
PRX QUANTUM 3, 030322 (2022)

Achieving Fault Tolerance on Capped Color Codes with Few Ancillas

Theerapat Tansuwannont 1,2,* and Debbie Leung 3,4,†

1
Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo,

Ontario N2L 3G1, Canada
2
Duke Quantum Center and Department of Electrical and Computer Engineering, Duke University, Durham,

North Carolina 27708, USA
3
Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada
4
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

 (Received 12 December 2021; revised 27 May 2022; accepted 21 June 2022; published 11 August 2022)

Attaining fault tolerance while maintaining low overhead is one of the main challenges in a practical
implementation of quantum circuits. One major technique that can overcome this problem is the flag
technique, in which high-weight errors arising from a few faults can be detected by a few ancillas and
distinguished using subsequent syndrome measurements. The technique can be further improved using
the fact that, for some families of codes, errors of any weight are logically equivalent if they have the
same syndrome and weight parity, as shown in our previous work [Tansuwannont and Leung, Phys. Rev.
A 104, 042410 (2021)]. In this work, we develop a notion of distinguishable fault set that captures both
concepts of flags and weight parities, and extend the use of weight parities in error correction to families
of capped and recursive capped color codes. We also develop fault-tolerant protocols for error correction,
measurement, state preparation, and logical T-gate implementation via code switching, which are sufficient
for performing fault-tolerant Clifford computation on a capped color code, and performing fault-tolerant
universal quantum computation on a recursive capped color code. Our protocols for a capped or a recursive
capped color code of any distance require only two ancillas, assuming that the ancillas can be reused. The
concept of distinguishable fault set also leads to a generalization of the definitions of fault-tolerant gadgets
proposed by Aliferis, Gottesman, and Preskill.

DOI: 10.1103/PRXQuantum.3.030322

I. INTRODUCTION

Fault-tolerant error correction (FTEC), a procedure that
suppresses error propagation in a quantum circuit, is one
of the most important components for building large-scale
quantum computers. Given that the physical error rate is
below some constant threshold value, a FTEC scheme
along with other schemes for fault-tolerant quantum com-
putation (FTQC) allow us to fault-tolerantly simulate any
quantum circuit with arbitrarily low logical error rates
[2–10]. However, a lower logical error rate requires
more overhead (e.g., quantum gates and ancilla qubits)
[11–14]. Therefore, fault-tolerant protocols that require a

*t.tansuwannont@duke.edu
†wcleung@uwaterloo.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

small number of ancillas and give a high threshold value
are very desirable for practical implementation.

Traditional FTEC schemes require a substantial number
of ancillas for error syndrome measurements. For exam-
ple, the Shor error-correction (EC) scheme [2,15], which
is applicable to any stabilizer code, requires as many ancil-
las as the maximum weight of the stabilizer generators.
The Knill EC scheme [16], which is also applicable to
any stabilizer code, requires two code blocks of ancil-
las. Meanwhile, the Steane EC scheme [17,18], which
is applicable to any Calderbank-Shor-Steane (CSS) code,
requires one code block of ancillas. (The Shor scheme also
requires repeated syndrome measurement, while the Knill
and the Steane schemes do not.) There are several recently
proposed schemes that require fewer ancillas. Yoder and
Kim proposed a FTEC scheme for the [[7, 1, 3]] code
that requires only two ancillas [19], and their scheme is
further developed into a well-known flag FTEC scheme
for the [[5, 1, 3]] code and the [[7, 1, 3]] code that also
require only two ancillas [20] (where an [[n, k, d]] stabi-
lizer code encodes k logical qubits into n physical qubits
and has distance d). In general, a flag FTEC scheme for

2691-3399/22/3(3)/030322(48) 030322-1 Published by the American Physical Society

https://orcid.org/0000-0002-2865-0705
https://orcid.org/0000-0003-3750-2648
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.030322&domain=pdf&date_stamp=2022-08-11
http://dx.doi.org/10.1103/PRXQuantum.3.030322
https://creativecommons.org/licenses/by/4.0/

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

any stabilizer code requires as few as d + 1 ancillas, where
d is the code distance [21], with further reduction known
for certain families of codes [20,22–25]. The flag tech-
nique can also be applied to other schemes for FTQC
[26–35].

How errors spread during the protocols depends on sev-
eral factors, such as the order of quantum gates in the
circuits for syndrome measurement and the choice of sta-
bilizer generators being measured. The idea behind the
flag technique is that a few ancillas are added to the
circuits in order to detect errors of high weight arising
from a few faults, and the errors will be distinguished
by their syndromes obtained from subsequent syndrome
measurements. Note that some possible errors may be log-
ically equivalent and need not be distinguished, and for
some families of codes, we can tell whether the errors
are logically equivalent using their syndromes and error
weight parities. Tansuwannont and Leung [1] combines
the ideas of flags and weight parities to construct a FTEC
scheme for a [[49, 1, 9]] concatenated Steane code, which
can correct up to three faults and requires only two ancil-
las. In such a scheme, the weight parity of the error in
each sub-block, which is the lower-level [[7, 1, 3]] code,
is determined by the results from measuring the generators
of the higher-level [[7, 1, 3]] code. The scheme in Ref. [1]
uses very few ancillas compared to conventional schemes
for a concatenated code (which is constructed by replac-
ing a physical qubit by a code block) and is expected to be
applicable to concatenated codes other than the [[49, 1, 9]]
code.

There are families of codes that attain high distance
without code concatenation. Topological codes in which
the code distance can be made arbitrarily large by increas-
ing the lattice size are good candidates for practical imple-
mentation of quantum computers since fault-tolerant pro-
tocols for these codes typically give very high accuracy
thresholds [36–52]. Examples of two-dimensional (2D)
topological stabilizer codes are 2D toric codes [4,53] and
2D color codes [54]. These codes are suitable for physical
implementations using superconducting qubits [24,25,55]
and qubits realized by Majorana zero modes [56,57] since
qubits can be arranged on a 2D plane and only quan-
tum gates involving neighboring qubits are required. Toric
codes and color codes can be transformed to one another
using the techniques developed in Ref. [58] (see also
Ref. [59]).

The simplest way to perform FTQC on a topological
stabilizer code is to implement logical gates by apply-
ing physical gates transversally since doing so does not
spread errors (therefore fault tolerant). Unfortunately, it
is known by the Eastin-Knill theorem that a universal
set of quantum operations cannot be achieved using only
transversal gates [60]. Moreover, logical gates that can be
implemented transversally on a 2D topological stabilizer
code are in the Clifford group [61] (see also Ref. [62]).

The Clifford group can be generated by the Hadamard
gate (H), the π/4 gate (S), and the CNOT gate [63,64].
A transversal CNOT gate is achievable by both 2D toric
codes and 2D color codes since these codes are in the
CSS code family [65,66]. In addition, the 2D color codes
have transversal H and S gates [54], so any Clifford oper-
ation can be implemented transversally on any 2D color
code.

Implementing only Clifford gates on a 2D color code
is not particularly interesting since a Clifford operation
can be efficiently simulated by a classical computer (the
result is known as the Gottesman-Knill theorem) [67,68].
However, universality can be achieved by Clifford gates
together with any gate not in the Clifford group [69].
There are two compelling approaches for implementing
a non-Clifford gate on a 2D color code: magic state dis-
tillation [70] and code switching [71–74]. The former
approach focuses on producing high-fidelity T states from
noisy T states and Clifford operations, where |T〉 = (|0〉 +√

i|1〉)/√2 is the state that can be used to implement
the non-Clifford T =

(
1 0
0

√
i

)
operation. By replacing any

physical gates and qubits with logical gates and blocks
of code, a logical T gate can be implemented using a
method similar to that proposed in Ref. [70]. The latter
approach uses the gauge fixing method to switch between
a 2D color code (in which Clifford gates are transversal)
and a 3D color code (in which the T gate is transversal).
A recent study [75] that compares the overhead required
for these two approaches shows that code switching does
not outperform magic state distillation when certain FT
schemes are used, except for some small values of the
physical error rate. Nevertheless, their results do not rule
out the possibilities of FT schemes that have yet to be
discovered, which the authors are hopeful could reduce
the overhead required for either of the aforementioned
approaches.

The EC technique using weight parities introduced in
Ref. [1] was originally developed for the [[49,1,9]] code
obtained from concatenating the [[7, 1, 3]] codes. The
[[7, 1, 3]] code is also the smallest 2D color code. Surpris-
ingly, we find that 2D color codes of any distance have
certain properties that make similar techniques applicable,
under appropriate modifications of the original code to be
described in this paper. In order to obtain the weight parity
of an error on a 2D color code, we need to make mea-
surements of stabilizer generators of a bigger code that
contains the 2D color code as a subcode. In contrast to
Ref. [1], the bigger code in this work is not obtained from
code concatenation. Our development for FTEC protocols
leads to a family of capped color codes, which are CSS
subsystem codes [76,77]. We study two stabilizer codes
obtained from a (subsystem) capped color code through
gauge fixing, namely capped color codes in H form and
T form. The code in H form that contains a 2D color

030322-2

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

code as a subcode has transversal Clifford gates, while the
code in T form has transversal CNOT and transversal T
gates. In fact, our capped color codes bear similarities to
the subsystem codes presented in Refs. [78–80], in which
qubits can be arranged on a 2D plane. In this work, we
focus mainly on the construction of circuits for measur-
ing generators of a capped color code in H form, and the
construction of a FTEC scheme as well as other fault-
tolerant schemes for measurement, state preparation, and
Clifford operation. We also prove that our fault-tolerant
schemes for capped color codes in H form of any distance
require only two ancillas (assuming that the ancillas can
be reused). In addition, we construct a family of recur-
sive capped color codes by recursively encoding the top
qubit of capped color codes. Circuits for measuring gen-
erators of capped color codes in H form also work for
recursive capped color codes, so fault-tolerant Clifford
computation on a recursive capped color code of any dis-
tance using only two ancillas is possible. We also show
that a logical T gate can be fault-tolerantly implemented
on a recursive capped color code of any distance using
only two ancillas via code switching, leading to a com-
plete set of operations for fault-tolerant universal quantum
computation.

This paper is organized as follows. In Sec. II, we pro-
vide a brief review of the EC technique using flags and
error weight parities. We also develop a notion of distin-
guishable fault set in Definition 3, which is the central idea
of this work. In Sec. III, we review basic properties of the
3D color code of distance 3 (which is defined as a subsys-
tem code). We then provide a construction of circuits for
measuring the stabilizer generators of the 3D color code
in H form that give a distinguishable fault set. In Sec. IV,
we define families of capped and recursive capped color
codes, whose properties are very similar to those of the 3D
color code of distance 3. Afterwards, circuits for measur-
ing the stabilizer generators of the capped color code in H
form are constructed using ideas from the previous section.
We prove Theorem 1 that states sufficient conditions for
the circuits that can give a distinguishable fault set, then
prove Theorems 2 and 3 that state that, for a capped color
code in H form of any distance, a distinguishable fault set
can be obtained if the circuits for measuring generators are
flag circuits of a particular form. The circuits that work
for capped color codes are also applicable to recursive
capped color codes. In Sec. V, we discuss an alterna-
tive version of fault-tolerant gadgets whose definitions are
modified so that they are compatible with the notion of
distinguishable fault set. Afterwards, we construct fault-
tolerant protocols for capped and recursive capped color
codes in H form. Some protocols described in this work are
also applicable to other stabilizer codes whose generator
measurement circuits give a distinguishable fault set. Last,
we discuss our results and provide directions for future
work in Sec. VI.

II. FLAGS AND ERROR WEIGHT PARITIES IN
ERROR CORRECTION

In this section, we start by providing a brief review of
the flag EC technique applied to the case of one fault in
Sec. II A. Next, we extend the idea to the case of multiple
faults in Sec. II B and introduce a notion of distinguish-
able fault set in Definition 3. Afterwards, we explain how
weight parities can be used in error correction in Sec. II C.
The equivalence of Pauli errors with the same syndrome
and weight parity proved for the [[7, 1, 3]] Steane code in
Ref. [1] is also extended to a bigger family of codes in
Lemma 1.

A. Flag error correction

Quantum computation is prone to noise, and an error on
a few qubits can spread and cause a big problem in the
computation if the error is not treated properly. One way
to protect quantum data against noise is to use a quantum
error correcting code (QECC) to encode a small number
of logical qubits into a larger number of physical qubits. A
quantum [[n, k, d]] stabilizer code [67,81] encodes k logi-
cal qubits into n physical qubits and can correct errors up to
weight τ = �(d − 1)/2�. Quantum error correction (QEC)
is a process that aims to undo the corruption that happens
to a codeword.

A stabilizer code is a simultaneous +1 eigenspace of a
list of commuting independent Pauli operators; they gener-
ate the stabilizer group for the code. For a stabilizer code,
the EC procedure involves measurements of stabilizer gen-
erators, which results in an error syndrome. The QEC is
designed so that the more likely Pauli errors are either log-
ically equivalent or have distinguishable syndrome. If the
weight of the Pauli error E occurred to a codeword is no
bigger than τ , E can be identified by the error syndrome
�s(E) obtained from the generator measurements, and can
be corrected by applying E† to the codeword.

The above working principle for a stabilizer code
assumes that the syndrome measurements are perfect. In
practice, every step in a quantum computation, including
those in the syndrome measurements, is subject to error.
An initial error can lead to a complex overall effect in the
circuit. We adhere to the following terminologies and noise
model in our discussion.
Definition 1 (Location, noise model, and fault [10]): A
circuit consists of a number of time steps and a number of
qubits and is specified by operations to the qubits in each
time step. The operations can be single-qubit state prepara-
tion, one- or two-qubit gates, or single-qubit measurement.
(When nothing happens to a qubit, it goes through the one-
qubit gate of identity.) A location is labeled by a time step
and the index (or indices) of a qubit (or pair of qubits)
involved in an operation.

We consider the circuit-level noise in which every loca-
tion is followed by depolarizing noise: every one-qubit

030322-3

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

operation is followed by a single-qubit Pauli error I , X , Y,
or Z, and every two-qubit operation is followed by a two-
qubit Pauli error of the form P1 ⊗ P2, where P1, P2 ∈
{I , X , Y, Z}. For a single qubit measurement (which outputs
a classical bit of information), the operation is followed by
either no error or a bit-flip error; this is equivalent to hav-
ing a single-qubit X (or Z) error before a measurement in
the Z (or X) basis.

A fault is specified by a location and a nontrivial one- or
two-qubit Pauli operation that describes a deviation from
the ideal operation on the location. This Pauli operation is
called the “Pauli error due to the fault”.

A small number of faults during the measurements can
lead to an error of weight higher than τ that may cause the
EC protocol to fail. To see this, first, we describe how an

error of weight 1 or 2 arising from a faulty operation can
propagate through a circuit and become an error of higher
weight. Specifically, a Hadamard gate and a CNOT gate will
transform X -type and Z-type errors as

H : X 	→ Z, Z 	→ X ,
CNOT : XI 	→ XX , ZI 	→ ZI ,

IX 	→ IX , IZ 	→ ZZ.

To see how errors from a few faults can cause an EC
protocol to fail, let us consider a circuit for measuring a
stabilizer generator of the Steane code as an example. The
[[7, 1, 3]] Steane code [66] is a stabilizer code that can be
described by the generators

gx
1 : I I I X X X X , gz

1 : I I I Z Z Z Z,
gx

2 : I X X I I X X , gz
2 : I Z Z I I Z Z,

gx
3 : X I X I X I X , gz

3 : Z I Z I Z I Z.

Logical X and logical Z operators of the Steane code are
X ⊗7M and Z⊗7N for any stabilizers M , N . The syndrome
is a 6-bit string of the form (�sx|�sz), with the ith bit being 0
(or 1) if measuring the ith generator (ordered as gx

1, gx
2, gx

3,
then gz

1, gz
2, gz

3) gives the +1 (or −1) eigenvalue.
Suppose that during the syndrome measurement all cir-

cuits for measuring stabilizer generators are perfect except
for a circuit for measuring gz

1 that has at most one fault.
Consider a circuit for measuring gz

1 and storing the syn-
drome using one ancilla qubit (called the syndrome ancilla)
as in Fig. 1(a). Also, assume that at most one CNOT gate
causes either an II , IZ, ZI , or ZZ error. Because of error
propagation, a Z error occurred to the syndrome ancilla can
propagate back to one or more data qubits. As a result, we
find that possible errors on data qubits arising from at most
one CNOT fault (up to multiplication of gz

1) are

I , Z4, Z5, Z6, Z7, Z6Z7. (1)

A circuit fault may also cause the syndrome bit to flip. In
order to obtain the syndrome exactly corresponding to the
data error, one can perform full syndrome measurements
until the outcomes are repeated two times in a row, then
do the error correction using the repeated syndrome. How-
ever, note that the Steane code that can correct any error
up to weight 1 must be able to correct the following errors
as well:

I , Z1, Z2, Z3, Z4, Z5, Z6, Z7. (2)

Errors Z1 and Z6Z7 have the same syndrome (0, 0, 1|0, 0, 0)
but are not logically equivalent, and subsequent syndrome

measurements cannot distinguish between these two cases.
This means that if a CNOT fault leads to the Z6Z7 error,
a correction step for the syndrome (0, 0, 1|0, 0, 0) that
applies Z†

1 to the data qubits will result in a logical error
Z1Z6Z7 on the data qubits, causing the EC protocol to fail.

(a)

(b)

(c)

FIG. 1. (a) An example of a nonflag circuit for measuring gen-
erator gz

1 of the [[7, 1, 3]] code. Only qubits on which the operator
acts are displayed. The measurement results 0 and 1 obtained
from the syndrome ancilla correspond to the +1 and −1 eigen-
values of gz

1. (b) An example of a flag circuit for measuring gz
1.

The state of the flag ancilla can flip from |+〉 to |−〉 if some fault
occurs in between two flag CNOT gates. A circuit for measuring
an X -type generator can be obtained by replacing each CNOT gate
with the gate shown in (c).

030322-4

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

The goal of this work is to design an EC protocol that
is fault tolerant; that is, we want to make sure that any
subsequent error arising from a small number of faults will
still be correctable by the protocol regardless of its weight
(the formal definitions of fault tolerance will be discussed
in Sec. V A).

One way to solve the error distinguishing issue is to
use traditional FTEC schemes such as those proposed by
Shor [2,15], Steane [17,18], or Knill [16]. However, these
schemes require a large number of ancillas. An alternative
way to solve the problem is to add an additional ancilla
qubit in a circuit for measuring gz

1, as shown in Fig. 1(b).
A circuit of this form is called a flag circuit [20] [in con-
trast to the circuit in Fig. 1(a), which is called a nonflag
circuit]. The additional ancilla qubit is called a flag ancilla,
which is initially prepared in the state |+〉. There are two
types of CNOT gates in a flag circuit: a data CNOT gate that
couples one of the data qubits and the syndrome ancilla,
and a flag CNOT gate that couples the flag ancilla and the
syndrome ancilla. Whenever a data CNOT gate in between
two flag CNOT gates causes either an IZ or ZZ error, a Z
error will propagate from the syndrome ancilla to the flag
ancilla, causing the state of the flag ancilla to flip to |−〉. In
general, a flag circuit may have more than one flag ancilla,
and data and flag CNOT gates may be arranged in a compli-
cated way so that a certain number of faults can be caught
by the flag ancillas.

By using the circuit in Fig. 1(b) for measuring gz
1,

we find that possible errors on the data qubits arising
from at most one CNOT fault corresponding to each flag
measurement outcome are

0 : I , Z4, Z5, Z6, Z7,
1 : I , Z4, Z6Z7, Z7, (3)

where the outcomes 0 and 1 correspond to |+〉 and |−〉
states, respectively. We can see that the flag measurement
outcome is 1 whenever Z6Z7 occurs. In contrast, an input
error Z1 will not flip the state of the flag ancilla, so it
always corresponds to the flag measurement outcome 0.
Therefore, Z1 and Z6Z7 can be distinguished using the
flag measurement outcome, and an appropriate error cor-
rection for each case can be applied to correct such an
error. The main advantage of the flag technique is that the
number of ancillas required for the flag FTEC protocol is
relatively small compared to that required for the tradi-
tional FTEC protocols (assuming that ancilla preparation
and measurement are fast and the ancillas can be reused).

B. Distinguishable fault set

For a general stabilizer code that can correct errors up
to weight τ = �(d − 1)/2�, we would like to construct cir-
cuits for syndrome measurement in a way that all possible
errors arising from up to t faults (where t ≤ τ) can be cor-
rected, and t is as close to τ as possible. Note that these

errors include any single-qubit errors and errors arising
from any fault in any circuit involved in the syndrome mea-
surement. For simplicity, this work will focus mainly on a
stabilizer code in the CSS code family [65,66], in which
X -type and Z-type errors can be detected and corrected
separately.

For a given CSS code, a circuit for measuring a Z-type
generator will look similar to the circuit in Fig. 1(a) or 1(b),
except that there will be w data CNOT gates for a Z-type
generator of weight w. A circuit can have any number of
flag ancillas (or have no flag ancillas). There are several
factors that can determine the ability to distinguish pos-
sible errors; for example, the number of flag ancillas, the
ordering of data and flag CNOT gates, and the choice of
generators being used for the syndrome measurement [20].
A circuit for measuring an X -type generator is similar to a
circuit for measuring a Z-type generator, except that each
CNOT gate is replaced by the gate displayed in Fig. 1(c).

For a given t, finding all possible combinations of faults
up to t faults can be laborious since there are many circuits
involved in the syndrome measurement, and each circuit
has many gates. To simplify our analysis, we first consider
the case that there is only one CNOT fault in one of the cir-
cuits for measuring Z-type generators [similar to Fig. 1(a)
or 1(b)]. Suppose that there are a total of c flag ancillas
involved in a single round of the full syndrome measure-
ment (counted from all circuits). We define a flag vector
∈ Z

c
2 to be a bitstring wherein each bit is the measurement

outcome of each flag ancilla. There are two mathematical
objects associated with each fault: a data error arising from
the fault and a flag vector corresponding to the fault.

Recall that a faulty CNOT gate can cause a two-qubit
error of the form P1 ⊗ P2, where P1, P2 ∈ {I , X , Y, Z}.
However, there are many cases of a single fault that are
equivalent, meaning that they can give rise to the same data
error and the same flag vector. We find that all possible
cases in which a single fault can lead to a purely Z-type
error on the data qubits can be obtained by considering
only (1) the cases that a faulty CNOT gate in a circuit for
measuring a Z-type generator causes an IZ error, and (2)
the cases that a Z error occurs to any data or ancilla qubit.
This follows from the following facts [23].

1. The case that a faulty CNOT gate causes a ZZ error is
equivalent to the case that the preceding CNOT gate
causes an IZ error (while the case that the first CNOT
gate in a circuit causes a ZZ error is equivalent to
the case that a Z error occurs to an ancilla qubit).

2. The case that a faulty CNOT gate causes an XZ or YZ
error is equivalent to the case that an X error occurs
to a data qubit and a faulty CNOT gate causes an IZ
or ZZ error.

3. The case that a faulty CNOT gate causes an
XI , YI , ZI , IX , XX , YX , or ZX error can be consid-
ered as the case that a single-qubit error occurs to a

030322-5

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

data qubit since an X error occurred to the syndrome
ancilla will not propagate back to any data qubit.

4. The case that a faulty CNOT gate causes an
IY, XY, YY, or ZY error is similar to the case that a
faulty CNOT gate causes an IZ, XZ, YZ, or ZZ error.

5. An ancilla preparation or measurement fault can be
considered as the case that an X or Z error occurred
to an ancilla qubit (either syndrome or flag ancilla).

6. A CSS code can detect and correct X -type and Z-
type errors separately, and a single fault in a circuit
for measuring an X -type generator cannot cause a Z-
type error of weight greater than 1 (and vice versa).

Moreover, if X -type and Z-type generators have similar
forms and the gate permutations in the measuring circuits
are the same, then all possible faults that can lead to X -type
errors on the data qubits are of similar form.

If there are many faults during the protocol, the data
errors and the flag vectors caused by each fault can be com-
bined [1]. In particular, a fault combination can be defined
as follows.
Definition 2 (Fault combination): A fault combination
� = {λ1, λ2, . . . , λr} is a set of r faults λ1, λ2, . . . , λr. Sup-
pose that the Pauli error due to fault λi can propagate
through the circuit and lead to data error Ei and flag vector
�fi. The combined data error E and cumulative flag vector �f
corresponding to � are defined as

E =
r∏

i=1

Ei, (4)

�f =
r∑

i=1

�fi (mod 2). (5)

Note that the error syndrome of the combined data error
is �s(E) = ∑r

i=1 �s(Ei) (mod 2). For example, suppose that
a fault combination � arises from two faults λ1 and λ2
that can lead to data errors E1 and E2, and cumulative flag
vectors �f1 and �f2. Then, the combined data error E and the
cumulative flag vector �f of � are E = E1 · E2 and �f = �f1 +
�f2 (mod 2).

When faults occur in an actual protocol, the faulty loca-
tions and the combined data error are not known. In order
to determine the combined data error so that the error cor-
rection can be done, we try to measure the error syndrome
of the combined data error, and calculate the cumulative
flag vector from the flag measurement results obtained
since the beginning of the protocol. These measurements,
in turn, are subject to errors. The full syndrome mea-
surements will be performed until the syndromes and the
cumulative flag vectors are repeated a certain number of
times (similar to the Shor FTEC scheme); the full details
of the protocol will be described in Sec. V B. (Note that, by
defining the cumulative flag vector as a sum of flag vectors,

we lose the information about the ordering in which each
fault occurs. However, we find that fault-tolerant protocols
presented in this work can still be constructed without such
information.)

As previously explained, error correction can fail if
there are different faults that lead to nonequivalent errors,
but there is no way to distinguish them using their error
syndromes or flag measurement results. To avoid this,
all possible fault combinations must satisfy some condi-
tions so that they can be distinguished. In particular, for a
given set of circuits for measuring stabilizer generators, all
possible fault combinations can be found, and their corre-
sponding combined data error and cumulative flag vector
can be calculated. Let the fault set Ft be the set of all pos-
sible fault combinations arising from up to t faults. We will
be able to distinguish all fault combinations if the fault set
satisfies the conditions in the following definition.
Definition 3 (Distinguishable fault set): Let the fault set
Ft denote the set of all possible fault combinations aris-
ing from up to t faults, and let S be the stabilizer group of
the quantum error correcting code used to encode the data.
We say that Ft is distinguishable if, for any pair of fault
combinations �p ,�q ∈ Ft, at least one of the following
conditions is satisfied:

1. �s(Ep) �= �s(Eq),
2. �fp �= �fq,
3. Ep = Eq · M for some stabilizer M ∈ S,

where Ep ,�fp correspond to �p , and Eq,�fq correspond to
�q. Otherwise, we say that Ft is indistinguishable.

An example of a distinguishable fault set with t = 1 is
the fault set corresponding to Eq. (3) (assuming that a fault
occurs in a circuit for measuring gz

1 only). In that case, we
can see that, for any pair of faults, either the syndromes
of the data errors or the flag measurement outcomes are
different.

The following proposition states the relationship
between “correctable” and “detectable” faults. This is sim-
ilar to the fact that a stabilizer code of distance d can
detect errors up to weight d − 1 and can correct errors up
to weight τ = �(d − 1)/2� [67].

Proposition 1. Ft is distinguishable if and only if a
fault combination corresponding to a nontrivial logical
operator and the zero cumulative flag vector is not in F2t.

Proof. (⇒) Let �p ,�q ∈ Ft be fault combinations arising
from up to t faults, let �̃r ∈ F2t be a fault combination aris-
ing from up to 2t faults, and let S be the stabilizer group.
First, observe that, for any �̃r ∈ F2t, there exist �p ,�q ∈
Ft such that �̃r = �p ∪�q (where the union of two fault
combinations is similar to the union of two sets). Now
suppose that Ft is distinguishable. Then, for each pair of

030322-6

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

�p ,�q in Ft, �s(Ep) �= �s(Eq) or �fp �= �fq or Ep = Eq · M for
some stabilizer M ∈ S. We find that �̃r = �p ∪�q corre-
sponds to Er and�fr such that �s(Er) = �s(Ep)+ �s(Eq) �= 0 or
�fr = �fp +�fq �= 0 or Er = Ep · Eq = M for some stabilizer
M ∈ S. This is true for any �̃r ∈ F2t, meaning that there is
no fault combination in F2t that corresponds to a nontrivial
logical operator and the zero cumulative flag vector.

