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Starting from a simple estimation problem, here we propose a general approach for decoding quantum
measurements from the perspective of information extraction. By virtue of the estimation fidelity only,
we provide surprisingly simple characterizations of rank-1 projective measurements, mutually unbiased
measurements, and symmetric informationally complete measurements. Notably, our conclusions do not
rely on any assumption on the rank, purity, or the number of measurement outcomes, and we do not
need bases to start with. Our work demonstrates that all these elementary quantum measurements are
uniquely determined by their information-extraction capabilities, which are not even anticipated before.
In addition, we offer a new perspective for understanding noncommutativity and incompatibility from
tomographic performances, which also leads to a universal criterion for detecting quantum incompatibil-
ity. Furthermore, we show that the estimation fidelity can be used to distinguish inequivalent mutually
unbiased bases and symmetric informationally complete measurements. In the course of study, we intro-
duce the concept of (weighted complex projective) 1/2-designs and show that all 1/2-designs are tied to
symmetric informationally complete measurements, and vice versa.
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I. INTRODUCTION

Quantum measurements are a basic tool for extracting
information from quantum systems and a bridge for con-
necting the quantum world with the classical world [1–3].
They also play indispensable roles in almost all quan-
tum information processing tasks, such as quantum com-
putation, quantum communication, quantum metrology,
quantum sensing, quantum simulation, and quantum char-
acterization, verification, and validation. Although there
are numerous works on quantum measurements, the mys-
teries about quantum measurements have never been fully
explored, even for the simplest quantum measurements.

Prominent examples of quantum measurements include
rank-1 projective measurements, mutually unbiased mea-
surements (MUMs) based on mutually unbiased bases
(MUB) [4–8], and symmetric informationally complete
measurements (SICs for short) [8–12]. These quantum
measurements stand out because of their crucial roles in
foundational studies and practical quantum information
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processing. Notably, rank-1 projective measurements are
the canonical quantum measurements discussed in most
elementary textbooks on quantum mechanics. MUMs are
tied to the complementarity principle [13], uncertainty
relations [14–18], and are useful in quantum state esti-
mation [5–7,19–21] and quantum cryptography [7,18,22].
SICs play a crucial role in connecting the Born rule with
the law of total probability and in the Bayesian interpreta-
tion of quantum theory [23,24]; SICs are also useful in con-
structing quasiprobability representations with minimal
negativity [25] and in quantum state estimation [26–29]. In
addition, the rich mathematical structures underlying MUB
and SICs are a source of inspiration and have attracted the
attention of numerous researchers; see Refs. [7,8,12,30] for
reviews.

All the quantum measurements mentioned above have
very simple algebraic descriptions in the language of pos-
itive operator-valued measures (POVMs) [2,3]. However,
such algebraic descriptions lack clear operational mean-
ings beyond the Born rule. Notably, the information the-
oretical significance of these measurements is far from
being clear despite the efforts of many researchers. This
awkward situation is in sharp contrast with the rapid devel-
opment of quantum information science. Now, it is natural
to ask if these measurements can be characterized by sim-
ple tasks in quantum information processing. What is so
special about rank-1 projective measurements from the

2691-3399/22/3(3)/030306(38) 030306-1 Published by the American Physical Society

https://orcid.org/0000-0001-7257-0764
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.030306&domain=pdf&date_stamp=2022-08-22
http://dx.doi.org/10.1103/PRXQuantum.3.030306
https://creativecommons.org/licenses/by/4.0/


HUANGJUN ZHU PRX QUANTUM 3, 030306 (2022)

perspective of information extraction? How about other
elementary quantum measurements, such as MUMs and
SICs?

In this work, we propose a general approach for decod-
ing quantum measurements from a simple and well-studied
estimation problem: estimation of Haar random pure states
[31–41]. Here Haar random pure states can also be
replaced by certain discrete sets, which are amenable to
experiments. By virtue of tomographic performances as
quantified by the estimation fidelity, we provide surpris-
ingly simple operational characterizations of various typi-
cal and important quantum measurements, including rank-
1 projective measurements, MUMs, and SICs. Remark-
ably, our characterizations do not need any assumption on
the rank, purity, or the number of measurement outcomes,
and we do not need bases to start with. Our work demon-
strates that all these elementary quantum measurements are
uniquely determined by their information-extraction capa-
bilities and can therefore be defined in purely information
theoretic terms, in sharp contrast with traditional algebraic
definitions, which lack clear operational meanings.

In addition, we offer a new perspective for under-
standing noncommuting and incompatible measurements
[3,42–44] from tomographic performances. Notably, we
show that incompatibility is a resource rather than a lim-
itation to enhance the estimation fidelity. Moreover, we
prove a tight upper bound for the two-copy estimation
fidelity based on compatible measurements, which reveals
an intriguing connection between quantum incompatibil-
ity and SICs and also provides a universal criterion for
detecting quantum incompatibility. The connection with
entropic uncertainty relations [17,18,45] is also discussed
briefly. Furthermore, our work leads to a simple opera-
tional approach for distinguishing inequivalent MUB and
SICs, which cannot be distinguished by inspecting pair-
wise overlaps alone. The approach we introduce is also
very useful to studying other discrete symmetric structures
tied to the quantum state space. Moreover, all these results
are amenable to experimental demonstration with current
technologies.

In the course of study, we derive a number of results
on quantum measurements and (weighted complex projec-
tive) t-designs [9,10,26,46], which are of interest beyond
the main focus of this work. Notably, we introduce the
concept of 1/2-designs and show that SICs are essentially
the only 1/2-designs. This result may shed some light on
the search for general “fractional designs”, although this
is not the focus of this work. In addition, we introduce
the concept of cross frame potential, which is surprisingly
useful to studying typical quantum measurements and dis-
crete symmetric structures tied to the quantum state space.
Furthermore, we establish a simple connection between
the estimation fidelity and the tth frame potential with
t = 1/2, thereby clarifying the operational significance of
this frame potential. Our work may have implications

for a number of active research areas, including quan-
tum measurements, quantum estimation theory, geometry
of quantum states, t-designs, and foundational studies on
quantum incompatibility and steering.

The rest of this paper is organized as follows. In Sec. II
we first introduce basic concepts on quantum measure-
ments and an order relation under data processing; then
we derive several results on rank-1 projective measure-
ments and MUMs. In Sec. III we discuss the connections
between t-designs and quantum measurements and explore
the applications of a special frame potential. In Sec. IV
we propose a general approach for decoding quantum
measurements based on a simple estimation problem. In
Sec. V by virtue of the estimation fidelity we offer surpris-
ingly simple characterizations of various typical quantum
measurements. In Sec. VI we explore the connections
between the estimation fidelity and quantum incompati-
bility. In Sec. VII we provide an operational approach for
distinguishing inequivalent MUB and SICs. Section VIII
summarizes this paper. To streamline the presentation of
the main results, technical proofs are relegated to the
appendices.

II. QUANTUM MEASUREMENTS

A. Basic concepts

Let H be a d-dimensional Hilbert space associated with
the quantum system under consideration. Quantum states
on H are usually represented by density operators, which
are positive (semidefinite) operators of trace 1. Quantum
measurements on H are basic tools for extracting informa-
tion from the quantum system as encoded in the quantum
state. In this work we are interested in the information-
extraction capabilities of quantum measurements, but not
the postmeasurement quantum states. In this context, a
quantum measurement on H can be described by a POVM,
which is composed of a set (or collection) of positive oper-
ators on H, usually called POVM elements, that sum up
to the identity operator [2,3]. Here we use the same nota-
tion for the identity operator as the number 1 to simplify
the notation; in addition, numbers in operator equations are
implicitly multiplied by the identity operator.

Let ρ be a quantum state on H, and let A = {Aj }j be a
POVM on H. If we perform the POVM A on ρ, then the
probability pj of obtaining outcome j reads pj = tr(ρAj )

according to the Born rule. The POVM A is informa-
tionally complete if its POVM elements span the whole
operator space on H [26,27,47]. This condition guarantees
that any quantum state on H can be reconstructed accu-
rately from frequencies of measurement outcomes as long
as the POVM can be performed sufficiently many times.
For comparison, the POVM A is trivial if all POVM ele-
ments are proportional to the identity operator, in which
case no information can be extracted by performing the
POVM. The POVM A is rank 1 if each POVM element is
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proportional to a rank-1 projector. The POVM A is unbi-
ased if all POVM elements have the same trace, in which
case the completely mixed state will yield a flat probability
distribution when the POVM is performed. Suppose that
A is an unbiased rank-1 POVM; then A is equiangular if
all the pairwise overlaps tr(Aj Ak) for j �= k are equal.

B. An order relation and simple POVMs

The idea of data (information) processing leads to a nat-
ural order relation on POVMs. Let A = {Aj }j and {Bk}k
be two POVMs on H. The POVM A is a coarse grain-
ing of B, denoted by A � B or B � A , if A can be
constructed from B by data processing [48–50]. More
specifically, A � B if the POVM elements of A can be
expressed as

Aj =
∑

k

�jkBk for all j , (1)

where � is a stochastic matrix, which satisfies the normal-
ization condition

∑
j �jk = 1. In this case the measure-

ment statistics of A can be simulated by performing B
and then applying suitable data processing. Alternatively,
we also say B refines A or B is a refinement of A . Intu-
itively, coarse graining can never lead to information gain,
while refinement can never lead to information loss.

Two POVMs are equivalent if they are coarse graining
of each other (note the distinction from unitary equiva-
lence); such POVMs are essentially the same from the
perspective of information extraction. A coarse graining or
refinement of a POVM A is trivial (nontrivial) if it is (not)
equivalent to A . To clarify when a coarse graining is non-
trivial, we need to introduce a special function on POVMs.
The purity of a POVM A = {Aj }j [51] is defined as

℘(A ) =
∑

j

1
d

tr(A2
j )

tr Aj
=
∑

j

tr Aj

d

tr(A2
j )

(tr Aj )2
, (2)

where d is the dimension of the underlying Hilbert space,
and the summation runs over nonzero POVM elements in
A . From this definition, it is easy to verify that

1
d

≤ ℘(A ) ≤ 1; (3)

the lower bound is saturated iff all POVM elements are
proportional to the identity operator, so that the POVM is
trivial, while the upper bound is saturated iff all nonzero
POVM elements are rank 1, so that the POVM is rank 1.

Lemma 1. Suppose that A = {Aj }j is a coarse graining
of B = {Bk}k as defined in Eq. (1). Then ℘(A ) ≤ ℘(B)

and the following three statements are equivalent:

1. A is equivalent to B;
2. ℘(A ) = ℘(B);
3. �jk�jl = 0 whenever Bk, Bl are linearly indepen-

dent.

Lemma 1 is proved in Appendix A. It shows that a
coarse graining is trivial iff it only mixes POVM elements
that are proportional to each other in addition to the zero
POVM element. Lemma 1 also shows that the purity is
a strict order-monotonic function [50]. Such functions are
useful not only for studying quantum incompatibility, but
also for studying quantum steering [49,50,52].

A POVM is simple if no POVM element is proportional
to another POVM element, that is, all POVM elements
are pairwise linearly independent. By definition, a simple
POVM has no POVM element that is equal to the zero
operator. The following result was originally proved in
Ref. [48] (see also Ref. [53]); it is also a simple corollary
of Lemma 1, as shown in Appendix A.

Lemma 2. Two simple POVMs are equivalent iff they are
identical up to relabeling. Every POVM is equivalent to a
unique simple POVM up to relabeling.

Restriction to simple POVMs is quite helpful to avoid-
ing unnecessary complications, but usually does not cause
any loss of generality. For example, all results on simple
POVMs derived in this work can be easily extended to
general POVMs with minor modifications. Nevertheless,
nonsimple POVMs are occasionally useful in technical
analysis, so we do not assume that all POVMs are simple.
In the rest of this paper we instead take the weaker assump-
tion that no POVM element is equal to the zero operator
unless stated otherwise.

A POVM is maximal if any refinement is equivalent to
itself. Suppose that A and B are equivalent POVMs; then
A is maximal iff B is maximal. The following proposition
is a variant of a result proved in Ref. [48], which char-
acterizes the set of rank-1 POVMs via the order relation
based on data processing. It is also a simple corollary of
Lemma 1.

Proposition 1. A POVM is maximal iff it is rank 1.

Lemma 1 and Proposition 1 show that every refinement
of a rank-1 POVM is equivalent to the POVM; in other
words, any rank-1 POVM has no nontrivial refinement.
In addition, a rank-1 POVM cannot be equivalent to any
POVM that is not rank 1. These observations lead to the
following proposition.

Proposition 2. Suppose that A is a coarse graining of
a rank-1 POVM B. Then A is equivalent to (is a trivial
coarse graining of) B iff A is rank 1.
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C. Quantum incompatibility

Let A and B be two arbitrary POVMs on H. Then
A and B commute if all POVM elements in A com-
mute with all POVM elements in B. This definition also
applies to two sets of positive operators. By contrast, A
and B are compatible or jointly measurable if they admit
a common refinement [42–44,49,54,55]. In that case, the
measurement statistics of both A and B can be simulated
by performing the common refinement. Otherwise, A
and B are incompatible. Generalizations to three or more
POVMs are immediate. Note that commuting POVMs are
automatically compatible, but not vice versa in general.
By definition, the compatibility relation is closely tied to
the order relation discussed in Sec. II B. This connec-
tion is very useful to detecting quantum incompatibility
[43,49,50,52] (cf. Sec. VI).

Proposition 3. Suppose that A and B are two POVMs on
H with B being rank 1. Then A and B are compatible iff
A is a coarse graining of B.

Proposition 4. Two rank-1 POVMs are compatible iff they
are equivalent. Two simple rank-1 POVMs are compatible
iff they are identical up to relabeling.

Proposition 3 is a simple corollary of Proposition 1.
Proposition 4 is a simple corollary of Proposition 3 and
Lemma 2.

D. Projective measurements and mutually unbiased
measurements

A POVM is reducible if its POVM elements can be
divided into two groups such that each group contains at
least one nonzero POVM element and all POVM elements
in one group are orthogonal to all POVM elements in the
other group (cf. Ref. [56]). In this case, the POVM is a
direct sum of two POVMs. Notably, any POVM contain-
ing a projector that is not equal to the identity or the zero
operator is reducible; note that such a projector is neces-
sarily orthogonal to all other POVM elements. A POVM
is irreducible if it is not reducible; such a POVM cannot
be expressed as a direct sum of two POVMs.

A projective measurement (also known as a von Neu-
mann measurement) is a special POVM in which all the
POVM elements are mutually orthogonal projectors and
is thus reducible except for the trivial projective measure-
ment. It is usually characterized by a Hermitian operator
via spectral decomposition. Rank-1 projective measure-
ments are special projective measurements in which all
POVM elements are mutually orthogonal rank-1 projec-
tors. They are associated with nondegenerate Hermitian
operators and are the canonical example of quantum mea-
surements, as discussed in most textbooks [1]. In addition,
they are in one-to-one correspondence with orthonormal

bases if we identify bases that differ only by overall phase
factors. In view of the crucial roles played by rank-1
projective measurements, here we summarize their main
characteristics that are useful in the current study. The
detailed proofs are relegated to Appendix B.

Lemma 3. Any simple rank-1 POVM A on H has
at least d POVM elements and satisfies the inequality
dim(span(A )) ≥ d. Each bound is saturated iff A is a
rank-1 projective measurement.

Lemma 4. Suppose that A is a simple rank-1 POVM on
H and that B is a set of distinct rank-1 projectors on H.
Then A and B commute iff B ⊆ A and the projectors in
B are mutually orthogonal.

Note that every rank-1 positive operator on H is propor-
tional to a rank-1 projector. As an implication of Lemma 4
and this observation, if a simple rank-1 POVM A com-
mutes with a nonempty set of pairwise linearly indepen-
dent rank-1 positive operators (say some POVM elements
in another simple rank-1 POVM), then these positive oper-
ators must be mutually orthogonal, and A contains a set of
rank-1 projectors that are proportional to these rank-1 posi-
tive operators, respectively. In this case, the POVM A is a
direct sum of a rank-1 projective measurement and another
POVM and is thus reducible.

Lemma 5. Two simple rank-1 POVMs commute iff they
are identical rank-1 projective measurements up to rela-
beling.

Lemma 5 is a simple corollary of Lemma 4; a direct
proof is presented in Appendix B. As an implication of
Lemma 5, any simple rank-1 POVM that commutes with
itself is a rank-1 projective measurement.

Two orthonormal bases {|ψj 〉}d
j =1 and {|ϕk〉}d

k=1 for H
are mutually unbiased (MU) or complementary if all the
transition probabilities |〈ψj |ϕk〉|2 are equal to 1/d. In this
case, the corresponding measurements are also referred to
as MU and are often regarded as maximally incompati-
ble [4–8,57]. Such measurements are quite useful in many
tasks in quantum information processing, including quan-
tum state estimation [5–7,19–21] and quantum cryptogra-
phy [7,18,22] in particular. It is known that the number of
bases in any MUB cannot surpass d + 1; when the upper
bound is saturated, the MUB is called a complete set of
MUB (CMUB), and the corresponding measurements are
called a complete set of MUMs (CMUMs).

As a generalization, two positive operators A and B
on H are MU if tr(AB) = tr(A) tr(B)/d. Two POVMs
{Aj }j and {Bk}k on H are MU if each POVM element
in A and each POVM element in B are MU, that is,
tr(Aj Bk) = tr(Aj ) tr(Bk)/d. The following theorem sets an
upper bound for the number of rank-1 POVMs that are
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MU, which is reminiscent of the upper bound for MUB
[5–7].

Theorem 1. Any set of MU simple rank-1 POVMs on H
contains at most d + 1 POVMs. If the upper bound is satu-
rated, then all the POVMs in the set are rank-1 projective
measurements, which form a CMUMs.

At this point, it is worth pointing out that the assumption
of simplicity of POVMs in Lemmas 3–5 and Theorem 1 is
convenient, but not essential, as pointed out in Sec. II B.
Without this assumption, these results still hold after minor
modifications, as presented below, given that every POVM
is equivalent to a simple POVM according to Lemma 2.
Similar remarks apply to other results presented in this
manuscript.

Lemma 3*. Any rank-1 POVM A on H has at least
d POVM elements, and the lower bound is saturated
iff A is a rank-1 projective measurement. Meanwhile,
dim(span(A )) ≥ d, and the bound is saturated iff A is
equivalent to a rank-1 projective measurement.

Lemma 4*. Suppose that A is a rank-1 POVM on H and
that B is a set of rank-1 positive operators on H. Then A
and B commute iff

∑

A∈A | A∝B

= B
tr B

for all B ∈ B, (4)

and any two operators in B are either mutually orthogo-
nal or proportional to each other.

Lemma 5*. Two rank-1 POVMs commute iff they are
equivalent to the same rank-1 projective measurement.

Theorem 1*. Any set of MU rank-1 POVMs onH contains
at most d + 1 POVMs. If the upper bound is saturated, then
all the POVMs in the set are equivalent to rank-1 projec-
tive measurements, and the corresponding bases form a
CMUB.

