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We consider quantum error-correcting subsystem codes whose gauge generators realize a translation-
invariant, free-fermion-solvable spin model. In this setting, errors are suppressed by a Hamiltonian whose
terms are the gauge generators of the code and whose exact spectrum and eigenstates can be found via
a generalized Jordan-Wigner transformation. Such solutions are characterized by the frustration graph
of the Hamiltonian: the graph whose vertices are Hamiltonian terms, which are neighboring if the terms
anticommute. We provide methods for embedding a given frustration graph in the anticommutation rela-
tions of a spin model and present the first known example of an exactly solvable spin model with a
two-dimensional free-fermion description and exact topological qubits. This model can be viewed as a
free-fermionized version of the two-dimensional Bacon-Shor code. Using graph-theoretic tools to study
the unit cell, we give an efficient algorithm for deciding if a given translation-invariant spin model is solv-
able, and explicitly construct the solution. Further, we examine the energetics of these exactly solvable
models from the graph-theoretic perspective and show that the relevant gaps of the spin model correspond
to known graph-theoretic quantities: the skew energy and the median eigenvalue of an oriented graph.
Finally, we numerically search for models that have large spectral gaps above the ground-state spin con-
figuration and thus exhibit particularly robust thermal suppression of errors. These results suggest that
optimal models will have low dimensionality and odd coordination numbers, and that the primary limit to
energetic error suppression is the skew energy difference between different symmetry sectors rather than

single-particle excitations of the free fermions.
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I. INTRODUCTION

The rich physical behavior displayed by many-body
quantum spin systems makes them promising as candidate
resources for quantum-computational tasks. Unfortunately,
the complexity of simulating these systems makes it dif-
ficult to identify the ideal materials that can feasibly be
realized experimentally. Exactly solvable methods provide
one potential route to circumventing the difficulty imposed
by these competing demands. A particularly elegant class
of such systems are those which are exactly solvable via a
mapping to free fermions [1,2]. Owing to this exact solu-
tion method, one can efficiently describe the eigenstates
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and energies of these systems classically, and addition-
ally gain an intuitive picture for the correlations they can
exhibit.

Free-fermion dynamics have a rich connection to clas-
sical and quantum complexity theory [3—10], as well as to
quantum error correction [11-15]. The latter goal is hin-
dered in part due to the difficulty of generating interesting
and useful examples of error-correcting codes that nat-
urally relate to free-fermion systems. Recently however,
there has been some progress in systematically recognizing
free-fermion-solvable spin models [16,17].

In this paper, we leverage the graph-theoretic tools
of Ref. [16] to solve the “inverse” problem of embed-
ding a free-fermion system into a spin model in such
a way as to generate useful subsystem codes. This is
closely related to the problem of finding good fermion-
to-qubit mappings [18-26], where one seeks to find a
qubit model whose dynamics—possibly over a restricted
subspace—are equivalent to a desired interacting fermion
model. Additionally, the models that we consider are
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similar to the one-dimensional (1D) Kitaev wire [11] in the
sense that we are using a fermionic Hamiltonian for error
suppression. This and related models [12] are desirable for
protection against symmetry-respecting noise.

Our formalism is additionally inspired by a recent char-
acterization given by Haah [27] for compactly describing
translation-invariant error-correcting stabilizer codes using
Laurent polynomials, which we adapt to the setting of
graphs for our purposes.

We present the first known example of a topological
subsystem code that can be mapped to a two-dimensional
(2D) free-fermion model and which contains exact logical
qubits. These logical degrees of freedom have no analog
in the effective free-fermion model, and we argue that they
are topologically protected. In contrast, prior comparable
models lacked at least one of these ingredients, and either
had nonexact string operators [2], or they were a union
of 1D (or even 0D) free-fermion models [28,29], or they
were not free-fermion solvable [12,28,30—32]. This model
is explicitly constructed so as to be free-fermion solvable.
For the case of translation-invariant spin models that are
obtained by other means, we present an efficient recogni-
tion algorithm for detecting whether or not these models
are free-fermion solvable. If the model is exactly solvable,
our algorithm automatically constructs the corresponding
root graph occupied by the constituent free fermions.

In addition to this algorithm, we extend previous binary-
valued linear algebraic descriptions of translation-invariant
spin models and error-correcting codes [27] to include a
description for all relevant quantities: the frustration graph
of the spin model, the root graph on which the free-fermion
solution lives, the spin model itself, and calculation of the
free-fermion energies.

We examine the energetics of possible free-fermion
solutions, and show that the relevant spin-model gaps
that control energetic suppression of errors correspond to
graph-theoretic quantities, namely the recently introduced
skew energy [33] and the median (or “middle”) eigenval-
ues of orientations of the root graph. Finally, we carry
out numerical studies of these gaps for a large family of
one- and two-dimensional test lattices and identify design
heuristics for finding candidate models with large gaps
based on both dimensionality and coordination number.
The results of this numerical search indicate that the pri-
mary energetic bottleneck to intrinsic error suppression is
finding cases in which the skew energy gap between orien-
tations of the root graph is large, rather than finding ones
with large median eigenvalue, which corresponds to the
single-particle gap of a free-fermion model at half-filling.

This paper is organized as follows. After reviewing the
background of our formalism in Sec. II, our main results
are given from Sec. III onward. In Sec. III A, we develop
tools for realizing a given frustration graph, and we dis-
cuss two methods in particular: the honeycomb bosoniza-
tion and the fiducial bosonization, which are used to

construct two examples of exactly solvable spin models
with exact logical qubits. The first example, in Sec. III B,
is the first known example of a free-fermion model with
a two-dimensional frustration graph exhibiting exact log-
ical qubits. The second example, in Sec. III C, illustrates
a potential pathological case in which a free-fermion-
solvable model and exact logical qubits coexist but are
unrelated.

In Sec. IV A, we give an algorithm, which produces the
compact Laurent-polynomial description of a root graph
given the corresponding description of its translation-
invariant line graph. In Sec. V, we present a generalized
binary-valued matrix encoding, which extends the com-
pact Laurent-polynomial formalism to include the original
spin model in addition to the root and frustration graphs. In
Sec. VI, we show the connection between the ground-state
energies of free-fermion models and the graph-theoretic
notions of the skew energy and median eigenvalue of a
graph. Having identified these connections we examine
their implications for finding free-fermion models with
exact logical qubits and large gaps, which can intrinsically
suppress errors. In Sec. VII, we numerically calculate the
relevant energy gaps in a series of example free-fermion
solvable spin models, and demonstrate and identify empir-
ical heuristics, which describe the trade-off between prop-
erties of these graphs and properties of the underlying
free-fermion models.

II. BACKGROUND
A. Free-Fermion-Solvable Spin Models

We consider a many-body spin model defined on » spin-
1/2 systems, which we refer to as qubits, and with a
Hamiltonian given by

Hy= hio'. (1)

JeE

Here, o} € P, denotes an n-qubit Pauli operator, and the
coupling coefficients /; are necessarily all real. Paulis are
labeled by bit strings j € {0, 1}*?" as ol = jlixizl xixZiz
where j = j.j. 1s the concatenation of two n-bit strings j
and j,. The sum above runs over a set £, which is just the
set of strings j where 4; is nonzero. A useful quantity is the
symplectic binary form (-, -), defined as

<j:k> = jx . kz +jz . kx mod 2. (2)
The commutator of two n-qubit Paulis is given by
ook = (=1)iRgkI, ?3)

We focus on those spin models of the form above, which
can be exactly solved by a mapping to free fermions. A

030321-2



FREE-FERMION SUBSYSTEM CODES

PRX QUANTUM 3, 030321 (2022)

free-fermion model has a Hamiltonian of the form

i

H =i hayivi = -7 h-T. 4

'f IZNJk)/]Vk 3 “4)
(j,k)eE

The column vector T' = (y; )jeV consists of the Majorana
operators, which satisfy the canonical anticommutation
relations

vl =vive + viyy = 28ud. (5)

Like Pauli operators, products of Majorana operators only
commute or anticommute with each other and square to
+/. The Majorana operators themselves are Hermitian.
The sets V" and E above simply label the distinct Majorana
operators and the nonzero coupling terms, respectively, but
their names foreshadow their use in the graph-theoretic
formalism that we introduce shortly.

The matrix of coupling coefficients, h € R"™" is
called the single-particle Hamiltonian. Hermiticity of Hy
and the {y;}, together with Eq. (5), imply that we may
take h to be an antisymmetric matrix: h” = —h. We can
thus associate h to a directed graph with orientation ,
R™ = (V,E™), suchthatanarc (j — k) € E® if hy > 0.
Where necessary, we correspondingly label the relevant
operators by the orientation .

An exact solution for Hy can be found by block diago-
nalizing the single-particle Hamiltonian

/2 0 —i
B )

if |V] is even. If |V] is odd, h has an additional zero
eigenvalue. From the diagonalizing orthogonal matrix,
w € SO(|V)), it is straightforward to construct a unitary W
that preserves the canonical commutation relations (5) and
diagonalizes Hy

LIv1/2]
WHW=—i Y k. (7)
Jj=1

In this basis, the terms of the Hamiltonian commute and
each square to a scalar operator. The Hamiltonian spec-
trum, &, is thus harmonic in the Williamson eigenvalues,
{)\ J }, ofh

LIV1/2]
Ec= Y (=) (8)
j=1

Here, x € {0, 1}*U"/2] Jabels an eigenstate of H; and rep-
resents the filling configuration. For this reason, the {A;}

are also referred to as the single-particle energies. Note that
the spectrum of Hy is symmetric about zero.

Revisiting the spin Hamiltonian H in Eq. (1), this model
admits a mapping to a free-fermion Hamiltonian when
its Pauli terms exhibit the same pairwise commutation
relations as the Majorana terms in a Hamiltonian H; of
the form in Eq. (4) for some undirected graph R. Define
the frustration graph, G(H), of a Hamiltonian, H, whose
interaction terms either commute or anticommute, as the
graph whose vertices correspond to terms in H and for
which vertices are neighboring if their corresponding terms
anticommute. Given a graph R = (V, E), called the root
graph, its line graph, L(R) = (£, F), is the graph describ-
ing the incidence relations between the edges of R. That
is, (e1,e2) € F if edges e, e; € E share a common vertex
in R.

A central result of Ref. [16] is the following:

Theorem 1. (Ref. [16, Theorem 1]). Given an n-qubit
spin Hamiltonian of the form in Eq. (1) with frustration
graph G(Hy). There exists an injective map ¢ : E > V2
effecting

b > i) Vi ©
such that
olgk = (_l)lfp(j)ﬂw(k)\gkgi (10)
if and only if there exists a root graph R such that
G(Hy) ~ L(R), a1

where R is the hopping graph of the free-fermion solution.