(⇐) As before, we know that, for any �̃r ∈ F2t, there
exist �p ,�q ∈ Ft such that �̃r = �p ∪�q. Now suppose
that Ft is indistinguishable. Then, there are some pairs
of �p ,�q in Ft such that �s(Ep) = �s(Eq), �fp = �fq, and
Ep · Eq is not a stabilizer in S. For such pairs, we find that
�̃r = �p ∪�q corresponds to Er and �fr such that �s(Er) =
�s(Ep)+ �s(Eq) = 0, �fr = �fp +�fq = 0, and Er = Ep · Eq is
not a stabilizer in S. Therefore, there is a fault combination
corresponding to a nontrivial logical operator and the zero
cumulative flag vector in F2t. �

Finding a circuit configuration that gives a distinguish-
able fault set is one of the main goals of this work. We
claim that, for a given set of circuits for measuring gener-
ators of a stabilizer code, if the fault set is distinguishable,
a FTEC protocol for such a code can be constructed.
However, we defer the proof of this claim until Sec. V B.

C. Finding equivalent errors using error weight
parities

One goal of this work is to find a good combination of
stabilizer code and a set of circuits for measuring the code
generators in which the corresponding fault set is distin-
guishable. As we see in Definition 3, whether each pair
of fault combinations can be distinguished depends on the
syndrome of the combined data error and the cumulative
flag vector corresponding to each fault combination, and
these features heavily depend on the structure of the cir-
cuits. However, we should note that there is no need to
distinguish a pair of fault combinations whose combined
data errors are logically equivalent. Therefore, if the cir-
cuits for a particular code are designed in a way that large
portions of fault combinations can give equivalent errors,
the fault set arising from the circuits will be more likely
distinguishable.

For a general stabilizer code, it is not obvious to see
whether two Pauli errors with the same syndrome are
logically equivalent or off by a multiplication of some non-
trivial logical operator. Fortunately, for some CSS codes, it
is possible to check whether two Pauli errors with the same
syndrome are logically equivalent by comparing their error
weight parities, defined as follows.

Definition 4 (Weight parity): The weight parity of Pauli
error E, denoted by WP(E), is 0 if E has even weight, and
it is 1 if E has odd weight.

In Ref. [1], we proved that, for the [[7, 1, 3]] Steane code
and the [[23, 1, 7]] Golay code, errors with the same syn-
drome and weight parity are logically equivalent. In this
work, the idea is further extended to a family of [[n, k, d]]
CSS codes in which n is odd, k is 1, all stabilizer gener-
ators have even weight, and X ⊗n and Z⊗n are logical X
and logical Z operators, respectively. The lemma (adapted
from Claim 1 of Ref. [1]) is as follows.

Lemma 1. Let C be an [[n, k, d]] CSS code in which n
is odd, k = 1, all stabilizer generators have even weight,
and X ⊗n and Z⊗n are logical X and logical Z operators.
Also, let Sx, Sz be subgroups generated by X -type and Z-
type generators of C, respectively, and let E1, E2 be Pauli
errors of any weights with the same syndrome.

1. Suppose that E1, E2 are Z-type errors. Then E1, E2
have the same weight parity if and only if E1 = E2 ·
M for some M ∈ Sz.

2. Suppose that E1, E2 are X -type errors. Then E1, E2
have the same weight parity if and only if E1 = E2 ·
M for some M ∈ Sx.

Proof. We focus on the first case when E1, E2 are Z-type
errors and omit the similar proof for the second case. First,
recall that the normalizer group of the stabilizer group (the
subgroup of Pauli operators that commute with all stabi-
lizers) is generated by the stabilizer generators together
with the logical X and the logical Z. Since E1, E2 have the
same syndrome, their product N = E1E2 has trivial syn-
drome, and is thus in the normalizer group. So we can
express N as a product of the stabilizer generators and the
logical X and Z. But there is no X -type factors (since N
is Z type). Therefore, N = M (Z⊗n)a, where M ∈ Sz and
a ∈ {0, 1}.

Next, we make an observation. Let M1, M2 be two Z-
type operators, with respective weights w1, w2. The weight
of the product M1M2 is w1 + w2 − 2c, where c is the
number of qubits supported on both M1 and M2. From
this observation, and the fact that all generators have
even weight, we know that M has even weight. Also,
from the same observation, and the hypothesis that E1, E2
have the same weight parity, N also has even weight.
If a = 1, N = M (Z⊗n)a will contradict the observation,
so a = 0, N = M , and E1E2 = M ∈ Sz as claimed. On
the other hand, if we assume that E1, E2 have differ-
ent weight parities, then N has odd weight and a =
1, which implies that E1E2 = M (Z⊗n) for some M ∈
Sz. �

Lemma 1 provides a possible way to perform error
correction using syndromes and weight parities, and it
can help us find a good code and circuits in which the
fault set is distinguishable. In particular, for a given CSS
code satisfying Lemma 1, if the error syndrome and the

030322-7

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

weight parity of the data error can be measured perfectly,
then an EC operator that can map the erroneous code-
word back to the original codeword can be determined
without failure. The EC operator can be any Pauli oper-
ator that has the same syndrome and the same weight
parity as those of the data error. For example, if the
[[7, 1, 3]] Steane code is being used and the data error is
Z1Z3Z6Z7, we can use Z1Z2 as an EC operator to do the
error correction.

However, measuring the weight parity should not be
done directly on the codeword; measuring weight parities
of Z-type and X -type errors correspond to measuring X ⊗n

and Z⊗n, respectively, which may destroy the superposition
of the encoded state. Moreover, X ⊗n and Z⊗n do not com-
mute. Fortunately, if we have two codes C1, C2 such that
C1 is a subcode of C2, then the weight parity of an error
on C1 can sometimes be determined by the measurement
results of the generators of C2.

In Ref. [1], in which a FTEC protocol for a [[49, 1, 9]]
concatenated Steane code is developed, we considered
the case that C1 is the [[7, 1, 3]] Steane code and C2 is
the [[49, 1, 9]] concatenated code. The error weight par-
ities for each sub-block of the seven-qubit code were
determined by the syndrome obtained from the measure-
ment of the [[49, 1, 9]] code generators. Afterwards, error
correction was performed blockwisely using the weight
parity of the error in each sub-block, together with the
syndrome obtained from the measurement of the seven-
qubit code generators for such a sub-block. We also found
some evidences suggesting that a similar error-correction
technique may be applicable to other concatenated codes
such as the concatenated Golay code and a concatenated
Steane code with more than two levels of concatena-
tion.

In this work, we use a different approach; we consider
a case in which C2 is not constructed from concatenating
C1’s. In Sec. III, we consider the 3D color code of dis-
tance 3 in the form that has a 2D color code of distance
3 as a subcode, and we try to construct circuits for mea-
suring its generators that give a distinguishable fault set.
We extend the construction ideas to families of capped and
recursive color codes in Sec. IV. Fault-tolerant protocols
for the code and circuits that give a distinguishable fault
set will be discussed in Sec. V.

III. SYNDROME MEASUREMENT CIRCUITS FOR
THE 3D COLOR CODE OF DISTANCE 3

In this section, we try to find circuits for measuring gen-
erators of the 3D color code of distance 3 that gives a
distinguishable fault set. We first define a 3D color code
of distance 3 as a CSS subsystem code and observe some

of its properties that are useful for fault-tolerant quan-
tum computation. Afterwards, we give the CNOT order-
ings for the circuits that can make the fault set become
distinguishable.

A. The 3D color code of distance 3

First, let us consider the qubit arrangement as dis-
played in Fig. 2(a). A 3D color code of distance 3 [73]
is a [[15, 1, 3]] CSS subsystem code [76,77] that can be
described by the stabilizer group S3D = 〈vx

i , vz
i 〉 and the

gauge group G3D = 〈vx
i , vz

i , f x
j , f z

j 〉, i = 0, 1, 2, 3 and j =
1, 2, . . . , 6, where the vx

i and f x
j (or the vz

i and f z
j) are X -

type (or Z-type) operators defined on the following set of
qubits:

(a) vx
0 (or vz

0) is defined on q0,q1,q2,q3,q4,q5,q6,q7,
(b) vx

1 (or vz
1) is defined on q1,q2,q3,q5,q8,q9,q10,

q12,
(c) vx

2 (or vz
2) is defined on q1,q3,q4,q6,q8,q10,q11,

q13,
(d) vx

3 (or vz
3) is defined on q1,q2,q4,q7,q8,q9,q11,

q14,
(e) f x

1 (or f z
4) is defined on q1,q2,q3,q5,

(f) f x
2 (or f z

5) is defined on q1,q3,q4,q6,
(g) f x

3 (or f z
6) is defined on q1,q2,q4,q7,

(h) f x
4 (or f z

1) is defined on q1,q4,q8,q11,
(i) f x

5 (or f z
2) is defined on q1,q2,q8,q9,

(j) f x
6 (or f z

3) is defined on q1,q3,q8,q10.

Here qubit i in Fig. 2(a) is denoted by qi. Graphically, the
vx

i and vz
i are the eight-body volumes shown in Fig. 2(b),

and the f x
j and f z

j are the four-body faces shown in
Fig. 2(c). Note that f x

j and f z
k anticommute when j = k,

and they commute when j �= k. The dual lattice of the 3D
color code of distance 3 is illustrated in Fig. 2(d), where
each vertex represents each stabilizer generator.

The 3D color code of distance 3 can be viewed as the
[[15, 7, 3]] Hamming code in which six out of seven logi-
cal qubits become gauge qubits. From the subsystem code
previously described, a [[15, 1, 3]] stabilizer code can be
constructed by fixing some gauge qubits; i.e., choosing
some gauge operators that commute with one another and
including them in the stabilizer group. In this work, we dis-
cuss two possible ways to construct a stabilizer code from
the 3D color code of distance 3. The resulting codes will
be called the 3D color code in H form and the 3D color
code in T form.

1. The 3D color code of distance 3 in H form

Let us consider the center plane of the code shown in
Fig. 2(a) that covers q1 to q7. We can see that the plane
looks exactly like the 2D color code of distance 3 [54],
whose stabilizer group is S2D = 〈f x

1 , f x
2 , f x

3 , f z
4 , f z

5 , f z
6 〉 (the

2D color code of distance 3 is equivalent to the [[7, 1, 3]]

030322-8

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

(a)

(b)

(c)

(d)

FIG. 2. The 3D color code of distance 3. In (a), qubits are rep-
resented by vertices. Note that the set of qubits are bipartite, as
displayed by black and white colors. Stabilizer generators and
gauge generators of the code are illustrated by volume operators
in (b) and face operators in (c), respectively. The dual lattice of
the code is shown in (d).

Steane code). The 3D color code in H form is constructed
by adding the stabilizer generators of the 2D color code to
the old generating set of the 3D color code; the stabilizer
group of the 3D color code of distance 3 in H form is

SH = 〈vx
0, vx

1, vx
2, vx

3, f x
1 , f x

2 , f x
3 ,

vz
0, vz

1, vz
2, vz

3, f z
4 , f z

5 , f z
6 〉. (6)

We can choose logical X and logical Z operators of
this code to be X ⊗nM and Z⊗nN for some stabilizers
M , N ∈ SH . One important property of the code in H form
for fault-tolerant quantum computation is that the logical
Hadamard, S, and CNOT gates are transversal; i.e., H̄ =
H⊗n is a logical Hadamard gate, S̄ = (S†)⊗n is a logical

S gate, and CNOT = CNOT⊗n is a logical CNOT gate, where

H = 1√
2

(
1 1
1 −1

)
and S =

(
1 0
0 i

)
.

Note that the choice of stabilizer generators for SH is not
unique. However, the choice of generators determines how
the error syndrome will be measured, and different choices
of generators can give different fault sets. The circuits for
measuring generators discussed later in Sec. III B only
correspond to the choice of generators in Eq. (6).

2. The 3D color code of distance 3 in T form

Compared to the code in H form, the 3D color code of
distance 3 in T form is constructed from different gauge
operators of the [[15, 1, 3]] subsystem code. In particular,
the generators of the code in T form consist of the gen-
erators of the [[15, 1, 3]] subsystem code and all Z-type
four-body face generators; i.e., the stabilizer group of the
code in T form is

ST = 〈vx
0, vx

1, vx
2, vx

3, f z
1 , f z

2 , f z
3 ,

vz
0, vz

1, vz
2, vz

3, f z
4 , f z

5 , f z
6 〉. (7)

Similar to the code in H form, we can choose logical X
and logical Z operators of this code to be X ⊗nM and Z⊗nN
for some stabilizers M , N ∈ ST. Also, the CNOT gate is
transversal in the code of T form. However, one major dif-
ference from the code in H form is that Hadamard and S
gates are not transversal in this code. Instead, a T gate is
transversal; a logical T gate can be implemented by apply-
ing T gates on all qubits represented by black vertices in
Fig. 2(a) and applying T† gates on all qubits represented
by white vertices, where

T =
(

1 0
0

√
i

)
.

In fact, the code in T form is equivalent to the [[15, 1, 3]]
quantum Reed-Muller code. Note that Lemma 1 is appli-
cable to both codes in H form and T form since they have
all code properties required by the lemma, even though X -
type and Z-type generators are not similar in the case of
the code in T form.

3. Code switching

It is possible to transform between the code in H form
and the code in T form using the technique called code
switching [71–74]. The process involves measurements of
gauge operators of the [[15, 1, 3]] subsystem code, which
can be done as follows. Suppose that we start from the code
in H form. We can switch to the code in T form by first
measuring f z

1 , f z
2 , and f z

3 . Afterwards, we must apply an
X -type Pauli operator that

030322-9

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

1. commutes with all the vx
i and vz

i (i = 0, 1, 2, 3),
2. commutes with f z

4 , f z
5 , f z

6 , and
3. for each j = 1, 2, 3, commutes with f z

j if the out-
come from measuring such an operator is 0 (the
eigenvalue is +1) or anticommutes with f z

j if the
outcome is 1 (the eigenvalue is −1).

Switching from the code in T form to the code in H form
can be done similarly, except that f x

1 , f x
2 , and f x

3 will be
measured and the operator to be applied must be a Z-type
Pauli operator that commutes or anticommutes with f x

1 , f x
2 ,

and f x
3 (depending on the measurement outcomes).

Transversal gates satisfy the conditions for fault-tolerant
gate gadgets proposed in Ref. [10] (see Sec. V A); thus,
they are very useful for fault-tolerant quantum compu-
tation. It is known that universal quantum computation
can be performed using only H , S, CNOT, and T gates
[63,64,69]. However, for any QECC, universal quantum
computation cannot be achieved using only transversal
gates due to the Eastin-Knill theorem [60]. Fortunately, the
code switching technique allows us to perform universal
quantum computation using both codes in H form and T
form; any logical Clifford gate can be performed transver-
sally on the code in H form since the Clifford group can
be generated by {H , S, CNOT}, and a logical T gate can
be performed transversally on the code in T form. For
the 3D color code of distance 3, code switching can be
done fault-tolerantly using the above method [73,74] or
the method presented in Ref. [75] that involves a logical
Einstein-Podolsky-Rosen state.

B. Circuit configuration for the 3D color code of
distance 3

In this section, circuits for measuring the generators of
the 3D color code of distance 3 in H form will be devel-
oped. Here we try to find CNOT orderings for the circuits
that make fault set F1 distinguishable (where F1 is the set
of all fault combinations arising from up to one fault as
defined in Definition 3). The ideas used for the circuit con-
struction in this section will be later adapted to the circuits
for measuring generators of a capped or a recursive color
code (capped and recursive capped codes will be defined
in Secs. IV A and IV B, and the circuit construction will be
discussed in Sec. IV C). Fault-tolerant protocols for the 3D
color code of distance 3 are similar to fault-tolerant proto-
cols for capped color codes, which will be later discussed
in Sec. V.

For simplicity, since X -type and Z-type data errors can
be corrected separately and X -type and Z-type generators
of our choice have the same form, we only discuss the case
that a single fault can give rise to a Z-type data error. Sim-
ilar analysis will also be applicable to the case of X -type
errors. We start by observing that the 2D color code of dis-
tance 3 is a subcode of the 3D color code of distance 3 in

H form, where the 2D color code lies on the center plane
of the code illustrated in Fig. 2(a). The 2D color code is a
code to which Lemma 1 is applicable, meaning that if we
can measure the syndrome and the weight parity of any Z-
type Pauli error that occurred on the center plane, we can
always find a Pauli operator logically equivalent to such an
error. Moreover, we can see that the generator vx

0 has sup-
port on all qubits on the center plane (q1 to q7). This means
that the weight parity of a Z-type error on the center plane
can be obtained by measuring vx

0. For these reasons, we
can always find an error-correction operator for any Z-type
error that occurred on the center plane using the measure-
ment outcomes of f x

1 , f x
2 , f x

3 (which give the syndrome of
the error evaluated on the 2D color code) and the measure-
ment outcome of vx

0 (which gives the weight parity of the
error).

All circuits for measuring generators of the 3D color
code in H form used in this section are nonflag circuits.
Each circuit has w data CNOT gates, where w is the weight
of the operator being measured. The circuit for each gen-
erator looks similar to the circuit in Fig. 3, but the ordering
of data CNOT gates has yet to be determined.

Our goal is to find CNOT orderings for all circuits
involved in the syndrome measurement so that F1 is dis-
tinguishable. Thus, we have to consider all possible errors
arising from a single fault, not only the errors that occurred
on the center plane. Let us first consider an arbitrary single
fault that can lead to a purely Z-type error. Since the 3D
color code in H form has distance 3, all Z-type errors of
weight 1 correspond to different syndromes. All we have
to worry about are single faults that can lead to a Z-type
error of weight > 1 that has the same syndrome as some
error of weight 1 but is not logically equivalent to such an
error. Note that a Z-type error of weight > 1 arising from
a single fault can only be caused by a faulty CNOT gate in
some circuit for measuring a Z-type generator.

We can divide the generators of the 3D color code in H
form into three categories:

1. cap generators, consisting of vx
0 and vz

0,
2. f generators, consisting of f x

1 , f x
2 , f x

3 , f z
4 , f z

5 , f z
6 ,

3. v generators, consisting of vx
1, vx

2, vx
3, vz

1, vz
2, vz

3.

FIG. 3. A nonflag circuit for measuring a Z-type generator of
weight w for the 3D color code of distance 3. The ordering of the
CNOT gates for each generator has yet to be determined.

030322-10

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

(We consider vx
0 and vz

0 separately from other v generators
because they cover all qubits on the center plane.) Here
we analyze the pattern of Z-type errors arising from the
measurement of Z-type generators of each category. The
syndrome of each Z-type error will be represented in the
form (u, �v, �w), where u, �v, �w are syndromes obtained from
the measurement of cap, f, and v generators of X type,
respectively. Note that, for each v generator, there will be
only one f generator such that the set of supporting qubits
of the v generator contains all supporting qubits of the f
generator (for example, vx

1 and f x
1 , or vz

1 and f z
4).

Let us start by observing the syndromes of any Z-type
error of weight 1. An error on the following qubits gives
the syndrome of the following form:

(a) an error on q0 gives syndrome (1, �0, �0),
(b) an error on qi (i = 1, . . . , 7) gives a syndrome of the

form (1, �qi, �qi),
(c) an error on q7+i (i = 1, . . . , 7) gives a syndrome of

the form (0, �0, �qi).

Here �qi ∈ Z
3
2 is not zero (see Table I below as an example).

We can see that all Z-type errors of weight 1 give differ-
ent syndromes, as expected. Next, let us consider a Z-type
error E of any weight that occurs only on the center plane.
Suppose that the weight parity of E is WP (WP is 0 or 1),
and the syndrome of E obtained from measuring f x

1 , f x
2 , f x

3
is �p . Then, the syndrome of E obtained from measuring all
X -type generators is as follows:

(a) an error E on the center plane gives a syndrome of
the form (WP, �p , �p).

We find that the following statements hold.

1. Error E and the error on q0 will have the same syn-
drome if E has odd weight and �p is trivial, which
means that E is equivalent to Z⊗7 on the center
plane. In this case, E and Z0 are logically equivalent
up to a multiplication of vz

0 and some stabilizer.
2. Error E and an error on qi (i = 1, 2, . . . , 7) will have

the same syndrome if E has odd weight and �p =
�qi for some i. In this case, E and Zi have the same
weight parity and the same syndrome (evaluated by
the generators of the 2D color code), meaning that
E and Zi are logically equivalent by Lemma 1.

3. Error E and an error on qi (i = 7, 8, . . . , 14) cannot
have the same syndrome since �qi �= �0.

Therefore, a Z-type error of any weight that occurred only
on the center plane either has a syndrome different from
those of Z-type errors of weight 1, or is logically equivalent
to some Z-type error of weight 1.

Because of the aforementioned properties of a Z-type
error on the center plane, we try to design circuits for
measuring Z-type generators so that most of the possible

Z-type errors arising from a single fault are on the center
plane. Finding a circuit for any f generator is easy since,
for the 3D color code in H form, any f generator lies on
the center plane, so any CNOT ordering will work. Finding
a circuit for a cap generator is also easy; if the first data
CNOT gate in the circuit is the one that couples q0 with
the syndrome ancilla, we can make sure that all possible
Z-type errors arising from a faulty CNOT gate in this cir-
cuit are on the center plane (up to a multiplication of vz

0
or vx

0).
Finding a circuit for measuring a v generator is not obvi-

ous. Since some parts of any v generator of Z type are on
the center plane and some parts are off the plane, some Z-
type errors from a faulty data CNOT gate have support on
some qubits that are not on the center plane. We want to
make sure that in such cases, the error will not cause any
problem; i.e., its syndrome must be different from those of
other Z-type errors, or it must be logically equivalent to
some Z-type error. In particular, we try to avoid the case
that a CNOT fault can cause a Z error of weight > 1 that is
totally off plane. This is because such a high-weight error
and some Zi with i = 8, 9, . . . , 14 may have the same syn-
drome but they are not logically equivalent (for example,
Z10Z12 and Z13 have the same syndrome but they are not
logically equivalent).

One possible way to avoid such an error is to arrange
the data CNOT gates so that the qubits on which they act
are alternated between on-plane and off-plane qubits. An
ordering of data CNOT gates used in the circuit for any v
generator will be referenced by the ordering of data CNOT
gates used in the circuit for its corresponding f genera-
tor. For example, if the ordering of data CNOT gates used
for f z

4 is (2,5,3,1), then the ordering of data CNOT gates
used for vz

1 will be (2,9,5,12,3,10,1,8). A configuration of
data CNOT gates for a v generator similar to this setting
will be called a sawtooth configuration. Using this con-
figuration for every v generator, we find that there exists
a CNOT ordering for each generator such that all possi-
ble (nonequivalent) Z-type errors from all circuits can be
distinguished.

An example of the CNOT orderings that give a distin-
guishable fault set can be represented by the diagram in
Fig. 4. The diagram looks similar to the 2D color code on
the center plane, and thus all f generators are displayed. In
the diagram

1. each arrow represents the ordering of data CNOT
gates for each f generator: the qubits on which data
CNOT gates act start from the qubit at the tail of an
arrow, then proceed counterclockwise;

2. the ordering of data CNOT gates for each v generator
can be obtained from its corresponding f generator
using the sawtooth configuration;

3. the ordering of data CNOT gates for the cap genera-
tor is in numerical order.

030322-11

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

FIG. 4. An example of the orderings of CNOT gates for the 3D
color code of distance 3 in H form which give a distinguishable
fault set F1. For each f generator, the qubits on which data CNOT
gates act start from the tail of each arrow, then proceed counter-
clockwise. The ordering of CNOT gates for the cap generator is
determined by the qubit numbering.

From the diagram, the exact orderings of data CNOT gates
for f, v, and cap generators are

1. (2,5,3,1), (3,6,4,1), and (4,7,2,1) for f generators;
2. (2,9,5,12,3,10,1,8), (3,10,6,13,4,11,1, 8), and (4,11,

7,14,2,9,1,8) for v generators;
3. (0,1,2,3,4,5,6,7) for the cap generator.

(Note that these are not the only CNOT orderings that give
a distinguishable fault set.)

Possible Z-type errors of weight greater than 1 depend
heavily on the ordering of CNOT gates in the circuits for
measuring Z-type generators. The exhaustive list of all
possible Z-type errors arising from one fault and their syn-
drome corresponding to the CNOT orderings in Fig. 4 is
given in Table I. From the list, we find that any pair of pos-
sible Z-type errors either have different syndromes or are
logically equivalent.

Since X -type and Z-type generators have the same form,
this result is also applicable to the case of X -type errors.
In general, a single fault in any circuit can cause an error
of mixed type. However, note that a single fault in a cir-
cuit for measuring a Z-type generator cannot cause an
X -type error of weight > 1 (and vice versa), and X -type
and Z-type errors can be detected and corrected separately.
Therefore, our results for X -type and Z-type errors imply
that all fault combinations arising from up to one fault sat-
isfy the condition in Definition 3. This means that F1 is
distinguishable, and the protocols in Sec. V will be appli-
cable. Since the circuits for measuring generators of the 3D
color code are nonflag circuits, only one ancilla is required

TABLE I. All possible Z-type errors arising from one fault and their syndrome corresponding to the CNOT orderings in Fig. 4. Any
pair of possible Z-type errors on the list either have different syndromes or are logically equivalent.

Syndrome (u, �v, �w) Syndrome (u, �v, �w)
Fault origin Error u �v �w Fault origin Error u �v �w

q0 Z0 1 (0, 0, 0) (0, 0, 0) vz
0 Z0 1 (0, 0, 0) (0, 0, 0)

q1 Z1 1 (1, 1, 1) (1, 1, 1) Z0Z1 0 (1, 1, 1) (1, 1, 1)
q2 Z2 1 (1, 0, 1) (1, 0, 1) Z0Z1Z2 1 (0, 1, 0) (0, 1, 0)
q3 Z3 1 (1, 1, 0) (1, 1, 0) Z0Z1Z2Z3 0 (1, 0, 0) (1, 0, 0)
q4 Z4 1 (0, 1, 1) (0, 1, 1) Z5Z6Z7 1 (1, 1, 1) (1, 1, 1)
q5 Z5 1 (1, 0, 0) (1, 0, 0) Z6Z7 0 (0, 1, 1) (0, 1, 1)
q6 Z6 1 (0, 1, 0) (0, 1, 0) Z7 1 (0, 0, 1) (0, 0, 1)
q7 Z7 1 (0, 0, 1) (0, 0, 1) vz

1 Z2 1 (1, 0, 1) (1, 0, 1)
q8 Z8 0 (0, 0, 0) (1, 1, 1) Z2Z9 1 (1, 0, 1) (0, 0, 0)
q9 Z9 0 (0, 0, 0) (1, 0, 1) Z2Z9Z5 0 (0, 0, 1) (1, 0, 0)
q10 Z10 0 (0, 0, 0) (1, 1, 0) Z2Z9Z5Z12 0 (0, 0, 1) (0, 0, 0)
q11 Z11 0 (0, 0, 0) (0, 1, 1) Z10Z1Z8 1 (1, 1, 1) (1, 1, 0)
q12 Z12 0 (0, 0, 0) (1, 0, 0) Z1Z8 1 (1, 1, 1) (0, 0, 0)
q13 Z13 0 (0, 0, 0) (0, 1, 0) Z8 0 (0, 0, 0) (1, 1, 1)
q14 Z14 0 (0, 0, 0) (0, 0, 1) vz

2 Z3 1 (1, 1, 0) (1, 1, 0)
f z
4 Z2 1 (1,0,1) (1,0,1) Z3Z10 1 (1, 1, 0) (0, 0, 0)

Z2Z5 0 (0,0,1) (0,0,1) Z3Z10Z6 0 (1, 0, 0) (0, 1, 0)
Z1 1 (1,1,1) (1,1,1) Z3Z10Z6Z13 0 (1, 0, 0) (0, 0, 0)

f z
5 Z3 1 (1,1,0) (1,1,0) Z11Z1Z8 1 (1, 1, 1) (0, 1, 1)

Z3Z6 0 (1,0,0) (1,0,0) Z1Z8 1 (1, 1, 1) (0, 0, 0)
Z1 1 (1,1,1) (1,1,1) Z8 0 (0, 0, 0) (1, 1, 1)

f z
6 Z4 1 (0,1,1) (0,1,1) vz

3 Z4 1 (0, 1, 1) (0, 1, 1)
Z4Z7 0 (0,1,0) (0,1,0) Z4Z11 1 (0, 1, 1) (0, 0, 0)
Z1 1 (1,1,1) (1,1,1) Z4Z11Z7 0 (0, 1, 0) (0, 0, 1)

Z4Z11Z7Z14 0 (0, 1, 0) (0, 0, 0)
Z9Z1Z8 1 (1, 1, 1) (1, 0, 1)
Z1Z8 1 (1, 1, 1) (0, 0, 0)
Z8 0 (0, 0, 0) (1, 1, 1)

030322-12

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

in each protocol (assuming that the qubit preparation and
measurement are fast and the ancilla can be reused).

