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We introduce operational quantum tasks based on betting with risk aversion—or quantum betting tasks
for short—inspired by standard quantum state discrimination and classical horse betting with risk aver-
sion and side information. In particular, we introduce the operational tasks of quantum state betting (QSB),
noisy quantum state betting (NQSB), and quantum-channel betting (QCB) played by gamblers with differ-
ent risk tendencies. We prove that the advantage that informative measurements (nonconstant channels)
provide in QSB (NQSB) is exactly characterized by Arimoto’s α-mutual information, with the order α

determining the risk aversion of the gambler. More generally, we show that Arimoto-type information-
theoretic quantities characterize the advantage that resourceful objects offer at playing quantum betting
tasks when compared to resourceless objects, for general quantum resource theories (QRTs) of measure-
ments, channels, states, and state-measurement pairs, with arbitrary resources. In limiting cases, we show
that QSB (QCB) recovers the known tasks of quantum state (channel) discrimination when α→∞, and
quantum state (channel) exclusion when α→−∞. Inspired by these connections, we also introduce new
quantum Rényi divergences for measurements, and derive a new family of resource monotones for the
QRT of measurement informativeness. This family of resource monotones recovers in the same limiting
cases as above, the generalized robustness and the weight of informativeness. Altogether, these results
establish a broad and continuous family of four-way correspondences between operational tasks, mutual
information measures, quantum Rényi divergences, and resource monotones, that can be seen to generalize
two limiting correspondences that were recently discovered for the QRT of measurement informativeness.
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I. INTRODUCTION

The field of quantum information theory (QIT) was born
out of the union of the theory of quantum mechanics and
the classical theory of information [1]. This union also hap-
pened to kickstart what it is nowadays known as the (ongo-
ing) second quantum revolution, which, roughly speaking,
aims at the development of quantum technologies [2,3].
Compared with its direct predecessors however, QIT is
still a relatively young field and therefore, it is important
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to keep unveiling, exploiting, and strengthening the links
between quantum theory and classical information theory.

In this direction, the framework of quantum resource
theories (QRTs) has emerged as a fruitful approach
to quantum theory [4,5]. A central subject of study
within QRTs is that of resource quantifiers [4,5].
Two well-known families of these measures are the
so-called robustness-based [6–20] and weight-based
[21–24] resource quantifiers. Importantly, these quan-
tities have been shown to be linked to operational
tasks and therefore, this establishes a type of quantifier-
task correspondence. Explicitly, robustness-based quanti-
fiers are linked to discrimination-based operational tasks
[9,10,12,25–29], whilst weight-based resource quantifiers
are linked to exclusion-based operational tasks [30,31]. A
resource quantifier is a particular case of a more general
quantity known as a resource monotone [32] and there-
fore, this correspondence can alternatively be addressed as
a monotone-task correspondence.
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From a different direction, in classical information the-
ory, the Kullback-Leibler (KL) divergence (also known as
the Kullback-Leibler relative entropy) emerges as a cen-
tral object of study [33]. The importance of this quantity
is in part due to the fact that it acts as a parent quantity
for many other quantities, such as the Shannon entropy,
conditional entropy, conditional divergence, mutual infor-
mation, and the channel capacity [34]. Within this classical
framework, it has also proven fruitful to consider Rényi
extensions of these quantities [35]. In particular, there is
a clear procedure for how to define the Rényi extensions
of both Shannon entropy and KL divergence, which are
known as the Rényi entropy and the Rényi divergence,
respectively [35,36]. Interestingly however, there is yet no
consensus within the community as to what is the “proper”
way to Rényi extend other quantities. As a consequence
of this, there are several different candidates for Rényi
conditional entropies [37], Rényi conditional divergences
[38], and Rényi mutual information measures [39]. The
latter quantities are also known as measures of depen-
dence [38] or α-mutual information measures [39], and
we address them here as (Rényi) dependence measures
or mutual informations. In particular, we highlight the
mutual information measures proposed by Sibson [40],
Arimoto [41], Csiszár [42], as well as one recent pro-
posal, independently derived by Lapidoth-Pfister [43], and
Tomamichel-Hayashi [44]. It is known that these mutual
information measures (with the exception of Arimoto’s)
can be derived from their respective conditional Rényi
divergence [38] and therefore, we address this relationship
as a mutual information-divergence correspondence.