III. QUANTUM MEASUREMENTS AND
t-DESIGNS

A. t-designs

Let S = {|ψj 〉, wj }m
j =1 be a weighted set (or collection)

of states in H, where wj > 0 and
∑

j wj = d (to avoid
unnecessary complications, in this paper we assume that
all weights are strictly positive unless stated otherwise;
Lemma 7 in Sec. III C is an exception). As in the discus-
sion of orthonormal bases, here we identify weighted sets
that differ only by overall phase factors. Then a weighted
set is also regarded as a distribution on the set of all pure
states, which forms the complex projective space CPd−1.

When the weights are not mentioned explicitly, we take
the convention that all states have the same weight.

Given a positive integer t, the set S is a (weighted
complex projective) t-design if

∑
j wj (|ψj 〉〈ψj |)⊗t is pro-

portional to the projector Pt onto the symmetric subspace
in H⊗t [9,10,26,46] (see Ref. [58] for mixed-state designs).
In view of the normalization condition

∑
j wj = d, the set

S is a t-design iff

∑

j

wj (|ψj 〉〈ψj |)⊗t = dPt

Dt
, (5)

where Dt = tr(Pt) is the dimension of the t-partite symmet-
ric subspace and its explicit expression reads

Dt =
(

d + t − 1
t

)
. (6)

By definition, it is easy to verify that a t-design is also a
t′-design for any positive integer t′ that is smaller than or
equal to t, that is, t′ ≤ t.

Given any pair of positive integers d and t, one can
construct a t-design in dimension d with a finite number
of elements [59]. To achieve this goal, nevertheless, the
number of elements is at least [26,46]

(
d + �t/2� − 1

�t/2�
)(

d + �t/2� − 1
�t/2�

)
, (7)

which is equal to d, d2, d2(d + 1)/2, d2(d + 1)2/4 for
t = 1, 2, 3, 4, respectively. An orthonormal basis (with uni-
form weights) is the simplest 1-design. Prominent exam-
ples of 2-designs include CMUB and SICs. In particular,
a SIC stands out as a minimal 2-design, which satu-
rates the lower bound in Eq. (7) with t = 2. Recall that
a SIC in dimension d is composed of d2 quantum states
|ψ1〉, |ψ2〉, . . . , |ψd2〉 with an equal pairwise fidelity of
1/(d + 1) [8–12], that is,

|〈ψj |ψk〉|2 = dδjk + 1
d + 1

, j , k = 1, 2, . . . , d2. (8)

Here each state has weight 1/d according to the current
normalization convention, but we shall not mention this
weight explicitly for simplicity when there is no danger of
confusion. In addition, the set characterized by Eq. (8) and
the corresponding POVM are both referred to as a SIC (cf.
Sec. III B). When the dimension d is a power of 2, any
orbit of the Clifford group is a 3-design; in particular, the
set of stabilizer states forms a 3-design [60–62]. In addi-
tion, special orbits of the Clifford group can form 4-designs
[63,64].

The tth frame potential is an important tool for studying
t-designs; given the weighted set S = {|ψj 〉, wj }m

j =1, it is
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defined as [9,10,26]

�t(S) :=
∑

j ,k

wj wk|〈ψj |ψk〉|2t. (9)

It is well known that this frame potential satisfies the
inequality

�t(S) ≥ d2

Dt
, (10)

which is saturated iff S is a t-design. This inequality
provides a simple criterion for determining whether a
weighted set is a t-design.

To generalize the concept of frame potential mentioned
above, let S = {|ψj 〉, wj }m

j =1 and T = {|ϕk〉, w′
k}n

k=1 be two
weighted sets of states in H, which satisfy wj , w′

k > 0
and
∑

j wj =∑k w′
k = d. The tth cross frame potential

between S and T is defined as

�t(S ,T ) = �t(T ,S) :=
∑

j ,k

wj w′
k|〈ψj |ϕk〉|2t. (11)

Note that the definitions in Eqs. (9) and (11) are applicable
even if some weights wj , w′

k are equal to zero. In addition,
�t(S ,S) = �t(S), so the frame potential �t(S) can be
regarded as the cross frame potential between S and itself.
We highlight the significance of the cross frame potential
in Secs. III C and IV B.

Although the frame potential �t was originally intro-
duced when t is a positive integer, the definition in Eq. (9)
applies to any positive real number t. Similar generaliza-
tion applies to the cross frame potential defined in Eq. (11).
However, it is not so easy to generalize the concept of
t-designs in this way (the special case t = 1/2 will be dis-
cussed in Sec. III C). For example, the tth frame potentials
of an orthonormal basis, SIC, and CMUB are respectively
given by

�t(basis) = d, (12)

�t(SIC) = 1 + d2 − 1
(d + 1)t

, (13)

�t(CMUB) = d + d3−t

d + 1
. (14)

In addition, the tth frame potential of Haar random pure
states can be computed as

�t(Haar) = d2
∫

CPd−1
|〈0|ψ〉|2tdμ(ψ)

= d2
∫ π/2
θ=0(cos θ)2t+1(sin θ)2d−3dθ
∫ π/2
θ=0 cos θ(sin θ)2d−3dθ

= d2�(d)�(t + 1)
�(d + t)

, (15)

where dμ(ψ) denotes the normalized measure on the com-
plex projective space CPd−1 that is induced by the Haar
measure on the unitary group. If t is an integer, then the
above equation yields

�t(Haar) = d2t!
d(d + 1) · · · (d + t − 1)

= d2

Dt
, (16)

which saturates the lower bound in Eq. (10). So the ensem-
ble of Haar random pure states forms a t-design for any
positive integer t, as expected. In view of this fact, the
ensemble of Haar random pure states is regarded as an
∞-design.

B. Connection between t-designs and quantum
measurements

Given any t-design {|ψj 〉, wj }m
j =1 with t ≥ 1, we can

construct a rank-1 POVM of the form {wj |ψj 〉〈ψj |}m
j =1.

Conversely, any rank-1 POVM determines a t-design up
to irrelevant overall phase factors. Quantum measurements
based on t-designs have numerous applications in quantum
information processing. Notably, collective measurements
based on t-designs are optimal for pure-state estimation
[28,29,41]. Measurements constructed from 2-designs are
optimal for linear quantum state tomography [19,26–28]
and quantum state verification [65–67]. Measurements
constructed from 3-designs are useful in shadow estima-
tion and entanglement detection [68–70]. In addition, the
quantum measurement constructed from Haar random pure
states, referred to as the isotropic measurement henceforth,
is of special interest in quantum state estimation [20,28]
and discrimination [71].

Thanks to the connection mentioned above, some con-
cepts defined for t-designs can be generalized to rank-1
POVMs, and vice versa. Notably, the definitions of the tth
frame potential and cross frame potential can be extended
to rank-1 POVMs. To be concrete, let A = {Aj }j and
B = {Bk}k be two rank-1 POVMs. Then the tth frame
potential of A = {Aj } reads

�t(A ) =
∑

j ,k

[tr(Aj Ak)]t

[tr(Aj ) tr(Ak)]t−1 , (17)

which is applicable for any positive number t. Similarly,
the tth cross frame potential between A and B reads

�t(A , B) =
∑

j ,k

[tr(Aj Bk)]t

[tr(Aj ) tr(Bk)]t−1 . (18)

The definitions of frame potential and cross frame potential
in Eqs. (17) and (18) can be further generalized to POVMs
that are not necessarily rank 1, although they are more use-
ful if the POVMs are rank 1. In addition, these definitions
are applicable even if some POVM elements are equal to
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the zero operator as long as the summations are restricted
to POVM elements that are not equal to the zero operator.
Note that equivalent POVMs have the same frame poten-
tial; similarly, equivalent pairs of POVMs have the same
cross frame potential.

On the other hand, a t-design is called simple if the cor-
responding POVM is simple. Two t-designs are MU if the
corresponding POVMs are MU. This definition reduces to
the usual definition of MUB when each weighted set is an
orthonormal basis with uniform weights.

C. Applications of the frame potential �1/2

Here we are particularly interested in the (cross) frame
potential �t with t = 1/2, whose significance will become
clear shortly. A weighted set of states in H is a 1/2-
design if it is a 1-design and can attain the maximum frame
potential �1/2 among all 1-designs. Here we choose the
maximum frame potential because the square-root function
is concave rather than convex. By definition, a 1/2-design
is automatically a 1-design; this requirement is moti-
vated by our study on quantum measurements: any rank-1
measurement corresponds to a 1-design, and vice versa.
By contrast, a 1-design is not necessarily a 1/2-design,
although a (t + 1)-design is automatically a t-design when
t is a positive integer. The intuition about t-designs for an
integer t cannot be taken for granted in the current study.
Incidentally, the search for “fractional designs” has been
a long-standing open problem. So far, it is still not clear
how to define t-designs with arbitrary real parameter t. This
problem deserves further study, but is not crucial to the
current work.

According to Eqs. (12)–(15), the frame potentials �1/2
for an orthonormal basis, SIC, CMUB, and Haar random
pure states are respectively given by

�1/2(basis) = d, (19)

�1/2(SIC) = 1 + (d − 1)
√

d + 1, (20)

�1/2(CMUB) = d + d5/2

d + 1
, (21)

�1/2(Haar) =
√
πd2�(d)

2�(d + 1/2)
. (22)

Quite unexpectedly, the frame potential attains its mini-
mum at an orthonormal basis and its maximum at a SIC,
as illustrated in Fig. 1. What is more surprising is that
this conclusion holds even if we consider all possible
1-designs, as shown in Lemma 6 below.

Lemma 6. Any 1-design S in H satisfies

d ≤ �1/2(S) ≤ 1 + (d − 1)
√

d + 1. (23)

5 10 15 20
d

20

40

60

80

Φ
1 /

2

SIC
CMUB
Haar
basis

FIG. 1. Frame potentials �1/2 of an orthonormal basis, SIC,
CMUB, and Haar random pure states, respectively. Here d is the
dimension of the underlying Hilbert space H.

If S is simple, then the lower bound is saturated iff S is an
orthonormal basis, while the upper bound is saturated iff
S is a SIC.

Lemma 6 reveals intriguing connections between the
frame potential �1/2(S) and orthonormal bases as well as
SICs. Notably, it shows that, among all 1-designs (includ-
ing t-designs for any positive integer t), SICs are essen-
tially the only 1/2-designs; in other words, all 1/2-designs
are tied to SICs. Remarkably, SICs are uniquely char-
acterized by the maximum frame potential, without any
assumption even on the number of elements. These obser-
vations will have profound implications for understanding
quantum measurements from the perspective of quantum
state estimation, as we will see later. The detailed proof
of Lemma 6 is presented in Appendix C. Here it is worth
pointing out that the proof is tied to a surprising result on
the 1/2-moment in statistics, as formulated and proved in
Appendix C 2, which is of independent interest.

When the number of states is limited, the upper bound
in Lemma 6 can be improved, and the maximum frame
potential is tied to tight equiangular lines. Recall that a set
{|ψj 〉}m

j =1 composed of m states is equiangular if all pair-
wise fidelities are equal [9,72]. The equiangular set is tight
if
∑

j |ψj 〉〈ψj | is proportional to the identity (automati-
cally guaranteed for 1-designs), in which case the pairwise
fidelities saturate the Welch bound [73]:

|〈ψj |ψk〉|2 =
⎧
⎨

⎩

1, j = k,
m − d

d(m − 1)
, j �= k.

(24)

Any set of equiangular states in dimension d can contain at
most d2 states, and the upper bound is saturated iff the set
is a SIC [9,72,74]. In Lemma 7 below we assume that all
weights in S are nonnegative, but not necessarily strictly
positive.
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Lemma 7. Any 1-design S composed of m states satisfies

�1/2(S) ≤ d2

m
+ d

m

√
d(m − 1)(m − d). (25)

When m > d2, the upper bound cannot be saturated; when
d ≤ m ≤ d2, the bound is saturated iff S is composed of m
equiangular states (with uniform weights).

Note that the upper bound in Eq. (25) is strictly mono-
tonically increasing in m.

Next, we turn to the cross frame potential �1/2(S ,T ),
which will play important roles in studying MUMs and
SICs.

Lemma 8. Any pair of 1-designs S and T in H satisfies

d ≤ �1/2(S ,T ) ≤ d3/2. (26)

The upper bound is saturated iff S and T are MU. If S and
T are simple, then the lower bound is saturated iff S and
T are identical orthonormal bases up to relabeling.

Lemma 9. Suppose that S and T are 1-designs in H, and
that one of them is a 2-design; then

�1/2(S ,T ) ≤ 1 + (d − 1)
√

d + 1. (27)

If S and T are simple, then the upper bound is saturated
iff S and T are identical SICs up to relabeling.

Here we identify weighted sets that differ only by overall
phase factors as mentioned before. Thanks to the con-
nections between 1-designs and POVMs, Lemmas 6–9
above can be generalized to rank-1 POVMs immediately
as summarized in Lemmas 10–13 below.

Lemma 10. Any rank-1 POVM A satisfies

d ≤ �1/2(A ) ≤ 1 + (d − 1)
√

d + 1. (28)

If A is simple, then the lower bound is saturated iff A is a
rank-1 projective measurement, while the upper bound is
saturated iff A is a SIC.

Lemma 11. Any rank-1 POVM A composed of m POVM
elements satisfies

�1/2(A ) ≤ d2

m
+ d

m

√
d(m − 1)(m − d). (29)

When m > d2, the upper bound cannot be saturated;
when d ≤ m ≤ d2, the upper bound is saturated iff A is
unbiased and equiangular.

Lemma 12. Any pair of rank-1 POVMs A and B on H
satisfies

d ≤ �1/2(A , B) ≤ d3/2. (30)

The upper bound is saturated iff A and B are MU. If A
and B are simple, then the lower bound is saturated iff A
and B are identical rank-1 projective measurements up to
relabeling.

Lemma 13. Suppose that A and B are rank-1 POVMs
on H, and that one of them is constructed from a 2-design;
then

�1/2(A , B) ≤ 1 + (d − 1)
√

d + 1. (31)

If A and B are simple, then the upper bound is saturated
iff A and B are identical SICs up to relabeling.

The above results demonstrate the significance of the
(cross) frame potential�1/2 in characterizing typical quan-
tum measurements. These results are the stepping stones
for understanding quantum measurements from the per-
spective of quantum state estimation, as we will see
shortly.

IV. DECODING QUANTUM MEASUREMENTS
FROM A SIMPLE ESTIMATION PROBLEM

A. Reexamination of a simple estimation problem

Suppose that a quantum device can prepare a random
pure quantum state ρ on H according to the normalized
Haar measure and that we are asked to estimate the identity
of ρ based on suitable quantum measurements. A natural
figure of merit is the fidelity averaged over the measure-
ment outcome and the random pure state. Given N copies
of the pure state ρ, then what average fidelity can we
achieve? This problem is well known in the quantum infor-
mation community and has been studied by many eminent
researchers [31–41], whose works have greatly improved
our understanding about information extraction from quan-
tum systems. However, the significance of this problem
in decoding quantum measurements has not been fully
appreciated.

If we perform the POVM A = {Aj }j on ρ⊗N , then the
probability of obtaining outcome Aj is pj = tr(ρ⊗N Aj ). Let
ρ̂j be the estimator corresponding to outcome j . Then the
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average fidelity reads

F̄ =
∑

j

∫

CPd−1
dμ(ψ)pj tr(ρρ̂j )

=
∑

j

∫

CPd−1
dμ(ψ) tr[ρ⊗N+1(Aj ⊗ ρ̂j )]

= 1
DN+1

∑

j

tr[PN+1(Aj ⊗ ρ̂j )]

= 1
DN+1

∑

j

tr[Q̃(Aj )ρ̂j ], (32)

where dμ(ψ) denotes the normalized measure on the com-
plex projective space CPd−1 that is induced by the Haar
measure on the unitary group, ρ = |ψ〉〈ψ |, and

Q̃(Aj ) := tr1,...,N [PN+1(Aj ⊗ 1)]. (33)

Note that

tr[Q̃(Aj )ρ̂j ] ≤ ‖Q̃(Aj )‖ = max
ρ

tr[PN+1(Aj ⊗ ρ)], (34)

where ‖Q̃(Aj )‖ denotes the operator norm of Q̃(Aj )

and the maximization is taken over all normalized pure
states on H. In addition, the upper bound is saturated
if the estimator ρ̂j is supported in the eigenspace of
Q̃(Aj ) corresponding to the largest eigenvalue and only
then.

The estimation fidelity of A is defined as the maxi-
mum fidelity that can be achieved by the POVM A (with
a judicial choice of each estimator ρ̂j ) and is given by

F(A ) =
∑

j

‖Q̃(Aj )‖
DN+1

. (35)

Define

Q(O) := (N + 1)! Q̃(O) (36)

for any linear operator O acting on H⊗N . Then the estima-
tion fidelity in Eq. (35) can be expressed as

F(A ) =
∑

j

‖Q(Aj )‖
(N + 1)! DN+1

=
∑

j

‖Q(Aj )‖
d(d + 1) · · · (d + N )

.

(37)

As we will see shortly, F(A ) encodes valuable infor-
mation about the POVM A . To facilitate the following
discussions, here we summarize a number of simple but
instructive facts. Let I be the trivial POVM that is
composed of the identity on H as the only POVM element.

Lemma 14. Suppose that A , B are POVMs on H⊗N , C
is a POVM on H⊗k, and that U is a unitary operator on H.
Then

F
(

U⊗NA U†⊗N
)

= F(A ), (38)

F(A ⊗ I ⊗k) = F(A ), (39)

F(A ) ≤ F(B) if A � B, (40)

F(C ⊗ A ) = F(A ⊗ C ) ≥ max{F(A ), F(C )}. (41)

Here the notation A � B means A is a coarse grain-
ing of B as defined in Sec. II B. Lemma 14 in particular
implies that equivalent POVMs can achieve the same
estimation fidelity, as expected.

At this point, it is worth pointing out that the above
results still apply if the ensemble of Haar random pure
states involved in the estimation problem is replaced by
any ensemble of pure states that forms a t-design with
t = N + 1. This observation is quite helpful in devising
experiments for demonstrating these results.

B. Calculation of the estimation fidelity

Next, we derive a number of basic results that are useful to computing the estimation fidelity in Eq. (37), especially
for product measurements. Let A, B, C be linear operators on H. Straightforward calculation shows that

Q(A) = tr(A)+ A, (42)

Q(A ⊗ B) = tr(A) tr(B)+ tr(AB)+ tr(B)A + tr(A)B + AB + BA, (43)

Q(A ⊗ B ⊗ C) = tr(A) tr(B) tr(C)+ tr(AB) tr(C)+ tr(BC) tr(A)+ tr(CA) tr(B)

+ tr(ABC)+ tr(ACB)+ tr(B) tr(C)A + tr(C) tr(A)B + tr(A) tr(B)C

+ tr(BC)A + tr(CA)B + tr(AB)C + tr(C)(AB + BA)+ tr(B)(AC + CA)

+ tr(A)(BC + CB)+ ABC + ACB + BCA + BAC + CAB + CBA. (44)
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Here numbers in operator equations, such as tr(A), are
implicitly multiplied by the identity operator; a similar

convention applies to other equations in this paper. When
tr(A) = tr(B) = tr(C) = 1, Eqs. (42)–(44) simplify to

Q(A) = 1 + A, (45)

Q(A ⊗ B) = 1 + f + A + B + AB + BA, (46)

Q(A ⊗ B ⊗ C) = 1 + f12 + f23 + f31 + f123 + f132 + (1 + f23)A + (1 + f31)B + (1 + f12)C + AB + BA + AC + CA

+ BC + CB + ABC + ACB + BCA + BAC + CAB + CBA, (47)

where f = f12 = tr(AB), f23 = tr(BC), f31 = tr(CA),
f123 = tr(ABC), and f132 = tr(ACB). These equations indi-
cate that the three-copy estimation fidelity may depend
on the triple products of POVM elements in addition to
pairwise overlaps (cf. Sec. VII).

