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Deriving effective Hamiltonian models plays an essential role in quantum theory, with particular empha-
sis in recent years on control and engineering problems. In this work, we present two symbolic methods
for computing effective Hamiltonian models: the nonperturbative analytical diagonalization (NPAD) and
the recursive Schrieffer-Wolff transformation (RSWT). NPAD makes use of the Jacobi iteration and works
without the assumptions of perturbation theory while retaining convergence, allowing us to treat a very
wide range of models. In the perturbation regime, it reduces to RSWT, which takes advantage of an in-built
recursive structure where, remarkably, the number of terms increases only linearly with the perturbation
order, exponentially decreasing the number of terms compared to the ubiquitous Schrieffer-Wolff method.
In this regime, NPAD further gives an exponential reduction in terms, i.e., superexponential compared to
the Schrieffer-Wolff transformation, relevant to high-precision expansions. Both methods consist of alge-
braic expressions and can be easily automated for symbolic computation. To demonstrate the application
of the methods, we study the ZZ and cross-resonance interactions of superconducting qubit systems. We
investigate both suppressing and engineering the coupling in near-resonant and quasidispersive regimes.
With the proposed methods, the coupling strength in the effective Hamiltonians can be estimated with high
precision comparable to numerical results.
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I. INTRODUCTION

Deriving effective models is of fundamental importance
in the study of complex quantum systems. Often, in an
effective model, one decouples the system of interest from
the ancillary space, as shown in Fig. 1. The dynamics are
then studied within the effective subspace, which is usually
much easier than in the original Hilbert space, and provides
fundamental information such as conserved symmetries,
entanglement formation, orbital hybridization, computa-
tional eigenstates, spectroscopic transitions, effective lat-
tice models, etc. In terms of the Hamiltonian operator, an
effective compression of the Hilbert space can be achieved
by diagonalization or block diagonalization.

When the coupling between the system and ancillary
space is small compared to the dynamics within the sub-
space, the effective model is often derived by a perturbative
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expansion. In the field of quantum mechanics, a ubiquitous
expansion method that enables reduced state space dimen-
sion is the Schrieffer-Wolff transformation (SWT) [1,2],
also known in various subfields as adiabatic elimination
[3], the Thomas-Fermi or Born-Oppenheimer approxima-
tion [4,5], and quasidegenerate perturbation theory [6].
Finding uses throughout quantum physics, SWT can be
found in atomic physics [3], superconducting qubits [7,8],
condensed matter [2], semiconductor physics [9], to name
a few.

The SWT method is however limited to regimes where
a clear energy hierarchy can be found and therefore fails
to converge for a wide variety of physical examples. In
particular, for infinite-dimensional systems such as cou-
pled harmonic and anharmonic systems (e.g., in super-
conducting quantum processors), the abundance of both
engineered and spurious resonances motivates the use of
other techniques. Moreover, even when perturbation the-
ory is applicable, the numbers of terms in the expansions
grow exponentially with the perturbation level and are
therefore not practically usable in many instances.

In this article, we introduce a new symbolic algorithm,
nonperturbative analytical diagonalization (NPAD), that
allows the computation of closed-from, parametric effec-
tive Hamiltonians in a finite-dimensional Hilbert space
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FIG. 1. Illustration of generating an effective Hamiltonian model from a given physical model. The left-hand side shows the physical
system composed of several different quantum subsystems and possible coupling among them. External controls may also exist and
drive the system dynamics. The methods introduced in this article (NPAD and RSWT) can be used to compute the effective model
(right-hand side) where undesired interactions are effectively removed (block A) and engineered couplings are enhanced (block B).
The dynamics can then be studied in the computational subspace.

with a guarantee for convergence. The method makes
use of the Jacobi iteration and recursively applies Givens
rotations to remove all unwanted couplings. In the per-
turbative limit, it reduces via Baker-Campbell-Hausdorff
(BCH) expansion to a variant of SWT, which we refer to
as the recursive Schrieffer-Wolff transformation (RSWT).
For this method, the number of commutators grows only
linearly with respect to the perturbation order, in contrast
to the exponential growth in the traditional approach. Both
methods can be used in low-order expansions to provide
compact analytical expressions of effective Hamiltonians,
or, alternatively, higher-order expansions that allow for
fast parametric design [10] and tuning [11] of effective
Hamiltonian models (and, e.g., subsequent automatic dif-
ferentiation). As illustrated in Fig. 1, with the two methods,
one can tune the system for engineered decoupling or
enhanced controlled coupling.

The key insight of our work is that the iteration step in
forming the effective model can be applied recursively, i.e.,
after each step the transformed Hamiltonian is viewed as a
new starting point and determines the next step. Moreover,
each step can act on a chosen single state-to-state coupling
at a time, thereby providing an exact elimination of the
term. In this regard, this can be understood as a general-
ization of the well-known numerical Jacobi iteration used
for diagonalization of real symmetric matrices [12], which
has also found use for Hermitian operators [13,14]. Similar
ideas have also been widely used in the orbital localization
problem [15].

As demonstrations of the practical utility of the
methods, we study superconducting qubits, which are
especially relevant for robust parametric design methods,
not only because they are prone to spurious resonances
[16–18], but because they can be readily fabricated across
a very wide range of energy scales [19,20].

We investigate both the near-resonant regime and the
quasidispersive regime, focusing on the ZZ and cross-
resonance interactions. In the near-resonant regime, we
consider the two-excitation manifold and compute accu-
rate approximations of the ZZ interaction strength applica-
ble to the full parameter regime for gate implementation
[21–24]. In the second scenario, we study the suppres-
sion of ZZ interactions [10,25–41] in the traditional setup
of resonator-mediated coupling without direct qubit-qubit
interaction. The result shows that the ZZ interaction can
be suppressed without resorting to additional coupling in a
regime where the qubit-resonator detuning is comparable
to the qubit anharmonicity, described by an equation of a
circle. Extending the applications to block diagonalization,
we then compute the coupling strength of a microwave-
activated cross-resonant interaction. We show that, with
only four Givens rotations, we can diagonalize the drive
and achieve accurate estimation in the regime where the
perturbation method fails.

This paper is organized as follows. In Sec. II, we present
the mathematical methods, NPAD and RSWT, for diag-
onalization and obtaining effective Hamiltonian models.
We also briefly discuss generalizing the two methods to
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block diagonalization in Sec. II C. Next, in Sec. III, we
demonstrate the applications to superconducting systems.
We study the ZZ interaction for generating entangle-
ment in the near-resonant regime (Sec. III A), and in the
(quasi)dispersive regime for suppressing crosstalk noise
(Sec. III B). The computation of the cross-resonance cou-
pling strength is presented in Sec. III C. We conclude and
give an outlook into other possible applications in Sec. IV.

II. MATHEMATICAL METHODS

A. Nonperturbative analytical diagonalization

In this subsection, we introduce the NPAD for symbolic
diagonalization of Hermitian matrices and discuss how it
can be applied to obtain effective models.

In this algorithm, a Givens rotation is defined in each
iteration to remove one specifically targeted off-diagonal
term. By iteratively applying the rotations, the transformed
matrix converges to the diagonal form. The rotation keeps
the energy structure when the off-diagonal coupling is
small, while always exactly removing the coupling even
when it is comparable to or larger than the energy gap.
Compared to the Jacobi method used in numerical diag-
onalization [12–14], we truncate the iteration at a much
earlier stage. As each iteration consists of only a few alge-
braic expressions, the algorithm produces a closed-form,
parametric expression of the transformed matrix.

We start from a two-by-two Hermitian matrix and define
a complex Givens rotation that diagonalizes it. Then, we
generalize the rotation to higher-dimensional matrices, dis-
cuss the convergence of the iteration, and how to use it as
a symbolic algorithm. In Sec. III A, we show a concrete
application where we apply NPAD with only two rotations
to approximate the energy spectrum of a near-resonant
quantum system that cannot be studied perturbatively.

1. Givens rotations

We consider a two-by-two Hermitian matrix

H =
(

ε + δ ge−iφ

geiφ ε − δ

)
, (1)

where g, φ, ε, and δ are real numbers. The matrix can be
decomposed in the Pauli basis as

H = εI + δσz + g(cos(φ)σx + sin(φ)σy), (2)

which can be illustrated in a Bloch sphere with radius√
δ2 + g2 (omitting the identity), as shown in Fig. 2(a).

Without loss of generality, we assume that g ≥ 0 and
absorb the sign into the complex phase.