The above-mentioned correspondences (monotone task
and information divergence) are not a priori completely
unrelated to each other, since it can be argued that Shan-
non’s (classical) information theory was born out of the
desire to understand the classical capacity of a channel
(task side), which, as established by Shannon’s coding
theorem [45], is explicitly given by a maximization involv-
ing the mutual information of the channel in question
(information side), and what we can address here as a task-
entropy correspondence, understanding this as an entropic
quantity helping to quantify a practical and desirable oper-
ational task such as communication over noisy channels.
This task-entropy correspondence has been extended to the
quantum domain, in the form of the Holevo-Schumacher-
Westmoreland (HSW) theorem [46,47], quantum capaci-
ties [48], and more [1].

The links between the two worlds of QRTs and classi-
cal information theory are now beginning to be understood
to run much deeper than the monotone-task and mutual
information-divergence correspondences from above, as
well as the pioneering task-entropy correspondence. In
fact, they are intimately connected via a more general
four-way monotone-task-mutual information-divergence
correspondence, which holds true in particular for the

QRT of measurement informativeness (a QRT where the
resource is a measurement’s ability to extract informa-
tion encoded in a state) [12]. Explicitly, the robustness-
discrimination correspondence [12,28] is furthermore con-
nected to the information-theoretic quantity known as the
accessible information [49], which can, in turn, be written
in terms of mutual information measures [50]. In a sim-
ilar manner the weight-exclusion correspondence [30,31]
is linked to the excludible information [30,51], which can
also be written in terms of mutual information measures.
Even though it was not explicitly stated in any of the
above references the fourth corner in terms of “Rényi
divergences,” it is nowadays a well-known fact within
the community, first noted by Datta, that the generalized
robustness is related to the Rényi divergence of order ∞
(also called the max quantum divergence) [52], with a sim-
ilar case happening for the weight and the divergence of
order −∞ [30]. These two apparently “minor” remarks
raise the following fascinating question: could there exist
a whole spectrum of connections between mutual infor-
mation measures, Rényi divergences, resource monotones,
and operational tasks, with only the two extreme ends at
±∞ currently being uncovered? [30].

In this work we start by providing a positive answer to
this question, by implementing insights from the theory
of games and economic behavior [53]. This latter theory,
in short, encompasses many of the theoretical tools cur-
rently used in the economic sciences. In particular, we
invoke here the so-called expected utility theory [53] and
more specifically, we borrow the concept of risk aver-
sion; the behavioral tendency of rational agents to have
a preference one way or another for guaranteed outcomes
versus uncertain outcomes. This concept remains of great
research interest in the economic sciences, with various
Nobel prizes having been awarded to its understanding
[54].

In general, the concept of risk aversion is a ubiquitous
characteristic of rational agents and, as such, it naturally
emerges as a subject of study in various different areas
of knowledge such as the economic sciences [55], biology
and behavioral ecology [56,57], and neuroscience [58–60].
In short, it addresses the behavioral tendencies of ratio-
nal agents when faced with uncertain events. Intuitively,
a gambler spending money on bets with the hope of win-
ning big, can be seen as an individual taking (potentially
unnecessary) risks, in the eyes of a more conservative gam-
bler. One of the challenges that economists have tackled,
since roughly the second half of the previous century, is the
incorporation of the concept of risk aversion into theoret-
ical models describing the behavior of rational agents, as
well as its quantification, and exploitation of its descriptive
power [55].

The concept risk was first addressed within theoretical
models by Bernoulli in 1738 (translated into English by
Sommer in 1954) [61]. Later on, the theory of expected
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utility, formalized by von Neumann and Morgenstern in
1944 [53], provided a framework within which to address
and incorporate behavioral tendencies like risk aversion.
It was then further formalized, independently and within
the theory of expected utility, by Arrow, Pratt, and Finetti
in the 1950s and 60s [62–64] who, in particular, introduced
measures for its quantification. The quest for further under-
standing and exploiting this concept has since remained
of active research interest in the economic sciences [55].
Recently, an important step was taken in the work of
Bleuler, Lapidoth, and Pfister (BLP) in 2020 [38], where
the concept of risk aversion was implemented within the
realm of classical information theory, as part of the oper-
ational tasks of horse-betting games with risk and side
information.