Equation (42) implies that

‖Q(A)‖ = tr(A)+ ‖A‖, (48)

from which we can derive the following lemma.

Lemma 15. The estimation fidelity F(A ) of any POVM
A = {Aj }j on H satisfies

1
d

≤ F(A ) = 1
d + 1

+ 1
d(d + 1)

∑

j

‖Aj ‖ ≤ 2
d + 1

,

(49)

and the lower bound is saturated iff A is trivial, while the
upper bound is saturated iff A is rank 1.

The equality in Eq. (49) was originally derived in
Ref. [39] and played an important role in studying
information-disturbance relations. The upper bound in
Eq. (49) was known even earlier in the context of optimal
quantum state estimation [35,38]. Here we are interested
in Lemma 15 because it clarifies the estimation fidelities
of single-copy measurements and highlights the signifi-
cance of rank-1 measurements (cf. Proposition 1). If A is
a POVM with m POVM elements, then Lemma 15 yields

F(A ) ≤ 1
d + 1

+ m
d(d + 1)

, (50)

given that ‖Aj ‖ ≤ 1 for any POVM element Aj . Here the
inequality is saturated when A is a projective measure-
ment, in which case the estimation fidelity is completely
determined by the number of measurement outcomes.

The following lemma is a stepping stone for studying
two-copy estimation fidelities.

Lemma 16. Suppose that A and B are nonzero positive
operators on H and that f = tr(AB)/[tr(A) tr(B)]. Then

‖Q(A ⊗ B)‖ ≤ 2 tr(A) tr(B)(1 + f +
√

f ). (51)

The upper bound is saturated iff one of the following two
conditions holds:

1. both A and B are rank 1;
2. A and B have orthogonal supports and one of them

is rank 1.

When A = |ψ〉〈ψ | and B = |ϕ〉〈ϕ| are rank-1 projec-
tors, Lemma 16 yields

‖Q(|ψ〉〈ψ | ⊗ |ϕ〉〈ϕ|)‖ = 2(1 + |〈ψ |ϕ〉|2 + |〈ψ |ϕ〉|),
(52)

which in turn implies that

∥∥Q(|j 〉〈j | ⊗ |k〉〈k|)∥∥ =
{

6, j = k,
2, j �= k.

(53)

Note that Eq. (53) also follows from Eq. (46). By contrast,
Eq. (47) implies that

∥∥Q(|j 〉〈j | ⊗ |k〉〈k| ⊗ |l〉〈l|)∥∥ =

⎧
⎪⎨

⎪⎩

24, j = k = l,
6, j = k �= l,
2, j �= k, k �= l, j �= l.

(54)

Here |j 〉, |k〉, |l〉 denote basis states in the computational
basis.

By virtue of Eq. (37) and Lemma 16, we can derive a
general upper bound for the two-copy estimation fidelity
of any product measurement.
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Lemma 17. Let A and B be two POVMs on H. Then the
two-copy estimation fidelity F(A ⊗ B) satisfies

F(A ⊗ B) ≤ 2d(d + 1)+ 2�1/2(A , B)

d(d + 1)(d + 2)
, (55)

and the upper bound is saturated iff A and B are rank 1.

The following lemma is an immediate corollary of
Lemma 17 with B = A .

Lemma 18. Let A be a POVM on H. Then the two-copy
estimation fidelity F(A ⊗2) satisfies

F(A ⊗2) ≤ 2d(d + 1)+ 2�1/2(A )

d(d + 1)(d + 2)
, (56)

and the upper bound is saturated iff A is rank 1.

Lemma 18 establishes a precise connection between the
two-copy estimation fidelity F(A ⊗2) and the frame poten-
tial�1/2(A ) [instead of the frame potential�2(A ) as one
may naively expect], thereby endowing the frame poten-
tial with a concrete operational meaning in the context of
quantum state estimation. Similarly, Lemma 17 endows the
cross frame potential with a concrete operational meaning.

C. Impact of coarse graining

Suppose that A is a rank-1 POVM on H; then any non-
trivial coarse graining of A can only achieve a smaller
estimation fidelity according to Lemma 15. The situation is
a bit more complicated for the two-copy estimation fidelity.
Here we try to shed some light on this problem, which will
be useful to studying the connection between the estima-
tion fidelity and quantum incompatibility, as we will see in
Sec. VI.

Lemma 19. Suppose that A, B1, B2 are rank-1 positive
operators on H and that B = B1 + B2. Then

‖Q(A ⊗ B)‖ ≤ ‖Q(A ⊗ B1)‖ + ‖Q(A ⊗ B2)‖, (57)

and the inequality is saturated iff one of the following three
conditions holds:

1. B2 is proportional to B1;
2. A is orthogonal to both B1 and B2;
3. A, B1, B2 are all supported in a common two-

dimensional subspace of H and A is orthogonal to
B1 or B2.

Lemma 20. Suppose that A = {Aj }m
j =1 is a simple rank-1

POVM on H; let B1, B2, . . . , Bn be n ≥ 2 rank-1 positive

operators on H that are pairwise linearly independent,
and let B =∑n

k=1 Bk. Then

m∑

j =1

‖Q(Aj ⊗ B)‖ ≤
m∑

j =1

n∑

k=1

‖Q(Aj ⊗ Bk)‖, (58)

and the inequality is saturated iff B1, B2, . . . , Bn are mutu-
ally orthogonal and they commute with all POVM elements
in A . In that case, A contains n rank-1 projectors that
are proportional to B1, B2, . . . , Bn, respectively, and is thus
reducible.

Note that the inequality in Eq. (58) cannot be satu-
rated if A is irreducible or B1, B2, . . . , Bn are not mutually
orthogonal. This observation leads to the following lemma.

Lemma 21. Suppose that A and C are two rank-1
POVMs on H and that B is a coarse graining of C . Sup-
pose that A is irreducible or C contains no two POVM
elements that are mutually orthogonal. Then

F(A ⊗ B) ≤ F(A ⊗ C ), (59)

and the inequality is saturated iff B is equivalent to C .

Lemma 21 shows that the two-copy estimation fidelity
F(A ⊗ C ) can only decrease when C is replaced by a
nontrivial coarse graining, assuming that A is irreducible
or C contains no two POVM elements that are mutually
orthogonal. Nevertheless, this conclusion no longer holds
if the underlying assumption is dropped; cf. Eq. (63) in the
next section.

V. TYPICAL QUANTUM MEASUREMENTS IN
THE LIGHT OF QUANTUM STATE ESTIMATION

Lemma 15 in Sec. IV B offers a succinct character-
ization of rank-1 measurements as optimal single-copy
measurements. Here we further demonstrate that the esti-
mation fidelity in Eqs. (35) and (37) is a powerful tool
for characterizing typical quantum measurements, includ-
ing rank-1 projective measurements, MUMs, SICs, and
measurements based on tight equiangular lines. Notably,
all these elementary quantum measurements are uniquely
characterized by extremal one-copy and two-copy estima-
tion fidelities, as summarized in Table I. In other words,
all these measurements are uniquely determined by their
information-extraction capabilities. To achieve our goal,
we completely characterize all quantum measurements that
can attain certain extremal estimation fidelities in a number
of natural settings. Note that it is not enough to determine
one optimal measurement.
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TABLE I. Operational characterizations of typical quantum measurements in terms of extremal one-copy and two-copy estimation
fidelities. Each measurement (pair of measurements) in the left column is completely determined by the estimation fidelities in bold font
in the corresponding row (at most three estimation fidelities are required in each case). Here A and B are POVMs on H; F(A ) and
F(B) are one-copy estimation fidelities, while F(A ⊗2), F(B⊗2), and F(A ⊗ B) are two-copy estimation fidelities. The estimation
fidelities F iid

2 and Fsep
2 are defined in Eqs. (65) and (70), respectively.

Quantum measurements F(A ) F(A ⊗2) F(B) F(B⊗2) F(A ⊗ B)

Rank 1 2
d+1 · · · · · · · · · · · ·

Rank-1 projective 2
d+1

2
d+1 · · · · · · · · ·

Identical rank-1 projective 2
d+1

2
d+1

2
d+1

2
d+1

2
d+1

SIC 2
d+1 Fiid

2 · · · · · · · · ·
Identical SICs 2

d+1 Fiid
2

2
d+1 F iid

2 Fiid
2

MU rank-1 projective 2
d+1

2
d+1

2
d+1

2
d+1 Fsep

2

A. Optimal collective measurements and t-designs

As a generalization of Lemma 15, the following theorem
determines tight lower and upper bounds for the estima-
tion fidelity F(A ) for N -copy measurements, assuming
that all collective measurements are accessible. In addition,
optimal N -copy measurements are clarified.

Theorem 2. Let A = {Aj }j be any POVM on H⊗N . Then
the N-copy estimation fidelity F(A ) satisfies

1
d

≤ F(A ) ≤ N + 1
N + d

, (60)

and the lower bound is saturated iff Q̃(Aj ) for each j is
proportional to the identity, while the upper bound is sat-
urated iff PN Aj PN for each j is proportional to the N th
tensor power of a pure state.

The lower bound in Eq. (60) corresponds to the per-
formance of a random guess; the upper bound is well
known in the context of optimal quantum state estimation
[31,35,38,41]. A self-contained proof of Theorem 2 is pre-
sented in Appendix G. When restricted to the N -partite
symmetric subspace, a POVM is optimal iff it has the form

{
DN

d
wj (|ψj 〉〈ψj |)⊗N

}

j
, (61)

where DN is determined by Eq. (6) and {|ψj 〉, wj }j forms
a t-design with t = N [41]. This observation establishes
a simple connection between optimal collective measure-
ments and quantum measurements based on t-designs.

Incidentally, prominent examples of 2-designs include
CMUB [4–8] and SICs [8–12]. When the dimension d
is a power of 2, any orbit of the Clifford group is a 3-
design. In the case of a qubit, the vertices of the regular
tetrahedron, octahedron, cube, icosahedron, and dodeca-
hedron inscribed on the Bloch sphere form t-designs with

t = 2, 3, 3, 5, 5, respectively. The vertices of the octahe-
dron also correspond to a CMUB. These platonic solids
can be used to construct optimal collective measurements
according to Eq. (61) [33]. Note that Dt = t + 1 when
d = 2 by Eq. (6). Suppose that a platonic solid forms a
t-design and let {rj }m

j =1 be the set of unit vectors that spec-
ify its vertices on the Bloch sphere. Then the correspond-
ing optimal collective measurements on the symmetric
subspace of H⊗t can be constructed as

{
t + 1

m

(
1 + rj · σ

2

)⊗t}m

j =1
, (62)

where σ = (σx, σy , σz) is the vector composed of the three
Pauli operators. The optimal two-copy collective measure-
ment based on the regular tetrahedron has already been
realized in photonic experiments [75]. Optimal collective
measurements based on other platonic solids might also be
realized in the near future.

B. Rank-1 projective measurements and SICs

From now on we focus on the estimation fidelities
of individual measurements, which are more instructive
to understanding quantum measurements on H. Given a
POVM A on H, recall that F(A ⊗k) denotes the k-copy
estimation fidelity achieved by the product POVM A ⊗k

built from A . Suppose that A is a rank-1 projective mea-
surement on H; by virtue of Lemma 15 and Eqs. (53)
and (54), it is straightforward to verify that

F(A ⊗2) = F(A ) = 2
d + 1

, F(A ⊗3) = 2(d + 5)
(d + 2)(d + 3)

.

(63)

Interestingly, identical projective measurements on two
copies can only achieve the same estimation fidelity as
a single-copy projective measurement, but identical pro-
jective measurements on three copies can enhance the
estimation fidelity.
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FIG. 2. Shifted two-copy estimation fidelities F = F(A ⊗2),
where A is a measurement constructed from an orthonormal
basis (projective), SIC, CMUB, or Haar random pure states
(isotropic). Here F1 = 2/(d + 1) is the one-copy estimation
fidelity achieved by a rank-1 projective measurement (or any
rank-1 measurement).

When A is a SIC, by virtue of Lemma 15, Eq. (20), and
Lemma 18, we can deduce that

F(A ) = 2
d + 1

, F(A ⊗2) = F iid
2 , (64)

where

F iid
2 := 2[d2 + d + 1 + (d − 1)

√
d + 1]

d(d + 1)(d + 2)
. (65)

On the other hand, F(A ⊗3) depends on the specific SIC
under consideration, as we will see in Sec. VII B. Although
rank-1 projective measurements and SICs share the same
single-copy estimation fidelity, their two-copy estimation
fidelities are quite different, as illustrated in Fig. 2. What
is remarkable is that both rank-1 projective measurements
and SICs are completely characterized by one-copy and
two-copy estimation fidelities, as shown in Theorem 3 and
its corollaries below (cf. Table I).

Theorem 3. Let A be any rank-1 POVM on H. Then the
two-copy estimation fidelity F(A ⊗2) satisfies

2
d + 1

≤ F(A ⊗2) ≤ F iid
2 . (66)

If A is a simple rank-1 POVM, then the lower bound is
saturated iff A is a rank-1 projective measurement, while
the upper bound is saturated iff A is a SIC.

Theorem 3 follows from Lemmas 10 and 18. It high-
lights special and intriguing roles played by rank-1 projec-
tive measurements and SICs in quantum state estimation.
Note that rank-1 projective measurements are completely
characterized by the lower bound for the two-copy estima-
tion fidelity F(A ⊗2) as presented in Eq. (66), while SICs

are completely characterized by the upper bound. Further-
more, the assumption of “rank-1” in Theorem 3 can be
dropped thanks to Corollaries 1 and 3 below.

Corollary 1. A simple POVM A on H is a rank-1 projec-
tive measurement iff it satisfies the condition F(A ⊗2) =
F(A ) = 2/(d + 1).

Corollary 2. Two simple POVMs A and B on H are
identical rank-1 projective measurements up to relabeling
iff they satisfy F(A ⊗ B) = F(B) = F(A ) = 2/(d + 1).

Corollary 3. Any POVM A on H satisfies the inequality
F(A ⊗2) ≤ F iid

2 . If A is simple, then the upper bound is
saturated iff A is a SIC.

Corollary 4. Suppose that A1, A2, . . . , Ag are g POVMs
on H. Then

∑

r,s

F(Ar ⊗ As) ≤ g2F iid
2 . (67)

If, in addition, these POVMs are simple, then the upper
bound is saturated iff A1, A2, . . . , Ag are identical SICs
up to relabeling.

Corollary 5. Two simple POVMs A and B on H are
identical SICs up to relabeling iff they satisfy the condition
F(A ⊗ B) = F(A ⊗2) = F iid

2 .

Corollary 1 follows from Lemma 15 and Theorem 3,
while Corollary 2 follows from Lemmas 12, 15, and 17
(cf. Theorem 7 below). The two corollaries offer suc-
cinct operational characterizations of rank-1 projective
measurements and identical rank-1 projective measure-
ments via one-copy and two-copy estimation fidelities.
Corollaries 3–5 also follow from Theorem 3, as shown
in Appendix H; they offer even more succinct opera-
tional characterizations of SICs and identical SICs via
two-copy estimation fidelities. Surprisingly, here we do not
need any assumption on the rank, purity, or the number
of POVM elements. Note that the isotropic measurement
and measurements based on CMUB are suboptimal, as
illustrated in Fig. 2, although they have (many) more out-
comes, in sharp contrast with the conclusion presented in
Theorem 2 and the results on traditional quantum state
tomography [20,26,27], in which measurements based on
higher t-designs cannot perform worse. In addition, here
the characterization of SICs is much simpler than most
known alternatives, including conventional characteriza-
tions based on maximal equiangular lines or minimal
2-designs [9,10,26,74].

The above results demonstrate that both rank-1 projec-
tive measurements and SICs are uniquely determined by

030306-13



HUANGJUN ZHU PRX QUANTUM 3, 030306 (2022)

their information-extraction capabilities. In other words,
these elementary quantum measurements can be defined in
purely information theoretic terms, in sharp contrast with
traditional algebraic definitions, which lack clear opera-
tional meanings. As far as we know, similar results have
never been derived or even anticipated before.

C. Measurements based on tight equiangular lines

Here we show that measurements based on tight equian-
gular lines stand out as optimal measurements when the
number of outcomes is limited, which generalizes the
optimality result on SICs as stated in Theorem 3.

If A = {Aj }m
j =1 is a POVM on H that is constructed

from a set of m tight equiangular lines, then the POVM
elements Aj of A have the form Aj = d|ψj 〉〈ψj |/m, where
|ψj 〉 satisfy Eq. (24). The estimation fidelity of A ⊗2 can
be derived by virtue of Lemmas 11 and 18 [cf. Eq. (37) and
Lemma 16], with the result

F(A ⊗2) = 2
d + 2

+ 2d + 2
√

d(m − 1)(m − d)
m(d + 1)(d + 2)

. (68)

Moreover, such a POVM is optimal among all rank-1
POVMs with m POVM elements, as shown in the fol-
lowing corollary, which is an immediate consequence of
Lemmas 11 and 18.

Corollary 6. Suppose that A is a rank-1 POVM on H
that is composed of m POVM elements; then the two-copy
estimation fidelity F(A ⊗2) satisfies

F(A ⊗2) ≤ 2
d + 2

+ 2d + 2
√

d(m − 1)(m − d)
m(d + 1)(d + 2)

. (69)

The upper bound is saturated iff d ≤ m ≤ d2 and the
POVM A is unbiased and equiangular.

Note that the upper bound in Eq. (69) is strictly mono-
tonically increasing in m, as expected. As an implication
of Lemma 15 and Corollary 6, an m-outcome POVM A
is an unbiased rank-1 equiangular POVM iff F(A ) =
2/(d + 1) and the inequality in Eq. (69) is saturated.

