
PRX QUANTUM 3, 030318 (2022)

Characterizing Quantum Instruments: From Nondemolition Measurements to
Quantum Error Correction

Roman Stricker ,1,* Davide Vodola,2,3 Alexander Erhard,1 Lukas Postler,1 Michael Meth,1
Martin Ringbauer,1 Philipp Schindler,1 Rainer Blatt,1,4,5 Markus Müller ,6,7 and Thomas Monz1,5

1
Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria

2
Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna I-40129, Italy

3
INFN, Sezione di Bologna, Bologna I-40127, Italy

4
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,

Otto-Hittmair-Platz 1, Innsbruck A-6020, Austria
5
Alpine Quantum Technologies GmbH, Innsbruck 6020, Austria

6
Institute for Quantum Information, RWTH Aachen University, Aachen D-52056, Germany

7
Peter Grünberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jülich, Jülich D-52425, Germany

 (Received 22 October 2021; accepted 13 July 2022; published 3 August 2022)

In advanced quantum processors, quantum operations are increasingly processed along multiple in-
sequence measurements that result in classical data and affect the rest of the computation. Because of
the information gain of classical measurements, nonunitary dynamical processes can affect the system,
which common quantum channel descriptions fail to describe faithfully. Quantum measurements are cor-
rectly treated by so-called quantum instruments, capturing both classical outputs and postmeasurement
quantum states. Here we present a general recipe for characterizing quantum instruments and demonstrate
its experimental implementation and analysis. Thereby the full dynamics of a quantum instrument can
be captured, exhibiting details of the quantum dynamics that would be overlooked with standard tech-
niques. For illustration, we apply our characterization technique to a quantum instrument used for the
detection of qubit loss and leakage, which was recently implemented as a building block in a quantum
error-correction (QEC) experiment [Nature 585, 207 (2020)]. Our analysis reveals unexpected and in-
depth information about the failure modes of the implementation of the quantum instrument. We then
numerically study the implications of these experimental failure modes on QEC performance, when the
instrument is employed as a building block in QEC protocols on a logical qubit. Our results highlight the
importance of careful characterization and modeling of failure modes in quantum instruments, as com-
pared to simplistic hardware-agnostic phenomenological noise models, which fail to predict the undesired
behavior of faulty quantum instruments. The presented methods and results are directly applicable to
generic quantum instruments and will be beneficial to many complex and high-precision applications.
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The field of quantum computation progresses rapidly
and experiments demonstrate ever more complex tasks.
The majority of experiments have focused on a unitary
evolution of quantum systems together with a single final
measurement. In modern systems, the time evolution of
a computation may get repetitively interrupted by in-
sequence measurements and circuit adaptation conditional
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on the result. These measurements are required for many
classes of semiclassical algorithms, including quantum
error correction (QEC) [1–7], resource-efficient Fourier
transform [8,9], and measurement-based quantum comput-
ing [10]. Owing to its destructive nature, a quantum mea-
surement produces classical data and changes the quantum
state in a nonunitary fashion. Operations including such
in-sequence measurements therefore deviate from simple
linear unitary evolution and can no longer be described
with commonly used methods. For prime examples such
as QEC codes or quantum nondemolition (QND) mea-
surements [11–17], it is important to keep track of the
measurement outcome in each experimental cycle. More
subtly, experimental imperfections in realizations of quan-
tum operations are often caused by undesired coupling to
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other quantum systems [18–24]. As a consequence, the
operations that are performed on what is considered a
qubit usually feature a small nonunitary component due
to coupling to and ignorance of other relevant degrees of
freedom. Such small deviations often go unnoticed when
enforcing a unitary description onto the system [19].

The correct framework to describe such quantum clas-
sical operations is given by so-called quantum instruments
[25,26]. A quantum instrument includes both quantum and
classical inputs as well as outputs and thereby offers a
unified description of state preparation, operations, and
quantum measurements [27]. Quantum instruments are
commonly used to describe scenarios where one needs
to keep track of a classical input or output of a quantum
operation, e.g., in the description of quantum networks
[28], quantum causality [29], measurement uncertainty
trade-offs [30,31], and weak measurements [32–34].

So far, device-independent [35] and self-testing [36,37]
protocols have been developed to assess the performance
of positive operator-valued measures [38,39] and quan-
tum instruments. However, these methods do not give full
information on the dynamics that is required in the context
of present high-precision quantum computation [40–46]
and QEC.

Here, we present a characterization method for quan-
tum instruments that will be particularly useful to char-
acterize building blocks of quantum information proces-
sors. We identify quantum instruments where conventional
quantum process tomography fails and introduce relaxed
tomography procedures beyond the underlying compu-
tational subspace (e.g., qubit levels), suitable for com-
pletely reconstructing such quantum instruments. We con-
trast instrument reconstruction to conventional quantum
process tomography that typically applies some form of
maximum likelihood estimation (MLE) and demonstrate
those to bear the risk of unfaithful reconstruction poten-
tially incorporating nonphysical results. This becomes par-
ticularly crucial in high-performance applications. Our
detailed experimental analysis is guided by a very general
example of a QND measurement dedicated to the detec-
tion of qubit loss and leakage featuring in our recent work
[11] and conveys processes that can drastically deteriorate
the performance of QEC codes, if these loss mechanisms
go unnoticed [47–49]. These findings apply to generic
QND measurements just as well, featuring, for example,
in leakage studies beyond trapped ions [50], real-time sta-
bilizer measurements [51,52] for QEC or in metrology
applications [53].

Based on an experimental quantum instrument recon-
struction using a modified process tomography scheme,
we derive a full instrument description for a faulty QND
loss detection unit. We numerically study its effect on
a QEC cycle on a low-distance near-term logical qubit.
This instrument tomography proves to be particularly use-
ful for assessing the QEC performance, since it allows

us to evaluate the effects of different microscopic pro-
cesses in the loss detection and to estimate the parame-
ter regimes where QEC becomes beneficial. Importantly,
those detailed noise dynamics are only accessible upon full
instrument reconstruction, while remaining mostly hid-
den to conventional process tomography. Although the
parameters of the precise modeling remain implementation
specific, its results reveal general scaling properties, such
as the impact of false-positive and false-negative events
on error correcting code performances. Those properties
together with our tool and its workflow apply to other
architectures just as well.

Our results further highlight the importance of devel-
oping microscopic, experimentally informed noise models
of faulty quantum instruments over widely used generic
hardware-agnostic noise models such as dephasing or
depolarizing noise channels.

The methods we develop provide the tools and theoret-
ical framework to reconstruct and characterize quantum
instruments, such as QND measurements, which have a
prominent role in all quantum computing architectures
even beyond QEC, as, for instance, in quantum informa-
tion and quantum metrology [54].

I. INTRODUCTION TO QUANTUM
INSTRUMENTS

Formally, a quantum instrument I is a set I of trace non-
increasing, completely positive (CP) maps {Ej }j ∈I , labeled
by an index j ∈ I , with the property that their sum is trace
preserving (TP), Tr(

∑
j Ej (ρ)) = Tr(ρ) for every state ρ;

see Fig. 1. For example, when I describes a quantum mea-
surement, then j ∈ I labels the measurement outcomes and
Ej transforms the input state ρ to the eigenstate corre-
sponding to outcome j . In this case, each Ej will generally
be trace decreasing, while the sum of all Ej will be trace
preserving for any orthonormal measurement basis. Per-
forming, for example, a computational basis measurement
via an ancilla defines two CP maps E0 = |0〉〈0| and E1 =
|1〉〈1|. Both are trace decreasing (except for computational
basis states), since they measure the overlap between ρ and
the computational basis states, but their sum must be trace
preserving as they form a complete basis and the measured
probabilities must add up to 1.

The quantum instrument for a measurement I : H1 �→
H2 ⊗ C|I | thus maps the input Hilbert space H1 to an out-
put Hilbert space H2 of potentially different size, and a
classical space C|I |. In practice, one might realize such
a measurement by coupling the system to an ancilla and
subsequently measuring the ancilla with a set of orthog-
onal projectors |j 〉〈j | ∈ C|I |; see Fig. 1. This final ancilla
measurement extracts the classical measurement outcome
j , which identifies which operation Ej was applied to the
system. In the following we focus on the simplest case
with two possible measurement outcomes (|I | = 2), but
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Z

FIG. 1. Example of a quantum instrument. The operation U
realizes a generic quantum instrument on the system in initial
state ρq and writes index j of the applied operation into the
state of an ancilla initialized in state |0〉a. The ancilla is finally
projected onto the computational basis to read out the classical
index.

all results can be straightforwardly extended to the general
case.

II. TOMOGRAPHY OF QUANTUM
INSTRUMENTS

For qubit systems, complete information on their quan-
tum evolution can be gained by quantum process tomog-
raphy [55]. However, when the evolution is described by
a quantum instrument, the constituent maps are, in gen-
eral, not individually trace preserving. For example, if
leakage from the qubit level is present, the tomographic
measurements do not probe the full Hilbert space. In this
case standard reconstruction techniques such as maximum
likelihood estimation [56,57] will not be able to describe
the quantum dynamics faithfully, because they force the
reconstructed map to be trace preserving. To approach this
problem, we rely on a relaxed tomography algorithm that
does not enforce trace preservation [19,58,59].

In order to reconstruct the quantum channel E , we make
use of the Choi-Jamiolkowsky (CJ) isomorphism [60] to
relate E to an (unnormalized) map �, the Choi operator.
The correspondence between � and E is given by

E(ρ) = Tr1[(ρT ⊗ 1I)�].

The Choi operator � with respect to the basis {|k〉}d−1
k=0 can

be explicitly constructed as

� =
d−1∑

k,l

|k〉〈l| ⊗ E(|k〉〈l|),

where d is the dimension of the Hilbert space. Following
the notation of Ref. [19], the probability pi,j for observing
outcome state ρj after preparing state ρi and subjecting it
to the non-trace-preserving channel described by the Choi

operator � is given by

pij = Tr[ρ†
j Tr1[(ρT

i ⊗ 1I)�]]

= Tr[(ρT
i ⊗ ρ

†
j )�]. (1)

Defining the projector �ij ≡ ρ∗
i ⊗ ρj with ρi and ρj rep-

resenting pure states alongside the column vector |�〉〉 =
∑d−1

i,j �i,j |j 〉 ⊗ |i〉, obtained by stacking the columns of�
(similarly for

∣
∣�ij

〉〉
), we can identify the trace in Eq. (1)

with an inner product of the vectorized operators:

pij = 〈〈�ij |�〉〉. (2)

We now define the vector of observed frequencies |f 〉, and
the quadratic form S, as

|f 〉 =
∑

i,j

fij |i, j 〉 ,

S =
∑

i,j

|i, j 〉 〈〈
�ij

∣
∣.