In this work, inspired by the concepts of betting, risk
aversion, the tasks introduced by BLP [38], as well as by
standard quantum state discrimination, we introduce oper-
ational quantum betting tasks. Surprisingly, we find that
these tasks turn out to provide the correct approach for
solving the conundrum regarding the four-way correspon-
dence for QRTs described above. Specifically, we find that
the concept of risk aversion allows us to define operational
quantum tasks, which can be viewed as a generalization of
discrimination and exclusion.

We start by exploring the QRT of measurement infor-
mativeness, and find that Arimoto’s α-mutual information
exactly quantifies the advantage provided by informative
measurements when playing one of these quantum bet-
ting tasks, which we call quantum state betting (QSB).
We then explore general QRTs of measurements with
arbitrary resources, and similarly derive Arimoto-type
information-theoretic measures, which quantify the advan-
tage provided by resourceful measurements. Specifically,
we find that the concept of Arimoto’s gap, an information-
theoretic quantity, which generalizes Arimoto’s mutual
information, characterizes QSB games when comparing a
resourceful gambler with gamblers with access only to free
resources.

In addition to QRTs of measurements, we also explore
QRTs of other objects. First, we explore the QRT of non-
constant channels. In this scenario we introduce the tasks
of noisy quantum state betting (NQSB), and find appropri-
ate Arimoto-type quantities, which characterize the perfor-
mance gain of resourceful objects over resourceless objects
in these tasks. Furthermore, we extend these results to
QRTs of channels with arbitrary resources, and similarly
characterize the advantage provided by resourceful chan-
nels in comparison to the best resourceless alternatives.

We also explore the concept of betting and risk aversion
for tasks beyond QSB and NQSB games, by introducing
quantum-channel betting (QCB) tasks. We first address
these tasks for general single-object QRTs of states with
arbitrary resources. In this regime we find that, similarly
to the case of QSB and NQSB, there exist Arimoto-type

information-theoretic quantities, which characterize the
performance of resourceful gamblers over resourceless
gamblers. We further extend these results to multiobject
QRTs of state-measurement pairs. These results therefore
altogether highlight that betting and risk aversion are pow-
erful and useful concepts that naturally emerge in general
QRTs with arbitrary resources, objects, as well as different
tasks.

Finally, we report additional results for the QRT of mea-
surement informativeness, by deriving a continuous four-
way correspondence between operational tasks, mutual
information measures, Rényi divergences, and resource
monotones, which generalize correspondences recently
found in the literature [12,30].

We believe that the concepts of betting and risk aversion
have the potential to positively impact our understand-
ing of the framework of resource theories as well as our
understanding of the theory of quantum information more
generally.

This work is organized as follows. In Sec. II A we
start by describing the concept of risk aversion in the
theory of games and economic behavior. In Secs. II B
and II C we address Arimoto’s mutual information mea-
sure and the Rényi capacity both in classical and quantum
domains. In Sec. II D we describe the QRT of mea-
surement informativeness and the QRT of nonconstant
channels. In Sec. II E we address further Arimoto-type
information-theoretic quantities for general QRTs of mea-
surements, channels, states, and state-measurement pairs
with arbitrary resources. Our main results’ sections start
in Sec. III, where we introduce operational quantum tasks
based on betting with risk aversion, or quantum betting
tasks for short, and introduce various tasks as follows:
quantum state betting in Sec. III A–III C, noisy quantum
state betting in Sec. III D, and quantum-channel betting
in Sec. III E. In Sec. IV we address the characteriza-
tion of quantum betting tasks in terms of Arimoto-type
information-theoretic quantities. In Sec. IV A we relate
QSB games to Arimoto’s mutual information, for the QRT
of measurement informativeness. In Sec. IV B we charac-
terize NQSB games in terms of a noisy Arimoto mutual
information, for the QRT of nonconstant channels. In
Sec. IV C we characterize QSB and NQSB games in terms
of Arimoto-type quantities, for general QRTs of measure-
ments and channels with general resources. In Sec. IV D
we characterize QCB games in terms of Arimoto-type
measures for single-object QRTs of states with arbi-
trary resources as well as multiobject QRTs of state-
measurement pairs with arbitrary resources. In Sec. IV E
we characterize horse-betting games in terms of the Ari-
moto’s mutual information in the classical regime, with-
out invoking quantum theory. In Sec. IV F and IV G we
address quantum Rényi divergences and resource mono-
tones, and derive a four-way correspondence for the QRT
of measurement informativeness. We finish in Sec. V with
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conclusions, open questions, perspectives, and avenues for
future research.