The diagonalization can be understood as a rotation on
the Bloch sphere to the north or south pole. In particular,
if δ ≥ 0, it is rotated to the north pole, and otherwise to
the south pole, avoiding unnecessarily flipping the energy

(a)

g δ φ

θ = arctan( g
δ )

cos( θ
2 ) sin( θ

2 )

e−iφ

U
(b)

FIG. 2. (a) The Givens rotation illustrated on a Bloch sphere.
A Hermitian matrix defined in Eq. (1) is denoted as a point on the
surface of a Bloch sphere with radius

√
δ2 + g2. This is different

from the Bloch sphere representation of a quantum state, where
the radius is always smaller than or equal to 1. The coordinates
correspond to the coefficients in the representation in the Pauli
basis. The Givens rotation U that diagonalizes the matrix can be
viewed as a rotation denoted by the blue arrow (for δ ≥ 0). (b)
The computational graph of the Givens rotation U, defining the
main mathematical steps in symbolic Algorithm 1. The inputs g,
δ, and φ can be directly extracted from the Hamiltonian.

level during the diagonalization. This rotation is performed
around the axis n̂ = cos(φ)σy − sin(φ)σx with angle θ =
arctan (g/δ). As an illustration, for δ ≥ 0, the rotation is
denoted by a blue arrow in Fig. 2(a).

The unitary transformation that diagonalizes the matrix
is given by

U = exp[S] = exp
[

i
2
θ n̂

]

=
(

cos(θ/2) e−iφ sin(θ/2)

−eiφ sin(θ/2) cos(θ/2)

)
, (3)

where S = iθ n̂/2 is referred to as the generator of the rota-
tion. The transformation satisfies � = UHU† with � the
diagonalized matrix. We refer to U as a Givens rotation
[42]. Note that in most literature, the Givens rotation is
defined with φ = 0. Here we use this more general (Her-
mitian) definition as it shares many common properties.

The computation of the unitary consists only of ele-
mentary mathematical functions, as illustrated in Fig. 2(b).
This is critical for it to be used as a building block for a
symbolic algorithm. As we will see later, by concatenat-
ing this building block, a parameterized expression can be
generated for an arbitrary Hermitian matrix.

2. Simplified formulation

In practice, the inverse trigonometric function in the
expression of θ is often avoided by using the trigonometric
identities

tan(θ) = 2t
1 − t2

(4)
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with t = tan(θ/2). We then rewrite Eq. (4) as

t2 + 2t/κ − 1 = 0 (5)

with κ = g/δ. We choose the root with smaller norm for
the convenience that the rotation will not flip the two
energy levels [43]:

t =
√

κ2 + 1 − 1
κ

. (6)

In this way, the parameters cos(θ/2) and sin(θ/2) in the
Givens rotation can be calculated directly from g and δ

using algebraic expressions. It is also evident in Eq. (6)
that the rotation angle is bounded by |θ | ≤ π/2.

3. The iterative method

We now apply the Givens rotation to remove the (j , k)th
entry of a general Hermitian matrix H . The parame-
ters are chosen to be consistent with Eq. (1), i.e., δjk =
(Hj ,j − Hk,k)/2 and gjke−iφjk = Hj ,k. For simplicity, we use
the notation cjk = cos

(
θjk/2

)
, sjk = sin

(
θjk/2

)
, and tjk =

sjk/cjk. We write the Givens rotation Ujk as

Ujk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

cjk · · · e−iφjk sjk
...

. . .
...

−eiφjk sjk · · · cjk
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where the diagonal elements are all 1 except for two entries
(j , j ) and (k, k). All other entries not explicitly defined
are 0.

Applying this unitary transformation with H ′ =
UjkHU†

jk eliminates the off-diagonal entry Hj ,k, i.e.,
|H ′

j ,k| = |H ′
k,j | = g′

jk = 0. It renormalizes the energies such
that

δ′
jk = δjk + tjkgjk. (8)

However, this will also mix other entries on the (j , k)th
rows and columns, given by

H ′
h,j = cjkHh,j + eiφjk sjkHh,k, (9)

H ′
h,k = cjkHh,k − e−iφjk sjkHh,j , (10)

with h �= j , k.
One can diagonalize the matrix by applying the

rotation Ujk with the corresponding parameters iteratively

Algorithm 1. Nonperturbative analytical diagonalization.

on the largest remaining nonzero off-diagonal entry, which
is referred to as the Jacobi iteration [12]. That is, we
can iteratively solve for the eigenenergies by picking the
next largest off-diagonal element, e.g., H ′

j ′,k′ = g′
j ′k′e

−iφ′
j ′k′ ,

and applying another Givens rotation, as summarized in
Algorithm 1.

In practice, the above definition of the Jacobi itera-
tion can be relaxed. For instance, the next target does not
always have to be the largest element. In fact, the order of
the rotations does not affect the convergence, as long as all
terms are covered in the iteration rules (e.g., cyclic itera-
tions on all off-diagonal entries) [13]. However, perform-
ing the rotation first on large elements usually increases the
convergence rate. This can be seen by studying the norm
of all off-diagonal terms ‖H‖F = ∑

m �=n |Hm,n|2. Since we
have |H ′

h,j |2 + |H ′
h,k|2 = |Hh,j |2 + |Hh,k|2 for h �= j , k and

H ′
j ,k = 0, each Givens rotation reduces the norm of all

off-diagonal terms:

‖H ′‖F = ‖H‖F − 2|Hj ,k|2. (11)

If (j , k) is chosen so that |Hj ,k|2 is larger than the average
norm among the off-diagonal terms, one obtains [13]

‖H ′‖F =
(

1 − 2
N (N − 1)

)
‖H‖F , (12)

where N (N − 1) is the total number of off-diagonal terms.
Therefore, the algorithm converges exponentially. More-
over, if the off-diagonal terms are much smaller than the
energy gap, the convergence becomes even faster, i.e.,
exponentially fast with a quadratic convergence rate [14].
This leads to an efficient variant of the Schrieffer-Wolff-
like methods, as described in Sec. II B.

From the above analysis, we also see that the Givens
rotation does not have to exactly zero the target coupling.
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Instead, it only needs to reduce the total norm. Therefore,
if the structure of the Hamiltonian is known, rotations can
be grouped such that all rotations within one group are
constructed from the same Hamiltonian and then applied
recursively. We also explore this possibility in concrete
examples later in the article.

As a machine-precision, numerical diagonalization
algorithm, the Jacobi iteration is slower than the QR
method for dense matrices. However, in many problems
in quantum engineering, the Hamiltonian is often sparse
and it is known in advance which interaction needs to
be removed. It is not always necessary to compute the
fully diagonalized matrix, only to transform it into a
frame where the target subspace is sufficiently decoupled
from the leakage levels. Therefore, an iterative method
where each step is targeted at one off-diagonal entry is of
particular interest.

As a symbolic method, we can truncate the Jacobi itera-
tion at a very early stage to obtain closed-form parametric
expressions. It will also correctly calculate the renormal-
ized energy and other couplings while keeping the energy
structure in the perturbative limit, as will be discussed in
Sec. II B.

B. Recursive Schrieffer-Wolff perturbation method

In the previous subsection, we introduced NPAD that
produces a closed-form, parametric expression of an
approximately diagonalized matrix. Here, we show that in
the perturbative limit, where the coupling is much smaller
than the bare energy difference, the Jacobi iteration reduces
to a Schrieffer-Wolff-like transformation. Interestingly, the
recursive nature of the Jacobi iteration is preserved in this
limit. Instead of looking for one generator that diagonal-
izes the full matrix as in the traditional SWT, an iteration
is constructed such that every time only the leading-order
coupling is removed. We refer to it as RSWT because
of the recursive expression it produces. We also show
that RSWT demonstrates an exponential improvement in
complexity compared to SWT for perturbation beyond the
leading order. In Sec. III B, we demonstrate an application
of RSWT in estimating the ZZ interaction between two
transmon qubits in a dispersive regime.

1. Givens rotation in the perturbative limit

In the perturbative limit, compared to Ujk in Eq. (7), it is
more convenient to specify the generator defined in Eq. (3).
For the Givens rotation Ujk, the corresponding generator S′
has two nonzero entries

S′
j ,k = −S′

k,j
∗ = Hj ,k/(Hj ,j − Hk,k), (13)

all other entries being 0. In addition, assuming that we only
aim at removing the leading-order off-diagonal terms, we

define a generator

S =
∑
p∈P

S′
p , (14)

where the sum over P denotes all pairs of nonzero off-
diagonal entries in H . The assumption of perturbation
indicates that ‖S‖F 
 1. In this case, the unitary generated
by S still eliminates all the leading-order coupling because

exp(S) = exp
( ∑

p∈P
S′

p

)
=

∏
p∈P

eS′
p + O(‖S‖2

F). (15)

This generator S is identical to the generator of the leading-
order SWT. One can verify that [S, D] = −V, where D and
V are the diagonal and off-diagonal parts of H . By expand-
ing the transformation eSHe−S using the BCH formula,

H ′ = eSHe−S = H + [S, H ] + 1
2!

