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We construct a novel three-dimensional quantum cellular automaton (QCA) based on a system with
short-range entangled bulk and chiral semion boundary topological order. We argue that either the QCA
is nontrivial, i.e., not a finite-depth circuit of local quantum gates, or there exists a two-dimensional
commuting projector Hamiltonian realizing the chiral semion topological order [characterized by U(1)2
Chern-Simons theory]. Our QCA is obtained by first constructing the Walker-Wang Hamiltonian of a cer-
tain premodular tensor category of order four, then condensing the deconfined bulk boson at the level of
lattice operators. We show that the resulting Hamiltonian hosts chiral semion surface topological order in
the presence of a boundary and can be realized as a non-Pauli stabilizer code on qubits, from which the
QCA is defined. The construction is then generalized to a class of QCAs defined by non-Pauli stabilizer
codes on 2n-dimensional qudits that feature surface anyons described by U(1)2n Chern-Simons theory.
Our results support the conjecture that the group of nontrivial three-dimensional QCAs is isomorphic to
the Witt group of nondegenerate braided fusion categories.
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I. INTRODUCTION

Quantum cellular automata (QCAs) are locality-
preserving unitary operators on quantum many-body lat-
tice systems [1]. They originally arose in the context of
quantum simulation and as a model for quantum com-
putation [2–6]. However, in recent years, QCAs have
seen wide-ranging applications from discretized quantum
field theories [7,8] to the classification of Floquet phases
[9–14] and tensor network unitary operators [15–19],

*wshirley@ias.edu
†Current Address: Centre for Engineered Quantum Systems,

School of Physics, University of Sydney, Sydney, New South
Wales 2006, Australia.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

entanglement growth in quantum dynamics [20–23], and
the construction of symmetry-protected topological states
and their anomalous boundaries [24,25]. Beyond such
applications, QCAs represent a fundamental class of math-
ematical objects in the quantum many-body setting, mesh-
ing the notions of unitarity and locality. Thus, they merit a
thorough investigation in their own right.

In any spatial dimension, there are two very natural
classes of QCAs. The first is that of finite-depth quantum
circuits (FDQCs) constructed from local gates, which are
unitary by definition and locality preserving by merit of
their finite depth. The second is that of discrete transla-
tions. In fact, in one spatial dimension the index theory
of Gross, Nesme, Vogts, and Werner fully classifies the
set of QCAs in terms of translations and FDQCs [26].
Moreover, this classification has been extended to the
two-dimensional (2D) case via techniques of dimensional
reduction [27,28] such that the QCAs are limited to com-
positions of FDQCs and translations. A natural question
to ask is whether there exist QCAs in higher dimensions
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that lie beyond these two “trivial” classes, i.e., ones that
are not equivalent to the composition of a translation with
a FDQC.

Remarkably, Haah, Fidkowski, and Hastings [29] iden-
tified a QCA in three spatial dimensions, which they con-
jectured to be “nontrivial” in the sense above. The QCA
is best understood in terms of an intriguing connection
with the class of (3 + 1)D exactly soluble lattice mod-
els known as Walker-Wang models [30]. In particular, the
QCA is derived from the Walker-Wang model based on
the three-fermion modular tensor category [31]. The asso-
ciated Walker-Wang model is short-range entangled in the
bulk and harbors a three-fermion surface topological order
in the presence of an exposed boundary [32]. The QCA
defined in Ref. [29] has the key property that it disentan-
gles the three-fermion Walker-Wang model—mapping it
to a sum of single-site Pauli-Z operators. A subsequent
work of Haah [28] introduced a class of QCAs that dis-
entangle the eigenstates of exactly soluble (3 + 1)D lattice
Hamiltonians whose surface topological states are char-
acterized by nonzero chiral central charge and anyonic
excitations with fusion group Zp for odd prime p .

The common thread among these three-dimensional
QCAs, which are conjectured to be nontrivial, is the prop-
erty that they disentangle commuting projector Hamilto-
nians that host chiral surface topological orders in the
presence of a boundary. As argued in Ref. [29], if one
assumes that such a QCA is trivial, i.e., if it is equiva-
lent to a FDQC times a translation, then it follows that
one can construct a commuting projector Hamiltonian
realizing the chiral surface topological order in a strictly
two-dimensional system. More specifically, a bulk FDQC
can always be truncated to define a FDQC on a system with
an exposed boundary. For instance, the truncated FDQC
can be defined by simply throwing away all gates of the
bulk circuit that are not fully supported within a given
region. Thus, if the disentangling QCA is trivial, one can
truncate it and apply it to the commuting projector Hamil-
tonian with surface topological order. This will trivialize
the bulk, hence disentangling it from the boundary and
leaving behind a strictly 2D commuting projector bound-
ary Hamiltonian for the surface topological order. This
contradicts the widely held belief that chiral topological
orders cannot be realized by commuting projector Hamil-
tonians [33–35], thus providing strong evidence for the
nontriviality of these novel QCAs.

In this paper, we introduce a new three-dimensional
QCA, referred to as α1, with the property that it dis-
entangles the eigenstates of a novel lattice Hamiltonian
H1, which hosts the chiral semion anyon theory in the
presence of a boundary. We conjecture, via the argument
outlined above, that α1 is a nontrivial QCA. We empha-
size that, although H1 shares similar properties to the
Walker-Wang model based on the chiral semion theory
[36], i.e., vanishing correlation length, exact solubility,

short-range entanglement, and boundary terminations with
chiral semion surface topological order, H1 is not the chi-
ral semion Walker-Wang model. Our identification of α1
relies on the notion of a locally flippable separator—a
class of exactly solvable models introduced in Ref. [29].
According to Theorem 11.4 of Ref. [29], locally flippable
separators are in one-to-one correspondence with QCAs.
The key feature of H1, in contrast with the chiral semion
Walker-Wang model, is that it satisfies the criteria required
of a locally flippable separator (reviewed in Sec. II); thus,
it corresponds to a QCA.

We recall that the chiral semion topological order is
characterized by the Abelian modular tensor category
{1, s}, whose single nontrivial quasiparticle s is a semion
(topological spin θ = i) with Z2 fusion rules. It is equiva-
lently realized by U(1)2 Chern-Simons theory that arises as
the low-energy description of the ν = 1/2 bosonic Laugh-
lin fractional quantum Hall state. The Hamiltonian H1
can be readily generalized to a series of exactly solvable,
short-range entangled Hamiltonians Hn, whose boundary
terminations host surface topological orders respectively
characterized by U(1)2n Chern-Simons theory. Likewise,
the QCA α1 generalizes to a class of QCAs αn that
respectively disentangle the Hamiltonian Hn to a sum of
single-site Pauli operators.

The identification of this class of QCAs is notable for
two reasons. First, it is the first example of nontrivial
three-dimensional QCAs that are not Clifford QCAs [37],
i.e., ones that map generalized Pauli operators to local
products of Pauli operators, thus providing an affirmative
answer to the existence question of such beyond-Clifford
QCAs. Second, nontrivial QCAs have thus far proven to
be exceedingly elusive; our constructions add to a short
list of putative three-dimensional examples. Moreover, the
discovery of this class has significant ramifications for
the classification of nontrivial three-dimensional QCAs,
by providing new evidence for a conjectural classifica-
tion based on a mathematical object known as the Witt
group of metric groups [38,39]. To be precise, the set of
QCAs modulo FDQCs and translations in any particular
spatial dimension is known to form an Abelian group. In
three dimensions, it has been conjectured that this group
contains a subgroup isomorphic to a mathematical object
known as the Witt group of metric groups. Elements of the
Witt group have a physical interpretation as equivalence
classes of 2D Abelian surface topological orders under
stacking with gappable 2D topological orders. The con-
jecture holds that classes of three-dimensional QCAs that
disentangle commuting projector Hamiltonians with chiral
or nongappable Abelian surface order can be labeled by
the element of the Witt group represented by the surface
topological order.

The identification of 3D QCAs corresponding to chi-
ral semion 2D order, and more generally that of U(1)2n ,
fill a gap in the emerging story linking QCAs with chiral
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surface topological order. In fact, according to the above
conjecture, the novel QCAs we introduce, combined with
those for qudits of odd prime dimension described in Ref.
[28], exhaust all classes of nontrivial QCAs that disen-
tangle exactly solvable 3D lattice models with Abelian
surface topological order, since the Witt group is gener-
ated by the Zp topological orders discussed in Ref. [28],
the chiral semion order, and the U(1)4 topological order.
In the Witt group, the equivalence classes of the latter two
orders generate a Z8 ⊕ Z2 subgroup, which we therefore
conjecture to be isomorphic to the group of QCAs gener-
ated by all αn, which is in fact generated by α1 and α2. In
particular, α1 corresponds to the generator of Z8 and α1α

−1
2

the generator of Z2. It is instructive to note that the U(1)4
surface topological order corresponding to α2 is equivalent
to the ν = 2 state in the Kitaev’s sixteenfold way [33].

We remark that the QCA α1α
−1
2 corresponds to sur-

face topological order characterized by K = (
2 0
0 −4

)
Chern-

Simons theory, which is nonchiral but also does not admit a
gapped boundary [40,41]. Thus, the argument for nontriv-
iality of this QCA relies on the assumption that this topo-
logical order, or more generally any nongappable Abelian
topological order, cannot be realized by a commuting pro-
jector Hamiltonian. Indeed, this has been conjectured to be
the case [41].

The paper is organized as follows. In Sec. II, we discuss
the main technical result of the paper: the construction of
H1 and the disentangling QCA α1, as well as the boundary
Hamiltonian with chiral semion surface topological order.
In Sec. III we generalize the construction to arbitrary Hn
and αn. Section IV reviews a series of conjectures relating
the total group of nontrivial three-dimensional QCAs to the
so-called categorical Witt group [38,39,42], which takes
into account the possibility of disentangling QCAs for lat-
tice models with non-Abelian surface topological order.
We conclude with a discussion in Sec. V.

II. CONSTRUCTION OF A QUANTUM
CELLULAR AUTOMATON FROM CHIRAL

SEMION SURFACE TOPOLOGICAL ORDER

In this section, we construct the Hamiltonian H1 on a
system of qubits and a QCA that maps H1 to a trivial
sum of single-qubit Pauli-Z operators. Furthermore, we
construct a Hamiltonian with a boundary that hosts chi-
ral semion surface topological order, and which is a sum
of mutually commuting terms, and hence exactly solvable.
Hamiltonian H1 is defined on a cubic lattice with one qubit
per edge e. In terms of operators B̂p associated with each
plaquette p , H1 is

H1 = −
∑

p

B̂p . (1)

The operators B̂p , which are defined in Sec. II C, belong to
the Clifford group. Moreover, they each square to the iden-
tity. As mentioned in the Introduction, H1 is similar to the
chiral semion Walker-Wang model in the sense that it has
no ground-state degeneracy under periodic boundary con-
ditions, but admits a surface termination on lattices with
boundary that harbor chiral semion topological order. The
key property of H1 that differentiates it from the bona fide
Walker-Wang model is that the collection of B̂p terms con-
stitutes a locally flippable separator on a tensor product
Hilbert space, in the sense of Ref. [29].

Definition II.1 (Ref. [29]). A locally flippable Z2 sep-
arator is an indexed set of operators Ba (separators)
and Fa (flippers), each supported in a finite-radius disk,
satisfying

1. B2
a = 1;

2. [Ba, Bb] = {Fa, Ba} = [Fa, Bb] = 0 for a �= b;
3. for any assignment a �→ ω(a) = ±1, the space of

states |ψ〉 such that Ba |ψ〉 = ω(a) |ψ〉 for all a is
one dimensional.