The most direct way to reconstruct the non-trace-
preserving Choi operator � is by inverting the above
relation, a technique known as linear inversion,

�̂ = arg min�‖S|�〉〉 − |f 〉 ‖2, (3)

where ‖ · ‖2 denotes the vector 2-norm, and the estimator
�̂ is analytically given by

�̂ =
∑

i,j

pij

( ∑

l,m

|�lm〉〉〈〈�lm|
)−1∣

∣�ij
〉〉
.

Unfortunately, linear inversion can produce nonphysical
results, especially in situations where the true (Choi) state
is close to pure [56]. To avoid these problems, we can use
modified maximum likelihood estimation by constraining
the estimator to be positive semidefinite, i.e., a physical
state:

minimize ‖WS|�〉〉 − W |f 〉 ‖2

subject to � ≥ 0.
(4)

Here W = ∑
i,j

√
Nj /pj (1 − pj )|i, j 〉〈i, j | is a weight

matrix, taking into account the multinomial distribution
of observed frequencies. Note that in contrast to standard
MLE quantum process tomography [61], i.e.,

minimize ‖WS|�〉〉 − W |f 〉 ‖2

subject to � ≥ 0, Tr[�] = d,
(5)

we do not enforce the map to be trace preserving in Eq. (4).
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III. EXPERIMENTAL SETUP

The experimental demonstrations are realized on a string
of 40Ca+ ions confined in a linear Paul trap in ultrahigh
vacuum [62]; see Fig. 2(a). Each ion represents a physical
qubit encoded in the metastable electronic states S1/2(m =
−1/2) ≡ |0〉 and D5/2(m = −1/2) ≡ |1〉, denoting the
computational subspace. Upon coherent laser-ion interac-
tion, we realize a universal set of quantum gate operations
combining single-qubit rotations by an angle θ around the
x or y axis of the Bloch sphere, Rσj (θ) = exp(−iθσj /2)
with the Pauli operators σj = Xj or Yj acting on qubit
j , together with two-qubit Mølmer-Sørenson entangling
gate operations RMS

i,j (θ) = exp(−iθXiXj /2) [63]. Multi-
ple addressed laser beams allow for arbitrary two-qubit
connectivity across the entire ion string [64]. Readout is
performed through continuous excitation of a dipole tran-
sition, solely involving the lower S-state and collecting
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FIG. 2. Ion-trap quantum processor and qubit loss detection
unit as the example quantum instrument. (a) Schematic of our
ion-trap quantum processor, where each ion resides along a linear
string representing a single qubit. Quantum gate operations are
realized upon coherent laser-ion interaction using tightly focused
beams addressing single ions for local gates (bright red) and
a pair of ions for entangling gates (dark red). Readout is per-
formed via collective fluorescence detection (DET). See the text
for details. (b) A QND qubit loss detection unit as our application
example for a quantum instrument. The system qubit is encoded
in the computational subspace {|0〉q , |1〉q} and is affected by loss
to a third level |2〉q. For details, see the text. (c) A quantum era-
sure channel implemented by first inducing partial loss from |0〉q
followed by its detection using the gadget from (b). Conditional
on the qubit not being lost, the same partial loss is induced from
|1〉q and subsequently detected.

its scattered photons, which identifies the qubit’s |0〉 and
|1〉 states. This dipole laser collectively covers the entire
ion string. However, we are also able to read out only
a subset of the qubit register by shelving electronic pop-
ulations of certain qubits in the upper D-state manifold,
referred to as addressed readout. This constitutes an essen-
tial building block for realizing the in-sequence detections
featuring in QND measurements. Beyond the qubit level,
we hold equivalent control over the entire S- and D-state
Zeeman manifolds, which allows us to encode a higher-
dimensional quantum decimal digit (qudit) in each ion.
Implementing our example quantum instrument requires
us to take the additional level D5/2(m = +1/2) ≡ |2〉 into
account—forming together with the qubit states a qutrit. A
qutrit readout demands for two subsequent measurements
to separate both D-state levels, namely D5/2(m = −1/2) =
|1〉 and D5/2(m = +1/2) = |2〉. Because each measure-
ment scatters photons and heats up the ion string, we coun-
teract every in-sequence measurement with polarization
gradient cooling, keeping the quality of postmeasurement
gate operations high.

IV. EXAMPLE: QUBIT LOSS DETECTION

We experimentally study an example quantum instru-
ment devised for a QND detection of qubit loss or leakage,
which represents a key building block towards fault-
tolerant quantum computation. Qubit loss occurs in a
variety of physical incarnations such as the actual loss of
particles encoding the qubits or chemical reactions that
make qubits unutilizable. Those mechanisms occur almost
never on experimental timescales as particles can be sta-
bly trapped for days and working in ultrahigh vacuum
prevents chemical reactions. However, the implementation
of quantum computational tasks can often be improved
by addressing higher-dimensional states, either to spec-
troscopically decouple certain constituents (e.g., qubits)
from subtasks or to improve the quantum circuit. Further-
more, faulty state initialization bears the risk of leakage
to levels outside the computational subspace. This applies
architecture independent as all qubits are encoded within
multilevel systems. Thus, leakage errors are most repre-
sentative and typically occur at the same rates as com-
putational errors, making their detection and correction
an inevitable challenge. Our example quantum instrument
recently played a central role in the experimental detection
and correction of qubit loss embedded in a state-of-the-art
QEC code [11]. There, the successful detection of a qubit
loss event triggered a reconstruction routine, to restore the
logical information on the remaining qubits. In the absence
of loss, however, the reconstructed maps deviate from the
aimed identity operation, owing to the in-sequence ancilla
readout, resulting in nonunitary components. When forcing
a unitary description, those mechanisms remain undetected
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and likely diminish QEC performance. Hence, a proper
quantum instrument reconstruction becomes essential.

Before we follow up with the characterization, we
deliver essential insights into the nature of our loss detec-
tion unit. The dominant loss mechanism in a trapped-ion
quantum processor is leakage from the qubit subspace
{|0〉 , |1〉} to other electronic states, which can occur due
to radiative decay from metastable electronic qubit states
[65], in Raman transitions [66], or due to imperfections in
spectroscopic decoupling pulses [67] when additional elec-
tronic states outside the computational subspace are used
deliberately. Hence, loss can be induced in a controlled
fashion by transferring part of the population from either
computational basis state to an auxiliary level D5/2(m =
+1/2) ≡ |2〉, referred to as loss transition Rloss(φ), denot-
ing a full coherent transfer in the case of φ = π . We then
apply the QND unit to map the information about a loss
of the system qubit (q) onto an ancilla qubit (a), which is
subsequently read out. In the language of quantum instru-
ments, this means that one of two possible maps (“loss” or
“no loss”) has been applied to the system, with the classical
index of the applied map stored in the qubit states |0〉a and
|1〉a of the ancilla. Similar QND loss detection protocols
have been devised using various other physical platforms
[68–70].

Notably, for both ancilla outcomes, the system qubit is
subject to a map that is CP, but in general not TP. This
nonunitarity of the individual maps leads to several coun-
terintuitive effects. For example, in the present case, the
evolution of the system qubit differs from the identity map,
even in the case where no loss is detected, if loss occurs
asymmetrically, i.e., from only one of the computational
basis states. More precisely, for loss restricted to occur
from |0〉, the system qubit follows (up to normalization)
a nonunitary evolution given by ρq �→ E0ρqE†

0 with

E0 = |1〉q〈1| + cos(φ/2) |0〉q〈0| , (6)

considering the coherent loss operation Rloss(φ). This is a
consequence of the information gain in the no-loss case,
given by the ancilla measurement [11]. In either case, the
reconstruction becomes challenging, since standard recon-
struction techniques for quantum process tomography
enforce the reconstructed processes to be completely pos-
itive and trace preserving, thereby suppressing the devia-
tions from this condition characteristic for quantum instru-
ments. This becomes evident in Fig. 3, where we compare
the accuracy of quantum process reconstructions of the
“no-loss” dynamics obtained via the standard MLE tech-
nique, referred to as the trace-constrained approach from
Eq. (5) in contrast to the trace-unconstrained approach
from Eq. (4). As a figure of merit we use the total
variation distance between the measured frequencies and
the measurement outcomes that are predicted from the
reconstructed Choi operators. This highlights how the
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FIG. 3. Comparison of trace-constrained and trace-
unconstrained tomography for the nonunitary map E0 from
Fig. 2(b). We compute the total variation distance between
directly measured frequencies and those predicted from the
reconstructed Choi operators. Standard MLE from Eq. (5),
referred to as the trace-constrained approach, increasingly fails
to capture the underlying dynamics for higher loss probabilities,
whereas the trace-unconstrained approach from Eq. (4) matches
the predicted outcomes. Error bars correspond to one standard
deviation of statistical uncertainty due to quantum projection
noise. Further notes characterizing erroneous effects owing to
a faulty quantum instrument reconstruction can be found in
Fig. 14 of Appendix A 1.

trace-constrained approach can fail to capture the dynam-
ics; an error that might go unnoticed for maps that are close
to trace preserving. Further notes on how common tomog-
raphy fails to capture a quantum instrument’s dynamics is
subject to Fig. 14 of Appendix A 1.

V. EXPERIMENTAL RESULTS

We now discuss features associated in experiments with
QND measurements that can only be captured using a full
description as a quantum instrument. We start by char-
acterizing our example instrument acting on a two-level
system (qubit), followed by a complete characterization in
a higher-dimensional Hilbert space that captures the entire
dynamics of the QND measurement.