[S, [S, H ]] + · · · , (16)

and truncating the series at O(‖S‖2
F), one obtains the

leading-order SWT.
The difference between RSWT and SWT appears when

one considers higher-order perturbation. In SWT, one
expands the transformed Hamiltonian H ′ and the genera-
tor S perturbatively as a function of a small parameter and
collects terms of the same order on both sides of Eq. (16).
However, here, the generator is predefined and it only elim-
inates the leading-order coupling. Similar to the Jacobi
iteration, we treat the transformed Hamiltonian H ′ as a
new Hermitian matrix and perform another leading-order
transformation round as the next iteration. This results in
a recursive expression for H ′, which is still a closed-form
expression. The remaining off-diagonal terms can always
be removed by the next iteration if the truncation level of
the BCH formula is high enough to guarantee sufficient
accuracy. We present the iteration of RSWT in detail in the
next subsection and show that it simplifies the calculation
for perturbation beyond the leading order.

2. The RSWT iterations

In the following, we outline the iterative procedure of
the RSWT. We denote the initial matrix H as step zero,
with the notation D0 = D, V0 = λV, and H0 = H = D0 +
V0. The parameter λ is the dimensionless small parameter
used to track the perturbation order. Assume that we want
to compute the perturbation to the eigenenergy up to the
order λK . We refer to this as the λK perturbation. Given the
Hamiltonian of iteration n, Hn, we can compute the next
iteration Hn+1 as follows.

We first define a generator Sn+1 according to Eq. (14)
such that [Sn+1, Dn] = −Vn, where Dn and Vn are the diag-
onal and the off-diagonal parts of Hn. As the energy gap
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Algorithm 2. Recursive Schrieffer-Wolff transformation.

Dn always stays at O(λ0) under the assumption of small
perturbation, Sn+1 is of the same order as Vn. Note that
Sn+1 is generated from the perturbed matrix in the previ-
ous iteration, Hn, in contrast to the unperturbed matrix as
in SWT.

Then, the next level of perturbation is computed with

Hn+1 =
m∑

t=0

1
t!
Ct(Sn+1, Dn) +

m−1∑
t=0

1
t!
Ct(Sn+1, Vn), (17)

where C is the nested commutator defined by

Ct+1(A, B) = [A, Ct(A, B)] (18)

and C0(A, B) = B. The truncation level m of the BCH
expansion will be defined explicitly later. Because
[Sn+1, Dn] = −Vn by construction, we have, for all n and
t,

Ct+1(Sn+1, Dn) = −Ct(Sn+1, Vn). (19)

Therefore, substituting Eq. (19) into Eq. (17) simplifies
it to

Hn+1 = Dn +
m−1∑
t=1

t
(t + 1)!

Ct(Sn+1, Vn). (20)

Note that t starts from 1 in the sum, which means that all
coupling terms at the same order of Vn are removed and
the order of the remaining coupling, Vn+1, is squared. This
iteration is applied until the desired order is reached, as
summarized in Algorithm 2.

To ensure that the truncation of the BCH is accu-
rate up to the order O(λK) for the nth iteration, we
need to choose the truncation m = �K/2n�, which ensures
that Hn+1 = e(Sn+1)Hne(−Sn+1) + O(λK+1). This maximal

level m is halved every time the iteration step increases
because the remaining coupling is quadratically smaller.
This means that, in contrast to SWT, the first iteration has
the largest number of terms in RSWT. In Appendix A, we
show that, if ‖Sn+1‖ < 1

2 , the error of the truncation in Eq.
(20) is bounded by

‖Hn+1 − H∞
n+1‖ ≤ 2m

m!
‖Sn+1‖m‖Vn‖, (21)

where H∞
n+1 is Eq. (20) in the limit m → ∞.

C. Block diagonalization

Both the NPAD and RSWT methods introduced in the
previous sections can be designed to only target a selected
set of off-diagonal terms and, hence, used for block diago-
nalization. This is especially useful to engineer transversal
coupling in a subsystem and leave the remaining levels as
intact as possible. Here, we briefly discuss these general-
izations. Note that it is always possible to first diagonalize
the matrix and then reconstruct the block-diagonalized
form that satisfies certain conditions, for instance as in Ref.
[44]. In the following, we discuss only methods that do not
diagonalize the matrix first.

In NPAD, by construction, each rotation removes one
off-diagonal element. With Givens rotations only applied
to the interblock elements, an iteration for block diago-
nalization can be defined. The norm of all off-diagonal
entries, ‖H‖F , is still monotonously decreasing according
to Eq. (11). Hence, a limit exists and its convergence is also
the convergence of the block diagonalization. However,
the convergence is not always monotonous with respect
to the norm of all interblock terms. This is because a
Givens rotation may rotate a large intrablock term into an
interblock entry. Therefore, the algorithm may not always
converge faster than the full diagonalization would. Never-
theless, if the dominant coupling terms in the Hamiltonian
are known, the Jacobi iteration can be designed to tar-
get those to realize an efficient block diagonalization. In
Sec. III C, we show an example of this in computing the
cross-resonance coupling strength through NPAD.

For perturbation, RSWT can be applied as a block-
diagonalization method under the constraint that both the
interblock and intrablock couplings are much smaller than
the interblock energy gap. This can be achieved by slightly
modifying the RSWT iterations. We first separate the diag-
onal, the intrablock, and the interblock terms: Hn = Dn +
Vintra

n + Vinter
n . Next, in Algorithm 2 we only define S for

those nonzero entries in Vinter
n , i.e., the couplings we wish
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to remove. And in the last step we replace Eq. (20) with

Hn+1 = Dn +
m−1∑
t=1

t
(t + 1)!

Ct(Sn+1, Vinter
n )

+
m∑

t=0

1
t!
Ct(Sn+1, Vintra

n ). (22)

In this definition, the leading interblock coupling is of the
order O([Sn+1, Vintra

n ]). As we do not remove the intrablock
coupling, we still get Vintra

n = O(λ). Therefore, the remain-
ing coupling is O(λVintra

n ), i.e., the perturbation order is
increased by one, instead of being squared as in the case
of full diagonalization. Therefore, the exponential reduc-
tion of the number of commutators does not always apply
in the case of block diagonalization. However, note that
the small parameter λ here is defined as the (largest) ratio
between the interblock couplings and gaps, which is usu-
ally much smaller than those within the block. Hence, if
carefully designed, the convergence can still surpass the
full diagonalization in the first few perturbative orders.

D. Comparison between different methods

To help understand the proposed methods, here we
discuss the difference between them and the traditional
methods. We first compare RSWT with traditional SWT
and then NPAD with the perturbation methods.

For RSWT, with the same target accuracy, e.g., O(λK),
it should provide the same expression as from SWT, up to
the error O(λK+1). However, compared to SWT, RSWT
requires a much smaller number of iterations and commu-
tators. To reach O(λK), SWT needs K − 1 iterations, while
RSWT only needs �log2(K)� because of the quadratic
convergence rate. More importantly, the total number of
commutators grows only linearly for RSWT, compared to
the exponentially fast growth for SWT [7].

Intuitively, this is because RSWT uses the recursive
structure and avoids unnecessary expansions of the inter-
mediate results. Mathematically, this can be seen from
the following two aspects. First, in RSWT, each iteration
improves the perturbation level from λk to λ2k, instead of
λk+1. Hence, the number of iterations increases only loga-
rithmically with respect to the perturbation order, as seen
in the definition of nmax in Algorithm 2. This is because
we always treat the transformed matrix as a new one and
remove the leading-order coupling. It is consistent with
the quadratic convergence rate of the Jacobi iteration with
small off-diagonal terms. Second, in RSWT, the generator
Sn is only used at the current iteration. Hence, there are no
mixed terms such as [S2, [S1, V0]], in contrast to SWT.

The total number of commutators required to reach level
λK is shown in Table I, where we have taken into con-
sideration that, if Ct(A, B) is known, computing Ct+1(A, B)

TABLE I. The number of terms in the evaluation for different
methods to reach the λK perturbation. The number denotes the
total number of commutators in SWT and RSWT, or the total
number of sweeps over all couplings for NPAD. This describes
both the “algebraic complexity” (i.e., complexity of the output
algebraic expressions) and the computational (time-cost) com-
plexity. The complexity is reduced from exponential to linear and
eventually to logarithmic. However, note that, although the com-
putational complexity for one commutator and for one Jacobi
sweep scales the same in terms of the number of couplings to
be removed (see the main text), the Givens rotation in NPAD
consists of nonlinear algebraic expressions that are individually
more expensive to compute.