In Sec. II C, we define flippers F̂p for the terms B̂p of
H1 such that B̂p and F̂p constitute a locally flippable Z2
separator. Theorem II.4 of Ref. [29] then guarantees the
existence of a QCA that disentangles the eigenstates of H1
on a system with periodic boundaries. In particular, Ref.
[29] showed that, given a set of locally supported flip-
pers F̂p , there always exists an alternative set of locally
supported flippers F̂ ′

p satisfying

(F̂ ′
p)

2 = 1, [F̂ ′
p , F̂ ′

p ′] = 0. (2)

The QCA α1 is then defined by mapping separators and
modified flippers to Pauli-Z and Pauli-X operators, respec-
tively:

α1(B̂p) = XO, α1(F̂ ′
p) = ZO, (3)

with the O edge defined relative to plaquette p as in Fig. 2
below. Ref. [29] provides an algorithm for constructing the
modified flippers F̂ ′

p , which we do not explicitly carry out
in this work due to the complexity of the original flippers
F̂p .

The construction of H1 proceeds as follows (see Fig. 1).
In Sec. II A, we begin with the Walker-Wang model HWW

based on the Z
(1)
4 premodular tensor category described in

Refs. [43,44]; Z
(1)
4 is an Abelian theory with fusion group

Z4, trivial F symbols, and R symbols Ra,b
a+b = exp iπab/2

[43]. The generating anyon is therefore a semion, and the
order-two anyon is a boson with trivial braiding statistics.
The Z

(1)
4 Walker-Wang model thus has bulk 3D topologi-

cal order equivalent to that of a 3D Z2 gauge theory, and
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HWW →
Bulk boson 
condensed

HZ4
1 → H1

Locally flippable
separator 

Walker-Wang 
model

Z2Z
(1)
4

FIG. 1. The construction of the locally flippable Z2 separa-
tor H1 begins with a Walker-Wang model HWW based on the
Z
(1)
4 premodular anyon theory (Sec. II A). Model HWW has an

order-two bulk boson, which, when condensed, produces the
Pauli stabilizer model HZ4

1 defined on four-dimensional qudits
(Sec. II B). Hamiltonian H1 is then obtained by mapping each
four-dimensional qudit to a pair of qubits, applying a FDQC
composed of controlled-NOT (CNOT) gates, and projecting into
a particular subspace (Sec. II C). Hamiltonian H1 is a locally
flippable separator and defines QCA α1.

Z4 surface semions, two of which fuse into the bulk decon-
fined boson. Moreover, H1 is naturally expressed as a Z4
Pauli stabilizer code. In Sec. II B we subsequently con-
dense the deconfined Z2 boson in this model, yielding a
Z4 Pauli stabilizer code Hamiltonian dubbed HZ4

1 , which
is short-range entangled in the bulk but hosts chiral semion
topological order in the presence of a boundary. Finally, in
Sec. II C a unitary transformation followed by a projec-
tion yields the exactly solvable non-Pauli Hamiltonian H1
with these same properties. In Sec. II D, we construct the
explicit boundary Hamiltonians for HWW, HZ4

1 , and H1.

A. The Z
(1)
4 Walker-Wang model

We begin with the Z
(1)
4 Walker-Wang model. The system

is composed of four-dimensional qudits on each edge of a
cubic lattice, characterized by generalized Pauli operators
Z and X obeying the Z4 clock and shift algebra

Z4 = X 4 = 1, ZX = iXZ. (4)

The Hamiltonian takes the form

HWW = −
∑

v

Av −
∑

p

Bp + H.c. (5)

It contains a term Av associated with each cubic lattice
vertex v, and a term Bp associated with each plaquette
p . These operators are defined in Fig. 2. These Hamilto-
nian terms are mutually commuting, unfrustrated products
of generalized Z4 Pauli operators; hence, HWW is exactly
solvable, and moreover, a Z4 Pauli stabilizer code [45]. As
mentioned, HWW exhibits bulk Z2 topological order, equiv-
alent to that of the 3D toric code or 3D Z2 gauge theory. It
is instructive to explicitly verify some of the defining prop-
erties of this topological order. (It may also be helpful to
consider a coupled layer construction of HWW as described
in Appendix A).

First we compute the ground-state degeneracy of HWW
when it is placed on a spatial three-torus, in other words on
a lattice with periodic boundary conditions. Let us first fix
a notational convention. In defining Bp we have implicitly
endowed each plaquette p with the positive normal orien-
tation. Flipping the orientation of a plaquette is equivalent
to Hermitian conjugation of the corresponding plaquette
operator: Bp̄ = B†

p , where p̄ (p) is negatively (positively)
oriented. In the following, we consider products

∏
p∈c over

the plaquettes p of an elementary lattice cube c. For such
products, it is understood that each p has the outward-
facing orientation [46]. With this in mind, we observe that
the Bp plaquette operators satisfy the relation

∏

p∈c

Bp = A1A8, (6)

where the 1 and 8 vertices of cube c are defined as in Fig. 2.
To facilitate the ground-state degeneracy calculation, and
in anticipation of the boson condensation procedure in the
following section, we define modified plaquette operators

B̃p ≡ Bp(A1A3A4)
†, (7)

where the 1, 3, and 4 vertices are indicated relative to p in
Fig. 2. These operators satisfy the alternative property

∏

p∈c

B̃p = A2
1, (8)

and, hence,
∏

p∈c

B̃2
p = 1, (9)

which greatly simplifies the counting of stabilizer gener-
ators and relations. We also define the modified stabilizer
Hamiltonian

H̃WW = −
∑

v

Av −
∑

p

B̃p + H.c. (10)

Clearly, HWW and H̃WW generate the same stabilizer group,
and thus have coinciding ground spaces. We work with
H̃WW as it is more convenient. Suppose that there are N
sites in the lattice. Then there are 3N qudits and 4N sta-
bilizer generators. There are N − 1 independent relations
owing to Eq. (8), and a single relation between all Av terms,
namely

∏
v Av = 1. Each of these N relations is of order 4.

On a three-torus, there are also three independent relations
of order 2, of the form of Eq. (9) except that c now belongs
to one of the three classes of topologically nontrivial lat-
tice two cycles. Therefore, the ground-state degeneracy
of HWW under periodic boundary conditions is 23 = 8, as
expected for 3D Z2 topological order.
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FIG. 2. Vertex term Av , plaquette terms Bp , modified plaquette terms B̃p , boson hopping operators Ce, semion hopping operators
Xe, and flippers Fp , defined with respect to the O edge of p . Each operator is a tensor product of Z4 Pauli operators over the indicated
qudits, with a legend shown at the bottom. Edges with two colors represent a product of the two operators, with Z-type operators
preceding X type. All operators have an overall phase of +1 except the Xe operators that have an overall e−iπ/4 phase. A polynomial
representation of these operators is given in Appendix B.

Next, we identify the string operators that create pairs of
the deconfined Z2 boson excitations that characterize 3D
Z2 topological order. As we show below, for the Hamilto-
nian H̃WW, these bosons correspond to isolated excitations
of a single Av vertex term. Since local operators can only
excite pairs of Av terms, such isolated excitations represent
a deconfined, fractionalized quasiparticle. Naively, we may
expect a product of X 2 operators along a string of edges to
create a pair of bosons at its endpoints, since such an opera-
tor commutes with all Av terms except the pair at either end
of the string, with which it anticommutes. However, such
an operator also excites B̃p plaquette operators along the
length of the string; hence, it is not the correct string oper-
ator for the deconfined boson. Instead, we observe that,
owing to Eq. (9), a product of B̃2

p operators over an open
surface is a loop operator supported near the boundary of
the surface. In fact, such a loop operator corresponds pre-
cisely to the motion of a deconfined Z2 boson around the
loop. To see this, we define a set of short string operators
Ce for each edge e of the lattice (Fig. 2), which satisfy the
relations

B̃2
p =

∏

e∈p

Ce, C2
e = 1. (11)

Moreover, these operators satisfy the commutation rela-
tions

CeAv =
{

−AvCe if v ∈ e,
+AvCe if v �∈ e,

[Ce, B̃p ] = [Ce, Ce′] = 0,

(12)

implying that Ce creates a pair of deconfined bosons at the
two vertices of edge e. Therefore, topological string opera-
tors can be constructed by taking products of Ce operators
over all the edges of a given path. Such an operator com-
mutes with all terms of H̃WW except the Av vertex terms
at the endpoints of the path. Closed string operators of this
form that wind around topologically nontrivial cycles of
the spatial three-torus correspond to logical operators act-
ing nontrivially on the eightfold degenerate ground space
under periodic boundary conditions [47]. In the following
section, these Ce operators play a key role in condensing
the deconfined boson.

Finally, we identify the fractionalized looplike excita-
tion of 3D Z2 topological order. The vertex term Av can
be interpreted as the elementary closed membrane opera-
tor for this loop excitation, and larger membrane operators
enclosing a region R are given by the product

∏
v∈R Av .
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The anticommutation between Av and open string opera-
tors with an endpoint at v is consistent with a π braiding
statistic between this looplike excitation and the decon-
fined Z2 boson quasiparticle. Although Av has order 4 as
a stabilizer generator, the looplike excitation fuses with
itself into a set of trivial (nonfractionalized) excitations in
the vicinity of the loop; thus, it obeys Z2 fusion rules, as
expected [48].

We remark that, when HWW is placed on a lattice with
boundary, there is a natural boundary Hamiltonian that
can be defined that maintains the Z4 Pauli stabilizer code
nature of the model, and hosts a chiral semionic surface
anyon. In this model a pair of surface semions fuses into
the deconfined bulk boson. A detailed discussion of the
boundary physics is reserved for Sec. II D.

B. Condensing the bulk Z2 boson

Next, we define a new Z4 Pauli stabilizer Hamiltonian
HZ4

1 that physically represents a system obtained by con-
densing the deconfined Z2 boson excitation of HWW. The
Hilbert space remains that of one four-dimensional qudit
per edge of a cubic lattice, and the Hamiltonian takes the
form

HZ4
1 = −

∑

p

B̃p + H.c. −
∑

e

Ce. (13)

This Hamiltonian has the property that its stabilizer group
contains all Ce operators along with all products of terms
of HWW that commute with Ce. The inclusion of the
boson creation operators Ce in the stabilizer group implies
condensation of bosons in the ground state, whereas the
exclusion of the Av vertex terms corresponds to the result-
ing confinement of the fractionalized loop excitations of
HWW [49]. To verify that this Hamiltonian lies in the con-
densed phase, i.e., with no bulk topological order, let us
compute the ground-state degeneracy of the model under
periodic boundary conditions. On a lattice with N sites,
there are 3N qudits, 6N stabilizer generators, and 6N rela-
tions of order 2 of the form Eq. (11). There are no other
relations; hence, there is no ground-state degeneracy, as
expected.

As mentioned, HWW can be defined on a lattice with
boundary such that it hosts a semionic surface anyon. Con-
densing the bulk boson destroys the bulk topological order
but leaves intact a chiral semion surface topological order.
As discussed in Sec. II D, there is a natural Pauli stabilizer
code boundary termination of HZ4

1 exhibiting this surface
order.

The essential property of HZ4
1 is that the B̃p terms con-

stitute a locally flippable Z2 separator of the constrained
Hilbert space in which all constraints of the form Ce =
1 are satisfied. To demonstrate this, we identify flipper

operators Fp , defined in Fig. 2, which satisfy

{Fp , B̃p} = [Fp , B̃p ′] = [Fp , Ce] = 0, (14)

where p ′ �= p . Property 1 of Definition II.1 is satisfied due
to Eq. (11), whereas property 3 is satisfied by a simple
counting argument: the Ce = 1 Hilbert space has dimen-
sion 2E , where E is the number of edges, and there are 2E

common eigenstates of all B̃p operators. These eigenstates
are uniquely indexed by their ±1 eigenvalues and can be
obtained by successively acting on the ground state with
the flippers. We note that the form of the flippers Fp is
motivated by the discussion in Sec. II D.