In the next section, we generalize our technique to fam-
ilies of capped and recursive capped color codes, which
have similar properties to the 3D color code of distance 3.
Capped and recursive capped color codes will be defined
in Secs. IV A and IV B respectively, and the construc-
tion of circuits for measuring the code generators will be
discussed in Sec. IV C.

IV. SYNDROME MEASUREMENT CIRCUITS FOR
A CAPPED COLOR CODE

In the previous section, we have seen that it is possible
to construct circuits for the 3D color code of distance 3
such that the fault set is distinguishable. In this section, we
extend our construction ideas to quantum codes of higher
distance. First, we introduce families of capped and recur-
sive capped color codes, whose properties are similar to
those of the 3D color codes, but the structures of the recur-
sive capped color codes of higher distance are more suit-
able for our construction rather than those of the 3D color
codes of higher distance (as defined in Ref. [73]). After-
wards, we apply the error-correction ideas using weight
parities from the previous section and develop the main
theorem of this work, which can help us find proper CNOT
orderings for a capped or a recursive capped color code of
any distance.

A. Capped color codes

We begin by defining some notation for the 2D color
codes [54] and stating some code properties. A 2D color
code of distance d (d = 3, 5, 7, . . .) is an [[n2D, 1, d]] CSS-
code, where n2D = (3d2 + 1)/4. The number of stabilizer
generators of each type is r = (n2D − 1)/2 (note that the
total number of generators is 2r). For any 2D color code,
it is possible to choose generators so that those of each
type (X or Z) are 3-colorable. The three smallest 2D color
codes are shown in Fig. 5.

A 2D color code of any distance has the following
properties [74]:

1. the number of qubits n2D is odd,
2. every generator has even weight,

FIG. 5. 2D color codes of distances 3, 5, and 7.

3. the code encodes one logical qubit,
4. logical X and logical Z operators are of the form

X ⊗n2DM and Z⊗n2DN , where M , N are some stabi-
lizers,

5. the set of physical qubits of a 2D color code is
bipartite.

With properties 1–4, we can see that Lemma 1 is applicable
to a 2D color code of any distance.

A capped color code CCC(d) is constructed from two
layers of the 2D color code of distance d plus one qubit.
Thus, the number of qubits of CCC(d) is 2n2D + 1 =
3(d2 + 1)/2. Examples of capped color codes with d = 5
and 7 are displayed in Fig. 6(a), and their dual lattices are
shown in Fig. 6(b). Let qi denote qubit i. For convenience,
we divide each code into three areas: the top qubit (consist-
ing of q0), the center plane (consisting of q1 to qn2D), and
the bottom plane (consisting of qn2D+1 to q2n2D). We pri-
marily use the center plane as a reference, and sometimes
call the qubits on the center plane on-plane qubits and call
the qubits on the bottom plane off-plane qubits. Note that
the set of physical qubits of CCC(d) is also bipartite [as
colored in black and white in Fig. 6(a)] since the set of
physical qubits of any 2D color code is bipartite.

(a)

(b)

(c)

FIG. 6. Capped color codes CCC(d) with d = 5 (left) and
d = 7 (right). (a) The set of qubits of any capped color code
is bipartite, as displayed by black and white vertices. (b) The
dual lattice of each capped color code. (c) Stabilizer generators
of each code can be illustrated by volume operators.

030322-13

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

A capped color code CCC(d) is a CSS subsystem code
[76,77]. Its stabilizer generators are volume operators that
can be defined as follows:

1. vx
0 and vz

0 are X -type and Z-type operators that
cover q0 and all qubits on the center plane—these
operators are called cap generators,

2. vx
1, . . . , vx

r and vz
1, . . . , vz

r are X -type and Z-type
operators in which each vx

i (or vz
i) acts as an X -

type (or a Z-type) generator of the 2D color code
on both center and bottom planes—these operators
are called v generators.

The stabilizer generators of a capped color code are illus-
trated in Fig. 6(c). Using this notation, the stabilizer group
of the code is

SCCC = 〈vx
0, vx

1, . . . , vx
r , vz

0, vz
1, . . . , vz

r 〉. (8)

For each CCC(d), the generators of the gauge group are
face operators that can be defined as follows:

1. f x
1 , . . . , f x

r are X -type operators in which each oper-
ator acts as an X -type generator of the 2D color code
on the center plane,

2. f z
r+1, . . . , f z

2r are Z-type operators in which each
operator acts as a Z-type generator of the 2D color
code on the center plane, and f x

i and f z
r+i (i =

1, . . . , r) act on the same set of qubits,
3. f z

1 , . . . , f z
r and f x

r+1, . . . , f x
2r are Z-type and X -type

operators that satisfy the conditions

(a) f x
i and f z

j anticommute when i = j (i, j =
1, . . . , 2r),

(b) f x
i and f z

j commute when i �= j (i, j =
1, . . . , 2r),

(c) f z
i and f x

r+i (i = 1, . . . , r) act on the same set of
qubits.

With this notation, the gauge group of each CCC(d) is

GCCC = 〈vx
i , vz

i , f x
j , f z

j 〉, (9)

where i = 0, 1, . . . , r and j = 1, . . . , 2r.
Another way to define the gauge group of each CCC(d)

is to use gauge generators of weight 4 that are vertical face
operators lying between the center and the bottom planes,
instead of f z

1 , . . . , f z
r and f x

r+1, . . . , f x
2r defined previously.

Let ez
1, . . . , ez

r and ex
r+1, . . . , ex

2r denote such generators
(where ez

i and ex
r+i act on the same set of qubits). Each

pair of ez
i and ex

r+i can be represented by an edge on a 2D
color code. For example, vertical face generators ez

1, . . . , ez
r

and ex
r+1, . . . , ex

2r of capped color codes with d = 5 and
d = 7 are depicted in Fig. 7. Note that {f z

1 , . . . , f z
r } and

{ez
1, . . . , ez

r} (or {f x
r+1, . . . , f x

2r } and {ex
r+1, . . . , ex

2r}) gener-
ate the same group. Therefore, the gauge group of each

(a)

(b)

FIG. 7. (a) Vertical face generators ez
1, . . . , ez

r and ex
r+1, . . . , ex

2r
of capped color codes CCC(d)with d = 5 (left) and d = 7 (right)
(ez

i and ex
r+i act on the same set of qubits). The operators of each

code can be represented by edges on a 2D color code, as shown
in (b).

CCC(d) can also be written as

GCCC = 〈vx
i , vz

i , f x
j , ex

r+j , f z
r+j , ez

j 〉, (10)

where i = 0, 1, . . . , r and j = 1, . . . , r.
It should be noted that in this work the term “color code”

is used to describe a subsystem code satisfying the two
conditions proposed in Ref. [74]. This may be different
from common usages in other literature in which the term
refers to a stabilizer code. A capped color code is actually a
color code in three dimensions since the dual lattice of the
code [see Fig. 6(b) for examples] is 4-colorable and can be
constructed by attaching tetrahedra together (see Ref. [74]
for more details). However, the capped color code and the
3D color code defined in Ref. [73] are different codes.

A capped color code is a subsystem code that encodes
one logical qubit, meaning that there are n2D gauge qubits
for each CCC(d). We can clearly see that CCC(3) is
exactly the 3D color code of distance 3 discussed in
Sec. III A. Similarly, a stabilizer code encoding one logical
qubit can be obtained from CCC(d) by choosing n2D inde-
pendent, commuting gauge operators, and including them
in the stabilizer group. This work will discuss two possible
ways to do so, and the resulting codes will be called the
code in H form and the code in T form (similar to the case
of the 3D color code of distance 3).

1. Capped color codes in H form

Observe that the center plane of CCC(d) that covers
qubits 1 to n2D looks exactly like the 2D color code of
distance d. The stabilizer group of the 2D color code is

030322-14

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

S2D = 〈f x
1 , . . . , f x

r , f z
r+1, . . . , f z

2r〉. A capped color code in H
form constructed from CCC(d) can be obtained by adding
the stabilizer generators of the 2D color code to the origi-
nal generating set of CCC(d). Thus, the stabilizer group of
the code in H form is

SH = 〈vx
i , vz

i , f x
j , f z

r+j 〉, (11)

where i = 0, 1, . . . , r and j = 1, 2, . . . , r. Logical X and
logical Z operators of this code are of the form X ⊗nM and
Z⊗nN , where M , N are some stabilizers in SH . Note that
Lemma 1 is applicable to the code in H form constructed
from any CCC(d).

The code in H form is a code of distance d. This can be
proved as follows.

Proposition 2. The capped color code in H form con-
structed from CCC(d) has distance d.

Proof. In order to prove that the distance of a stabilizer
code is d, we show that the weight of a nontrivial logi-
cal operator is at least d; that is, any Pauli error of weight
< d is either a stabilizer or an error with a nontrivial syn-
drome, and there exists a nontrivial logical operator of
weight exactly d. Since the capped color code in H form
is a CSS code and X -type and Z-type generators have the
same form, we can consider X -type and Z-type errors sep-
arately. For an error that occurred on the code in H form,
we represent its weight by a triple (a, b, c), where a, b, c are
the weights of the errors that occurred on the top qubit, the
center plane, and the bottom plane, respectively.

Suppose that a Z-type error has weight k < d. The
weight of such an error will be of the form (a, b, c) with
a = 0 and b + c = k, or with a = 1 and b + c = k − 1.
Observe that the stabilizer generators of the 2D color code
on the center plane (which is a subcode of the capped color
code in H form) are f x

1 , . . . , f x
r and f z

r+1, . . . , f z
2r . Moreover,

the 2D color code on the bottom plane is also a subcode of
the capped color code in H form, whose stabilizer gener-
ators are f x

1 · vx
1, . . . , f x

r · vx
r and f z

r+1 · vz
1, . . . , f z

2r · vz
r (the

syndrome obtained by measuring v generators is the sum
of the syndromes obtained from the 2D color codes on both
planes). Since both 2D color codes on the center and the
bottom planes have distance d, any Z-type error of weight
< d that occurs solely on the center or the bottom plane
either has nontrivial syndrome or acts as a stabilizer on
such a plane. From the possible forms of error, a Z-type
error of weight < d on the capped color code in H form
corresponding to the trivial syndrome must act as a stabi-
lizer on both planes and commute with vx

0. Using Lemma 1,
the weight of such an operator must be in the form (0, b, c),
where b, c are even numbers. So the total weight of the
error is even, and it cannot be a logical Z operator (by
Lemma 1). Therefore, any Z-type error of weight < d is

either a stabilizer or an error with a nontrivial syndrome.
The same analysis is applicable to X -type errors of weight
< d.

Next, we show that there exists a logical Z operator of
weight exactly d. Consider a Z-type operator whose weight
is of the form (0, 0, d) and acts as a logical Z operator on
the 2D color code on the bottom plane (the operator exists
because the 2D color code has distance d). Such an opera-
tor commutes with all generators of the capped color code
in H form and has odd weight. By Lemma 1, this operator
is a logical Z operator. This completes the proof. �

The capped color code in H form constructed from
CCC(d) is an [[n, 1, d]] code, where n = 2n2D + 1. Sim-
ilar to the 3D color code of distance 3 in H form, it is
not hard to verify that Hadamard, S, and CNOT gates are
transversal; their logical gates are H̄ = H⊗n, S̄ = (S†)⊗n,
and CNOT = CNOT⊗n.

It should be noted that there are many other choices of
stabilizer generators that can give the same code as what
is constructed here. However, different choices of genera-
tors can give different fault sets, which may or may not be
distinguishable. In Sec. IV C, we only discuss circuits for
measuring generators corresponding to Eq. (11).

2. Capped color codes in T form

A capped color code in T form is constructed from
CCC(d) by adding all Z-type face generators of weight 4
to the old generating set of CCC(d). That is, the stabilizer
group of the code in T form is

ST = 〈vx
i , vz

i , f z
j 〉, (12)

where i = 0, 1, . . . , r and j = 1, 2, . . . , 2r, or, equivalently,

ST = 〈vx
i , vz

i , ez
k, f z

r+k〉, (13)

where i = 0, 1, . . . , r and k = 1, 2, . . . , r. Similar to the
code in H form, logical X and logical Z operators of
this code are of the form X ⊗nM and Z⊗nN , where M , N
are some stabilizers in ST. Note that Lemma 1 is also
applicable to the code in T form constructed for any
CCC(d).

Unlike the code in H form, the capped color code in
T form constructed from CCC(d) is a code of distance 3
regardless of the parameter d, i.e., it is an [[n, 1, 3]] code,
where n = 2n2D + 1. The proof of the code distance is as
follows.

Proposition 3. The capped color code in T form con-
structed from CCC(d) has distance 3.

Proof. Similar to the proof of Proposition 2, we show that
(1) any Pauli error of weight< 3 is either a stabilizer or an
error with a nontrivial syndrome, and that (2) there exists

030322-15

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

a nontrivial logical operator of weight exactly 3. However,
for the capped color code in T form, X -type and Z-type
generators have different forms, so we have to analyze both
types of errors. Observe that all of the Z-type generators of
the code in H form are also Z-type generators of the code
in T form; thus, we can use the analysis in the proof of
Proposition 2 to show that any X -type error of weight < d
is either a stabilizer or an error with a nontrivial syndrome.
Thus, we only have to show that any Z-type error of weight
< 3 is either a stabilizer or an error with a nontrivial syn-
drome, and that there exists a logical Z operator of weight
exactly 3. Similar to the proof of Proposition 2, we rep-
resent its weight by a triple (a, b, c), where a, b, c are the
weights of the errors that occurred on the top qubit, the
center plane, and the bottom plane, respectively.

The X -type generators of the capped color code in T
form are vx

0, vx
1, . . . , vx

r . First, let us consider any Z-type
error of weight 1. We can easily verify that the error anti-
commutes with at least one X -type generator, so its syn-
drome is nontrivial. Next, consider a Z-type error of weight
2. The weight of the error will have one of the following
forms: (0, 2, 0), (0, 1, 1), (0, 0, 2), (1, 1, 0), or (1, 0, 1). We
find that (1) a Z-type error of the form (0, 1, 1) or (1, 0, 1)
anticommutes with vx

0, and (2) a Z-type errors of the form
(0, 2, 0), (0, 0, 2), or (1, 1, 0) anticommutes with at least
one v generator (since v generators act as generators of
the 2D color code on both planes simultaneously, and the
2D color code has distance d). Therefore, the syndrome of
any Z-type error of weight 2 is nontrivial.

Next, we show that there exists a logical Z operator of
distance exactly 3. Consider a Z-type operator of weight 3
of the form Z0ZiZr+i, where i = 1, 2, . . . , r. We can verify
that such an operator commutes with all X -type generators.
Since the operator has odd weight, it is a logical Z operator
by Lemma 1. �

CNOT and T gates are transversal for the code in T
form, while Hadamard and S gates are not. In order to
prove the transversality of the T gate, we use the following
lemma [74].

Lemma 2. Let C be an [[n, k, d]] CSS subsystem code in
which n is odd, k is 1, and X ⊗n and Z⊗n are bare logical
X and Z operators [82]. Also, let Q be the set of all physi-
cal qubits of C, and let p be any positive integer. Suppose
that there exists V ⊂ Q such that, for any m = 1, . . . , p, for
every subset {gx

1, . . . , gx
m} of the X -type gauge generators

of the code, the following holds:

∣∣∣∣V ∩
m⋂

i=1

Gi

∣∣∣∣ =
∣∣∣∣Vc ∩

m⋂
i=1

Gi

∣∣∣∣ mod 2p−m+1 (14)

where Gi is the set of physical qubits that support gx
i . Then,

a logical Rp gate (denoted by R̄p) can be implemented
by applying Rq

p to all qubits in V and applying R−q
p to

all qubits in Vc, where Rp = diag(1, exp(2π i/2p)), q is a
solution to q(|V| − |Vc|) = 1 mod 2p , and Vc = Q\V.

The proof of the transversality of the T gate is as follows.

Proposition 4. A T gate is transversal for the capped color
code in T form constructed from any CCC(d).

Proof. Let C be the capped color code in T form con-
structed from any CCC(d) (C is a stabilizer code, i.e., it
is a subsystem code in which the stabilizer group and the
gauge group are the same). Note that the X -type stabi-
lizer generators of the code are vx

0, vx
1, . . . , vx

r , which are
also the X -type gauge generators. Also, let p = 3 (since
T = R3), q = 1, and let V and Vc be the sets of qubits sim-
ilar to those represented by the black and white vertices
in Fig. 6(a) [this kind of representation is always possible
for any CCC(d) since the set of physical qubits of CCC(d)
is bipartite]. We use Lemma 2 and show that Eq. (14) is
satisfied for m = 1, 2, 3.

Let Gi be the set of qubits that support X -type generator
gx

i . If m = 1, we can easily verify that |V ∩ G1| = |Vc ∩
G1| mod 8 for every gx

1 ∈ {vx
0, vx

1, . . . , vx
r } since half of the

supporting qubits of any X -type generator are in V and the
other half are in Vc.

In the case when m = 2, let {gx
1, gx

2} be a subset of
{vx

0, vx
1, . . . , vx

r }. If gx
1 is a cap generator vx

0 and gx
2 is a

v generator vx
i , i = 1, . . . , r, then G1 ∩ G2 consists of the

qubits that support the face generator f x
i . Since half of

the qubits in G1 ∩ G2 are in V and the other half are in
Vc, we have |V ∩ G1 ∩ G2| = |Vc ∩ G1 ∩ G2| (equal to 2
or 3, depending on vx

i). If gx
1 and gx

2 are adjacent v gen-
erators, then G1 ∩ G2 consists of four qubits, two of them
are in V and the other two are in Vc. So |V ∩ G1 ∩ G2| =
|Vc ∩ G1 ∩ G2| = 2. If gx

1 and gx
2 are nonadjacent v genera-

tors, then |V ∩ G1 ∩ G2| = |Vc ∩ G1 ∩ G2| = 0. Therefore,
Eq. (14) is satisfied for any subset {gx

1, gx
2}.

In the case when m = 3, let {gx
1, gx

2, gx
3} be a sub-

set of {vx
0, vx

1, . . . , vx
r }. If gx

1 is a cap generator vx
0 and

gx
2, gx

3 are adjacent v generators, or gx
1, gx

2, gx
3 are v gen-

erators in which any two of them are adjacent, then
G1 ∩ G2 ∩ G3 consists of two qubits, one of them is in
V and the other one is in Vc. Thus, |V ∩ G1 ∩ G2 ∩ G3| =
|Vc ∩ G1 ∩ G2 ∩ G3| = 1. If gx

1 is a cap generator vx
0 and

gx
2, gx

3 are nonadjacent v generators, or gx
1, gx

2, gx
3 are v gen-

erators in which some pair of them are not adjacent, then
G1 ∩ G2 ∩ G3 is the empty set. So |V ∩ G1 ∩ G2 ∩ G3| =
|Vc ∩ G1 ∩ G2 ∩ G3| = 0. Therefore, Eq. (14) is satisfied
for any subset {gx

1, gx
2, gx

3}.
Since the sufficient condition in Lemma 2 is satisfied,

a transversal T gate can be implemented by applying T
gates to all qubits in V (represented by black vertices) and
applying T† gates to all qubits in Vc (represented by white
vertices). �

030322-16

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

Incidentally, the capped color codes in T form pre-
sented here are similar to some codes that appear in other
works. In fact, the capped color codes in T form are
the same as the stacked codes with distance 3 protection
defined in Ref. [78] (where alternative proofs of Propo-
sitions 3 and 4 are also presented). Such a code is the
basis for the construction of the (d − 1)+ 1 stacked code
defined in the same work, whose code distance is d (see
also Refs. [79,80] for other subsystem codes with similar
construction).

3. Code switching

Similar to the 3D color code of distance 3, one can trans-
form between the capped color code in H form and the
code in T form derived from the same CCC(d) using the
code switching technique [71–74]. Suppose that we start
from the code in H form. The code switching can be done
by first measuring ez

1, . . . , ez
r (vertical face generators of

weight 4), then applying an X -type Pauli operator that

1. commutes with all the vx
i and vz

i (i = 0, 1, . . . , r),
2. commutes with f z

r+1, . . . , f z
2r , and

3. for each j = 1, . . . , r, commutes with ez
j if the out-

come from measuring such an operator is 0 (the
eigenvalue is +1) or anticommutes with ez

j if the
outcome is 1 (the eigenvalue is −1).

We can use a similar process to switch from the code in T
form to the code in H form, except that f x

1 , . . . , f x
r will be

measured and the operator to be applied is a Z-type Pauli
operator that commutes or anticommutes with f x

1 , . . . , f x
r

(depending on the measurement outcomes).

B. Recursive capped color codes

One drawback of a capped color code CCC(d) is that the
code in T form has only distance 3 regardless of the param-
eter d. This prevents us from performing fault-tolerant
T-gate implementation through code switching because a
few faults that occur to the code in T form can lead to a log-
ical error. In this section, we introduce a way to construct
a code of distance d from capped color codes through a
process of recursive encoding. The resulting code will be
called the recursive capped color code.

First, let us consider a capped color code in T form
obtained from any (subsystem) capped color code CCC(d).
There are many possible errors of weight 3 that are non-
trivial logical errors of this code, but all of them have one
thing in common: any logical error of weight 3 has support
on q0 (the top qubit of a capped color code). So if we can
reduce the error rate on q0, a logical error of weight 3 on
a capped color code in T form will be less likely. In par-
ticular, if q0 is encoded by a code of distance d − 2, the
distance of the resulting code will be d.

We define a recursive capped color code RCCC(d) (d =
3, 5, 7, . . .) to be a subsystem CSS code obtained from the
following procedure:

1. RCCC(3) and CCC(3) are the same code,
2. RCCC(d) is obtained by encoding q0 (the top qubit)

of CCC(d) by RCCC(d − 2).

Constructing a recursive capped color code is similar
to constructing a concatenated code. However, instead
of encoding every physical qubit of the original code
by another code, here we only encode q0 of a capped
color code by a recursive capped color code with smaller
parameter.

It should be noted that a stacked code of distance d [78]
can be obtained using a recursive encoding procedure sim-
ilar to that presented above. However, in that case, the top
qubit of a capped color code CCC(d) is encoded by the
same capped color code [CCC(d)], and the procedure is
repeated (d − 3)/2 times. The recursive capped color code
RCCC(d) with d = 7 and the stacked code of distance 7
are illustrated in Fig. 8.

The number of qubits of RCCC(d) is (d3 + 3d2 + 3d −
3)/4. For convenience, we divide each RCCC(d) into d
layers.

1. The first layer consists of the top qubit q0.
2. The (j − 1)th layer where j = 3, 5, . . . , d (which is

similar to a 2D color code of distance j) will be
called the center plane of inner CCC(j).

3. The j th layer where j = 3, 5, . . . , d (which is similar
to a 2D color code of distance j) will be called the
bottom plane of inner CCC(j).

Similar to a capped color code, the stabilizer generators
of RCCC(d) are defined by volume operators of X and Z
types, and the gauge generators are defined by volume and
face generators of X and Z types.

1. Recursive capped color codes in H form

The stabilizer group of a recursive capped color code
in H form can be obtained by adding X - and Z-type face

(a) (b)

FIG. 8. (a) The recursive capped color code RCCC(d) with
d = 7. (b) The stacked code of distance 7.

030322-17

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

generators that are generators of 2D color codes on the cen-
ter planes (layers 2, 4, . . . , d − 1) to the original stabilizer
generating set of RCCC(d). Similar to the construction
of the subsystem code previously described, the recursive
capped color code in H form constructed from RCCC(d)
can also be obtained by encoding the top qubit q0 of the
capped color code in H form constructed from CCC(d)
by the recursive capped color code in H form constructed
from RCCC(d − 2).

The recursive capped color code in H form constructed
from RCCC(d) has distance d. This can be proved as
follows.

Proposition 5. The recursive capped color code in H form
constructed from RCCC(d) has distance d.

Proof. Consider a capped color code in H form constructed
from CCC(d) that has distance d (see Proposition 2). One
example of a logical error of weight d of this code is a
logical error of a 2D color code of distance d on the bot-
tom plane. Encoding the top qubit of a capped color code
in H form by the recursive capped color code in H form
constructed from RCCC(d − 2) will not affect the afore-
mentioned logical error, so the distance of the resulting
code is still d. �

A recursive capped color code in H form constructed
from RCCC(d) is an [[n, 1, d]] code, where n = (d3 +
3d2 + 3d − 3)/4. Similar to a capped color code in H form,
a recursive capped color code in H form also possesses
transversal Hadamard, S, and CNOT gates, where H̄ =
H⊗n, CNOT = CNOT⊗n, S̄ = (S†)⊗n when d = 3, 7, 11, . . .,
and S̄ = (S)⊗n when d = 5, 9, 13,

2. Recursive capped color codes in T form

Consider the (j − 1)th and j th layers (j = 3, 5, . . . , d)
of a subsystem code RCCC(d), which are similar to 2D
color codes of distance j . We can define vertical face gen-
erators of inner CCC(j) between these two layers similar
to the way we defined vertical face generators for CCC(d)
in Sec. IV A (see Fig. 7 for examples). The stabilizer
group of a recursive capped color code in T form can be
obtained by adding vertical face generators of Z type of
all inner CCC(j)’s to the original stabilizer generating set
of RCCC(d). Also, similar to the construction of the sub-
system code RCCC(d), the recursive capped color code
in T form constructed from RCCC(d) can be obtained by
encoding the top qubit q0 of the capped color code in T
form constructed from CCC(d) by the recursive capped
color code in T form constructed from RCCC(d − 2).

Unlike the capped color code in T form constructed from
CCC(d) whose distance is 3 regardless of the parameter d,
the recursive capped color code in T form constructed from
RCCC(d) has distance d. This can be proved as follows.

Proposition 6. The recursive capped color code in T form
constructed from CCC(d) has distance d.

Proof. Consider a capped color code in T form constructed
from CCC(d) that has distance 3 (see Proposition 3). We
find that any logical error of weight 3 is of Z type and has
support on q0 (the top qubit of the capped color code).
Suppose that q0 is encoded by a code of distance d − 2,
effectively becoming an inner logical qubit q̄0. To create
a logical error on the resulting code similar to the logi-
cal error of weight 3 on a capped color code in T form,
we need an error on q̄0 plus errors on two more qubits.
Thus, the minimum weight of a logical error of the result-
ing code is (d − 2)+ 2 = d. In our case, the code being
used to encode q0 is the recursive capped color code in
T form constructed from RCCC(d − 2). By induction, the
recursive capped color code in T form constructed from
RCCC(d) has distance d. �

A recursive capped color code in T form constructed
from RCCC(d) is an [[n, 1, d]] code, where n = (d3 +
3d2 + 3d − 3)/4. Similar to a capped color code in T form,
a recursive capped color code in T form also possesses
transversal CNOT and T gates. The proof of transversality
of the T gate is as follows.

Proposition 7. A T gate is transversal for the recur-
sive capped color code in T form constructed from any
RCCC(d).

Proof. Recall that, for any capped color code in T form, by
Proposition 4, a logical T gate can be achieved by applying
physical T and T† gates on qubits represented by black and
white vertices, respectively [see Fig. 6(a) for examples; the
representation can be extended to any CCC(d) since the set
of physical qubits of CCC(d) is bipartite]. Suppose that the
top qubit q0 of a capped color code in T form constructed
from CCC(d) is encoded by the recursive capped color
code in T form constructed from RCCC(d − 2), becoming
an inner logical qubit q̄0. A logical T gate of the resulting
code is similar to a logical T gate of the capped color code,
except that an (inner) logical T gate is applied on q̄0. By
induction, the T gate for q̄0 is transversal, and the T gate
for the recursive capped color code in T form constructed
from RCCC(d) is also transversal. �

3. Code switching

Similar to the capped color codes, the code switching
technique can be used to transform between the recursive
capped color codes in H and T forms constructed from the
same RCCC(d). In particular, we can switch from the code
in H form to the code in T form by measuring Z-type ver-
tical face generators of all inner CCC(j)’s and applying an

030322-18

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

appropriate Pauli operator depending on the measurement
outcome. Switching from the code in T form to the code in
H form can be done in a similar fashion, except that X -type
generators of 2D color codes on the center planes (lay-
ers 2, 4, . . . , d − 1) will be measured instead. We refer the
reader to the process of finding a appropriate Pauli operator
for code switching in Sec. IV A.