K

2 3 4 5 6 7 8

SWT 1 4 11 26 57 120 247
RSWT 1 2 4 5 7 8 11
NPAD 1 1 2 2 2 2 3

requires only one additional commutator. The detailed
calculation is presented in Appendix B.

The NPAD method, on the other hand, uses nonlinear
rotations to replace the linear perturbative expansion. More
concretely, in the Jacobi iteration, by targeting only one
coupling in each recursive iteration, the unitary transfor-
mation can be analytically expressed as a Givens rotation,
thus avoiding the BCH expansion in Eq. (16). Therefore,
it efficiently and accurately captures the nonperturbative
interactions in the system.

To compare it with the perturbation methods, we esti-
mate the number of operations required for NPAD in the
perturbative regime. Assume that we construct the Jacobi
iteration from the G coupling terms used in generating an
S in RSWT. Applying those unitaries is, to the leading
order, the same as applying one RSWT iteration. A single
Givens rotation on a Hamiltonian takes O(N ) operations,
where N is the matrix size. Thus, the cost for computing
the effective Hamiltonian after G rotations is the same as
computing one commutator [S, ·], up to a constant factor.
Because the Givens rotation avoids the BCH expansion,
there is no nested commutators and the total number of
operations is O(nmaxNG) with nmax the number of itera-
tions in Algorithm 2. Hence, the number of terms scales
logarithmically with respect to K instead of linearly as
for RSWT, i.e., a superexponential reduction compared to
SWT (Table I). However, the nonlinear expressions pro-
vided by NPAD are usually harder to simplify and evaluate
by hand compared to the rational expressions obtained
from perturbation.

From the above discussion, one can see that it is
also straightforward to combine NPAD with perturba-
tion. Instead of fully diagonalizing the matrix, the Jacobi
iteration can be designed to remove only the dominant cou-
plings and combined with perturbation methods to obtain
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simplified analytical expressions. In fact, this is often used
implicitly in the analysis when, e.g., a strongly coupled
two-level system is perturbatively interacting with another
quantum system. The Jacobi iteration suggests that this
can be generalized systematically to more complicated
scenarios.

III. PHYSICAL APPLICATIONS

In this section, we use the methods introduced in Sec. II
to study the ZZ interaction in two different parameter
regimes. In a two-qubit system, the ZZ interaction strength
is defined by

ζ = E11 − E10 − E01 + E00, (23)

where Ejk denotes the eigenenergy of the two-qubit
states |jk〉. The Hamiltonian interaction term is written
as ζσz1σz2 , acting on the two qubits. Typically, in super-
conducting systems, it arises from the interaction of the
|11〉 state with the noncomputational state in the physical
qubits, and can both be used as a resource for entangling
gates [21–24] or viewed as crosstalk noise that needs to be
suppressed [25–41].

A. Effective ZZ entanglement from multilevel
nondispersive interactions

In this first application, we apply the NPAD method
described in Sec. II A to study a model consisting of two
directly coupled qubits in the near-resonant regime, where
the ZZ interaction can be used to construct a control-Z (CZ)
gate (see Fig. 1 block B) [21–24]. We show that, with two
rotations, NPAD provides an improvement on the estima-
tion of the interaction strength for at least one order of
magnitude, compared to approximating the system as only
a single avoided crossing between the strongly interacting
levels, as is standard in the literature. In addition, if one of
the noncomputational bases is comparably further detuned
than the other, the correction takes the form of a Kerr non-
linearity, with a renormalized coupling strength accounting
for the near-resonant dynamics.

We consider the Hamiltonian of two superconducting
qubits that are directly coupled under the rotating-wave
[45,46] and Duffing [47] approximations:

H =
∑

q∈{1,2}
ωqb†

qbq + αq

2
b†

qb†
qbqbq + g(b1b†

2 + b†
1b2).

(24)

Here bq, ωq, αq are the annihilation operator, the qubit
bare frequency, and the anharmonicity, respectively. The
parameter g denotes the coupling strength. In this Hamil-
tonian, the sum of the eigenenergies is always a constant
E10 + E01 = ω1 + ω2 because of the symmetry. Hence, the
ZZ interaction comes solely from the interaction between
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FIG. 3. (a) Interaction and energy level diagram of the two-
excitation manifold in the unperturbed Hamiltonian given by
Eq. (25). The solid lines represent the bare qubit states, while
the arrow and the dashed purple line denote the Stark shift and
the eigenenergy of the perturbed |11〉 state. (b) Performance
of ZZ interaction estimation using NPAD. We plot the relative
difference between the estimated ζ and the value obtained by
numerical diagonalization ζ̃ . The estimations are computed with
two rotations [solid line, Eq. (31)], a hybrid method with the
additional assumption that � � δ, gj [dashed line, Eq. (32)], by
assuming only a two-level system [dash-dot line, Eq. (26)], and
with a leading-order perturbation (dotted line). The shaded area
covers the region below the error estimation given by Eq. (33).
The gray arrow denotes a typical path to generate a CZ gate
through ZZ interaction by changing the qubit-qubit detuning.
The two jumps are located at ω1 = ω2 + α2 and ω1 + α1 = ω2,
i.e., the points where the bare energy level swaps. This changes
the direction of the Givens rotation. The parameters used are
g1 = g2 = √

2 · 0.1 GHz and α1 = α2 = −0.3 GHz.

the state |11〉 and the noncomputational bases |20〉 and
|02〉. If the frequency is tuned so that state |11〉 is close
to one of the noncomputational states, the coupling will
shift the eigenenergy, leading to a large ZZ interaction
[Fig. 3(a)].

For simplicity, we consider the Hilbert subspace consist-
ing of |20〉, |11〉, |02〉 and write the Hamiltonian

H =
⎛
⎝ δ g1 0

g1 −δ g2
0 g2 −�

⎞
⎠ . (25)

The parameters in the diagonal elements are given by δ =
(ω1 − ω2 + α1)/2 and � = 3(ω1 − ω2)/2 − α2 + α1/2.
To keep the result general, we use two different coupling
strengths g1 and g2, although according to Eq. (24) they
both equal

√
2g. Without loss of generality, we assume

that state |02〉 is comparably further detuned from the other
two, i.e., � > gj , δ. If in contrast |20〉 is further detuned,
one can exchange the |02〉 and |20〉 in the matrix and rede-
fine δ and � accordingly. Note that this Hamiltonian is
different from a � system [3], where coupling exists only
between far-detuned levels.
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To implement the CZ gate, one tunes the qubit frequency
ω1 so that the states |11〉 and |20〉 are swept from a far-
detuned to a near-resonant regime. Hence, the perturbative
expansion diverges and cannot be used. A naive approach
is to neglect the far-detuned state |02〉 and approximate the
interaction as a single avoided crossing. In this case, ζ is
approximated by

ζtwo level ≈ δ − δ

√
1 + g2

1

δ2 . (26)

However, the interaction g2 results in an error that, in the
experimentally studied parameter regimes, can be as large
as 10%, as shown in Fig. 3(b).

In the following, we show that, with only two Givens
rotations, one can obtain an analytical approximation, with
the error reduced by one order of magnitude. The cor-
rection can be understood as a Kerr nonlinearity with a
renormalized coupling strength.

To get an accurate estimation of the ZZ interaction ζ , we
need to calculate the eigenenergy of |11〉 by eliminating its
coupling with the other two states. Therefore, we make two
rotations sequentially on entries (0, 1) and (1, 2), given by

H (2) = U2H (1)U†
2 = U2U1HU†

1U†
2, (27)

where U1 and U2 are Givens rotations [Eq. (3)] constructed
for eliminating entries (0, 1) and (1, 2). Because the matrix
is real symmetric, the phase φ in Eq. (3) is 0.

The first transformed Hamiltonian, H (1) = U1HU†
1,

takes the form

H (1) =
⎛
⎝ E2 0 g2s01

0 −E2 c01g2
g2s01 c01g2 −�

⎞
⎠ , (28)

where E2 = δ

√
1 + g2

1/δ
2 is the eigenenergy for diagonal-

izing the two-level system of |20〉 and |11〉, consistent with
Eq. (26). The notation used is the same as in Sec. II A 3. In
this frame, the coupling between |11〉 and |02〉 is reduced
to c01g2, where c01 is given by the nonlinear expression

c01 = 1√
[(E2 − δ)/g1]2 + 1

. (29)

This nonlinearity is crucial for the accurate estimation of
the eigenenergy.