A. Implementation of the quantum instrument

We implement the circuit in Fig. 2(b) on a two-
ion string studying several input states {|0〉q, |−〉X ,q =
(1/

√
2)(|0〉q − |1〉q), |−〉Y,q = (1/

√
2)(|0〉q − i |1〉q), |1〉q}

on the system qubit for a range of loss probabilities. We
apply quantum state tomography for the runs that signal
no-loss events, effectively applying the “no-loss” map E0
as given by Eq. (6). We focus on the no-loss outcome E0
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FIG. 4. Bloch vectors after undergoing QND detection in the no-loss case for different loss channels. (a) State vector evolution for
asymmetric loss from |0〉q is captured by the color gradient, ranging from 0% loss (bright points) to 100% (dark points) for various input
states (i) |0〉q, (ii) |1〉q, (iii) |−〉X ,q, and (iv) |−〉Y,q. Notably, the Bloch vectors remain close to the surface of the sphere, independent
of the loss probability; see the Appendix A 1. The initial superposition states |−〉X ,q and |−〉Y,q are found transitioning to the basis
state not affected by the loss. (b) The erasure channel is realized by consecutively inducing the same partial loss from |0〉q followed by
|1〉q and postselecting to both no-loss cases, i.e., both ancilla’s |0〉a outcome. Our results support the theory derivation of a map ∝ ρ

leaving the initial states up to noise unaltered; see the Appendix A 1.

given that in a realistic scenario the system qubit would
remain intact, as opposed to the loss case. We find that the
superposition input states are distorted towards the basis
state that is not affected by the loss with increasing loss
probability; see Fig. 4(a). This is a consequence to the
asymmetry of the loss, occurring only from one basis state,
as detailed in Eq. (A9) in the Appendix A 1. Importantly,
however, the states display no notable reduction in purity,
regardless of the loss probability. More details are given in
the Appendix A 1.

The archetypal description of a qubit loss channel fea-
tures symmetric loss, often referred to as a quantum
erasure channel [71], where loss occurs with a given prob-
ability, irrespective of the qubit state, and the position of
the lost qubit is known. Experimentally, we realize this
quantum erasure channel sequentially in two steps, by first
inducing partial loss from |0〉q followed by its detection,
and, conditional on detecting no loss in this first step,
inducing the same amount of partial loss, but now from
|1〉q in this second step. Experiments are conducted on a
three-ion string using a single system qubit (q) and two
ancilla qubits a1 and a2 as depicted in Fig. 2(c). By observ-
ing the evolution of the Bloch vectors in Fig. 4(b) we find
that the initial state is preserved up to experimental noise,
as derived in Eq. (A12) in the Appendix A 1. The purity is
again found independent of the loss; see the Appendix A 1.

These findings are further corroborated by quantum pro-
cess tomography characterizing the map describing the
system qubit dynamics by using the unconstrained recon-
struction approach of Eq. (4). In the case of the asymmetric
loss previously discussed, the single-qubit Choi operators
for the map E0 are close to the identity only given little loss
on the order of a few percent and clearly deviate for higher
loss, revealing their nonunitary behavior; see the left plot
in Fig. 5(a) for a low-loss probability and the right plot
for a high-loss probability. We note that a standard MLE
approach would force unitary maps and thereby prevent
the correct reconstruction not displaying this nonunitary
behavior. In contrast, for the quantum erasure channel, for
both the 2% and 61% loss cases, maps are found close to
the identity following the theoretical predictions, depicted
in Fig. 5(b).

For higher loss rates, however, we observe a deviation of
the reconstructed Choi operator from the predicted chan-
nel, quantified by the fidelity between the reconstructed
and ideal Choi operator shown in Fig. 5(c). For high loss
rates, only few experimental cycles remain in the no-loss
case. As a result, error terms, such as state-preparation-
and-measurement (SPAM) errors, as well as errors in the
implementation of the loss process contribute with a higher
relative weight. We can model these additional error terms
as depolarizing noise at the level of the Choi operator as a
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FIG. 5. Tomographic reconstruction of the maps characteriz-
ing our quantum instrument. (a) Single-qubit Choi operators
in the elementary basis {|00〉q , . . . , |11〉q} describing the QND
detection under loss from |0〉q. Process fidelities compared to
the ideal map for 2% and 61% losses read 0.97(1) and 0.98(1),
respectively. Black boxes denote the ideal operator in the higher
loss case. (b) On the erasure channel we receive the expected
identity map for loss from both qubit states up to about 60%
before errors start to dominate. (c) Corresponding process fideli-
ties compared with ideal maps together with the decay model
(dashed line) from Eq. (7).

function of the loss rate ploss:

�M (ploss) ∝ (1 − ploss) · (1 − pe) · (1 − pspam) ·�
+ ploss · pe · (1 − pspam) · 1/4
+ pspam · 1/4. (7)

Here � denotes the ideal Choi operator of the no-loss
channel, 1 is the identity matrix, representing a fully depo-
larizing channel, pe is a generic error rate of the erasure
channel, and pspam is the error rate due to SPAM errors.
The first term of Eq. (7) describes the ideal channel where
no loss happened and the QND detection worked, while
the second term is a case where a loss happened, but

FIG. 6. Multiqubit entangled state undergoing QND detec-
tion in the no-loss case. As an input, we choose the four-qubit
GHZ state (1/

√
2)(|0000〉q + |1111〉q). Loss is induced from

|0〉q,1 on system qubit 1. Results for purity (©) and popula-
tion ratio between the GHZ basis states |0000〉 and |1111〉 (♦)
in analogy to the Bloch-vector picture (Fig. 4) are shown. The
purity is found constant, while the population ratio increases
towards higher loss probabilities, finally causing a distortion
to state |1111〉q not affected by the loss. Errors correspond to
one standard deviation of statistical uncertainty due to quantum
projection noise.

the QND unit failed to detect it as such. The final term
describes the contribution from SPAM errors. From a fit to
the data, we find that pe = 0.09 and pspam = 0.03 captures
the observed drop in fidelity well. From Fig. 5(c) we see
that these effects become predominant for high loss rates,
while for up to about 60%, a faithful reconstruction of the
experimental Choi operator is possible.

The results presented so far cover a single system qubit
and reveal potential obstacles of our quantum instrument
tomography, which are generally transferable to other
experiments utilizing QND measurements. We now go
one step further by analyzing these effects on a multiqubit
entangled state. Experiments are conducted using four sys-
tem qubits, initialized in the Greenberger-Horne-Zeilinger
(GHZ) state (1/

√
2)(|0000〉q + |1111〉q), accompanied by

one ancilla. After state preparation, partial asymmetric
loss from |0〉q,1 on system qubit 1 is induced followed
by its detection using the QND-detection unit. The “no-
loss” evolution E0 is analyzed by four-qubit quantum state
tomography. In Fig. 6 the states again show no significant
reduction in purity (circles) over the range of measured
loss probabilities and by that obscuring the nonunitary
effect from our instrument. However, an asymmetric effect
is displayed by computing the population ratio of the GHZ
basis states |0000〉q and |1111〉q in Fig. 6 (diamonds)
showing a distortion towards the basis state not affected
by loss in analogy to the Bloch vectors in the single-qubit
case. The underlying theory curve follows 1 − ploss, as can
be seen from Eq. (6). The fidelity with the initial GHZ
state further remains above 50% within one standard devi-
ation of statistical uncertainty, thus certifying multipartite
entanglement independent of the loss probability.
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B. Qutrit dynamics and identification of failure modes

The full dynamics of our coherent loss process can be
reconstructed by explicitly taking the loss level |2〉q into
account. The state of the system ion needs then to be rep-
resented by a qutrit with basis states {|0〉q , |1〉q , |2〉q}. We
perform quantum process tomography on the combined
system of data qutrit and ancilla qubit. This allows us to
study both loss cases by distinguishing the maps depen-
dent upon the ancilla state, and provides more fine-grained

information on the microscopic error processes. The recon-
structed Choi operators for both ancilla outcomes and
various loss probabilities are given in Fig. 7(a). For the
sake of clarity, the operators are color coded by peaks
occurring in the absence of loss (blue), peaks denoting the
partial loss rotation (orange), and erroneous peaks (red).
The latter are restricted to the diagonal for simplicity. Note
that these experimentally derived maps on the qutrit level
are now faithful descriptions of the instrument, obtained

no loss

loss

no loss

no loss
|0  loss
|1  loss
|0 + |1  loss

postselect

0.00

0.05

0.10

0.15

0.20
false positives

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
0.00

0.01

0.02

0.03

0.04
false negatives

loss probability

pr
ob

ab
ili

ty

0002112022 00
02
11

20
22
0.0
0.2
0.4

0.6

0.8

1.0

0002112022 00
02
11

20
22
0.0
0.2
0.4

0.6

0.8

1.0

0002112022 00
02
11

20
22
0.0
0.2
0.4

0.6

0.8

1.0

0002112022 00
02
11

20
22
0.0
0.2
0.4

0.6

0.8

1.0

0002112022 00
02
11

20
22
0.0
0.2
0.4

0.6

0.8

1.0

0  loss 50% 0  loss 85%

0002112022 00
02
11

20
22
0.0
0.2
0.4

0.6

0.8

1.0

postselect

(b)

(a)

FIG. 7. Full-system dynamics from combined qutrit-ancilla quantum instrument tomography. (a) Choi operator of the system qutrit
evolution in the elementary basis {|00〉q , . . . , |22〉q} after postselecting on the ancilla, revealing either loss case (rows) examined for
different loss probabilities from |0〉q (columns). The tricolor Choi operators show peaks in the absence of loss (blue), peaks occurring
due to partial loss (orange), and erroneous peaks (red). The latter are only color coded on the diagonal for visualization purposes.
Process fidelities with the ideal map from top left to bottom right read {0.97(1), 0.96(1), 0.95(1), 0.83(1), 0.86(1), 0.84(1)}. (b) False-
positive and false-negative rates extracted from raw data for loss states {|0〉q , |1〉q , 1/

√
2(|0〉q + |1〉q)} versus the loss probability.
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from the qubit-qutrit process that is indeed unitary; see
Eq. (A5) in the Appendix A 1.