II. BACKGROUND THEORY

In this section we address the preliminary theoretical
tools necessary to establish our main results. We start with
the concept of risk in the theory of games and economic
behavior. We then introduce a pair of games involving
risk. After this, we introduce Arimoto’s α-mutual informa-
tion measure and the Rényi capacity in both classical and
quantum information theory. Next, we review the QRTs
of measurement informativeness and nonconstant channels
and, finally, Arimoto-type information-theoretic measures
for general QRTs of measurements, channels, states, and
state-measurement pairs.

A. The concept of risk in the theory of games and
economic behavior

In expected utility theory [53], the level of “satisfac-
tion” of a rational agent, when receiving (obtaining, being
awarded) a certain amount of wealth, or goods or services,
is described by a utility function [53]. The utility function
of a rational agent is a function u : A→ R, with A = {ai}
a the set of alternatives from which the rational agent can
choose from. The set A is endowed with a binary relation
�. The utility function is asked to be a monotone for such a
binary relation; if a1 � a2 then u(a1) ≤ u(a2). In this work
we address the set of alternatives as representing wealth
and therefore, it is enough to consider an interval of the
real numbers.

We are going to consider two different types of situa-
tion in this work. In the first case, the wealth will always
be non-negative, and so we consider the interval being
A = I = [0, wM ] ⊆ R, with wM > 0 a maximal amount
of wealth, and the standard binary relation ≤. Similarly,
we also consider a situation where the wealth is nonposi-
tive, meaning we address a utility function taking negative
arguments w < 0, with I = [−wM , 0] ⊆ R, as the level
of (dis)satisfaction when the rational agent has to pay an
amount of money |w| (or when the amount |w| is taken
away from him).

We note here that the utility function does not neces-
sarily need to be positive (or negative), because it is only
used to compare alternatives. The condition that the util-
ity function is monotonic is the equivalent to it being an
increasing function for both positive and negative wealth.
Intuitively, this represents that the rational agent is inter-
ested in acquiring as much wealth as possible (for positive
wealth), and losing the least amount of wealth as possible
(for negative wealth). Additionally, the utility function is
asked to be twice differentiable, both for mathematical con-
venience and, because it is natural to assume that smooth
changes in wealth imply smooth changes in the rational
agent’s satisfaction.

In order to address the concept of risk, we first need to
introduce two games (or operational tasks), which involves
a player Bob (the better or gambler, who we take to be a
rational agent with a utility function u) and a referee Alice,
who is in charge of the game. We are going to address two
different games, which we call here (i) gain games and (ii)
loss games.

1. A gain game and utility theory

In a gain game, Alice (referee) offers Bob (gambler) the
choice between two options: (i) a fixed guaranteed amount
of wealth wG ∈ [0, wM ] or (ii) a bet. The bet consists
of the following: Alice uses a random event distributed
according to a probability mass function (PMF) pW, [i.e.,∑

w∈I pW(w) = 1, pW(w) ≥ 0, ∀w ∈ I , with W a random
variable in the alphabet I], in order to give Bob a reward.
Specifically, Alice will reward Bob with an amount of
wealth wB = w, whenever the random event happens to
be w, which happens with probability p(w) [we drop the
label W on pW(w) from now on]. The choice facing Bob
is therefore between a fixed guaranteed amount of wealth
wG ∈ [0, wM ], or taking the bet and potentially earning
more wB > wG, at the risk of earning less wB < wG.

Since the utility function u(w) determines Bob’s satis-
faction when acquiring the amount wealth w, we see below
that it can be used to model his behavior in this game, i.e.,
whether he chooses the first or second option. First, con-
sidering the bet [option (ii)] we can consider the expected
gain of Bob at the end,

E[W] =
∑

w∈I
p(w)w. (1)

How satisfied Bob is with this expected amount of wealth
is given by the utility of this value, i.e.,

u (E[W]) = u

(
∑

w∈I
p(w)w

)

. (2)

Now, Bob’s wealth at the end of the bet is a random vari-
able, this means that his satisfaction will also be a random
variable, with some uncertainty. We can also ask what
Bob’s expected satisfaction, i.e., expected utility will be
at the end of the bet,

E[u(W)] =
∑

w∈I
p(w)u(w). (3)

This represents how satisfied Bob will be with the bet on
average.