The second rotation further removes this renormalized
coupling c01g2, giving

H (2) =
⎛
⎝ E2 g2s01s12 c12g2s01

g2s01s12 −E2 + g2c01t12 0
c12g2s01 0 −� − g2c01t12

⎞
⎠ .

(30)

Including the new correction, g2c01t12, the eigenenergy of
state |11〉 reads

H (2)

1,1 = −E2 + � − E2

2

(√
1 +

(
2c01g2

� − E2

)2

− 1
)

. (31)

In Fig. 3(b), we plot the error of the estimated interaction
strength ζ = H ′

1,1 + δ using typical parameters of super-
conducting hardware, compared to the numerical diago-
nalization ζ̃ . An improvement of at least one order of
magnitude is observed compared to traditional methods.

Following the assumptions that � � δ, gj , Eq. (31)
simplifies to

H (2)

1,1 ≈ −E2 + c2
01g2

2

� − E2
. (32)

We see that the correction takes the form of a Kerr non-
linearity [48], but with a renormalized coupling strength
c01g2. This nonlinear factor c01 accounts for the dynam-
ics between |20〉 and |11〉 in the near-resonant regime. The
same effect can be observed in higher levels where similar
three-level subspaces exist. This approximation is plotted
as a dashed curve in Fig. 3(b).

The error of this estimation comes both from the expan-
sion of the square root in Eq. (31) as well as from the
remaining coupling in H (2). The former can be approxi-
mated by the next-order expansion

ε1 ≈ c4
01g4

2

(� − E2)3 . (33)

For the latter, we consider the remaining coupling in
H (2) between |20〉 and |11〉, which reads g2s01s12. In the
limit � � δ, gj , we have s12 ≤ θ12/2 ≤ g2/(� − E2) 

1, indicating that this coupling is much smaller than the
energy difference. Hence, further correction can be esti-
mated by

ε2 ≈ (H (2)

0,1 )
2

|H (2)

0,0 − H (2)

1,1 |
≤ (g2s01s12)

2

g1
≤ g4

2s2
01

g1(� − E2)2 . (34)

The contribution of the other remaining coupling between
|20〉 and |02〉 is much smaller due to the large energy
gap. Since ε2 is one order smaller than the ε1, ε1 will be
the dominant error. We plot the region below this error in
Fig. 3(b) as a shaded background.

For the more general cases without assuming that � �
δ, gj , it is hard to provide an error estimation due to the
nonlinearity. However, the result in Fig. 3(b) indicates that
Eq. (31) still shows a good performance in other parame-
ter regimes commonly used in superconducting hardware,
with an error smaller than 3%. We also observe that
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an improvement of another order of magnitude can be
achieved by introducing a third rotation again on the (0, 1)

entry.

B. ZZ coupling suppression in the quasidispersive
regime

In this second example, we use the two methods to
investigate the suppression of ZZ crosstalk with the qubit-
resonator-qubit setup in the dispersive circuit QED regime,
which corresponds to block A in Fig. 1. We demonstrate
that in the traditional setup without direct interqubit cou-
pling, the ZZ interaction defined in Eq. (23) can still be
zeroed in a quasidispersive regime by engineering the two
parameters of qubit-resonator detuning. The zero points are
described by an equation of a circle in the λ4 perturbation.
To accurately capture the interaction strength in the qua-
sidispersive regime, we also compute with RSWT the λ6

perturbation and show that the NPAD method with only
eight Givens rotations provides an expression with similar
accuracy.

We consider a Hamiltonian of two superconducting
qubits connected by a resonator:

H =
∑

q∈{1,2}
ωqb†

qbq + αq

2
b†

qb†
qbqbq

+ gq(bqa† + b†
qa) + ωra†a. (35)

Because of the finite detuning between the resonator and
the qubits, a static ZZ interaction exists even if there is
no additional control operation on the system. In order to
implement high-quality quantum operations, this interac-
tion needs to be sufficiently suppressed.

Several approaches have been developed to suppress the
ZZ interaction. One way is to add a direct capacitive cou-
pling channel in parallel with the resonator [27–36,49]. By
engineering the parameters, the two interaction channels
cancel each other. The interaction can either be turned on
through a tunable coupler or through the cross-resonant
control scheme. The second approach is to choose a hybrid
qubit system with opposite anharmonicity, which allows
parameter engineering to suppress the ZZ interaction. One
implementation is using a transmon and a capacitively
shunt flux qubit [25,26]. Other methods include using an
additional off-resonant drive [39–41] and different types of
qubits have also been proposed [38].

Most of the above works are based on the strong disper-
sive regime, where the resonator is only weakly coupled
with the qubits. In this regime, the ZZ interaction strength
ζ is only determined by the effective interaction with the
two noncomputational qubit states, |20〉 and |02〉 [7]:

ζdisp = − 2J 2
20,11

�1 − �2 + α1
+ 2J 2

02,11

�1 − �2 − α2
. (36)

Here �q = ωq − ωc is the qubit-resonator frequency
detuning, αq the anharmonicity, and Jjk,j ′k′ the effective
coupling strength between the physical qubit states |jk〉
and

∣∣j ′k′〉. They are obtained by performing a leading-order
SWT and effectively decoupling the resonator from the
two qubits. In this regime, it is impossible to achieve zero
ZZ interaction unless the two anharmonicities αq adopt
different signs.

However, Eq. (36) is only valid when ignoring the
higher level of the resonator. If we reduce the qubit detun-
ing �q so that it becomes comparable with the anhar-
monicity αq, the second excited state of the resonator
comes into the picture and can be used to suppress the ZZ
interaction, also known as the QUASIDISQ regime [10,37].
We identify this regime as the quasidispersive regime
because g/�q is manufactured larger than 0.1, e.g., in
superconducting qubits with weak anharmonicity such as
transmons, though we show the same analysis can also
hold for stronger anharmonicities. As a result, the calcu-
lation of ζdisp cannot be treated by only the leading-order
SWT. In particular, we see that, in the straddling regime,
where |�1 − �2| < α, the interaction with the second
excited resonator state leads to a λ4-perturbative correction
that can be used to suppress the ZZ interaction.

In the following, we first use the λ4 perturbation to
qualitatively understand the energy landscape and then
investigate the higher-order corrections. For the λ4 per-
turbation, using RWST, we only need two iterations and
evaluate four commutators instead of three iterations and
11 commutators, as for traditional perturbation (Table I).

In fact, the traditional approach that first approximates
the system as an effective qubit-qubit direct interaction and
then applies another perturbation to obtain the ZZ strength
is also a two-step recursion [7]. However, for simplicity,
it neglects the resonator states in the second perturbation.
As detailed in Appendix C, adding the resonator states, we
obtain a better estimation for the quasidispersive regime.
The result is consistent with the diagrammatic techniques
used in Refs. [25,50].

To illustrate the energy landscape, we write the interac-
tion strength as

ζ (4) = g2
1g2

2

(
1

�2
1(�− − α2)

− 1
�2

2(�− + α1)

+ �1 + �2

�2
2�

2
1

)
(37)

with �− = �1 − �2. The first two terms coincide with
Eq. (36) in the strong dispersive regime, up to O(g4/�3).

Assuming that α = α1 = α2 and setting ζ (4) = 0 in
Eq. (37), we obtain an equation of a circle that describes
the location of the zero points:

(�+−α)2 + �2
− − α2 = 0 (38)
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FIG. 4. (a) The landscape of the ZZ interaction strength |ζ | as a function of �+ = �1 + �2 and �− = �1 − �2. Left: numerical
diagonalization of the so-called QUASIDISQ regime [10]. Right: the λ4-perturbative approximation. In the perturbative approximation,
the zero points are described by a circle with a diameter of 2|α|. The particularly interesting regime is the left part of the circle and
away from the resonant line, where perturbation theory can still be applied, which is marked by the gray rectangle. In the numerical
result, the circle is distorted due to the resonant lines and the left half of the circle shrinks because of the higher-order perturbative
correction. (b) The numerical result compared to the perturbative correction up to λ6 = (g/�)6 and the Jacobi iteration with eight
two-by-two Givens rotations. Parameters used are g1 = g2 = 0.05 GHz, α1 = α2 = α = −0.33 GHz, and �− = 0.4|α|.

with �+ = �1 + �2 and �− = �1 − �2. In this λ4 per-
turbation, the zero points depend only on the anharmonic-
ity α but not on the coupling strength gq. Equation (38)
indicates that the ZZ interaction can be suppressed by
varying the sum and difference of the two qubit-resonator
detunings, as illustrated in Fig. 4(a). Because the pertur-
bative approximation is only valid away from the resonant
lines, the useful part of the parameter regime is the half-
circle with �+ < α, in particular, the region marked by
the gray box in Fig. 4(a).