One key piece of information gained from the full
tomography is the dominant failure modes of the exper-
imental realization of the QND-detection unit. In the
no-loss case, false negatives are retrieved from diagonal
elements {|02〉q , |12〉q , |22〉q} corresponding to undetected
rotations to level |2〉q outside the computational subspace.
Likewise false positives in the loss case are retrieved from
the elements {|00〉q , |01〉q , |10〉q , |11〉q , |20〉q , |21〉q} cor-
responding to qubit rotations mistakenly assigned as loss.
Note that, for standard tomography restricted to qubit lev-
els, such fine-grained analysis would be precluded for two
main reasons. First, the true population in the loss state of
the system qutrit cannot be estimated independently from
the ancilla outcome in the qubit description. Thus, one can-
not reliably assign false-positive and false-negative events
by postselecting on the ancilla since some erroneous pop-
ulation adds up to the main peaks {|00〉q , |11〉q}, blurring
the information about the error origin. Second, when trac-
ing over the ancilla, loss state |2〉q would be incoherently
added to state |1〉q, creating an nonphysical bias under
which tomography is likely to break; see the Appendix
A 1. For a more quantitative analysis, the correspond-
ing false-positive and false-negative rates are depicted
in Fig. 7(b). To avoid errors from the quantum instru-
ment reconstruction, these rates are extracted from the raw
data for three different loss states: {|0〉q , |1〉q , 1/

√
2(|0〉q +

|1〉q)}. Notably, there is a significantly higher false-positive
rate owing to their sensitivity on the entangling operation,
implementing a correlated two-qubit rotation. This oper-
ation shows a higher error rate compared to single-qubit
operations [44] and only plays a role in the no-loss case:
the reason is that, as under loss, the action of the entangling
operation, when it only acts on the ancilla qubit alone, is
on purpose trivial and no longer induces a correlated qubit-
qutrit flip process. Therefore, the loss map is left with the
local bit-flip operations, explaining why false negatives
are dominated by single-qubit errors, resulting in smaller
rates. For loss detection in a QEC setting, we expect this
asymmetry to be quite beneficial, as a false-positive event
would merely trigger an unnecessary loss correction, while
a false-negative event leads to an undetected loss, which
can be catastrophic, i.e., leading directly to uncorrectable
logical errors, as will be discussed in the next section.

C. Experimentally informed noise model

We now build noise models to characterize the QND-
detection unit, which can then be used to study impli-
cations on QEC. From the above phenomenological dis-
cussion, we assume that the dominant contributions will
come from false-positive and false-negative events, where
the latter in particular can have a severe impact. However,
extracting the respective rates from tomography data as in

Fig. 7(b) in the presence of SPAM errors can be unreliable
if these contributions are of the same magnitude. A rough
estimate of the SPAM errors from tomography of the iden-
tity yields a fidelity of 0.96(2), which indicates that this is
indeed the parameter regime we are dealing with here.

Hence, to describe imperfections in the QND loss detec-
tion unit, we instead focus on a microscopic noise model
Enoise defined as (see the Appendix A 2)

ρ �→ Enoise(ρ) = UnoiseρU†
noise, (8)

where the unitary Unoise = RMS(α)RX (β) describes the
dominating error source as correlated bit flips with a rate
of pcorr = sin2(α/2), resulting from systematic miscalibra-
tions in the two-ion RMS gate, and single-qubit flips with
a rate of psingle = sin2(β/2) from errors in the collective
local rotations. Fitting channel Enoise to the experimental
data returns values of pcorr. = 0.045 and psingle = 2.47 ×
10−4, respectively; see the Appendix A 2. The fidelity of
the experimental data with respect to this model in the no-
loss case is 0.94, compared to 0.91 for the noiseless theory
prediction.

In order to validate this model against generic hardware-
agnostic noise models typically considered in the quantum
information literature, we further add depolarizing and
dephasing noise channels [72]. As discussed in detail in the
Appendix A 2, by fitting a model that includes all four error
channels to the experimental data, we again find the corre-
lated bit-flip error to be dominant. The contributions from
depolarizing and dephasing noise are consistently of the
order of 0.01 and adding these terms does not significantly
improve the fit to the data. From this analysis, we conclude
that the microscopic model is the most suitable description
of our experimental noise and the resulting imperfections
in the QND loss detection, and we thus use this model in
the following analysis of the impact of a faulty QND loss
detection unit on QEC.

VI. IMPLICATION ON QUANTUM ERROR
CORRECTION

In the context of QEC and the pursuit for robust and
eventually fault-tolerant quantum computers, qubit leak-
age and loss errors are known to be particularly harmful
to the performance of QEC codes, if they go unnoticed
[47–49]. Dedicated protocols to fight qubit loss have been
devised, including the four-qubit quantum erasure code
[71], which has been implemented in the form of post-
selective state analysis protocols using photons [73,74].
Moreover, protocols to cope with qubit loss in elementary
quantum codes such as the five-qubit code [75] as well as
topological QEC codes including the surface code [76] and
color codes [67,77,78] have been developed.

Here, our aims are as follows. (i) To estimate the param-
eter regimes in which active qubit loss error correction and
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detection is expected to reach break even, i.e., to become
beneficial for low-distance QEC codes as currently pur-
sued in various efforts [2,11,67,69,79–82]. (ii) Whereas
most theory studies exclusively focus on the simple (and
ideal) quantum erasure channel to describe loss, we are
interested in illustrating the effect of various qualitatively
different imperfections in the loss detection process on
QEC performance, highlighting the importance of micro-
scopically informed noise models of the components used
in QEC of qubit loss. (iii) Finally, to predict the perfor-
mance of QEC protocols by numerical simulations, it is
desirable to develop effective few-parameter noise models,
informed by experimental data, which can be simulated
efficiently, e.g., using stabilizer simulations, to predict the
performance of large-scale QEC codes built from noisy
components. Here, we are particularly interested to which
extent our faulty QND loss detection can be reliably substi-
tuted by efficiently simulatable noise models. Whereas the
phenomenological studies from Fig. 7(b) pointed to false-
positive and false-negative events as the dominant noise
contributions, accurately extracting the respective error
rates from tomography data is prohibited by SPAM errors.
Instead, we here utilize the microscopic noise model cov-
ered by Sec. V C, incorporating the dominant error sources
of correlated and single-qubit errors. This model best fits
our noisy QND loss detection unit, especially in contrast
to the widely used generic hardware-agnostic models of
dephasing or depolarizing noise that lead to no notable
contribution.

A. Qubit loss correction with color codes

To be concrete, we focus on the smallest two-
dimensional color code [77], a seven-qubit stabilizer code
equivalent to the Steane code [77,83], which is at the
focus of current experimental efforts to achieve the break-
even point of beneficial and fault-tolerant QEC with low-
distance QEC codes [84–87]. The code is obtained by
projecting the Hilbert space of seven qubits (Fig. 8) into
the +1 eigenspace of six commuting stabilizer genera-
tors Sx

i and Sz
i (i = 1, 2, 3) [see Fig. 8(a)] that define a

two-dimensional code space hosting one logical qubit.
Logical X and Z operators are defined as XL = ∏7

i=1 Xi

and ZL = ∏7
i=1 Zi and the logical basis states are |0L〉 ∝

∏3
i=1(1 + Sx

i ) |0〉⊗7 and |1L〉 = XL |0L〉 (see the Appendix
A 3). The code is a distance d = 3 QEC code (d = 2n + 1
with n the number of correctable computational errors), so
that one arbitrary computational error (bit and/or phase flip
error) on any of the physical qubits is correctable. Note
that, besides computational errors, this code also allows
one to correct the loss of any two of the seven physical
qubits, or even the loss of some, though not all subsets of
three or even four qubits (see the Appendix A 3 for more
details). We note that, for each of the seven qubits form-
ing the code, we incorporate state |2〉q, i.e., adopt a qutrit
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FIG. 8. Simulations on the faulty QND loss detection embed-
ded in the seven-qubit color code. (a) A single logical qubit
encoded on a triangular planar color code lattice formed of three
interconnected plaquettes (lower part). The code space is formed
by six stabilizer operators S(i)x and S(i)z , each acting on a plaque-
tte of four physical qubits [67]. Loss is subsequently detected
on all code qubits using a faulty QND circuit (top part). We
model this taking into account both correlated and single-qubit
over-rotations, representing our leading error mechanisms by
treating every qubit as a qutrit. (b) Single QEC cycle of qubit loss
detection and correction, including initial controlled induction of
loss, followed by faulty QND loss detection operations on the
qubit subspace of all physical qutrits and stabilizer measurements
triggering respective conditional Pauli corrections.

description, and use this additional level to induce loss of
a controllable amount via the coherent rotation in the sub-
space {|0〉q , |2〉q} of the quantum instrument depicted in
Fig. 2(b).

We then model one round of qubit loss error detection
and correction, depicted in Fig. 8, as follows. Starting from
an ideal (noise-free) logical state ρL of the seven-qubit
code, qubit loss is induced with an independent and equal
probability ploss on each of the physical qubits of the reg-
ister. Subsequently, a noisy QND loss detection unit is
sequentially applied to each of the seven qubits, in order
to detect the possible occurrence of loss. This faulty unit
[Fig. 8(a)] is described by the microscopic noise model
Enoise(ρ) in Eq. (8), where the main error sources are given
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by correlated and single-qubit over-rotations with error
rate pcorr and psingle, respectively.

Each data qubit, for which the QND measurement indi-
cates the occurrence of a loss, is replaced by a fresh qubit
in the computational basis state |0〉q. This is followed by
one round of possibly faulty measurements of all six sta-
bilizers of the code. For simplicity, since our focus lies on
the QND loss detection, here we model imperfections in
each stabilizer measurement by a phenomenological noise
model, in which the stabilizer measurement outcome is
assumed to be faulty with probability q [88,89]. Since the
four-qubit stabilizer operators are typically measured with
a circuit involving (at least) four two-qubit gates, we work
with 4 times the two-qubit error rate as the error rate of
the stabilizer measurement, which results in q = pcorr, in
what follows. Based on the obtained syndrome (±1 stabi-
lizer eigenvalues) from the measurement of the stabilizers,
Pauli corrections are applied if needed (such a Pauli frame
update can be done on the software level and is thus mod-
eled as error-free). Finally, to determine the logical error
rate, it is checked whether the original logical state ρL
has been recovered or not, by evaluating the expectation
value of the logical operator corresponding to the initially
prepared encoded state.

B. Numerical results

Figure 9 shows the predicted logical error rate of the
loss QEC cycle applied to all physical qubits as a function
of the physical qubit loss rate ploss for various error rates
of faulty stabilizer measurements. At the current two-qubit
gate infidelities and associated error rates pcorr = 0.045 and
psingle = 2.47 × 10−4, the regime of beneficial loss correc-
tion, when the logical error rate falls below the physical
loss rate ploss, is not reachable. However, a moderate reduc-
tion of the two-qubit gate error rate by about 50%, from
pcorr = 0.045 to about pcorr = 0.023, suffices to enter the
regime where applying a cycle of faulty loss QEC outper-
forms storing information in a single physical qubit that
can suffer loss.