To define a QCA via the theorem of Ref. [29], how-
ever, it is necessary to identify a locally flippable separator
of a tensor product Hilbert space. In the next section, we
explicitly transform the Ce = 1 constrained Hilbert space
into a tensor product Hilbert space by unitarily mapping
the set of Ce operators to single-qubit Pauli operators on
unique qubit degrees of freedom. The separator Hamilto-
nian H1 is obtained by projecting these qubits out from the
transformed HZ4

1 .

C. Obtaining a locally flippable Z2 separator

We now carry out this procedure to obtain the locally
flippable separator Hamiltonian H1, which is short-range
entangled in the bulk but harbors chiral semion surface
topological order in the presence of a boundary. The first
step is to express HZ4

1 in terms of qubit degrees of freedom
rather than four-dimensional qudits. The four-dimensional
qudit on each edge is instead regarded as a pair of qubits
via the operator algebra automorphism

X̄ → X ACZAB, Z̄ → X BSA,

X̄ 2 → ZB, Z̄2 → ZA,
(15)

where Z̄ and X̄ represent Z4 Pauli operators and A and B
label the two qubits [50]. Here we define

SA ≡ i(1−ZA)/2, CZAB ≡ (−1)[1−ZA/2][1−ZB/2]. (16)

Under this mapping, the Ce, B̃p , and Fp operators
acquire a new form as operators on the qubit Hilbert
space—however, by a slight abuse of notation, we continue
to use the same symbols for the new operators.

The next step is to perform the circuit U of controlled-X
gates defined as

U =
∏

e

CXAB
e

∏

v

Uv , (17)
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where the products are over all edges and vertices respec-
tively, and with Uv given by

Uv = CXAB
23 CXAB

63 CXAB
16 CXAB

26 CXAB
56

× CXAB
12 CXAB

52 CXAB
15 CXAB

35 CXAB
45

× CXAB
31 CXAB

41 CXAB
24 CXAB

34 CXAB
64 , (18)

where CXAB
ij denotes a controlled-X gate with the A qubit

on edge i as the control and the B qubit on edge j as the
target. The numbering of edges with respect to vertex v is
as depicted in Fig. 3(a), and the operator

∏
v Uv is shown

in Fig. 3(b). Note that all of the CX gates comprising U
mutually commute since the targets are all B qubits; hence,
U has finite depth. Recall that CXij acts as

Xi → XiXj , Xj → Xj , Zi → Zi, Zj → ZiZj ,

CZij → ZiCZij , CZjk → CZikCZjk.
(19)

By construction, U maps each Ce operator to a single Pauli
ZB

e , effectively disentangling each B qubit from the rest of

the system. Circuit U acts trivially on X B
e , SA

e , and ZA
e , and

nontrivially on X A
e and CZAB

e . The image of X A
e is depicted

in Fig. 3(d). We also show the image of
∏

e∈p X A
e , which is

useful for computational purposes, in Fig. 3(e). Moreover,
we define an operator Ge in Fig. 3(c) for each edge e such
that the image of CZAB

e under U is CZAB
e Ge.

The final step is to obtain plaquette operators B̂p and
flippers F̂p acting on the Hilbert space HA of A qubits by
restricting UB̃pU† and UFpU†, respectively, to the ZB

e = 1
subspace. Operators B̂p and F̂p defined in this manner are
unitary operators on HA since UB̃pU† and UFpU† preserve
all ZB

e = 1 constraints (following originally from the com-
mutation of B̃p and Fp with Ce). Explicitly, the resulting
operators have the form

B̂p = B̂0
p

∏

e∈p

Ge, F̂p = F̂0
p GO, (20)

where F̂0
p and B̂0

p are defined in Figs. 3(f) and 3(g), and the
O edge is defined relative to p in Fig. 2. The Hamiltonian

(a) (b) (c)

(d) (e)

(f) (g)

FIG. 3. (a) Definition of the edges e1 through e6 with respect to vertex v. (b) A depiction of the operator
∏
v Uv . For a given edge,

the figure shows all CNOT gates whose target qubit lies on that edge. Each gate is represented by an arrow; the control is qubit A at the
tail and the target is qubit B at the head. (c) The operator Ge. (d) The images of X A

e and (e)
∏

e∈p X A
e under U. (f) The operator F̂0

p ,
defined with respect to the O edge of p . (g) The operator B̂0

p . Each operator is a product of single-qubit and two-qubit gates over the
indicated qubits, with a legend shown at the bottom. A black arc between two edges represents CZAA. Edges with two colors represent
a product of the two operators, with operators diagonal in the Pauli-Z basis preceding Pauli-X operators.
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H1 on the HA Hilbert space takes the form

H1 = −
∑

p

B̂p . (21)

Let us verify that the operators B̂p and F̂p satisfy the defin-
ing properties of a locally flippable Z2 separator given in
Definition II.1. From the first relation of Eq. (9), it follows
that B̂2

p = 1, satisfying property 1. Moreover, the relations

[B̂p , B̂p ′] = {F̂p , B̂p} = [F̂p , B̂p ′] = 0 (22)

follow from [B̃p , B̃p ′] = 0 and Eq. (14), verifying property
2. Since the B̃p operators constitute a Z2 separator of the
Ce = 1 subspace of the original Hilbert space, it automati-
cally follows that the B̂p operators likewise constitute a Z2
separator of HA, hence satisfying property 3. Therefore,
the set of B̂p and F̂p operators constitute a locally flip-
pable Z2 separator of the tensor product Hilbert space HA,
thereby defining a QCA, which we call α1, by Theorem
II.4 of Ref. [29]. In the following section, we demonstrate
that H1 has a natural stabilizer code boundary termina-
tion that hosts chiral semion surface topological order. This
provides strong evidence for the nontriviality of α1.

D. Surface topological order

In this section we extend the definition of the Hamilto-
nians HWW, HZ4

1 , and H1 to a lattice with boundary. The
boundary Hamiltonians preserve the Z4 Pauli stabilizer
code nature of the first two, and the Z2 non-Pauli stabilizer
code nature of the third. For the latter two, the boundary
harbors chiral semion surface topological order, whereas
for HWW, the surface hosts a semionic quasiparticle that
fuses with itself into the bulk deconfined boson. Through-
out, we define a truncated cubic lattice � that has periodic
boundary conditions in the x and y directions but is finite
in the z direction. We refer to the upper and lower bound-
ary planes as U and L. We demonstrate the existence of
semionic surface excitations of HWW and HZ4

1 by identi-
fying semion hopping operators Xe associated with each
edge e of �. Whereas a string of such operators creates
excitations along its length in the bulk, a string in the U or L
plane commutes with the Hamiltonian except in the vicin-
ity of its endpoints. The excitations at the endpoints are
the deconfined surface semions. We obtain corresponding
semion hopping operators X̂e, with analogous properties,
for Hamiltonian H1.

1. Walker-Wang model

The Hilbert space for HWW consists of one four-
dimensional qudit on each edge of�. The Hamiltonian has

the same form in the bulk and on the boundary:

HWW = −
∑

v

Av −
∑

p

Bp + H.c. (23)

The bulk terms are defined in Fig. 2. The boundary terms,
Av and Bp for v, p ∈ U, L, are defined by a simple trun-
cation of the bulk terms. This means that any Pauli that
would act on an edge not contained in � is replaced by
identity. It is also helpful to define a modified Hamiltonian
that likewise has the same bulk and boundary form:

H̃WW = −
∑

v

Av −
∑

p

B̃p + H.c. (24)

The boundary terms are similarly defined by truncation
of the bulk operators. Note that the terms of HWW and
H̃WW remain mutually commuting products of Z4 Pauli
operators on the lattice with boundary. We also define Ce
operators in the vicinity of the boundary via truncation
of the bulk form, and note that the relations in Eq. (11)
continue to hold in the presence of a boundary.

We now introduce an operator Xe associated with each
edge e of� that has the interpretation of hopping a semion
along e from i to j , where i (j ) is the site adjacent to e
in the negative (positive) direction. We also define Xij ≡
X †

ji ≡ Xe. For edges in the bulk, Xe is defined in Fig. 2.
For edges near the boundary, it is defined by truncating
the bulk form of the operator. These operators obey the
algebraic properties

ZeXe = iXeZe, ZeXe′ = Xe′Ze, (25)

B̃p = X12X23X34X41Z2
O, (26)

X 2
e = Ce, (27)

where the O and 1 through 4 edges are defined relative to
plaquette p in Fig. 2. Relation (26) holds in the bulk and on
the lower plane L. However, due to truncation, for p ∈ U,
we have

B̃p = X12X23X34X41. (28)

Moreover, let us define the operator B̃′
p = B̃pA2

1. Then it
follows that, for p ∈ L,

B̃′
p = X12X23X34X41(A′

1)
2, (29)

where A′
1 is a tensor product of Pauli-Z operators over the

four edges in L adjacent to vertex 1. For p ∈ U, the oper-
ator B̃p corresponds to hopping of a semion around the

030326-8



THREE-DIMENSIONAL QUANTUM CELLULAR AUTOMATA. . . PRX QUANTUM 3, 030326 (2022)

plaquette p . Likewise, for p ∈ L, the operator B̃′
p corre-

sponds to hopping of an antisemion around p . (For p ∈ L,
the surface anyon is a semion as viewed from below;
hence, an antisemion as viewed from above). Thus, we can
construct large loop operators for the surface anyons by
taking products of B̃p or B̃′

p operators over all plaquettes
inside a given loop. At the U boundary, the anyon string
operator for an oriented path γ is given by

Wγ =
∏

e∈γ
X (†)

e , (30)

where the factor taken is Xe (X †
e ) if e ∈ γ is positively

(negatively) oriented. The string operator Wγ commutes
with HWW and H̃WW except in the vicinity of each end-
point, where it excites a single Av operator in addition to
some Bp or B̃p terms. It is clear that these excitations are
fractionalized because local operators can only excite Av
terms in pairs. The topological spin of the anyon is given
by

θ = W3W†
2W1W†

3W2W†
1, (31)

where W1, W2, and W3 are three open string operators
that respectively move an anyon from a shared point in
U to three other points r1, r2, and r3 arranged in counter-
clockwise order [33,51]. Indeed, we find that θ = i for the
anyon on the U surface, verifying that it is a semion (see
Appendix D for details). An analogous calculation using
the string operators in plane L shows that the surface anyon
is a semion as viewed from below.

On the other hand, a product of B̃p operators over pla-
quette operators comprising an open surface in the bulk
does not give a loop operator, due to the factor of Z2

O in
the expression in Eq. (26). This goes in hand with the fact
that, for γ lying in the three-dimensional bulk, string oper-
ators of the form (30) excite Bp or B̃p operators along the
length of the string. Physically, this represents bulk con-
finement of the semion excitation. However, from Eq. (27),
it follows that a pair of surface semions fuses into the bulk
deconfined boson, which is free to move away from the
surface at no energetic cost. As discussed in Sec. II A,
the hopping operator for the deconfined boson around an
elementary plaquette p is given by B̃2

p .

2. Short-range entangled Z4 stabilizer code

We now obtain a boundary Hamiltonian for HZ4
1 by car-

rying through the boson condensation procedure of Sec.
II B on the lattice with boundary. The Hilbert space is still
composed of one four-dimensional qudit per edge of �.
The Hamiltonian takes the form

HZ4
1 = −

∑

v∈L

A2
v −

∑

p

B̃p + H.c. −
∑

e

Ce, (32)

where Av, B̃p , and Ce operators near the boundary are
defined by truncation of the bulk operator. The stabilizer
group generated by this Hamiltonian contains all Ce opera-
tors along with all products of terms of HWW that commute
with Ce.