D. Mutually unbiased measurements

When A and B are MU rank-1 projective measure-
ments, the two-copy estimation fidelity F(A ⊗ B) can be
computed using Lemmas 12 and 17, with the result

F(A ⊗ B) = Fsep
2 := 2(d + 1 + √

d )
(d + 1)(d + 2)

. (70)

As illustrated in Fig. 3, this estimation fidelity is very
close to the estimation fidelity achieved by independent

5 10 15 20
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product MUB
iid SIC
iid projective

FIG. 3. Two-copy estimation fidelities achieved by optimal
collective measurements, optimal product measurements (based
on MUB), and optimal independent and identical measurements
(based on SICs). As a benchmark, the figure also shows the
estimation fidelity achieved by independent and identical rank-1
projective measurements.

and identical measurements based on a SIC. Neverthe-
less, it turns out that this is the maximum estimation
fidelity achievable by separable measurements, including
all measurements realized by local operations and clas-
sical communication, as manifested in the notation Fsep

2 .
Recall that a POVM is separable if each POVM element is
proportional to a separable density operator.

Lemma 22. Let A = {Aj }j be any separable POVM on
H⊗2. Then the two-copy estimation fidelity F(A ) satis-
fies F(A ) ≤ Fsep

2 . If A is rank 1, then the upper bound
is saturated iff each POVM element Aj satisfies the con-
dition d tr(WAj ) = tr(Aj ), where W = 2P2 − 1 is the swap
operator.

When the POVM element Aj is a tensor product, the
equality d tr(WAj ) = tr(Aj ) means Aj is a tensor product
of two MU positive operators, which is reminiscent of the
definition of MUMs. If we only consider product mea-
surements, then only MU rank-1 POVMs can attain the
maximum estimation fidelity Fsep

2 .

Theorem 4. Suppose that A and B are two POVMs on
H. Then the two-copy estimation fidelity F(A ⊗ B) satis-
fies F(A ⊗ B) ≤ Fsep

2 , and the inequality is saturated iff
A and B are MU rank-1 POVMs.

Although optimal product POVMs on H⊗2 are neces-
sarily rank 1, it should be noted that optimal separable
POVMs are not subjected to this constraint. In the case of
a qubit for example, an optimal separable POVM can be
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constructed from the four rank-2 operators

|0+〉〈0+| + |+0〉〈+0|
2

,
|0−〉〈0−| + |−0〉〈−0|

2
,

|1+〉〈1+| + |+1〉〈+1|
2

,
|1−〉〈1−| + |−1〉〈−1|

2
,

(71)

where |±〉 = (|0〉 ± |1〉)/√2.

Corollary 7. Suppose that A and B are two POVMs
on H that satisfy the condition F(A ⊗ B) = Fsep

2 . Then
A ⊗ B has at least d2 POVM elements, and the lower
bound is saturated iff A and B are MU rank-1 projective
measurements.

Corollary 8. Suppose that A and B are two simple
POVMs on H. Then A and B are MU rank-1 projective
measurements iff they satisfy the conditions F(A ⊗ B) =
Fsep

2 and F(A ⊗2) = F(B⊗2) = 2/(d + 1).

Corollary 9. Suppose that A1, A2, . . . , Ag are g POVMs
on H. Then

∑

r �=s

F(Ar ⊗ As) ≤ g(g − 1)Fsep
2 , (72)

and the upper bound is saturated iff A1, A2, . . . , Ag are
MU rank-1 POVMs. If, in addition, these POVMs are
simple and g = d + 1, then the upper bound is saturated
iff A1, A2, . . . , Ad+1 are rank-1 projective measurements,
which form a CMUMs.

Thanks to Theorem 4 and its corollaries, MU rank-1
projective measurements are completely characterized by
two-copy estimation fidelities as summarized in Table I.
Remarkably, we do not even need bases to start with;
orthonormal bases appear naturally once the estimation
fidelities reach certain extremal values. In addition, Corol-
laries 8 and 9 do not require any assumption on the
rank, purity, or the number of POVM elements. Such
simple operational characterizations are not even antici-
pated in the literature as far as we know. These results
are of intrinsic interest to studying quantum estimation
theory, quantum measurements, and the complementarity
principle.

At this point, it is instructive to compare Corollary 4
with Corollary 9. The former characterizes identical SICs
via the maximum of

∑
r,s F(Ar ⊗ As), which is a sum

of two-copy estimation fidelities, while the latter char-
acterizes (complete sets of) MUMs via the maximum of∑

r �=s F(Ar ⊗ As). The only difference in the latter sum-
mation is that the diagonal terms are absent. Quite surpris-
ingly, this minor change in the summation leads to a jump
from SICs to MUMs.

VI. DECODING QUANTUM INCOMPATIBILITY

In addition to characterizing typical quantum measure-
ments, the estimation fidelity encodes valuable information
about noncommutativity and incompatibility of quantum
measurements. Traditionally, incompatibility is usually
understood as a limitation, as embodied in the comple-
mentarity principle [13] and uncertainty relations [14–18].
With the development of quantum information science,
incompatibility is also recognized as a resource [43,44]. As
a byproduct, here we show that incompatibility is a useful
resource to enhance the estimation fidelity, thereby offering
additional insight on this topic.

A. Quantum incompatibility and the estimation fidelity

Theorem 5. Suppose that A and B are two commut-
ing POVMs on H. Then the two-copy estimation fidelity
F(A ⊗ B) satisfies F(A ⊗ B) ≤ 2/(d + 1).

Theorem 5 shows that two-copy measurements based
on two commuting POVMs cannot provide any advantage
over one-copy measurements. In other words, noncommu-
tativity is necessary to go beyond the single-copy limit
on the estimation fidelity. Theorem 7 below further shows
that noncommutativity is also sufficient to achieve this goal
when one POVM is rank 1, as illustrated in Fig. 4.

Theorem 6. Suppose that A and B are two compati-
ble POVMs on H. Then the two-copy estimation fidelity
F(A ⊗ B) satisfies F(A ⊗ B) ≤ F iid

2 . If, in addition,
both A and B are simple, then the upper bound is
saturated iff A and B are identical SICs up to relabeling.

0.0 0.2 0.4 0.6 0.8 1.0
[A+, B+] 1

0.66

0.68

0.70

0.72

0.74

F

FIG. 4. Relation between the two-copy estimation fidelity and
the commutator of POVM elements. Here F = F(A ⊗ B) is
the estimation fidelity achieved by the tensor product of two
rank-1 projective measurements as shown in Eq. (84), while
‖[A+, B+]‖1 is the 1-norm of the commutator [A+, B+]. As a
benchmark, the black dashed line denotes the one-copy estima-
tion fidelity achieved by a rank-1 projective measurement.
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Here F iid
2 is defined in Eq. (65). Theorem 6 shows that

two-copy measurements based on two compatible POVMs
cannot go beyond the estimation fidelity achieved by prod-
uct measurements based on identical SICs. It offers another
operational characterization of SICs that does not rely on
any assumption on the rank, purity, or the number of mea-
surement outcomes; meanwhile, it provides a universal cri-
terion for detecting incompatibility of two POVMs. Such
universal criteria are quite rare in the literature [49,50,52].
These results highlight the intriguing connection between
SICs and quantum incompatibility, which is of intrinsic
interest to foundational studies.

Suppose that A1, A2, . . . , Ag are g compatible POVMs.
Then Theorem 6 implies that

g∑

r �=s

F(Ar ⊗ As) ≤ g(g − 1)F iid
2 . (73)

In addition, since A1, A2, . . . , Ag admit a common refine-
ment, say B, we can also deduce that

F(A1 ⊗ A2 ⊗ · · · ⊗ Ar) ≤ F(B⊗g) ≤ F iid
g , (74)

where F iid
g denotes the maximum estimation fidelity

achieved by identical and independent measurements on
H⊗g . This result provides a universal criterion for detect-
ing incompatibility of g arbitrary POVMs. Unfortunately,
it is not easy to determine F iid

g for g ≥ 3; this problem
deserves further study.

Theorem 7. Suppose that A and B are POVMs on
H with A being rank 1. Then the two-copy estima-
tion fidelity F(A ⊗ B) satisfies F(A ⊗ B) ≥ F(A ) =
2/(d + 1), and the inequality is saturated iff A commutes
with B. If A and B are simple rank-1 POVMs, then the
inequality is saturated iff A and B are identical rank-1
projective measurements up to relabeling.

The last statement in Theorem 7 is tied to the char-
acterization of identical rank-1 projective measurements
presented in Corollary 2. As an implication of Theorems 4
and 7, any pair of rank-1 POVMs A and B on H satisfies

2
d + 1

≤ F(A ⊗ B) ≤ Fsep
2 . (75)

The lower bound is saturated iff A and B commute,
which means they are equivalent to the same rank-1 pro-
jective measurement, while the upper bound is saturated
iff A and B are MU. Note that MU measurements are
often regarded as maximally incompatible measurements
[4–7,57]. The above results show that incompatibility is a
resource to enhance the estimation fidelity. Although the
significance of incompatibility as a resource has been rec-
ognized before, results like Theorem 7 are still quite rare

because it is not easy to establish conditions that are both
necessary and sufficient.

B. Concrete examples

As an illustration, let us consider two binary POVMs
A = {A+, A−} and B = {B+, B−} acting on a qubit (that
is, d = 2), where A− = 1 − A+ and B− = 1 − B+. Note
that the two POVMs are completely determined by the two
effect operators A+ and B+, respectively, which satisfy the
condition 0 ≤ A+, B+ ≤ 1. Without loss of generality, we
can assume that 1 ≤ tr(A+), tr(B+) < 2. Then A± and B±
can be expressed as

A±=1 ± α ± a · σ

2
, B±=1 ± β ± b · σ

2
, (76)

where σ = (σx, σy , σz) is the vector composed of the three
Pauli operators and the parameters α,β, a, b satisfy the
conditions

0 ≤ α,β < 1, |a| ≤ 1 − α, |b| ≤ 1 − β. (77)

The parameter α (β) characterizes the bias of the POVM
A (B), while the parameter |a| (|b|) characterizes the
sharpness of A (B). Notably, A is unbiased iff α = 0,
while A is rank 1 iff α = 0 and |a| = 1. Similarly, B is
unbiased iff β = 0, while B is rank 1 iff β = 0 and |b| = 1.
In addition, A and B are MU iff a · b = 0.

The single-copy estimation fidelity F(A ) can be com-
puted by virtue of Lemma 15, with the result

F(A ) = 3 + |a|
6

. (78)

The two-copy estimation fidelity F(A ⊗2) can be com-
puted by virtue of Eqs. (37) and (43), with the result

F(A ⊗2) = 3 + |a| + α|a|
6

. (79)

Interestingly, the single-copy estimation fidelity of a binary
POVM on a qubit is completely determined by its sharp-
ness, while the two-copy estimation fidelity depends on
both sharpness and bias. In addition, the parameters α
and |a| are completely determined by F(A ) and F(A ⊗2).
Notably, the inequality F(A ⊗2) ≥ F(A ) is saturated iff
A is unbiased (α = 0) or trivial (|a| = 0).

To determine the estimation fidelity of the product
POVM A ⊗ B, we need to compute Q(A± ⊗ B±). By
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virtue of Eq. (43) we can derive the result

Q(A+⊗B+) = 3(1 + α)(1 + β)+ a · b + (1 + β)a · σ

+ (1 + α)b · σ , (80)

which implies that

‖Q(A+⊗B+)‖ = 3(1 + α)(1 + β)+ a · b

+ |(1 + β)a + (1 + α)b|. (81)

The norm ‖Q(A+ ⊗ B−)‖ can be derived by replacing β
and b with −β and −b, respectively; a similar recipe
applies to ‖Q(A− ⊗ B±)‖. Now the estimation fidelity
F(A ⊗ B) can be calculated using Eq. (37), with the
result

F(A ⊗ B) = 1
2 + 1

24 [ |(1 + β)a + (1 + α)b|
+ |(1 − β)a − (1 + α)b|
+ |(1 + β)a − (1 − α)b|
+ |(1 − β)a + (1 − α)b| ]. (82)

If A and B are unbiased, which means α = β = 0, then
Eq. (82) reduces to

F(A ⊗ B) = 1
2

+ |a + b| + |a − b|
12

. (83)

So F(A ⊗ B) ≤ 2/3 iff |a + b| + |a − b| ≤ 2. It is well
known that the latter condition holds iff A and B are
compatible (jointly measurable) [42,76–78]. Therefore,
incompatibility is both necessary and sufficient to enhance
the estimation fidelity beyond the single-copy limit in
this special case. In addition, we have F(A ⊗ B) =
max{F(A ), F(B)} when a and b are parallel or antipar-
allel, which is consistent with Theorems 5 and 7.

If A and B are rank-1 projective measurements, which
means α = β = 0 and |a| = |b| = 1, then F(A ⊗ B) can
be expressed as

F(A ⊗ B) = 3 + √
1 + |a × b|

6
= 3 + √

1 + |sinφ|
6

= 3 + √
1 + ‖[A+, B+]‖1

6
, (84)

where φ is the angle between a and b, and ‖[A+, B+]‖1
is the Schatten 1-norm (or trace norm) of the commutator
[A+, B+] := A+B+ − B+A+. Note that

[A+, B+] = [A−, B−] = −[A+, B−] = −[A−, B+]. (85)

Therefore, F(A ⊗ B) ≥ 2/3, and the lower bound is sat-
urated iff a and b are parallel or antiparallel, in which case
A and B commute and are thus identical rank-1 projec-
tive measurements up to relabeling, as shown in Theorem 7
and illustrated in Fig. 4.

C. Connection with entropic uncertainty relations

Entropic uncertainty relations are another important
manifestation of quantum incompatibility [17,18]. Given
two rank-1 projective measurements A and B on H,
is there any connection between the two-copy estima-
tion fidelity F(A ⊗ B) and entropic uncertainty relations
between A and B? Here we reveal a precise connec-
tion in the case of a qubit. Denote by Hρ(A ) [Hρ(B)]
the entropy of measurement outcomes when the projec-
tive measurement A (B) is performed on a given state
ρ. Then the entropy sum Hρ(A )+ Hρ(B) satisfies a
state-independent entropic uncertainty relation [17,18,45],

Hρ(A )+ Hρ(B) ≥ HMES(A , B) = HMES(φ), (86)

where HMES(A ⊗ B) denotes the minimum entropy sum
associated with the two projective measurements A , B,
and φ is the angle between a and b as in Eq. (84). Note
that HMES(A , B) is completely determined by φ, so we
can write HMES(φ) in its place.

Let

p = 1 + cos θ
2

, q = 1 + cos(θ − φ)

2
. (87)

Then HMES(φ) can be expressed as [18,45]

HMES(φ) = min
0≤θ<2π

[hbin(p)+ hbin(q)], (88)

where hbin(p) is the binary Shannon entropy defined as

hbin(p) := −p log2 p − (1 − p) log2(1 − p). (89)

When 0 ≤ φ ≤ φ1 with φ1 ≈ 1.170 56, the minimum in
Eq. (88) is attained at θ = φ/2 [45]; in general, the min-
imum can be determined by numerical calculation. In
addition, it is easy to verify that

HMES(−φ) = HMES(π + φ) = HMES(φ). (90)

So the value of HMES(φ) is determined by |sinφ|. More-
over, it is not difficult to show that HMES(φ) is monotoni-
cally increasing in |sinφ|, just like the two-copy estimation
fidelity F(A ⊗ B) in Eq. (84). Therefore, the minimum
entropy sum HMES(A , B) associated with two rank-1 pro-
jective measurements on a qubit is determined by the
two-copy estimation fidelity F(A ⊗ B), and vice versa,
as illustrated in Fig. 5. This observation reveals a sur-
prising connection between quantum state estimation and
entropic uncertainty relations.

030306-17



HUANGJUN ZHU PRX QUANTUM 3, 030306 (2022)

0.0 0.2 0.4 0.6 0.8 1.0
HMES

0.66

0.68

0.70

0.72

0.74
F

FIG. 5. Relation between the two-copy estimation fidelity and
the minimum entropy sum. Here F is the two-copy estimation
fidelity associated with two rank-1 projective measurements on a
qubit as shown in Eq. (84), and HMES is the minimum entropy
sum presented in Eq. (88), which characterizes the entropic
uncertainty relation in Eq. (86).

VII. DISTINGUISHING INEQUIVALENT MUB
AND SICs

In this section we show that the three-copy estimation
fidelity can be used to distinguish inequivalent discrete
symmetric structures tied to the quantum state space,
including MUB and SICs in particular. This capability is
rooted in the fact that the three-copy estimation fidelity
encodes valuable information about the triple products of
POVM elements, which play important roles in studying
SICs [79–81] and discrete Wigner functions [82]. Note
that such information cannot be retrieved by considering
pairwise overlaps alone.

A. Operational distinction between inequivalent MUB

Let {|αj 〉}j , {|βk〉}k, and {|γl〉}l be three orthonormal
bases in H; let A = {|αj 〉〈αj |}j , B = {|βk〉〈βk|}k, and
C = {|γl〉〈γl|}l be the corresponding rank-1 projective
measurements. In this section we take the convention that
j , k, l ∈ {0, 1, . . . , d − 1}. According to Eqs. (37) and (47),
the three-copy estimation fidelity F(A ⊗ B ⊗ C ) may
depend on the triple products

fjkl := tr(|αj 〉〈αj |βk〉〈βk|γl〉〈γl|) (91)

in addition to the pairwise fidelities (transition probabili-
ties) between the basis elements. This dependence can be
used to distinguish inequivalent triples of bases that share
the same pairwise fidelities.

As an illustration, here we consider triples of MUB in
dimension 4 (d = 4). In this case, according to Ref. [83],
there exists a three-parameter family of triples of MUB.
The first basis is chosen to be the computational basis by
convention; the second and third bases correspond to the

columns of the two Hadamard matrices

1
2

⎛

⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 ieix −ieix

1 −1 −ieix ieix

⎞

⎟⎠ ,

1
2

⎛

⎜⎝

1 1 1 1
1 1 −1 −1

−eiy eiy eiz −eiz

eiy −eiy eiz −eiz

⎞

⎟⎠ ,

(92)

where x, y, z ∈ [0, 2π) are three real parameters. Note that
the transformation x �→ x + π amounts to the permuta-
tion of the last two columns of the first Hadamard matrix;
similarly, the transformations y �→ y + π and z �→ z + π

amount to the permutations of the columns of the second
Hadamard matrix. So it suffices to consider the parameter
range x, y, z ∈ [0,π).

Now suppose that {|αj 〉}j coincides with the computa-
tional basis {|j 〉}j , while {|βk〉}k and {|γl〉}l are determined
by the columns of the two Hadamard matrices in Eq. (92),
respectively; here the dependencies on the parameters
x, y, z are suppressed to simplify the notation. Then the
three bases {|αj 〉}j , {|βk〉}k, and {|γl〉}l are MU, that is,

tr(|αj 〉〈αj |βk〉〈βk|) = tr(|βk〉〈βk|γl〉〈γl|)
= tr(|αj 〉〈αj |γl〉〈γl|)
= 1

4 for all j , k, l = 0, 1, 2, 3. (93)

By Eqs. (37) and (47), the three-copy estimation
fidelity of A ⊗ B ⊗ C , denoted by FMUB(x, y, z) :=
F(A ⊗ B ⊗ C ) henceforth, can be computed as

FMUB(x, y, z) =
∑

j ,k,l ‖Q(|j 〉〈j | ⊗ |βk〉〈βk| ⊗ |γl〉〈γl|)‖
840

.