We have not yet discussed whether the procedure above
is fault tolerant when we switch between the recursive
capped color codes in H form and T form. However, the
discussion of the fault-tolerant implementation of T gate
will be deferred until Sec. V E.

C. Circuit configuration for capped and recursive
capped color codes

One of the main goals of this work is to find circuits
for measuring generators of a capped color code in H
form in which the corresponding fault set Ft is distin-
guishable [where t = τ = (d − 1)/2 and d = 3, 5, 7, . . . is
the code distance], and we expect that similar circuits will
also work for a recursive capped color code in H form.
As discussed before, the CNOT orderings and the number
of flag ancillas are crucial for the circuit design. Finding
such circuits for a capped color code of any distance using
a random approach can be very challenging because of a
few reasons. (1) The number of stabilizer generators of a
capped color code increases quadratically as the distance
increases. This means that the number of possible single
faults in the circuits grow quadratically as well. (2) For a
code with larger distance, a fault set Ft with larger t will
be considered. Since it concerns all possible fault combi-
nations arising from up to t faults, the size of Ft grows
dramatically (perhaps exponentially) as t and the number
of possible single faults increase. For these reasons, veri-
fying whether Ft is distinguishable using the conditions in
Definition 3 requires a lot of computational resources, and
exhaustive searches for appropriate CNOT orderings may
turn intractable.

Fortunately, there is a way to simplify the search for the
CNOT orderings. From the structure of the capped color
code in H form, it is possible to relate CNOT orderings
for the 3D-like generators to those for the 2D-like gen-
erators, as we have seen in the circuit construction in
Sec. III B. Instead of finding CNOT orderings directly for
all generators, we simplify the problem and develop suf-
ficient conditions for the CNOT orderings of the 2D-like
generators that, if satisfied, can guarantee that the fault
set Ft (which concerns both 3D-like and 2D-like gener-
ators) is distinguishable. Although we still need to check
whether the sufficient conditions are satisfied for given
CNOT orderings, the process is much simpler than check-
ing the conditions in Definition 3 directly when the size of
Ft is large.

We begin by dividing the stabilizer generators of the
capped color code in H form constructed from CCC(d) into
three categories (similar to the discussion in Sec. III B):

1. cap generators consisting of vx
0 and vz

0,
2. v generators consisting of vx

1, . . . , vx
r and vz

1, . . . , vz
r ,

3. f generators consisting of f x
1 , . . . , f x

r and f z
r+1, . . . ,

f z
2r .

Here we only consider fault combinations arising from
circuits for measuring Z-type generators that can lead to
purely Z-type data errors of any weight. This is because
i faults in circuits for measuring X -type generators can-
not cause a Z-type data error of weight greater than i (and
vice versa). Similar analysis will be applicable to the case
of purely X -type errors, and also to the case of mixed-
type errors. We first consider a Z-type data error and a
flag vector arising from each single fault. Afterwards, fault
combinations constructed from multiple faults will be con-
sidered, where the combined data error and the cumulative
flag vector for each fault combination can be calculated
using Eqs. (4) and (5).

Observe that the center plane of a capped color code
behaves like a 2D color code, and that the weight of a
Z-type error that occurred on the center plane can be mea-
sured by the cap generator vx

0. In order to find CNOT
orderings for generators of each category, we use an idea
similar to that presented in Sec. III B; we try to design cir-
cuits for measuring Z-type generators so that most of the
possible Z-type errors arising from a single fault are on the
center plane. In this work, we start by imposing general
configurations of data and flag CNOT gates; these general
configurations will facilitate finding CNOT orderings. Then,
exact configurations of CNOT gates that can make Ft distin-
guishable will be found using the theorem developed later
in this section. The general configurations of data CNOT
gates, which depend on the category of the generator, are
as follows.

General configurations of data CNOT gates.

1. The f generator: there is no constraint for the order-
ing of data CNOT gates since each f generator lies
on the center plane, but the ordering for f z

r+i (or f x
i)

must be related to the ordering for vz
i (or vx

i) where
i = 1, . . . , r.

2. The v generator: the sawtooth configuration will be
used; the qubits on which the data CNOT gates act
must be alternated between on-plane and off-plane
qubits. The ordering of data CNOT gates for vz

i (or
vx

i) is referenced by the ordering of data CNOT gates
for f z

r+i (or f x
i) where i = 1, . . . , r (see the examples

in Fig. 9 and Sec. III B).
3. The cap generator: the first data CNOT gate must

always be the one that couples q0 with the syndrome
ancilla. The ordering of the other data CNOT gates
has yet to be fixed.

030322-19

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

In general, some flag ancillas may be added to the cir-
cuits for measuring a generator to help distinguish some
possible errors and make Ft distinguishable. In that case,
the general configurations for data CNOT gates will also be
applied to the data CNOT gates in each flag circuit. More-
over, the following additional configurations for flag CNOT
gates will be required.

General configurations of flag CNOT gates.

1. For each flag circuit, the first and the last data CNOT
gates must not be in between any pair of flag CNOT
gates.

2. The arrangements of flag CNOT gates in the circuits
for each pair of f and v generators must be simi-
lar; suppose that a flag circuit for f z

r+i (or f x
i) where

i = 1, . . . , r is given. A flag circuit for vz
i (or vx

i) is
obtained by replacing each data CNOT gate that cou-
ples qj with the syndrome ancilla (j = 1, . . . , n2D)
by two data CNOT gates that couple qj and qn2D+j
with the syndrome ancilla; see the example in
Fig. 9.

By imposing the general configurations for data and flag
CNOT gates, what have yet to be determined before Ft is
specified are the ordering of data CNOT gates for each f
generator, the ordering of data CNOT gates after the first
data CNOT gate for each cap generator, and the number of
flag ancillas and the ordering of their relevant flag CNOT
gates. (Note that having more flag ancillas can make fault

(a)

(b)

FIG. 9. (a) An example of a flag circuit for measuring the f
generator with two flag ancillas. (b) A flag circuit for measur-
ing the corresponding v generator. The circuit is obtained by
replacing each data CNOT gate that couples qj with the syndrome
ancilla by two data CNOT gates that couple qj and qn2D+j with
the syndrome ancilla.

distinguishing become easier, but more resources such as
qubits and gates are also required.)

In this work, possible single faults that can give Z-type
errors will be divided into seven types (based on relevant
faulty locations) as follows.

1. Type q0: a fault causing a Z-type error on q0 that
does not arise from any Z-type generator measure-
ment. The total number of q0 faults is n0 (which is
0 or 1).

2. Type qon: a fault causing a single-qubit Z-type error
on the center plane that does not arise from any Z-
type generator measurement. The syndrome of an
error is denoted by �qon. The total number of qon
faults is non.

3. Type qoff: a fault causing a single-qubit Z-type
error on the bottom plane that does not arise from
any Z-type generator measurement. The syndrome
of an error is denoted by �qoff. The total number of
qoff faults is noff.

4. Type f: a fault that occurred during a measurement
of a f generator of Z type. A Z-type error from each
fault of this type and its syndrome are denoted by
σf and �pf. A flag vector corresponding to each fault
of this type is denoted by �ff. The total number of f
faults is nf.

5. Type v: a fault that occurred during a measurement
of a v generator of Z type that gives errors of the
same form on both center and bottom planes (see
the example in Fig. 10). A part of a Z-type error
from each fault of this type that occurred on the
center plane only (or the bottom plane only) and its
syndrome are denoted by σv and �pv. A flag vector
corresponding to each fault of this type is denoted
by �fv. The total number of v faults is nv.

FIG. 10. Consider a circuit for measuring a v generator of
Z type in which its supporting qubits are labeled as displayed
above and the ordering of data CNOT gates is (1, 2, . . . , 12). A
single fault in the circuit is either v type or v∗ type, depending
on whether the data errors on the center and the bottom planes
have the same form. For example, an IZ fault on the seventh
data CNOT gate is a v∗ fault since the data error arising from the
fault is Z9Z11 ⊗ Z8Z10Z12, while an IZ fault on the eighth data
CNOT gate is a v fault since the data error arising from the fault
is Z9Z11 ⊗ Z10Z12.

030322-20

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

6. Type v∗: a fault that occurred during a measure-
ment of a v generator of Z type in which an error
that occurred on the center plane and an error on
the bottom plane are different (see the example in
Fig. 10). A part of a Z-type error from each fault
of this type that occurred on the center plane only
and its syndrome are denoted by σv∗,cen and �pv∗,cen.
The other part of the Z-type error that occurred on
the bottom plane only and its syndrome are denoted
by σv∗,bot and �pv∗,bot. A flag vector corresponding
to each fault of this type is denoted by �f ∗

v . The total
number of v∗ faults is n∗

v.
7. Type cap: a fault that occurred during a measure-

ment of a cap generator of Z type. A Z-type error
from each fault of this type and its syndrome are
denoted by σcap and �pcap (σcap is always on the
center plane up to a multiplication of the cap gen-
erator being measured). A flag vector corresponding
to each fault of this type is denoted by �fcap. The total
number of cap faults is ncap.

Examples of faults of each type on the 3D structure are
illustrated in Fig. 11(a). Note that a fault of q0, qon,
or qoff type can be a Z-type input error, a single-qubit
error from phase flip, or a single fault during any X -type
generator measurement that gives a Z-type error.

(a)

(b)

FIG. 11. (a) Examples of faults of each type on the 3D struc-
ture. (b) Examples of faults of each type on the 2D plane.

Suppose that a single fault causes a Z-type data error
E and a flag vector �f . The syndrome of E evaluated
by X -type generators can be written as (sa, �sb, �sc), where
sa, �sb, �sc are syndromes obtained from measuring cap,f,
and v generators of X type. In addition, the flag vector can
be written as (�fa, �fb, �fc), where �fa, �fb, �fc are flag outcomes
obtained from circuits for measuring cap,f, and v gener-
ators of Z type, respectively. (The lengths of sa, �sb, �sc are
equal to the number of generators of each category, while
the lengths of �fa, �fb, �fc are equal to the number of gener-
ators of each category times the number of flag ancillas
in each flag circuit, assuming that all flag circuits have
an equal number of flag ancillas.) Let WP(σ) denote the
weight parity of error σ . Because of the general config-
urations of CNOT gates being used, the weight parity and
the syndromes of a Z-type error (evaluated by X -type gen-
erators) and a flag vector arising from each type of fault
can be summarized as in Table II. Note that, for a v∗ fault,
σv∗,cen and σv∗,bot differ by a Z error on a single qubit;
i.e., WP(σv∗,cen)+ WP(σv∗,bot) = 1. Sometimes we write
�pv∗,cen + �pv∗,bot = �q∗

v to emphasize its similarity to the
syndrome of a single-qubit error.

Now, let us consider the case that a fault combination
arises from multiple faults. The syndrome and the weight
parity of the combined error, and the cumulative flag vec-
tor of a fault combination can be calculated by adding the
syndromes and the flag outcomes of all faults in the fault
combination (the addition is modulo 2). For example, sup-
pose that a fault combination consists of two faults that are
of qon type and v type. The syndrome �s(E) and the weight
parity WP(E) of the combined error E, and the cumulative
flag vector �f that correspond to such a fault combination
are

�s(E) = (1 + WP(σv), �qon + �pv, �qon),
WP(E) = 1,

�f = (�0, �0, �fv).

For a general fault combination composed of multiple
faults, the corresponding syndrome, weight parity, and
cumulative flag vector can be calculated as follows. Let
scap, �sf, �sv denote syndromes of the combined error eval-
uated by cap,f, and v generators of X type, let WPtot

denote the weight parity, and let �fcap,�ff,�fv denote parts of
the cumulative flag vector obtained from circuits for mea-
suring cap,f, and v generators of Z type. From Table II,
we find that, for each fault combination,

scap = n0 + non +
∑

WP(σf)+
∑

WP(σv)

+
∑

WP(σv∗,cen)+
∑

WP(σcap), (15)

030322-21

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

TABLE II. Syndrome �s = (sa, �sb, �sc), weight parity, and flag vector �f = (�fa, �fb, �fc) corresponding to a single fault of each type that
leads to a Z-type error. Here sa, �sb, �sc are syndromes evaluated by cap,f, and v generators of X type, while �fa, �fb, �fc are flag outcomes
obtained from circuits for measuring cap,f, and v generators of Z type. Note that in some cases a syndrome bit is equal to the weight
parity of an error.

Type of fault

q0 qon qoff f v v∗ cap

sa (cap) 1 1 0 WP(σf) WP(σv) WP(σv∗,cen) WP(σcap)
�sb (f) 0 �qon 0 �pf �pv �pv∗ ,cen �pcap
�sc (v) 0 �qon �qoff �pf 0 �pv∗,cen + �pv∗,bot �pcap

(or �q∗
v)

Weight parity 1 1 1 WP(σf) 0 1 WP(σcap)

�fa (cap) 0 0 0 0 0 0 �fcap
�fb (f) 0 0 0 �ff 0 0 0
�fc (v) 0 0 0 0 �fv �f ∗

v 0

�sf =
∑

�qon +
∑

�pf +
∑

�pv +
∑

�pv∗,cen

+
∑

�pcap, (16)

�sv =
∑

�qon +
∑

�qoff +
∑

�pf +
∑

�q∗
v

+
∑

�pcap, (17)

WPtot = n0 + non + noff +
∑

WP(σf)+ n∗
v

+
∑

WP(σcap), (18)

�fcap =
∑ �fcap, (19)

�ff =
∑ �ff, (20)

�fv =
∑ �fv +

∑ �f ∗
v , (21)

where each sum is over the same type of faults (the equa-
tions hold modulo 2). In addition, adding Eq. (15) to
Eq. (18) and adding Eq. (16) to Eq. (17) we obtain

WPbot = noff +
∑

WP(σv)+
∑

WP(σv∗,bot), (22)

�sbot =
∑

�qoff +
∑

�pv +
∑

�pv∗,bot, (23)

where WPbot = scap + WPtot and �sbot = �sf + �sv.
Equations (15)–(23) are the main ingredients for the

proof of the main theorem to be developed. One may notice
that Eqs. (15) and (16), (17) and (18), and (22) and (23)
come in pairs. They have the following physical meanings.
Suppose that the combined error E is E0 · Eon · Eoff,
where E0, Eon, Eoff are the error on q0, the error on the
center plane, and the error on the bottom plane. Then the
following statements hold.

1. Equation (16) is the syndrome of Eon, while Eq. (15)
is the weight parity Eon plus the weight parity
of E0.

2. Equation (17) is the syndrome of Eon · Eoff, while
Eq. (18) is the weight parity of Eon · Eoff plus the
weight parity of E0. (Since v generators capture
errors on both planes simultaneously, Eon · Eoff can
be viewed as a remaining error when Eon and Eoff

are “projected” on the same plane.)
3. Equation (23) is the syndrome of Eoff, while

Eq. (22) is the weight parity of Eoff.

From these pairs of equations, and from the fact that now
we only have to specify the ordering of data CNOT gates
for each f generator, the ordering of data CNOT gates after
the first gate for the cap generator, and the ordering of flag
CNOT gates for each flag circuit, we can now simplify the
CNOT ordering finding problem for a 3D structure to the
problem of finding CNOT orderings on a 2D plane (which
is similar to the 2D color code of distance d). In particu-
lar, each pair of equations concerns errors on a 2D plane
(the center, the bottom, or the projected plane). We try to
find conditions for the CNOT orderings on a 2D plane such
that if satisfied, a bad case that makes Ft indistinguishable
cannot happen.

Some types of faults on the 3D structure can be con-
sidered as the same types of faults when the problem is
simplified. In the following we present types of possible
single faults on the 2D plane and their correspondence on
the 3D structure.

1. Type q2D: a fault causing a single-qubit Z-type
error on the 2D plane that does not arise from
any Z-type generator measurement. The syndrome
of an error is denoted by �q2D. The total number
of q2D faults is nq2D . The combined error from
only q2D faults is denoted by Eq2D . This type of

030322-22

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

fault corresponds to qon and qoff faults on the 3D
structure.

2. Type f2D: a fault that occurred during a measure-
ment of a f generator of Z type. A Z-type error
from each fault of this type and its syndrome are
denoted by σf2D and �pf2D . A flag vector correspond-
ing to each fault of this type is denoted by �ff2D .
The total number of f2D faults is nf2D . The com-
bined error from only f2D faults is denoted by Ef2D .
This type of fault corresponds to f and v faults
on the 3D structure (since an error on the cen-
ter plane and an error on the bottom plane from
a v fault have the same form; see the example in
Fig. 10).

3. Type v∗
2D: a fault that occurred during a measure-

ment of a v generator of Z type in which an error
that occurred on the center plane and an error that
occurred on the bottom plane are different (see the
example in Fig. 10). A part of a Z-type error from
each fault of this type that occurred on the center
plane only and its syndrome are denoted by σv∗

2D,cen
and �pv∗

2D,cen. The other part of the Z-type error that
occurred on the bottom plane only and its syndrome
are denoted by σv∗

2D,bot and �pv∗
2D,bot. A flag vector

corresponding to each fault of this type is denoted
by �fv∗

2D
. The total number of v∗

2D faults is nv∗
2D

. The
part of the combined error from only v∗

2D faults on
the center plane and the part on the bottom plane
are denoted by Ev∗

2D,cen and Ev∗
2D,bot. This type

of fault corresponds to v∗ faults on the 3D struc-
ture. (Note that this is the only type of fault that
cannot be represented completely on the 2D plane
since the error on the center plane and the error
on the bottom plane are different. However, when
running a computer simulation, we can treat a fault
of v∗

2D type similarly to a fault of f2D type except
that two values of errors will be assigned to each
fault.)

4. Type cap2D: a fault that occurred during a mea-
surement of a cap generator of Z type. A Z-type
error from each fault of this type and its syndrome
are denoted by σcap2D and �pcap2D (σcap2D is always
on the center plane up to a multiplication of the
cap generator being measured). A flag vector cor-
responding to each fault of this type is denoted
by �fcap2D . The total number of cap2D faults is
ncap2D . The combined error from only cap2D faults
is denoted by Ecap2D . This type of fault corresponds
to cap faults on the 3D structure.

Examples of faults of each type on the 2D plane are
illustrated in Fig. 11(b). The correspondence between the
notation for types of faults on the 2D plane and the 3D
structure is summarized in Table III.

We can see that possible Z-type errors on the 2D plane
depend on the CNOT orderings for measuring f and cap
generators of Z type. Next, we state the sufficient con-
ditions for the CNOT orderings on the 2D plane that will
make Ft (which concerns fault combinations from the 3D
structure) distinguishable. These sufficient conditions are
introduced in order to prevent the case that can lead to
an “indistinguishable” pair (a pair of fault combinations
from the 3D structure that does not satisfy any condition in
Definition 3).

First, we state a condition that is automatically satisfied
if a code being considered on the 2D plane is a code of
distance d to which Lemma 1 is applicable.

Condition 0. For any fault combination on the 2D plane
that satisfies nq2D ≤ d − 1, Eq2D is not a nontrivial log-
ical operator; equivalently, at least one of the following
conditions is satisfied:

1.
∑ �q2D �= 0 mod 2,

2. nq2D �= 1 mod 2.

Note that a nontrivial logical operator is an error cor-
responding to the trivial syndrome whose weight parity is
odd (from Lemma 1). Condition 0 is equivalent to the fact
that an error of weight ≤ d − 1 is detectable by a code of
distance d; i.e., it either has a nontrivial syndrome or is a
stabilizer. We state Condition 0 explicitly (although it is
automatically satisfied) because the condition in this form
looks similar to other conditions, which will simplify the
proof of the main theorem.

We now state five sufficient conditions for the CNOT
orderings on the 2D plane that will make Ft distinguish-
able.

Condition 1. For any fault combination on the 2D plane
that satisfies nf2D ≤ d − 2, Ef2D is not a nontrivial log-
ical operator or the cumulative flag vector is not zero;
equivalently, at least one of the following conditions is
satisfied:

1.
∑ �pf2D �= 0 mod 2,

2.
∑

WP(σf2D) �= 1 mod 2,
3.

∑ �ff2D �= 0 mod 2.

Condition 2. For any fault combination on the 2D plane
that satisfies nq2D + nf2D ≤ d − 3, Eq2D · Ef2D is not a
nontrivial logical operator or the cumulative flag vector
is not zero; equivalently, at least one of the following
conditions is satisfied:

1.
∑ �q2D + ∑ �pf2D �= 0 mod 2,

2. nq2D + ∑
WP(σf2D) �= 1 mod 2,

3.
∑ �ff2D �= 0 mod 2.

030322-23

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

TABLE III. The correspondence between the notation for types of faults on the 2D plane and the 3D structure.

2D plane 3D structure

Fault Weight Flag Fault Weight Flag
type Syndrome parity vector type Syndrome parity vector

q2D �q2D 1 �0 qon, qoff, �qon, �qoff, 1 �0
or qv∗ or �q∗

v

f2D �pf2D WP(σf2D) �ff2D f, v, �pf, �pv, WP(σf), WP(σv), �ff, �fv,
or v∗ �pv∗,cen, WP(σv∗,cen), or �f ∗

v
or �pv∗ ,bot or WP(σv∗,bot)

v∗
2D �pv∗

2D,cen WP(σv∗
2D,cen) �fv∗

2D
v∗ �pv∗,cen WP(σv∗,cen) �f ∗

v

�pv∗
2D,bot

WP(σv∗
2D,bot) �pv∗,bot WP(σv∗,bot)

cap2D �pcap2D WP(σcap2D) �fcap2D cap �pcap WP(σcap) �fcap

Condition 3. For any fault combination on the 2D plane
that satisfies nf2D = 1 and nq2D + nf2D ≤ d − 2, Eq2D ·
Ef2D is not a nontrivial logical operator or the cumula-
tive flag vector is not zero; equivalently, at least one of the
following conditions is satisfied:

1.
∑ �q2D + ∑ �pf2D �= 0 mod 2,

2. nq2D + ∑
WP(σf2D) �= 1 mod 2,

3.
∑ �ff2D �= 0 mod 2.

Condition 4. For any fault combination on the 2D
plane that satisfies nf2D = 1, nq2D ≥ 1, nv∗

2D
≥ 2, and

nq2D + nf2D + nv∗
2D

= d − 1, the following does not hap-
pen: Ef2D · Ev∗

2D,cen is a stabilizer, Eq2D · Ev∗
2D,bot is a

nontrivial logical operator, and the cumulative flag vec-
tor is zero. Equivalently, at least one of the following
conditions is satisfied:

1.
∑ �pf2D + ∑ �pv∗

2D,cen �= 0 mod 2,
2.

∑
WP(σf2D)+ ∑

WP(σv∗
2D,cen) �= 0 mod 2,

3.
∑ �q2D + ∑ �pv∗

2D,bot �= 0 mod 2,
4. nq2D + ∑

WP(σv∗
2D,bot) �= 1 mod 2,

5.
∑ �ff2D �= 0 mod 2,

6.
∑ �fv∗

2D
�= 0 mod 2.

Condition 5. For any fault combination on the 2D plane
that satisfies ncap2D = 1, nq2D ≥ 1, nf2D + nv∗

2D
≥ 2, and

nq2D + nf2D + nv∗
2D

+ ncap2D = d − 1, the following does
not happen: Ef2D · Ev∗

2D,cen · Ecap2D is a stabilizer, Eq2D ·
Ef2D · Ev∗

2D,bot is a nontrivial logical operator, and the
cumulative flag vector is zero. Equivalently, at least one
of the following conditions is satisfied:

1.
∑ �pf2D + ∑ �pv∗

2D,cen + ∑ �pcap2D �= 0 mod 2,
2.

∑
WP(σf2D)+ ∑

WP(σv∗
2D,cen)+ ∑

WP(σcap2D)�= 0 mod 2,
3.

∑ �q2D + ∑ �pf2D + ∑ �pv∗
2D,bot �= 0 mod 2,

4. nq2D + ∑
WP(σf2D)+ ∑

WP(σv∗
2D,bot) �=

1 mod 2,
5.

∑ �ff2D + �fv∗
2D

�= 0 mod 2,
6.

∑ �fcap2D �= 0 mod 2.

Conditions 1–5 prevent fault combinations of some form
from occurring on the 2D plane (such fault combinations
can lead to an indistinguishable fault set). If we arrange the
CNOT gates in the circuits for f and cap generators so that
all conditions are satisfied, then a fault set Ft (which con-
siders the 3D structure) will be distinguishable. The main
theorem of this work is as follows.

Theorem 1. Let Ft be the fault set corresponding to
circuits for measuring f,v, and cap generators of the
capped color code in H form constructed from CCC(d)
[where t = (d − 1)/2, d = 3, 5, 7, . . .], and suppose that
the general configurations of CNOT gates for f, v, and cap
generators are imposed, and that the circuits for each pair
of X -type and Z-type generators use the same CNOT order-
ing. Let the code on the (simplified) 2D plane be the 2D
color code of distance d. If all possible fault combinations
on the 2D plane arising from the circuits for measuring f
and cap generators satisfy Conditions 1 to 5, then Ft is
distinguishable.

Proof ideas. Theorem 1 is proved in Appendix A. The
proof is organized as follows. First, we try to show that
if Conditions 1–5 are satisfied, then for any fault combi-
nation arising from up to d − 1 faults whose combined
error is purely Z type, the fault combination cannot lead
to a logical Z operator and the zero cumulative flag vector.
The same analysis is also applicable to fault combinations
whose combined error is purely X type since the circuits
for measuring each pair of X -type and Z-type generators
are of the same form. Afterwards, we use the fact that i

030322-24

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

faults during the measurements of Z-type generators can-
not cause an X -type error of weight more than i (and
vice versa), and show that there is no fault combination
arising from up to d − 1 faults that leads to a nontrivial
logical operator and the zero cumulative flag vector. By
Proposition 1, this implies that Ft is distinguishable.

In order to prove the first part, we assume that Condi-
tions 1–5 are satisfied and that there exists a fault combi-
nation arising from < d faults whose combined error is a
logical Z operator and its cumulative flag vector is zero;
then we show that some contradiction will happen. From
Lemma 1, a logical Z operator is a Z-type error with trivial
syndrome and odd weight parity. Therefore, such a fault
combination will give scap = 0, �sf = �0, �sv = �0, WPtot =
1, �fcap = �0, �ff = �0, �fv = �0, WPbot = 1, and �sbot = 0 in
the main equations [Eqs. (15)–(23)]. A proof for this part
will be divided into four cases: (1) nf = 0 and ncap = 0,
(2) nf ≥ 1 and ncap = 0, (3) nf = 0 and ncap ≥ 1, and
(4) nf ≥ 1 and ncap ≥ 1. In each case, the main equations
will be simplified by eliminating the terms that are equal
to zero. Afterwards, we consider the following pairs of
equations: Eqs. (15) and (16), (17) and (18), (22) and (23).
For each pair, the types of faults on the 3D structure will
be translated to their corresponding types of faults on the
2D plane in order to find matching conditions from Condi-
tions 1–5. Note that the total number of faults of each type
will also help in finding the matching conditions, and the
total number of faults of all types is at most d − 1. When
the matching conditions are found, we find that some con-
tradictions will happen (assuming that all conditions are
satisfied), and this is true for all possible cases. �

Theorem 1 can make the process of finding CNOT order-
ings that give a distinguishable fault set less laborious;
instead of finding all possible fault combinations arising
from the circuits for f, v, and cap generators and check-
ing whether any condition in Definition 3 is satisfied, we
just have to check whether all possible fault combinations
arising from the circuits for f and cap generators satisfy
Conditions 1–5. Note that the number of possible fault
combinations of the latter task is much smaller than that
of the former task because the total number of generators
involved in the latter calculation roughly decreases by half,
and the weight of an f generator is half of the weight of
its corresponding v generator. After good CNOT orderings
for f and cap generators are found, we can find the CNOT
orderings of v generators by the constraints imposed by the
general configurations for data and flag CNOT gates.

1. Nonflag circuits for measuring generators of capped
color codes in H form of distances 3 and 5

In the case that all circuits for measuring generators
are nonflag circuits, we can find good CNOT orderings
(which give a distinguishable fault set) for the capped color
codes in H form of distances 3 and 5. The circuits and

(a)

(b)

FIG. 12. (a) A nonflag circuit for measuring a generator of the
capped color code of distance 5 in H form, where w is the weight
of the generator. (b) The orderings of data CNOT gates that give a
distinguishable fault set F2.