Condensing the bulk boson destroys the bulk topological
order, but leaves intact a chiral semion surface topological
order. To see this, let us compute the ground-state degen-
eracy of HZ4

1 on the � lattice. Suppose that there are N
vertices in each x-y plane, and a distance of M lattice spac-
ings between the U and L boundary layers. Then there are
(3M + 2)N edges and hence qudits in the lattice. For each
edge, the Ce term gives a constraint of order 2. Apart from
the Ce terms, there are (3M + 2)N stabilizer generators,
coming from N vertices in plane L, and (3M + 1)N pla-
quettes in the lattice. The square of each of these terms
is redundant, trivially in the case of A2

v and due to Eq.
(11) for B̃p . There are also two relations between stabilizer
generators due to the periodic boundary conditions:

∏

p∈U

B̃p = 1,
∏

v∈L

A2
v

∏

p∈L

B̃p = 1. (33)

Altogether, this counting implies a ground-state degener-
acy of 4.

For HZ4
1 , it remains the case that B̃p and B̃′

p for p ∈ U
and p ∈ L, respectively, represent hopping of a surface
semion around p . However, Ce is now part of the stabi-
lizer group; thus, Eq. (27) implies that the semion fuses
with itself into the vacuum superselection sector. There-
fore, we conclude that the boundary indeed hosts chiral
semion surface topological order. When M = 0, the model
collapses to a Z4 Pauli stabilizer code representation of the
2D double semion topological order [52].

Before moving on, we note that the bulk relation (26)
sheds light on the structure of the flippers Fp . These
operators are the unique Pauli operators satisfying the
commutation relations

{Fp , Z2
O} = [Fp , Z2

e �=O] = [Fp ,Xe] = 0. (34)

These relations together with Eq. (26) imply Eq. (14).

3. Locally flippable Z2 separator Hamiltonian

Finally, we extend Hamiltonian H1 to the lattice with
boundary via the transformation of Sec. II C on the bound-
ary Hamiltonian HZ4

1 . This amounts to first performing the
qudit to two-qubit algebra automorphism in Eq. (15), then
acting with a truncated circuit U such that each truncated
Ce term is mapped to a single Pauli ZB

e , and finally project-
ing into the ZB

e = 1 subspace. The resulting Hamiltonian

030326-9



WILBUR SHIRLEY et al. PRX QUANTUM 3, 030326 (2022)

on HA is

H1 = −
∑

v∈L

Âv −
∑

p

B̂p , (35)

where the B̂p terms in the vicinity of either boundary are
truncated versions of their bulk form—any single-qubit
or two-qubit gate that would act on an edge outside � is
dropped from the definition of the term. Here we define

Âv =
∏

e
v
Ze, (36)

which is a five-body operator since z ∈ L. As is the case for
the bulk Hamiltonian, all of the terms in H1 in the presence
of a boundary commute with one another and square to the
identity, due to Eq. (11) and commutation of B̃p .

We now introduce semion hopping operators for Hamil-
tonian H1. For each edge e, we introduce an operator
X̂e that squares to a multiple of the identity, representing
hopping of a semion in either direction along e. These
operators, both in the bulk and near the boundary, are
defined in Fig. 4. The semion hopping operators satisfy the
relations

B̂p =
{
X̂12X̂23X̂34X̂41ZO if p �∈ U,
X̂12X̂23X̂34X̂41 if p ∈ U,

(37)

which allow us to compute the ground-state degeneracy of
H1.

There are a total of (3M + 2)N edges (and thus qubits)
in the lattice. There are (3M + 1)N plaquettes in the lattice
and N vertices in the L plane, and hence (3M + 2)N stabi-
lizer generators in the Hamiltonian. There are two relations
between these generators,

∏

p∈U

B̂p = 1,
∏

v∈L

Âv
∏

p∈L

B̂p = 1, (38)

implying a ground-state degeneracy of 4. This is consistent
with chiral semion topological order along the top bound-
ary and antisemion topological order along the bottom
boundary (as viewed from above).

To verify this is the case, let us consider the string opera-
tors for deconfined surface excitations along the upper and
lower boundaries. At the upper boundary, the anyon string
operator for a path γ is simply

∏
e∈γ X̂e. Given the form of

the string operator, we can compute the topological spin of
the anyon using Eq. (31). Indeed, we find that θ = i; hence,
the upper surface anyon is a semion (see Appendix D for
details). If γ is a contractible loop then the semion string
operator is simply the product of B̂p operators inside the
loop. On the other hand, at the bottom boundary the string
operator for a loop is given by a product of operators of the

(a)

(b)

(c)

FIG. 4. Semion hopping operators X̂e (a) in the bulk, (b) near
the U boundary (indicated by dashed edges), and (c) near the L
boundary (also indicated by dashed edges). In all cases S and CZ
operators precede Pauli-X operators.

form B̂pA1, where vertex 1 is defined in Fig. 2. Therefore,
the topological spin for anyons on the bottom layer differs
by a factor of −1 from those on the top (due to the anti-
commutation of Xe and Ze); hence, they are antisemions as
viewed from above. Note that, when M = 0 (such that Av
is four body), the model collapses to a Z2 non-Pauli stabi-
lizer code representation of the double semion topological
order [53].

III. BEYOND CHIRAL SEMION SURFACE
TOPOLOGICAL ORDER

In this section we generalize the construction of H1 and
α1 in the previous section to general n. The generalized
construction closely follows the n = 1 version, so we omit
some details for brevity. Hamiltonian Hn admits exactly
solvable boundaries hosting U(1)N surface topological
order where N = 2n. The construction closely mirrors that
of H1: we begin with the Walker-Wang model based on the
Z
(1)
2N premodular tensor category; Z

(1)
2N is an Abelian theory

with fusion group Z2N , trivial F symbols, and R symbols
Ra,b

a+b = exp iπab/N [43]. The generating anyon a thus has
topological spin eiπ/N , and the order-two anyon aN is a
boson with trivial braiding statistics. Therefore, the Z

(1)
2N

Walker-Wang model has bulk Z2 3D topological order,
and Z2N surface anyons a such that N anyons of charge
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a fuse into the deconfined Z2 boson. We then condense
this boson in the bulk, yielding a 3D short-range entangled
state with chiral surface topological order characterized by
U(1)N Chern-Simons theory. This surface order contains a
single order N anyon with topological spin θ = eiπ/N .

To construct the generalized disentangling QCA, we
again leverage the notion of a locally flippable separator
and Theorem II.4 of Ref. [29]. We show that the terms of
Hn constitute a locally flippable ZN separator, hence giv-
ing rise to a QCA αn that maps Hn to a trivial Hamiltonian
with product state eigenstates.

Definition III.1 (Ref. [29]). A locally flippable ZN sep-
arator is an indexed set of operators Ba (separators)
and Fa (flippers), each supported in a finite radius disk,
satisfying

1. BN
a = 1;

2. FaBa = e2π i/N BaFa and [Fa, Bb] = [Ba, Bb] = 0 for
a �= b;

3. for an arbitrary assignment a �→ ω(a), where ω(a)
is an N th root of unity, the space of states |ψ〉 such
that Ba |ψ〉 = ω(a) |ψ〉 for all a is one dimensional.

A. The Z
(1)
2N Walker-Wang model

The Z
(1)
2N Walker-Wang model is composed of 2N -

dimensional qudits on each edge of a cubic lattice, charac-
terized by the generalized Pauli operators Z and X obeying
the Z2N clock and shift algebra

Z2N = X 2N = 1, ZX = eiπ/N XZ. (39)

The Hamiltonian takes the form

HWW = −
∑

v

Av −
∑

p

Bp + H.c., (40)

whose terms are pictured in Fig. 5. In defining these terms,
we introduce an integer

m = 1
3

(
3 + (−1)n

2
2n+1 − 1

)
(41)

satisfying 3m ≡ −1 mod 2N . Note that m = 1 in the case
n = 1.

As mentioned, HWW has Z2 bulk topological order. To
verify, let us construct the topological string operators cor-
responding to the deconfined Z2 boson. We note that the
Bp plaquette operators satisfy the relation

∏

p∈c

Bp = A1A8, (42)

where the 1 and 8 vertices of cube c are defined as in Fig. 5.
As in Sec. II, we have implicitly oriented each plaquette in

this equation. We define modified plaquette operators

B̃p ≡ Bp(A1A3A4)
−m, (43)

where the 1, 3, and 4 vertices are indicated relative to p in
Fig. 2. These operators satisfy the alternative property

∏

p∈c

B̃p = A2
1, (44)

and, hence,

∏

p∈c

B̃N
p = 1. (45)

The operator B̃N
p corresponds to the motion of a decon-

fined Z2 boson around the loop. To see this, we define a
set of short string operators Ce for each edge e of the lattice
(Fig. 2), which satisfy the relations

B̃N
p =

∏

e∈p

Ce, C2
e = 1. (46)

Moreover, these operators satisfy the commutation rela-
tions

CeAv =
{

−AvCe if v ∈ e,
+AvCe if v �∈ e,

[Ce, B̃p ] = [Ce, Ce′] = 0.

(47)

A string of Ce operators creates a pair of deconfined bosons
at the two endpoints, characterized by the excitation of a
single Av term (along with some Bp terms).

B. Condensing the bulk Z2 boson

We now define a new Z2N Pauli stabilizer code Hamilto-
nian HZ2N

1 that physically represents a system obtained by
condensing the deconfined Z2 boson excitation of HWW.
The Hilbert space is still composed of one Z2N qudit per
edge of a cubic lattice, and the Hamiltonian takes the form

HZ2N
1 = −

∑

p

B̃p + H.c. −
∑

e

Ce. (48)

The stabilizer group generated by this Hamiltonian con-
tains all Ce operators along with all products of terms
of HWW that commute with Ce. The inclusion of boson
hopping operators Ce in the stabilizer group implies con-
densation of bosons in the ground state.

The essential property of HZ2N
n is that the B̃p terms

constitute a locally flippable ZN separator of the Ce = 1
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FIG. 5. Vertex term Av , plaquette terms Bp , modified plaquette terms B̃p , boson hopping operators Ce, anyon hopping operators Xe,
and flippers Fp defined with respect to the O edge of p , in the general N = 2n case. Each operator is a tensor product of Z2N Pauli
operators over the indicated qudits, with a legend shown at the bottom. Edges with two colors represent a product of the two operators,
with Z-type operators preceding X type. All operators have an overall phase of +1 except the Xe operators that have an overall phase
of e−iπm(N−1)/2N . A polynomial representation of these operators is given in Appendix B.

constrained Hilbert space. To demonstrate this, we identify
flippers Fp (Fig. 5) satisfying

FpB̃p = e2π i/N B̃pFp , [Fp , B̃p ′] = [Fp , Ce] = 0. (49)

This allows us to construct a locally flippable separator of
a tensor product Hilbert space by unitarily mapping the set
of Ce operators to single-qubit Pauli operators on unique
qubit degrees of freedom. Hamiltonian Hn is obtained by
projecting these qubits out from the transformed HZ2N

n .

C. Obtaining a locally flippable ZN separator

We now transform HZ2N
n into the ZN stabilizer code

Hamiltonian Hn by disentangling a qubit from each edge
of the lattice, leaving behind an N -dimensional qudit on
each site. First, we perform an operator algebra automor-
phism from a 2N -dimensional qudit on each edge to a
N -dimensional qudit tensored with a qubit:

X̄ → X̂ ĈZ, Z̄ → X Ŝ, X̄ N → Z, Z̄N → ẐN/2.
(50)

Here Z̄ and X̄ represent the Z2N Pauli operators, Z and
X the Z2 Pauli operators, and Ẑ and X̂ the ZN operators.

In Appendix C, we show that this transformation can be
derived from a nontrivial central extension of ZN by Z2.
Here, we define the operator

Ŝ ≡ Ẑ1/2 = diag(1,ω, . . . ,ωN−1) (51)

acting on the N -dimensional qudit with ω = eiπ/N . The
operator ĈZ acts on the total qudit-qubit Hilbert space, and
is defined as

ĈZ |a, b〉 =
{

|a, b〉 , a = 0, . . . , N − 2,
(−1)b |a, b〉 , a = N − 1,

(52)

where |a, b〉 denotes a computational basis state of the
qudit-qubit pair. We refer the reader to Appendix C for
a group-theoretic derivation of the operator algebra auto-
morphism in Eq. (50).