In addition, we also study different contributions to the
ZZ interaction. In Fig. 5(a), we plot the strong dispersive
approximation, the λ4 perturbation, as well as the con-
tribution of the second excited qubit and resonator state
to ζ (4) (see Appendix C for analytical expressions). One
observes from the plot that, in the quasidispersive regime,
the increasing virtual interaction with the second excited
resonator state acts against the interaction with the sec-
ond excited qubit states. Note that all contributions to ζ (4)

are virtual interactions of the second excited state, i.e.,
ζ (4) = ζt + ζr, as illustrated in Fig. 5(b).

Although the λ4 perturbation gives insight into the
different contributions to the energy shift, perturbation
beyond the order λ4 also has a non-negligible contribution
in the quasidispersive regime. Since RSWT requires con-
siderably fewer commutators, we are able to compute the
λ6 perturbation, with only two iterations and seven com-
mutators (see Table I). The λ6 perturbation captures the
location of the minimum more accurately, but still shows
a false minimum close to the resonant regime, as shown in
Fig. 4(b).

Apart from perturbation, we also apply NPAD to com-
pute the interaction strength. We first define four Givens
rotations with respect to the direct qubit-resonator coupling

terms from the original Hamiltonian. The rotations are then
applied sequentially to obtain the first effective Hamilto-
nian. Next, we apply another four rotations targeted at
the two-photon couplings, such as the effective qubit-qubit
coupling. The indices of those eight rotations are listed
in the first two columns of Table II. These two steps
are equivalent to the two iterations in RSWT. However,
the recursive Givens rotations replace the BCH expan-
sion, resulting in a much simpler calculation. Illustrated in
Fig. 4(b), the approximation with those eight rotations is
as good as the λ6 perturbation, but without the false mini-
mum. Both capture the zero points very well compared to
the numerical diagonalization, where the four lowest levels
are included for each qubit and the resonator.

With those calculations, we can then investigate the
effect of the high-order corrections. We find that, for
instance, gq shifts the zero point to the regime of
smaller frequency detuning, corresponding to shrinking the

TABLE II. Leading coupling terms in (block) diagonalizing
the static and the driving Hamiltonians of the cross-resonance
gate, upon which the Jacobi iteration is constructed. For the static
Hamiltonian (Sec. III B), the three numbers refer to the state of
the resonator, qubit 1, and qubit 2, respectively. For example,
010-001 denotes the effective coupling between the two qubits.
For the driving Hamiltonian (Sec. III C), we use the effective
qubit-qubit model. Hence, only the qubit states are listed.

Static H Driving Hd

Step 1 Step 2

010-100 011-200 00-10
001-100 001-010 01-11
011-101 011-002 10-20
011-110 011-020 11-21
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FIG. 5. (a) Different contributions to the ZZ interaction in the
quasidispersive regime. The symbols ζt and ζr represent the con-
tribution of virtual interaction with the second excited qubit (t)
and resonator (r) states in the λ4 perturbation. The former is the
typical cause of ZZ crosstalk in the strong dispersive regime,
while the latter is used to counteract the energy shift. The nota-
tion ζ (4) refers to the λ4 perturbation [Eq. (37)] that goes past zero
in the quasidispersive regime. In addition, ζdisp denotes the strong
dispersive approximation [Eq. (36)], which also underestimates
the ZZ interaction induced by the nonqubit states. Parameters
used are the same as in Fig. 4. (b) Illustration of the two con-
tributions to the ZZ interaction strength in the quasidispersive
regime. The solid lines and the curved arrows represent the bare
states and the interaction among them. The second excited res-
onator and transmon states push the qubit |11〉 state into different
directions.

half-circle in the numerical calculation in Fig. 4(a). In
addition, for stronger coupling strength, the dip becomes
narrower, which indicates a trade-off between the inter-
action strength and feasibility of qubit fabrication [51].
A detailed description of the effect of higher-order per-
turbation in the quasidispersive regime is presented in
Appendix D.

Overall, our investigation reveals different contributions
to the ZZ interaction and provides tools to study the
energy landscape in this quasidispersive regime. Because
of the comparably smaller detuning, operations on this
regime provide stronger interactions for entangling gates,
and hence may achieve a better quantum speed limit for
universal gate sets, i.e., without sacrificing local gates [10].

C. The cross-resonance coupling strength

Following the previous examples, here we study super-
conducting qubits under an external cross-resonance drive.

The cross-resonance interaction is activated by driving the
control qubit with the frequency of the target qubit, which
has been studied intensively and demonstrated in various
experiments [33,52–56]. In the two-qubit subspace, the
dominant Hamiltonian term is written as a Pauli matrix
ZX , which generates a controlled-NOT gate up to single-
qubit corrections. Therefore, ideally, only the population
of the target qubit will change after the gate operation. The
effective model is usually derived by block diagonalizing
the nonqubit leakage levels as well as the population flip
of the control qubit [7,8,57]. The coupling strength is then
characterized by the coefficient of the ZX Hamiltonian
term.

The analytical block diagonalization of the Hamiltonian
is only possible when neglecting all the nonqubit levels.
Hence, perturbative expansion is often used, where the
small parameter is defined as �/�−, i.e., the ratio between
the drive amplitude and the qubit-qubit detuning. How-
ever, to achieve fast gates, the qubit-qubit detuning is often
designed to be small, ranging from 50 to 200 MHz. There-
fore, the perturbative diagonalization only works well for
a weak drive.

In the rest of this subsection, we show that, with only
four two-by-two Givens rotations on the single-photon
couplings, we can block diagonalize the drive term and
obtain an estimation of the coupling strength as good as
the numerical result and far above the perturbative regime.

We start from the static Hamiltonian H in Eq. (24) and
define a driving Hamiltonian in the rotating frame

Hd = �

2
(b1 + b†

1). (39)

The full Hamiltonian is then written as H + Hd − HR,
where HR = ωd(b

†
1b1 + b†

2b2) with ωd the driving fre-
quency [7]. To compute the interaction strength, both the
qubit-qubit effective interaction g and the drive on the con-
trol qubit � need to be diagonalized. In particular, the
second one can be as large as the energy gap and dominant
in the unwanted couplings [57]. For simplicity, we assume
that g is small and diagonalize it with a leading-order per-
turbation, discarding all terms smaller than O(g2). In this
frame, one obtains a ZX interaction that increases linearly
with the drive strength [7]. This is equivalent to mov-
ing to the eigenbases of the idling qubits and allows us
to focus on applying NPAD to the drive Hd. The same
method used in Sec. III B can be applied here to improve
this approximation.

Targeting the dominant drive terms listed in the right
column of Table II, we construct four Givens rotations. The
rotations are constructed with respect to the same Hamilto-
nians and then applied iteratively as separate unitaries. The
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FIG. 6. Cross-resonance coupling strength as a function of the
drive strength. The analytical coupling strength is computed with
four two-by-two Givens rotations on the single-photon coupling
terms [Eq. (40)] and compared to the perturbative expansion and
the numerical calculation. The parameters used are inspired by
the device in Ref. [33], with the qubit-qubit detuning approxi-
mately 60 MHz, the effective qubit-qubit coupling −3 MHz, and
the anharmonicity −0.3 GHz for both qubits.

obtained ZX interaction strength reads

ωZX = g�

(
s2

1c2
2 − c2

1

2�−
− s2

2

�−+α1

+ (s2
1 − c2

1c2
2)(α1 − �−) − √

2α1s1s2c2

2�−(�−+α1)

)
(40)

with cj = cos
(
θj /2

)
, sj = sin

(
θj /2

)
, and �− = ω1 − ω2.

The rotation angles are defined by the drive strengths θ1 =
arctan(�/�−) and θ2 = arctan[

√
2�/(2�− + α1)].

This analytical coupling strength is plotted in Fig. 6,
compared with the perturbative expansions in Ref. [7]
and numerical block diagonalization. The result matches
well with the numerical calculation, even when the ratio
�/�− is approaching one. On the contrary, the pertur-
bative expansion shows a large deviation as the driving
power increases. The numerical block diagonalization is
implemented using the least action method [7,29,44]. To
our surprise, although no least action condition is imposed
on the Jacobi iteration, the method automatically follows
this track and avoids unnecessary rotations. This suggests
that the Jacobi iteration chooses an efficient path of block
diagonalization.