The above theorem gives necessary and sufficient con-
ditions to associate a unique pair of Majorana fermions to
each Pauli term in H; such that the commutation relations
are preserved. However, this defines the mapping ¢ only
up to exchanges, ¢;(j) <> ¢2(j), corresponding to a sign
freedom on the elements of h, or an orientation on the root
graph R. We must specify this choice such that products of
Pauli terms are preserved by the mapping as well. In the
spin picture, there are products of Pauli terms from H; that
commute with all terms in H;. These are of the following
form:

1‘[ o = {4 kS
jes

(12)

for special subsets S € E. Here, 0 is a symmetry (pos-
sibly the identity) that commutes with every Pauli term
of Hy. The phase i¥® is defined to be consistent with the
phase convention for o X defined under Eq. (1). Since ¢
is chosen such that commutation relations are preserved,
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we must consider similar products among the terms of Hj .
These products correspond exactly to those subsets S of
edges in R such that either (i) every vertex j in the root
graph is incident to even-many edges in S or (ii) every ver-
tex is incident to odd-many edges in S. Products of terms
from Hy in case (i) are generated by cycles in R and give
the identity

[T o6 ¥em) = (D@, (13)

jeC

where the product is taken over a cycle C in R, in cyclic
order. The phase factor is determined by |C|, the number
of edges in C, and t(C), the orientation of the cycle. The
latter quantity is the number of times we need to commute
Yoij) and ¥y, () on the left-hand side such that individual
Majorana operators cancel pairwise. The aforementioned
case (ii) is only possible if the number of vertices in R is
even. In this case, products of terms from Hy are generated
by T-joins of R (see Ref. [16]) and give the parity operator

[T @ooves) ="y

ieT jev

(14

If 0¥ is not the identity for some S, we restrict to the
eigenspace stabilized by £0*® and solve the model by
free fermions on that eigenspace by choosing the root-
graph orientation to be consistent with Eq. (12). As shown
in Ref. [16], this can be done for any cycle-symmetry
configuration. If the parity operator gives the identity in
the spin picture (up to multiplication by cycle operators),
then our fermionic representation includes states that are
unphysical for the spin model, and so we must consider
only a fixed-parity subspace of our free-fermion solution
(see Appendix B for details). For simplicity we present
results for the case where both parity sectors are physi-
cal. Generalization to the case where one is not physical is
straightforward but is cumbersome and does not affect the
main results.

To summarize, we can solve a spin model if its frus-
tration graph is a line graph. The solution takes each of
the subspaces labeled by symmetries of the model and
maps that symmetry sector to a free-fermion model. We
obtain a solution over each stabilizer subspace by choosing
a suitable orientation of the root graph. Fixing the stabi-
lizer and choosing a particular state of the free-fermion
degrees of freedom may not completely specify a state in
the Hilbert space, however. There may be Pauli operators
that commute with H but that cannot be made as products
of Hamiltonian terms [and so are not captured by Eq. (12)].
These degrees of freedom will constitute logically encoded
qubits for our subsystem codes.

B. Quantum subsystem codes

A quantum stabilizer code is specified by an Abelian
subgroup S C P, such that —I ¢ S, whose mutual +1
eigenspace constitutes the logical codespace. Because S
is a group, it is sufficient to specify the codespace by the
mutual +1 eigenspace of any set of generators of S. The
elements of S thus preserve, or stabilize, the codespace.
The Pauli subgroup of operators that commute with every
element in S is called the centralizer of S, denoted C(S).
The logical Pauli group for the codespace is given by
C(S5)/S, commuting elements to S that are outside of
S itself. Since the codespace is stabilized by elements
of S, logical operators are defined up to equivalence by
stabilizers.

A subsystem code [29,34,35] is defined similarly, but the
requirement that the elements of S commute is relaxed.
Rather, a subsystem code is defined by a non-Abelian
gauge group G C P,. Again, logical operators are spec-
ified as elements of the centralizer C(G)/G. There is an
associated stabilizer group for the subsystem code S =
C(G) N G. A subsystem code can therefore be understood
as a stabilizer code where the state of some of the logical
qubits, the gauge qubits, can be ignored. The gauge group
constitutes the Pauli group on the gauge qubits together
with the stabilizers of this code. Crucially, by including
noncommuting operators in the gauge group, we can often
generate the group using lower-weight gauge generators
than any stabilizer code with the same code space.

Errors from the subsystem code logical space can be
suppressed by an error suppression Hamiltonian, which is
a sum over a (possibly overcomplete) set of gauge gen-
erators. To analyze the error-correction properties of the
model, it is therefore germane to consider the energetics
of this Hamiltonian. When the Hamiltonian derives from a
stabilizer code, the energetics is easy to analyze. However,
for a subsystem code the terms are generally noncom-
muting, so solving the model is a nontrivial task. This is
why we restrict to code Hamiltonians that are free-fermion
solvable.

C. Translation-invariant graphs

Here we summarize an algebraic construction of Haah
[27] for describing translation-invariant graphs. Consider
a graph G = (V, E) that exhibits translation-invariance in
one dimension. Such a graph has a block Toeplitz adja-
cency matrix

A=|... AT Ay, A ... ], (15)
Al AT Ay
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where Aj € F)*" describes the adjacency relations
between a unit cell of n vertices and the unit cell displaced
by £ sites.

We compress this description to a finite-dimensional
adjacency matrix over a ring as follows. We associate
translation by £ sites to the right with the monomial term
x*. In this way, we construct the following matrix with
Laurent-polynomial-valued entries as

Alx]= > Awk, (16)
k=—00

with A —« = AXT,(. To match the Laurent polynomial struc-
ture, we now designate blocks by the monomial rather than
the exponent. It is convenient to distinguish between trans-
lation to the left and to the right by introducing a new
variable x such that xx = 1. Then the Laurent-polynomial-
valued matrix can naturally be expressed as having entries
in the polynomial ring F,[x,x]/{(xx — 1). Similarly, we
incorporate models with periodic boundaries over L sites
by including polynomials of the form x* — 1 among the
generators of the ideal in this quotient. In the forthcom-
ing sections, we take the finite models we consider to have
periodic boundary conditions.

From here on, we denote polynomial-valued compact
matrices with calligraphic font to distinguish them from
binary-valued noncompact ones. For example, the 2 x 2
adjacency matrix

x+x 1
.A=<1 O), (17)

describes the infinite 1D “comb” with two sites per unit
cell shown in Fig. 1. The block matrices describing the
connections between a unit cell and one translated by x"
are denoted by

a=(o 0): (18)

A = (é 8) (19)
and

A= (‘1) é) 20)

We use the same notation of subscripting by a monomial
x" to indicate graph structures (e.g. vertices and cliques)
translated by v unit cells from the origin.

This can be extended to d dimensions by introduc-
ing a set of variables x = {x1,x2,...,x4}. Let Ay € F"
describe the adjacency relations between a unit cell of n

unit cell
1) 2532 Io) Qj o 2 o 2I 02]:2
O O O O O
152 1z 1 1, 1,2
FIG. 1. Translation-invariant comb graph. We denote the

translation of a graphical structure by a subscript (e.g., the trans-
lation of vertex “1” by one unit cell in the x direction by 1., two
unit cells by 1,2, and so on).

vertices and the unit cell displaced by a vector v € Z>9,
then

A= )" Apx' 1)

vezxd

captures all graphs with translation invariance over d
dimensions, since any lattice can be coarse grained to a
hypercubic lattice. We introduce the abridged notation

d
[+ (22)
j=1

XV

An example of this in two dimensions is the adjacency
matrix for the kagome lattice, shown in the background
of Fig. 4(b),

0 1+x Xx+y

Akeeme — [ 14 x 0 14y]. (23)
x+7 1+5 0
III. EXAMPLES

In the following section, we present two motivating
and illustrative examples of exactly solvable models with
two-dimensional frustration graphs and logical qubits.
Crucially, both of these examples contain both a non-
commuting free-fermion-solvable Hamiltonian as well as
commuting stabilizer terms; however the role that these
types of terms play in the storage of quantum information
is dramatically different between the two. To the best of our
knowledge, the first example, which is described in Sec.
I[II B, is the only known example of an exactly solvable
spin model with a two-dimensional effective free-fermion
solution and a constant number of exact logical qubits with
nontrivial distance. The second example, described in Sec.
III C, illustrates an undesirable trivial case in which a free-
fermion solvable model and a stabilizer code coexist, with
only the latter giving rise to the logical degrees of free-
dom. This second case illustrates some of the difficulties
in deciding in advance which subset of these constructions
is “useful” in new and nontrivial ways.
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A. Realizing a given frustration graph

In order to generate the two examples in Secs. III B and
IIT1C and be able to connect them to other potential mod-
els with different two-dimensional frustration graphs, we
must first introduce the concept of a bosonization in order
to connect a graph with potential spin models that realize
it as a frustration graph.

A bosonization is an explicit realization of a given
frustration graph by a qubit-Pauli Hamiltonian. A full treat-
ment of the procedure for finding and classifying all such
realizations has been discussed elsewhere [36,37] and is
beyond the scope of this work. In Sec. V, we discuss how
to unify the description of these models with the Laurent-
polynomial description of lattices in Sec. IIC. For now,
we concentrate on a separate aspect of the bosonization
problem: construction of a spin model that realizes a given
translation-invariant frustration graph.

The spin model that realizes a given frustration graph is
by no means unique, and here we consider only bosoniza-
tions that share the translation invariance of the frustration
graph, albeit possibly with a larger unit cell. Even sub-
ject to this constraint, there are still many possible spin
models that bosonize a given frustration graph. In general,
it is desirable for the spin model to be local, or quasilo-
cal, or consist only of very low-order terms, and solving
the bosonization problem subject to such “physicality”
and “hardware-implementability” constraints is beyond the
scope of this work. Here we consider only two extremely
simple, but highly general methods, which we call the
fiducial and honeycomb bosonizations.

The honeycomb bosonization is a minor generalization
of the Kitaev honeycomb model [2] and can be applied to
any frustration graph that is the line graph of a root graph
with maximum degree less than or equal to three. In this
bosonization a qubit is assigned to each vertex of the root
graph, and each of the (half) edges emerging from the ver-
tex is assigned to either X, Y, or Z of that qubit. An edge
between vertices o and S, which is X on the « side and
Y on the B side then becomes X4 Y(4). This bosonization
consists only of low-order terms, but it can only be applied
to a select set of graphs.