CNOT orderings for the code of distance 3 (which is the
3D color code of distance 3) were previously described in
Sec. III B. The circuit for measuring a generator of weight
w of the code of distance 5 is a nonflag circuit, as shown
in Fig. 12(a), and the orderings of data CNOT gates for f
and cap generators are given in Fig. 12(b). In Fig. 12(b),
for each f generator, the qubits on which data CNOT gates
act start from the tail of an arrow and then proceed coun-
terclockwise, and the ordering of data CNOT gates for the
cap generator is in numerical order, i.e., (0,1,2,. . . ,19),
following the qubit labels in the diagram. Meanwhile, the
ordering of data CNOT gates for each v generator can be
obtained from its corresponding f generator using the saw-
tooth configuration (see Sec. III B and Fig. 4 for more
details).

The aforementioned results for the codes of distances 3
and 5 are found by manually picking the CNOT ordering for
each f or cap generator, and then using a computer simu-
lation to verify that Conditions 1–5 are satisfied. However,
searching for good CNOT orderings using this procedure
might not be efficient when d is large. We point out that
in the case that all circuits for measuring generators are
nonflag circuits, it is still not known whether good CNOT
orderings exist for d ≥ 7. Fortunately, we can prove ana-
lytically that if all circuits for measuring generators are
flag circuits of a particular form, it is always possible to
obtain a distinguishable fault set for a capped color code in
H form of any distance.

030322-25

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

(a)

(b)

FIG. 13. (a) A flag circuit with one flag ancilla for measuring
an f or a cap generator of weight w. (b) A flag circuit with one
flag ancilla for measuring a v generator of weight 2w.

2. Flag circuits for measuring generators of a capped
color code in H form of any distance

Here we show that there exist flag circuits for measuring
generators of a capped color code in H form of any dis-
tance that can give a distinguishable fault set. First, assume
that the circuit for measuring an f and a cap generator of
weight w is a flag circuit with one flag ancilla similar to
the circuit in Fig. 13(a), and that the circuit for measuring
a v generator is a flag circuit with one flag ancilla simi-
lar to the circuit in Fig. 13(b) (which follows the general
configurations of data and flag CNOT gates).

Next, let us consider Eqs. (15)–(23). A nontrivial logical
operator of a capped color code in H form with trivial flags
happens whenever scap = 0, �sf = �0, �sv = �0, WPtot = 1,
�fcap = �0, �ff = �0, �fv = �0, WPbot = 1, and �sbot = 0. This
means that a nontrivial logical operator of a capped color
code in H form [constructed from CCC(d)] occurs if and
only if (1) the combined data error on the bottom plane
(Eoff) is a nontrivial logical operator of the 2D color code
of distance d with trivial flags, and either (2.a) n0 = 0 and
the combined data error on the center plane (Eon) is a sta-
bilizer of the 2D color code of distance d with trivial flags,
or (2.b) n0 = 1 and the combined data error on the cen-
ter plane (Eon) is a nontrivial logical operator of the 2D
color code of distance d with trivial flags. For this reason,
if we can show that there is no fault combination from up
to d − 1 faults that can cause a nontrivial logical opera-
tor of the 2D color code of distance d with trivial flags on
the bottom plane, then a nontrivial logical operator of the

capped color code in H form [constructed from CCC(d)]
with trivial flags cannot happen, meaning that the fault set
Ft is distinguishable.

Observe that faults that can contribute to Eoff are qoff,
v, and v∗ faults only. Moreover, from the flag circuit for a
v generator in Fig. 13(b), a single fault of v or v∗ type will
give a trivial flag only when the part of the corresponding
data error on the bottom plane has weight ≤ 1. This fact
leads to the following claim.

Claim 1. Suppose that v generators are measured using
flag circuits with one flag ancilla similar to the circuit in
Fig. 13(b).

1. If there is exactly one fault during a measurement
of generator vz

i and the bit of the flag vector cor-
responding to vz

i is zero, then the data error on the
bottom plane has weight 0 or 1. In this case, the data
error on the bottom plane from one fault of v (or v∗)
type is similar to some data error from zero or one
fault of qoff type.

2. If there are exactly two faults during measure-
ments of the same generator vz

i (possibly on different
rounds) and the bit of the cumulative flag vector cor-
responding to vz

i is zero, then the combined data
error on the bottom plane has weight 0, 1, 2, or 3 (up
to a multiplication of vz

i). The combined data error
of weight 0, 1, or 2 on the bottom plane from two
faults of v (or v∗) type on the same generator is sim-
ilar to some combined data error from zero, one, or
two faults of qoff type. The case that the combined
data error on the bottom plane of weight 3 arising
from two faults of v (or v∗) type on the same gener-
ator is the only case that the weight of the combined
data error on the bottom plane is greater than the
number of faults.

3. If there are three or more faults during measure-
ments of the same generator vz

i (possibly from differ-
ent rounds) and the bit of the cumulative flag vector
corresponding to vz

i is zero, then the combined data
error on the bottom plane has weight 0, 1, 2, or 3
(up to a multiplication of vz

i) and is similar to some
combined data error from zero, one, two, or three
faults of qoff type.

Claim 1 will be used later to prove that a nontrivial log-
ical operator of the 2D color code of distance d with trivial
flags cannot happen on the bottom plane.

Because the ordering of CNOT gates for each v generator
is related to its corresponding f generator, the problem of
finding CNOT orderings for a 3D structure that give a dis-
tinguishable fault set can be simplified to the problem of
finding CNOT orderings on a 2D plane. In particular, since
we are now considering the bottom plane only, f2D faults
on the 2D plane correspond to both v and v∗ faults on the

030322-26

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

3D structure, while q2D faults on the 2D plane correspond
to qoff faults on the 3D structure.

A fault set Ft is distinguishable if the following condi-
tion is satisfied.

Condition 6. For any fault combination on the 2D plane
that satisfies nq2D + nf2D ≤ d − 1, Eq2D · Ef2D is not a
nontrivial logical operator or the cumulative flag vector
is not zero; equivalently, at least one of the following
conditions is satisfied:

1.
∑ �q2D + ∑ �pf2D �= 0 mod 2,

2. nq2D + ∑
WP(σf2D) �= 1 mod 2,

3.
∑ �ff2D �= 0 mod 2.

Surprisingly, using the flag circuits with one flag ancilla
as shown in Figs. 13(a) and 13(b) to measure the generators
of a capped color code in H form, Condition 6 is satisfied
regardless of the orderings of data CNOT gates of f genera-
tors (as long as the CNOT orderings of v generators follow
the general configurations of data and flag CNOT gates).
And because we are considering faults on the (simplified)
2D plane, the fact that Condition 6 is satisfied regardless of
the orderings of data CNOT gates in the flag circuits is also
applicable to a 2D color code of any distance as well. This
can be restated in the following theorem.

Theorem 2. Suppose that the generators of a 2D color
code of distance d are measured using the flag circuits with
one flag ancilla as displayed in Fig. 13(a). Then, there is
no fault combination arising from d − 1 faults whose com-
bined data error is a nontrivial logical operator and the
cumulative flag vector is zero (i.e., Condition 6 is satis-
fied), regardless of the orderings of data CNOT gates in the
flag circuits.

Theorem 2 has been proved in Ref. [24], where the
circuit in Fig. 13(a) is a 1-flag circuit according to the
definition in Ref. [22]. Here we also provide an alternative
proof of Theorem 2 that is tailored to the notation being
used throughout this work, so that the paper becomes self-
contained. We also believe that our proof technique using
the relationship between faults and error weights would be
useful for finding proper CNOT orderings for other families
of codes.

Proof of Theorem 2. Assume by contradiction that Condi-
tion 6 is not satisfied; i.e., there exists a fault combination
from d − 1 faults that gives a nontrivial logical operator
with trivial flags. For such a fault combination, the syn-
drome of Eq2D · Ef2D is zero, the total weight of Eq2D · Ef2D

is odd, and the cumulative flag vector
∑ �ff2D is zero. From

the structure of the flag circuit in Fig. 13(a), a single fault
of f2D type will give a trivial flag only when the corre-
sponding data error has weight ≤ 1. Similar to Claim 1

for faults of v and v∗ type discussed previously, the only
case that faults of f2D type cannot be considered as faults
of q2D type of the same or smaller number is the case
that, for each generator f z

i of the 2D color code, there
are exactly two faults during the generator measurements
(on the same or different rounds) that lead to the com-
bined data error of weight 3 (up to a multiplication of f z

i).
For this reason, we assume that, for each generator f z

i ,
there are either no faults or exactly two faults during the
measurements.

Let (nf , nq) denote the case that a fault combination
arises from exactly nf faults of f2D type and no more
than nq faults of q2D type (where nf + nq = d − 1). We
show that in any case with even nf [i.e., (0, d − 1), (2, d −
3), . . . , (d − 1, 0)], Eq2D · Ef2D cannot be a nontrivial logi-
cal operator.

Case (0, d − 1). Because the 2D color code has dis-
tance d and the total weight of Eq2D is at most
d − 1, Eq2D cannot be a nontrivial logical opera-
tor.

Case (2, d − 3). Suppose that a pair of f2D faults causes
a weight-3 error on the supporting qubits of generator f z

i .
Consider the following cases.

1. If there are an even number of q2D faults on the
supporting qubits of f z

i , then the syndrome bit sx
i

corresponding to generator f x
i is not zero. That is,

Eq2D · Ef2D is not a nontrivial logical operator.
2. If there are an odd number of q2D faults on the sup-

porting qubits of f z
i , then the total weight of the

error on supporting qubits of f z
i is 0 or 2 (the total

weight is even and no more than 3 up to a multipli-
cation of f z

i). Since two f2D faults and one or more
q2D faults give an error of weight no more than 2,
this case is covered by the (0, d − 1) case, in which
a nontrivial logical operator cannot occur.

Thus, Eq2D · Ef2D is not a nontrivial logical operator in the
(2, d − 3) case.

Case (nf , nq) with nf ≥ 4 and nf + nq = d − 1. Con-
sider the following cases.

1. The case in which there are two pairs of f2D faults
that occur on adjacent generators f z

i and f z
j , and

each pair leads to an error of weight 3 on the
supporting qubits of each generator. We can always
make these two errors of weight 3 overlap by multi-
plying each error with f z

i (or f z
j); see the examples

below.

030322-27

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

As a result, the total weight of these two errors
becomes 2 or 4. Since four f2D faults give an
error of weight no more than 4, this case is
covered by the (nf − 4, nq + 4) case. We can
repeat this reduction process until there are no
pairs of faults that occur on adjacent genera-
tors.

2. The case in which there are no pairs of f2D
faults that occur on adjacent generators. Suppose
that a single pair of f2D faults causes a weight-
3 error on the supporting qubits of generator
f z
i .

(a) If there are an even number of q2D faults on
the supporting qubits of f z

i , then the syndrome
bit sx

i corresponding to generator f x
i is not zero.

That is, Eq2D · Ef2D is not a nontrivial logical
operator.

(b) If there are an odd number of q2D faults on
the supporting qubits of f z

i , then the total
weight of the error on supporting qubits of
f z
i is 0 or 2 (up to a multiplication of f x

i).
Since two f2D faults and one or more q2D
faults give an error of weight no more than
2, this case is covered by the (nf − 2, nq + 2)
case.

By induction, a nontrivial logical operator cannot
occur in any case with nf ≥ 4 and nf + nq = d −
1.

Therefore, there is no fault combination from d −
1 faults that gives the zero cumulative flag vector
and a nontrivial logical operator on the 2D color
code. �

From Theorem 2, it is always possible to obtain a distin-
guishable fault set Ft for a 2D color code of any distance
(thus, fault-tolerant protocols for error correction, mea-
surement, and state preparation described in Sec. V are
applicable).

Now let us consider the capped color code in H form.
Because there is no fault combination from d − 1 faults
that can cause a nontrivial logical operator of the 2D color
code with trivial flags on the bottom plane, a nontrivial
logical operator of the capped color code in H form with
trivial flags cannot occur from d − 1 faults. By Proposition
1, this implies that the fault set Ft is distinguishable. The
result can be summarized in the following theorem.

Theorem 3. Let Ft be the fault set corresponding to
circuits for measuring f,v, and cap generators of the
capped color code in H form constructed from CCC(d)
[where t = (d − 1)/2, d = 3, 5, 7, . . .], and suppose that
the general configurations of CNOT gates for f, v, and cap
generators are imposed, and that the circuits for each pair

of X -type and Z-type generators use the same CNOT order-
ing. Also, let circuits for measuring f and cap generators
be flag circuits with one flag ancilla similar to the circuit
in Fig. 13(a), and let circuits for measuring v generators
be flag circuits with one flag ancilla similar to the circuit
in Fig. 13(b). Then, Ft is distinguishable.

(We can also see that whenever Condition 6 is satis-
fied, Conditions 1–5 are also satisfied. This leads to a
distinguishable fault set by Theorem 1.)

The fault-tolerant protocols for error correction, mea-
surement, and state preparation in Sec. V are applicable
to a capped color code in H form of any distance when-
ever the fault set is distinguishable. Note that the protocols
for capped color codes in H form of distances 3 and 5 need
only one ancilla in total, while the protocols for code of dis-
tance 7 or higher need only two ancillas in total (assuming
that the ancillas can be reused).

In addition, the CNOT orderings that work for capped
color codes in H form will work for recursive capped color
codes in H form. That is, for a recursive capped color
code in H form of distance d = 2t + 1, the fault set Ft is
distinguishable if the following statements hold:

1. the f and v operators on the (j − 1)th and the j th
layers of the recursive capped color code are mea-
sured using the CNOT orderings for the f and v
operators of a capped color code in H form of dis-
tance j (j = 3, 5, . . . , d) that give a distinguishable
fault set, and

2. the cap operator on the (j − 2)th and the (j − 1)th
layers of the recursive capped color code is mea-
sured using the CNOT ordering for the cap operator
of a capped color code in H form of distance j
(j = 3, 5, . . . , d) that give a distinguishable fault set
[where an operator on q0 of the capped color code is
replaced by operators on all qubits on the (j − 2)th
layer of the recursive capped color code].

The orderings above work because the recursive capped
color code in H form of distance d is obtained by encoding
the top qubit (q0) of the capped color code in H form of
distance d by the recursive capped color code in H form
of distance d − 2. FTEC protocols for a recursive capped
color code in H form are similar to conventional FTEC
protocols for a concatenated code; we start from correcting
errors on the innermost code and then proceed outwards.
Other fault-tolerant protocols for a recursive capped color
code will also use similar ideas.

V. FAULT-TOLERANT PROTOCOLS

So far, we have considered capped and recursive capped
color codes in H form, and derived Theorems 1–3 that
help us find CNOT orderings for the circuits for measuring
the code generators such that the corresponding fault set

030322-28

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

is distinguishable. In this section, we show that whenever
the fault set is distinguishable, a fault-tolerant protocol
can be constructed. We first state the definitions of fault-
tolerant gadgets in Sec. V A, which are a bit different
from conventional definitions originally proposed by Alif-
eris, Gottesman, and Preskill (AGP) [10]. Afterwards, we
develop several fault-tolerant protocols for a capped or a
recursive capped color code whose circuits for measur-
ing generators give a distinguishable fault set, including
a FTEC protocol (Sec. V B), fault-tolerant measurement
(FTM) and fault-tolerant state preparation (FTP) proto-
cols (Sec. V C), transversal Clifford gates (Sec. V D), and
a fault-tolerant protocol for logical T-gate implementation
(Sec. V E).

A. Redefining fault tolerance

When a fault set Ft is distinguishable, all possible errors
of any weight arising from up to t faults can be accurately
identified (up to a multiplication of some stabilizer) using
their syndromes and cumulative flag vectors obtained from
perfect subsequent syndrome measurements. Therefore, all
possible errors arising from up to t faults are correctable.
However, one should be aware that faults can happen any-
where in an EC protocol, including the locations in the
subsequent syndrome measurements. Our goal is to con-
struct a protocol that is fault tolerant; vaguely speaking, if
an input state to an EC protocol has some error, we want to
make sure that the output state is the same logical state as
the input, and if output state has any error, the error must
not be “too large”.

What does it mean for the output error to be not too
large? The general idea is that if an output error of a sin-
gle round of the protocol becomes an input error of the
next round of the protocol, the error should still be cor-
rectable by the latter round. Aliferis et al. [10] proposed
that the weight of the output error from a fault-tolerant
protocol should be no more than the number of total faults
that occurred during the protocol. However, it should be
noted that, for an [[n, k, d]] code that can correct errors up
to weight τ = �(d − 1)/2� and is not a perfect code (or
not a perfect CSS code) [83], the idea of correctable errors
can be extended to some errors of weight more than τ . For
example, if the code being used is a nonperfect code of
distance 3, there will be some error E of weight more than
1 whose syndrome �s(E) is different from those of errors
of weight 1. If no other error E′ has the same syndrome
as E in the set of correctable errors, then in this case E
is also correctable in the sense that we can perform an
error correction by applying E† every time we obtained
the syndrome �s(E). In this section, we “refine” the idea of
high-weight error correction and “redefine” fault tolerance
using the notion of distinguishable fault set.

We start by stating conventional definitions of fault-
tolerant gadgets proposed by Aliferis et al. [10]; then

we give the revised version of the same definitions.
Recall that τ denotes the weight of errors that a sta-
bilizer code can correct and t denotes the number of
faults. The first two definitions are the definitions of
an r filter and an ideal decoder, which are the main
tools for describing the properties of fault-tolerant gad-
gets.
Definition 5 (r filter—AGP version): Let T(S) be the
coding subspace defined by the stabilizer group S. An r
filter is the projector onto the subspace spanned by

{E|ψ̄〉; |ψ̄〉 ∈ T(S), the weight of E is at most r}. (24)

An r filter in circuit form is

where a thick line represents a block of code.
Definition 6 (Ideal decoder—AGP version): Let τ =
�(d − 1)/2�, where d is the code distance. An ideal
decoder is a gadget that can correct any error of weight
up to τ and map an encoded state |ψ̄〉 on a code block to
the corresponding (unencoded) state |ψ〉 on a single qubit
without any fault. An ideal decoder in circuit form is

where a thick line represents a block of code and a thin line
represents a single qubit.

The intuition behind the definitions of these two gad-
gets is as follows. If an input state of an r filter differs
from a codeword by an error of weight ≤ r, then the out-
put state will also differ from the same codeword by an
error of weight ≤ r. However, if the input state has an
error of weight > r, then the input and output states may
correspond to different ideal codewords (i.e., they may be
ideally decoded to different unencoded states). An ideal
decoder is a gadget that guarantees that the output (unen-
coded) state and the input (encoded) state will be logically
the same whenever the input state has an error of weight
no more than τ .

(Note that an r filter is a linear, completely positive
map, but it is not trace preserving; an r filter cannot be
physically implemented. In the definitions of fault-tolerant
gadgets to be described, r filters will be used as mathe-
matical objects to express circuit identities that must hold
when the weight of input or output errors and the num-
ber of faults are restricted. When each identity holds, both
sides of the equation give the same output, including nor-
malization, for the same input state, but the trace of the
output might not be one.)

030322-29

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

Using the definitions of the r filter and ideal decoder, a
fault-tolerant gate (FTG) gadget and FTEC gadget can be
defined as follows.

Definition 7 (Fault-tolerant gate gadget—AGP ver-
sion): A gate gadget with s faults simulating an ideal
m-qubit gate is represented by the following picture:

where each thick line represents a block of code. Let t ≤
�(d − 1)/2�. A gate gadget is t-fault tolerant if it satisfies
both of the following properties.

1. Gate correctness property (GCP):
whenever

∑m
i=1 ri + s ≤ t,

2. Gate error propagation property (GPP):
whenever

∑m
i=1 ri + s ≤ t,

Here the r-filter and the ideal decoder are as defined in
Definitions 5 and 6.

Definition 8 (Fault-tolerant error-correction gad-
get—AGP version): An error-correction gadget with s
faults is represented by the following picture:

where a thick line represents a block of code. Let t ≤ �(d −
1)/2�. An error-correction gadget is t-fault tolerant if it
satisfies both of the following properties.

1. Error-correction correctness property (ECCP):
whenever r + s ≤ t,

2. Error-correction recovery property (ECRP): when-
ever s ≤ t,

Here the r filter and the ideal decoder are as defined in
Definitions 5 and 6.

When a FTG gadget satisfies both properties in
Definition 7, it is guaranteed that whenever the weight
of the input error plus the number of faults is no more
than t, (1) the operation of a FTG gadget on an encoded
state will be similar to the operation of its corresponding
quantum gate on an unencoded state, and (2) an output
state of a FTG gadget will have an error of weight no
more than t (which is also ≤ τ). Meanwhile, the two prop-
erties of a FTEC gadget in Definition 8 guarantee that
(1) the output and the input states of a FTEC gadget
are logically the same whenever the weight of the input
error plus the number of faults is no more than t, and (2)
the weight of the output error of a FTEC gadget is no
more than the number of faults whenever the number of
faults is at most t, regardless of the weight of the input
error.

FTP and FTM gadgets, which are special cases of FTG
gadget, can be defined as follows.

Definition 9 (Fault-tolerant state preparation gad-
get—AGP version): A state preparation gadget with s
faults is represented by the following picture:

where a thick line represents a block of code. Let t ≤ �(d −
1)/2�. A state preparation gadget is t-fault tolerant if it
satisfies both of the following properties.

1. Preparation correctness property (PCP): whenever
s ≤ t,

030322-30

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

2. Preparation error propagation property (PPP):
whenever s ≤ t,

Here the r filter and the ideal decoder are defined as in
Definitions 5 and 6.

Definition 10 (Fault-tolerant (nondestructive) measure-
ment gadget—AGP version): A (nondestructive) mea-
surement gadget with s faults is represented by the follow-
ing picture:

where a thick line represents a block of code. Let t ≤ �(d −
1)/2�. A (nondestructive) measurement gadget is t-fault
tolerant if it satisfies both of the following properties.

1. Measurement correctness property (MCP):
whenever r + s ≤ t,

2. Measurement error propagation property (MPP):
whenever r + s ≤ t,

Here the r filter and the ideal decoder are defined as in
Definitions 5 and 6.

The meanings of the properties of FTP and FTM gad-
gets are similar to the meanings of the properties of a FTG
gadget as previously explained.

From Definitions 7–10, we can see that an action of a
fault-tolerant gadget is guaranteed in the circumstance that
the weight of the input error r and the number of faults
that occurred in the gadget s satisfy some condition. Now,
a question that arises is: what will happen if the input
error has weight greater than τ = �(d − 1)/2�, which is
the weight of errors that a code can correct? By Definition
3, we know that if a fault set Ft is distinguishable, possible
errors arising from up to t faults in an EC protocol [where
t ≤ �(d − 1)/2�] can be distinguished using their corre-
sponding syndromes or cumulative flag vectors, regardless
of the error weights. Would it be more natural if the def-
initions of fault-tolerant gadgets depend on the number of
faults related to an input error, instead of the weight of an

input error? In this work, we try to modify the definitions
of fault-tolerant gadgets and rewrite them using the notion
of distinguishable fault set.

To modify the definitions of fault-tolerant gadgets pro-
posed in Ref. [10], first let us define a distinguishable error
set as follows.
Definition 11 (Distinguishable error set): Let Fr be a
distinguishable fault set, and let Fr|�f=0 be a subset of Fr
defined as

Fr|�f=0 = {� ∈ Fr; �f of � is zero}. (25)

A distinguishable error set Er corresponding to Fr is

Er = {E of � ∈ Fr|�f=0}. (26)

If Fr is distinguishable, Fr|�f=0 is also distinguishable
since all pairs of fault combinations in Fr|�f=0 also sat-
isfy the conditions in Definition 3. Moreover, because all
fault combinations in Fr|�f=0 correspond to the zero cumu-
lative flag vector, we find that, for any pair of errors in Er,
the errors either have different syndromes or are logically
equivalent (up to a multiplication of a stabilizer). For this
reason, we can safely say that Er is a set of correctable
errors.

Because the set of correctable errors is now expanded,
the definitions of the r filter and ideal decoder can be
revised as follows.
Definition 12 (r filter—revised version): Let T(S) be the
coding subspace defined by the stabilizer group S, and let
Er be the distinguishable error set corresponding to a dis-
tinguishable fault set Fr. An r filter is the projector onto
subspace spanned by

{E|ψ̄〉; |ψ̄〉 ∈ T(S), E ∈ Er}. (27)

A (revised) r filter in circuit form is similar to that illus-
trated in Definition 5.
Definition 13 (Ideal decoder—revised version): Let Et
be the distinguishable error set corresponding to a distin-
guishable fault set Ft, where t ≤ �(d − 1)/2� and d is the
code distance. An ideal decoder is a gadget that can cor-
rect any error in Et and map an encoded state |ψ̄〉 on a
code block to the corresponding (unencoded) state |ψ〉 on
a single qubit without any faults. A (revised) ideal decoder
in circuit form is similar to that illustrated in Definition 6.

Using the revised definitions of the r filter and ideal
decoder, fault-tolerant gadgets can be defined as follows.
Definition 14 (Fault-tolerant gadgets—revised ver-
sion): Let t ≤ �(d − 1)/2�. Fault-tolerant gadgets are
defined as follows.

1. A gate gadget is t-fault tolerant if it satisfies both of
the properties in Definition 7, except that the r filter

030322-31

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

and ideal decoder are defined as in Definitions 12
and 13.

2. An error-correction gadget is t-fault tolerant if it
satisfies both of the properties in Definition 8, except
that the r filter and ideal decoder are defined as in
Definitions 12 and 13.

3. A state preparation gadget is t-fault tolerant if it
satisfies both of the properties in Definition 9, except
that the r filter and ideal decoder are defined as in
Definitions 12 and 13.

4. A (nondestructive) measurement gadget is t-fault
tolerant if it satisfies both of the properties in
Definition 10, except that the r filter and ideal
decoder are defined as in Definitions 12 and 13.

The revised definitions of fault-tolerant gadgets in cir-
cuit form may look very similar to the old definitions
proposed in Ref. [10], but the meanings are different: the
conditions in the revised definitions depend on the number
of faults that can cause an input or an output error, instead
of the weight of an input or an output error. Roughly speak-
ing, this means that (1) a fault-tolerant gadget is allowed to
produce an output error of weight greater than τ [where
τ = �(d − 1)/2�], and (2) a fault-tolerant gadget can work
perfectly even though the input error has weight greater
than τ , as long as the input or the output error is similar
to an error caused by no more than t ≤ τ faults. Because
the revised definitions of the r filter and ideal decoder are
more general than the old definitions, we expect that a gad-
get that satisfies one of the old definitions of fault-tolerant
gadgets (Definitions 7–10) will also satisfy the new defini-
tions in Definition 14. Note that the revised definitions are
based on the fact that a fault set relevant to a gadget is dis-
tinguishable, that is, whether the gadgets are fault tolerant
depends on the way they are designed.

In a special case where the code being used is a CSS
code and possible X -type and Z-type errors have the same
form, the definition of a distinguishable error set can be
further extended as follows.
Definition 15 (Distinguishable error set (for a special
family of CSS codes)): Let Fr be a distinguishable fault
set, and let Fr|�f=0 be a subset of Fr defined as

Fr|�f=0 = {� ∈ Fr; �f of � is zero}. (28)

A distinguishable-X error set Ex
r and a distinguishable-Z

error set E z
r corresponding to Fr are

Ex
r = {E of � ∈ Fr|�f=0; E is an X -type error}, (29)

E z
r = {E of � ∈ Fr|�f=0; E is a Z-type error}. (30)

For a CSS code in which the elements of Ex
r and E z

r have a
similar form, a distinguishable error set Er corresponding

to Fr is defined as

Er = {Ex · Ez; Ex ∈ Ex
r , Ez ∈ E z

r }. (31)

Since a CSS code can detect and correct X -type and Z-
type errors separately, here we modify the definition of a
distinguishable error set for a CSS code in which Ex

r and
E z

r are in the same form so that more Y-type errors are
included in Er. For example, suppose that t = 2, each of
XXXX and ZZZZ can be caused by two faults, and that
YYYY can be caused by four faults. By the old definition
(Definition 11), we say that XXXX and ZZZZ are in E2,
and YYYY is in E4 but not in E2. In contrast, by Definition
15, we say that XXXX , YYYY, and ZZZZ are all in E2. This
modification will give more flexibility when developing a
fault-tolerant gadget for this special kind of CSS code, e.g.,
a transversal S gate that produces an output error YYYY
from an input error XXXX still satisfies the properties in
Definition 14 when a distinguishable fault set is defined as
in Definition 15.