We can now introduce the first key concept, that of the
certainty equivalent (CE): it is the amount of (certain)
wealth wCE that Bob is as satisfied with as the average
wealth he would gain from the bet. In other words, the
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amount of wealth that is as desirable as the bet itself. That
is, it is the amount of wealth wCE that satisfies

E[u(W)] = u(wCE). (4)

It is crucial to note that the certainty equivalent wealth
depends upon the utility function u and the PMF pW,
and therefore we interchangeably write it as wCE(u, pW).
We can now return to the original game, i.e., the choice
between a fixed return wG, or the average return E[W]. The
rational decision for Bob is to pick which of the two he is
most satisfied with. We now see that if we set wG > wCE

then he will choose to take the guaranteed amount, if
wG < wCE he will choose the bet, and if wG = wCE then
in fact the two options are equivalent to Bob, and he can
rationally pick either. That is, we see that the certainty
equivalent wCE sets the boundary between which option
Bob will pick.

Introducing the certainty equivalent moreover allows us
to introduce the concept of Bob’s risk aversion. To do so,
we compare Bob’s expected wealth, in relation to the cer-
tainty equivalent of the bet. There are only three possible
scenarios,

wCE < E[W], (5)

wCE > E[W], (6)

wCE = E[W]. (7)

In the first case (5), Alice can offer Bob an amount
of wealth wG that is larger than wCE but less than
E[W], wCE < wG < E[W] and Bob will rationally take this
amount over accepting the bet, even though he will walk
away with less wealth on average than if he took the bet.
In other words, Bob is reluctant to take the bet, and so we
say that he is risk averse.

In the second case (6), on the other hand, if Alice wants
to make Bob walk away from the bet, and accept a fixed
amount of wealth instead, she will have to offer him more
than the expected gain. That is, Bob will only choose an
amount wG if wG > wCE > E[W]. Here Bob is risk seeking.

Finally, in the third case (7), Bob will take the bet if
Alice offers him any wG less than the expected gains from
the bet, and will take the guaranteed amount wG if it is
larger. In this case, we say that Bob is risk neutral, as Bob
is essentially indifferent between the uncertain gains of the
bet and the certain gains of the guaranteed return.

If we recall that by definition the utility function u is
strictly increasing in the interval I (more wealth is also
more satisfactory to Bob), then by applying u to the previ-
ous three equations, and using the definition of wCE (4), we
get

E[u(W)] < u(E[W]), (8)

E[u(W)] > u(E[W]), (9)

E[u(W)] = u(E[W]). (10)

This is an important result, which shows that Bob’s risk
aversion is characterized by the curvature of his util-
ity function: Bob is risk averse when his utility function
is concave (8), risk seeking when his utility function is
convex (9), and risk neutral when it is linear (10). This
intuitively makes sense, since roughly speaking this corre-
sponds to his satisfaction growing more slowly than wealth
when he is risk averse and his satisfaction growing faster
than wealth when he is risk seeking. We now move on to
analyze the concept of risk in our second game.

2. A loss game and utility theory

Let us now analyze a game, which we call here a
loss game. Similarly to the gain game from the previ-
ous section, in a loss game we have two agents, a referee
(Alice) and a gambler (Bob), who has to make a payment
to the referee. In an loss game Bob is now asked to choose
between two options: (i) paying a fixed amount of wealth
|wF |, wF ∈ [−wM , 0] or (ii) a bet. Choosing the bet means
Bob has to pay an amount of wealth according to the out-
come of a PMF pW. Similarly to the gain game, we address
some quantities of interest: expected debt (E(W)), expected
utility (E[u(W)]), and the certainty equivalent wCE(u, pW),
as the amount of wealth wCE such that u(wCE) = E[u(W)].
We note the CE depends on the utility function u repre-
senting the player, and the PMF pW representing the bet.
The CE is the amount of wealth that Bob pays to Alice,
which generates the same level of (dis)satisfaction, had
Bob opted for the bet instead. We also note here that both
the expected debt and the certainty equivalent are now
negative quantities.