Following this algebra automorphism we act with a uni-
tary U, which is a translation-invariant circuit composed
of generalized controlled-X gates which we refer to as
ĈX gates. The operator ĈX is two body, acting on one
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N -dimensional qudit and one qubit. It acts as

ĈX |a, b〉 = |a, b + a mod 2〉 , a = 0, . . . , N − 1, b = 0, 1,
(53)

on states, and

Z → ẐN/2Z, Ẑ → Ẑ, X → X , X̂ → X̂ X (54)

on operators. Explicitly, U has the form

U =
∏

e

ĈXe

∏

v

Uv , (55)

Uv = ĈX23ĈX63ĈX16ĈX26ĈX56ĈX12ĈX52ĈX15ĈX35ĈX45

ĈX31ĈX41ĈX24ĈX34ĈX64, (56)

where ĈXij denotes a generalized controlled-X gate act-
ing on the N -dimensional qudit on edge i and the qubit on
edge j . The numbering of edges with respect to vertex v
is as depicted in Fig. 3(a). By construction, U maps each
Ce operator to a single qubit Ze, thereby disentangling each
qubit from the bulk of the ZN system. To obtain the ZN sta-
bilizer code Hamiltonian Hn and the flippers corresponding
to each of its stabilizer generators, we define operators B̂p

and F̂p acting on the Hilbert space of N -dimensional qudits
by restricting UB̃pU† and UFpU† to the Ze = 1 subspace.
The set of B̂p and F̂p constitutes a locally flippable ZN
separator, therefore yielding a QCA αn that disentangles
the Hamiltonians Hn. Explicitly, according to Ref. [29],
one can always find a set of locally supported commuting
flippers F̂ ′

p with the properties

(F̂ ′
p)

N = 1, [F̂ ′
p , F̂ ′

p ′] = 0. (57)

The QCA αn is then defined by the mapping of operators

αn(B̂p) = X̂O, αn(F̂ ′
p) = ẐO, (58)

where the O edge is defined with respect to plaquette p as
in Fig. 5. In the following section, we provide strong evi-
dence that these QCAs are nontrivial by demonstrating that
Hn can be extended to a lattice with boundary, on which it
harbors U(1)N topological order.

D. Surface topological order

We first extend Hamiltonian HZ2N
n to the lattice with

boundary�, which has periodic boundary conditions in the
x and y directions but is finite in the z direction. We refer
to the upper and lower boundary planes as U and L. The
Hilbert space is composed of one four-dimensional qudit

for every edge connecting sites of �. The Hamiltonian
takes the form

HZ2N
n = −

∑

v∈L

A2
v −

∑

p

B̃p + H.c. −
∑

e

Ce, (59)

where Av, B̃p , and Ce operators near the boundary are
defined by truncation of the bulk Pauli operator, meaning
that any Pauli that would act on an edge not contained in
� is replaced by identity.

We now introduce an operator Xe associated with each
edge e of� that has the interpretation of hopping an order-
N anyon along e from i to j , where i (j ) is the site adjacent
to e in the negative (positive) direction. We also define
Xij ≡ X †

ji ≡ Xe. For edges in the bulk, Xe is defined in
Fig. 5. For edges near the boundary, it is defined by trun-
cating the bulk form of the operator. These operators obey
the algebraic properties

ZeXe = eiπ/NXeZe, ZeXe′ = Xe′Ze, (60)

B̃p = X12X23X34X41Z2
O, (61)

X N
e = Ce, (62)

where the O and 1 through 4 edges are indicated relative
to plaquette p in Fig. 5. We have likewise defined Ce oper-
ators in the vicinity of the boundary via truncation of the
bulk form. Relation (61) holds in the bulk and on the lower
plane L. However, due to truncation, for p ∈ U, we have

B̃p = X12X23X34X41. (63)

Moreover, let us define the operator B̃′
p = B̃pA2

1. Then it
follows that, for p ∈ L,

B̃′
p = X12X23X34X41(A′

1)
2, (64)

where A′
1 is the truncation of A1 to the L plane. For p ∈ U,

the operator B̃p corresponds to hopping of an order-N
anyon around the plaquette p . Likewise, for p ∈ L, the
operator B̃′

p corresponds to hopping of an order-N anyon
around p . These anyons have order N due to property
(62). We can construct large loop operators for the sur-
face anyons by taking products of B̃p or B̃′

p operators over
all plaquettes inside a given loop. At the U boundary, the
anyon string operator for an oriented path γ is given by

Wγ =
∏

e∈γ
X (†)

e , (65)

where the factor taken is Xe (X †
e ) if e ∈ γ is positively

(negatively) oriented. The string operator Wγ commutes
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with HWW and H̃WW except in the vicinity of each end-
point, where it excites a single Av operator in addition to
some Bp or B̃p terms. It is clear that these excitations are
fractionalized because local operators can only excite Av
terms in pairs. The topological spin of the anyon is given
by

θ = W3W†
2W1W†

3W2W†
1, (66)

where W1, W2, and W3 are three open string operators that
respectively move an anyon from a shared point in U to
three other points r1, r2, and r3 arranged in counterclock-
wise order [33,51]. We find that θ = eiπ/N for the anyon on
the U surface. An analogous calculation using the string
operators in plane L shows that the surface anyon has
topological spin θ = e−iπ/N as viewed from above. Thus
we conclude that the boundary harbors surface topologi-
cal order characterized by U(1)N Chern-Simons theory, as
claimed.

Let us compute the ground-state degeneracy of this
Hamiltonian. Suppose that there are N vertices in each x-y
plane, and a distance of M lattice spacings between the U
and L boundary layers. Then there are (3M + 2)N edges
and hence qudits in the lattice. For each edge, the Ce term
gives a constraint of order 2. Apart from the Ce terms, there
are (3M + 2)N stabilizer generators, coming from N ver-
tices in plane L, and (3M + 1)N plaquettes in the lattice.
The N th power of each of these terms is redundant, triv-
ially in the case of A2

v and due to Eq. (46) for B̃p . There are
also two relations between stabilizer generators due to the
periodic boundary conditions:

∏

p∈U

B̃p = 1,
∏

v∈L

A2
v

∏

p∈L

B̃p = 1. (67)

Altogether, this counting implies a ground-state degen-
eracy of N 2, verifying the presence of U(1)N surface
topological order.

To define the boundary Hamiltonian for Hn with the
same surface topological order, we simply carry through
the transformation of the previous section on the lat-
tice with boundary. This amounts to transforming each
Ce operator, in the bulk and boundary, to a single-qubit
Pauli-Z operator.

IV. THE CATEGORICAL WITT GROUP AND ITS
RELATION TO WALKER-WANG MODELS AND

QUANTUM CELLULAR AUTOMATA

In this section, we outline a set of conjectures in an
attempt to formalize the growing links between the group
of QCAs, Walker-Wang models, and the categorical Witt
group [28] (see Ref. [54] for further discussion). First
we introduce relevant background on the categorical Witt
group, following the treatment in Refs. [38,39]. We then

discuss the conjectures and their implications for the con-
structions introduced in this work.

A. The categorical Witt group

Heuristically, the categorical Witt group is the group
formed by equivalence classes of anyon theories mod-
ulo boson condensation. Its purpose is to formalize the
obstruction to a modular tensor category (MTC) containing
a Lagrangian algebra, i.e., a set of mutually condensi-
ble bosons whose condensation trivializes the topological
order. To make the definition of Witt equivalence precise,
we introduce the notion of a bosonic algebra object of a
MTC M. Specifically, a bosonic algebra object A corre-
sponds to a subset of mutually bosonic anyons from M
that contains the identity, equipped with a choice of asso-
ciative fusion channels that allows them to be condensed
consistently [55,56]. Furthermore, we define M//A to be
the MTC obtained by condensing A in M. The categorical
Witt equivalence is then defined as follows.

Definition IV.1 (Categorical Witt equivalence). MTCs
M1 and M2 are Witt equivalent, denoted M1 ∼ M2, if
and only if there exists bosonic algebra objects A1 ∈ M1
and A2 ∈ M2 such that M1//A1 and M2//A2 are
braided equivalent, denoted M1//A1 � M2//A2.

The above characterization of Witt equivalence implies
that M ∼ M//A for any bosonic algebra object A ∈ M,
since M//1 � M. This leads to a unique representative
for each Witt class.

Definition IV.2 (Completely anisotropic MTC). A MTC
M is completely anisotropic if the only bosonic algebra
object A ∈ M is trivial, i.e., A = 1 corresponding to the
vacuum sector.

Theorem IV.1 (Ref. [38]). Each Witt equivalence class
contains a representative completely anisotropic MTC that
is unique up to braided equivalence.

Physically, the completely anisotropic anyon theories
are those in which as many bosons as possible have been
condensed. We say that a MTC is Witt trivial if it belongs
to the same Witt equivalence class as the trivial anyon the-
ory, implying that it contains a Lagrangian algebra. Thus,
Witt nontrivial MTCs are those that do not admit a gapped
boundary.

The concept of Witt equivalence admits several equiv-
alent characterizations, presented below for completeness.
Two of the characterizations below involve the notion of
the Drinfeld center Z(C) of a fusion category C. In physi-
cal terms, Z(C) describes the emergent anyon theory of a
string-net model [57] constructed from C. We note that, for
any choice of braiding that makes C into a valid anyon the-
ory (i.e., a MTC), then Z(C) � C � C, where C denotes
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time or orientation reversal and “�” represents the usual
stacking operation of MTCs. We refer the interested reader
to Ref. [58] for more in-depth discussion.

Theorem IV.2 (Characterizations of Witt equivalence).
For MTCs M1,M2, the following conditions are equiv-
alent [38].

1. MTCs M1,M2 are Witt equivalent, i.e., M1 ∼
M2.

2. There exists a MTC B containing bosonic alge-
bra objects A1, A2 ∈ B such that M1 � B//A1 and
M2 � B//A2.

3. There exist fusion categories C1, C2 such that
M1 � Z(C1) � M2 � Z(C2).

4. There exists a fusion category C such that
M1 � M2 � Z(C).

The third characterization above is used to define Witt
equivalence in Ref. [38]. Informally, this characterization
tells us that a pair of anyon theories are Witt equivalent if
they support identical emergent anyon theories after being
stacked with some string-net models. We have started from
an alternate, equivalent, definition of Witt equivalence in
Definition IV.1 as it more closely suits our purposes. The
fourth characterization has a simple physical interpreta-
tion: two MTCs are Witt equivalent if and only if there
exists a gapped domain wall between the two topological
orders. This can be seen via the folding trick [59], whereby
a domain wall between M1 and M2 is equivalent to a
boundary to vacuum of M1 � M2. Hence, again we see
that a MTC is Witt nontrivial if and only if its boundary is
nongappable.

We now present a definition of the categorical Witt
group. The Witt equivalence classes, denoted [M], form
an Abelian group under the stacking operation of the repre-
sentative MTCs. The equivalence class of the trivial anyon
theory [Vec] plays the role of the identity, and the equiva-
lence class of the braiding-reversed MTC [M] provides
an inverse to [M] corresponding to its time or orienta-
tion reversed anyon theory. The above follows from M1 �
M2 � M2 � M1, M � Vec � M, and Z(M) � M �
M for a MTC M. Moreover, the emergent anyon theory
of any string-net model is Witt equivalent to the identity
element.

Definition IV.3 (Categorical Witt group). The set of Witt
equivalence classes of MTCs under stacking form an
Abelian group W called the categorical Witt group.