When performing a fault-tolerant quantum computa-
tion, FTEC gadgets will be used repeatedly in order to
reduce the error accumulation during the computation.
Normally, FTEC gadgets will be placed before and after
other gadgets (FTG, FTP, or FTM gadgets). A group
of gadgets including a FTG gadget, leading EC gadgets
(the FTEC gadgets before the FTG gadget), and trail-
ing EC gadgets (FTEC gadgets after the FTG gadget) as
shown below is called an extended rectangle at level 1 or
1-exRec:

(A 1-exRec of a FTP or FTM gadget is defined similarly to
a 1-exRec of a FTG gadget, except that there is no leading
gadget in a FTP gadget.) We say that a 1-exRec is good
if the total number of faults in a 1-exRec is no more than
t. Using the revised definitions of fault-tolerant gadgets in
Definition 14, a revised version of the exRec-Cor lemma at
level 1, originally proposed in Ref. [10], can be obtained.

Lemma 3 (ExRec-Cor lemma at level 1—revised ver-
sion). Suppose that all gadgets are t-fault tolerant accord-
ing to Definition 14. If a 1-exRec is good (i.e., a 1-exRec
has no more than t faults), then the 1-exRec is correct; that

030322-32

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

is, the following condition is satisfied:

with the r filter and ideal decoder defined as in Definitions
12 and 13.

Proof. Here we focus only on the case that a gate gadget
simulates a single-qubit gate. The proofs for the case of a
multiple-qubit gate and other gadgets are similar. Suppose
that the leading EC gadget, the gate gadget, and the trailing
EC gadget in an exRec have s1, s2, and s3 faults, where s1 +
s2 + s3 ≤ t. We show that the following equation holds:

.
(32)

Because the gate gadget satisfies GPP and the EC gadgets
satisfy ECRP, the left-hand side of Eq. (32) is

lhs
.

Using GCP, ECCP, and the fact that an ideal decoder can
correct any error in Et, we obtain

lhs

rhs
.

This completes the proof. �
(Note that both sides of the equation in Lemma 3 are

trace-preserving, completely positive maps, even though
the r filters introduced during the proof are not trace pre-
serving. This is possible since the total number of faults
in a 1-exRec is restricted and all gadgets satisfy Definition
14.)

The revised version of the exRec-cor lemma developed
in this work is very similar to the original version in
Ref. [10], even though the r filter, the ideal decoder, and the
fault-tolerant gadgets are redefined. The exRec-Cor lemma
is one of the main ingredients for the proofs of other lem-
mas and theorems in Ref. [10]. As a result, other lemmas
and theorems developed in Ref. [10] are also applicable to
our case, including their version of the threshold theorem
(the proofs of the revised versions of the lemmas and theo-
rems are similar to the proofs presented in Ref. [10], except
that Lemma 3 is used instead of the original exRec-Cor
lemma). This means that fault-tolerant gadgets satisfying
Definition 14 can be used to simulate any quantum circuit,
and the logical error rate can be made arbitrarily small if
the physical error rate is below some constant threshold
value. The main advantage of the revised definitions of
fault-tolerant gadgets over the conventional definitions is
that high-weight errors are allowed as long as they arise
from a small number of faults. These revised definitions
can give us more flexibility when developing fault-tolerant
protocols.

B. Fault-tolerant error-correction protocol

So far, we have shown that it is possible to redefine
the r filter and ideal decoder as in Definitions 12 and 13
using the notions of distinguishable fault set (Definition 3)
and distinguishable error set (Definition 11 or Definition
15), and redefine fault-tolerant gadgets as in Definition
14. These revised definitions give us more flexibility when
designing fault-tolerant protocols, while ensuring that the
simulated circuit constructed from these protocols still
work fault-tolerantly. In this section, we construct a FTEC
protocol for a capped color code in H form of any distance
in which its fault set is distinguishable. Note that having
only the FTEC protocol is not enough for general fault-
tolerant quantum computation, so we also construct other
fault-tolerant protocols that share the same distinguishable
fault set with the FTEC protocol for a particular code in
Secs. V C–V E.

To construct a FTEC protocol for a capped color code
in H form obtained from CCC(d), we first assume that
the fault set Ft [where t = (d − 1)/2] corresponding to the
circuits for measuring the generators of the code is distin-
guishable, and that the orderings of gates in the circuits for
each pair of X -type and Z-type generators are the same.
From the fact that Ft is distinguishable, we can build a
list of all possible fault combinations and their correspond-
ing combined error, syndrome of the combined error, and
cumulative flag vector. Note that if several fault combina-
tions have the same syndrome and cumulative flag vector,
their combined errors are all logically equivalent (from
Definition 3).

Let �s = (�sx|�sz) be the syndrome obtained from the mea-
surements of X -type and Z-type generators, and let �f =

030322-33

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

(�fx|�fz) be the cumulative flag vector corresponding to the
flag outcomes from the circuits for measuring X -type and
Z-type generators, where �f is accumulated from the first
round until the current round. We define the outcome bun-
dle (�s,�f) to be the collection of �s and �f obtained during
a single round of full syndrome measurement. A FTEC
protocol for the capped color code in H form is as follows.

FTEC protocol for a capped color code in H form.
During a single round of full syndrome measurement, mea-
sure the generators in the following order: measure the vx

i ,
then the f x

i , then the vz
i , then the f z

i . Perform full syndrome
measurements until the outcome bundles (�s,�f) are repeated
t + 1 times in a row. Afterwards, do the following.

1. Determine an EC operator Fx using the list of
possible fault combinations as follows.

(a) If there is a fault combination on the list whose
syndrome and cumulative flag vector are (�0|�sz)

and (�fx|�0), then Fx is the combined error of
such a fault combination. (If there is more than
one fault combination corresponding to (�0|�sz)

and (�fx|�0), a combined error of any such fault
combinations will work.)

(b) If none of the fault combinations on the list cor-
responds to (�0|�sz) and (�fx|�0), then Fx can be any
Pauli-X operator whose syndrome is (�0|�sz).

2. Determine an EC operator Fz using the list of
possible fault combinations as follows.

(a) If there is a fault combination on the list whose
syndrome and cumulative flag vector are (�sx|�0)
and (�0|�fz), then Fz is the combined error of
such a fault combination. (If there is more than
one fault combination corresponding to (�sx|�0)
and (�0|�fz), a combined error of any such fault
combinations will work.)

(b) If none of the fault combinations on the list cor-
responds to (�sx|�0) and (�0|�fz), then Fz can be any
Pauli-Z operator whose syndrome is (�sx|�0).

3. Apply Fx · Fz to the data qubits to perform error
correction.

To verify that the above EC protocol is fault tolerant
according to the revised definition (Definition 14), we
have to show that the two properties in Definition 8 are
satisfied when the r filter and the ideal decoder are defined
as in Definitions 12 and 13 (instead of Definitions 5 and 6)
and the distinguishable error set is defined as in Definition
15 (the circuits for X -type and Z-type generators of the
capped color code in H form use similar gate orderings).
Here we assume that there are no more than t faults

during the whole protocol. Therefore, the condition that
the outcome bundles are repeated t + 1 times in a row will
be satisfied within (t + 1)2 rounds. We divide the analysis
into two cases: (1) the case that the last round of the full
syndrome measurement has no faults and (2) the case that
the last round has some faults.

(1) Because the outcome bundles are repeated t + 1
times and the last round of the full syndrome measurement
has no faults, we know that the outcome bundle of the last
round is correct and corresponds to the data error before the
error correction in step 3. Let Ein be the input error and Ea
be the combined error of a fault combination arising from
the sa faults, where sa ≤ t. The error on the data qubits
before step 3 is Ea · Ein. First, consider the case that Ein is
in Er (defined in Definition 15), where r + sa ≤ t. Both Ein
and Ea can be separated into X and Z parts. We find that
the X part of Ein is in Ex

r (which is derived from Fr|�f=0).
Thus, the X part of Ea · Ein is the combined error of X type
of some fault combination in Fr+sa . Similarly, the Z part of
Ein is in E z

r , and the Z part of Ea · Ein is the combined error
of Z type of some fault combination in Fr+sa . By picking
EC operators Fx and Fz as in steps 1(a) and 2(a), step 3 can
completely remove the data error. Thus, both ECCP and
ECRP in Definition 8 are satisfied. On the other hand, if
Ein is not in Er, where r + sa ≤ t, the X part or the Z part
of Ea · Ein might not correspond to any fault combination
in Ft. In this case, Fx or Fz will be picked as in step 1(b)
or 2(b). Because the X part (or the Z part) of Ea · Ein and
Fx (or Fz) have the same syndrome no matter how we pick
Fx (or Fz), the output state after step 3 is a valid codeword,
but it may or may not be logically the same as the input
state. In all cases, the output state can pass the sa filter, so
the ECRP in Definition 8 is satisfied.

(2) In the case that the last round of the full syndrome
measurement has some faults, the outcome bundle of the
last round may not correspond to the data error before the
error correction in step 3. Fortunately, since the outcome
bundles are repeated t + 1 times in a row and there are no
more than t faults during the whole protocol, we know that
at least one round in the last t + 1 rounds must be correct,
and the outcome bundle of the last round must correspond
to the data error right before the last correct round. Let Ein
be the input error, Ea be the combined error arising from
sa faults that happen before the last correct round, and let
Eb be the combined error arising from sb faults that hap-
pen after the last correct round, where the total number
of faults is s = sa + sb ≤ t (see Fig. 14). First, consider
the case that Ein is in Er, where r + s ≤ t. By an analysis
similar to that presented in (1), we find that both X and
Z parts of Ea · Ein are the combined errors of some fault
combinations in Fr+sa , and Fx and Fz from steps 1(a) and
2(a) can completely remove Ea · Ein. Thus, the output data
error after step 3 is Eb. Since sb ≤ t and the cumulative flag
vectors do not change after the last correct round, we find
that Eb is the combined error of some fault combination

030322-34

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

FIG. 14. Fault-tolerant error-correction protocol for a capped color code.

arising from sb faults whose cumulative flag vector is zero;
that is, Eb is in Esb , where sb ≤ t. For this reason, Eb can
pass the s filter and can be corrected by the ideal decoder,
meaning that both ECCP and ECRP in Definition 8 are sat-
isfied. In contrast, if Ein is not in Er, where r + s ≤ t, Ein
may not correspond to any fault combination in Ft, and Fx
or Fz may be picked as in step 1(b) or 2(b). Similar to the
previous analysis, Fx · Fz will have the same syndrome as
that of Ea · Ein. By an operation in step 3, the output state
will be a valid codeword with error Eb, which can pass the
s filter. Therefore, the ECRP in Definition 8 is satisfied in
this case.

In addition to the capped color code in H form, the
FTEC protocol above is also applicable to any CSS code
in which Ft is distinguishable and the possible X -type
and Z-type errors are of the same form [i.e., a code to
which Definition 15 is applicable for all r ∈ {1, . . . , t},
t ≤ �(d − 1)/2�]. Besides this, we can also construct a
FTEC protocol for a general stabilizer code whose circuits
for the syndrome measurement give a distinguishable fault
set (a code in which Er is defined by Definition 11 instead
of Definition 15) using similar ideas. A FTEC protocol for
such a code is provided in Appendix B.

Because a recursive capped color code in H form of dis-
tance d is constructed by recursively encoding the top qubit
of the capped color code in H form of distance d using
capped color codes of smaller distances, a FTEC protocol
for a recursive capped color code in H form can be con-
structed similarly to a FTEC protocol for a concatenated
code. The FTEC protocol is as follows.

FTEC protocol for a recursive capped color code in
H form. For each j = 3, 5, 7, . . . , d, perform error correc-
tion on the first j layers of the recursive capped color code
of distance d using the FTEC protocol for a capped color
code in H form of distance j .

C. Fault-tolerant measurement and state preparation
protocols

Besides FTEC protocols, we also need other gadgets
such as FTM, FTP, and FTG gadgets in order to perform
fault-tolerant quantum computation. Note that the defini-
tions of the r filter (Definition 12) and the ideal decoder
(Definition 13) depend on how the distinguishable error set
is defined. Therefore, in order to utilize the new definitions
of fault-tolerant gadgets in Definition 14, all protocols used

in the computation must share the same definition of a
distinguishable error set. In this section, we construct a
FTM protocol for a capped color code in H form, which is
also applicable to other CSS codes with similar properties.
The distinguishable error set being used in the construction
of the FTM protocol will be similar to the distinguishable
error set defined for the FTEC protocol for the same code.
In addition, a FTP protocol can also be obtained from the
FTM protocol.

We start by constructing a FTM protocol for a capped
color code in H form obtained from CCC(d). The FTM
protocol discussed below can be used to fault-tolerantly
measure any logical X or logical Z operator of the form
X ⊗nM or Z⊗nN , where M , N are some stabilizers. Let L
be the logical operator being measured. We assume that
the circuits for measuring X -type and Z-type generators
are similar to those used in the FTEC protocol for a capped
color code, which give a distinguishable fault set Ft with
t = (d − 1)/2 (the list of possible fault combinations for
the FTM protocol is the same as the list used in the FTEC
protocol). In addition, we can always use a nonflag cir-
cuit with an arbitrary gate ordering for measuring L (since
any error arising from the circuit faults can always be cor-
rected, as we will see later in the protocol analysis). For
the FTM protocol, the outcome bundle will be defined as
(m, �s,�f), where m is the measurement outcome of the log-
ical operator L (m = 0 and m = 1 correspond to the +1
and −1 eigenvalues of L), and �s = (�sx|�sz) and �f = (�fx|�fz)

are the syndrome and the cumulative flag vector obtained
from the measurements of X -type and Z-type generators (�f
is accumulated from the first round until the current round).
An FTM protocol is as follows.

FTM protocol for a capped color code in H form.
During a single round of logical operator and full syn-
drome measurements, measure the operators in the fol-
lowing order: measure L, then the vx

i , then the f x
i , then

the vz
i , then the f z

i . Perform logical operator and full syn-
drome measurements until the outcome bundles (m, �s,�f)
are repeated t + 1 times in a row. Afterwards, do the
following.

1. Determine an EC operator Fx using the list of
possible fault combinations as follows.

(a) If there is a fault combination on the list whose
syndrome and cumulative flag vector are (�0|�sz)

030322-35

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

and (�fx|�0), then Fx is the combined error of
such a fault combination. [If there is more than
one fault combination corresponding to (�0|�sz)

and (�fx|�0), a combined error of any such fault
combinations will work.]

(b) If none of the fault combinations on the list cor-
responds to (�0|�sz) and (�fx|�0), then Fx can be any
Pauli-X operator whose syndrome is (�0|�sz).

2. Determine an EC operator Fz using the list of
possible fault combinations as follows.

(a) If there is a fault combination on the list whose
syndrome and cumulative flag vector are (�sx|�0)
and (�0|�fz), then Fz is the combined error of
such a fault combination. [If there is more than
one fault combination corresponding to (�sx|�0)
and (�0|�fz), a combined error of any such fault
combinations will work.]

(b) If none of the fault combinations on the list cor-
responds to (�sx|�0) and (�0|�fz), then Fz can be any
Pauli-Z operator whose syndrome is (�sx|�0).

3. Apply Fx · Fz to the data qubits to perform error
correction.

4. If L and Fx · Fz anticommute, modify m from 0 to 1
or from 1 to 0. If L and Fx · Fz commute, do nothing.

5. Output m is the operator measurement outcome,
where m = 0 and m = 1 correspond to the +1 and
−1 eigenvalues of L. If L is a logical Z operator, the
output state is the logical |0〉 or logical |1〉 state for
m = 0 or 1. If L is a logical X operator, the output
state is the logical |+〉 or logical |−〉 state for m = 0
or 1.

To verify that the FTM protocol for a capped color code is
fault tolerant according to the revised definition (Definition
14), we show that both of the properties in Definition 10 are
satisfied when the r filter, the ideal decoder, and the distin-
guishable error set Er are defined as in Definitions 12, 13,
and 15. The distinguishable fault set Ft for this protocol
is the same fault set as that defined for the FTEC pro-
tocol (i.e., Ft concerns the circuits for measuring X -type
and Z-type generators, and does not concern the circuit
for measuring L). We also assume that there are no more
than t faults during the whole protocol, so the outcome
bundles must be repeated t + 1 times in a row within
(t + 1)2 rounds. First, suppose that the operator being mea-
sured, L, is a logical Z operator. The analysis will be
divided into two cases: (1) the case that the last round of
operator and full syndrome measurements has no faults,
and (2) the case that the last round of operator and full
syndrome measurements has some faults.

(1) Because the last round is correct and the outcome
bundles are repeated (t + 1) times in a row, m, �s, and �f

exactly correspond to the error on the state before step 3.
Let Ein ∈ Er be the input error, Ea be the combined error
arising from sa faults in the circuits for measuring L, and let
Eb be the combined error arising from sb faults in the syn-
drome measurement circuits, where r + sa + sb ≤ t. Also,
assume that the (uncorrupted) input state is |m̄in〉, where
min = 0 or 1. The data error on the state before the last
round is EbEaEin. Since L is of the form Z⊗nN , where N
is some stabilizer, the X part of Ea has weight no more
than sa, while the Z part of Ea can be any Z-type error.
We find that the X part of EbEaEin, denoted as (EbEaEin)x,
is similar to a combined error of X type of some fault
combination in Fr+sa+sb . However, the Z part of EbEaEin,
denoted as (EbEaEin)z, may or may not correspond to a
Z-type error of some fault combination in Ft. By picking
Fx and Fz as in steps 1 and 2, Fx is logically equivalent
to (EbEaEin)x and Fz is logically equivalent to (EbEaEin)z
or (EbEaEin)zZ⊗n. So after the error correction in step 3,
the output state is |m̄in〉 or Z⊗n|m̄in〉. Note that |m̄in〉 and
Z⊗n|m̄in〉 are the same state for both min = 0 and min = 1
cases (the −1 global phase can be neglected in the case of
min = 1).

Next, let us consider the result m obtained from the
last round, which tells us whether the state before the
measurement of L during the last round is the +1 or −1
eigenstate of L. We find that if min = 0, m = 0 whenever
EbEaEin commutes with L, and m = 1 whenever EbEaEin
anticommutes with L. On the other hand, if min = 1, m = 1
whenever EbEaEin commutes with L, and m = 0 whenever
EbEaEin anticommutes with L. Also, note that Fx · Fz is
either EbEaEin or EbEaEinZ⊗n and L is a logical Z opera-
tor, so EbEaEin commutes (or anticommutes) with L if and
only if Fx · Fz commutes (or anticommutes) with L. Thus,
we need to flip the output as in step 4 whenever Fx · Fz
anticommutes with L so that m = min. As a result, the
measurement protocol gives an output state |m̄in〉 and its
corresponding measurement outcome m = min that reflect
the uncorrupted input state.

Now, let us consider the case that the uncorrupted input
state is of the form α|0̄〉 + β|1̄〉. If there is at least one
round before the last correct round in which the mea-
surement of L is correct, then the superposition state
collapses and the state before the last correct round is
either EbEaEin|0̄〉 or EbEaEin|1̄〉, so the analysis above is
applicable. However, if the measurements of L before the
last correct round are all incorrect, it is possible that the
superposition state may not collapse and the state before
the last correct round is of the form EbEaEin(α|0̄〉 + β|1̄〉).
Suppose that the measurement of L in the last correct
round gives m = 0. Then the output state from the last cor-
rect round is a +1 eigenstate of L, which is EbEaEin|0̄〉
if EbEaEin commutes with L, or EbEaEin|1̄〉 if EbEaEin
anticommutes with L. In contrast, if the measurement of
L in the last correct round gives m = 1, then the output
state from the last correct round is a −1 eigenstate of L.

030322-36

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

FIG. 15. Fault-tolerant measurement protocol for a capped color code.

This state is EbEaEin|1̄〉 if EbEaEin commutes with L, or
EbEaEin|0̄〉 if EbEaEin anticommutes with L. By applying
Fx · Fz as in step 3 and modifying m whenever Fx · Fz anti-
commutes with L as in step 4, the outputs from the protocol
are either m = 0 and |0̄〉, or m = 1 and |1̄〉 (up to some
global phase). Therefore, MCP and MPP in Definition 10
are both satisfied.

(2) In the case that the last round has some faults,
because the outcome bundles are repeated (t + 1) times
in a row and there are no more than t faults in the pro-
tocol, there must be at least one correct round in the last
t + 1 rounds, and the outcome bundles correspond to the
error on the state before the last correct round. Let Ein ∈ Er
be the input error, Ea be the combined error arising from
sa faults in the circuits for measuring L before the last
correct round, Eb be the combined error arising from sb
faults in the syndrome measurement circuits before the last
correct round, Ec be the combined error arising from sc
faults in any circuits after the last correct round but before
the syndrome measurement circuits of the very last round,
and let Ed be the combined error arising from sd faults in
the syndrome measurement circuits of the very last round,
where r + sa + sb + sc + sd ≤ t (see Fig. 15). By an anal-
ysis similar to (1), we find that Fx from step 1 is logically
equivalent to (EbEaEin)x, and Fz from step 2 is logically
equivalent to (EbEaEin)z or (EbEaEin)zZ⊗n.

Now, let us consider Ec, which can arise from the
circuits for measuring L or the syndrome measurement cir-
cuits, and Ed, which can arise from the syndrome measure-
ment circuits. Because the syndromes and the cumulative
flag vectors do not change after the last correct round, and
because i faults in the circuits for measuring L cannot cause
an X -type error of weight more than i, the X part of Ec
[denoted as (Ec)x] is similar to the combined error of X
type of a fault combination arising from sc faults whose
cumulative flag vector is zero, i.e., (Ec)x is an error in Ex

sc
.

In contrast, because the circuits for measuring L can cause
a Z-type error of any weight but the syndromes and the
cumulative flag vectors do not change after the last correct
round, the Z part of Ec [denoted as (Ec)z] can be writ-
ten as (Ẽc)z or (Ẽc)zZ⊗n, where (Ẽc)z ∈ E z

sc
. That is, Ec is

either Ẽc or ẼcZ⊗n, where Ẽc ∈ Esc . For Ed, which arises
from sd faults in the syndrome measurement circuits in the
very last round, we find that it is an error in Esd since the
cumulative flag vector from the very last round remains
the same.

Let the (uncorrupted) input state be of the form α|0̄〉 +
β|1̄〉. Suppose that the measurement outcome of L from
the last correct round is m = 0. From the argument on
a superposition state in (1), we find that the output state
from the last correct round is EbEaEin|0̄〉 if EbEaEin com-
mutes with L, or EbEaEin|1̄〉 if EbEaEin anticommutes
with L. Thus, the state before step 3 is EdẼcEbEaEin|0̄〉
or EdẼcZ⊗nEbEaEin|0̄〉 if EbEaEin commutes with L,
or EdẼcEbEaEin|1̄〉 or EdẼcZ⊗nEbEaEin|1̄〉 if EbEaEin
anticommutes with L. Recall that Fx · Fz is either EbEaEin
or EbEaEinZ⊗n, and that EbEaEin commutes (or anticom-
mutes) with L if and only if Fx · Fz commutes (or anti-
commutes) with L. By applying Fx · Fz as in step 3 and
modifying m whenever Fx · Fz anticommutes with L as
in step 4, the protocol either outputs m = 0 with the out-
put state EdẼc|0̄〉 (up to some global phase), or outputs
m = 1 with the output state EdẼc|1̄〉 (up to some global
phase). Similar results will be obtained in the case that the
measurement outcome of L from the last correct round is
m = 1.

Because (1) EdẼc ∈ Es, where s = sa + sb + sc + sd and
r + s ≤ t, (2) the output bit corresponds to the logical qubit
of the output state in every case, and (3) the output bit is
0 (or 1) if the (uncorrupted) input state is |0̄〉 (or |1̄〉), we
find that both of MCP and MPP in Definition 10 are satis-
fied. A similar analysis can be made for the case that L is
a logical X operator. In that case, we let m = 0 and m = 1
correspond to |+̄〉 and |−̄〉, and the analysis similar to (1)
and (2) can be applied.

In addition, it is possible to construct a FTP protocol
from the FTM protocol described above. For example, if
we want to prepare the state |0̄〉, we can do so by applying
the FTM protocol for a logical Z operator to any state, and
then applying a logical X operator on the output state if
m = 1 or do nothing if m = 0.

The FTM and the FTP protocols presented in this section
are also applicable to any CSS code in which the num-
ber of encoded qubits is 1, Ft is distinguishable (where
Ft corresponds to the circuits for measuring code genera-
tors), and the errors in Ex

r and E z
r have the same form for

all r = 1, . . . , t, t ≤ �(d − 1)/2�.
Similar to the FTEC protocol for a recursive capped

color code, we can construct a FTM protocol for a
recursive capped color code similarly to a FTM
protocol for a concatenated code. The FTM protocol is as
follows.

030322-37

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

FTM protocol for a recursive capped color code in
H form. Let L(j) be a logical Z (or logical X) operator
of a recursive capped color code of distance j . The fol-
lowing procedure can fault-tolerantly measure L(d) on a
recursive capped color code of distance d: for each j =
3, 5, 7, . . . , d, perform L(j) measurement on the first j lay-
ers of the recursive capped color code of distance d using
the FTM protocol for a capped color code in H form of
distance j .

A FTP protocol for a recursive capped color code is sim-
ilar to the FTM protocol for a recursive capped color code,
except that some logical operator will be applied to the out-
put state depending on the measurement outcome so that
the desired logical state can be obtained.

D. Transversal Clifford gates

From the properties of a capped color code in H form
discussed in Sec. IV A, we know that H , S, and CNOT
gates are transversal. These gates can play an impor-
tant role in fault-tolerant quantum computation because
transversal gates satisfy both properties of fault-tolerant
gate gadgets originally proposed in Ref. [10] (Definition
7). However, since the definition of fault-tolerant gadgets
being used in this work is revised as in Definition 14,
transversal gates that satisfy the old definition may or may
not satisfy the new one. In this section, we show that
transversal H , S, and CNOT gates are still fault tolerant
according to the new definition of fault-tolerant gadgets
when the distinguishable error set Er of a capped (or a
recursive capped) color code in H form is defined as in
Definition 15.

We start by observing the operations of H , S, and
CNOT gates. These gates can transform Pauli operators as
follows:

H : X 	→ Z, Y 	→ −Y, Z 	→ X ,
S : X 	→ Y, Y 	→ −X , Z 	→ Z,

CNOT : XI 	→ XX , ZI 	→ ZI ,
IX 	→ IX , IZ 	→ ZZ.

Meanwhile, the transversal H , S, and CNOT gates can map
logical operators X̄ = X ⊗n and Z̄ = Z⊗n as follows:

H⊗n : X̄ 	→ Z̄, Z̄ 	→ X̄ ,
S⊗n : X̄ 	→ −Ȳ, Z̄ 	→ Z̄,

CNOT⊗n : X̄ ⊗ Ī 	→ X̄ ⊗ X̄ , Z̄ ⊗ Ī 	→ Z̄ ⊗ Ī ,
Ī ⊗ X̄ 	→ Ī ⊗ X̄ , Ī ⊗ Z̄ 	→ Z̄ ⊗ Z̄.

Here Ī = I⊗n, Ȳ = iX̄ Z̄ = −Y⊗n, and n = 3(d2 + 1)/2 is
the total number of qubits for each CCC(d) [since d =
3, 5, 7, . . ., we find that n = 3 (mod 4) and Ȳ = −Y⊗n for
any CCC(d)]. In addition, the coding subspace is pre-
served under the H⊗n, S⊗n, or CNOT⊗n operation (i.e., each
stabilizer is mapped to another stabilizer). Therefore, H⊗n,

S⊗n, and CNOT⊗n are logical H , logical S†, and logical
CNOT gates, respectively.

For an [[n, 1, d]] recursive capped color code in H
form in which n = (d3 + 3d2 + 3d − 3)/4, we find that
n = 3 (mod 4) when d = 3, 7, 11, . . . , and n = 1 (mod 4)
when d = 5, 9, 13, That is, S⊗n is a logical S† gate
when d = 3, 7, 11, . . . , and S⊗n is a logical S gate when
d = 5, 9, 13, For a recursive capped color code in H
form of any distance, H⊗n and CNOT⊗n are logical H and
logical CNOT gates.