Furthermore, Figs. 10(a) and 10(b) show the calcula-
tions of the logical error rate for the no-loss case ploss = 0,
which highlights the effects resulting from imperfections
in the QND loss detection unit itself in a full QEC cycle.
Here, the imperfections in the QND unit are implemented
either with the coherent noise channel or an effective inco-
herent few-parameter Clifford noise model (details on the
error models are given in the Appendix A 2). In Fig. 10(a)
the logical error rate is shown as a function of the single-
qubit over-rotation rate psingle for pcorr = 0 and it goes
to zero as p2

single (black lines), as expected, representing
the rate of weight-two bit-flip errors, which are uncor-
rectable by the distance-3 color code. In Fig. 10(b) instead
the logical error rate is shown as a function of the cor-
related over-rotation rate pcorr for psingle = 0. In this case
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FIG. 9. Logical error rates simulated for a loss correction cycle
of the seven-qubit color code with faulty stabilizer measure-
ments. The logical error rates are shown as a function of the
loss probability ploss induced by the QND-detection scheme of
Fig. 8 for different error rates q in the stabilizer readout. The
black line (with equation 1 − ploss) represents the error rate when
no encoding is performed. The logical error rates for the ideal
case with no over-rotation errors in the QND loss detection unit
are shown with green up-pointing triangles. Blue circles show
the logical error rates when the QND-detection unit is simulated
with over-rotation parameters (pcorr = 0.045, resulting in a sta-
bilizer measurement error rate q = 0.045 and psingle = 2.47 ×
10−4) coming from the experimental data. Data simulated with
q = pcorr = 0.023 corresponding to an improvement in the RMS-
gate fidelity is shown with orange down-pointing triangles. In the
region with 0.03 � ploss � 0.33, error correction is beneficial in
protecting the logical states with respect to storing information
in an unencoded single physical qubit.

the error rate goes to zero as p3
corr (black line), represent-

ing the rate of three bit-flip errors. The bit-flip errors from
the correlated over-rotations result in false-positive events,
where a nonlost qubit is substituted by a fresh qubit before
the stabilizer measurement. Since two (detected) losses on
any two qubits are correctable, some (detected) three-loss
events are not; this results in the observed p3

corr scaling
of the logical error rate. This highlights and explains the
different sensitivities of the logical error rate to false-
positive and false-negative events where the presence of
false-negative events, i.e., overlooked losses, occurs for
psingle �= 0 and constitutes the more severe source of errors.

Finally, Figs. 10(c) and 10(d) show comparisons of
the logical error rate for the two scenarios, where faults
in the QND loss detection unit are modeled as coherent
versus incoherent errors, respectively. When pcorr �= 0 or
psingle �= 0, the logical error rate goes to a finite value when
the loss probability ploss → 0 as error processes involv-
ing data qubit bit flips arise and lead to a finite failure
rate of the error-correction cycle. Moreover, we observe
that the incoherent approximation of the coherent error
channel slightly underestimates the logical error rate, by
a maximum relative factor of 0.51. This behavior is not
unexpected, and has also been observed in other contexts,
e.g., for an incoherent approximation of coherent crosstalk
errors [90]. Overall, the results therefore indicate the reli-
ability of the incoherent approximation of the faulty QND
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FIG. 10. Comparison between the coherent and incoherent implementations of the faulty QND loss detection unit. (a),(b). Logical
error rates for ploss = 0 as a function of (a) the single-qubit over-rotation rate psingle for pcorr = 0 and (b) the correlated over-rotation
rate pcorr for psingle = 0 after a round of error correction of the seven-qubit color code following the scheme in Fig. 8 where the
imperfections in the QND loss detection unit are implemented either with a coherent or an incoherent noise channel. (c) Logical error
rate as a function of the loss probability when the faulty QND loss detection unit is modeled as a coherent channel. Panel (d) is the
same as (c), but when errors in the QND loss detection are modeled as an incoherent Clifford channel.

loss detection unit in the QEC cycle. This is important as
the latter incoherent model is efficiently simulatable and
allows the study of faulty loss correction using stabilizer
simulations of larger QEC codes.

VII. DISCUSSION AND OUTLOOK

Intermediate measurements with classical feedforward
and the use of higher-dimensional quantum systems are
rapidly becoming staple techniques in the toolbox of quan-
tum information science. Beyond the obvious example of
quantum error correction, the use of classical feedback to
stabilize quantum systems [14,91] is an inevitable require-
ment for many high-precision applications. In the field of
quantum computing the whole idea of measurement-based
quantum computing is deeply rooted in measurements and
feedforward, while quantum metrology often relies on
weak or partial measurements, which must be described
by quantum instruments. Similarly, in the field of quan-
tum simulation, in-sequence measurements might be a
way to use valuable quantum resources more efficiently
in a hybrid quantum classical optimization setting [92,93].
What is common to all these tasks is that the measure-
ment is nondestructive and imparts a backaction onto the
postmeasurement state, which will depend on the outcome.

Faithfully characterizing the dynamics of such advanced
operations will be key for the next generation of quan-
tum devices, yet conventional methods fall short of this
goal. The tools we develop here on the example of a QND
measurement for qubit loss detection directly generalize
to any quantum instrument, including the examples above.
We find that the instrument picture captures essential fea-
tures of the quantum dynamics, which in our case enable a
detailed study of the effect of these instruments on quantum
error correction. These results will inform progress on the
correction of qubit losses and leakage errors, which rep-
resent a dominant obstacle on the path to quantum error
correction above break even [51,94]. It will thus be inter-
esting to apply these methods not only to fields where the
measurement backaction has such a subtle influence, but
also to fields where it is a key part of the operation, such as
quantum metrology and sensing.

The presented techniques rely on tomographic recon-
struction to guide the development of effective mod-
els for the studied quantum instruments. An interesting
problem for future research would thus be to generalize
and validate SPAM-free characterization techniques such
as randomized benchmarking and gate set tomography
[17] with respect to quantum instruments with low error
rates.
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at [95].
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APPENDIX: CHARACTERIZING QUANTUM
INSTRUMENTS: FROM NONDEMOLITION
MEASUREMENTS TO QUANTUM ERROR

CORRECTION

The additional information presented here aims at pro-
viding further experimental and theoretical results support-
ing our findings in more detail. We start off by thoroughly
deriving all maps underlying our QND loss detection unit
in both cases of asymmetric loss and the quantum erasure
channel. This will be complemented by further experi-
mental data, all presented in Appendix A 1. We continue
in Appendix A 2 by developing a noise model giving a
well-founded description to our experimental limitations.
Thereafter, those noise models form the basic building
blocks to numerical simulations studying the implications
of the loss detection in respect of quantum error correct-
ing codes. We conclude with Appendix A 3 by giving
more detailed derivations covering the loss treatment in the
seven-qubit color code.

1. Quantum instrument: QND loss detection

This section gives a more thorough introduction to QND
detection, serving as our quantum instrument working
example, by deriving all maps relevant to our studies.
Then, additional experiments are presented addressing the
demonstration of QND-detection’s principal working abil-
ity complemented by results on the higher-dimensional
process tomography fully characterizing its underlying
maps.

As loss on our setup naturally occurs at rates similar
to those of single-qubit errors, we introduce it in a con-
trolled fashion. For instance, from the system qutrit’s (q)
state |0〉q, loss can be induced by coherently transferring
part of the population outside the computational subspace
into D5/2(m = +1/2) = |2〉q via the rotation

Rloss(φ) = |1〉 〈1|q + cos(φ/2)(|0〉 〈0|q + |2〉 〈2|q)
+ sin(φ/2)(|0〉 〈2|q − |2〉 〈0|q). (A1)

The loss rate φ relates to the loss probability via ploss =
sin2(φ/2). Note that loss in general can be induced through
an arbitrary state α |0〉q + β |1〉q with |α|2 + |β|2 = 1
using a single coherent rotation on the system qutrit before
and its inverse after the loss rotation Rloss(φ). To detect
loss, two full entangling RMS(φ/2) · RMS(φ/2) = RMS(φ)

couple to the ancilla and system qutrit and realize a col-
lective bit flip only if both qubits are present in their
computational subspace:

RMS(φ) = exp
(

− i
φ

2
XaXq

)

= (cos(φ/2)(1a ⊗ 1q − |2〉 〈2|q)
− i sin(φ/2)XaXq)+ |2〉 〈2|q (A2)

with

1a =
(

1 0
0 1

)

, 1q =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , Xa =
(

0 1
1 0

)

,

Xq =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ . (A3)

On the other hand, if the system qutrit occupies a state out-
side the computational subspace, for instance in |2〉q, the
RMS gate is subject to an identity operation, which can be
seen from the argument of its exponential XiXi = I acting
merely on the ancilla qubit. This follows a collective bit
flip

RX
a (π) = −i(|0〉 〈1|a + |1〉 〈0|a),

RX
q (π) = |2〉 〈2|q − i(|0〉 〈1|q + |1〉 〈0|q).

(A4)
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Consequently, in the absence of loss the effect of the RMS

gate is undone, whereas under loss, the ancilla qubit gets
excited by the final bit flip, signaling the event of loss.
The overall unitary combining loss operation and QND
detection is given by

U = RX
a (π)R

X
q (π)R

MS(π)Rloss(φ)

= 1a ⊗ U(0) + Xa ⊗ U(1) (A5)

with

U(0)
q = |1〉 〈1|q + cos(φ/2) |0〉 〈0|q + sin(φ/2) |0〉 〈2|q ,

U(1)
q = sin(φ/2) |2〉 〈0|q − cos(φ/2) |2〉 〈2|q . (A6)

Taking the additional loss state |2〉q on the system qubit
into account and, by that, extending the view from qubit to
qutrit, one ends up with a unitary process fully describ-
ing this quantum instrument. We emphasize that on the
qutrit level the entire dynamics of our detection unit can
be captured, which is well exploited by the experiments
from Fig. 7 in the main text

However, to pick up the discussion on the nonuni-
tary effects potentially leading to unwanted and erroneous
mechanisms, we restrict our view again to the qubit level
and further assume that no population is initially present in
|2〉q. Hence, the operators U(0)

q and U(1)
q reduce to

A(0)q = |1〉 〈1|q + cos(φ/2) |0〉 〈0|q ,

A(1)q = sin(φ/2) |2〉 〈0|q ,
(A7)

leading to single-qubit processes describing the QND
detection restricted to the system qubit. We can describe
both maps {A(0)q , A(1)q } by two trace nonincreasing CP maps
E0 and E1,

E0 : ρ �→ A(0)q ρA(0)†q ,

E1 : ρ �→ A(1)q ρqA(1)†q ,
(A8)

acting on the system qubits as

ρ �→ |0〉 〈0|a ⊗ E0(ρ)+ |1〉 〈1|a ⊗ E1(ρ), (A9)

where the two maps are together unitary again. It is note-
worthy that the no-loss map E0 initially starting from the
superposition state 1/

√
2(|0〉q + |1〉q) would be transition-

ing to |1〉q as the loss probability from |0〉q increases,
which is subject to Fig. 4(a) in the main text. Only for very
little loss, φ ∼ 0, the no-loss map converges to an identity
operation.