Note that in the above example no rotations are per-
formed for levels beyond the second excited state because
they are not directly coupled to the qubit subspace. In other
parameter regimes, more couplings terms may become
significant and need to be added to the diagonalization.
For instance, the two-photon interaction between |0〉 and
|2〉 of the control qubit will be dominant in the regime
where �− ≈ −α2/2 [8]. The fact that high precision can

be achieved with only rotations on the single-photon cou-
plings in this example also indicates that the dominant
error of perturbation lies in the BCH expansion used in
diagonalizing the strong single-photon couplings, rather
than in higher levels or high-order interactions.

IV. CONCLUSION AND OUTLOOK

We introduced the symbolic algorithm NPAD, based
on the Jacobi iteration, for computing closed-form,
parametric expressions of effective Hamiltonians. The
method applies rotation unitaries iteratively on to a Hamil-
tonian, with each rotation recursively defined upon the
previous result and removing a chosen coupling between
two states. Compared to perturbation, it uses two-by-two
rotations to avoid the exponentially increasing commu-
tators in the BCH expansion. In the perturbative limit,
the method reduces to a modified form of the Schrieffer-
Wolff transformation, RSWT, that inherits the recursive
structure of the Jacobi iteration. The recursive structure
avoids unnecessary expansion and results in an exponen-
tial reduction in the number of commutators compared
to the traditional perturbative expansion. The two meth-
ods can also be combined as a hybrid method, where
NPAD is used to remove strong couplings while RSWT
is applied afterwards to effectively eliminate the remaining
weak coupling.

Applying these methods to superconducting qubit sys-
tems, we showed that high-precision estimation can be
achieved beyond the perturbation regime, either as explicit
short analytical expressions, or closed-form parametric
expressions for computer-aided calculation. Although in
the study we used the Kerr model, more detailed models
such as those in Ref. [8] can also be incorporated with little
additional effort.

Despite the fact that using the Jacobi iteration for
machine-precision diagonalization is less efficient than
other methods such as QR diagonalization, the iteration
can be truncated for symbolic approximation. For many
questions in quantum engineering, the largest part of the
energy structure and dominant couplings is known in
advance. Therefore, the iterative method can be designed
for removing dominant couplings and decoupling a sub-
space from nonrelevant Hilbert spaces, which is often used
in modeling dynamics in large quantum systems [18,58].
The result is, however, always a closed-form, parametric
expression, which, though usually harder for the human to
read, shows its own advantage in computer-aided calcula-
tions.

We expect our method to have significant application
in quantum technologies, where elimination of auxiliary
or unwanted spaces (e.g., for block diagonalization) needs
to be done to significant precision to enable practically
useful models. In particular, relevant applications include
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experiment and architecture design, reservoir engineer-
ing, crosstalk suppression, few- and many-body interaction
engineering, effective qubit models, and more generally
improved approximations where Schrieffer-Wolff meth-
ods are typically used. We also expect that the meth-
ods presented here will find extensions for simplifying
other equations of motion, such as in open-quantum sys-
tems [59,60], nonlinear systems [61], or for uncertainty
propagation [62]. Last but not least, accurate, paramet-
ric diagonalization should be especially useful for time-
dependent diagonalization where adiabatic following can
be enforced by DRAG [63,64] or other counterdiabatic
[65,66] approaches.
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APPENDIX A: THE ERROR BOUND FOR
TRUNCATING THE BCH EXPANSION

In the main text, we presented Eq. (20) as the expression
to compute the transformed matrix H ′, which is a function
of the off-diagonal part of the original matrix V and the
generator S. The expression is derived from a truncated
BCH formula. In the following, we derive the error bound
of the truncation.

Without truncation, Eq. (20) is written as

H ′
ideal = D +

∞∑
t=1

t
(t + 1)!

Ct(S, V), (A1)

where we neglected the index n for the iteration step. If the
expansion is truncated at t = m − 1, one obtains

ε = ‖H ′
ideal − H ′

trunc‖

= ‖
∞∑

t=m

t
(t + 1)!

Ct(S, V)‖

≤
∞∑

t=m

t2t

(t + 1)!
‖S‖t‖V‖

≤ 2m

m!
‖S‖m

1 − ‖S‖‖V‖, (A2)

where we assume in the last inequality that ‖S‖ < 1/2.

APPENDIX B: EFFICIENCY COMPARISON
BETWEEN RSWT AND SWT

We show here that, given a finite-dimensional Hamilto-
nian H , RSWT is more efficient than SWT for perturbation
beyond level λ2 with an exponential decrease in the num-
ber of commutators. We measure the complexity by the
number of commutators that need to be evaluated to com-
pute all eigenenergy corrections up to λK , denoted by N .
The general formula is presented below while the numbers
for K ≤ 8 are given in Table I in the main text.

For SWT, one can find the general expression as well
as explicit formulas up to λ5 in Ref. [7]. The number of
iterations required to reach order λK is K − 1. In addition,
at each iteration n, one also needs to include mixed terms
composed of generator Sl with l ≤ n. The number N is
given by

NSWT =
K−1∑
n=1

n∑
l=1

2l−1 = 2K − K − 1, (B1)

where 2l−1 is the number of distinct tuples (Si1 , Si2 , Si3 , . . .)
with

∑
j ij = l. We have taken into consideration the facts

that [S1, diag(H)] = −V and [Sn+1, diag(H)] is known by
the construction of Sn+1.

For RSWT, the calculation of commutators in each iter-
ation is given in Eq. (20). Because Ct+1(A, B) can be
calculated from Ct+1(A, B) with only one additional com-
mutator, the number of commutators to be evaluated in
Eq. (20) is exactly m − 1 = �K/2n� − 1. The total num-
ber of iterations nmax is given by �log2(K)�. Therefore, we
obtain

NRSWT =
�log2(K)�−1∑

n=0

⌊
K
2n

⌋
− 1 < 2K . (B2)

The reduction compared to SWT comes from the fact that
the energy difference in Hn is used in the definition of Sn+1,
rather than the bare energy difference in H . The recursive
expressions avoid unnecessary expansions. One obtains
the same final expressions as from SWT up to λK , if one
expands the energy difference into a polynomial series

1
�Ebare + �Ecorrection

= 1
�Ebare

poly
(

�Ecorrection

�Ebare

)
,

(B3)

and substitutes in expressions so that it depends only on
the bare energy and couplings.

APPENDIX C: RSWT RESULTS FOR THE ZZ
INTERACTION STRENGTH

Using RSWT described in Sec. II B, we compute the
effective Hamiltonian up to λ6, where λ is defined as the
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ratio between the largest coupling and energy gap. To com-
pute the λ4 and λ6 perturbations, RWST only takes two
iterations with four and seven commutators, respectively,
which is significantly smaller than those required for SWT,
as shown in Table I. A third iteration only adds an improve-
ment of O(λ8) to the eigenenergy because the off-diagonal
terms of H2 are at most O(λ4).

Because of the recursive structure of RSWT, each matrix
element in Hn+1 is given as a function of matrix elements
in Hn. Hence, the final result is a closed-form expres-
sion parameterized by the matrix elements of the original
Hamiltonian H , i.e., the hardware parameters. The para-
metric expression consists only of algebraic expressions
and the dependence can be illustrated as a network. For
instance, we show the network representation of the λ4

perturbation ζ (4) in Fig. 7. Each symbol in layer n + 1 is
analytically expressed as a function of symbols in layer n,
represented by arrows. The arrows between the first and the
second layers represent the definition ζ (4) = E(4)

011 − E(4)

001 −
E(4)

010. Given all the six hardware parameters (layer 0), one
can evaluate ζ (4) by recursively evaluating all the nodes it
depends on.

In the following, we present the analysis of λ4 perturba-
tion and λ6 perturbation.

1. λ4 perturbation

The λ4-perturbative correction for ζ is given as

ζ (4) = E(2,4)

011 − E(2,4)

010 − E(2,4)

001 . (C1)

The notation E(n,k)
lpq represents the λk perturbation obtained

from Hn. The subindices lpq denote the resonator state |l〉
and two qubit states |p〉, |q〉.

We first calculate E(2,4)

011 . Substituting the expression for
H2 as a function of entries into H1, we obtain

E(2,4)

011 = V(1,2)

002,011V(1,2)

011,002

E(1,0)

011 − E(1,0)

002

+ V(1,2)

011,020V(1,2)

020,011

E(1,0)

011 − E(1,0)

020

+ V(1,2)

011,200V(1,2)

200,011

E(1,0)

011 − E(1,0)

200

+ E(1,4)

011 , (C2)

where V(n,k)
lpq,l′p ′q′ denotes the interaction between states |lpq〉

and
∣∣l′p ′q′〉.