The categorical Witt group generalizes an older con-
struction, which we refer to here as the classical Witt
group, based on equivalence classes of metric groups. A
metric group corresponds to an Abelian group A equipped
with a nondegenerate quadratic form q : A → U(1), which

physically represents an Abelian 2D topological order.
Rather than describing the equivalence relation on met-
ric groups directly, we translate them into Abelian MTCs
where the equivalence relation is inherited from the Witt
equivalence relation described above. Metric groups (A, q)
naturally realize Abelian (i.e., pointed) MTCs, denoted
M(A, q), whose fusion is defined by the group structure
A, and whose braiding is determined via topological spins
given by the quadratic form, θa = q(a). The classical Witt
group Wpt of metric groups embeds into the categorical
Witt group in a natural way via this mapping of metric
groups to Abelian MTCs [38].

The structure of the classical Witt group is known to be

Wpt =
⊕

p prime

W (p)
pt , (68)

where W (p)
pt denotes the equivalence classes with p-group

fusion rules [60]. These are given as follows.

(a) Group W (2)
pt

∼= Z8 ⊕ Z2, generated by M(Z2, q)
and M(Z4, q′), where q, q′ are any nondegenerate
quadratic forms. Physically, M(Z2, q) corresponds
to the semion or antisemion theory. We can choose
M(Z4, q′) to be the U(1)4 anyon theory.

(b) Group W (p)
pt

∼= Z4 for p = 1 mod 4, generated by
M(Zp , q)with q any nondegenerate quadratic form.

(c) Group W (p)
pt

∼= Z2 ⊕ Z2 for p = 3 mod 4, gener-
ated by M(Zp , q) and M(Zp , q′), respectively, for
q(a) = ωa2

and q′(a) = ωra2
, where ω is a primitive

pth root of unity and r is a quadratic nonresidue [61]
mod p .

B. QCAs, Walker-Wang models, and commuting
projector Hamiltonians

We are now in a position to state several conjectures
inspired by Ref. [28], which make connections between
the categorical Witt group, QCAs, Walker-Wang mod-
els, and the broader class of local commuting projector
Hamiltonians with no bulk order (symmetry breaking or
topological). We define two such Hamiltonians, H and H ′,
to be FDQC equivalent, denoted H ∼ H ′, if their ground
states are equivalent up to the addition of ancillary qudits
and the application of a FDQC.

In general, a boundary for such a Hamiltonian can be
introduced by restricting the Hamiltonian to a half space,
and (i) including only terms fully contained therein and
(ii) adding a maximal set of boundary commuting projec-
tor terms that also commute with the bulk. This results
in either a gapless, extensively degenerate boundary, or a
gapped boundary that may support nontrivial topological
order. In the latter case, the resulting topological sectors
are restricted to the vicinity of the surface and hence are
expected to form a MTC M by the principle of braiding
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nondegeneracy. We restrict our attention to this latter case
for the remainder of this section.

The surface topological order is however not unique,
because it is always possible to stack a decoupled
2D string-net Hamiltonian based on fusion category C
onto the boundary, resulting in surface topological order
M � Z(C). On the other hand, we expect the Witt equiv-
alence class of the surface topological order to be fully
determined by the bulk Hamiltonian: if, to the contrary,
a 3D commuting projector Hamiltonian admitted com-
muting projector gapped boundaries belonging to different
Witt classes, we could construct a Witt nontrivial 2D com-
muting projector Hamiltonian by choosing Witt inequiv-
alent upper and lower boundaries of the 3D model, then
compactifying to two dimensions. We speculate that a
similar argument forbids FDQC equivalence of commut-
ing projector Hamiltonians with surface topological orders
belonging to inequivalent Witt classes. On the other hand,
in the absence of such an obstruction between a pair of
commuting projector Hamiltonians, we expect that FDQC
equivalence is guaranteed because their ground states are
both zero-correlation length states in the trivial, short-
range entangled topological phase. Summarily, we have
the following conjecture.

Conjecture IV.1 (Condition on FDQC equivalence). A
pair of local commuting projector Hamiltonians with no
long-range bulk order are FDQC equivalent if and only
if their surface topological orders in the presence of a
gapped boundary are Witt equivalent.

In other words, this conjecture states that the FDQC
equivalence classes of trivially ordered commuting projec-
tor Hamiltonians are precisely labeled by the categorical
Witt group.

For any MTC M, the Walker-Wang model based on
M, denoted HM

WW, provides an example of a model with
trivial bulk topological order, and a commuting projec-
tor gapped boundary condition with nontrivial surface
topological order described by M.

Corollary IV.1. We have Hn ∼ HM(n)
WW , where the Hn are

the Hamiltonians introduced in this work and M(n) is the
MTC describing U(1)2n topological order. For instance,
M(1) is the chiral semion MTC.

Corollary IV.2. We have HM1
WW ∼ HM2

WW if and only if
M1,M2 are Witt equivalent, M1 ∼ M2.

This would imply the existence of an infinite family of
Walker-Wang Hamiltonians based on MTCs that are short-
range entangled but cannot be trivialized by FDQCs. We
remark that this corollary goes beyond the usual presump-
tion that the Walker-Wang model based on two different

gauge variant formulations of the same MTC are FDQC
equivalent.

A weaker statement can be obtained by taking M2 to
be trivial: HM

WW ∼ Htriv if and only if M � Z(C) for some
fusion category C. That is, the Walker-Wang model for a
MTC can be disentangled by a FDQC if and only if the
MTC is Witt trivial. Disentangling circuits are known for
specific examples, such as the Walker-Wang model based
on toric code anyons, which is simply a cluster state [62].
However, we are not aware of a general procedure to find
disentangling circuits for an arbitrary Witt trivial MTC.

Conjecture IV.1 identifies the Witt class as an obstruc-
tion to disentangling commuting projector Hamiltonians
via FDQCs. However, recent progress has been made
in constructing disentangling QCAs for specific Hamil-
tonians with Witt nontrivial gapped boundary conditions
[28,29], including the main result of this work. Thus, it is
natural to speculate about the existence of QCAs that dis-
entangle the ground states of more general Hamiltonians.

Conjecture IV.2 (Existence of disentangling QCAs). For
any local commuting projector Hamiltonian with no bulk
order, there exists a QCA that disentangles its ground
state. A pair of disentangling QCAs are equivalent if
and only if the Hamiltonians they disentangle admit Witt
equivalent surface topological orders.

This conjecture guarantees that it is always possible to
pass between FDQC equivalence classes of local commut-
ing projector Hamiltonians via nontrivial QCA.

Corollary IV.3. For every MTC M, there exists a QCA
QM

WW that disentangles the ground state of the Walker-
Wang Hamiltonian HM

WW.

In light of Conjecture IV.1, we expect QM
WW to be a

nontrivial QCA precisely when M is Witt nontrivial. We
remark that this QCA defines a locally flippable sepa-
rator Hamiltonian for the Walker-Wang ground state via
conjugation of the trivial Hamiltonian, (QM

WW)
†HtrivQM

WW.

Corollary IV.4 (Group structure of 3D QCAs). The group
of 3D QCAs contains a subgroup isomorphic to the cate-
gorical Witt group.

One could further conjecture that this subgroup is
improper, or in other words that the group of 3D QCAs
is isomorphic to the categorical Witt group.

Corollary IV.5. The group of 3D QCAs contains a sub-
group isomorphic to the classical Witt group Wpt. The
ground state of any commuting projector Hamiltonian with
Abelian surface topological order and no bulk order can
be disentangled by a QCA belonging to this subgroup.
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Haah [28] and Haah et al. [29] identified a group of
prime-dimensional Clifford QCAs representing a subgroup
of the classical Witt group containing odd prime factors
W (p)

pt , and an additional QCA of order two corresponding
to the three-fermion MTC. We expect our constructions
to complete the realization of QCA representatives for
Wpt, as our construction produces QCAs corresponding
to the generators of the full W (2)

pt
∼= Z8 ⊕ Z2 subgroup

of Witt classes containing all Abelian MTCs with two-
group fusion rules. Specifically, we conjecture that α1
generates the Z8 subgroup, and α1α

−1
2 generates the Z2

subgroup.

Corollary IV.6. Let α3F refer to the QCA of Ref. [29].
Given a QCA α, we denote the corresponding equivalence
class of QCAs modulo FDQCs and translations by [α].
Conjecture IV.2 implies the following relations on the class
of novel QCAs αn introduced in this work:

[α1] = [α2k−1], [α2] = [α2k],

[α2
1] = [α2

2], [α4
1] = [α3F ], [α8

1] = [1].
(69)

In Appendix E, we describe a QCA α̃3F in the class
[α3F ], with the property that α̃2

3F = 1, i.e., the QCA squares
exactly to the identity.

V. DISCUSSION

In this work, we have introduced an exactly solvable
Hamiltonian H1 with a short-range entangled bulk that sup-
ports a boundary with chiral semion surface topological
order. The key feature differentiating our Hamiltonian from
the chiral semion Walker-Wang model is that it constitutes
a locally flippable separator. We have leveraged this prop-
erty to define a new three-dimensional QCA α1 that disen-
tangles our Hamiltonian, mapping it to a sum of Pauli-Z
operators. We conjecture that this QCA is nontrivial on
the grounds that there would otherwise exist a standalone
commuting projector Hamiltonian realizing chiral semion
topological order in two dimensions. We have also gen-
eralized our Hamiltonian to a family of locally flippable
separators Hn and corresponding QCAs αn based on the
U(1)2n Chern-Simons theories.

Furthermore, we conjecture that the QCAs presented
in this work generate a Z8 ⊕ Z2 group. We speculate
that, together with the QCAs constructed in Ref. [28],
this covers all equivalence classes of QCAs that disen-
tangle locally flippable separators with Abelian boundary
topological order. This agrees with the conjecture that the
group of such QCAs is isomorphic to the classical Witt
group [28]. An important future direction is thus to rig-
orously verify the Z8 ⊕ Z2 group structure of our QCAs.
This is a difficult calculation due to the non-Clifford nature
of the QCAs. In Sec. IV, we also raised the challenge

of assessing, more generally, whether there is an isomor-
phism between the group of QCAs and the categorical Witt
group, which includes MTCs with non-Abelian anyons. An
important step in this direction is to identify an example of
a QCA that disentangles a state with non-Abelian surface
topological order.

A natural byproduct of our constructions and those
of Ref. [28] are a class of generalized Pauli stabilizer
code models in three dimensions whose boundaries col-
lectively exhaust the set of all 2D Abelian topological
orders. These constructions complement the work of Haah
[52], who constructed strictly 2D Pauli stabilizer codes
for all gappable 2D Abelian topological orders. Together,
these results demonstrate that any 2D Abelian topologi-
cal order admits a Pauli stabilizer representation, with the
nongappable ones living on the surface of a trivial bulk 3D
code.

Moving forwards, it would be interesting to study the
classification of three-dimensional QCAs with various
qualifiers on the set of QCAs. One could restrict the clas-
sification to the set of Clifford QCAs, as considered in
Ref. [28] for prime-dimensional qudits. It may also be
enlightening to consider Clifford QCAs on composite-
dimensional qudits. While the QCAs constructed in this
work are non-Clifford, it is possible that they admit repre-
sentations in this class.

Another question pertains to the classification of quasi-
locality-preserving QCAs, as opposed to the strictly
locality-preserving QCAs discussed in this work. It is nat-
ural to consider two quasi-locality-preserving QCAs to be
equivalent if they differ by finite time evolution under a
local Hamiltonian. It is unclear, but an important open
question, whether the QCAs introduced in this work are
nontrivial in this broader sense. We note that there has been
recent progress on the classification of one-dimensional
quasi-locality-preserving QCAs in Ref. [22].

Yet another direction for future work is the classifica-
tion of three-dimensional QCAs on fermionic systems. On
the one hand, we expect that certain QCAs become trivial
in the presence of fermionic ancillas. This is because the
class of fermionic local commuting projector Hamiltoni-
ans captures a wider range of 2D topological orders than its
bosonic counterpart. For example, the phases of Kitaev’s
sixteenfold way can be modeled by fermionic commuting
projector Hamiltonians after stacking with chiral p + ip
superconducting states [63,64]. Thus, we expect the disen-
tangling QCAs for the three-fermion Walker-Wang model
[29], as well as our QCA α2, which disentangles the
Hamiltonian H2 with U(1)4 surface topological order, to
be trivial for fermionic systems [65]. On the other hand,
fermionic degrees of freedom may allow for nontrivial
QCAs that are not possible on qudits. We expect that the
connection between the classification of qudit QCAs and
the categorical Witt group, discussed in Sec. IV, extends
to an analogous connection between the classification
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of fermionic QCAs and the super-Witt group, i.e., the
generalization of the categorical Witt group to 2D
fermionic topological orders.