Next, we verify whether the new definition of fault-
tolerant gate gadgets in Definition 11 is satisfied. We start
by considering logical H and CNOT gates. Let the dis-
tinguishable error set Er (r = 1, . . . , t) be defined as in
Definition 15, where the distinguishable fault set Ft is
the same fault set as that defined for the FTEC proto-
col for a capped color code in H form. Suppose that the
H⊗n or CNOT⊗n operation has s faults, the input error of
the H⊗n operation is an error in Er, where r + s ≤ t, and
that the input error of the CNOT⊗n operation is an error in
Er1 × Er2 , where r1 + r2 + s ≤ t. The input error for H⊗n

can be written as Ex
1 · Ez

2, where Ex
1 ∈ Ex

r and Ez
2 ∈ E z

r , and
the input error for the CNOT⊗n operation can be written as
(Ex

3 ⊗ Ex
4) · (Ez

5 ⊗ Ez
6), where Ex

3 ∈ Ex
r1

, Ex
4 ∈ Ex

r2
, Ez

5 ∈ E z
r1

,
Ez

6 ∈ E z
r2

. Let Ex
i and Ez

i be X -type and Z-type operators
that act on the same qubits. We find that

1. H⊗n maps Ex
1 · Ez

2 to Ez
1 · Ex

2, which is an error in Er;
2. CNOT⊗n maps (Ex

3 ⊗ Ex
4) · (Ez

5 ⊗ Ez
6) to (Ex

3 ⊗
Ex

3Ex
4) · (Ez

5Ez
6 ⊗ Ez

6), which is an error in Er1+r2 ×
Er1+r2 .

The operation of a logical S gate can be tricky to analyze
since it can map X -type errors to a product of X - and Z-
type errors (up to some phase factor). Let us consider a
single-qubit error P ∈ {I , X , Y, Z}, an error from a single
CNOT fault during the measurement of an X -type generator
that is of the form P ⊗ X ⊗m, and an error from a single
CNOT fault during the measurement of a Z-type generator
that is of the form P ⊗ Z⊗m (where m ≥ 0). The operation
of S⊗n will transform such errors as follows (up to some
phase factor):

I ⊗ X ⊗m 	→ (I ⊗ X ⊗m) · (I ⊗ Z⊗m),
X ⊗ X ⊗m 	→ (X ⊗ X ⊗m) · (Z ⊗ Z⊗m),
Y ⊗ X ⊗m 	→ (X ⊗ X ⊗m) · (I ⊗ Z⊗m),
Z ⊗ X ⊗m 	→ (I ⊗ X ⊗m) · (Z ⊗ Z⊗m),
I ⊗ Z⊗m 	→ (I ⊗ I⊗m) · (I ⊗ Z⊗m),
X ⊗ Z⊗m 	→ (X ⊗ I⊗m) · (Z ⊗ Z⊗m),
Y ⊗ Z⊗m 	→ (X ⊗ I⊗m) · (I ⊗ Z⊗m),
Z ⊗ Z⊗m 	→ (I ⊗ I⊗m) · (Z ⊗ Z⊗m).

We can see that any error from a single fault will be trans-
formed to an error of the form Ex · Ez, where Ex and Ez
are X - and Z-type errors from a single fault. For this

030322-38

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

reason, a combined error from r faults, E = E1 · · · Er, will
be transformed to (S̄E1S̄†) · · · (S̄ErS̄†), which is of the form
Ex · Ez, where Ex and Ez are X - and Z-type errors from r
faults. That is, the error after the transformation of S⊗n is
an error in Er.

In addition, s faults during the application of the H⊗n or
S⊗n operation can cause an error in Es, and s faults during
the application of the CNOT⊗n operation can cause an error
in Es × Es. Combining the input error and the error from
faults, we find that an output error from the H⊗n or S⊗n

operation is an error in Er+s, while an output error from
the CNOT⊗n operation is an error in Er1+r2+s × Er1+r2+s. As
a result, the H⊗n, S⊗n, and CNOT⊗n operation satisfy GCP
and GPP in Definition 7 when the r filter, the ideal decoder,
and the distinguishable error set are defined in Definitions
12, 13, and 15. That is, transversal H , S, and CNOT gates are
fault tolerant according to the revised definition. Similar
analysis is also applicable to a recursive capped color code
in H form. Since the Clifford group can be generated by H ,
S, and CNOT gates [63,64], any Clifford gate can be fault-
tolerantly implemented on a capped (or a recursive capped)
color code in H form using transversal H , S, and CNOT
gates.

Note that whether a transversal gate satisfies the revised
definition of fault-tolerant gate gadgets in Definition 14
depends on how the distinguishable error set is defined (as
in either Definition 11 or 15). For example, if the input
error Ein can arise from t faults (Ein is in Et) and a transver-
sal gate transforms such an error to another error Eout that
cannot arise from ≤ t faults (Eout is not in Et), then this
transversal gate is not considered fault tolerant.

E. Fault-tolerant implementation of a logical T gate via
code switching

In order to achieve a universal set of quantum gates,
we also need a fault-tolerant implementation of some gate
outside the Clifford group [69]. One possible way to imple-
ment a non-Clifford gate on the capped color code in H
form is to use magic state distillation [70], but large over-
head might be required [55]. Another possible way is to
perform code switching; since the code in H form pos-
sesses transversal H , S, and CNOT gates, and the code in T
form possesses a transversal T gate, we can apply transver-
sal H , S, or CNOT gates and perform FTEC on the code in H
form, and switch to code in T form to apply a transversal T
gate when necessary. However, logical T-gate implemen-
tation via code switching on a capped color code might
not be fault tolerant since the code in T form constructed
from CCC(d) has distance 3 regardless of the parameter d,
and a few faults that occurred to the code in T form can
cause a logical error. Fortunately, for a recursive capped
color code, both distances of the code in H form and the
code in T form constructed from RCCC(d) are d. Thus,
fault-tolerant T-gate implementation via code switching

(a) (b)

FIG. 16. (a) A flag circuit for measuring a vertical face gener-
ator ez

i . (b) The ordering of data CNOT gates in the circuit for each
ez

i .

is possible. The fault-tolerant protocol for logical T-gate
implementation on a recursive capped color code will be
developed in this section.

First, let us assume that the T-gate implementation pro-
tocol is performed after the FTEC protocol for a recursive
capped color code in H form developed in Sec. V B, using
the following CNOT orderings.

1. In the preceding FTEC protocol, the f, v, and cap
operators on the (j − 2)th, (j − 1)th, and j th lay-
ers of the recursive capped color code are measured
using the CNOT orderings for the f, v, cap opera-
tors of a capped color code in H form of distance j
(j = 3, 5, . . . , d) that give a distinguishable fault set
[where an operator on q0 of a capped color code is
replaced by operators on all qubits on the (j − 2)th
layer of a recursive capped color code].

2. During the switching from the code in H form to T
form, all Z-type vertical face generators ez

i are mea-
sured using flag circuits with one flag ancilla similar
to the circuit in Fig. 16 (see the definition of vertical
face generators in Secs. IV A and IV B).

3. During the switching from the code in T form to H
form, all X -type generators of 2D color codes on
layers 2, 4, . . . , d − 1 of the code are measured using
circuits similar to those being used in the preceding
FTEC protocol.

The logical T-gate implementation protocol will use the
following ideas: we start from the recursive capped color
code in H form, switch to the code in T form, apply a
transversal T gate, switch back to the code in H form,
and then perform error correction using a FTEC protocol
similar to the FTEC protocol for a recursive capped color
code in H form, except that possible faults from ez

i mea-
surements are also included in the distinguishable fault set
(note that we never perform error correction on the code in
T form). The full procedure of the T-gate implementation
protocol is as follows.

Fault-tolerant T-gate implementation protocol for a
recursive capped color code in H form.

1. During a single round of operator measurements,
measure all Z-type vertical face generators. Perform

030322-39

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

measurements until the outcomes are repeated t + 1
times in a row. After that, apply a Pauli operator cor-
responding to the repeated measurement outcome
(see also the code switching procedure in Secs. IV A
and IV B).

2. Perform a logical T operation by applying physical
T and T† gates on qubits represented by black and
white vertices, respectively (see also Proposition 7).

3. During a single round of operator measurements,
measure all X -type generators of 2D color codes on
layers 2, 4, . . . , d − 1 of the code. Perform measure-
ments until the outcomes are repeated t + 1 times
in a row. After that, apply a Pauli operator cor-
responding to the repeated measurement outcome
(see also the code switching procedure in Secs. IV A
and IV B).

4. Perform error correction using a FTEC protocol
similar to the FTEC protocol for a recursive capped
color code in H form described in Sec. V B, except
that possible faults from vertical face generator mea-
surements are also included in the distinguishable
fault set.

We can show that the protocol described above is fault
tolerant using the following facts.

1. Both codes in H form and T form have distance d
[in fact, the distance of RCCC(d) does not depend
on the gauge choice].

2. An input error to the logical T-gate implementation
protocol is an error Ein in the distinguishable set
Er, where r is the number of faults in the preceding
FTEC protocol.

3. During the switching from the code in H form to the
code in T form (step 1), the flag outcome is not zero
whenever a single fault that leads to a data error of
weight 2 occurs. That is, when the flag is zero, s1
faults will lead to an error E1 of weight ≤ s1.

4. A logical T gate is transversal, so s2 faults during
step 2 will lead to an error E2 of weight ≤ s2.

5. Any fault that can occur during the switching from
the code in T form to the code in H form (step 3) will
lead to an error on layer 2,4,. . . , or d − 1 [a center
plane of inner CCC(j), j = 3, 5, 7, . . .].

6. The gauge measurements and Pauli operation during
the code switching correct the part of the data error
that acts on the gauge qubits being measured. The
code switching does not affect the part of the data
error that acts on the logical qubit.

Consider the data error E3E2T̄E1EinT̄† (the total error
on the desired state T̄|ψ̄in〉). We can show that, when
r + s1 + s2 + s3 ≤ t, E3E2T̄E1EinT̄† is correctable by the
FTEC protocol in step 4; this is equivalent to show-
ing that (T̄E′†

inE′†
1 T̄†E′†

2 E′†
3)(E3E2T̄E1EinT̄†) is not a logical

operator with zero cumulative flag vector when r + r′ +
s1 + s′

1 + s2 + s′
2 + s3 + s′

3 ≤ 2t (using a technique similar
to the proof of Theorem 2). In addition, we know from the
analysis of the FTEC protocol in Sec. V B that if the FTEC
protocol in step 4 can correct any possible error after step
3 whenever s4 = 0, then in the case that s4 ≤ t the output
error will be an error in Es4 .

We point out that the protocol described in this section
works for a recursive capped color code in H form of any
distance given that flag circuits are used in the gauge oper-
ator measurements during the code switching. Note that,
for the recursive capped color codes in H form of distances
3 and 5, it is possible to obtain a distinguishable fault set
when the circuits for generator measurements are nonflag
circuits (thus, FTEC, FTP, FTM, and fault-tolerant Clifford
computation with one ancilla are possible). In that case,
however, an additional ancilla is required if one wants to
perform logical T-gate implementation via code switching
using the fault-tolerant protocol provided in this section.

VI. DISCUSSION AND CONCLUSIONS

In this work, we observe that errors arising from a few
faults depend on the structure of the circuits chosen for
syndrome measurement, and develop a FTEC protocol
accordingly. A fault set that includes all possible fault com-
binations arising from at most a certain number of faults is
said to be distinguishable if any pair of fault combinations
in the set either leads to logically equivalent data errors or
leads to different syndromes or cumulative flag vectors (as
defined in Definition 3). Distinguishability may depend on
the number of flag ancillas being used in the circuits, the
ordering of gates in the circuits, and the choice of stabilizer
generators being measured. If we can find a set of circuits
for a stabilizer code that leads to a distinguishable fault set,
we can construct a FTEC protocol, as shown in Sec. V B.

We prove in Lemma 1 that if an [[n, k, d]] CSS code has
odd n, k = 1, even weight stabilizer generators, and logi-
cal X and Z being X ⊗n and Z⊗n, then two Pauli errors of
X type (or Z type) with the same syndrome are logically
equivalent if and only if they have the same weight par-
ity. One may note that the weight parity of a Pauli operator
and the anticommutation between the Pauli operator and a
logical operator are closely related. In fact, for a given sta-
bilizer code, the normalizer group can be generated by the
stabilizer generators of the code and all independent logi-
cal Pauli operators; for example, the normalizer group of
the Steane code is N (S) = 〈gx

i , gz
i , X ⊗7, Z⊗7〉i=1,2,3. If the

anticommutation between a Pauli error E and each of the
generators of N (S) can be found, then a Pauli error logi-
cally equivalent to E can be determined with certainty. The
EC techniques presented in Ref. [1] and this work use the
fact that the weight parity of an error on a smaller code (or
the anticommutation between the error and a logical oper-
ator of a smaller code) can be inferred by the measurement

030322-40

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

results of the stabilizer generators of a bigger code. We are
hopeful that the relationship between the weight parity and
the anticommutation can lead to EC techniques similar to
the weight parity technique for a general stabilizer code in
which the number of logical qubits can be greater than 1.

With Lemma 1 in mind, we present the 3D color code
of distance 3 in Sec. III and construct a family of capped
color codes in Sec. IV, which are good candidates for our
protocol construction (the 3D color code of distance 3 is
the smallest capped color code). A capped color code is a
subsystem code; it can be transformed to stabilizer codes,
namely capped color codes in H form and T form, by the
gauge fixing method. The code in H form has transver-
sal H , S, and CNOT gates, while the code in T form has
transversal CNOT and T gates. One interesting property of
a capped color code in H form is that the code contains
a 2D color code as a subcode lying on the center plane.
Since a cap generator of X type (or Z type) has support
on all qubits on the center plane, the weight parity of an
error of Z type (or X type) that occurred on the center
plane can be obtained from the measurement result of the
cap generator. The syndrome of the error on the center
plane corresponding to the measurements of the 2D code
generators together with the error weight parity can lead
to an EC operator for such an error by Lemma 1. Exploit-
ing these facts, we design circuits for measuring generators
of a capped color code such that most of the possible
errors are on the center plane. We prove in Theorem 1
that if the circuits satisfy some conditions, the fault set
corresponding to all possible fault combinations arising
from up to t = (d − 1)/2 faults is distinguishable, where
d = 3, 5, 7, . . . is the distance of the code. Furthermore, we
prove in Theorems 2 and 3 that a distinguishable fault set
for a capped color code in H form of any distance can be
obtained, given that circuits for measuring code generators
are flag circuits with one flag ancilla of a particular form.
We also show that, for the codes of distances 3 and 5, it is
possible to obtain a distinguishable fault set using nonflag
circuits with specific CNOT orderings. However, whether
such nonflag circuits exist for the code of distance 7 or
higher is still not known.

Besides capped color codes, we also construct a family
of recursive capped color codes in Sec. IV. A recursive
capped color code RCCC(d) can be obtained by recur-
sively encoding the top qubit of a capped color code
CCC(d) by capped color codes of smaller distances. Sim-
ilar to a capped color code, stabilizer codes, namely
recursive capped color codes in H form and T form,
can be obtained by the gauge fixing method. Circuits for
measuring code generators that work for capped color
codes are also applicable to recursive capped color codes.
The main advantage of a recursive capped color code is
that both codes in H form and T form have the same
distance, allowing us to perform fault-tolerant logical T-
gate implementation via code switching.

In Sec. V, we construct several fault-tolerant protocols
using the fact that the fault set corresponding to the pro-
tocols being used is distinguishable. Our definitions of
fault-tolerant gadgets in Definition 14 also use the fact
that some errors can be distinguished by their relevant
flag information, so they can be viewed as a generaliza-
tion of the definitions of fault-tolerant gadgets proposed in
Ref. [10] (Definitions 7–10). Our protocols are not lim-
ited to the capped or the recursive capped color codes;
some of the protocols are also applicable to other families
of stabilizer codes if their syndrome measurement cir-
cuits give a distinguishable fault set. Since possible errors
depend on every fault-tolerant gadget being used, all proto-
cols for quantum computation (including error correction,
gate, measurement, and state preparation gadgets) must be
designed in tandem in order to achieve fault tolerance.

In our development, the ideal decoder and the r filter
(which define fault-tolerant gadgets) are defined by a dis-
tinguishable error set in which errors correspond to fault
combinations with zero cumulative flag vector (see Def-
initions 11–14). The intuition behind the definitions with
zero cumulative flag vector is that in a general flag FTEC
protocol we normally repeat the measurements until the
outcomes (syndromes and flag vectors) are repeated t + 1
times in a row. Thus, undetectable faults at the very end of
the protocol that give repeated outcomes must correspond
to the zero cumulative flag vector (see the analysis of the
FTEC protocol in Sec. V B for more details). Note that
nontrivial cumulative flag vectors are used to distinguish
possible fault combinations arising during the FTEC proto-
col only; the flag information is used locally in each FTEC
gadget and is not passed on to other gadgets. One interest-
ing future direction would be studying how fault-tolerant
protocols can be further improved by exploiting the flag
information outside of the FTEC protocol. For example,
we may define both the ideal decoder and r filter using fault
combinations with trivial or nontrivial cumulative flag vec-
tors. However, when a FTEC protocol is allowed to output
nontrivial flag information, we have to make sure that other
subsequent fault-tolerant gadgets (such as FTG gadgets)
must be able to process the flag information in such a way
that their possible output errors are still distinguishable.
This study is beyond the scope of this work.

One should note that it is possible to use fault-
tolerant protocols satisfying the old definitions of fault-
tolerant gadgets (Definitions 7–10) in conjunction with
fault-tolerant protocols satisfying our definitions of fault-
tolerant gadgets (Definition 14). In particular, observe that,
for any Pauli error of weight w ≤ t, we can always find a
fault combination arising from w faults whose combined
error is such an error; i.e., any Pauli error of weight up to
t is contained in a distinguishable fault set Ft. Therefore,
a FTEC protocol satisfying Definition 14 can be used to
correct an output error of any fault-tolerant protocol
satisfying one of the old definitions (assuming that

030322-41

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

both protocols can tolerate the same number of faults).
However, the converse might not be true since a FTEC
protocol satisfying the old definition of a FTEC gadget
might not be able to correct errors of high weight arising
from a small number of faults in the protocol satisfying
Definition 14.

In this work, we show that universal quantum com-
putation can be performed fault-tolerantly on a recursive
capped color code in H form of any distance. First, we pro-
vide FTEC, FTM, and FTP protocols for a capped color
code in H form that are applicable to the code of any
distance as long as the fault set is distinguishable (see
Secs. V B and V C). From the aforementioned protocols,
we can construct FTEC, FTM, and FTP protocols for a
recursive capped color code in H form similarly to con-
ventional fault-tolerant protocols for a concatenated code.
Second, we show that, for a capped color code, transversal
H , S, and CNOT gates are fault tolerant according to our
revised definitions of fault-tolerant gadgets in Definition
14 (see Sec. V D), and a similar analysis is also applicable
to a recursive capped color code. Last, we provide a fault-
tolerant protocol for implementing a logical T gate on a
recursive capped color code in H form via code switching,
which is applicable to the code of any distance given that
circuits for measuring gauge operators are flag circuits of
a particular form (see Sec. V E).

Compared with other codes with the same distance,
capped and recursive capped color codes may not have the
fewest number of data qubits. Nevertheless, these codes
have some special properties that may be useful for fault-
tolerant quantum computation. The numbers of data qubits
n (as functions of the code distance d) for the families of
2D color codes [54], capped color codes, recursive capped
color codes, traditional 3D color codes [73], and stacked
codes [78] are provided in the second column of Table IV.
We make the following observations.

1. The number of data qubits required for a capped
color code in H form is about twice that of a 2D
color code of the same distance [both numbers are
O(d2)]. One advantage that capped color codes have
over 2D color codes is that a logical T gate can be
implemented on the capped color codes via code
switching. Although the process might not be fully
fault tolerant (because the codes in T form are of dis-
tance 3 regardless of d), code switching uses fewer
ancillas compared to magic state distillation and
may be beneficial if the error rate is low enough.

2. When d is large, the number of data qubits required
for a recursive capped color code is about 2 times
smaller than that of a 3D color code, and about 3
times smaller than that of a stacked code of the
same distance [all numbers are O(d3)]. For these
three families of codes, a logical T gate can be
fault-tolerantly implemented via code switching

since the code distance does not depend on the
gauge choice.

Using our fault-tolerant protocols, Clifford computation on
a capped color code in H form of any distance can be
achieved using only two ancillas, while universal quantum
computation on a recursive capped color code in H form
of any distance can be achieved using only two ancillas.
This is equal to the number of ancillas required for fault-
tolerant protocols for Clifford computation on a 2D color
code of any distance (by Theorem 2). It should be noted
that the aforementioned results on the number of ancil-
las hold under the assumptions that (1) qubit preparation
and qubit measurement are fast enough so that the ancillas
can be reused, and that (2.a) all-to-all connectivity between
data and ancilla qubits are allowed. In practice, attain-
ing the minimum number of ancillas can be challenging
because the qubit connectivity is restricted to the nearest-
neighbor interactions in most architectures. A more prac-
tical assumption is (2.b) having dedicated syndrome and
flag ancillas for each stabilizer generator measurement.
For a 2D color code, syndrome and flag ancillas can be
shared between X -type and Z-type generators acting on
the same set of qubits, so the number of required ancillas is
the number of stabilizer generators, which is 3(d2 − 1)/4.
For a capped (or recursive capped) color code in H form,
syndrome and flag ancillas can be shared between X -type
and Z-type volume (v) generators acting on the same set
of qubits, and face (f) generators can share ancillas with
their corresponding volume generators. Thus, the number
of required ancillas is equal to the number of stabilizer
generators of the subsystem code CCC(d) [or RCCC(d)].
(Note that, on color codes, generators of the same color can
be measured in parallel.)

The total numbers of data and ancilla qubits required for
2D color codes, capped color codes, recursive capped color
codes, traditional 3D color codes, and stacked codes under
assumptions (1) and (2.b) are displayed in the fourth col-
umn of Table IV. (Note that we still do not know the actual
minimum numbers of required ancillas for a 3D color
code and a stacked code to achieve fault tolerance. The
numbers for these two codes in the table are for the case
that only one ancilla per generator is required.) We find the
following.

1. In exchange for having T-gate implementation via
code switching available (although the process is
not fully fault tolerant), protocols for a capped color
code in H form require about 50% more qubits than
those for a 2D color code of the same distance.

2. When d = 5, the recursive capped color code out-
performs the stacked code and is comparable to the
3D color code. When d ≥ 7, the recursive capped
color code outperforms both the 3D color code and
stacked code. (These three codes are the same code
when d = 3.)

030322-42

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

TABLE IV. Comparison between the numbers of required qubits for a 2D color code, a capped color code (in H form), a recursive
capped color code, a traditional 3D color code, and a stacked code of distance d. The assumptions being used in the third and the fourth
columns are that (1) qubit preparation and qubit measurement are fast, and that (2.a) all-to-all connectivity between data and ancilla
qubits are allowed or (2.b) there are dedicated syndrome and flag ancillas for each generator measurement.

Number of Number of data Number of data
data qubits and ancilla qubits, and ancilla qubits,

Code family only n(d) assuming (1) and (2.a) assuming (1) and (2.b)

2D color code [54] 3(d2 − 1)/4 + 1 3(d2 − 1)/4 + 3 3(d2 − 1)/2 + 1
Capped color code 3(d2 − 1)/2 + 3 3(d2 − 1)/2 + 5 9(d2 − 1)/4 + 5
Recursive capped (d3 + 3d2 + 3d − 3)/4 (d3 + 3d2 + 3d + 5)/4 (3d3 + 9d2 + 13d − 17)/8
color code
3D color code [73] (d3 + d)/2 (d3 + d + 2)/2a (7d3 + 3d2 + 5d − 3)/12a

Stacked code [78] (3d3 − 3d2 + d + 3)/4 (3d3 − 3d2 + d + 7)/4a (15d3 − 15d2 + 9d + 7)/16a

aWe still do not know the actual minimum numbers of required ancillas for a 3D color code and a stacked code to achieve fault
tolerance. The numbers for these codes in the table are for the case that only one ancilla per generator is required.

Recently, Beverland et al. [75] compared the overhead
required for T-gate implementation with two methods:
using a 2D color code via magic state distillation versus
using a (traditional) 3D color code via code switching.
They found that magic state distillation outperforms code
switching except at some low physical error rate and when
certain fault-tolerant schemes are used in the simulation.
Since our protocols require only a few ancillas per gener-
ator and the data block of a recursive capped color code is
smaller than that of a 3D color code of the same distance,
we are hopeful that the range of physical error rates in
which code switching beats magic state distillation could
be improved by our protocols. A careful simulation on the
overhead is required, which we leave for future work.

Last, we point out that our fault-tolerant protocols using
the flag and the weight parity techniques are specially
designed for the circuit-level noise so that all possible data
errors arising from a few faults (including any one- and
two-qubit gate faults, faults during the ancilla preparation
and measurement, and faults during wait time) can be cor-
rected. However, our protocols require repeated syndrome
measurements in order to avoid syndrome bit flips that may
occur during the protocols, and the processes can increase
the number of gate operations. Single-shot error correction
[84] is one technique that can deal with the syndrome bit
flips without using repeated syndrome measurements. We
hope that the flag, the weight parity, and the single-shot
error-correction techniques could be used together to build
fault-tolerant protocols that can protect the data against the
circuit-level noise and require only small numbers of gates
and ancillas.

ACKNOWLEDGMENTS

We thank Christopher Chamberland and Michael
Vasmer for the suggestion of considering weight par-
ity error correction on color codes. We also thank Ken
Brown, Robert Calderbank, Arun Aloshious, Rui Chao,

Shilin Huang, Eric Sabo, and other members of Duke
Quantum Center for helpful discussions on the similari-
ties between capped color codes and stacked codes, the
alternative proof of Theorem 2 presented in this work,
and possible future directions. We would like to extend
our gratitude to Dan Browne, Andrew Cross, David Gos-
set, Raymond Laflamme, Ted Yoder, and Beni Yoshida
for their helpful comments and suggestions. T.T. acknowl-
edges the support of The Queen Sirikit Scholarship under
The Royal Patronage of Her Majesty Queen Sirikit of Thai-
land. D.L. is supported by an NSERC Discovery grant.
Perimeter Institute is supported in part by the Government
of Canada and the Province of Ontario.

APPENDIX A: PROOF OF THEOREM 1

In the first part of the proof, we assume that data errors
arising from all faults are purely Z type, and show that if
Conditions 1–5 are satisfied, then there is no fault com-
bination arising from up to d − 1 faults whose combined
error is a logical Z operator and its cumulative flag vector
is zero. Because i faults during the measurements of X -
type generators cannot cause a Z-type error of weight more
than i, we can assume that each fault is either a qubit fault
causing a Z-type error (which is a q0, qon, or qoff fault)
or a fault during a measurement of some Z-type generator
(which is an f, v, v∗, or cap fault).

First, recall the main equations (in mod 2):

scap = n0 + non +
∑

WP(σf)+
∑

WP(σv)

+
∑

WP(σv∗,cen)+
∑

WP(σcap), (A1)

�sf =
∑

�qon +
∑

�pf +
∑

�pv +
∑

�pv∗,cen

+
∑

�pcap, (A2)

030322-43

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

�sv =
∑

�qon +
∑

�qoff +
∑

�pf +
∑

�q∗
v

+
∑

�pcap, (A3)

WPtot = n0 + non + noff +
∑

WP(σf)+ n∗
v

+
∑

WP(σcap), (A4)

�fcap =
∑ �fcap, (A5)

�ff =
∑ �ff, (A6)

�fv =
∑ �fv +

∑ �f ∗
v , (A7)

WPbot = noff +
∑

WP(σv)+
∑

WP(σv∗,bot), (A8)

�sbot =
∑

�qoff +
∑

�pv +
∑

�pv∗,bot. (A9)

Note that the types of faults involved in the main equa-
tions and the types of faults involved in the conditions
are related by the correspondences in Table III. Here we
show that if Conditions 1–5 are satisfied and there exists
a fault combination arising from up to d − 1 faults that
corresponds to a logical Z operator and the zero cumula-
tive flag vector, some contradictions will happen (also note
that Condition 0 is automatically satisfied). By Lemma 1,
a fault combination corresponding to a logical Z operator
and the zero cumulative flag vector gives scap = 0, �sf = �0,
�sv = �0, WPtot = 1, �fcap = �0, �ff = �0, �fv = �0, WPbot = 1,
and �sbot = 0. We divide the proof into four cases: (1)
nf = 0 and ncap = 0, (2) nf ≥ 1 and ncap = 0, (3) nf = 0
and ncap ≥ 1, and (4) nf ≥ 1 and ncap ≥ 1.