We now analyze the meaning of the certainty equiva-
lent in loss games, i.e., where Bob (the gambler) has to
choose between having to pay a certain fixed amount of
wealth (fixed debt) |wF |, or paying an average amount
(average debt) |E[W]|. The rational decision for Bob is to
pick which of the two options he is more satisfied (equiv-
alently, we could say least dissatisfied) with. We then see
that if we set wF < wCE he then will choose to take the bet,
if wF > wCE he will choose to pay the fixed amount, and if
wF = wCE he can rationally pick either. That is, we see that
the certainty equivalent wCE again sets here the boundary
between which option Bob will pick in a loss game.

We now compare Bob’s expected debt E[W] and the cer-
tainty equivalent of the bet wCE. We have the three possible
scenarios,

wCE < E[W], ←→ |wCE| > |E[W]|, (11)

wCE > E[W], ←→ |wCE| < |E[W]|, (12)
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wCE = E[W], ←→ |wCE| = |E[W]|. (13)

In the first case (11), Alice can request from Bob a fixed
amount of wealth |wF | as wCE < wF < E[W], which is
equivalent to |wCE| > |wF | > |E[W]| and Bob will still
prefer to pay this amount over opting for the bet, even
though he will potentially have to pay less |E(W)|, on
average, had he opted for the bet. In other words, Bob
is reluctant to take the bet, and so we see that he is risk
averse.

In the second case (12), if Alice wants to make Bob
walk away from choosing the bet, and accept paying a
fixed amount of wealth instead, she will have to offer him
a deal where he has to pay less than the CE (and in turn
less than the expected debt). In other words, in this case
Bob is confident that the bet will allow him to pay less
than the expected debt. That is, Bob will choose paying
a fixed amount |wF | only if wF > wCE > E[W], which is
equivalent to |wF | < |wCE| < |E[W]|. Here Bob can then
be considered as risk seeking, because he is hopeful and
optimistic about having the chance of paying less than the
expected debt.

Taking into account the utility function is still a strictly
increasing function for negative wealth, together with the
definition of the certainty equivalent we get

E[u(W)] < u(E[W]), (14)

E[u(W)] > u(E[W]), (15)

E[u(W)] = u(E[W]). (16)

This means that in a loss game we can also characterize
the risk tendencies of a gambler in terms of the concav-
ity, convexity, and linearity of his utility function as risk
averse [concavity (14)], risk seeking [convexity (15)], risk
neutral [linear (16)]. This characterization of risk tenden-
cies and the types of games are going to be useful later on
when introducing more elaborate games involving the dis-
crimination or exclusion of quantum states. We now move
on to the quantification of risk.

3. Quantifying risk tendencies

We can go one step further, and not only classify
whether Bob (the gambler) is risk averse, risk seeking, or
risk neutral, but moreover quantify how risk averse he is.
Let us start by addressing a gain game, which means we are
interested in analyzing Bob being represented by an utility
function on positive wealth. Since Bob’s attitude toward
risk relates to the concavity, convexity, and linearity of the
utility function u, it is natural that the second derivative of
the function is going to play a role. This, because u is con-
cave on an interval if and only if its second derivative is

nonpositive on that interval. However, it is also desirable
for measures representing risk to be invariant under affine
transformations of the utility function, which in this con-
text means that they are invariant under transformations
of the form u→ a+ bu, with a, b ∈ R. This is because
the actual values of utility are not themselves physical, but
only the comparison between values, and therefore rescal-
ing or displacing the utility should not alter how risk averse
we quantify Bob to be. Given these requirements, a natural
measure that emerges is the so-called relative risk-aversion
(RRA) measure [65]:

RRRA(w) := −w
u
′′
(w)

u′(w)
. (17)

This measure assigns positive values for risk-averse play-
ers in a gain game (concave utility functions of positive
wealth) because we have (i) w > 0, because we are con-
sidering the player receiving money, (ii) u

′′
(w) < 0, ∀w,

because a risk-averse player in a gain game is represented
by a concave function, and (iii) u

′
(w) > 0, because the util-

ity function is a strictly increasing function. An analysis of
signs then yields RRRA(w) > 0.