(94)

The variation of the estimation fidelity FMUB(x, y, z) with
x, y, z is shown in Figs. 6 and 7.
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FIG. 6. Three-copy estimation fidelity FMUB(x, y, z) achieved
by the product projective measurement based on a triple of MUB
as determined in Eq. (94).
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In general, FMUB(x, y, z) does not have a simple expres-
sion because ‖Q(|j 〉〈j | ⊗ |βk〉〈βk| ⊗ |γl〉〈γl|)‖ depends on
the triple product fjkl and in general does not have a simple
analytical expression. Nevertheless, analytical formulas
for ‖Q(|j 〉〈j | ⊗ |βk〉〈βk| ⊗ |γl〉〈γl|)‖ can be derived in a
few special cases of interest:

∥∥Q(|j 〉〈j | ⊗ |βk〉〈βk| ⊗ |γl〉〈γl|)
∥∥

=

⎧
⎪⎪⎨

⎪⎪⎩

15
2 if fjkl = 1

8 ,
15
4 if fjkl = − 1

8 ,

4 + 5
4

√
3 if fjkl = ± i

8 .

(95)

In the case x = π/2 and y = z = 0, calculation shows that
48 of the triple products fjkl are equal to 1/8, while the
remaining 16 triple products are equal to −1/8. Therefore,

FMUB(x, y, z) = 1
840

(
15
2

× 48 + 15
4

× 16
)

= 1
2

. (96)

In the case x = y = z = π/2, calculation shows that 32 of
the triple products fjkl are equal to 1/8, while the remaining

32 triple products are equal to i/8 or −i/8. Therefore,

FMUB(x, y, z) = 1
840

(
15
2

× 32 + 16 + 5
√

3
4

× 32
)

= 46 + 5
√

3
105

≈ 0.5206. (97)

Numerical calculation indicates that 1/2 is the minimum
of FMUB(x, y, z), while (46 + 5

√
3)/105 is the maximum

of FMUB(x, y, z) (cf. Figs. 6 and 7). The difference is
about 4.1%, which is quite significant and is amenable to
experimental demonstration. Here Haar random pure states
involved in the estimation problem can be replaced by any
ensemble of pure states that forms a 4-design, which can
be constructed from a suitable Clifford orbit, as described
in Ref. [63].

B. Operational distinction between inequivalent SICs

The estimation fidelity can also be used to distinguish
inequivalent SICs. As an illustration, here we consider
SICs in dimension 3. It is known that all SICs in dimen-
sion 3 are covariant with respect to the Heisenberg-Weyl
group with respect to a suitable basis [9–12,79,84–86].
The standard Heisenberg-Weyl group is generated by the

FIG. 7. Contour and color plots of the three-copy estimation fidelity FMUB(x, y, z) [cf. Eq. (94)] for four cross sections that are
parallel to the y-z plane as specified by four different values of x.
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cyclic-shift operator X and phase operator Z:

X :=
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ , Z :=
⎛

⎝
1 0 0

e2π i/3 0
0 0 e4π i/3

⎞

⎠ . (98)

Let

|ψ(φ)〉 := 1√
2
(0, 1, −eiφ)T, 0 ≤ φ < 2π ; (99)

for each choice of the phase φ, a SIC can be constructed as
[9,84]

ASIC(φ) := { 1
3 X j Zk|ψ(φ)〉〈ψ(φ)|(X j Zk)†

}
j ,k=0,1,2.

(100)

Note that ASIC(φ + (2π/3)) and ASIC(φ) are identical up
to relabeling.

Moreover, any SIC in dimension 3 is unitarily equiv-
alent to ASIC(φ) for φ ∈ [0,π/9]; given 0 ≤ φ1 ≤ φ2 ≤
π/9, then ASIC(φ1) and ASIC(φ2) are unitarily equiva-
lent iff φ1 = φ2 [28,79]. The two SICs ASIC(φ = 0) and
ASIC(φ = π/9) are exceptional in the sense that they
have larger symmetry groups compared with a generic
SIC ASIC(φ) with 0 < φ < π/9. In particular, the SIC
ASIC(φ = 0) has the largest symmetry group and can be
regarded as the most symmetric SIC [79,84,87]. How-
ever, it is not clear if inequivalent SICs have different
operational implications before the current study.

Here we are interested in the estimation fidelity of
ASIC(φ)

⊗3, denoted by FSIC(φ) := F(ASIC(φ)
⊗3) hence-

forth. The analytical expression for FSIC(φ) is too com-
plicated to be informative, but it is easy to compute its
value numerically by virtue of Eqs. (37) and (47). The
dependence of FSIC(φ) on φ is illustrated in Fig. 8, which
indicates that FSIC(φ) is periodic in φ with period 2π/9. In
addition, FSIC(φ) increases monotonically with φ for φ ∈
[0,π/9], but decreases monotonically for φ ∈ [π/9, 2π/9].
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FIG. 8. Three-copy estimation fidelity FSIC(φ) achieved by
the POVM ASIC(φ)

⊗3, where ASIC(φ) is the SIC defined in
Eq. (100).

Notably, FSIC(φ) attains its maximum when φ = π/9,
which corresponds to the exceptional SIC with interme-
diate symmetry; by contrast, FSIC(φ) attains its minimum
when φ = 0, which corresponds to the most symmet-
ric SIC. This conclusion seems quite unexpected, and a
simple explanation is yet to be found. The estimation
fidelities achieved by generic SICs interpolate between the
two extreme cases. In conjunction with known results on
the equivalent classes of SICs under unitary transforma-
tions [79,84,87], Fig. 8 provides strong evidence for the
following conjecture.

Conjecture 1. Two SICs in dimension 3 can achieve the
same three-copy estimation fidelity iff they are unitarily
equivalent.

VIII. SUMMARY

We proposed a simple but powerful approach for
decoding the characteristics of quantum measurements
by virtue of a simple problem in quantum state estima-
tion. Based on this approach we provided surprisingly
simple characterizations of various typical and important
quantum measurements, including rank-1 projective mea-
surements, MUMs, and SICs. Notably, we do not need
any assumption on the rank, purity, or the number of
POVM elements, and we do not need bases to start with,
which seems impossible with all previous approaches.
Our work demonstrates that all these elementary quantum
measurements are uniquely determined by their
information-extraction capabilities. In other words, all
these elementary quantum measurements can be defined in
purely information theoretic terms, in sharp contrast with
traditional algebraic definitions, which lack clear oper-
ational meanings. In this way, our work offers a fresh
perspective for understanding and exploring quantum mea-
surements from their information-extraction capabilities.

The two-copy estimation fidelity we introduced also
offers a new perspective for understanding quantum
incompatibility as a resource. In addition, this estima-
tion fidelity can be used to construct a universal criterion
for detecting incompatibility of two arbitrary POVMs.
Moreover, it has an intimate connection with entropic
uncertainty relations. Furthermore, we showed that the
three-copy estimation fidelity can be used to distinguish
inequivalent MUB and SICs, which cannot be distin-
guished by pairwise fidelities. Such operational figures
of merit are quite rare in the literature and are expected
to play an important role in understanding various dis-
crete symmetric structures tied to the quantum state space.
In the course of study, we derived a number of results
on quantum measurements and (weighted complex pro-
jective) t-designs, which are of independent interest. Our
work offers valuable insights not only on quantum mea-
surements and quantum estimation theory, but also on
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various related research areas, including geometry of
quantum states, t-designs and random quantum states,
quantum incompatibility, and foundational studies. The
implications of these results deserve further explorations
in the future.
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APPENDIX A: PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1. Without loss of generality we can
assume that no POVM element in A or B is equal to
the zero operator. The inequality ℘(A ) ≤ ℘(B) can be
proved as follows:

d℘(A ) =
∑

j

tr(A2
j )

tr(Aj )

=
∑

j

∑
k,l�jk�jl tr(BkBl)

tr(Aj )

≤
∑

j

∑
k,l�jk�jl

√
tr(B2

k)

√
tr(B2

l )

tr(Aj )

=
∑

j

[∑
k �jk

√
tr(B2

k)

]2

∑
k �jk tr(Bk)

≤
∑

k

tr(B2
k)

tr(Bk)
= d℘(B). (A1)

Here the first inequality follows from the Cauchy-
Schwarz inequality, and the second inequality follows
from Lemma S1 of Ref. [50]. If A is equivalent to B,
then the opposite inequality ℘(B) ≤ ℘(A ) holds by the
same token, so we have ℘(A ) = ℘(B), which confirms
the implication 1 ⇒ 2.

If ℘(A ) = ℘(B), then the two inequalities in Eq. (A1)

are saturated. Note that tr(BkBl) ≤
√

tr(B2
k)

√
tr(B2

l ), and
the inequality is saturated iff Bk and Bl are proportional
to each other. The saturation of the first inequality in
Eq. (A1) then implies that �jk�jl = 0 whenever Bk and Bl
are linearly independent, which confirms the implication
2 ⇒ 3.

If statement 3 holds, then the product�jk�jl can take on
a nonzero value only if Bk and Bl are proportional to each
other. In this case, B can be realized by data processing
after performing A ; in other words, B is a coarse graining

of A . Since A is a coarse graining of B by assumption,
it follows that A is equivalent to B, which confirms the
implication 3 ⇒ 1 and completes the proof of Lemma 1.

�
Proof of Lemma 2. Suppose that A = {Aj }j and B =
{Bk}k are two simple POVMs. Obviously, A and B are
equivalent if they are identical up to relabeling.

Conversely, suppose that A and B are equivalent; then
Aj can be expressed as Aj =∑k �jkBk, where � is a
stochastic matrix. According to Lemma 1, each row of �
has only one nonzero entry, given that the POVM elements
in B are pairwise linearly independent, and so are the
POVM elements in A . It follows that Aj is proportional
Bk whenever �jk > 0. Now the simplicity of A further
implies that each column of � has only one nonzero entry,
which is necessarily equal to 1. Therefore, � is a permu-
tation matrix, which means A and B are identical up to
relabeling, confirming the first statement in Lemma 2.

To prove the second statement in Lemma 2, let C =
{Cj }j be an arbitrary POVM; then an equivalent simple
POVM can be constructed by deleting POVM elements
that are equal to the zero operator and combining POVM
elements that are proportional to each other. According to
the first statement in Lemma 2, such a simple POVM is
unique up to relabeling. �

APPENDIX B: PROOFS OF LEMMAS 3–5 AND
THEOREM 1

Proof of Lemma 3. Suppose that A = {Aj }m
j =1, where Aj

are rank 1 by assumption. Then we have

∑

j

Aj = 1,
∑

j

tr(Aj ) = d, (B1)

d =
∑

j ,k

tr(Aj Ak) ≥
∑

j ,k

tr(A2
j ) =

∑

j

(tr Aj )
2 ≥ d2

m
, (B2)

which implies that m ≥ d, so A has at least d POVM ele-
ments. Obviously, the lower bound is saturated if A is a
rank-1 projective measurement.

Conversely, if A has d POVM elements, that is, m = d,
then the two inequalities in Eq. (B2) are saturated, which
implies that

tr(Aj Ak) = δjk. (B3)

Therefore, all the POVM elements Aj are mutually orthog-
onal rank-1 projectors, which means A is a rank-1 pro-
jective measurement, confirming the first statement in
Lemma 3. In the above reasoning it is not necessary to
assume that A is simple.

Next, we turn to the second statement in Lemma 3.
Let us consider the span of POVM elements in A
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and its dimension, assuming that A is simple. By
assumption, each POVM element of A has the form Aj =
wj |ψj 〉〈ψj | with 0 < wj ≤ 1; in addition, the correspond-
ing set of kets {|ψj 〉}j spans H. So we can find d kets,
say |ψ1〉, |ψ2〉, . . . , |ψd〉, that form a basis (not necessarily
orthogonal) for H. Then the corresponding set of pro-
jectors {|ψj 〉〈ψj |}d

j =1 is necessarily linearly independent,
which implies that

dim(span(A )) ≥ dim(span({|ψj 〉〈ψj |}d
j =1)) = d. (B4)

If A is a rank-1 projective measurement, then the lower
bound is saturated.

Conversely, if the lower bound in Eq. (B4) is saturated,
then each POVM element of A is a linear combination of
|ψj 〉〈ψj | for j = 1, 2, . . . , d. Note that the rank of such a
linear combination is equal to the number of nonzero coef-
ficients. Since A is rank 1 by assumption, it follows that
each POVM element of A is proportional to |ψj 〉〈ψj | for
some j = 1, 2, . . . , d, which implies that A has d POVM
elements given that A is simple. Therefore, A is a rank-1
projective measurement according to the first statement in
Lemma 3 as proved above. �
Proof of Lemma 4. Let A = {Aj }m

j =1 and B = {Bk}n
k=1. If

B ⊆ A and the projectors in B are mutually orthogonal,
then A \ B is orthogonal to B given that

m∑

j =1

Aj = 1, Aj ≥ 0 for all j = 1, 2, . . . , m, (B5)

so A and B commute.
Conversely, suppose that A and B commute. Then

each Aj ∈ A commutes with each Bk ∈ B, which means
Aj is either orthogonal to Bk or proportional to Bk. Since
A is a simple POVM, it follows that, for any given pro-
jector Bk ∈ B, there exists a unique POVM element in A
that is proportional to Bk, and all other POVM elements are
orthogonal to Bk. By a suitable relabeling if necessary, we
can assume that

Aj ∝ Bj for all j = 1, 2, . . . , n. (B6)

Then the above analysis means

Bj Bk = Bj δjk for all j , k = 1, 2, . . . , n, (B7)

Aj Ak = A2
j δjk for all j = 1, 2, . . . , m; k = 1, 2, . . . , n.

(B8)

In particular, the rank-1 projectors in B are mutually
orthogonal, and so are the POVM elements A1, A2, . . . , An.
Now Eqs. (B5)–(B8) together further imply that the POVM
elements A1, A2, . . . , An are mutually orthogonal rank-1

projectors and Aj = Bj for j = 1, 2, . . . , n, which in turn
imply that B ⊆ A . �

Proof of Lemma 5. Lemma 5 is a simple corollary of
Lemma 4 and can also be proved directly as follows.
Suppose that A = {Aj }j and B = {Bk}k are two sim-
ple rank-1 POVMs. Then A and B commute with each
other if they are identical projective measurements up to
relabeling.

Conversely, if A and B commute, then Aj Bk = BkAj
for any pair j , k. Note that two rank-1 positive oper-
ators commute with each other iff they are orthogonal
or proportional to each other. In conjunction with the
assumption that A and B are simple rank-1 POVMs,
we conclude that each POVM element in A (B) is pro-
portional to a unique POVM element in B (A ) and is
orthogonal to all other POVM elements in B (A ). In
this way, POVM elements in A have one-to-one corre-
spondence with POVM elements in B; in particular, A
and B have the same number of POVM elements. By
a suitable relabeling if necessary, we can assume that Aj
is proportional to Bj and is orthogonal to Bk with k �= j .
So all POVM elements in A are mutually orthogonal,
and so are POVM elements in B, which means both A
and B are rank-1 projective measurements. Moreover,
A and B are identical up to relabeling given the above
correspondence. �
Proof of Theorem 1. Let {Ar}g

r=1 be an arbitrary set of g
MU simple rank-1 POVMs on H, where Ar = {Arj }j .
Let A′

rj = Arj − (tr Arj /d) and A ′
r = {A′

rj }j . Then A′
rj are

traceless and

dim(span(Ar)) = dim(span(A ′
r ))+ 1. (B9)

By assumption, Ar and As with r �= s are MU, which
implies that

tr(A′
rj A′

sk) = 0 for all j , k, (B10)

so A′
rj and A′

sk are orthogonal with respect to the Hilbert-
Schmidt inner product. As a consequence,

d2 ≥ dim
(

span
( g⋃

r=1

Ar

))

= dim
(

span
( g⋃

r=1

A ′
r

))
+ 1

=
g∑

r=1

[dim(span(Ar))− 1] + 1

=
g∑

r=1

dim(span(Ar))− g + 1

≥ dg − g + 1, (B11)
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where the second inequality follows from Lemma 3 and is
saturated iff each Ar is a rank-1 projective measurement.

Equation (B11) implies that g ≤ d + 1. If the upper
bound is saturated, then the two inequalities in Eq. (B11)
are saturated, which means dim(span(Ar)) = d for each
Ar. So all the POVMs Ar are rank-1 projective mea-
surements by Lemma 3, which implies that {Ar}g

r=1 is a
CMUMs. �

APPENDIX C: PROOFS OF LEMMAS 6–9

1. Main proofs

Proof of Lemma 6. By assumption, S can be expressed as
S = {|ψj 〉, wj }m

j =1, where

wj > 0,
∑

j

wj = d,
∑

j

wj |ψj 〉〈ψj | = 1. (C1)

The lower bound in Eq. (23) can be proved as follows:

�1/2(S) =
∑

j ,k

wj wk|〈ψj |ψk〉| ≥
∑

j ,k

wj wk|〈ψj |ψk〉|2

= tr
(∑

j

wj |ψj 〉〈ψj |
)2

= d. (C2)

If S is an orthonormal basis (with uniform weights),
which means m = d, wj = 1, and 〈ψj |ψk〉 = δjk, then it is
straightforward to verify that the lower bound is saturated.

Conversely, if the lower bound in Eq. (C2) is saturated
and S is simple, then |〈ψj |ψk〉| can take on only two
distinct values, namely, 0 and 1, so we have

〈ψj |ψk〉=δjk for all j , k = 1, 2, . . .m. (C3)

This equation can hold only if m ≤ d. On the other hand,
Eq. (C1) implies that m ≥ d [cf. Lemma 3 and Eq. (7) in
the main text]. So m = d and {|ψj 〉}d

j =1 forms an orthonor-
mal basis. Now Eq. (C1) further implies that wj = 1 for
all j . Therefore, S is an orthonormal basis (with uniform
weights).

To prove the upper bound in Eq. (23), define pjk :=
wj wk/d2 and xjk := |〈ψj |ψk〉|2. Then Eq. (C1) implies that

∑

j ,k

pjk = 1,
∑

j ,k

pjkxjk = 1
d

. (C4)

In addition, from Eq. (10) we can deduce that

∑

j ,k

pjkx2
jk = 1

d2

∑

j ,k

wj wk|〈ψj |ψk〉|4

= 1
d2 tr
[∑

j

wj (|ψj 〉〈ψj |)⊗2
]2

≥ 2
d(d + 1)

, (C5)

and the lower bound is saturated iff {|ψj 〉, wj }m
j =1 forms a

2-design. By virtue of Lemmas 23 and 25 in Appendix C 2,
we can now deduce that

�1/2(S) =
∑

j ,k

wj wk|〈ψj |ψk〉| = d2
∑

j ,k

pjk
√

xjk

≤ d2ζ

(
1
d

,
2

d(d + 1)

)
= 1 + (d − 1)

√
d + 1,

(C6)

which confirms the upper bound in Eq. (23). Here the
function ζ is defined in Eq. (C26) in Appendix C 2. If S
is a SIC (with uniform weights), which means m = d2,
wj = 1/d, and |〈ψj |ψk〉|2 = (dδjk + 1)/(d + 1), then it is
straightforward to verify that the upper bound is saturated
[cf. Eq. (20)].