The fiducial bosonization is more general. In contrast
to the honeycomb bosonization, it amounts to assigning a
qubit to every edge of the frustration graph. The two ends
of each edge are assigned to either X or Z, and the ver-
tices of the frustration graph are Hamiltonian terms which
are the tensor product of the different factors of X and Z
from the corresponding ends of all the edges incident on
that vertex. This bosonization is fully general and can be
applied to any frustration graph, including line graphs with
maximum degree four or greater, but it generally results in
experimentally unfriendly multiqubit Hamiltonian terms.
Additionally, the fiducial bosonization is relatively ineffi-
cient, and in general there exists a large number of local

Pauli operators that commute with a fiducial bosoniza-
tion Hamiltonian. The cycle Y stabilizers shown in Figs.
2(e)2(h) are one example of a mutually commuting set.
However, there are many others that are not supported on
closed cycles, and many of these do not commute with one
another.

The existence of the fiducial bosonization gives a way to
produce a spin model that realizes any frustration graph,
whether it is a line graph and whether it is free fermion-
izable or not, regardless of whether the frustration graph
is translation invariant. Since this method guarantees that
there exists at least one spin model that realizes a given
frustration graph, throughout much of this paper we exam-
ine frustration graphs without considering any specifics of
the corresponding spin model.

The examples given in the next two sections are an
exception. Here we consider the anticommuting free-
fermion Hamiltonian terms and additional stabilizers
explicitly in order to show that exactly solvable spin mod-
els with a constant number of exact logical qubits and
two-dimensional frustration graphs do exist. These exam-
ple models will also illustrate some of the general phe-
nomenology and pitfalls of these types of models, as well
as these two bosonization methods in particular.

B. The checkerboard-lattice code: Intertwined
free-fermion models

The first model we present is based on a fiducial
bosonization of the line graph of the square lattice com-
bined with an additional set of stabilizers. The line graph
of the square lattice is a checkerboard lattice in which
every other plaquette has diagonal (next-nearest-neighbor)
edges, shown in the background of all the subfigures of
Fig. 2. Since this is a 6-regular graph, all fiducial bosoniza-
tion terms are weight 6. There are two inequivalent Hamil-
tonian terms, one for the horizontal edges of the square
lattice, and one for the vertical ones. The simplest possi-
ble orientation and realization of the Hamiltonian terms
is shown in Figs. 2(a) and 2(b). Note that the horizontal
and vertical edges of the line graph connect equivalent
sites in neighboring unit cells, so it is not possible to
choose the Hamiltonian terms to consist of only one type
of single-qubit Pauli operator. By construction, the fiducial
Hamiltonian operators in Figs. 2(a) and 2(b) and all of their
translates have a frustration graph, which is the line graph
of the square lattice, and the resulting Hamiltonian can be
solved exactly by computing a free-fermion model on the
square lattice.

Because all sites in this line graph have even degree,
reversing the choice of orientation on all edges gives rise
to a second fiducial bosonization, shown in Figs. 2(c) and
2(d), such that all terms of the new fiducial Hamiltonian H;
commute with all terms in the original Hamiltonian Hj. As
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C)) ; E (b) E E () ; E (d) E E
(e) E E U] E E (9) E E (h) E E

FIG. 2. The terms of the checkerboard-lattice code. (a),(b) The two inequivalent Hamiltonian terms of a fiducial bosonization H, of
the line graph of the square lattice. The line graph is shown in light blue, with brown circles to indicate the vertices. Note that there
is no vertex in the middle of the square plaquettes where the horizontal and vertical edges cross. The constituent single-qubit Pauli
operators of each term are indicated in color-coded and labeled circles in the center of each edge. For ease of view, we indicate the
identity by the absence of a label, and for the two edges that cross, we have displaced the drawn symbols to make it clear which edge
they belong to. (c),(d) The two inequivalent terms of a second fiducial bosonization H; obtained by flipping all single-qubit Paulis. All
terms in Hy commute with all terms in H;. (e)}—~(h) Four additional stabilizer terms per unit cell. Combining both Hamiltonians and the
four stabilizers gives a frustration graph consisting of two independent copies of the line graph of the square lattice, and this produces

two exact logical qubits, shown in Fig. 3.

a result, the total Hamiltonian to H; = Hy + H; has a frus-
tration graph that consists of two disconnected copies of
the line graph of the square lattice and is still free-fermion
solvable. In addition to the two free-fermion Hamiltoni-
ans, we also include four stabilizers per unit cell, shown
in Figs. 2(e)-2(h), which consist of products of ¥ around
closed cycles. In addition to these stabilizers and their lin-
ear combinations, there is another operator per unit cell
that commutes with all of the Hamiltonian terms, which
is given by the product of Hamiltonian terms [either (a)
and (b) or (c) and (d), but not mixed combinations] around
a plaquette of the underlying square lattice. The two loop
operators formed this way are equivalent up to products of
the Y stabilizers and generated by the Hamiltonian terms,
so they are not independent.

Under L x L periodic boundary conditions with L even,
there are precisely four linearly independent operators that
commute with all the stabilizers and both free-fermion
Hamiltonians. They form two exact logical qubit pairs
shown in Fig. 3. Like the logicals of the toric code, they
are supported on incontractible loops winding around the
handles of the torus. One half of each logical pair is an
incontractible loop of the Y stabilizers and consists of ¥
along the vertical or horizontal edges. We refer to these
operators as the Y strings. The other halves of each logical

pair, which we call the XZ strings, are more complicated
operators related to the free-fermion Hamiltonian terms.
These operators, shown in Figs. 3(b) and 3(d), break the
discrete translation symmetry of the underlying lattice and
repeat only every two unit cells. The XZ string, which is
translated by one unit cell still commutes with all of the
Hamiltonian and stabilizer terms, but will anticommute
with the string operator running around the torus the other
way. Because these logical operators are stringlike and live
on incontractible loops, like those of the toric code, we
should expect that distance scales with the system size
and that there is a constant energy barrier to logical errors,
independent of system size. In Appendix C we argue that
this is indeed the case. Specifically, we show that for any
ribbon-shaped region with a linear width of ¢ unit cells,
transverse to the handle direction of a (possibly dressed)
logical string operator, there are at least £ qubits on which
the logical operator must act nontrivially.

The two XZ strings in each direction can be considered
to be a factorization of a product of Hamiltonian terms
along the same line. For example, the product of the XZ
string shown in Fig. 3(b) with its translated partner and
the Y string in Fig. 3(c) is equal to the product of the
Hamiltonian term in Fig. 2(d) along the same line. Thus,
the logical degrees of freedom arise because homologically
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FIG. 3. Logical degrees of freedom of the checkerboard-lattice
code. (a),(b) Stringlike logical X and logical Z operators that
form an exact logical qubit and commute with all the Hamil-
tonian and stabilizer terms shown in Fig. 2. (¢),(d) A second
stringlike logical pair that commutes with the first. On a torus
with even dimensions, these are the only independent operators
that commute with all the Hamiltonian and stabilizer terms.

nontrivial products of Hamiltonian terms can be broken up
into string operators that still commute with all Hamilto-
nian and stabilizer terms individually. Unlike, e.g., string
operators in the Kitaev honeycomb model, these frac-
tions of incontractible products of Hamiltonian terms are
independent of the Hamiltonian terms.

Another way to view the free-fermion Hamiltonian
terms of this model is by analogy to the Bacon-Shor code
[30,38,39], and the one-dimensional XY chain. The Hamil-
tonian terms can be thought of as the products of two
terms: XXXX or ZZZZ on the edges at 45° and XZ on
the vertical or horizontal edges. The quad X or quad Z
operators resemble vertex stabilizers of the toric code [40].
However, the alternation between X and Z at every other
vertex of the line graph produces anticommuting terms
whose frustration graph is the square lattice, the same as
that of the two-dimensional Bacon-Shor code. Addition-
ally, the second fiducial bosonization contains all of the
vertex terms of the opposite type, so combining the two
includes XXXX and ZZZZ at every site of the line graph.

A subsystem code made from the toric-code-like oper-
ators alone would be a variation on the two-dimensional
Bacon-Shor code, but since the square lattice is not a line
graph, it would not be free-fermion solvable by the meth-
ods discussed in this work [41]. The necessary missing
edges are introduced by the XZ operators on the vertical

and horizontal edges. Taken by themselves, these oper-
ators give rise to models and frustration graphs that are
equivalent to disconnected copies of the one-dimensional
XY chain running around the torus in both directions. The
one-dimensional chains have the same frustration graph as
the 1D Kitaev wire, with the important distinction that they
are periodic. For us, the logical operators have no analog
in terms of fermion operators.

Since the fiducial Hamiltonian terms are products of
these two types of generators, acting on completely sep-
arate qubits, their frustration graph is the two square
lattices from the vertexlike operators combined with one-
dimensional chains in the vertical and horizontal direction.
This combination produces the exactly solvable checker-
board lattice from the non-free-fermion square-lattice frus-
tration graph of the two-dimensional Bacon-Shor code.

In sum, this model gives an example of a completely
local spin model for which exact logical degrees of free-
dom arise not from stabilizers or a free-fermion model
alone, but from a combination of the two. The frustra-
tion graph of the Hamiltonian is two dimensional, albeit
not connected, consisting of two copies of the line graph
of the square lattice. In contrast, prior comparable mod-
els lacked at least one of these ingredients, and either had
nonexact string operators [2], or they were a union of 1D
(or even 0D) free-fermion models [28,29], or they were not
free-fermion solvable [12,28,30-32]

The full energy spectrum of the system can be found
by analyzing the three constituent components indepen-
dently: the Y loop stabilizers and the two independent
free-fermion models on separate copies of the square lat-
tice. Furthermore, the ground-state symmetry sector for
both free-fermion halves, and therefore the model as a
whole, is known from Ref. [42] even though it cannot
be determined from recent graph-theoretic results [33]. As
yet, however, we know of no example of a free-fermion
solvable model with exact logical degrees of freedom that
does not involve a significant set of commuting stabilizers.

C. Triangle models

The second example we present is a construction based
on line graphs with triangular plaquettes, which allows a
conventional stabilizer code to be combined with a free-
fermion-solvable model on the same set of physical qubits.
Because of the heavy reliance on having triangular pla-
quettes, we refer to these models as triangle models. We
present the particular case of a Wen plaquette [43] model
combined with a Kitaev honeycomb model [2], but the
construction is more general. We highlight this particular
example because it shows two general properties of free-
fermion-solvable spin models. The first notable feature is
that while this model has free-fermion character and gives
rise to topological logical-qubit degrees of freedom, the
quantum-information storage is due to commuting terms
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that do not enter the free-fermion model. Our particular
construction is designed to make this separation explicit.
However, if a free-fermion-solvable model with topologi-
cal logical qubits is found through some other means, the
existence of a such a separation may not be obvious by
inspection, and care would need to be taken to distinguish
this trivial case from a model in which the free-fermion
degrees of freedom truly store quantum information. The
second relevant aspect of this model is that it shows that
for 3-regular graphs, the fiducial bosonization is closely
related to a honeycomb model constructed from a set of
effective qubits.