Finally, it would be worthwhile to find tensor network
representations of the known nontrivial 3D QCAs [19]. It
would also be interesting to study their circuit complexity,
which we expect to be of linear depth. Such methods could
allow for the construction of a wider class of nontrivial
QCAs. Lastly, we note that the Pauli stabilizer codes con-
structed in this work can be used for measurement-based
quantum computation [62].
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APPENDIX A: COUPLED LAYERS
CONSTRUCTION OF HWW

In this appendix, we describe a simple coupled layers
interpretation of HWW [66,67]. The recipe is to start with a
stack of 2D Z4 toric codes in the z direction, then to cou-
ple adjacent layers by condensing all anyons of the form
eimiei+1m3

i+1. Here the subscript indexes the layer number.
As a result, all anyons in a given layer except for e2

i m2
i

are confined in the bulk due to nontrivial braiding statis-
tics with at least one of these condensed anyons. How-
ever, pairs of these bosons, e2

i m2
i e2

i+1m2
i+1, also become

condensed, thus giving rise to a single species of fully
deconfined 3D bosons with Z2 fusion rules. However, at
the upper boundary layer U, the eUmU semion survives as
a deconfined surface anyon. Likewise, the eLm3

L antisemion
survives as a surface anyon at the lower boundary layer L.

Hamiltonian HWW microscopically realizes the con-
densed phase in the following sense. Begin with a stack
of Z4 toric codes composed of four-dimensional qudits
on x and y edges of a cubic lattice, along with ancillary
qudits on each z edge ez of the lattice stabilized by the
Hamiltonian H0 = X + X †. The total Hamiltonian is

H =
∑

ez

H0 −
∑

l

( ∑

v

Al
v +

∑

pz

B̂l
pz

)
+ H.c., (A1)

where Al
v and B̂l

pz
are the vertex and plaquette terms of

the Z4 toric code on layer l. (Here, pz indexes plaque-
ttes normal to the z direction.) Then, we may interpret the

plaquette terms Bpx and Bpy of HWW as hopping operators
for the eimiei+1m3

i+1 anyons. The remaining terms in HWW
generate the set of all products of terms in H that commute
with all Bpx and Bpy . Turning on the hopping operators
Bpx and Bpy for the eimiei+1m3

i+1 anyons with coefficient
J gives the coupled layers Hamiltonian

H =
∑

ez

H0 −
∑

l

( ∑

v

Al
v +

∑

pz

B̂l
pz

)
(A2)

− J
( ∑

px

Bpx +
∑

py

Bpy

)
+ H.c. (A3)

Taking the strong coupling limit J → ∞ and applying
degenerate perturbation theory in 1/J yields an effective
Hamiltonian whose ground state is equivalent to that of
HWW.

APPENDIX B: POLYNOMIAL REPRESENTATION
OF PAULI OPERATORS

In this appendix, we express the Pauli operators Xe, B̃p ,
and Fp of Fig. 2 as vectors over the Laurent polynomial
ring Z4[x, y, z, 1/x, 1/y, 1/z], which is useful for verifying
their commutation relations [68]. These calculations are
given in the supplementary MATHEMATICA file [69]. We
identify the unit cell as the three qubits on edges linking the
origin and x̂, ŷ, and ẑ, respectively. We list only the opera-
tors associated with the edge ex centered at (1/2, 0, 0) and
plaquette px centered at (0, 1/2, 1/2). The operators asso-
ciated with ey , ez, py , and pz can be obtained by cyclic
permutation x → y → z → x of the matrix entries and
1 → 2 → 3 → 1 of the row indices. We have

Xex =

⎛

⎜⎜
⎜⎜
⎜
⎝

1
0
0

1 − 1/x
−(x + 2/y)
x + x/z + 1

⎞

⎟⎟⎟⎟⎟
⎠

,

B̃px =

⎛

⎜
⎜⎜⎜
⎜
⎝

0
1 − z
y − 1

y + 1 − (yz + y + 2)/x
yz + y − 1/y − z

yz + 1 − (y + 1)/z

⎞

⎟⎟⎟⎟⎟
⎠

,

Fpx =

⎛

⎜⎜⎜⎜
⎜
⎝

yz
0
0

yz − xyz
xz + yz + z
−(2xyz + y)

⎞

⎟⎟⎟⎟⎟
⎠

.
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These matrices satisfy the relations

B̃†
pi

B̃pj = 2B̃†

pi

Xej = F†

pi

Xej = 0, B̃†

pi

Fpj = 2δij ,

(B1)

where 
 is the symplectic form


 =
(

0 I3
−I3 0

)
(B2)

and “†” represents transposition combined with spatial
inversion.

Next, we write the corresponding Pauli operators for the
general N = 2n case of Fig. 5 as vectors over the Laurent
polynomial ring Z2N [x, y, z, 1/x, 1/y, 1/z]:

Xex =

⎛

⎜⎜⎜⎜⎜
⎝

1
0
0

m(1 − 1/x)
−m(x + 2/y)

m(x + x/z + 1)

⎞

⎟⎟⎟⎟⎟
⎠

, (B3a)

B̃px =

⎛

⎜⎜⎜⎜⎜
⎝

0
1 − z
y − 1

m(yz + y + 1)− yz − m[(yz + y + 1)/x] − 1/x
m(yz + y − 1/y − z)

m(yz + 1 − (y + 1)/z)

⎞

⎟⎟⎟⎟⎟
⎠

,

(B3b)

Fpx =

⎛

⎜⎜⎜⎜⎜
⎝

yz
0
0

m(yz − xyz)
m(xz + yz + z)
−m(2xyz + y)

⎞

⎟⎟⎟⎟⎟
⎠

. (B3c)

These matrices satisfy the relations

B̃†
pi

B̃pj = NB̃†

pi

Xej = F†

pi

Xej = 0, B̃†

pi

Fpj = 2δij ,

(B4)

via the property 3m = −1.

APPENDIX C: OPERATOR ALGEBRA
AUTOMORPHISMS FROM GROUP EXTENSIONS

In Sec. III, we used an operator algebra automorphism
to map a 2N -dimensional qudit to a N -dimensional qudit
and a qubit. Here, we show that this transformation can
be derived from a nontrivial central extension of ZN by
Z2. We also show that an operator algebra automorphism

TABLE I. The elements of Z4 labeled by elements of Z2 × Z2.

n ∈ Z4 (a, b) ∈ Z2 × Z2

1 (1,0)
2 (0,1)
3 (1,1)

is defined by the central extension of Z2 by ZN . Similar
mappings were observed in Appendix A of Ref. [70] and
Appendix A of Ref. [71].

As a warmup, we start with the case N = 2. This corre-
sponds to the operator algebra automorphism used in Sec.
II C. The nontrivial extension of Z2 by Z2 can be organized
into the short exact sequence

0 → Z2 → Z4 → Z2 → 0. (C1)

This corresponds to a two-cocycle [λ] belonging to
H 2[Z2, Z2]. We may represent [λ] by the function λ :
Z2 × Z2 → Z2 defined by

λ(a1, a2) =
{

1 if a1 + a2 = 2,
0 otherwise.

(C2)

The elements of Z4 can then be written as pairs (a, b) in
Z2 × Z2 as in Table I with the group law determined by λ
as

(a1, b1)+ (a2, b2) = (a1 + a2, b1 + b2 + λ(a1, a2)).
(C3)

To construct an operator algebra automorphism using
the group extension above, we consider a four-dimensional
qudit with basis states labeled by n ∈ Z4 and a pair of
qubits with basis states labeled by (a, b) ∈ Z2 × Z2. Table
I then gives a mapping between the four-dimensional qudit
and the pair of qubits:

|n〉 ↔ |a, b〉. (C4)

This mapping of states determines an operator algebra
automorphism, as described below. To see this, we con-
sider the action of the four-dimensional qudit Pauli opera-
tors X̄ and Z̄ on |n〉. For X̄ , we have

X̄ |n〉 = |n + 1〉 (C5)

with addition modulo 4. In terms of the (a, b) labels, X̄
implements the transformation

X̄ : |a, b〉 �→ |(a, b)+ (1, 0)〉
= |a + 1, b + λ(a, 1)〉; (C6)
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λ(a, 1) is 1 if a = 1. Therefore, the action of X̄ is

X̄ : |a, b〉 �→ X ACXAB|a, b〉, (C7)

where A and B label the sites of the qubits. As for Pauli Z̄,
we have

Z̄|n〉 = in|n〉, (C8)

which in terms of the states labeled by (a, b) is

Z̄ : |a, b〉 �→ SAZB|a, b〉. (C9)

This can be checked from Table I. The operator algebra
automorphism is thus

X̄ ↔ X ACXAB, Z̄ ↔ SAZB. (C10)

Conjugating the B site qubit by a Hadamard, we arrive at
the mapping in Eq. (15).

Next, we construct an operator algebra automorphism
from a 2N -dimensional qudit to an N -dimensional qudit
and a qubit, using the group extension

0 → Z2 → Z2N → ZN → 0. (C11)

This corresponds to a two-cocycle [λ] ∈ H 2[ZN , Z2]. We
may represent [λ] by the function λ : ZN × ZN → Z2,
given by

λ(a1, a2) =
{

1 if a1 + a2 ≥ N ,
0 otherwise.

(C12)

This can be written as

λ(a1, a2) = a1 + a2 − [a1 + a2]N , (C13)

where [·]N denotes addition modulo N . We may then write
elements of Z2N as pairs in ZN × Z2 according to Table
II. The group law between (a1, b1), (a2, b2) ∈ ZN × Z2 is
determined by λ as

(a1, b1)+ (a2, b2) = (a1 + a2, b1 + b2 + λ(a1, a2)).
(C14)

To write down an operator algebra automorphism from
the mapping in Table II, we label the quantum states of
a 2N -dimensional qudit by elements n ∈ Z2N and label
the states of an N -dimensional qudit and a qubit by the
pair (a, b) ∈ ZN × Z2. The mapping of operators is then
determined by the association of states,

|n〉 ↔ |a, b〉, (C15)

according to Table II.

TABLE II. The elements of Z2N labeled by elements of ZN ×
Z2.

n ∈ Z2N (a, b) ∈ ZN × Z2

0 (0,0)
1 (1,0)
2 (2,0)
...

...
N − 1 (N − 1, 0)
N (0, 1)
N + 1 (1, 1)
...

...
2N − 2 (N − 2, 1)
2N − 1 (N − 1, 1)

We find the corresponding mapping of operators by con-
sidering the action of the 2N -dimensional Pauli operators
X̄ and Z̄ on |n〉. The action of X̄ on |n〉 is

X̄ |n〉 = |n + 1〉 (C16)

with addition modulo 2N . Expressed in terms of the states
labeled by (a, b), X̄ enacts the mapping

X̄ : |a, b〉 �→ |(a, b)+ (1, 0)〉
= |a + 1, b + λ(a, 1)〉; (C17)

λ(a, 1) is 1 if and only if a is N − 1. We define ĈX to
be the operator that acts as X on the qubit if the state of
the N -dimensional qudit is N − 1 and acts as the identity
otherwise:

ĈX|a, b〉 =
{

|a, b + 1〉 if a = N − 1,
|a, b〉 otherwise.