Conversely, if the upper bound in Eq. (23) is saturated,
then the inequality in Eq. (C6) is saturated. According to
Lemmas 23 and 25, the lower bound in Eq. (C5) must sat-
urate, so {|ψj 〉, wj }m

j =1 forms a 2-design; meanwhile, we
have

∑

j ,k:|〈ψj |ψk〉|2=1/(d+1)

wj wk = d2 − 1, (C7)

∑

j ,k:|〈ψj |ψk〉|2=1

wj wk = 1, (C8)

given that wj wk = d2pjk, so |〈ψj |ψk〉|2 can take on only
two distinct values, namely, 1 and 1/(d + 1).

If, in addition, S is simple, then |〈ψj |ψk〉|2 < 1 when-
ever j �= k, so Eqs. (C7) and (C8) imply that

|〈ψj |ψk〉|2 = dδjk + 1
d + 1

for all j , k = 1, 2, . . .m. (C9)

This equation can hold only if m ≤ d2. On the other hand,
the opposite inequality m ≥ d2 has to hold given that
{|ψj 〉, wj }m

j =1 forms a 2-design [cf. Eq. (7) in the main text].

So m = d2 and the set {|ψj 〉}d2

j =1 forms a SIC. Furthermore,
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from Eq. (C8) we can deduce that
∑

j

w2
j =

∑

j ,k:|〈ψj |ψk〉|2=1

wj wk = 1. (C10)

Equations (C1) and (C10) together imply that wj = 1/d for
all j . Therefore, S is a SIC (with uniform weights), which
completes the proof of Lemma 6. �

Proof of Lemma 7. By assumption, the weighted set S has
the form S = {|ψj 〉, wj }m

j =1 and satisfies the conditions

0 ≤ wj ≤ 1,
∑

j

wj = d,
∑

j ,k

wj wk|〈ψj |ψk〉|2 = d.

(C11)

Let h =∑j w2
j ; then the above equation implies that

d2

m
≤ h ≤ d, (C12)

and the lower bound is saturated iff wj = d/m for all j .
Therefore,

�1/2(S) =
∑

j ,k

wj wk|〈ψj |ψk〉|

=
∑

j

w2
j +
∑

j �=k

wj wk|〈ψj |ψk〉|

≤
∑

j

w2
j +
√∑

j �=k

wj wk

√∑

j �=k

wj wk|〈ψj |ψk〉|2

= h +
√

d2 − h
√

d − h

≤ d2

m
+ d

m

√
d(m − 1)(m − d), (C13)

which confirms the upper bound in Eq. (25). Here the first
inequality follows from the Cauchy inequality. The sec-
ond inequality follows from Eq. (C12) and the fact that the
function h + √

d2 − h
√

d − h is strictly decreasing in h for
0 ≤ h ≤ d and d ≥ 2; it is saturated iff h = d2/m.

If S is composed of m equiangular states (with uni-
form weights), then Eq. (24) in the main text holds and we
have wj = d/m for j = 1, 2, . . . , m. So both inequalities in
Eq. (C13) are saturated, which means the upper bound in
Eq. (25) is saturated.

Conversely, if the upper bound in Eq. (25) is saturated,
then both inequalities in Eq. (C13) are saturated. The sat-
uration of the second inequality implies that h = d2/m,
which in turn implies that wj = d/m for j = 1, 2, . . . , m.
Then the saturation of the first inequality implies Eq. (24)
given Eq. (C11). Therefore, S is composed of m equian-
gular states (with uniform weights). Note that any equian-
gular set in H can contain at most d2 states [9,72,74], so

Eq. (25) cannot be saturated when m > d2. This observa-
tion completes the proof of Lemma 7. �

Proof of Lemma 8. By assumption, S and T can be
expressed as S = {|ψj 〉, wj }m

j =1 and T = {|ϕk〉, w′
k}n

k=1,
which satisfy

wj , w′
k > 0,

∑

j

wj =
∑

k

w′
k = d,

∑

j

wj |ψj 〉〈ψj | =
∑

k

w′
k|ϕk〉〈ϕk| = 1.

(C14)

The upper bound in Eq. (26) can be proved as follows:

�1/2(S ,T ) =
∑

j ,k

wj w′
k|〈ψj |ϕk〉|

≤
√√√√
(∑

j ,k

wj w′
k

)(∑

j ,k

wj w′
k|〈ψj |ϕk〉|2

)

=
√

d2 × d = d3/2. (C15)

Here the inequality follows from the Cauchy inequality
and is saturated iff |〈ψj |ϕk〉|2 = 1/d for each pair j , k.
Therefore, the upper bound in Eq. (26) is saturated iff S
and T are MU.

The lower bound in Eq. (26) can be proved following a
similar approach used to prove the lower bound in Eq. (23):

�1/2(S ,T ) =
∑

j ,k

wj w′
k|〈ψj |ϕk〉| ≥

∑

j ,k

wj w′
k|〈ψj |ϕk〉|2

= tr
[(∑

j

wj |ψj 〉〈ψj |
)(∑

k

w′
k|ϕk〉〈ϕk|

)]

= d. (C16)

If S and T are identical orthonormal bases (with uniform
weights) up to relabeling, then n = m = d, wj = w′

k = 1,
and |〈ψj |ϕk〉| = δjk after a suitable relabeling if necessary,
so the lower bound is saturated.

Conversely, if the lower bound in Eq. (C16) is satu-
rated, then |〈ψj |ϕk〉| can take on only two distinct values,
namely, 0 and 1. If, in addition, S and T are simple
1-designs, which satisfy the normalization condition in
Eq. (C14), then, for each j , there exists a unique k such that
|〈ψj |ϕk〉| = 1; similarly, for each k, there exists a unique j
such that |〈ψj |ϕk〉| = 1. Therefore, n = m = d and

〈ψj |ψk〉=〈ϕj |ϕk〉=δjk; (C17)

in addition, we have |〈ψj |ϕk〉| = δjk after a suitable rela-
beling if necessary. Now Eq. (C14) further implies that
wj = w′

j = 1 for j = 1, 2, . . . , d. Therefore, S and T are
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identical orthonormal bases (with uniform weights) up to
relabeling. Note that we identify weighted sets that differ
only by overall phase factors, as mentioned in the main
text. �

Proof of Lemma 9. To prove the upper bound in Eq. (27),
we can apply a similar reasoning used to prove the upper
bound in Eq. (23). Without loss of generality, we can
assume that S is a 1-design, while T is a 2-design. Then
S and T can be expressed as S = {|ψj 〉, wj }m

j =1 and T =
{|ϕk〉, w′

k}n
k=1, which satisfy

wj , w′
k > 0,

∑

j

wj =
∑

k

w′
k = d,

∑

j

wj |ψj 〉〈ψj | = 1,
∑

k

w′
k(|ϕk〉〈ϕk|)⊗2 = 2P2

d + 1
,

(C18)

where P2 is the projector onto the symmetric subspace in
H⊗2.

Let pjk = wj w′
k/d

2 and xjk = |〈ψj |ϕk〉|2. Then the con-
ditions in Eq. (C18) imply that

∑

j ,k

pjk = 1,
∑

j ,k

pjkxjk = 1
d

; (C19)

in addition,
∑

j ,k

pjkx2
jk

= 1
d2

∑

j ,k

wj w′
k|〈ψj |ϕk〉|4

= 1
d2 tr
{[∑

j

wj (|ψj 〉〈ψj |)⊗2
][∑

k

w′
k(|ϕk〉〈ϕk|)⊗2

]}

= 2
d2(d + 1)

tr
[∑

j

wj P2(|ψj 〉〈ψj |)⊗2
]

= 2
d2(d + 1)

∑

j

wj

= 2
d(d + 1)

. (C20)

According to Lemmas 23 and 25 in Appendix C 2,
Eqs. (C19) and (C20) imply that

�1/2(S ,T ) =
∑

j ,k

wj w′
k|〈ψj |ϕk〉| = d2

∑

j ,k

pjk
√

xjk

≤ d2ζ

(
1
d

,
2

d(d + 1)

)
= 1 + (d − 1)

√
d + 1,

(C21)

which confirms the upper bound in Eq. (27). If S and
T are identical SICs (with uniform weights) up to rela-
beling, which means n = m = d2, w′

k = wj = 1/d, and
|〈ψj |ϕk〉|2 = (dδjk + 1)/(d + 1) after a suitable relabeling
if necessary, then it is straightforward to verify that the
upper bound is saturated [cf. Eq. (20)].

Conversely, if the upper bound in Eq. (27) is saturated,
then the inequality in Eq. (C21) is saturated. According to
Lemmas 23 and 25, we have

∑

j ,k:|〈ψj |ϕk〉|2=1/(d+1)

wj w′
k = d2 − 1, (C22)

∑

j ,k:|〈ψj |ϕk〉|2=1

wj w′
k = 1, (C23)

so |〈ψj |ϕk〉|2 can take on only two distinct values, namely,
1 and 1/(d + 1). If, in addition, S and T are simple 1-
designs, which satisfy Eq. (C18), then, for each |ψj 〉 in S ,
there exists a unique |ϕk〉 in T such that |〈ψj |ϕk〉|2 = 1,
and vice versa. It follows that n = m and

|〈ϕj |ϕk〉|2 = |〈ψj |ψk〉|2 = |〈ψj |ϕk〉|2 = dδjk + 1
d + 1

(C24)

for j , k = 1, 2, . . . , m after a suitable relabeling if neces-
sary. This equation can hold only if m ≤ d2.

Equations (C18) and (C24) together imply that

d = �1(S) = d2

d + 1
+ d

d + 1

m∑

j =1

w2
j

≥ d2

d + 1
+ d3

m(d + 1)
, (C25)

which in turn implies that
∑m

j =1 w2
j = 1 and m ≥ d2. So

we have m = d2 given the opposite inequality m ≤ d2

derived above. In conjunction with the normalization con-
ditions in Eq. (C18), we can deduce that wj = 1/d for
j = 1, 2, . . . , d2. A similar reasoning yields w′

k = 1/d for
k = 1, 2, . . . , d2. Therefore, S and T are identical SICs
(with uniform weights) up to relabeling, which completes
the proof of Lemma 9. �

2. Auxiliary results on the 1/2-moment

Here we derive several results on the 1/2-moment of
a bounded random variable given the first and second
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moments. For 0 < b ≤ a < 1, define

ζ(a, b) := b − a2 + (1 − a)
√
(1 − a)(a − b)

1 − 2a + b

= 2a − a2 − b + (1 + a)
√
(1 − a)(a − b)

(
√

1 − a + √
a − b)2

.

(C26)

In two special cases, Eq. (C26) reduces to

ζ(a, a) = a, ζ(a, a2) = √
a. (C27)

When a = 1 − (1 − b)r with 0 < r ≤ 1, Eq. (C26) yields

ζ(1 − (1 − b)r, b) = 1 − r(
√

r(1 − r)− r)
1 − 2r

(1 − b).

(C28)

Lemma 23. Suppose that 0 < b ≤ a < 1. Then ζ(a, b) is
strictly increasing in a and strictly decreasing in b. In
addition, ζ(a, b) is jointly concave in a and b.

Proof. First we assume that 0 < b < a < 1. According to
the equations

∂ζ(a, b)
∂a

= (1 − a)
[
(1 + 4a − 5b)

√
1 − a + 3(1 − b)

√
a − b

]

2
√
(1 − a)(a − b)

(√
1 − a + √

a − b
)3 > 0, (C29)

∂ζ(a, b)
∂b

= − (1 − a)3/2
(
a − b + √

(1 − a)(a − b)
)

2(a − b)
(√

1 − a + √
a − b

)3 < 0, (C30)

ζ(a, b) is strictly increasing in a and strictly decreasing in b. According to the equations

∂2ζ(a, b)
∂a2 = − (1 − b)2

[
(1 + 2a − 3b)+ 4

√
(1 − a)(a − b)

]

4(1 − a)1/2(a − b)3/2
(√

1 − a + √
a − b

)4 < 0, (C31)

∂2ζ(a, b)
∂b2 = − (1 − a)3/2

[
(1 + 2a − 3b)+ 4

√
(1 − a)(a − b)

]

4(a − b)3/2
(√

1 − a + √
a − b

)4 < 0, (C32)

∂2ζ(a, b)
∂a2

∂2ζ(a, b)
∂b2 −

(
∂2ζ(a, b)
∂a∂b

)2

= 0, (C33)

ζ(a, b) is jointly concave in a and b. Incidentally, the
equality in the last equation is tied to Eq. (C28).

In the general situation 0 < b ≤ a < 1, the conclusions
in Lemma 23 follow from the above analysis and the fact
that ζ(a, b) is continuous in the limit b → a,

lim
b→a

ζ(a, b) = ζ(a, a) = a. (C34)

This completes the proof. �
The significance of the function ζ(a, b) is manifested in

the following lemma.

Lemma 24. Suppose that X is a random variable that sat-
isfies the conditions 0 ≤ X ≤ 1, E[X ] = a, and E[X 2] =
b with 0 < b ≤ a < 1; then

a
√

a
b

≤ E[
√

X ] ≤ ζ(a, b). (C35)

The lower bound is saturated iff

P(X = 0) = 1 − a2

b
, P

(
X = b

a

)
= a2

b
, (C36)
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while the upper bound is saturated iff

P
(

X = a − b
1 − a

)
= (1 − a)2

1 − 2a + b
, P(X = 1) = b − a2

1 − 2a + b
.

(C37)

The assumptions in Lemma 24 imply the inequalities
0 < a2 ≤ b ≤ a < 1. Equation (C36) means X can only
take on the values of 0 and b/a, while Eq. (C37) means
X can only take on the values of 1 and (a − b)/(1 − a).
Lemma 24 is a corollary of Lemma 25 below.

Lemma 25. Suppose that a and b are positive con-
stants that satisfy 0 < a2 ≤ b ≤ a < 1. Suppose that
x1, x2, . . . , xm and p1, p2, . . . , pm are nonnegative numbers
that satisfy

0 ≤ xj ≤ 1, 0 ≤ pj ≤ 1, for all j ,
∑

j

pj = 1,
∑

j

pj xj = a,
∑

j

pj x2
j = b; (C38)

then

a
√

a
b

≤
∑

j

pj
√

xj ≤ ζ(a, b). (C39)

The lower bound in Eq. (C39) is saturated iff

∑

j |xj =0

pj = 1 − a2

b
,

∑

j |xj =b/a

pj = a2

b
, (C40)

while the upper bound is saturated iff

∑

j |xj =(a−b)/(1−a)

pj = (1 − a)2

1 − 2a + b
,
∑

j |xj =1

pj = b − a2

1 − 2a + b
.

(C41)

Proof. When m = 2, Lemma 25 follows from Lemma 26
below. When b = a2, we have

ζ(a, b) = √
a,

∑

j |xj =a

pj = 1,
∑

j |xj �=a

pj = 0, (C42)

so Lemma 25 also holds.
It remains to consider the case with m > 2 and b > a2,

which means not all xj with pj > 0 are equal to each other
given the constraints in Eq. (C38). Suppose that the mini-
mum of

∑
j pj

√xj is attained when pj = p∗
j and xj = x∗

j .

Without loss of generality, we can assume that

p∗
j > 0 for all j ≤ l, p∗

j = 0 for all j ≥ l + 1,

x∗
j < x∗

k for all 1 ≤ j < k ≤ l,
(C43)

where 2 ≤ l ≤ m. Then we have

pj
√

xj + pk
√

xk ≥ p∗
j

√
x∗

j + p∗
k

√
x∗

k for all 1 ≤ j

< k ≤ l, (C44)

as long as

pj + pk = p∗
j + p∗

k , pj xj + pkxk = p∗
j x∗

j + p∗
k x∗

k ,

pj x2
j + pkx2

k = p∗
j x∗

j
2 + p∗

k x∗
k

2.
(C45)

By virtue of Lemma 26 below applied to the set of param-
eters xj , xk, pj /(pj + pk), pk/(pj + pk), we can now deduce
that x∗

j = 0, which in turn implies that l = 2 given the
assumptions in Eq. (C43). According to Lemma 26 again,∑

j pj
√xj is bounded from below by a

√
a/b, which con-

firms the lower bound in Eq. (C39), and the bound is
saturated iff Eq. (C40) holds. The upper bound in Eq. (C39)
and the saturation condition can be established by a similar
reasoning. �

Lemma 26. Suppose that a and b are positive constants
that satisfy 0 < a2 ≤ b ≤ a < 1. Suppose that p1, p2, x1, x2
are nonnegative numbers that satisfy

0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ p1, p2 ≤ 1,

p1 + p2 = 1, p1x1 + p2x2 = a, p1x2
1 + p2x2

2 = b;
(C46)

then

a
√

a
b

≤ p1
√

x1 + p2
√

x2 ≤ ζ(a, b). (C47)

If b = a2, then p1
√

x1 + p2
√

x2 = √
a = ζ(a, b) and xj =

a whenever pj �= 0 for j = 1, 2. If b > a2, then the lower
bound in Eq. (C47) is saturated iff

x1 = 0, p1 = 1 − a2

b
, x2 = b

a
, p2 = a2

b
, (C48)

while the upper bound is saturated iff

x1 = a − b
1 − a

, p1 = (1 − a)2

1 − 2a + b
,

x2 = 1, p2 = b − a2

1 − 2a + b
.

(C49)
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Proof. If b = a2, then ζ(a, b) = √
a. In addition, Eq. (C46)

implies that

p1p2(x1 − x2)
2 = 0, (C50)

which means p1p2 = 0 or x1 = x2. So xj = a whenever
pj �= 0, and we have p1

√
x1 + p2

√
x2 = √

a = ζ(a, b), in
which case Eq. (C47) holds automatically.

If b > a2, then the assumptions in Lemma 26 imply
that 0 < p1, p2 < 1 and 0 ≤ x1 < a < x2 ≤ 1. In addition,
x2, p1, p2 are determined by x1 as

x2 = b − ax1

a − x1
, p1 = b − a2

x2
1 − 2ax1 + b

,

p2 = (a − x1)
2

x2
1 − 2ax1 + b

.

(C51)

Note that x2 increases monotonically with x1. In addition,
the assumption that b > a2 implies that

x2
1 − 2ax1 + b > 0, (C52)

so the requirement 0 < p1, p2 < 1 is automatically guaran-
teed given that 0 ≤ x1 < a. Together with the requirement
0 ≤ x1 < x2 ≤ 1, Eq. (C51) also implies that

0 ≤ x1 ≤ a − b
1 − a

< a <
b
a

≤ x2 ≤ 1. (C53)

By virtue of Eq. (C51) we can further deduce that

p1
√

x1 + p2
√

x2 = h(x1, a, b), (C54)

where

h(x1, a, b) := (b − a2)
√

x1+(a − x1)
√
(a − x1)(b−ax1)

x2
1 − 2ax1 + b

,

(C55)

which is continuous in x1 for 0 ≤ x1 ≤ (a − b)/(1 − a)
given the assumption that 0 < a2 < b ≤ a < 1 together
with Eqs. (C52) and (C53).