The fundamental building block of this example is to
place qubits on the edges of the line graph L(R) of a 3-
regular graph R and define commuting effective qubits on
the triangular plaquettes of L(R). We first present the gen-
eral construction of these triangle qubits before moving to
the explicit model under consideration.

Given a 3-regular graph R, its line graph L(R) con-
sists entirely of triangular plaquettes that share at most one
corner. For our particular example, we let R be the hexag-
onal honeycomb and L(R) the kagome lattice, shown in
Fig. 4(b). We then assign three physical qubits to each
plaquette, one on each edge. From these physical qubits,
we can define three effective qubits, which we denote
by QOp, Os, and QOr. The form of the individual effective
Pauli operators in terms of the physical qubits is shown
in Fig. 4(b). There is one copy of each of these qubits for
every triangular plaquette in L(R), i.e., for every verfex in
R.

Since Pauli operators of the three effective qubits are
independent and commute with one another, we can view
the resulting Hilbert space as being a model defined on
three independent copies of R, and we are free to choose
any desired Hamiltonian for each different effective qubit.
For a concrete example, we use the Js qubits to build a
Wen plaquette model, the QF qubits to build a Kitaev hon-
eycomb model, and we stabilize the remaining Qp degrees
of freedom by treating it as a paramagnet in an effective
magnetic field along the y direction.

In order to make the Hamiltonian terms as simple and
local as possible in terms of the physical qubits, it is
necessary to select a judicious orientation of the two
inequivalent triangular plaquettes in each unit cell of the
kagome lattice and a matching assignment of each pair
of corner-sharing triangles to X, Y, or Z bonds. Since
we have three independent types of qubits, we denote the
corresponding Pauli operators by a superscript of their cor-
responding type, e.g., Z®. The operators X® and Z®
cluster around one vertex of the triangular plaquette, so it is
natural to associate them to this corner and the underlying
edge of R. The operator Y is then naturally associated
to the remaining edge, and Or and Qp inherit the same
association. For this specific example, we chose to orient
the two inequivalent triangles such that the Z operators

correspond to the horizontal edges of R. The resulting
Z®Z® term of the Wen plaquette model is shown in
Fig. 4(c). All of the remaining terms follow from maintain-
ing this orientation in every unit cell. Figure 4(d) shows
the Z5Z%) term of the Kitaev honeycomb model, and
Figs. 4(e) and 4(f) the YY) and X © X ) terms, respec-
tively. The final two terms required are Y on every
plaquette [shown in Fig. 4(a)] and the loop operator of the
Wen plaquette model X Y ZOx Oy zS [shown in
Fig. 4(b)].

In sum, this model consists of three independent spin
models defined on the same set of physical qubits: a stabi-
lizer code that stores quantum information, a free-fermion
solvable model, and paramagnet to pin down the remain-
ing degrees of freedom. Weight-one Pauli operators are
smaller than the effective qubits, and will therefore anti-
commute with at least one Hamiltonian term from both
the stabilizer-code and the free-fermion model, thereby
endowing the stabilizer code with some of the ener-
getics of the free-fermion model. However, any Pauli
made entirely of X©®, Y and Z® will commute with
the free-fermion Hamiltonian. It is thus clear that the
combined model still suffers from the low-energy string
errors that plague 2D stabilizer codes, and that the free-
fermion model is ancillary to the quantum-information
storage.

This model highlights the general fact that if a Hamil-
tonian with topological logical qubits contains both a
free-fermion-solvable model and a set of stabilizer terms
that commute with each other and the free-fermion model,
then the free-fermion terms need not play any role in
the quantum-information storage. The triangle-model con-
struction makes this separation very explicit, but in other
models, with more complex effective qubits, the existence
of independent constituent models may not be readily
apparent. An exceedingly simple example of this arises
when the operator Y is redefined to also include a
factor of Y. This local rotation mixes the paramagnet
qubit Qp into the free-fermion qubit Qr, but does not
affect the commutation relations of any of the Hamilto-
nian terms. It also has the effect of exactly transform-
ing the Kitaev honeycomb model terms [shown in Figs.
4(d)y4(f)] into a fiducial bosonization on the kagome
lattice.

Since the triangle-model construction relied only on the
existence of triangular plaquettes, which share at most
one corner, the following relation between the Kitaev
honeycomb model and fiducial bosonizations emerges.
Given a 3-regular graph R, a fiducial bosonization of L(R)
is equivalent to a honeycomb bosonization of R, up to
local rotations. Furthermore, the vast number of opera-
tors that commute with the fiducial bosonization can be
understood as coming from the (largely) independent tri-
angle qubits, which are not involved in the honeycomb
bosonization.
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FIG. 4. Building blocks of a triangle model. (a) Table showing the three effective qubits Qp, Os, and Qf formed from three physical
qubits on the edges of a triangular plaquette. Physical-qubit Pauli operators are indicated in color-coded and labeled circles in the
center of the each edge. For ease of view, we indicate the identity by the absence of a label. (b),(c) Stabilizers of a Wen plaquette
model constructed from the effective qubit Os. The loop stabilizer is the product X Y9 ZO xS y9 7 " and the bond stabilizer is
Z®Z® Note that the definition of Z® is rotated by 180° on the two inequivalent plaquettes of the ZZ bond. (d)~(f) ZZ, YY, and XX
bonds, respectively, of a Kitaev honeycomb model defined using all the translates of Q. Despite being defined on the same set of
physical qubits, every term in the Kitaev honeycomb model in Qr commutes with every term of the Wen plaquette model in Qg, and

all of the Paulis of Op.

For graphs of degree greater than 3, L(R) no longer
consists of corner-sharing triangles, so the close correspon-
dence to a honeycomb model on R breaks down. However,
the “triangle” construction can in fact be extended to non-
regular graphs whose maximum degrees are 3. We do not
present the construction here, because the resulting models
are qualitatively the same, and handling the more gen-
eral case requires addressing special cases and the possible
addition of extra local stabilizers for lower-degree vertices.
However, we have verified, that starting from a graph that
is 3, 1 biregular, it is possible to make a triangle model in
which the stabilizer code portion is a generalized toric code
with three qubits per edge instead of one.

IV. LINE-GRAPH RECOGNITION

To determine if a translation-invariant spin Hamiltonian
has a free-fermion solution using Theorem 1 of Ref. [16],
we must be able to recognize that a given translation-
invariant graph is a line graph. For general graphs, there
exist well-known line-graph recognition algorithms that
are efficient in the total size of the graph [44—46]. Here
we present a new algorithm tailored to the translation-
invariant case, which requires checking only a single unit
cell and its environment. To do this, we utilize the Whit-
ney isomorphism theorem [47], which says that if two
connected graphs with more than four vertices are edge
isomorphic, then there exists exactly one vertex isomor-
phism that induces the edge isomorphism, with all of the
small exceptions known. A Krausz decomposition [48] of

a line graph L(R) = (E,F) is a partition of its edges in
F into cliques (complete subgraphs) {KV, K@ .. K"}
such that every vertex in E belongs to at most two of the
subgraphs induced by the {K”}. If we allow vertices to
belong to cliques containing no edges, then we can define
the decomposition such that every vertex in £ belongs to
exactly two cliques. Under the line-graph operation L, each
vertex v € Vin the root graph R = (V, E) is mapped bijec-
tively to the clique K. Whitney isomorphism guarantees
that for large enough graphs, this decomposition is unique.

A. Recognition algorithm

The first step is to examine the subgraph induced by the
vertices in a single unit cell. This is performed by looking
at the constant term in the polynomial expansion. For the
1D example shown in Fig. 5, we have

A—path __ 0 1
AP — (1 0). (24)

We next take the Krausz decomposition of this subgraph.
If the decomposition does not exist, then the global,
translation-invariant graph cannot be a line graph, and we
are done. If the decomposition is not unique, we can coarse
grain the lattice, say along one direction, until the unit cell
has more than five vertices. Though we should really think
of the cliques in this decomposition as bins of edges, we
designate each clique by the vertices it contains, as the
edges in the clique are completely determined by this. For
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FIG. 5. Anillustration of our line-graph recognition algorithm
for translation-invariant graphs. (Top) The “triangle path graph.”
We first perform line-graph recognition on the individual unit
cells, partitioning edges into cliques (circled) such that every ver-
tex belongs to exactly two cliques. (Middle) The root graphs of
individual unit cells. We next identify vertices according to the
connections between unit cells. In this case, we identify K with
K@ to recover the clique K shown in the top figure. (Bottom)
After identification, we obtain the correct root graph.

our 1D example, we have

KD =11}, K®=1{1,2}, K9 ={2}, (25)
where cliques containing one vertex are understood to con-
tain no edges. We finally include the edges not in these
cliques by verifying that they are consistent with the global
Krausz decomposition. Once again, we denote an object
(vertex, edge, or clique) in a translated unit cell by its index
in the “origin” unit cell with its translation monomial as a
subscript. For example, 1, denotes the vertex 1 in the unit
cell translated from the origin by x, and K" denotes the
clique KV in the unit cell translated from the origin by y.

Note that the edges between unit cells cannot induce
any new cliques in the Krausz decomposition, since every
vertex already belongs to two cliques (including empty
ones), and there are no vertices not in any clique. How-
ever, it may be necessary to identify (i.e., take the union
of) cliques between unit cells. To do this, we check if the

edges corresponding to each distinct monomial induce sets
of disconnected complete bipartite graphs between cliques
in their different cells, and these are the cliques we iden-
tify. If one clique, say KV, is identified with more than
one clique, say K» and Ky(3), then we must also be able

to identify K@ with K)-S) (i.e., the three cliques, KV, K@,

and K@ are all identified).
For our 1D example, we have

AL (3 3) , (26)

which is the all-ones matrix between KV and K@ (we
cannot identify K" with KV and K® since that would
be identifying a single clique with two distinct cliques
in the same unit cell). The field trace over the conjugate
monomial X identifies K@ with Kx(l), as we expect, and
we therefore have that our Krausz decomposition parti-
tions the edges of the graph into all translations of the
clique K = {1, 1,,2,}. Note that vertex 1 appears in two
cliques, K and Kz, and so this vertex corresponds to the
edge (K, Kz) in the root graph. Vertex 2 appears in the
cliques K5 and the empty clique K)-§3) = {2}, and so it cor-
responds to an edge (K;C,KS)). Therefore, the adjacency
matrix of the root graph is given by

_pathr x+x 1 K
wreme s 0) (57 D) (). o

which gives the correct root graph.