Case 1: nf = 0 and ncap = 0. The main equations can
be simplified as follows (trivial equations are neglected):

0 = n0 + non +
∑

WP(σv)+
∑

WP(σv∗,cen), (A1)

�0 =
∑

�qon +
∑

�pv +
∑

�pv∗,cen, (A2)

�0 =
∑

�qon +
∑

�qoff +
∑

�q∗
v, (A3)

1 = n0 + non + noff + n∗
v, (A4)

�0 =
∑ �fv +

∑ �f ∗
v , (A7)

1 = noff +
∑

WP(σv)+
∑

WP(σv∗,bot), (A8)

�0 =
∑

�qoff +
∑

�pv +
∑

�pv∗,bot. (A9)

All faults involved in Eqs. (A3) and (A4) correspond to
q2D faults on the 2D code and the total number of faults

is at most d − 1. Because Condition 0 is satisfied, from
Eqs. (A3) and (A4) we must have non + noff + n∗

v =
0 (mod 2), which implies that n0 = 1. Thus, Eq. (A1)
becomes

1 = non +
∑

WP(σv)+
∑

WP(σv∗,cen). (A1)

Since the total number of faults is n0 + non + noff + nv +
n∗
v ≤ d − 1, we find that non + noff + nv + n∗

v ≤ d − 2.
Let us consider the following subcases.

(1.a) If noff = 0, we have nv + n∗
v ≤ d − 2 − non ≤

d − 2. In this case, Eqs. (A7)–(A9) contradict Condition
1 (where v and v∗ faults correspond to an f2D fault).

(1.b) If noff ≥ 1, we have non + nv + n∗
v ≤ d − 2 −

noff ≤ d − 3. In this case, Eqs. (A1), (A2), and (A7) con-
tradict Condition 2 (where a qon fault corresponds to a q2D
fault, and v and v∗ faults correspond to an f2D fault).

Case 2: nf ≥ 1 and ncap = 0. The main equations can be
simplified as follows:

0 = n0 + non +
∑

WP(σf)+
∑

WP(σv)

+
∑

WP(σv∗,cen), (A1)

�0 =
∑

�qon +
∑

�pf +
∑

�pv +
∑

�pv∗,cen, (A2)

�0 =
∑

�qon +
∑

�qoff +
∑

�pf +
∑

�q∗
v, (A3)

1 = n0 + non + noff +
∑

WP(σf)+ n∗
v, (A4)

�0 =
∑ �ff, (A6)

�0 =
∑ �fv +

∑ �f ∗
v , (A7)

1 = noff +
∑

WP(σv)+
∑

WP(σv∗,bot), (A8)

�0 =
∑

�qoff +
∑

�pv +
∑

�pv∗,bot. (A9)

The total number of faults is n0 + non + noff + nf + nv +
n∗
v ≤ d − 1, which means that noff + nv + n∗

v ≤ d − 1 −
n0 − non − nf (where nf ≥ 1). Consider the following
subcases.

(2.a) If n0 = 1 or non ≥ 1 or nf ≥ 2, we have noff +
nv + n∗

v ≤ d − 3. In this case, Eqs. (A7)–(A9) contradict
Condition 2 (where a qoff fault corresponds to a q2D fault,
and v and v∗ faults correspond to an f2D fault).

(2.b) If n0 = 0, non = 0, and nf = 1, we find that
noff + nf + nv + n∗

v ≤ d − 1 and noff + nv + n∗
v ≤ d −

2. Let us divide this case into the following further sub-
cases (where some subcases may overlap).

(i) If nv ≥ 1, then noff + nf + n∗
v ≤ d − 2. In this case,

Eqs. (A3), (A4), and (A6) contradict Condition 3

030322-44

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

(where qoff and qv∗ faults correspond to a q2D fault,
and an f fault corresponds to an f2D fault).

(ii) If nv = 0 and n∗
v = 0, then Eqs. (A8) and (A9) contra-

dict Condition 0 (where a qoff fault corresponds to a
q2D fault).

(iii) If noff = 0, then nv + n∗
v ≤ d − 2 and Eqs. (A7)–(A9)

contradict Condition 1 (where v and v∗ faults corre-
spond an to f2D fault).

(iv) If noff ≥ 1, nv = 0, and n∗
v = 1, then noff + n∗

v ≤
d − 2 and Eqs. (A7)–(A9) contradict Condition 3
(where qoff fault correspond to a q2D fault, and a v∗
fault corresponds to an f2D fault).

(v) If noff ≥ 1, nv = 0, n∗
v ≥ 2, and noff + nf + n∗

v ≤
d − 2, then Eqs. (A3), (A4) and (A6) contradict Con-
dition 3 (where qoff and qv∗ faults correspond to a
q2D fault, and an f fault corresponds to an f2D fault).

(vi) If noff ≥ 1, nv = 0, n∗
v ≥ 2, and noff + nf + n∗

v =
d − 1, then Eqs. (A1),(A2), and (A6)–(A9) contra-
dict Condition 4 (where qoff, qf, and qv∗ faults
correspond to q2D, f2D, and v∗

2D faults, respectively).

Case 3: nf = 0 and ncap ≥ 1. The main equations can be
simplified as follows:

0 = n0 + non +
∑

WP(σv)+
∑

WP(σv∗,cen)

+
∑

WP(σcap), (A1)

�0 =
∑

�qon +
∑

�pv +
∑

�pv∗,cen +
∑

�pcap, (A2)

�0 =
∑

�qon +
∑

�qoff +
∑

�q∗
v +

∑
�pcap, (A3)

1 = n0 + non + noff + n∗
v +

∑
WP(σcap), (A4)

�0 =
∑ �fcap, (A5)

�0 =
∑ �fv +

∑ �f ∗
v , (A7)

1 = noff +
∑

WP(σv)+
∑

WP(σv∗,bot), (A8)

�0 =
∑

�qoff +
∑

�pv +
∑

�pv∗,bot. (A9)

The total number of faults is n0 + non + noff + nv +
n∗
v + ncap ≤ d − 1, which means that noff + nv + n∗

v ≤
d − 1 − n0 − non − ncap (where ncap ≥ 1). Consider the
following subcases.

(3.a) If n0 ≥ 1 or non ≥ 1 or ncap ≥ 2, then noff +
nv + n∗

v ≤ d − 3. In this case, Eqs. (A7)–(A9) contradict
Condition 2 (where a qoff fault corresponds to a q2D fault,
and v and v∗ faults correspond to an f2D fault).

(3.b) If n0 = 0, non = 0, and ncap = 1, we find
that noff + nv + n∗

v + ncap ≤ d − 1 and noff + nv +
n∗
v ≤ d − 2. Let us divide the proof into the following

further subcases (where some subcases may overlap).

(i) If nv + n∗
v = 0, then Eqs. (A8) and (A9) contradict

Condition 0 (where a qoff fault corresponds to a q2D
fault).

(ii) If nv + n∗
v = 1, then Eqs. (A7)–(A9) contradict Con-

dition 3 (where a qoff fault corresponds to a q2D fault,
and v and v∗ faults correspond to an f2D fault).

(iii) If noff = 0, then nv + n∗
v ≤ d − 2. In this case,

Eqs. (A7)–(A9) contradict Condition 1 (where v and
v∗ faults correspond to an f2D fault).

(iv) If noff + nv + n∗
v + ncap ≤ d − 2 (or, equivalently,

noff + nv + n∗
v ≤ d − 3), then Eqs. (A7)-(A9) contra-

dict Condition 2 (where a qoff fault corresponds to a
q2D fault, and v and v∗ faults correspond to an f2D
fault).

(v) If noff ≥ 1, nv + n∗
v ≥ 2, and noff + nv + n∗

v +
ncap = d − 1, then Eqs. (A1), (A2), (A5), and
(A7)–(A9) contradict Condition 5 (where qoff, v, v∗,
cap faults correspond to q2D, f2D, v∗

2D, and cap2D
faults, respectively).

Case 4: nf ≥ 1 and ncap ≥ 1. (The main equations cannot
be simplified in this case.) From the fact that the total num-
ber of faults is at most d − 1, we have noff + nv + n∗

v ≤
d − 3. In this case, we find that Eqs. (A7)–(A9) contradict
Condition 2 (where a qoff fault corresponds to a q2D fault,
and v and v∗ faults correspond to an f2D fault).

So far, we have shown that if Conditions 1–5 are sat-
isfied and all faults give rise to purely Z-type errors, then
there is no fault combination arising from up to d − 1 faults
whose combined error is a logical Z operator and its cumu-
lative flag vector is zero. Because the circuits for each
pair of X -type and Z-type generators use the same CNOT
ordering, the same analysis is also applicable to the case
of purely X -type errors; i.e., if Conditions 1–5 are satisfied
and all faults give rise to purely X -type errors, then there is
no fault combination arising from up to d − 1 faults whose
combined error is a logical X operator and its cumulative
flag vector is zero. In the next part of the proof, we use
these results to show that Ft is distinguishable.

Let us consider a fault combination whose combined
error is of mixed type. Let tx and tz denote the total num-
bers of faults during the measurements of X -type and
Z-type generators, and let ux, uy , uz denote the numbers
of qubit faults that give X -type, Y-type, and Z-type errors,
respectively. Suppose that the fault combination arises
from no more than d − 1 faults; we have tx + tz + ux +
uy + uz ≤ d − 1. Next, observe that tx faults during the
measurement of X -type generators cannot cause a Z-type
error of weight more than tx, and that tz faults during the
measurement of Z-type generators cannot cause an X -type
error of weight more than tz. Thus, the Z part of the com-
bined error and the cumulative flag vector corresponding
to Z-type generators can be considered as an error and
a cumulative flag vector arising from tz + tx + uz + uy ≤

030322-45

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

d − 1 faults that give rise to purely Z-type errors. Simi-
larly, the X part of the combined error and the cumulative
flag vector corresponding to X -type generators can be
considered as an error and a cumulative flag vector aris-
ing from tx + tz + ux + uy ≤ d − 1 faults that give rise to
purely X -type errors. Recall that there is no fault com-
bination arising from up to d − 1 faults whose combined
error is a logical X (or a logical Z) operator and its cumu-
lative flag vector is zero when all faults give rise to purely
X -type (or purely Z-type) errors. Using this, we find that,
for any fault combination arising from d − 1 faults, it can-
not correspond to a nontrivial logical operator and the zero
cumulative flag vector. That is, there is no fault combina-
tion corresponding to a nontrivial logical operator and the
zero cumulative flag vector in F2t, where 2t = d − 1. By
Proposition 1, this implies that Ft is distinguishable.

APPENDIX B: FAULT-TOLERANT
ERROR-CORRECTION PROTOCOL FOR A

GENERAL STABILIZER CODE

In Sec. V B, we constructed a FTEC protocol for a
capped color code in H form of any distance in which
its fault set is distinguishable. We also showed that such
a protocol is fault tolerant when the r filter, the ideal
decoder, and the distinguishable error set are defined as
in Definitions 12, 13, and 15. Using similar ideas, we
can also construct a FTEC protocol for a general stabi-
lizer code whose circuits for the syndrome measurement
give a distinguishable fault set Ft, i.e., a code in which Er
is defined by Definition 11 instead of Definition 15. The
outcome bundle defined for the protocol in this section is
similar to the outcome bundle defined for the FTEC pro-
tocol for a capped color code, except that the syndrome
�s and the cumulative flag vector �f are not separated into
X and Z parts. We can also build a list of all possible
fault combinations and their corresponding combined error
and cumulative vector from the distinguishable fault set
Ft. The FTEC protocol for a general stabilizer code is as
follows.

FTEC protocol for a stabilizer code whose syndrome
measurement circuits give a distinguishable fault set.
During a single round of full syndrome measurement, mea-
sure the all generators in any order. Perform full syndrome
measurements until the outcome bundles (�s,�f) are repeated
t + 1 times in a row. Afterwards, do the following.

1. Determine an EC operator F using the list of possi-
ble fault combinations as follows.

(a) If there is a fault combination on the list whose
syndrome and cumulative flag vector are �s and
�f, then F is the combined error of such a fault
combination. (If there is more than one fault

combination corresponding to �s and �f, a com-
bined error of any of such fault combinations
will work since they are logically equivalent.)

(b) If none of the fault combinations on the list cor-
responds to �s and �f, then F can be any Pauli
operator whose syndrome is �s.

2. Apply F to the data qubits to perform error correc-
tion.

To verify that the FTEC protocol for a general stabilizer
code satisfies both properties of a FTEC gadget accord-
ing to the revised definition (Definition 14), we can use
an analysis similar to that presented in Sec. V B, except
that Er is defined by Definition 11 instead of Definition 15
and the errors in the analysis (Ein, Ea, and Eb) need not be
separated into X and Z parts.

[1] T. Tansuwannont and D. Leung, Fault-tolerant quantum
error correction using error weight parities, Phys. Rev. A
104, 042410 (2021).

[2] P. W. Shor, Fault-tolerant quantum computation, Proc.,
37th Annu. Symp. Found. Comput. Sci., p. 56, (1996).

[3] D. Aharonov and M. Ben-Or, Fault-tolerant quantum
computation with constant error rate, SIAM J. Comput.,
(2008).

[4] A. Y. Kitaev, Quantum computations: Algorithms and error
correction, Russ. Math. Surv. 52, 1191 (1997).

[5] E. Knill, R. Laflamme, and W. H. Zurek, Threshold accu-
racy for quantum computation, (1996), ArXiv:quant-ph/
9610011.

[6] J. Preskill, Reliable quantum computers, Proc. R. Soc.
London Ser. A: Math., Phys. Eng. Sci. 454, 385 (1998).

[7] B. M. Terhal and G. Burkard, Fault-tolerant quantum com-
putation for local non-Markovian noise, Phys. Rev. A 71,
012336 (2005).

[8] M. A. Nielsen and C. M. Dawson, Fault-tolerant quantum
computation with cluster states, Phys. Rev. A 71, 042323
(2005).

[9] P. Aliferis and D. W. Leung, Simple proof of fault toler-
ance in the graph-state model, Phys. Rev. A 73, 032308
(2006).

[10] P. Aliferis, D. Gottesman, and J. Preskill, Quantum accu-
racy threshold for concatenated distance-3 codes, Quantum
Inf. Comput. 6, 97 (2006).

[11] A. M. Steane, Overhead and noise threshold of fault-
tolerant quantum error correction, Phys. Rev. A 68, 042322
(2003).

[12] A. Paetznick and B. W. Reichardt, Fault-tolerant ancilla
preparation and noise threshold lower bounds for the 23-
qubit Golay code, Quantum Inf. Comput. 12, 1034 (2012).

[13] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme,
Overhead analysis of universal concatenated quantum
codes, Phys. Rev. A 95, 022313 (2017).

[14] R. Takagi, T. J. Yoder, and I. L. Chuang, Error rates and
resource overheads of encoded three-qubit gates, Phys. Rev.
A 96, 042302 (2017).

030322-46

https://doi.org/10.1103/PhysRevA.104.042410
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://arxiv.org/abs/quant-ph/9610011
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1103/PhysRevA.71.012336
https://doi.org/10.1103/PhysRevA.71.042323
https://doi.org/10.1103/PhysRevA.73.032308
https://doi.org/10.26421/QIC6.2-1
https://doi.org/10.1103/PhysRevA.68.042322
https://doi.org/10.26421/QIC12.11-12-10
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PhysRevA.96.042302

ACHIEVING FAULT TOLERANCE ON CAPPED COLOR CODES. . . PRX QUANTUM 3, 030322 (2022)

[15] D. P. DiVincenzo and P. Aliferis, Effective Fault-Tolerant
Quantum Computation with Slow Measurements, Phys.
Rev. Lett. 98, 020501 (2007).

[16] E. Knill, Scalable quantum computing in the presence of
large detected-error rates, Phys. Rev. A 71, 042322 (2005).

[17] A. M. Steane, Active Stabilization, Quantum Computation,
and Quantum State Synthesis, Phys. Rev. Lett. 78, 2252
(1997).

[18] A. M. Steane, Fast fault-tolerant filtering of quantum code-
words, (2002), arXiv preprint ArXiv:quant-ph/0202036.

[19] T. J. Yoder and I. H. Kim, The surface code with a twist,
Quantum 1, 2 (2017).

[20] R. Chao and B. W. Reichardt, Quantum Error Correction
with Only Two Extra Qubits, Phys. Rev. Lett. 121, 050502
(2018).

[21] R. Chao and B. W. Reichardt, Flag Fault-Tolerant Error
Correction for any Stabilizer Code, PRX Quantum 1,
010302 (2020).

[22] C. Chamberland and M. E. Beverland, Flag fault-tolerant
error correction with arbitrary distance codes, Quantum 2,
53 (2018).

[23] T. Tansuwannont, C. Chamberland, and D. Leung, Flag
fault-tolerant error correction, measurement, and quan-
tum computation for cyclic Calderbank-Shor-Steane codes,
Phys. Rev. A 101, 012342 (2020).

[24] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Trian-
gular color codes on trivalent graphs with flag qubits, New
J. Phys. 22, 023019 (2020).

[25] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and
A. W. Cross, Topological and subsystem codes on low-
degree graphs with flag qubits, Phys. Rev. X 10, 011022
(2020).

[26] R. Chao and B. W. Reichardt, Fault-tolerant quantum
computation with few qubits, npj Quantum Inf. 4, 42
(2018).

[27] C. Chamberland and A. W. Cross, Fault-tolerant magic state
preparation with flag qubits, Quantum 3, 143 (2019).

[28] Y. Shi, C. Chamberland, and A. Cross, Fault-tolerant prepa-
ration of approximate GKP states, New J. Phys. 21, 093007
(2019).

[29] P. Baireuther, M. Caio, B. Criger, C. W. Beenakker, and T.
E. O’Brien, Neural network decoder for topological color
codes with circuit level noise, New J. Phys. 21, 013003
(2019).

[30] A. Bermudez, X. Xu, M. Gutiérrez, S. Benjamin, and M.
Müller, Fault-tolerant protection of near-term trapped-ion
topological qubits under realistic noise sources, Phys. Rev.
A 100, 062307 (2019).

[31] C. Vuillot, Is error detection helpful on IBM 5q chips?,
Quantum Inf. Comput. 18, 0949 (2018).

[32] M. Gutiérrez, M. Müller, and A. Bermúdez, Transversality
and lattice surgery: Exploring realistic routes toward cou-
pled logical qubits with trapped-ion quantum processors,
Phys. Rev. A 99, 022330 (2019).

[33] L. Lao and C. G. Almudever, Fault-tolerant quantum error
correction on near-term quantum processors using flag and
bridge qubits, Phys. Rev. A 101, 032333 (2020).

[34] D. M. Debroy and K. R. Brown, Extended flag gadgets
for low-overhead circuit verification, Phys. Rev. A 102,
052409 (2020).

[35] A. Rodriguez-Blanco, A. Bermudez, M. Müller, and F. Sha-
handeh, Efficient and Robust Certification of Genuine Mul-
tipartite Entanglement in Noisy Quantum Error Correction
Circuits, PRX Quantum 2, 020304 (2021).

[36] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topolog-
ical quantum memory, J. Math. Phys. 43, 4452 (2002).

[37] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topo-
logical Quantum Codes, Phys. Rev. Lett. 104, 050504
(2010).

[38] S. Bravyi and J. Haah, Quantum Self-Correction in the
3D Cubic Code Model, Phys. Rev. Lett. 111, 200501
(2013).

[39] G. Duclos-Cianci and D. Poulin, Kitaev’s Z d-code thresh-
old estimates, Phys. Rev. A 87, 062338 (2013).

[40] H. Anwar, B. J. Brown, E. T. Campbell, and D. E. Browne,
Fast decoders for qudit topological codes, New J. Phys. 16,
063038 (2014).

[41] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms
for maximum likelihood decoding in the surface code,
Phys. Rev. A 90, 032326 (2014).

[42] N. Delfosse, Decoding color codes by projection onto
surface codes, Phys. Rev. A 89, 012317 (2014).

[43] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R.
Wootton, Quantum memories at finite temperature, Rev.
Mod. Phys. 88, 045005 (2016).

[44] B. J. Brown, N. H. Nickerson, and D. E. Browne, Fault-
tolerant error correction with the gauge color code, Nat.
Commun. 7, 1 (2016).

[45] C. Chamberland and P. Ronagh, Deep neural decoders for
near term fault-tolerant experiments, Quantum Sci. Tech-
nol. 3, 044002 (2018).

[46] K. Duivenvoorden, N. P. Breuckmann, and B. M. Ter-
hal, Renormalization group decoder for a four-dimensional
toric code, IEEE Trans. Inf. Theory 65, 2545 (2018).

[47] A. S. Darmawan and D. Poulin, Linear-time general decod-
ing algorithm for the surface code, Phys. Rev. E 97, 051302
(2018).

[48] A. Kubica and N. Delfosse, Efficient color code decoders in
d ≥ 2 dimensions from toric code decoders, (2019), arXiv
preprint ArXiv:1905.07393.

[49] A. Kubica and J. Preskill, Cellular-Automaton Decoders
with Provable Thresholds for Topological Codes, Phys.
Rev. Lett. 123, 020501 (2019).

[50] N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advan-
tages of versatile neural-network decoding for topological
codes, Phys. Rev. A 99, 052351 (2019).

[51] N. H. Nickerson and B. J. Brown, Analysing correlated
noise on the surface code using adaptive decoding algo-
rithms, Quantum 3, 131 (2019).

[52] M. Vasmer, D. E. Browne, and A. Kubica, Cellular automa-
ton decoders for topological quantum codes with noisy
measurements and beyond, Sci. Rep. 11, 1 (2021).

[53] S. B. Bravyi and A. Y. Kitaev, Quantum codes
on a lattice with boundary, (1998), arXiv preprint
ArXiv:quant-ph/9811052.

[54] H. Bombin and M. A. Martin-Delgado, Topological Quan-
tum Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[55] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cle-
land, Surface codes: Towards practical large-scale quantum
computation, Phys. Rev. A 86, 032324 (2012).

030322-47

https://doi.org/10.1103/PhysRevLett.98.020501
https://doi.org/10.1103/PhysRevA.71.042322
https://doi.org/10.1103/PhysRevLett.78.2252
https://arxiv.org/abs/quant-ph/0202036
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PhysRevA.101.012342
https://doi.org/10.1088/1367-2630/ab68fd
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1088/1367-2630/ab3a62
https://doi.org/10.1088/1367-2630/aaf29e
https://doi.org/10.1103/PhysRevA.100.062307
https://doi.org/10.26421/QIC18.11-12-4
https://doi.org/10.1103/PhysRevA.99.022330
https://doi.org/10.1103/PhysRevA.101.032333
https://doi.org/10.1103/PhysRevA.102.052409
https://doi.org/10.1103/PRXQuantum.2.020304
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevA.87.062338
https://doi.org/10.1088/1367-2630/16/6/063038
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1038/ncomms12302
https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1103/PhysRevE.97.051302
https://arxiv.org/abs/1905.07393
https://doi.org/10.1103/PhysRevLett.123.020501
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.22331/q-2019-04-08-131
https://doi.org/10.1038/s41598-021-81138-2
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.86.032324

THEERAPAT TANSUWANNONT and DEBBIE LEUNG PRX QUANTUM 3, 030322 (2022)

[56] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge,
and Y. Oreg, et al., Scalable designs for quasiparticle-
poisoning-protected topological quantum computation
with Majorana zero modes, Phys. Rev. B 95, 235305
(2017).

[57] R. Chao, M. E. Beverland, N. Delfosse, and J. Haah, Opti-
mization of the surface code design for Majorana-based
qubits, Quantum 4, 352 (2020).

[58] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the
color code, New J. Phys. 17, 083026 (2015).

[59] M. Vasmer and D. E. Browne, Three-dimensional surface
codes: Transversal gates and fault-tolerant architectures,
Phys. Rev. A 100, 012312 (2019).

[60] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009).

[61] S. Bravyi and R. König, Classification of Topologically
Protected Gates for Local Stabilizer Codes, Phys. Rev. Lett.
110, 170503 (2013).

[62] F. Pastawski and B. Yoshida, Fault-tolerant logical gates in
quantum error-correcting codes, Phys. Rev. A 91, 012305
(2015).

[63] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. Sloane,
Quantum Error Correction and Orthogonal Geometry, Phys.
Rev. Lett. 78, 405 (1997).

[64] D. Gottesman, Theory of fault-tolerant quantum computa-
tion, Phys. Rev. A 57, 127 (1998).

[65] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[66] A. Steane, Multiple-particle interference and quantum error
correction, Proc. R. Soc. London Ser. A: Math., Phys. Eng.
Sci. 452, 2551 (1996).

[67] D. Gottesman, Stabilizer Codes and Quantum Error Cor-
rection. PhD thesis, California Institute of Technology,
(1997).

[68] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[69] G. Nebe, E. M. Rains, and N. J. Sloane, The invari-
ants of the Clifford groups, Des., Codes Cryptogr. 24, 99
(2001).

[70] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[71] A. Paetznick and B. W. Reichardt, Universal Fault-Tolerant
Quantum Computation with Only Transversal Gates and
Error Correction, Phys. Rev. Lett. 111, 090505 (2013).

[72] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-
Tolerant Conversion between the Steane and Reed-Muller
Quantum Codes, Phys. Rev. Lett. 113, 080501 (2014).

[73] H. Bombín, Gauge color codes: Optimal transversal gates
and gauge fixing in topological stabilizer codes, New J.
Phys. 17, 083002 (2015).

[74] A. Kubica and M. E. Beverland, Universal transversal gates
with color codes: A simplified approach, Phys. Rev. A 91,
032330 (2015).

[75] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of Uni-
versality: A Comparative Study of the Overhead of State
Distillation and Code Switching with Color Codes, PRX
Quantum 2, 020341 (2021).

[76] D. Poulin, Stabilizer Formalism for Operator Quantum
Error Correction, Phys. Rev. Lett. 95, 230504 (2005).

[77] D. Bacon, Operator quantum error-correcting subsystems
for self-correcting quantum memories, Phys. Rev. A 73,
012340 (2006).

[78] T. Jochym-O’Connor and S. D. Bartlett, Stacked codes:
Universal fault-tolerant quantum computation in a two-
dimensional layout, Phys. Rev. A 93, 022323 (2016).

[79] S. Bravyi and A. Cross, Doubled color codes, (2015), arXiv
preprint ArXiv:1509.03239.

[80] C. Jones, P. Brooks, and J. Harrington, Gauge color codes
in two dimensions, Phys. Rev. A 93, 052332 (2016).

[81] D. Gottesman, Class of quantum error-correcting codes sat-
urating the quantum Hamming bound, Phys. Rev. A 54,
1862 (1996).

[82] A bare logical operator is a logical operator that acts on the
logical qubit(s) of a subsystem code and does not affect the
gauge qubit(s); see Refs. [76,77,85].

[83] A perfect code is a quantum code that saturates the quantum
Hamming bound; i.e., there is a one-to-one correspondence
between correctable errors and all possible syndromes [67,
81]. A perfect CSS code is defined similarly, except that
the syndromes of X -type and Z-type errors are considered
separately.

[84] H. Bombín, Single-shot fault-tolerant quantum error cor-
rection, Phys. Rev. X 5, 031043 (2015).

[85] S. Bravyi, Subsystem codes with spatially local generators,
Phys. Rev. A 83, 012320 (2011).

030322-48

https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.22331/q-2020-10-28-352
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/PhysRevA.100.012312
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.93.022323
https://arxiv.org/abs/1509.03239
https://doi.org/10.1103/PhysRevA.93.052332
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevA.83.012320

	I.. INTRODUCTION
	II.. FLAGS AND ERROR WEIGHT PARITIES IN ERROR CORRECTION
	A.. Flag error correction
	B.. Distinguishable fault set
	C.. Finding equivalent errors using error weight parities

	III.. SYNDROME MEASUREMENT CIRCUITS FOR THE 3D COLOR CODE OF DISTANCE 3
	A.. The 3D color code of distance 3
	1.. The 3D color code of distance 3 in H form
	2.. The 3D color code of distance 3 in T form
	3.. Code switching

	B.. Circuit configuration for the 3D color code of distance 3

	IV.. SYNDROME MEASUREMENT CIRCUITS FOR A CAPPED COLOR CODE
	A.. Capped color codes
	1.. Capped color codes in H form
	2.. Capped color codes in T form
	3.. Code switching

	B.. Recursive capped color codes
	1.. Recursive capped color codes in H form
	2.. Recursive capped color codes in T form
	3.. Code switching

	C.. Circuit configuration for capped and recursive capped color codes
	1.. Nonflag circuits for measuring generators of capped color codes in H form of distances 3 and 5
	2.. Flag circuits for measuring generators of a capped color code in H form of any distance

	V.. FAULT-TOLERANT PROTOCOLS
	A.. Redefining fault tolerance
	B.. Fault-tolerant error-correction protocol
	C.. Fault-tolerant measurement and state preparation protocols
	D.. Transversal Clifford gates
	E.. Fault-tolerant implementation of a logical T gate via code switching

	VI.. DISCUSSION AND CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: PROOF OF THEOREM 1
	. APPENDIX B: FAULT-TOLERANT ERROR-CORRECTION PROTOCOL FOR A GENERAL STABILIZER CODE
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