When 0 < x1 ≤ (a − b)/(1 − a), the derivative of
h(x1, a, b) over x1 reads

∂h(x1, a, b)
∂x1

= (b − a2)(y2
√

x2 − y1
√

x1)

2
√

x1x2(x2
1 − 2ax1 + b)2

= (b − a2)(x2
1 − 2ax1 + b)

2(a − x1)
√

x1x2(y2
√

x2 + y1
√

x1)

> 0, (C56)

where x2 is given in Eq. (C51) and

y1 = 3b − 2ax1 − x2
1, y2 = b + 2ax1 − 3x2

1. (C57)

The second equality in Eq. (C56) follows from the facts
that y1, y2 > 0 and

(
y2

√
x2 − y1

√
x1
) (

y2
√

x2 + y1
√

x1
)

= (y2
2 x2 − y2

1 x1) = (x2
1 − 2ax1 + b)3

a − x1
. (C58)

Equation (C56) implies that h(x1, a, b) is strictly mono-
tonically increasing in x1 for 0 ≤ x1 ≤ (a − b)/(1 − a)
given that h(x1, a, b) is continuous in x1 in this range. In
conjunction with Eq. (C53) we can now deduce that

a
√

a
b

= h(0, a, b) ≤ p1
√

x1 + p2
√

x2

≤ h
(

a − b
1 − a

, a, b
)

= ζ(a, b), (C59)

which confirms Eq. (C47).
If Eq. (C48) holds, then it is easy to verify that the

lower bound in Eq. (C47) [identical to the lower bound
in Eq. (C59)] is saturated. Conversely, if the lower bound
in Eq. (C47) is saturated, then x1 = 0 given that h(x1, a, b)
is strictly increasing in x1 for 0 ≤ x1 ≤ (a − b)/(1 − a),
so Eq. (C48) holds according to Eq. (C51). By a similar
reasoning, the upper bound in Eq. (C47) is saturated iff
Eq. (C49) holds. �

APPENDIX D: PROOF OF LEMMA 14

Equation (38) in the lemma follows from Eq. (37) and
the equality

∥∥∥Q
(

U⊗N AU†⊗N
)∥∥∥ = ‖Q(A)‖, (D1)

which holds for any positive operator A on H⊗N .
Equation (39) follows from Eq. (35) and the equation

‖Q̃(A ⊗ 1⊗k)‖ = max
ρ

tr[PN+k+1(A ⊗ 1⊗k ⊗ ρ)]

= DN+k+1

DN+1
max
ρ

tr[PN+1(A ⊗ ρ)]

= DN+k+1

DN+1
‖Q̃(A)‖, (D2)

which holds for any positive operator A on H⊗N .
To prove Eq. (40), let A = {Aj }j and B = {Bk}k. By

assumption, A is a coarse graining of B, which means
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Aj =∑k �jkBk for some stochastic matrix �. Therefore,

∑

j

‖Q(Aj )‖

=
∑

j

∥∥∥∥Q
(∑

k

�jkBk

)∥∥∥∥ =
∑

j

∥∥∥∥
∑

k

�jkQ(Bk)

∥∥∥∥

≤
∑

j

∑

k

�jk‖Q(Bk)‖ =
∑

k

‖Q(Bk)‖, (D3)

which implies Eq. (40) in view of Eq. (37).
The equality F(A ⊗ C ) = F(C ⊗ A ) in Eq. (41) fol-

lows from Eq. (37) and the equality

‖Q(A ⊗ C)‖ = ‖Q(C ⊗ A)‖, (D4)

which holds for any positive operator A on H⊗N and any
positive operator C on H⊗k. The inequality in Eq. (41)
follows from Eqs. (39) and (40) together with the facts that

A ⊗ I ⊗k � A ⊗ C , I ⊗N ⊗ C � A ⊗ C . (D5)

APPENDIX E: PROOFS OF LEMMAS 15–17

Proof of Lemma 15. According to Eq. (37) with N = 1
and Eq. (48) we have

F(A ) =
∑

j

‖Q(Aj )‖
2D2

= 1
d(d + 1)

∑

j

[ tr(Aj )+ ‖Aj ‖ ]

= 1
d + 1

+ 1
d(d + 1)

∑

j

‖Aj ‖, (E1)

which confirms the equality in Eq. (49) in Lemma 15. Here
the third equality follows from the normalization condition∑

j Aj = 1. The lower bound in Eq. (49) follows from the
inequality ‖Aj ‖ ≥ tr(Aj )/d, which is saturated iff Aj is pro-
portional to the identity; so the lower bound is saturated iff
A is trivial. The upper bound in Eq. (49) follows from the
inequality ‖Aj ‖ ≤ tr(Aj ), which is saturated iff Aj is rank
1; so the upper bound is saturated iff A is rank 1. �

Proof of Lemma 16. Since both sides of Eq. (51) are
homogeneous in A and B, to prove this equation, we can
assume that tr(A) = tr(B) = 1 without loss of generality,
which means f = tr(AB).

If A and B are rank 1, then we can further assume that
H has dimension 2 without loss of generality. In this case

A and B have the forms

A = 1 + a · σ

2
, B = 1 + b · σ

2
, (E2)

where a and b are two real unit vectors in dimension 3,
and σ = (σx, σy , σz) is the vector composed of the three
Pauli operators. So we have f = tr(AB) = (1 + a · b)/2,
and Eq. (46) in the main text implies that

Q(A ⊗ B) = 3 + a · b + (a + b) · σ , (E3)

‖Q(A ⊗ B)‖ = 3 + a · b + |a + b|
= 3 + a · b + √

2 + 2a · b

= 2(1 + f +
√

f ), (E4)

which confirms Eq. (51) with equality.
In general, suppose that A and B have convex decom-

positions A =∑j λj |ψj 〉〈ψj | and B =∑k μk|ϕk〉〈ϕk|,
respectively, where λj ,μk > 0; let fjk = |〈ψj |ϕk〉|2. Then
we have
∑

j

λj =
∑

k

μk = 1,
∑

j ,k

λjμkfjk = tr(AB) = f . (E5)

Therefore,

‖Q(A ⊗ B)‖ ≤
∑

j ,k

λjμk‖Q(|ψj 〉〈ψj | ⊗ |ϕk〉〈ϕk|)‖

=
∑

j ,k

2λjμk(1 + fjk +√fjk )

≤ 2(1 + f +
√

f ), (E6)

which confirms Eq. (51). Here the first inequality follows
from the triangle inequality for the operator norm; the
second inequality follows from Eq. (E5) and the (strict)
concavity of the square-root function.

If both A and B are rank 1, then the upper bound in
Eq. (51) is saturated according to Eq. (E4). If A and B have
orthogonal supports and one of them is rank 1, then the
upper bound is also saturated, which can be verified by
virtue of Eq. (43) or (46).

Conversely, if the upper bound in Eq. (51) is saturated,
then the two inequalities in Eq. (E6) are saturated. The sat-
uration of the second inequality implies that fjk = f for
all j , k. Since this result holds irrespective of the convex
decompositions of A and B, it follows that |〈ψ |ϕ〉|2 = f
for any pure state |ψ〉 in the support of A and any pure state
|ϕ〉 in the support of B. Therefore, both A and B are rank
1, or A and B have orthogonal supports. In the former case,
the upper bound in Eq. (51) is indeed saturated according
to Eq. (E4). In the latter case, we have f = 0 and the upper
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bound in Eq. (51) is equal to 2. In addition, from Eq. (43)
or (46) we can deduce that

Q(A ⊗ B) = 1 + A + B, (E7)

which implies that

‖Q(A ⊗ B)‖ = 1 + max{‖A‖, ‖B‖} ≤ 2

= 2(1 + f +
√

f ). (E8)

The upper bound is saturated iff ‖A‖ = 1 or ‖B‖ = 1,
which means A is rank 1 or B is rank 1 given the assump-
tion that tr(A) = tr(B) = 1. This observation completes the
proof of Lemma 16. �

Proof of Lemma 17. In general, A and B can be
expressed as A = {Aj }j and B = {Bk}k, where Aj , Bk �= 0
and
∑

j Aj =∑k Bk = 1. Let aj = tr(Aj ), bk = tr(Bk), and
fjk = tr(Aj Bk)/(aj bk). Then we have

∑

j

aj =
∑

j

tr(Aj ) =
∑

k

bk =
∑

k

tr(Bk) = d,

∑

j ,k

aj bkfjk =
∑

j ,k

tr(Aj Bk) = d.
(E9)

In addition, Lemma 16 yields the inequality

‖Q(Aj ⊗ Bk)‖ ≤ 2aj bk(1 + fjk +√fjk ). (E10)

By virtue of Eq. (37) we can now deduce that

F(A ⊗ B) = 1
d(d + 1)(d + 2)

∑

j ,k

‖Q(Aj ⊗ Bk)‖

≤ 2
d(d + 1)(d + 2)

∑

j ,k

aj bk(1 + fjk +√fjk )

= 2d(d + 1)+ 2�1/2(A , B)

d(d + 1)(d + 2)
, (E11)

which confirms the upper bound in Eq. (55). Here the
last equality follows from the definition of �1/2(A , B) in
Eq. (18) and the normalization conditions in Eq. (E9).

If A and B are rank-1 POVMs, then the upper bound in
Eq. (E10) is saturated for each pair j , k, so the upper bound
in Eq. (E11) [identical to the upper bound in Eq. (55)] is
saturated.

Conversely, if the upper bound in Eq. (55) is saturated,
then the upper bound in Eq. (E10) is saturated for each
pair j , k. Suppose on the contrary that A is not rank 1;
then it contains a POVM element, say A1, of rank at least
2. According to Lemma 16, all POVM elements in B
are rank 1 and are orthogonal to A1, which is impossible.
Therefore, A is rank 1, and so is B by the same token. In
a word, the upper bound in Eq. (55) is saturated iff A and
B are rank 1. �

APPENDIX F: PROOFS OF LEMMAS 19–21

Proof of Lemma 19. The inequality in Eq. (57) follows
from the triangle inequality for the operator norm given
that Q(A ⊗ B) = Q(A ⊗ B1)+ Q(A ⊗ B2). The inequal-
ity is saturated iff there exists a ket |ψ〉 ∈ H such that

Q(A ⊗ B1)|ψ〉 = ‖Q(A ⊗ B1)‖|ψ〉,
Q(A ⊗ B2)|ψ〉 = ‖Q(A ⊗ B2)‖|ψ〉. (F1)

If condition 1 in Lemma 19 holds, that is, B2 is propor-
tional to B1, then Q(A ⊗ B2) is proportional to Q(A ⊗ B1),
so the inequality in Eq. (57) is saturated. If condition 2
or 3 in Lemma 19 holds, then the inequality is also sat-
urated according to Eq. (43) [cf. Eq. (E3)] and the above
observation. Note that the eigenspace associated with the
maximum eigenvalue of Q(A ⊗ Bj ) is twofold degener-
ate when A and Bj are orthogonal, but nondegenerate
otherwise.

Next, we suppose that none of the three conditions
in Lemma 19 holds. Then B2 is not proportional to B1,
and A is not orthogonal to one of the two operators
B1, B2. If A, B1, B2 are not supported in any common two-
dimensional subspace of H, then there does not exist any
ket |ψ〉 that satisfies Eq. (F1), so the inequality in Eq. (57)
is not saturated.

If A, B1, B2 are all supported in a common two-
dimensional subspace of H, then A is orthogonal to neither
B1 nor B2. Therefore, the eigenspace of Q(A ⊗ Bj ) asso-
ciated with the maximum eigenvalue is nondegenerate for
j = 1, 2 according to Eq. (43) [cf. Eq. (E3)], and there does
not exist any ket |ψ〉 that satisfies Eq. (F1) either, so the
inequality in Eq. (57) is not saturated. This observation
completes the proof of Lemma 19. �

Proof of Lemma 20. The inequality in Eq. (58) follows
from the triangle inequality for the operator norm. If
B1, B2, . . . , Bn are mutually orthogonal and they commute
with all POVM elements in A , then it is easy to verify that
the inequality is saturated according to Eq. (43).
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To prove the converse, let C = B − B1 − B2; then

m∑

j =1

‖Q(Aj ⊗ B)‖

≤
m∑

j =1

‖Q(Aj ⊗ (B1 + B2))‖ +
m∑

j =1

‖Q(Aj ⊗ C‖

≤
m∑

j =1

n∑

k=1

‖Q(Aj ⊗ Bk)‖. (F2)

If the final upper bound is saturated, then

m∑

j =1

‖Q(Aj ⊗ (B1 + B2))‖ =
m∑

j =1

2∑

k=1

‖Q(Aj ⊗ Bk)‖,

(F3)

which implies that

‖Q(Aj ⊗ (B1 + B2))‖ =
2∑

k=1

‖Q(Aj ⊗ Bk)‖ (F4)

for j = 1, 2, . . . , m.
Let V12 be the two-dimensional subspace of H that

contains the supports of B1 and B2, and let V⊥
12 be its

orthogonal complement; let P12 be the orthogonal pro-
jector onto V12. Then Eq. (F4) implies that each Aj is
either supported in V12 or supported in V⊥

12 according to
Lemma 19, given that B2 is not proportional to B1. In the
first case, each Aj is orthogonal to either B1 or B2; in the
second case, each Aj is orthogonal to and commutes with
both B1 and B2. Denote by A1 (A2) the set of POVM ele-
ments in A that belong to the first (second) category. Then
A1 is a POVM on V12, while A2 is a POVM on V⊥

12, that is,

∑

Aj ∈A1

Aj = P12,
∑

Aj ∈A2

Aj = 1 − P12. (F5)

If B1 is not orthogonal to B2, then the first equality cannot
hold. This contradiction shows that B1 and B2 are orthog-
onal. Consequently, each Aj in A1 is proportional to either
B2 or B1 and commutes with both B1 and B2. In conjunction
with the above conclusion, we conclude that all POVM
elements in A commute with B1 and B2.

The above reasoning is still applicable if B1, B2 are
replaced by Bj , Bk with 1 ≤ j < k ≤ n. In this way we
can deduce that B1, B2, . . . , Bn are mutually orthogonal and
they commute with all POVM elements in A . Accord-
ing to Lemma 4, A contains n rank-1 projectors that are
proportional to B1, B2, . . . , Bn, respectively. �

Proof of Lemma 21. The inequality in Eq. (59) follows
from Lemma 14, which also implies that the inequality is
saturated if B is equivalent to C .

To prove the converse, we can assume that A and C
are simple rank-1 POVMs without loss of generality. Sup-
pose that B = {Bj }n

j =1 and C = {Ck}o
k=1. By assumption,

Bj can be expressed as

Bj =
o∑

k=1

�jkCk, (F6)

where � is a stochastic matrix, which means �jk ≥ 0 and∑n
j =1�jk = 1 for k = 1, 2, . . . , o. Therefore,

∑

A∈A

‖Q(A ⊗ Bj )‖ ≤
∑

A∈A

o∑

k=1

�jk‖Q(A ⊗ Ck)‖ (F7)

for j = 1, 2, . . . , n. This equation implies that

∑

A∈A

n∑

j =1

‖Q(A ⊗ Bj )‖ ≤
∑

A∈A

o∑

k=1

‖Q(A ⊗ Ck)‖, (F8)

which is equivalent to Eq. (59) according to Eq. (37).
If B is not equivalent to C , then B is not rank 1 accord-

ing to Lemma 1 and Proposition 2 and thus contains at least
one POVM element, say B1, with rank at least 2. Conse-
quently, the corresponding inequality in Eq. (F7) is strict
according to Lemma 20 given that A is irreducible or C
contains no two POVM elements that are mutually orthog-
onal by assumption. Therefore, the inequality in Eq. (F8)
is also strict and we have

F(A ⊗ B) < F(A ⊗ C ) (F9)

by Eq. (37). In conclusion, the inequality in Eq. (59) is
saturated iff B is equivalent to C . �

APPENDIX G: PROOF OF THEOREM 2

1. Main proof

Proof of Theorem 2. By virtue of Eq. (35) in the main text
and Lemma 27 below, the lower bound in Eq. (60) can be
proved as follows:

F(A ) = 1
DN+1

∑

j

‖Q̃(Aj )‖

≥ N + d
d(N + 1)DN+1

∑

j

tr(PN Aj )

= tr(PN )

dDN
= DN

dDN
= 1

d
. (G1)

Here the inequality is saturated iff Q̃(Aj ) for each j is
proportional to the identity.
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The upper bound in Eq. (60) can be derived from
Eq. (35) and Lemma 27 as follows:

F(A ) = 1
DN+1

∑

j

‖Q̃(Aj )‖ ≤ 1
DN+1

∑

j

tr(PN Aj )

= tr(PN )

DN+1
= DN

DN+1
= N + 1

N + d
. (G2)

Here the inequality is saturated iff PN Aj PN for each j is
proportional to the N th tensor power of a pure state. This
observation completes the proof of Theorem 2. �

2. Auxiliary lemmas

Lemma 27. Any positive operator A on H⊗N satisfies

N + d
d(N + 1)

tr(PN A) ≤ ‖Q̃(A)‖ ≤ tr(PN A), (G3)

and the lower bound is saturated iff Q̃(A) is propor-
tional to the identity, while the upper bound is saturated iff
PN APN is proportional to the N th tensor power of a pure
state.

Proof. The lower bound in Eq. (G3) can be proved as
follows:

‖Q̃(A)‖ ≥ 1
d

tr[Q̃(A)] = 1
d

tr[PN+1(A ⊗ 1)]

= DN+1

dDN
tr(PN A) = N + d

d(N + 1)
tr(PN A). (G4)

Here the inequality is saturated iff Q̃(A) is proportional to
the identity.

The upper bound in Eq. (G3) and the saturation condi-
tion follow from Lemma 28 and the equation

‖Q̃(A)‖ = max
ρ

[PN+1(A ⊗ ρ)], (G5)

where the maximization is taken over all normalized pure
states. �

Lemma 28. Suppose that ρ is a pure sate on H and that
A is a positive operator acting on H⊗N . Then

tr[PN+1(A ⊗ ρ)] ≤ tr(PN A), (G6)

and the upper bound is saturated iff PN APN is proportional
to the N th tensor power of ρ.

Proof. The upper bound in Eq. (G6) can be derived as
follows:

tr[PN+1(A ⊗ ρ)] = tr[PN+1(A ⊗ ρ)PN+1]

= tr[PN+1(PN APN ⊗ ρ)PN+1]

≤ tr(PN APN ) tr(ρ)

= tr(PN A). (G7)

If PN APN is proportional to the N th tensor power of ρ,
then PN APN ⊗ ρ is supported in the symmetric subspace
in H⊗(N+1), so the inequality in Eq. (G7) is saturated,
which means the upper bound in Eq. (G6) is saturated.