V. COMPACT LAURENT-POLYNOMIAL
DESCRIPTION OF SPIN HAMILTONIANS

Here we show that the method given above to use
binary-valued linear algebra and Laurent polynomials to
formulate both compact and noncompact descriptions of
graph adjacency matrices can be generalized to encod-
ing bosonizations. Once the bosonization is formulated
in this way, simple linear-algebraic manipulations mod-
ulo two can be used to pass from the bosonization to the
corresponding frustration graph.

Once the Laurent-polynomial-valued adjacency matrix
A describing a frustration graph is known, our line-graph
recognition algorithm, described in Sec. IV A, will deter-
mine if the corresponding graph is a line graph, and if
so, will also construct the root graph and its compact
adjacency matrix. Calculation of the corresponding free-
fermion band structure can be done by mapping the Lau-
rent monomials x and x to the phase difference between
unit cells in a Bloch-wave solution, as described in Sec.
VIIL. It is therefore desirable to have a description of
the spin model itself that is also in compact Laurent-
polynomial-valued form and from which frustration graphs
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can readily be computed. To construct this, we start by
encoding the spin model in a noncompact matrix B and
then show that this encoding can be compactified.

In order to formulate the encoding, we represent Pauli
operators by 3-tuples (b1, by, b3) in the following way: 011
for X, 101 for Y, 110 for Z, and 000 for the identity. This
encoding is related to our previous notation of using two
bits, (jy,j.), to specify single-qubit Paulis by the following
transformation:

b 0 1 .
bhl=11 1 (]/x) mod 2.
b3 1 0 z

In general, Hamiltonian terms are written as products of
only the relevant nonidentity Paulis, but by including the
identity explicitly, single-qubit operators can be tensored
together such that each Hamiltonian term in a model with
N total qubits is a product of N single-qubit operators.
By concatenating the corresponding 3-tuples on all qubits,
each term in the Hamiltonian can be encoded in a binary
vector of length 3 x N. For example, the case of two qubits
with a ZZ interaction is described by the vector 110 110.
We define a bosonization of the entire Hamiltonian by a
binary matrix, B € IF'ZE 'XSN, where each row represents a
single Hamiltonian term:

(28)

Bigo) = (bizj—2 bizi—1 biy)

143 —e; Pauli kis at qubitj in term i
= . (29)
013 otherwise.
We define the matrix E as
Eigi) = (Eizi—2 Eizi-1 Eiy)
1 L
— 1x3 1 .] ) (3 0)
0,3 otherwise,

such that the kernel of E is the set of all valid Pauli
encodings by this method. The matrix B satisfies

BE' =0 mod 2, (31)
and therefore always specifies a valid encoding.

It remains to be shown that a matrix encoding of this
form is useful. For simplicity consider a Hamiltonian with
only two terms encoded in this way. The value of their
commutator can be found by computing the dot product
of the corresponding vectors modulo two. To see this, let
us compute the dot product modulo two by first taking
the dot product mod two within each 3-tuple. If the cor-
responding Paulis on that qubit anticommute, the result
will be one. Otherwise it will be zero. To complete the
calculation, we sum up the results from each qubit tuple,

thereby counting the total number of qubits that con-
tribute an anticommutation. Taking this number modulo
two completes the calculation and determines whether the
total number of minus signs contributed by the constituent
single-qubit terms is even or odd. As a result, all anti-
commutation relations between Hamiltonian terms can be
found by computing all such dot products, and this non-
compact bosonization matrix B can be used to compute
the noncompact adjacency matrix of the frustration graph.
In fact, when matrix multiplication is taken modulo two, B
and BT factorize A:
A=BB" mod2. (32)
The Pauli symmetries of the model that can be generated
by Hamiltonian terms correspond exactly to binary vectors
veFS *I'in the binary kernel of A. However, the struc-
ture of the symmetry group of the model is defined by the
decomposition Eq. (32). Specifically, we have

ker(A) = ker(B7) U [im(B7) N ker(B)]. (33)

Operators in ker(B”) are products of Hamiltonian terms
that give the identity, and the remaining elements of the
kernel of A are products of Hamiltonian terms that mul-
tiply to a Pauli that commutes with the Hamiltonian.
Operators that cannot be made as products of Hamilto-
nian terms, but nevertheless commute with every operator
in the Hamiltonian, correspond to logical-qubit opera-
tors. These operators correspond to elements of ker(B) N
ker(E), which are not in im(B”). This gives a rigor-
ous definition of logical operators within this encoding
formalism.

It remains to generalize this to a compact formulation
of the case where the spin model is translation invariant.
In this case, we divide the full spin model into unit cells
of M qubits such that if any term appears in the Hamilto-
nian, then translating that term to the corresponding qubits
in any other unit cell is also a Hamiltonian term. (Note that
there will generally be some terms that straddle the bound-
aries between qubit unit cells.) All qubits in the model
will then belong to one of the M equivalence classes of
qubits, and the individual members of these classes can be
indexed by the location of their unit cell in the graph. We
encode this location with Laurent polynomials. Below we
present the encoding procedure for the case of two dimen-
sions. The generalization to higher, or lower, dimensions
is straightforward.

Each translation-invariant family of Hamiltonian terms
can be represented by a single length-3M vector of
polynomial-valued 3-tuples. In this case it is simpler to
consider only the qubits that contribute nonidentity oper-
ators to the Hamiltonian term. To generate the corre-
sponding compact vector description of this family of
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Hamiltonian terms, consider one element of the fam-
ily, and assume that the first participating qubit is in
the unit cell at the origin. We start from the zero vec-
tor and construct a polynomial-valued vector from the
locations of the constituent qubits and the 3-tuples cor-
responding to each type of Pauli. For each participating
physical qubit, we determine its equivalence class «, the
location of the unit cell that it is in (n,#’), and the cor-
responding Pauli: X, Y, or Z. This operator will then be
encoded as x"y" times the 3-tuple corresponding to that
Pauli at position « in the encoding vector. If multiple
qubits of this class participate in the Hamiltonian term,
then we sum the corresponding tuples. This defines the
compact Laurent-polynomial-valued encoding matrix B €
Fx7M[x, X, v,7]/(xX — 1,y9 — 1), where ¢ is the number
of distinct families of Hamiltonian terms. The constituent
block matrices of B are given by

(B n n’)
T iq0)

1,43 — e qubitj of cell (n,n") in term i is Pauli &
03 otherwise.

(34)

To illustrate this encoding consider a simple one-
dimensional example with two spins per unit cell. If there
is a YY interaction between the two qubits in each unit cell,
then this family of Hamiltonian terms is encoded by the
vector 101 101. A ZZ term between the second qubit in
one unit cell and the first qubit in the next unit cell over is
given by xx0 110. The compact encoding matrix is then

101 101
B:|:xx0 110]' (35)

Next consider how to find the anticommutation relations
between terms encoded in this way. Once again, the dot
product modulo two of two terms encodes the quantity
of interest, but this quantity is now a Laurent polynomial
with binary coefficients. Consider the dot product between
two such term-family encodings. If the degree zero term
is nonzero, then that indicates that elements of these two
families anticommute when centered on the same unit cell.

What about the higher-order terms? Consider for exam-
ple a pair of terms that produces an x term in the dot
product mod two. One way to obtain this term is to have
011 (i.e., X) on the first qubit in the unit cell in one fam-
ily of terms, and x0x (i.e., Y) in the other family. However,
this corresponds to Y on a qubit of the first equivalence
class in a unit cell that is one lattice translation to the right.
As a result, when terms from each of these two families
are centered on the origin unit cell, the second term actu-
ally involves a physical qubit in the first unit cell to the
right. This is a distinct physical qubit from the first qubit
in the original unit cell, and there is no anticommutation

from this pair of terms. However, if you consider a pair of
terms from these two families where the first is centered
at the original unit cell, and the second is centered at the
cell one to the left (i.e., translated by x), then this pair of
terms acts on the same physical qubit. Hence (011) - (x0x)
mod 2 = x indicates that the elements of the two families
of terms anticommute with each other when one is dis-
placed by x, or x, depending on which term the translation
is applied to.

This is precisely the information that the compact-
valued adjacency matrix of the frustration graph encodes.
Hence Eq. (34) gives a generalization of the incidence
matrix to a bosonization and multiplying it with its trans-
pose conjugate modulo two yields the compact Laurent-
polynomial-valued adjacency matrix of the frustration
graph:

A=BB" mod?2, (36)
where T denotes transposition and replacing Laurent
monomials with their inverses.

VI. SKEW ENERGY

Next we consider which properties of the root-graph
spectrum determine the energy gap above the ground state
of the spin model. Under the free-fermion solution to a
given spin Hamiltonian, we have

Hy— i) (T-h®.T7)1I,. (37)

Here 7 labels a mutual eigenspace of the symmetries of
H;, as specified by a representative orientation of the root
graph R, and the I1, are orthogonal projectors onto the
respective T subspaces. In a given symmetry sector, the
Hamiltonian can be brought to the diagonal form in Eq. (7).
Assuming that the both fermionic-parity sectors are phys-
ical in the spin model for every cycle-symmetry sector as
above, the ground-state energy of the Hamiltonian in this
sector is given by

2
LIv/2] 1

g0 =- Y a0 = —5 Tr(h@). 39
j=1

When |hj(.fk)| € 0,1 forallj, k € V, then —2&" is a graph-
theoretic quantity known as the skew energy of the graph
R with orientation t [49]. Let

1) = argmin, &£|"

. 39
n = argming £ Tt = (o€ > £y )
be the orientations of the root graph with the two lowest

ground-state energies, with 51(”) the ground-state energy
of the original spin model.
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The next-lowest energy of the spin model can either
come from two possible scenarios. The first possibility is
a single-particle excitation in the ground-state sector .
This energy is governed by the energies of the highest
occupied and lowest unoccupied states at half-filling. The
eigenvalues )»;T) are symmetric about zero, so these ener-

gies are +.\”, where 1\ denotes the median eigenvalue,
or middle eigenvalue, which, in this case, is the eigenvalue
with the smallest modulus. The second possibility is that
the lowest-energy excitation comes from the ground-state
energy of a distinct sector 7,. Therefore, the gap of the spin
model is given by

A =min{22 (W, £ _ gy, (40)
Now let us examine the orientation with the lowest ground-
state energy 7). For completeness, we relate a given ori-
entation t of our root graph to the free-fermion model
h® by defining the skew-energy-maximizing orientation.
Theorem 2, given below, was proved in Ref. [50]. We
first present the original graph-theoretic formulation, and
in Theorem 3, we reformulate the result in terminology and
quantities more familiar to quantum error correction.

Theorem 2. (Skew-energy-maximizing orientation [50,
Theorem 3.11]). If R has an orientation t such that every

even cycle is oddly oriented and Ih;-f)l € {0, 1} for all i,
j €V, then h®) has the maximal skew energy among all

orientations of R.