The physical meaning of each term in Eq. (C2) can
be interpreted as follows. The first two terms are iden-
tical to the dispersive approximation given in Eq. (36),
which is a consequence of the effective qubit-qubit inter-
action. The third term, depending on the effective inter-
action between |200〉 and |011〉, is 0 at this order.
This is because the destructive interference between
the paths |011〉 → |110〉 → |200〉 and |011〉 → |101〉 →
|200〉 results in V(1,2)

011,200 = V(1,2)

200,011 = 0. The last term,

ζ(4)

Layer 2

E
(2,4)
010

E
(2,4)
001

E
(2,4)
011

2nd step RSWT

Layer 1

E
(1,4)
010

E
(1,0)
001

E
(1,0)
010

V
(1,2)
010,001

E
(1,4)
001

V
(1,2)
011,020

V
(1,2)
011,002

E
(1,4)
011

E
(1,0)
020

E
(1,0)
011

E
(1,0)
002

1st step RSWT

Layer 0

Δ1

Δ2

α1

α2

g1

g2

FIG. 7. The network illustration of the closed-form expression
of ζ (4) parameterized by �1, �2, α1, α2, g1, and g2, obtained from
the two-step RSWT. Each node in the first and second layers is a
matrix entry in Hamiltonians H1 and H2. A node in layer n + 1
is expressed as a function of the nodes in layer n, represented by
an edge. In particular, symbols E(n,k)

lpq represent the λk diagonal

entries of 〈lpq| Hn |lpq〉 and V(n,k)
lpq,l′p ′q′ the effective coupling. The

upper index k denotes the level of perturbation, e.g., k = 4 means
that it is a λ4-perturbative correction.

E(1,4)

011 , is what the approximation of a strong dispersive
regime fails to characterize. It is generated by the com-
mutator [S1, [S1, [S1, V0]]] and the energy gaps in the
denominator of entries in S1 are always the qubit-resonator
detuning (plus the anharmonicity), which, in the strong
dispersive regime, is much larger than the qubit-qubit
detuning in Eq. (36). Hence, the last term is much smaller
in the strong dispersive regime. However, in the quasidis-
persive regime, it plays a key role in suppressing the ZZ
interaction, as shown in Fig. 5(b).

After including the single-excitation terms E(2,4)

010 and
E(2,4)

001 using the same two-step RSWT, we separate the con-
tributions of virtual interaction into two categories: those
including the second excited qubit state (denoted by t) and
those including the second excited resonator state (denoted
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by r):

ζ
(4)
t = ζdisp − g2

1g2
2

2�2 (�1 + α1)
2 − 3g2

1g2
2

2�2
2 (�1 + α1)

− g2
1g2

2

2�1 (�2 + α2)
2 − 3g2

1g2
2

2�2
1 (�2 + α2)

, (C3)

ζ (4)
r = 2g2

1g2
2

�1�
2
2

+ 2g2
1g2

2

�2
1�2

, (C4)

with ζdisp given by Eq. (36). Summing all the contributions
gives the λ4 perturbation ζ (4) in Eq. (37). Note that virtual
interactions that only involve the first excited state have no
contribution to the ZZ interaction at this perturbation level,
i.e., ζ (4) = ζt + ζt. This is because the energy shift of |011〉
induced by |101〉 and |110〉 cancels that of |010〉 and |001〉
induced by |100〉.

2. λ6 perturbation

Using the two-step RSWT, we also compute the λ6-
perturbative correction to the ZZ interaction strength:

ζ (6) = ζ
(6)

disp + ζ
(6)
rest. (C5)

The first contribution corresponds to the effective qubit-
qubit interaction and dominants in the strong dispersive
regime. It turns out that it includes only the next order
of effective interaction and energy difference. Hence, for
simplicity, we present it together with ζ

(4)

disp:

ζ
(4)

disp + ζ
(6)

disp = (V(1,2)

011,020 + V(1,4)

011,020)(V
(1,2)

020,011 + V(1,4)

020,011)

�E(2,0)

011,020 + �E(2,2)

011,020

+ (V(1,2)

002,011 + V(1,4)

002,011)(V
(1,2)

011,002 + V(1,4)

011,002)

�E(2,0)

011,002 + �E(2,2)

011,002
(C6)

with terms regarding the virtual interactions between states
|011〉 and |020〉 given by

V(1,2)

011,020 = V(1,2)

020,011 =
√

2g1g2

2(α1 + �1)
+

√
2g1g2

2�2
, (C7)

V(1,4)

011,002 = V(1,4)

002,011 = −
√

2g1g3
2

4(α2 + �2)3 +
√

2g1g3
2

8�2
2(α2 + �2)

− 7
√

2g1g3
2

4�1(α2 + �2)2 + 3
√

2g1g3
2

2�1�2(α2 + �2)

− 5
√

2g1g3
2

8�1�
2
2

− 7
√

2g3
1g2

8�2
1(α2 + �2)

−
√

2g3
1g2

8�3
1

,

(C8)

�E(2,0)

011,020 + �E(2,2)

011,020 = −α1 − �1 + �2 − 2g2
1

α1 + �1

+ g2
2

�2
+ g2

1

�1
. (C9)

Terms corresponding to states |011〉 and |002〉 are obtained
by interchanging subindices 1 and 2 in each expression
above.

The rest of the contribution can be summed as

ζ
(6)
rest = ζ

(6)

rest,g2
1 g4

2
+ ζ

(6)

rest,g4
1 g2

2
(C10)

with

ζ
(6)

rest,g2
1 g4

2
= 9g2

1g4
2

4�3
2(�1 + α1)2

+ 23g2
1g4

2

4�4
2(�1 + α1)

+ g2
1g4

2

2�1(�2 + α2)4 − g2
1g4

2

4�1�
2
2(�2 + α2)2

− 4g2
1g4

2

�3
1�2(�2 + α2)

+ 7g2
1g4

2

2�2
1(�2 + α2)3

− 5g2
1g4

2

2�2
1�2(�2 + α2)2

+ 3g2
1g4

2

4�2
1�

2
2(�2 + α2)

− 4g2
1g4

2

�2
1�

3
2

+ 4g2
1g4

2

�3
1(�2 + α2)2

− 6g2
1g4

2

�1�
4
2

. (C11)

The second contribution ζ
(6)

rest,g4
1 g2

2
is obtained again by

interchanging subindices 1 and 2.

APPENDIX D: EFFECT OF HIGHER-ORDER
PERTURBATION ON THE ZERO POINTS OF THE

ZZ INTERACTION

The λ4 perturbation described by Eq. (37) predicts the
zero points as a circle with radius 2|α|, independent of g.
However, as they are located in the quasidispersive regime
for systems with weak anharmonicity, the higher-order
perturbation is not always negligible. Here, we qualita-
tively describe how the higher orders (> 4) affect the zero
points of ζ .

We observe that, in contrast to the λ4 perturbation, when
including the higher orders, the zero points depend on
the coupling strength g. As shown in Fig. 8, the higher-
order perturbation shifts the zero points to the regime of
smaller detuning. The larger the coupling, the stronger the
shift is.

One can estimate the accuracy of perturbation around the
zero points by the ratio g/|α|. At the zero points of ζ ,
the larger the anharmonicity and the smaller the cou-
pling, the better the perturbative approximation. This is
because the perturbation is characterized by the small
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FIG. 8. The dependency of ζ on the resonator-qubit interaction strength g and the qubit anharmonicity α. Computed with RSWT to
the λ6 perturbation. Left: dependency on g. The vertical line denotes the zero point predicted by the fourth-order perturbation, which is
independent of g. Both the numerical result and the λ6 perturbation indicate that the zero points are shifted to the regime with smaller
qubit-resonator detuning. Right: dependency on α. The default parameters used, if not specified in the plots, are �− = 0.4|α|, g = 50
MHz, α1 = α2 = α = −330 MHz.

parameter λ = g/� and near the zero points � depends
linearly on α [see Eq. (37)]; hence, the ratio g/|α|. This
is also illustrated in Fig. 8, where we compare the devi-
ation between the numerical result and the perturbation.
The minimum even vanishes in the analytical result when
it is close to the resonant lines. This behaviour also indi-
cates that, for superconducting qubits with a relatively
large anharmonicity, the ZZ interaction can also be com-
pletely suppressed in the strong dispersive regime in this
qubit-resonator-qubit model.
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