Conversely, if the inequality in Eq. (G7) is saturated,
then PN APN ⊗ ρ is supported in the symmetric subspace
in H⊗(N+1). Let trj̄ (·) denote the partial trace over all
the parties except for party j . Then all the operators
trj̄ (PN APN ) for j = 1, 2, . . . , N have the same support as
ρ, which implies that PN APN is proportional to the N th
tensor power of ρ. �

APPENDIX H: PROOFS OF THEOREM 3 AND
COROLLARIES 1–5

Proof of Theorem 3. Theorem 3 is a simple corollary of
Lemmas 10 and 18. �

Proof of Corollary 1. If A is a rank-1 projective measure-
ment, then F(A ⊗2) = F(A ) = 2/(d + 1) by Eq. (63).
Conversely, if F(A ⊗2) = F(A ) = 2/(d + 1), then A is
rank 1 by Lemma 15. Furthermore, Theorem 3 implies that
A is a rank-1 projective measurement. �

Proof of Corollary 2. If A and B are identical rank-1
projective measurements up to relabeling, then Eq. (63)
implies that

F(A ⊗ B) = F(B) = F(A ) = 2
d + 1

. (H1)

Conversely, if this equation holds, then both A and B are
rank 1 according to Lemma 15. By virtue of Lemma 17 we
can further deduce that

2
d + 1

= F(A ⊗ B) = 2d(d + 1)+ 2�1/2(A , B)

d(d + 1)(d + 2)
,

(H2)

which implies that �1/2(A , B) = d. Therefore, A and
B are identical rank-1 projective measurements up to
relabeling according to Lemma 12. �

Proof of Corollary 3. If A is a rank-1 POVM, then the
conclusions in Corollary 3 follow from Theorem 3.
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If A is not a rank-1 POVM, let B be a rank-1 POVM
that refines A . Then B⊗2 is a refinement of A ⊗2, so
Lemma 14 and Theorem 3 imply that

F(A ⊗2) ≤ F(B⊗2) ≤ F iid
2 . (H3)

To attain the upper bound F iid
2 , any rank-1 refinement of A

must attain the bound F iid
2 and is thus equivalent to a SIC

according to Theorem 3. However, this condition is impos-
sible when A is not rank 1. So the upper bound F iid

2 cannot
be attained except for rank-1 POVMs. This observation
completes the proof of Corollary 3. �

Proof of Corollary 4. Let

A =
g⋃

r=1

Ar

g
; (H4)

then A is a POVM on H. By virtue of Eq. (37) and
Corollary 3 we can derive that

∑

r,s

F(Ar ⊗ As) = g2F(A ⊗2) ≤ g2F iid
2 , (H5)

which confirms Eq. (67). If A1, A2, . . . , Ag are identical
SICs up to relabeling, then A is equivalent to a SIC, so
the inequality is saturated according to Eq. (64).

Conversely, if the inequality in Eq. (H5) is saturated,
then A is equivalent to a SIC by Corollary 3. Let A ′
be a simple POVM that is equivalent to A ; then A ′ is
a SIC. Suppose that A ′ is composed of the POVM ele-
ments A1, A2, . . . , Ad2 . Then these POVM elements form
a basis in the operator space, and a linear combination of
them is equal to the identity operator iff all the coefficients
are equal to 1. In addition, each POVM element in Ar for
r = 1, 2, . . . , g is proportional to a POVM element in A ′.
Since Ar is a simple POVM by assumption, it follows that
Ar is identical to A ′ up to relabeling for r = 1, 2, . . . , g,
so A1, A2, . . . , Ag are identical SICs up to relabeling. �

Proof of Corollary 5. Corollary 5 would follow from
Corollary 4 if the condition F(A ⊗ B) = F(A ⊗2) = F iid

2
is replaced by

F(A ⊗ B) = F(B⊗2) = F(A ⊗2) = F iid
2 . (H6)

Without this stronger condition we need to devise a differ-
ent proof.

If A and B are identical SICs up to relabeling, then
Eq. (H6) holds according to Eq. (64) and Theorem 3.

Conversely, if F(A ⊗ B) = F(A ⊗2) = F iid
2 , then A

is a SIC by Corollary 3 given that A and B are simple
POVMs. So A is constructed from a 2-design. Let B′ be

any simple rank-1 POVM that refines B; then by virtue of
Lemma 14 we can deduce that

F(A ⊗ B′) ≥ F(A ⊗ B) = F iid
2 , (H7)

which implies that

�1/2(A , B′) ≥ 1 + (d − 1)
√

d + 1 (H8)

by Lemma 17. Thanks to Lemma 13, this inequality is nec-
essarily saturated; moreover, B′ is identical to the SIC A
up to relabeling. The last conclusion holds for any simple
rank-1 POVM B′ that refines B, which is impossible if B
is not rank 1. Therefore, B is rank 1; moreover, A and B
are identical SICs up to relabeling. �

APPENDIX I: PROOFS OF LEMMA 22,
THEOREM 4, AND COROLLARIES 7–9

Proof of Lemma 22. Thanks to Lemma 14, to prove the
inequality F(A ) ≤ Fsep

2 in Lemma 22, we can assume that
A is a rank-1 POVM. Then each POVM element Aj of
A is a tensor product of two rank-1 positive operators. Let
aj = tr(Aj ) and fj = tr(WAj )/aj . Then the normalization
condition

∑
j Aj = 1⊗2 implies that

∑

j

aj =
∑

j

tr(Aj ) = d2, (I1)

∑

j

aj fj =
∑

j

tr[(2P2 − 1)Aj ] = d, (I2)

from which we can deduce that
∑

j

aj
√

fj ≤ d
√

d. (I3)

In addition, Lemma 16 implies that

‖Q(Aj )‖ = 2aj (1 + fj +√fj ). (I4)

By virtue of Eq. (37) we can now deduce that

F(A ) = 1
d(d + 1)(d + 2)

∑

j

‖Q(Aj )‖

= 2
d(d + 1)(d + 2)

∑

j

aj (1 + fj +√fj )

≤ 2(d + 1 + √
d )

(d + 1)(d + 2)
= Fsep

2 . (I5)

Here the inequality is saturated iff the inequality in Eq. (I3)
is saturated, which is the case iff each fj is equal to 1/d,
that is, d tr(WAj ) = tr(Aj ). �
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Proof of Theorem 4. The inequality F(A ⊗ B) ≤ Fsep
2 in

the theorem follows from Lemma 22 (cf. Lemmas 12
and 17). When A and B are rank 1, Lemma 22 also
implies that the upper bound is saturated iff A and B
are MU. To complete the proof, it suffices to prove that
the upper bound can never be saturated if A or B is not
rank 1.

According to Lemmas 14 and 22, to saturate the inequal-
ity F(A ⊗ B) ≤ Fsep

2 , any rank-1 refinement of A and
any rank-1 refinement of B are necessarily MU. So
the fidelity between any state vector in the support of
each POVM element in A and any state vector in the
support of each POVM element in B is equal to 1/d.
However, this condition can never hold if A or B
is not rank 1. This observation completes the proof of
Theorem 4 �

Proof of Corollary 7. According to Theorem 4, the assump-
tion that F(A ⊗ B) = Fsep

2 implies that A and B are
rank 1 and MU. Therefore, both A and B have at least
d POVM elements according to Lemma 3, which implies
that A ⊗ B has at least d2 POVM elements. The lower
bound is saturated if A and B are MU rank-1 projec-
tive measurements. Conversely, if A ⊗ B has d2 POVM
elements, then both A and B have d POVM elements
and are thus rank-1 projective measurements according
to Lemma 3. In addition, the two measurements are MU
according to Theorem 4, as mentioned above. �

Proof of Corollary 8. If A and B are MU rank-1 pro-
jective measurements, then we have F(A ⊗ B) = Fsep

2
by Eq. (70) and F(A ⊗2) = F(B⊗2) = 2/(d + 1) by
Eq. (63).

Conversely, if F(A ⊗ B) = Fsep
2 , then A and B are

MU rank-1 POVMs according to Theorem 4. If, in addi-
tion, F(A ⊗2) = F(B⊗2) = 2/(d + 1), then A and B are
rank-1 projective measurements according to Theorem 3.
Therefore, A and B are MU rank-1 projective measure-
ments if both conditions hold. �

Proof of Corollary 9. The upper bound in Eq. (72) fol-
lows from the inequality F(A ⊗ B) ≤ Fsep

2 in Theorem 4.

If A1, A2, . . . , Ag are MU rank-1 POVMs, then the upper
bound is saturated according to Theorem 4 again.

Conversely, if the upper bound in Eq. (72) is saturated,
then Theorem 4 implies that

F(Ar ⊗ As) = Fsep
2 for all r �= s; (I6)

moreover, A1, A2, . . . , Ag are g MU rank-1 POVMs. If,
in addition, these POVMs are simple and g = d + 1, then
A1, A2, . . . , Ad+1 are rank-1 projective measurements
according to Theorem 1 and thus form a CMUMs. �

APPENDIX J: PROOF OF THEOREM 5

Proof of Theorem 5. Let A = {Aj }j and B = {Bk}k be
two commuting POVMs. Then the estimation fidelity
F(A ⊗ B) can be computed by virtue of Eq. (37), with
the result

F(A ⊗ B) = 1
d(d + 1)(d + 2)

∑

j ,k

‖Q(Aj ⊗ Bk)‖

≤ 1
d(d + 1)(d + 2)

∑

j

2(d + 2) tr(Aj )

= 2
d + 1

, (J1)

which confirms Theorem 5. Here the inequality follows
from Lemma 29 below. �

Lemma 29. Suppose that A is a positive operator on H
and that B is a POVM that commutes with A. Then

∑

B∈B

‖Q(A ⊗ B)‖ ≤ 2(d + 2) tr(A). (J2)

Proof. To prove Eq. (J2), first consider the case in which
A is a projector of rank r. By assumption, each POVM ele-
ment B in B commutes with A and is thus block diagonal
with respect to the eigenspaces of A.

If B is rank 1, then ‖B‖ = tr(B) and B is supported in the support of A or in its orthogonal complement. So either the
condition AB = B or the condition AB = 0 holds. According to Eq. (43) we have

Q(A ⊗ B) = tr(A) tr(B)+ tr(AB)+ tr(B)A + tr(A)B + AB + BA

=
{
(r + 1) tr(B)+ tr(B)A + (r + 2)B if AB = B,
r tr(B)+ tr(B)A + rB if AB = 0,

(J3)
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which implies that

‖Q(A ⊗ B)‖ =
{

2(r + 2) tr(B) if AB = B,
2r tr(B) if AB = 0.

(J4)

Therefore,
∑

B∈B

‖Q(A ⊗ B)‖ = 2r
∑

B∈B

tr(B)+ 4
∑

B∈B|AB=B

tr(B)

= 2rd + 4r = 2(d + 2) tr(A), (J5)

which confirms Eq. (J2) with equality. Here the second
equality follows from the facts that

∑

B∈B

B = 1,
∑

B∈B|AB=B

B = A. (J6)

If B is not rank 1, then we can find a rank-1 refinement B′
of B that commutes with A given that B commutes with
A. Therefore,
∑

B∈B

‖Q(A ⊗ B)‖ ≤
∑

B∈B′
‖Q(A ⊗ B)‖ = 2(d + 2) tr(A),

(J7)

which confirms Eq. (J2) again.
Next, we drop the assumption that A is a projector. Let

A =∑j λj Pj be the spectral decomposition of A, where
λj are distinct eigenvalues and Pj are the corresponding
eigenprojectors. By assumption, each B ∈ B commutes
with A and thus also commutes with all eigenprojectors Pj .
Therefore,

∑

B∈B

‖Q(A ⊗ B)‖ =
∑

B∈B

∥∥∥∥
∑

j

λjQ(Pj ⊗ B)
∥∥∥∥

≤
∑

j

∑

B∈B

λj ‖Q(Pj ⊗ B)‖

≤
∑

j

2λj (d + 2) tr(Pj )

= 2(d + 2) tr(A), (J8)

which confirms Eq. (J2) and completes the proof of
Lemma 29. �

APPENDIX K: PROOF OF THEOREM 6

Let C be a simple POVM that refines both A and B.
Then C ⊗ C is a refinement of C ⊗ B, which is in turn a
refinement of A ⊗ B, so

F(A ⊗ B) ≤ F(C ⊗ B) ≤ F(C ⊗ C ) ≤ F iid
2 , (K1)

where the first two inequalities follow from Lemma 14
and the third inequality follows from Corollary 3. If A

and B are identical SICs up to relabeling, then the upper
bound is saturated according to Eq. (64) (cf. Theorem 3
and Corollary 3).

Conversely, if the final upper bound in Eq. (K1) is
saturated, then all three inequalities are saturated simulta-
neously, that is,

F(A ⊗ B) = F(C ⊗ B) = F(C ⊗ C ) = F iid
2 . (K2)

Here the third equality implies that C is a SIC according
to Corollary 3 and is thus irreducible. Then the second
equality implies that B is equivalent to C according to
Lemma 21 and is thus also irreducible. Finally, the first
equality implies that A is equivalent to C according to
Lemma 21 again. If both A and B are simple, then
they are both identical to C up to relabeling according to
Lemma 2 and are thus identical SICs up to relabeling.

APPENDIX L: PROOF OF THEOREM 7

The inequality F(A ⊗ B) ≥ F(A ) and equality
F(A ) = 2/(d + 1) follow from Lemmas 14 and 15,
respectively, given that A is rank 1 by assumption. If
A and B commute, then F(A ⊗ B) ≤ 2/(d + 1) by
Theorem 5. So the inequality F(A ⊗ B) ≥ F(A ) is sat-
urated.

To further clarify the saturation condition of the inequal-
ity F(A ⊗ B) ≥ F(A ), note that A can be expressed as
A = {Aj }j , where Aj = aj |ψj 〉〈ψj | with aj = tr(Aj ), and
B can be expressed as B = {Bk}k. By virtue of Eq. (37)
we can deduce that

F(A ) = 1
d(d + 1)

∑

j

‖Qj ‖ = 2
d + 1

, (L1)

F(A ⊗ B) = 1
d(d + 1)(d + 2)

∑

j ,k

‖Qjk‖, (L2)

where

Qj = Q(Aj ) = aj (|ψj 〉〈ψj | + 1), (L3)

Qjk = Q(Aj ⊗ Bk)

= aj [ tr(Bk)+ 〈ψj |Bk|ψj 〉+Bk + tr(Bk)|ψj 〉〈ψj |
+ |ψj 〉〈ψj |Bk + Bk|ψj 〉〈ψj | ]. (L4)

Note that |ψj 〉 is the eigenstate of Qj corresponding to the
largest eigenvalue, which is nondegenerate. In addition, Qj
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and Qjk satisfy the relations

∑

k

Qjk = (d + 2)Qj ,
∑

k

‖Qjk‖ ≥ (d + 2)‖Qj ‖. (L5)

By Eqs. (L1) and (L2), the inequality F(A ⊗ B) ≥ F(A )

is saturated iff the inequality in Eq. (L5) is saturated for
each j .

If A commutes with B, then |ψj 〉〈ψj | commutes with
Bk, and |ψj 〉 is an eigenstate of Bk. Consequently, |ψj 〉 is
an eigenstate of Qjk associated with the largest eigenvalue
‖Qjk‖, so that

∑

k

‖Qjk‖ =
∑

k

〈ψj |Qjk|ψj 〉

= 〈ψj |(d + 2)Qj |ψj 〉
= (d + 2)‖Qj ‖, (L6)

which implies that F(A ⊗ B) = F(A ) given Eqs. (L1)
and (L2). This derivation reproduces the conclusion
derived above, which is based on Theorem 5.

Conversely, if the inequality F(A ⊗ B) ≥ F(A ) satu-
rates, then the inequality in Eq. (L5) is saturated for each
j , which implies that

〈ψj |Qjk|ψj 〉=‖Qjk‖ for all j , k, (L7)

so |ψj 〉 is an eigenstate of Qjk with eigenvalue ‖Qjk‖. By
virtue of Eq. (L4), we can further deduce that |ψj 〉 is an
eigenstate of Bk. Therefore, each |ψj 〉〈ψj | commutes with
each Bk, which means A commutes with B.

Next, suppose that both A and B are simple rank-
1 POVMs. By Lemma 5 and the first conclusion in
Theorem 7 as proved above, the inequality F(A ⊗ B) ≥
F(A ) is saturated iff A and B are identical rank-1 pro-
jective measurements up to relabeling. Alternatively, this
conclusion follows from Lemmas 12, 15, and 17 (cf. the
proof of Corollary 2).
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Problems in Quantum Information Theory, PRX Quantum
3, 010101 (2022).

[31] S. Massar and S. Popescu, Optimal Extraction of Informa-
tion from Finite Quantum Ensembles, Phys. Rev. Lett. 74,
1259 (1995).

[32] R. Derka, V. Bužek, and A. K. Ekert, Universal Algorithm
for Optimal Estimation of Quantum States from Finite
Ensembles via Realizable Generalized Measurement, Phys.
Rev. Lett. 80, 1571 (1998).

[33] J. I. Latorre, P. Pascual, and R. Tarrach, Minimal Optimal
Generalized Quantum Measurements, Phys. Rev. Lett. 81,
1351 (1998).

[34] M. Hayashi, Asymptotic estimation theory for a finite-
dimensional pure state model, J. Phys. A: Math. Gen. 31,
4633 (1998).

[35] D. Bruß and C. Macchiavello, Optimal state estimation for
d-dimensional quantum systems, Phys. Lett. A 253, 249
(1999).

[36] N. Gisin and S. Popescu, Spin Flips and Quantum Infor-
mation for Antiparallel Spins, Phys. Rev. Lett. 83, 432
(1999).

[37] S. Massar, Collective versus local measurements on two
parallel or antiparallel spins, Phys. Rev. A 62, 040101(R)
(2000).

[38] A. Acín, J. I. Latorre, and P. Pascual, Optimal generalized
quantum measurements for arbitrary spin systems, Phys.
Rev. A 61, 022113 (2000).

[39] K. Banaszek, Fidelity Balance in Quantum Operations,
Phys. Rev. Lett. 86, 1366 (2001).

[40] E. Bagan, M. Baig, and R. Muñoz-Tapia, Optimal Scheme
for Estimating a Pure Qubit State via Local Measurements,
Phys. Rev. Lett. 89, 277904 (2002).

[41] A. Hayashi, T. Hashimoto, and M. Horibe, Reexamination
of optimal quantum state estimation of pure states, Phys.
Rev. A 72, 032325 (2005).

[42] P. Busch, Unsharp reality and joint measurements for spin
observables, Phys. Rev. D 33, 2253 (1986).

[43] T. Heinosaari, T. Miyadera, and M. Ziman, An invitation
to quantum incompatibility, J. Phys. A: Math. Theor. 49,
123001 (2016).

[44] O. Gühne, E. Haapasalo, T. Kraft, J.-P. Pellonpää, and R.
Uola, Incompatible measurements in quantum information
science, arXiv:2112.06784 (2021).

[45] G. Ghirardi, L. Marinatto, and R. Romano, An optimal
entropic uncertainty relation in a two-dimensional Hilbert
space, Phys. Lett. A 317, 32 (2003).

[46] S. G. Hoggar, t-designs in projective spaces, Eur. J. Combi-
nator. 3, 233 (1982).
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