Now let us return to the phase on Eq. (13) for an even
cycle of length |C| = 2¢
(—D) = (=T, (41)
This gives the simple relation between a cycle-symmetry
eigenvalue (—1)¢, and the orientation of the cycle t(C).
It is important to note that the cycle symmetry operator is
a signed Pauli in general, since it is a Hermitian product
of Paulis. We do not worry about this detail here. What
is important, however, is that when we multiply cycle-
symmetry operators, associated to say, the cycles C; and
C,, with lengths 2¢; and 2¢, respectively, the correspond-
ing eigenvalues (—1)°! and (—1)°2 multiply. The lengths
€1 and £, do not straightforwardly add however, but the
length of the new composite cycle C; @ C, rather depends
on the geometry of the lattice. Thus the orientation of this
composite cycle is given by

T(C] (&) Cz) =c+o +£1 +£2 —2|C1 N C2| (mod 2)
(42)

This therefore allows us to restate Theorem 2 in an equiv-
alent, but more physical way.

Theorem 3. (Skew-energy-maximizing cycle configura-
tion). Assuming that both fermionic-parity sectors are
physical for every cycle-symmetry sector in the spin model,
and there exists a configuration of cycle-symmetry eigen-
values such that

(a) cycles of even, but not doubly even, length have
eigenvalue +1, and
(b) cycles of doubly even length have eigenvalue -1,

then the global ground state of the spin model is in that
configuration.

Since cycle-symmetry eigenvalues multiply to the
eigenvalues of their composite cycles, it is therefore suf-
ficient to find a satisfying eigenvalue assignment for an
independent generating set of the cycle symmetries and
check that the remaining cycle symmetries also satisfy the
condition. Finally, if the root graph is translation invariant,
then it is clear that the satisfying eigenvalue configura-
tion, when it exists, is also translation invariant, though
the corresponding orientation of the root graph need not
be.

VII. HEURISTICS AND NUMERICAL STUDY OF
EXAMPLE LATTICES

Unfortunately, the checkerboard-lattice code presented
in Sec. III B corresponds to a free-fermion model on the
square lattice, which is gapless, and we know of no gapped
free-fermion solvable model with a two-dimensional frus-
tration graph and exact logical qubits. We have therefore
conducted extensive numerical studies combining previ-
ous graph-theoretic results [51] with free-fermion solvable
spin models in order to search for examples of spin models
with favorable energetic properties as Hamiltonian sys-
tems (e.g., a spectral gap), and with favorable coding
properties as subsystem codes (e.g., exact Pauli logical
operators and large distance). As described in Sec. VI,
the relevant gap of a free-fermionizable spin model is
related to two different gaps of the free-fermion solution:
one, the energy gap to excite a single fermion from the
zero-temperature half-filling state within the ground-state
symmetry sector, denoted by 2)»5”); and two, the energy
difference between the two lowest sectors with distinct
total energies: EI(TZ) — 51(”). We refer to these as the single-
particle and sector-energy gaps, respectively. The smaller
of these two will dictate the properties of the subsystem
code.

In order to gain understanding of the behavior of these
two gaps, we undertook a study of a series of exam-
ples of free-fermion models that contain the solution to
a set of exactly solvable spin models with coefficients
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all zero or one. In order to make use of previous graph-
theoretic results [50,51], we restrict our numerical simula-
tions primarily to root graphs that are 3-regular as well as
translation invariant and whose corresponding spin mod-
els have the anticommutation relations of 4-regular line
graphs. We generate the root graphs directly using two
methods: first, applying one-dimensional periodic bound-
ary conditions on graphene to produce nanotubes, and
second using the method of Abelian covers to stitch
copies of a finite graph together to form a lattice. The
latter is a standard mathematical framework for view-
ing and constructing periodic systems. A sketch of the
construction and a discussion of its utility is given in
Sec. VIL A. See Ref. [51,52] for a more detailed discus-
sion.

The Bloch-wave calculations used to compute the free-
fermion single-particle energies and the gaps for different
lattices are described in Sec. VIIB. Within this picture,
the relevant free-fermion Hamiltonian is equivalent to that
of electrons moving in a magnetic field that gives rise to
Peierls phases of £i on every bond, the sign of which is
given by the orientation 7. Cycle orientations and stabilizer
eigenvalues therefore map to fluxes or Aharonov-Bohm
phases.

A. Lattice construction

A numerical search of all possible lattices is not pos-
sible, so attention was focused on canonical lattices such
as graphene and the square lattice and two sets of exam-
ples known from Ref. [51] to give rise to large Agr): first,
one- and two-dimensional square-lattice Abelian covers of
small 3-regular graphs, and second, carbon nanotubes of
small diameter.

The Abelian-cover lattices are generated by chaining
together copies of a 3-regular base graph. The spirit of this
method is very closely related to the Laurent-polynomial-
valued compact formulation of the lattice adjacency matrix
described above, and it can be thought of as a method for
producing an infinite periodic graph from a finite graph 5
by assigning Laurent-polynomial weights to each edge in
the base graph. Each unit cell of the lattice consists of a
copy of all the vertices of ®B, and the inter- and intra-unit-
cell edges are specified by the Laurent polynomials chosen
in the weighting of the edges of B. If two vertices in the
base graph are connected by an edge of weight 1, then their
images are connected within each copy of the unit cell. If
the edge (v, v;) has weight x, then this corresponds to a
bond in the lattice between v; in one unit cell and v, in the
unit cell neighboring it in the positive x direction, similarly
forx,y,y, etc.

Any lattice can be constructed in this way starting from
either a graph or a multigraph ®B, and this method provides
three useful features. First, the zero-crystal-momentum
eigenvalues of the oriented lattice are equal to those of the

oriented base graph. This allows some rudimentary filtra-
tion for unit cells and orientations which have a chance to
give rise to lattices with large gaps at zero energy. Sec-
ond, the possible small regular graphs have been tabulated
(see, e.g., Ref. [53] for the 3-regular case). Third, and
most significantly for this formalism, it provides a conve-
nient framework for systematically reducing the number
of orientations of the root graph that must be computed
in order to estimate the sector-energy gap £, — £\,
For an orientation that repeats every » unit cells, the cor-
responding free-fermion model on the root graph has a
magnetic unit cell that consists of at most # unit cells. If
there are m bonds in the base graph, then naively there
can be as many as 2"™*”" orientations that are periodic on
this length scale. Computing a band structure and den-
sity of states (DOS) for each of these orientations would
generally be prohibitively expensive. Fortunately, many
of these orientations are redundant and correspond to the
same sets of fluxes, or even no flux at all. The possible dis-
tinct flux configurations can be enumerated by noting that
the magnetic model corresponding to each orientation is
naturally constructed as an Abelian cover of an enlarged
base graph B™. While this construction is geometrically
redundant, the flux through any closed loop of the full lat-
tice is uniquely determined by the Peierls phases on the
edges of B . The possible flux configurations of B can
be found by choosing a spanning tree and varying the ori-
entation of the edges not in the spanning tree, which vastly
reduces the number of options that need to be computed.
For highly symmetric base graphs, such as the cube, the
true number of configurations is even lower than this due
to further symmetries [16,54].

Using the tabulation in Ref. [53], a series of Abelian-
cover lattices are constructed from select 3-regular base
graphs with 12 or fewer vertices. To restrict the search
space, we consider only covers where the covering group is
Z or Z x 7, corresponding to one-dimensional chains, and
two-dimensional square lattices. Furthermore, we restrict
to covers where there are at most two edges that produce
inter-unit-cell connections. In the Laurent-polynomial for-
mulation, this corresponds to giving all but two edges the
monomial 1. The remaining two edges may either be {1, x},
{x,v}, {x,x}, or {x,x}. This is a severely restricted set of
covers; however, it was shown in previous work [51] that
it contains examples that exhibit the largest possible gaps
for symmetric adjacency matrices of arbitrary unoriented
3-regular graphs. The numerical studies described below
show that it also contains examples with extremely large
values of )L(lr). In fact, the (2,0) nanotube shown in Fig. 8
is one such example with 2)»5” =2[51,55,56]. The (1, 1)
nanotube, or equivalently the ladder, shown in Fig. 9, is
another example with 2)»5” = 2. However, in this case, this
large single-particle gap is found in the absolute ground-
state orientation. Interestingly, both of these apparently
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extremal examples arise as {x,x} Abelian covers of the
cube.

B. Gap calculations

For each translation-invariant root graph, we use Bloch-
wave theory to compute the single-particle band structure
of the root graph with Peierls phases of +i on each bond
and with all hopping amplitudes equal to one. These phases
encode the orientation t of the graph, and the Hermitian
single-particle Hamiltonian of this model is equal to i times
the antisymmetric adjacency matrix h, as shown in Eq.
(37), and the Hamiltonian for a given crystal momentum
k is i A with X; — exp (ik - a;.), where a; is the j " lattice
vector. We numerically compute the density of states, as
well as the total energy and single-particle gap for each
distinct orientation below a maximum magnetic unit cell
size, typically up to a few times the geometric unit-cell
size. In general, there is no mathematical guarantee that
the ground-state symmetry sector must be of the form
above.

However, for uniform hoppings, the range in which
eigenvalues can exist is dictated by the coordination num-
ber, and the bands become more and more tightly packed
as the unit-cell size becomes large, making the chances of
finding a ground-state symmetry sector with a large single-
particle gap very low. Therefore, favorable models that
exhibit large gaps in both senses should fall within the
scope of the numerical search. The outcome of the limited
numerical search can thus be viewed as a likely indicator
for how a given root graph will perform, and in some cases,
where the absolute ground-state symmetry sector is known
by other means (e.g., Ref. [42] or Theorem 2), stronger
statements can be made.

Combining these numerical results with previous graph-
theoretic ones examining large gaps in the spectra of reg-
ular graphs [51], we find a few general principles, which
are indicated schematically in Fig. 6. A set of examples
that highlight these principles is shown in Fig. 7, and we
discuss these in detail below.

The excitation gap 2)»(;) is dictated by the single-particle
spectrum, and so a fair amount is known about its behavior
from both mathematical studies of graph spectra [51,53]
and also from the study of band structures in the solid state,
e.g., Ref. [57]. In general, large single-particle excitation
gaps [)»Y) = O(1)] are increasingly difficult to achieve
in higher dimensions due to the larger phase space, and
largest values of )»(lr) are generally found in quasi-one-
dimensional lattices [51]. As a result, there is a funda-
mental tension between the desire for higher-dimensional
lattices which can have much richer topological properties
and the desire for large single-particle gaps, which give
rise to intrinsic suppression of local errors.