Next to having loss asymmetrically with respect to
either computational basis state {|0〉q , |1〉q}, we follow a
different, often utilized, scenario called the quantum era-
sure channel [71]. Its circuit is depicted in Fig. 2(c) of the

main text. First, partial loss is induced from |0〉q followed
by its detection. The protocol only continues in the absence
of loss by inducing the same partial loss from the other
qubit state |1〉q together with its detection. The second part
of the map can be expressed via {Ã(0)q , Ã(1)q }, where we
swap the roles of |0〉q and |1〉q. Thus, the quantum erasure
channel can be described using the map

ρ �→ (1 − pL)(1 − p̃L)̃A(0)q A(0)q ρA(0)†q Ã(0)†q

+ (1 − pL)̃pLÃ(1)q ρÃ(1)†q + pLA(1)q ρA(1)†q (A10)

with probabilities pL and p̃L for any arbitrary input state
α |0〉q + β |1〉q given by

pL = |α|2 sin2(φ/2), p̃L = |β|2 sin2(φ/2)
|α|2 cos2(φ/2)+ |β|2 .

(A11)

In this case the process reduces to

ρ �→ cos2(φ/2)ρ + sin2(φ/2) |2〉 〈2|q , (A12)

where the effect of the loss is proportional to the arbitrary
input state ρ, indicating that after normalization the initial
state can be retrieved independently of the loss probability.

The basic idea of this quantum instrument is the detec-
tion of qubit loss, i.e., unwanted leakage to levels outside
the computational subspace, that in a realistic scenario
would be followed by its correction, representing the scope
of our foregoing work [11]. To give the rather formal dis-
cussion a physical meaning, we demonstrate the unit’s
working principle. Partial loss induced from |0〉q via the
loss transition Rloss(φ) is continuously increased and sub-
sequently detected. Note that both qubits are read out
yielding their populations in the upper |D〉-state mani-
fold referring to directly measured loss in the case of the
system qubit and detected loss for the ancilla qubit. In
Fig. 11 results are presented for individual and repeated
loss detection employing up to two ancilla qubits. Slopes
extracted from the linear fit in the repeated detection read
0.938(9) and 0.944(12) for ancillae a1 and a2, respectively.
On the individual readouts we get 0.977(2) and 0.995(2)
with a resonant crosstalk to the ancilla not participating of
0.005(1) and 0.003(1), respectively. When utilizing a2, we
end up with a higher detection efficiency because of a bet-
ter performing RMS

i,j gate on the particular ion pair. Two
hundred cycles are taken on this measurement. Errors cor-
respond to one standard deviation of statistical uncertainty
due to quantum projection noise.

Next, we complement the results from Fig. 4(a) in
the main part revealing a pull towards the state not
affected from asymmetric loss by further demonstrating
that the purity Tr(ρ2) of the associated reconstructed states
remains constant across the entire loss probability range;
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FIG. 11. Investigating the performance of the QND-detection unit according to Fig. 2(b) in the main text. Population in the D5/2
state for the system qubit (directly measured loss) versus transferred excitation on the ancilla qubit (detected loss) in the case of
detecting loss repeatedly using both ancilla qubits a1 and a2 (left), solely with ancilla a1 (middle), and ancilla a2 (right). The imprinted
detection efficiencies demonstrate reliable loss mapping onto the ancilla qubit and its readout by means of QND. Errors correspond to
one standard deviation of statistical uncertainty due to quantum projection noise.

see Fig. 12(a). The purity value is found independent of
the loss and therefore underlining at first glance a correct
experimental outcome, whereas only in the Bloch sphere
picture [Fig. 4(a)] deviations due to the nonunitary map
become visible. Likewise, considerations have been done
on the erasure channel, previously discussed in Fig. 4(b)
and similarly producing purity values independent of loss,
as can be seen in Fig. 12(b).

Next, we estimate the detection correlation of a sin-
gle loss event by two repeated detections. Such system
capabilities emphasize the work on the erasure channel
and, more generally, become relevant in a realistic sce-
nario demanding several consecutive readouts, especially
when embedded in QEC codes. In Fig. 13 positive corre-
lation occurs for a certain shot when both ancilla qubits
agree upon a certain loss event. Furthermore, the data on
the repeated readout allow us to quantify false-positive and
false-negative rates, manifesting important failure modes
of our detection unit. Again, false-positive rates dominate

owing to their strong sensitivity on the entangling RMS

gate, as was the case in Fig. 7(b) in the main text. One hun-
dred cycles for |0〉q loss and 200 cycles for 1/

√
2(|0〉q +

|1〉q) loss are taken on this measurement. Errors correspond
to one standard deviation of statistical uncertainty due to
quantum projection noise.

We switch our consideration from qubit to the qutrit
level and resume the discussion on the process tomogra-
phy covering both the ancilla qubit and system qutrit from
Fig. 7(a) in the main text. Thereby all presented Choi oper-
ators are postselected upon the ancilla outcome denoting
the qutrit maps separated by both loss cases. This has the
advantage of unitary operators describing the full dynam-
ics of the system qutrit in either loss case that moreover
gives an estimation on the QND-detection’s dominant fail-
ure mode, namely false-positive and false-negative rates.
As discussed in detail in the main part of the paper, stan-
dard tomography restricted to the qubit level prevents
us from getting such fine-grained analysis for two main
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FIG. 12. Purity of a single system qubit after undergoing QND detection in the no-loss case for different loss channels. (a) After
a single QND detection with loss from |0〉q, we find purity values unaffected by the amount of loss for all of the given input states.
At high loss probabilities, tomography becomes unreliable due to the low count rates. Furthermore, the superposition states show
systematic drifts beyond the given statistical errors, which however do not affect the results. (b) The erasure channel is realized by
consecutively inducing the same partial from |0〉q followed by |1〉q and postselecting to both ancilla |0〉a outcomes. The purity of the
output state is again unaffected by loss for any of the probed input states. Errors correspond to one standard deviation of statistical
uncertainty due to quantum projection noise.
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FIG. 13. Correlations between two repeated QND detections according to Fig. 2(b) in the main text. Loss on the system qubit
is induced from the imprinted states followed by two repeated detections using ancillae a1 and a2. A positive correlation refers to
successfully detecting the same loss event twice, whereas faulty assignments can be separated into false-positive and false-negative
events; shown in the lower figure part. Errors correspond to one standard deviation of statistical uncertainty due to quantum projection
noise.

reasons. First, reliably assigning false-positive and false-
negative events is not possible when postselecting by the
ancilla qubit’s measurement outcome. Second, when trac-
ing over the ancilla, the loss state |2〉q is incoherently
added to the qubit state |1〉q, creating an nonphysical bias
under which tomography is likely to break, as demon-
strated in Fig. 14. Here, we distinguish between tracing
before and after tomography reconstruction. On the one
hand, when directly tracing on the raw data and sub-
sequently reconstructing the map, it includes coherences
owing to the reconstruction technique forcing physical
properties. On the other hand, when tracing after process
reconstruction, coherences on |01〉q vanish. Both cases
draw attention to potential risks on how commonly known
process tomography fails to describe quantum instruments.

In the context of the numerical simulations cover-
ing implications on QEC however, we make use of the
full map capturing the combined ancilla-qutrit dynamics
together with the noise models; further discussed below.
We present experimentally estimated ancilla-qutrit Choi
operators for various loss probabilities in Fig. 15 using the
elementary basis according to {|0000〉a,q , . . . , |1212〉a,q}.
The process tomography of every loss probability required
54 × 12 = 648 experimental settings. For the sake of clar-
ity, we plot ideal Choi operators (left column) and the
experimental ones (right column) for various loss probabil-
ities separated by rows side by side. Color and saturation
refer to the argument and absolute value of the complex
matrix entries. Process fidelities with the ideal Choi oper-
ator from top to bottom read {0.91(1), 0.89(1), 0.85(1)},
referring to the loss probabilities {0%, 50%, 85%}. One
hundred cycles are taken for each experiment. In the

no-loss case the expected controlled X̂a operation signaling
a loss event whenever the system qubit occupies level |2〉q
is clearly reproduced, as expressed by Eq. (A5) derived at
the beginning of this section.

Finally, we present additional data on the system qutrit
process tomography according to Fig. 16(a) and loss
induced from |0〉q and |1〉q presented in Figs. 17 and 18,
respectively. We emphasize that here, similar to the qubit
level, certain coherences vanish when tracing over the
ancilla, which is no longer covered by the process tomog-
raphy. Still, the dynamics on the system qutrit clearly
captures the population transfer from either basis state
{|0〉q , |1〉q} to the loss level |2〉q. Furthermore, a change in
the asymmetric behavior between loss from |0〉q and |1〉q
becomes distinctly visible in the qubit subspace.

For the sake of completeness, we present similar Choi
operators on the repeated loss detection in Fig. 19, con-
secutively mapping the same loss event to two different
ancilla qubits; shown for loss from |0〉q. As the recon-
structed Choi operators follow the expected behavior pre-
viously observed, their fidelities turn out slightly lower
compared to Fig. 17, as expected due to the more complex
experiment.

2. Noise model on QND loss detection

Here, we study various noise models in order to find
the best suitable description of the experimental limita-
tions underlying our QND detection. Although very small
contributions will be precluded by SPAM errors, the result-
ing models give us a rough estimate as a guide for
where to look at upon which a microscopic noise model
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FIG. 14. Potential risks
on system qubit process
reconstruction when partial
tracing the ancilla qubit.
Left column: partial trac-
ing before reconstructing
the map directly on the
raw data, previously used
in Fig. 7 of the main part.
In this case, the loss level
|2〉q is incoherently added
onto state |1〉q. Coherences
present in |01〉q originate
from the reconstruction
technique, forcing physical
properties. Right column:
postselecting from the
already reconstructed
qubit-qutrit maps pre-
sented in Fig. 15. In
contrast to before coher-
ences on |01〉q vanish,
whereas the nonphysical
bias remains.

for the numerical simulations can be developed. Getting
more insights on these error mechanisms is essential when
observing implications of the quantum instrument in the
context of QEC protocols and is further an essential build-
ing block towards fault-tolerant quantum computation; see
Sec. VI of the main text.