(C18)

With this, the action of X̄ is

X̄ : |a, b〉 �→ X̂ ĈX|a, b〉 (C19)

with X̂ denoting the Pauli-X operator on the N -
dimensional qudit. As for the action of Z̄, we have

Z̄|n〉 = ωn|n〉, (C20)

where ω = exp(2π i/2N ). The action of Z̄ in terms of the
states labeled by (a, b) is

Z̄ : |a, b〉 �→ Ẑ1/2Z|a, b〉. (C21)

Here, Ẑ is the Pauli-Z operator on the N -dimensional qudit.
Note that the eigenvalues of Ẑ1/2 are multiples of ω, and
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TABLE III. An alternative labeling of the elements of Z2N by
elements of ZN × Z2.

n ∈ Z2N (a, b) ∈ ZN × Z2

0 (0,0)
1 (0,1)
2 (1,0)
3 (1,1)
...

...
2N − 2 (N − 1, 0)
2N − 1 (N − 1, 1)

Z gives the necessary −1 eigenvalue, when a cycles past
N − 1. We now have the operator algebra automorphism

X̄ ↔ X̂ ĈX, Z̄ ↔ Ẑ1/2Z. (C22)

By conjugating the B site by a Hadamard, we obtain the
mapping in Eq. (50).

For illustrative purposes, we show that there is an
alternative operator algebra automorphism from a 2N -
dimensional qudit to an N -dimensional qudit and a qubit,
which arises from an extension of Z2 by ZN :

0 → ZN → Z2N → Z2 → 0. (C23)

In this case, the extension is characterized by [λ] ∈
H 2[Z2, ZN ], which may be represented by the function
λ : Z2 × Z2 → ZN , defined by

λ(a1, a2) =
{

1 if a1 + a2 = 2,
0 otherwise.

(C24)

The elements of Z2N can be written as pairs (a, b) ∈ ZN ×
Z2 according to the Table III. The group law is

(a1, b1)+ (a2, b2) = (a1 + a2 + λ(b1, b2), b1 + b2).
(C25)

We next define a basis for a 2N -dimensional qudit with
basis states labeled by n ∈ Z2N and define a basis for an
N -dimensional qudit and a qubit labeled by (a, b). We then
map between the two bases according to Table III:

|n〉 ↔ |a, b〉. (C26)

Again, we identify a mapping of operators by considering
the actions of X̄ and Z̄ on |n〉. The action of X̄ is

X̄ |n〉 = |n + 1〉, (C27)

which, in terms of the basis for the N -dimensional qudit
and qubit, gives the mapping

X̄ : |a, b〉 �→ |(a, b)+ (0, 1)〉
= |a + λ(b, 1), b + 1〉
= X ĈX|a, b〉, (C28)

where ĈX is the CNOT gate with the qubit as the control.
The action of Z̄ is

Z̄|n〉 = ωn|n〉, (C29)

giving the mapping

Z̄ : |a, b〉 �→ Z1/N Ẑ|a, b〉. (C30)

This means that the operator algebra automorphism is

X̄ ↔ X ĈX, Z̄ ↔ Z1/N Ẑ. (C31)

APPENDIX D: CALCULATION OF SURFACE
ANYON STATISTICS

In this appendix we explicitly calculate the topological
spin of the upper surface anyons of the models HZ4

1 and
H1 defined on the lattice with boundary� in Sec. II D. For
HZ4

1 , the string operator is given in Eq. (30). For edges e
and e′ that do not share a vertex, it holds that

[Xe,Xe′] = 0. (D1)

Therefore, to compute the topological spin, it suffices
to use the minimal, i.e., unit length string operators. In
particular, we apply Eq. (31) with

W1 = X1, W2 = X2, W3 = X †
3 , (D2)

where edges 1, 2, and 3 respectively join the origin with
(1, 0, 0), (0, 1, 0), and (−1, 0, 0). We find that

θ = Z†
3X †

3 Z2Z†
2X †

2 Z†
1X1Z1Z†

3X3Z3Z†
2X2Z2Z1Z†

1X †
1 Z3

= Z†
1X1Z1X †

1 X †
2 Z†

2X2Z2Z†
3X †

3 Z†
3X3Z3Z3

= −iX †
2 Z†

2X2Z2Z†
3X †

3 Z†
3X3Z3Z3

= −Z†
3X †

3 Z†
3X3Z3Z3

= i; (D3)

hence, the upper surface anyon is a semion. We give a
similar calculation in the supplementary MATHEMATICA
file.
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Next, we consider H1. In this case the string operators
are given by products of X̂e operators. Again, we apply
Eq. (31) with

W1 = X̂1, W2 = X̂2, W3 = X̂ †
3 . (D4)

To facilitate the calculation, we define modified versions
of these operators that have been truncated to the 1, 2, and
3 edges, i.e.,

W̃1 = X1S†
1S†

3CZ13, W̃†
1 = S1S3CZ13X1, (D5a)

W̃2 = X2S†
2S†

1CZ12, W̃†
2 = S2S1CZ12X2, (D5b)

W̃3 = S3S†
2CZ23X3, W̃†

3 = X3S†
3S2CZ23, (D5c)

noting that

W3W†
2W1W†

3W2W†
1 = W̃3W̃†

2W̃1W̃†
3W̃2W̃†

1. (D6)

The topological spin can then be computed using the
relations

SX = iXSZ, CZ12X1 = X1Z2CZ12. (D7)

Explicitly,

θ = S3S†
2CZ23X3S2S1CZ12X2X1S†

1S†
3CZ13X3S†

3S2CZ23X2S†
2S†

1CZ12S1S3CZ13X1

= −iS3S†
2CZ23X3S2S1CZ12X2S1S3CZ13X3S†

3S2CZ23X2S2S1CZ12S†
1S†

3CZ13

= −iZ1S3S†
2CZ23X3S2CZ12X2S3CZ13X3S†

3S2CZ23X2S2CZ12S†
3CZ13

= Z1S3S†
2CZ23X3S2CZ12S3CZ13X3S3S†

2CZ23S2CZ12S†
3CZ13

= Z1S3CZ23X3S3CZ13X3CZ23CZ13

= iZ1S3CZ23S†
3Z1CZ13CZ23CZ13

= i. (D8)

In the first (third, fifth) line, the bold operators are those
lying between the two X1 (X2, X3) operators that fail to
commute with X1 (X2, X3).

APPENDIX E: A THREE-FERMION QCA THAT
SQUARES TO THE IDENTITY

In this appendix, we construct a QCA α̃3F belonging
to the same class as the QCA α3F of Ref. [29] with the
property that α̃3F squares to the identity. To define α̃3F , we
specify a locally flippable separator. We take the separators
to be those shown in Fig. 6.

Note that the separators define a Hamiltonian that
is a nonredundant version of the original three-fermion
Walker-Wang model of Ref. [30,72].

To express the separators concisely, we introduce the
following fermionic hopping operators Ũ1 and Ũ2 on edges
e:

(E1)

(E2)

The separators in Fig. 6 can then be written more concisely,
as shown in Fig. 7.

Note that the representations of the separators in Fig. 7
have sign ambiguities since Ũ1 and Ũ2 on different edges
may anticommute. We choose the convention that Z oper-
ators are applied first, consistent with Fig. 6.

We now define flippers as depicted in Fig 8. It can be
checked that these flippers satisfy property 2 of Definition
II.1 and have the additional property that they are mutually
commuting.

Therefore, we can define the QCA α̃3F by the mapping

α̃3F(B1) = Z1, α̃3F(B2) = Z2,

α̃3F(F1) = X1, α̃3F(F2) = X2,
(E3)

where Z1 along the x, y, z axes are mapped to B1,x, B1,y ,
B1,z, respectively, and likewise for X1, Z2, and X2.
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FIG. 6. The locally flippable separators used to define the QCA α̃3F . There are two qubits per edge with the Pauli-X and Pauli-Z
operators of the first qubit denoted as X1 and Z1 and those of the second qubit represented by X2 and Z2.

To check the identity α̃2
3F(P) = P for any Pauli operator

P, we first note that the product of Ũ1 or Ũ2 around a face
is invariant under α̃3F :

α̃3F

( ∏

e⊂f

Ũ1(e)
)

=
∏

e⊂f

Ũ1(e),

α̃3F

( ∏

e⊂f

Ũ2(e)
)

=
∏

e⊂f

Ũ2(e).
(E4)

For example, we demonstrate this on the product of Ũ1 on
a face in the x direction. The product of Ũ1 around the face

f is

(E5)

To clearly see how α̃3F acts on the operator above, we treat
the X part and the Z part separately. The X operators are

FIG. 7. The separators of Fig. 6 expressed using the fermionic hopping operators in Eqs. (E1) and (E2). We note that each separator
is a single-site Pauli operator multiplied by a loop of fermion hopping operators.
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FIG. 8. The mutually commuting flippers associated with the separators in Fig. 7. Again, we note that each flipper is equivalent to a
single-site Pauli operator multiplied by a closed string of hopping operators.

mapped as:

(E6)

while the Z operators are mapped as:

(E7)

The products of Ũ2 in the X part and the Z part cancel each other. Since our convention is to apply the Z part first and
the X part second, the Ũ2 loops cancel directly without giving any extra sign. Therefore, we have proved Eq. (E4) for one
case. All other cases can be checked in a similar manner.

Given that the product of Ũ1 or Ũ2 on a closed loop is invariant under α̃3F , we can immediately conclude that α̃2
3F = 1

since the QCA defined by Eq. (E3) simply attaches loops of Ũ1 and Ũ2 to a single Pauli operator. Operators Ũ1 or Ũ2
square to the identity, so if we apply α̃3F twice, it must be the identity. This can also be confirmed by using polynomials.
The QCA α̃3F corresponds to the symplectic matrix below, which squares to the 12 × 12 identity matrix. Explicitly, we let
α̃3F be the matrix (B1, B2, F1, F2), where B1, B2, F1, and F2 are the 12 × 3 matrices (see the supplementary MATHEMATICA
file)
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B1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

xyz + x xy + y xyz + yz
x/y + x xyz + xy + x + 1 xyz + xz
x/z + x xy/z + xy xy + 1

0 0 0
0 0 0
0 0 0
0 yz + y yz + z

xz + x 0 xz + z
xy + x xy + y 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

B2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/yz + 1 1/xz + 1/z 1/x + 1
1/y2z + 1/yz 1/xyz + 1/yz + 1/z + 1 1/y + 1
1/yz2 + 1/yz 1/z2 + 1/z 1/xyz + 1/z

1 0 0
0 1 0
0 0 1
0 1/xz + 1/x 1/xy + 1/x

1/yz + 1/y 0 1/xy + 1/y
1/yz + 1/z 1/xz + 1/z 0

0 0 0
0 0 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

F1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 0

xyz + x + yz + 1 xy2z + y2z + yz + 1 xyz + yz2 + yz + z
xyz + x/y + x + 1/y xy2z + xyz + 1/y + 1 xyz2 + xyz + xz + z/y

xy + x/z + x + 1 xy2 + y + 1/z + 1 xyz + xy + z + 1
1 0 0
0 1 0
0 0 1

yz + 1 y2z + yz yz2 + yz
xz + z xyz + yz + z + 1 z2 + z
x + 1 y + 1 xyz + z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

F2 =

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

1/xyz + 1/x + 1/yz + 1 1/xyz + y/x + 1/x + y 1/xy + z/x + 1/x + 1
1/xy2z + 1/y2z + 1/yz + 1 1/xy2z + 1/xyz + y + 1 1/xy2 + 1/y + z + 1
1/xyz + 1/yz2 + 1/yz + 1/z 1/xyz2 + 1/xyz + 1/xz + y/z 1/xyz + 1/xy + 1/z + 1

0 0 0
0 0 0
0 0 0

1/xyz + 1/x y/x + 1/x z/x + 1/x
1/xy + 1/y 1/xyz + 1/xy + 1/x + 1 z/xy + 1/xy

1/xyz + 1/yz 1/xyz + 1/xz 1/xy + 1
1 0 0
0 1 0
0 0 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.
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