code SF(Li) (i =
1, 2, . . . , n) obtained from disentangling the n-dimensional
color code via the local unitary V; and (2) we then create
m-holes via the removal of a subset of qubits and putting
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smooth (m) boundaries around these holes, where only X
stabilizers near the boundary differ from the X stabilizers
in the bulk, while the Z stabilizers near the boundary are
all the same as the bulk stabilizers.

One can label the hole boundary in the stack code as
Bh.b. = (m1, m2, . . . , mn). According to our discussion in
Sec. VI A 2, VR̃pV† is a topological symmetry that pre-
serves the bulk Hamiltonian or stabilizers up to a logical
identity, i.e.,

VR̃pV† : H bulk → H bulk ⇐⇒ VR̃pV† : Sbulk
i → Sbulk

i .
(E10)

Note that the invariance under the above mapping refers
to the Hamiltonians and stabilizers projected to the code
space HC. In particular, VR̃nV† corresponds to a global
symmetry and VR̃pV† represents a (n − p)-form symme-
try (p ≤ n), i.e., acting on a codimension-p submanifold.
In other words, VR̃pV† is a p-dimensional membrane
operator. Note that the 0-form symmetry (p = n) is just
the global symmetry. Since the outer boundaries Bo.b.

i =
Bo.b.

i+n = (m1, m2, . . . , mi−1, ei, mi+1, . . . , mn) of this stack of
fractal codes are the same as for the stack of n-dimensional
surface codes, they are also preserved under the action of
this topological symmetry:

VR̃pV† : Bo.b.
i → Bo.b.

i , for i = 1, 2, . . . , 2n. (E11)

On the other hand, VR̃pV† does not preserve the hole
boundaries Bh.b..

Now, we can again use the domain-wall picture in TQFT
to understand the effect of VR̃pV†. Here, VR̃pV† corre-
sponds to the s(p)-domain wall acting on p copies of toric
codes, which is an n-dimensional generalization of s(3) and
s(2) introduced before and performs the following mapping
to the excitations:

s(p)1,2,...,p : mi → mis
(p)
1,2,...,i−1,i+1,...,p , ei → ei. (E12)

Therefore, applying VR̃pV† is equivalent to sweeping the
s(p)-domain wall across the system. Similar to the 3D case,
the s(p)-domain walls condense on the outer boundaries,
i.e.,

s(p) : Bo.b.
i → Bo.b.

i . (E13)

However, these domain walls do not condense on the hole
boundaries.

From now on, we focus on the protocol of implement-
ing the logical gate in the highest level of the Clifford
hierarchy, i.e., C⊗n−1Z. We first apply the constant-depth
circuit VR̃nV† and the corresponding domain wall s(n)

will be swept across the system and attached on the hole

boundaries, producing new boundaries as follows:

s(n)1,2,..,n : (m1, m2, . . . , mn)

→ (m1s(n−1)
2,3,...,mn

, m2s(n−1)
1,3,...,mn

, . . . , mns(n−1)
1,2,...,mn1

) ≡ B̃h.b.

(E14)

In terms of the microscopic details, only the stabilizers that
have O(1) distance away from the hole boundary, denoted
by Sh.b.

i , are mapped to the new stabilizers in the new S̃h.b.
i

code. We hence map the original code space H to the new
code space H̃ and at the same time apply a logical C⊗n−1Z
gate on the encoded logical state.

Now, to map the code space back to H, we again apply
a lattice-surgery protocol similar to that in the 3D case,
described in Sec. VI A 5. In particular, we merge n copies
of ancilla fractal surface codes prepared in |0〉 and perform
rough lattice merging along the e-boundaries in each copy
in the stack code. We then perform lattice splitting and
measure out the original stack code in the same manner as
the 3D case, which now transfers the logical information to
the ancilla stack code, which still corresponds to the code
space H̃. The whole protocol implements the logical gate
C⊗n−1Z.

Finally, we can also implement the logical gates
C⊗pZ ≡ VR̃pV† (p ≤ n − 2) as a constant-depth circuit
without the need of subsequent lattice surgery, similar to
the CZ gate in the 3D case, illustrated in Fig. 34. This
is because C⊗pZ is a (n − p)-form symmetry and hence
can act on a codimensional-p submanifold Mn−p and thus
avoid all the holes in the bulk.

2. Cases without stringlike logical operators (i ≥ 2):
Self-correcting quantum memories

We now consider the case of logical gates in (i, n − i)-
fractal codes in n dimensions for i ≥ 2, including the
situation of a stack of surface codes or a color code. In this
case, no particle excitation or string logical operator exists
and the quantum memory is expected to be self-correcting
(this needs rigorous proof in future work).

Now, for any given transversal logical gate (or, more
generally, a constant-depth circuit) U in the case of the
same type of topological code defined on a lattice that
corresponds to the cellulation of an n-dimensional mani-
fold (i.e., nonfractal), one can construct a corresponding
fractal code such that U is also a logical gate in the
following way. First, U is a topological symmetry that
keeps the bulk Hamiltonian or stabilizers invariant, i.e.,
U : H bulk → H bulk. Furthermore, U also preserves all the
outer boundaries of the n-dimensional topological code,
i.e., U : Bo.b

j → Bo.b
j . Now, when we introduce holes in

the simple fractal structure, we also introduce new types of
hole boundaries Bh.b.

j . Now, n contrast to the case of i = 1,
where only m-holes are allowed in each copy of toric code,
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i.e., (m1, m2, . . . , mn), we can assign any type of bound-
ary Bh.b

j to each hole, as stated in Sec. V B 2. Therefore, in
order for these boundaries to be preserved by the logical
gate U, we can just choose any hole boundary to be the
same as any of the outer boundaries, i.e., Bh.b.

j = Bo.b.
j for

∀j . In this way, we always have U : Bh.b.
j → Bh.b.

j .
Thus, we show that U is indeed a logical gate on the

fractal code with Hausdorff dimension n − 1 + ε and we
perform the same logical operation as the corresponding
topological codes defined on n-dimensional manifolds.
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