We refer to Eq. (A5) from above and express the
action of the ideal QND map U under a given loss rate
φ acting on the combined ancilla-qutrit system in terms
of the Choi operator ρCJ = 1 ⊗ U · |�+〉 〈�+| · 1 ⊗ U†,
where |�+〉 〈�+| is the maximally entangled state of two
copies of the ancilla-qutrit system. An erroneous chan-
nel Enoise transforms the Choi operator ρCJ to ρCJ

noise =
(1 ⊗ Enoise)(ρ

CJ). Noise rates entering Enoise for given
model parameters are then extracted by minimizing the
distance between modeled noisy Choi operators ρCJ

noise and
the experimentally determined ones ρCJ

exp from Fig. 15. As a
measure for the distance in the cost function, we minimize
the infidelity:

||1 − F(ρCJ
exp, ρCJ

noise)||. (A13)

Our initial considerations covered the study of the
QND-detection’s failure modes, i.e., false-positive and

false-negative rates both quantified in the main part of
the paper. Measuring process tomography however comes
with overhead in the form of preparation and measurement
gates followed by two consecutive detections at the end of
each experiment required for reading out the qutrit’s state.
Therefore, SPAM errors are not to be neglected and lead
to a significant bias on false-positive and false-negative
rates. With this in mind, we put the failure modes aside and
focus on experimental limitations instead. In the following,
we consider as models for Enoise a depolarizing channel,
a dephasing channel, and coherent two- and single-qubit
over-rotations.

Depolarizing and dephasing channels.—We start off
by testing the agnostic models, namely depolarizing and
dephasing channels as those represent error mechanisms
typically considered in the field of quantum computation
[72]. The effect of the latter can be understood by losing
phase information between the quantum states involved.
Coherences get lost and an arbitrary single-qubit state in
the Bloch sphere picture would finally shrink onto the Z
axis as no phase information is left. Depolarizing noise
can be considered as simultaneous dephasing in the X ,
Y, and Z bases, eventually leading to a complete mixed
state that, for a single qubit, can be illustrated by shrinking
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FIG. 15. Combined process reconstruction on the ancilla-qutrit system according to Fig. 16(b). The resulting Choi operators (right
column) denoted in the elementary basis ({|0000〉a,q , . . . , |1212〉a,q}) describe the whole dynamics of the QND-detection unit under
loss from |0〉q. Hue relates to phase according to the top right color bar and saturation to the absolute value of the complex entries.
Process fidelities with the ideal Choi operators (left column) from top to bottom read {0.91(1), 0.89(1), 0.85(1)}. Errors correspond to
one standard deviation of statistical uncertainty due to quantum projection noise.

030318-18



CHARACTERIZING QUANTUM INSTRUMENTS. . . PRX QUANTUM 3, 030318 (2022)

0

S1/2

0

11

0

1st QND LOSS
DETECTIONDETECTIO

D5/2 2

Qutrit process tomography

Prep.
states

Induce 
    loss

Meas.
states0

2nd QND LOSS
DETECTIONDETECTIO

0

S1/2

11

0

D5/2 2

Induce 
  loss1

0

S1/2

0

11

0

QND LOSS
DETECTION

D5/2 2

Qutrit process tomography

Prep.
states

Induce 
loss

Meas.
states

0

S1/2

0

11

0

QND LOSS
DETECTIONDETECTIO

D5/2 2

 Qubit  -      Qutrit 
process tomography

Prep.
states

Induce 
loss

Meas.
states

0 0  

(a) (b)

(c)

no
 lo

ss

R
M

S (
�

)

R
M

S (
�

)

R
X (

�
)

R
M

S (
�

)

R
X (

�
)

R
M

S (
�

)

R
X (

�
)

R
X (

�
)a

a

a

a1 a2

Z

Z

Z

Z Z

Z

FIG. 16. Schematics on higher-dimensional process tomography. (a) Qutrit process tomography solely covering the system qubit (q)
together with the loss level {|0〉q , |1〉q , |2〉q} undergoing the QND-detection unit by using nine preparation settings together with six
measurement settings, resulting in 54 experiments each run. (b) Combined process tomography on ancilla (a) and qutrit (1), capturing
the entire dynamics of this quantum instrument using 12 settings on the ancilla qubit (four preparation settings and three measurement
settings) alongside 54 settings on the system qutrit, resulting in 648 experiments. (c) Qutrit process tomography on the erasure channel,
focusing on the no-loss case, i.e., twice postselecting the ancilla qubit’s |0〉a outcome.

the Bloch sphere towards its center. Note that we imple-
ment those models such that they act both on the ancilla
and the qutrit using only a single noise parameter [96].
The upper row of Fig. 20 depicts the fidelities (top part)
for the individual models at the optimized parameters
(bottom part). Both results indicate similar improvements
compared to the fidelity with the ideal QND map from
Eq. (A5). Numbers on fidelities and optimized parameters
for depolarizing noise pdepol. and dephasing noise pdeph. are
further summarized in Table I. The parameters typically
lie around 1% or below, yet the small increase in fidelity
indicates other error mechanisms to be more dominant.

Correlated two-qubit over-rotations.—The erroneous
peaks in the experimentally estimated Choi operators from
Fig. 15 imply that additional rotations should be taken
into account by the agnostic models. Those dominant
error peaks are found originating from correlated rota-
tions between the ancilla and system qubit, as illustratively
labeled in Fig. 21(a). Note that the error terms are restricted
to the qubit level and partial coherences are still present.
Hence, if the system qutrit’s state is |2〉q, no correlated
error is induced on the ancilla qubit. Therefore, correlated

errors are due to faulty entangling RMS gates. A potential
noise model covering correlated rotations in such a way
reads

ρ �→ Enoise(ρ) = UcorrρU†
corr (A14)

with

Ucorr = cos
α

2
1a ⊗1q + i sin

α

2
(Xa ⊗ Xq +1a ⊗ |2〉 〈2|q),

(A15)

where α describes the correlated under- and over-rotations
and relates to the corresponding error probability via
pcorr. = sin(α/2)2. For comparison, a value pcorr. of 0.5
would induce a maximally entangling two-qubit opera-
tion on the ancilla and system qubit. We first test the
model alone followed by combining it with depolarizing
and dephasing noise. The resulting fidelities (top part) at
the optimized model parameters (bottom part) are shown
in the second row of Fig. 20 and clearly overcome those
on the agnostic models denoting correlated rotations to
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FIG. 17. Qutrit process
tomography characterizing
the QND-detection unit for
loss from |0〉q according to
Fig. 16(a). (a) System qutrit’s
Choi operator in elementary
basis {|00〉q , . . . , |22〉q} after
tracing over the ancilla qubit
and various loss probabilities
denoting the effect of the
loss transition transferring
population from |0〉q to |2〉q.
(b) The respective fidelities
with the ideal Choi operators
covering the complete loss
range.

be our leading noise mechanism. The effect of the addi-
tional depolarizing and dephasing noise (bottom right)
leads to slight improvements. The modeled Choi oper-
ator on this combined noise model is plotted for the
no-loss case in Fig. 21(b), showing strong similarities
to the experimental one and underlining good agreement
between the model and experiment. Numbers on fidelities
and optimized parameters for all models are summarized
in Table I.

Correlated and single over-rotations.—Finally, we
combine the action of correlated rotations with single-qubit
rotations on the ancilla and the qutrit and we consider the
coherent error model given by

ρ �→ Enoise(ρ) = R UcorrρU†
corr R†, (A16)

where ρ is the state obtained after the application of the
loss operation U of Eq. (A5) [see also Fig. 8(a) of the main

text], Ucorr is a correlated two-qubit over-rotation defined
in Eq. (A15), and R = RX

a (β)R
X
q (β) with

RX
a (β) = cos(β/2)1a − i sin(β/2)Xa, (A17)

RX
q (β) = cos(β/2)(1q − |2〉 〈2|q)− i sin(β/2)Xq

+ |2〉 〈2|q (A18)

over-rotations with angle β of the ancilla and the qutrit
system that corresponds to the single-qubit flip error rate
psingle = sin(β/2)2. After measurement of the ancilla, the
quantum process arising from the erroneous channel in
Eq. (A16) can be written as

ρ �→ |0〉 〈0|a ⊗ R0(ρq)+ |1〉 〈1|a ⊗ R1(ρq), (A19)

where ρq is the state related to the qutrit only and the pro-
cesses R0 and R1 describe the maps that transform the
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FIG. 18. Qutrit process tomog-
raphy characterizing the QND-
detection unit for loss from
|1〉q according to Fig. 16(a).
(a) System qutrit’s Choi
operator in elementary basis
{|00〉q , . . . , |22〉q} after tracing
over the ancilla qubit and
several different loss proba-
bilities denoting the effect of
the loss transition transferring
population from |1〉q to |2〉q.
(b) The respective fidelities
compared to the ideal Choi
operators covering the complete
loss range.

qutrit state in the case of no-loss detected (ancilla qubit in
|0〉a) and of loss detected (ancilla qubit in |1〉a). The Choi
operators�0 and�1 of maps R0 and R1 can be computed

for all values of the over-rotated angles α and β. In partic-
ular, if we consider small deviations for α and β, �0 and
�1 read at second order

�0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − α2

4 − β2

2

(−α
4 − i

2

)
β 0

(−α
4 − i

2

)
β 1 − α2

4 − β2

2 0 0 0 i
2β

(−α
4 + i

2

)
β

β2

4 0 β2

4

(−α
4 + i

2

)
β 0 0 0 − 1

4β
2

0 0 0 0 0 0 0 0 0
(−α

4 + i
2

)
β

β2

4 0 β2

4

(−α
4 + i

2

)
β 0 0 0 − 1

4β
2

1 − α2

4 − β2

2

(−α
4 − i

2

)
β 0

(−α
4 − i

2

)
β 1 − α2

4 − β2

2 0 0 0 i
2β

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

− i
2β − 1

4β
2 0 − 1

4β
2 − i

2β 0 0 0 β2

4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A20)
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where we have labeled the qutrit basis states in the order |00〉 , |01〉 , |02〉 , . . . , |22〉. In the next section we discuss how to
approximate the channel in Eq. (A19) with Clifford gates.
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FIG. 19. Qutrit process tomog-
raphy on two repeated QND
detections for loss from |0〉q
according to Fig. 16(a). (a)
System qutrit Choi operators
mapping loss repeatedly onto
ancillae a1 and a2 under sev-
eral different loss probabilities.
The processes for which we
trace over both ancillae prior to
reconstruction denote the loss
transition transferring popula-
tion from |0〉q to |2〉q. (b) Fideli-
ties compared to the ideal opera-
tors remain approximately con-
stant along all measured loss
probabilities and show slightly
decreased values compared to
the results on single QND detec-
tion from Fig. 17.
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FIG. 20. Noise-model QND detection. Various noise model describing the experimental limitations on the ancilla-qutrit Choi oper-
ator depicted in Fig. 15. The limitations are best described when combining correlated coherent rotations together with depolarizing
and dephasing noise. Correlated errors clearly dominate as depolarizing and dephasing errors only lead to minor improvements. The
error parameters on the bottom of each plot refer to depolarizing error pdepol., dephasing error pdeph., and correlated error pcorr., the latter
according to Eq. (A15). Lines connect the points for clarity.