Odd Even

coordination coordination
A =

* Graphene « Square

lattice

Gaps harder

« Ladder

« Hourglass
ladder

1D

\ 4

Gaps harder

FIG. 6. Schematic diagram indicating which classes of lattices
tend to exhibit large single-particle gaps at half-filling and where
certain special examples fall. In general, higher-dimensional lat-
tices tend to have fewer and smaller gaps due to their larger
phase spaces. Lattices with odd coordination numbers often have
very low densities of states near zero energy, making it much
easier to find variations with large gaps or to introduce gaps
by perturbations to the hopping coefficients. As a result, it is
very difficult to open up a gap at zero energy for cases like the
square lattice (2D, and even-coordinated), and significantly eas-
ier to do so for graphene (2D, odd-coordinated), whereas the
largest single-particle gaps are found in cases like the hour-
glass ladder (see Fig. 8) and the ladder (see Fig. 9), which are
quasi-one-dimensional and odd-coordinated.

Despite some dramatic exceptions that host compact-
support states similar to those found in the Lieb lattice
[58], root graphs with odd coordination number gener-
ally have difficulty sustaining a large number of states in
which each site has an equal number of positive and neg-
ative neighbors. The resulting suppression of the density
of states near zero energy makes it easier for an orien-
tation that gives rise to a staggered magnetic field, or a
set of nonuniform hoppings, to open up a single-particle
gap. For example, the square lattice in zero magnetic field
has a ring of momenta with zero energy, whereas graphene
has exactly two points at zero energy, one from each Dirac
cone. Correspondingly, graphene is much easier to gap out
than the square lattice. Thus, intuitively, the largest val-
ues )»ET) should be found in quasi-one-dimensional root
graphs with odd-coordination number and relatively small
magnetic unit-cell sizes.

The numerical results corroborate this intuition. The two
most dramatic single-particle gaps found are shown in
Figs. 8 and 9, each with 2)\57) = 2. Both arise in a quasi-
one-dimensional 3-regular root graph, with a magnetic unit
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(a) i : - o
. X Known | Odd | Fluxes : Single-particle | Distinct
Orientation : i gap :
Elementary No 0 No
..................................................................... No
Ground State | Yes No 0 No
(b)
Elementary No 0 Yes, Large
_________________________________________________________________________________________ Yes
Ground State No — — —
Elementary No 0 No
----------------------------------------------------------------------------------------- Yes
Ground State Yes Yes m Yes, Large
Elementary No 0 No
......................................................................................... Yes
Ground State | Yes No m No
T T T

FIG. 7.

Table of known properties for the four main examples in Fig. 6: (a) graphene, (b) the n = 2, m = 0 carbon nanotube, (c) the

n =1, m = 1 carbon nanotube, and (d) the square lattice. For each graph, the cycle-orientation, plaquette fluxes, and single-particle
gap are tabulated for two key orientations: the elementary orientation and the ground state (if known). In the case of graphene, these
two orientations are the same, whereas in the three others they are distinct. Both nanotubes have simpler realizations as a ladder or
hourglass ladder, and both equivalent versions of the graph are shown. The two orientations of (b),(c) and the accompanying densities
of states are shown in Figs. 8 and 9, respectively. Each example embodies the trends shown in Fig. 6 for creation of single-particle
gaps, with the quasi-one-dimensional and 3-coordinated nanotubes exhibiting the largest single-particle gaps.

cell containing four distinct sites. On the flip side, for mod-
est magnetic unit-cell sizes, the two-dimensional square
lattice, whose coordination number is even, never exhibits
a single-particle gap.

In contrast to the single-particle gap 227, the total
energy SI(T), which is determined by the sum of the ener-
gies of all the occupied states, is a more unusual quantity
about which much less is known. The corresponding math-
ematical quantity, the skew energy [33], was introduced
only recently, and its value for lattice models is not com-
monly considered in solid-state physics. Unlike )»(1”, which
depends only on the density of states near the Fermi energy
at half-filling, 51(” depends sensitively on the energies of
bands far below the Fermi surface. A dramatic example of
this is found in the case of the » = 2, m = 0 carbon nan-
otube shown in Fig. 8, which is equivalent to the hourglass
ladder discussed in Refs. [51,55]. Since this graph is bipar-
tite, it has an elementary orientation, shown in Fig. 8(a),
which is defined such that all edges are oriented to point

away from one of the two sublattices and toward the other.
The elementary orientation always corresponds to no mag-
netic flux, and its energies are thus equivalent to those of
the unoriented case, in which all connections in the adja-
cency matrix are +1. In Refs. [51,55], it was shown that
the spectrum of this graph has the largest possible gap that
an unoriented 3-regular graph with unit hopping can have.
However, this large gap is accompanied by completely
flat bands at £1 that comprise half of the total states.
These pull the total energy up, and there exist lower-energy
symmetry sectors such as that shown in Fig. 8(c).

Another dramatic example arises in the case of the n =
1, m = 1 carbon nanotube shown in Fig. 9, whose graph
is equivalent to the ladder. In this case, the elementary
orientation, shown in Fig. 9(a), does not exhibit a single-
particle gap. However, in the case of this graph the true
ground-state symmetry sector is known from Theorem 2
[50], and it does exhibit a large A{”, as shown in Fig. 9(b).
In general, we find very little correlation between large
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FIG. 8. »n =2, m = 0 nanotube. The unoriented version of this
nanotube is one graph, which achieves the largest gap possible
for any 3-regular graph [51,55]. The elementary orientation is
shown in (a), with arrows on each edge indicating their orienta-
tion. The elementary orientation necessarily has the same DOS
(b) as the unoriented graph. Despite the presence of a peak in
the DOS at —3 and the absence of states in the interval (—1, 0],
this orientation is not the ground state. (c),(d) The correspond-
ing plots for a lower-energy orientation. This orientation has no
eigenvalues near —3 and there are states above —1, but it does not
have a flat band at —1 containing a quarter of all the states. As a
result, the total energy per particle at half-filling is approximately
0.033 lower than in the elementary orientation.

single-particle gaps of the nonmagnetic lattice, large A,
and minimizing &\°.

Furthermore, while the numerical search produced
a handful of quasi-one-dimensional and even two-
dimensional examples that have a symmetry sector with
22" > 0.8, no examples are found with &™ — &M
similarly large. Assuming that the true ground-state sector
has a small magnetic unit cell, and is therefore among those
computed, the true sector-energy gap is bounded above
by the smallest numerically observed gap, up to numerical
error. Thus, for all computed examples, the sector-energy
gap is observed to be small, £ — £ < 0.1 per par-
ticle. It is not clear at this stage whether the relatively
small sector-energy gaps are indicative of a fundamen-
tal constraint, or simply that we lack an understanding
of which graph-level properties are required to produce a
well-isolated ground-state manifold with a significant gap
to the next-lowest set of orientations.

Since the total energy of an orientation depends on an
integral over the band structure, opening up small gaps by
changing the weighting of the edges will generally shift as
many states up in energy as it does down, and is therefore
unlikely to have significant effects. The strongest effects
will occur only when band centers shift. Furthermore, the
sector-energy gap involves comparing different symmetry
sectors whose effective magnetic field patterns differ by
fluxes O(®y/4). These enormous fields can alter the band

(a) (©) .04 4

1%}
8 0.02 4

0.00 -
(c) (d) 0.04

%2}
{ 0.02

0.00 -
-3 -2 -1 0 1 2 3
Energy (|t])

FIG. 9. »n =1, m = 1 nanotube. This nanotube, or ladder, is an
example of a graph where the exact ground-state orientation is
known. The true ground-state orientation and the corresponding
DOS are shown in (a),(b). This orientation has an extremely large
single-particle gap: 2)»5” = 2. By contrast, the sector-energy gap
is bounded above by approximately 0.068 per particle. The cor-
responding plots for the elementary orientation are shown in ¢
and d and exhibit no single-particle gap.

structure radically, making it extremely difficult to predict
which band structures are possible or identify the ground-
state configuration. If the latter is known, it is generally
only from combinatorial arguments [42,50].

Additionally, obtaining a reasonable bound on the
sector-energy gap & — £\ requires determining not
only the ground state, but also searching over larger and
larger magnetic unit cells with more and more possible
orientations in order to identify the lowest-excited orienta-
tion. As a result, the sector-energy gap is computationally
intensive to study, and it is computed intensively only for
graphs that were already known to exhibit large values of
0.

In sum, despite the fact that large single-particle gaps
2)»5” do not occur in the spectrum of a generic graph,
the search space of Abelian covers of small 3-regular
graphs (which includes small-diameter nanotubes) consid-
ered here includes quite a few such graphs where at least
one orientation has a large )»Y). The most dramatic such
examples are shown in Figs. 8 and 9. In contrast, much less
is known about where to find examples with large sector-

energy gaps £ — £ In all of the examples computed

here, none were found in which EI(Q) — 81(”) could be
greater than 0.1, indicating that, thus far, the sector-energy
gap is the primary limiting factor in potential energetic
suppression of local errors.

In this section, we study only the energetic proper-
ties of the free-fermion sectors, and these determine the
expected steady-state thermal populations of excitations in
the absence of active error correction. Determining how
these errors thermalize or can be removed via error cor-
rection depends both on the free-fermion model and on
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the details of the bosonization used to map it to spins.
In the future, we expect it will be possible to exploit
the free-fermion structure to design optimized decoders
and explore the dominant error processes for specific
free-fermion-solvable spin models.

VIII. DISCUSSION

In this work, we have given the first examples of 2D
free-fermion models that are also exact quantum sub-
system codes. We obtained these examples using a gen-
eral formalism for describing translation-invariant free-
fermion models, and we have provided several tools for
recognizing such models and embedding them into spin
models with favorable error-suppression properties. Our
numerical searches for models with the most favorable
energetics indicate that the relevant energy gap that lim-
its error suppression is not the single-particle energy gap
in a given fermion sector, but rather it is the energy gap
between ground states of two sectors that is the bottleneck.
There are currently no known methods for identifying
graphs for which this sector-energy gap is large, and it
is now clear that developing such methods will be criti-
cal to finding subsystem codes with strong intrinsic error
suppression.

There are numerous open questions suggested by this
work. The examples we have exhibited in 2D would be
interesting to generalize with new codes in higher dimen-
sions or with more exotic geometries. Such codes can
potentially be realized using a similar strategy to that used
to produce the checkerboard-lattice code in Sec. III B,
whereby we “added edges” to the frustration graph of the
2D Bacon-Shor code to complete it to a line graph (and
thus a free-fermion model). This same strategy could in
principle be used to generate new free-fermion codes in
other geometries, thereby leveraging our existing wealth of
knowledge of subsystem codes to generate free-fermion-
solvable error-correcting models. Such codes may further
be considered a starting point for the treatment of non-
integrable models in the framework of error correction
(see Ref. [59] for a recent investigation into this ques-
tion).

While we have primarily explored the gauge-
Hamiltonian energetics for the purposes of error sup-
pression, there are potentially other applications of the
free-fermion solution for error correction. In principle, we
can understand these codes as a kind of “tailored” error-
correction code for noise that is biased toward high-energy
processes. Given the recent success of tailored error-
correcting codes for biased noise [60—62], it would be
interesting to explore the degree to which the free-fermion
solution informs decoding.

Finally, we expect that our tools will be useful for
the experimental implementation of such codes. Given an
experimental apparatus where noncommuting short-range

interactions can be engineered, it may be natural to expect
that we can realize induced subgraphs of a given global
frustration graph by turning certain interactions off. Our
results therefore provide a target for experimental plat-
forms to realize error-correction models that can be exactly
analyzed.

ACKNOWLEDGMENTS

A.C. acknowledges support from EPSRC under Agree-
ment EP/T001062/1, and from EU H2020-FETFLAG-03-
2018 under Grant Agreement No. 820495 (AQTION). This
work is supported in part by the Australian Research Coun-
cil (ARC) via the Centre of Excellence in Engineered
Quantum Systems (EQuS) project number CE170100009.
A.JK. acknowledges support from AFOSR Grant No.
FA95502110129 and NSF Grant No. PHY2047732.

APPENDIX A: DESCRIPTION OF NUMERICAL
SIMULATION PACKAGES

The numerical calculations in the work were carried
out using a custom suite of graph-theoretic lattice codes
defined in Python3. The backbone of this code was devel-
oped for Refs. [51,58] and provides convenient automation
for generating lattice unit cells, identifying the unit cells of
their line graphs, and numerically integrating Bloch-wave
solutions to compute densities of states. This automation,
combined with an extension to imaginary hopping coef-
ficients, enabled the numerical search described in Sec.
VIL

A second set of codes was used to define and search
for logical degrees of freedom of spin models defined on
qubits associated to the edges or vertices of these lat-
tices. The checkerboard-lattice code described in Sec. 111 B
was discovered during numerical simulation of the fiducial
bosonization of the line graph of the square lattice using
the following iterative pseudo algorithm.

First, select a target lattice from the code base and
generate a fiducial bosonization Hamiltonian Hy in com-
pact Laurent-polynomial form. This can be done either
automatically, or manually for higher symmetry. Second,
manually input any known local stabilizers S;. Third,
select a system size, apply periodic boundary conditions,
and generate the exact Pauli operators corresponding to all
translates of each type of Hamiltonian and stabilizer term.
Using the symplectic encoding of single-qubit Pauli oper-
ators into pairs of binary numbers described in Eq. (2),
the set of all operators Cy on the torus that commute with
both Hj and Sy can be computed using binary-valued linear
algebra.

Fourth we divide the elements of Cy into stabilizers S
and monogamously anticommuting qubit pairs X and Z.
To do so, we loop over the elements ¢, € Co. If ¢, com-
mutes with all elements of Cj, then we assign it to S and
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remove it from Cy. If it anticommutes with another ele-
ment c¢,,, then we assign ¢, to X and ¢,, to Z and remove
them both from Cy. Any remaining elements that anticom-
mute with ¢, are multiplied by ¢,, to produce commuting
operators and vice versa. At the end of this process Cy
is empty and a (possibly modified) version of each orig-
inal element is assigned to either S, or the set of logical
qubits (X, Z). This new set of operators has clean anticom-
mutation relations, but will generally also contain many
nonlocal operators due to the monogamization step. This
completes one iteration of the algorithm.

In general, the first iteration yields an extensive num-
ber of messy quasilocal logical degrees of freedom that do
not reflect the translation-invariant structure of the starting
spin model. However, visual inspection of the numerical
operators often reveals local operators that nearly repeat
at different locations on the torus. The art, and nondeter-
ministic aspect, of this method lies in intuiting clean local
operators from the set of distorted numerical operators.
Any local logical operators identified are then encoded in
Laurent-polynomial form and eliminated by incorporating
one half of each logical pair into an updated set of stabi-
lizers S;. The algorithm is then repeated to yield a new set
of operators C; whose elements commute with H; and §.
Note that sometimes it may be necessary to double the size
of the unit cell to add every other instance of an operator to
the set of stabilizers, and that local operators whose trans-
lates form a connected frustration graph which is a line
graph can also be added as new Hamiltonian terms.

If a model is trivial and contains no topological logical
degrees of freedom, this process will terminate when there
are no logical degrees of freedom left. If a model has exact
topological logical degrees of freedom, then a finite num-
ber of nonlocal operators will remain, and the number of
such operators will be (largely) independent of system size.
However, it is important to note that the choice of the initial
stabilizer set Sy and subsequent updates can affect the num-
ber of logicals and even whether or not logicals exist. For
example, a single fiducial bosonization of the line graph of
the square lattice admits dimerlike local operators, which
commute with the free-fermion Hamiltonian, in addition
to the looplike stabilizers used in the checkerboard-lattice
code. Initiating the algorithm with a commuting subset of
these dimers produces two intertwined free-fermion mod-
els with the same double square-lattice frustration graph,
but no logicals at all.

Finally, the numerical logicals, while often visually
stringlike, tend to still be distorted by unwanted multi-
plication with stabilizers and generally meander. Identi-
fication of clean logical degrees of freedom must again
be done by inspection. It can then be verified that these
operators are linearly independent of the Hamiltonian and
stabilizer terms and that they exist with the appropri-
ate anticommutation relations for all (or all even) system
sizes.

APPENDIX B: PARITY SYMMETRY

Consider the spin model as defined in the main text

HS = Zth’j,

jeE

(B1)

with free-fermion solution over the symmetry sector
labeled by the orientation t

H, iZ(I‘ -h@. 1)1, (B2)
T

where h(® is the weighted skew-adjacency matrix of the
free-fermion hopping graph R = (V, E) with orientation .
That is, we assign
hiod = i1V, G Vo) (B3)

with [¢1() = ¢2(j)] € E®. Under this assignment, the
ordering of the fermion operators keeps track of the
cycle symmetries. Letting ¢1(j) =/, ¢2(j) = k above, this
gives a single-particle Hamiltonian with elements hj(.,f) =
—hy;’ = 31k

As shown in Ref. [16], if R is a graph of even-many
vertices, it is possible to find a set T C E such that

Haj > idml_[yj,

jeT jev

(B4)

where d(T) is defined such that i“? is the phase given
in Eq. (14) with the Majorana factors in J taken in a
fiducial ordering. As we see, this product commutes with
every term in the Hamiltonian, and so we may equivalently
compute it by taking the product of all terms in the diag-
onal basis of Eq. (7). This defines the phase as (—i)"1/2,
since we assume | V| even. In Eq. (14), we choose our +
convention so that this phase is always in {1, i}.

Next, we denote this product on each side of the map-
ping as

{Ps = I_IjETUj (BS)

Pf = D HjeVVj'

Py is known as the fermionic parity operator in the lit-
erature. Since it contains every mode in V with |V] even,
and since every Hamiltonian term has precisely two modes
under the free-fermion mapping, Py commutes with every
term in the free-fermion Hamiltonian. Thus, P, commutes
with every term in the spin Hamiltonian. The set 7, as a
subset of edges in R, has the property that every vertex in
V' is incident to odd-many edges in 7 (hence exactly one
Majorana mode survives when taking the product of all
free-fermion Hamiltonian terms in 7). While there may in
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fact be many choices of 7 with this property, they must
differ by subsets of edges S C E such that every vertex in
V is incident to even-many edges in S. Thus, any such sub-
set S is given by a product of cycles in the graph, and we
are assumed to have restricted to a fixed mutual eigenspace
of these.

While we can see that P, is never proportional to the
identity, it may be that Py is. In this case, parity is not a
genuinely independent symmetry of the cycle symmetries.
An example of this is the product of all terms in the Kitaev
honeycomb model [2]. We have essentially fixed a partic-
ular parity symmetry sector when we restrict to a mutual
eigenspace of the cycles, and each free-fermion solution
over a cycle symmetry sector holds only over a fixed parity
subspace. If this is the case, and half-filling does not have
the required parity in the ground-state cycle sector, then it
is El(m + 2)»5”) that is the lowest energy of the spin model
in the sector labeled by 7, rather than Sl(m. We therefore
need to check that £™ + 21" is not larger than £ +

2)»?”. Otherwise, it is actually the orientation given by 1,
that minimizes the energy of the spin model. For large
graphs, this additional single-particle energy produces a
negligible change in the energy per particle of the sector.

In conclusion, this is a straightforward technical caveat
to address, but we assume for the sake of clarity—and have
verified—that the models we consider do not have this
property. That is, all states in the free-fermion solution for
each cycle-symmetry sector correspond to physical states
for the spin model.

APPENDIX C: DISTANCE OF THE
CHECKERBOARD-LATTICE CODE

The checkerboard-lattice code, described in Sec. III B,
is a subsystem code, which shares many features with the
toric code and the Bacon-Shor code. The more complicated
anticommutation relations and structure of the gauge oper-
ators makes some properties, such as the code distance,
difficult to intuit. Here we present an argument that the
checkerboard-lattice code on an L x L torus has a code
distance that scales with L.

First, consider the horizontally oriented XZ string logi-
cal shown in Fig. 3(b). The restriction of this operator to
the vertically oriented edges consists of a single X in each
unit cell. Next consider the restriction of the gauge opera-
tors, shown in Fig. 2, to only the vertically oriented edges.
The free-fermion terms give rise to dimers with X and Z on
pairs of neighboring edges, and the Y-loop stabilizers give
rise to single isolated Y’s. The key insight is that any prod-
uct of these terms must always produce an even number of
combined X and Z operators. This statement is trivial for
products of operators in different columns. Products within
the same column can produce a pair of X or Z operators
with arbitrary separation, but never an odd total number of
X’sand Z’s.

As a result of this parity constraint, the restriction of the
XZ string logical to the vertical edges cannot be a prod-
uct of the restriction of the gauge operators to these same
edges. Hence, the logical operator as a whole (and any
finite section large enough to contain a single vertical edge)
is independent of the gauge operators. Additionally, multi-
plying the logical string by gauge operators can at most
shift the vertical edges on which it has support up and
down. It therefore follows that no product of the XZ log-
ical and gauge operators can have support smaller than L
on an L x L torus with periodic boundary conditions. An
identical argument using the horizontal edges establishes
the same result for the vertically oriented XZ string logical
operator.

The Y string logical operators are simple incontractible
loops of the Y loop stabilizers, so they are displaced, but
never severed by multiplication with the gauge opera-
tors. The smallest-weight incontractible Y loop is length L.
Thus, all four logical operators of the checkerboard-lattice
code must have weight greater than or equal to L. This
shows that the checkerboard-lattice code is a topological
code whose distance scales with system size.
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