Effective Clifford channel.—Before deriving the analyt-
ical expression for the Clifford channel, the forms of Choi
operators �0 and �1 allow us to have a qualitative dis-
cussion on the events that will form the Clifford channel
approximating Eq. (A19). In�0 and�1 we can easily iden-
tify the following events happening to the ancilla-qutrit
system. If the ancilla is in |0〉a, the qutrit state is left
unchanged with probability 1 − α2/4 − β2/2 or it under-
goes an Xq bit-flip error with probability β2/4. When the
ancilla is instead in |1〉a, the qutrit state is left unchanged
in the loss state |2〉 〈2|q with probability 1 − β2/4.

We can also identify the origin of the false-negative and
false-positive events. From �0 we see that the qutrit will

TABLE I. Summary on noise model parameters and results. The parameters and fidelities refer to the best suitable model values
describing the experimental noise from Fig. 20: depolarizing error pdepol., dephasing error pdeph., and correlated error pcorr. according to
Eq. (A15).

Loss Depolarizing Dephasing Correlated Correlated, depol., and deph.

(%) F ideal Fmodel pdepol. Fmodel pdeph. Fmodel pcorr. Fmodel pcorr. pdepol. pdeph.

0 0.906 0.912 0.004 0.915 0.013 0.939 0.045 0.948 0.042 0.012 0.002
2 0.899 0.912 0.009 0.908 0.014 0.916 0.021 0.923 0.045 0.010 0.010
50 0.894 0.905 0.007 0.905 0.018 0.924 0.032 0.934 0.037 0.020 0.007
85 0.854 0.861 0.005 0.863 0.017 0.897 0.054 0.903 0.045 0.010 0.010

be projected on the loss state |2〉 〈2|q with probability β2/4,
while the ancilla will be in the no-loss detected state |0〉a.
This corresponds to a false-negative event whose origin
can be traced back to the single-qubit over-rotation R of
Eq. (A16).

From �1 we see that, when the qutrit is generated in
the computational space by |0〉q and |1〉q, the ancilla will
be found in the loss detected state |1〉a. In particular, the
qutrit will be left unchanged with probability β2/4 and
it will undergo an Xq bit-flip error with probability α2/4.
These events correspond to false-positive events whose
origin can be traced back to the single-qubit over-rotation
R and to the correlated over-rotation Ucorr of Eq. (A16).
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(a) (b)

FIG. 21. Comparison between experimental and noisy-modeled Choi operators. (a) Experimentally estimated map according to
Fig. 15(a) with additionally marked transitions denoting correlated errors describing our leading error mechanism; see Eq. (A15).
(b) Most suitable noisy-modeled Choi operator combining correlated, depolarizing, and dephasing errors.

The previous considerations on the Choi operators �0
and �1 can be made more precise by explicitly comput-
ing the process in Eq. (A19) with the help of Eqs. (A15),
(A17), and (A18) and by retaining only the terms that can
be written in the Kraus form PρP†, where P is a Pauli
operator. In this way, we can approximate the channel in
Eq. (A19) as

ρ �→ paP01ρP†
01 + pbXqρXq + pcXaXqρXqXa

+ pdXaP01ρP†
01Xa + qaXa |2〉 〈2| ρ |2〉 〈2| Xa

+ qb |2〉 〈2| ρ |2〉 〈2| , (A22)

where ρ is the density matrix of the whole ancilla and qutrit
system, P01 = 1 − |2〉 〈2|q is the projector on the computa-
tional space {|0〉q , |1〉q} of the qutrit, and the probabilities
take the form

pa = sin2 α sin4 β + cos2 α cos4 β ∼ 1 − α2/4 − β2/2,
(A23)

pb = sin2 β/4 ∼ β2/4, (A24)

pc = sin2 α cos4 β + cos2 α sin4 β ∼ α2/4, (A25)

pd = sin2 β/4 ∼ β2/4, (A26)

qa = cos2(β/2) ∼ 1 − β2/4, (A27)

qb = sin2(β/2) ∼ β2/4. (A28)

The channel in Eq. (A22) can then be implemented in the
following way.

1. If the ancilla is in |0〉a, we

(a) leave the qutrit state in the computational space
with probability 1 − β2/2 − α2/4;

(b) apply an Xq bit-flip error to the qutrit with
probability β2/4;

(c) apply an Xq bit-flip error to the qutrit and an Xa
bit-flip error to the ancilla with probability α2/4
(corresponding to a false-positive event from
the correlated over-rotation);

(d) leave the qutrit state as it is and flip the ancilla
with probability β2/4 (corresponding to a false-
positive event from the single rotations).

2. If the ancilla is in |1〉a, we

(a) leave the qutrit state in the loss state |2〉q with
probability 1 − β2/4;

(b) flip the ancilla to the no-loss detection state |0〉a
with probability β2/4 (corresponding to a false-
negative from the single rotations).

The comparison between the coherent channel in
Eq. (A16) and the effective Clifford channel previously
described is shown in Fig. 22 and in Fig. 10 of the main
text.

3. Losses in the seven-qubit code

In this section, we discuss the correction from losses for
the seven-qubit color code, in the ideal scenario of perfect
QND loss detection and stabilizer measurements. We also
assume that losses occur on each qubit independently with
loss probability p .

A loss event is correctable if the density matrix of the
losses is fully mixed or, more generally, it does not con-
tain any information on the encoded logical state. With this
criterion, we can then check the loss events that can be cor-
rected. Obviously, the event [happening with probability
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(a) (b)
×10–4

FIG. 22. Comparison between the coherent and incoherent implementations of the faulty QND loss detection unit in the case of
no losses. (a) Logical error rate as a function of the correlated over-rotation rate p1 for the parameter p2 = 0.045 obtained from the
experimental data. (b) Logical error rate as a function of the correlated over-rotation rate p2 for the parameter p1 = 2.47 × 10−4

obtained from the experimental model.

P0 = (1 − p)7] where no loss occurs is correctable. The
events where one loss occurs are also correctable. To show
this, let us consider, for instance, the encoded |0L〉 state

|0L〉 ∼ (1 + S(1)x )(1 + S(2)x )(1 + S(3)x ) |0〉⊗7 , (A29)

where the S(j )x are the stabilizer generators, and let us sup-
pose that the loss affects qubit q1 [see Fig. 8(a) of the main
text]. By introducing the two orthogonal states |χ0〉 =
P(2)x P(3)x |0〉⊗6 and |χ1〉 = X2X3X4P(2)x P(3)x |0〉⊗6 (where
P(j )x = 1 + S(j )x with j = 2, 3 are chosen because the loss
does not belong to S(j )x ), the state |0L〉 can be written
explicitly as

|0L〉 ∼ |01〉 |χ0〉 + |11〉 |χ1〉 . (A30)

As |χ0〉 and |χ1〉 are orthogonal, the reduced density
matrix of the loss q1 obtained by tracing out the six other
qubits will be ρ1 ∼ |01〉 〈01| + |11〉 〈11|, i.e., it will be fully
mixed. Therefore, the events with one loss [happening with
probability P1 = 7p(1 − p)6] can be correctable. A sim-
ilar reasoning applies to all the events where two losses
happen [P2 = 21p2(1 − p)5] and to the events where three
losses that do not form a logical operator happen as
well. The events with three losses that form a logical
operator are instead not correctable. There are precisely
seven such events [corresponding to the logical operators
L = {[1, 2, 5], [1, 3, 6], [1, 4, 7], [2, 3, 7], [4, 3, 5], [5, 6, 7],
[2, 4, 6]} in Fig. 8(a) of the main text]. The last one
([2, 4, 6]) is given by the product of the logical operator act-
ing on all the seven qubits multiplied by all three stabilizer
generators. This implies that the probability to successfully
recover the logical state is P3 = [

(7
3

) − 7]p3(1 − p)4 =
28p3(1 − p)4. In the case of four losses, in seven cases out
of

(7
4

) = 35, the reduced density matrix of the losses does
not depend on the encoded logical state. These cases corre-
spond to the losses happening on the qubits of the stabilizer

generators and their products and are given by

S = {[1, 2, 3, 4], [2, 3, 5, 6], [3, 4, 6, 7], [1, 4, 5, 6],

[1, 2, 6, 7], [2, 4, 5, 7], [1, 3, 5, 7]}. (A31)

This can be shown by considering, for instance, four losses
happening on the stabilizer [1, 2, 3, 4]. A bit of algebra
shows that the logical states |0L〉 and |1L〉 can be written
as

|0L〉 = |G〉 |000〉 + X2X3 |G〉 |110〉 + X3X4 |G〉 |011〉
+ X2X4 |G〉 |101〉 , (A32)

|1L〉 = |G〉 |111〉 + X2X3 |G〉 |001〉 + X3X4 |G〉 |100〉
+ X2X4 |G〉 |010〉 , (A33)

where |G〉 = |0000〉 + |1111〉 is a GHZ state of qubits 1,
2, 3, 4 where the losses happen. Tracing on qubits 5,
6, 7 transforms any logical state |ψL〉 = c0 |0L〉 + c1 |1L〉
into a mixture with equal probabilities of the four states
{|G〉 , X2X3 |G〉 , X3X4 |G〉 , X2X4 |G〉} that is independent
on the coefficients c0 and c1. Finally, no event with five,
six, or seven losses can be corrected. The total probabil-
ity of a successful correction is given by the sum of all
probabilities Pj and reads

psuccess = (1 − p)7 + 7p(1 − p)6 + 21p2(1 − p)5

+ 28p3(1 − p)4 + 7p4(1 − p)3

= 1 − 7p3 + 21p5 − 21p6 + 6p7. (A34)
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