Similarly, we now also analyze this measure of risk
aversion when Bob plays a loss game. A loss game is char-
acterized by negative wealth, and we have already derived
the fact that a risk-averse gambler is also characterized by
a concave utility function. We now want to quantify the
degree of risk aversion of a gambler playing the loss game,
and therefore we then can proceed in a similar fashion as
before, and define the risk-aversion measure RRA.

We now check that this measure assigns negative val-
ues for risk-averse players in a loss game (concave utility
functions of negative wealth) because we have (i) w < 0
because we are considering the player paying money, (ii)
u
′′
(w) < 0, ∀w, because a risk-averse player in a loss game

is represented by a concave function, and (iii) u
′
(w) > 0,

because the utility function is a strictly increasing function.
An analysis of signs yields RRRA(w) < 0. We can see that
this is the opposite to what happens in gain games, where
RRRA(w) > 0 represents risk-averse players. We highlight
this fact in Table I, and present an analysis of the sign of
the RRA measure for the two types of players (risk averse
or risk seeking) and the two types of games (gain game or
loss game).

4. The isoelastic certainty equivalent

We now note that the RRA measure does not assign a
global value for how risk averse Bob is, but allows this to
depend upon the wealth w, i.e., Bob may be more or less
risk averse depending on the wealth that is at stake. In order
to remove this, it is usual to consider those utility functions
where Bob’s relative risk aversion is constant, independent
of wealth. In this case, Eq. (17) can be solved assuming
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TABLE I. Analysis of the sign of the quantity RRRA(w) for the
different regimes being considered. We have that the utility func-
tion is always strictly increasing, meaning that u

′
(w) > 0, and

therefore we then only need to analyze the signs of w and u
′′
(w).

In particular, we have that risk-averse players are represented by
positive RRA when dealing with positive wealth, and by negative
RRA when dealing with negative wealth.

Risk-averse player Risk-seeking player
u
′′
(w) < 0 u

′′
(w) > 0

w > 0 RRRA(w) > 0 RRRA(w) < 0
w < 0 RRRA(w) < 0 RRRA(w) > 0

RRRA(w) = R, which leads to the so-called isoelastic utility
function for positive and negative wealth as

uR(w) :=
{

sgn(w)
|w|1−R−1

1−R , if R �= 1

sgn(w) ln(|w|), if R = 1
, (18)

with the auxiliary “sign” function:

sgn(w) :=
{

1, w ≥ 0;
−1, w < 0.

(19)

The parameter R varies from minus to plus infinity,
describing all possible risk tendencies of Bob, for either
positive or negative wealth. For positive wealth for
instance, R goes from maximally risk seeking at R = −∞,
passing through risk neutral at R = 0, to maximally risk
averse at R = ∞. In Fig. 1 we can see the behavior of the
isoelastic function for positive wealth and different values
of R.

1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

FIG. 1. Isoelastic utility function uR(w) (18) as a function of
positive wealth (1 ≤ w ≤ 3) for players with different risk ten-
dencies (different values of R). The risk parameter R quantifies
different types of risk tendencies: (i) R < 0 risk-seeking players
(convex), (ii) R = 0 risk-neutral players (linear), and (iii) R > 0
risk-averse players (concave). Risk aversion for positive wealth
then increases from −∞ to∞.

The certainty equivalent (4) for this setup can be calcu-
lated for either positive or negative wealth as

wICE
R = u−1

R (E[uR(W)]) =
(
∑

w∈I
w1−Rp(w)

)1/(1−R)

.

(20)

The certainty equivalent of the isoelastic function, or isoe-
lastic certainty equivalent (ICE), is going to be the figure
of merit in the next section, and it is going to play an impor-
tant role in this paper. As we have already seen, the CE
stands out as an important quantity because it (i) deter-
mines the choice of a gambler when playing either a gain
or loss game, helping to establish the characterization of
risk tendencies of said gambler and (ii) optimizing the CE
is equivalent to optimizing the expected utility, given that
the utility function is a strictly increasing function and that
u(wICE) = E[u(W)]. One may be tempted here to propose
the expected utility function E[u(W)] as the figure of merit
instead of the CE, but the expected utility unfortunately
suffers from having the rather awkward set of units [w]1−R,
whilst the certainty equivalent on the other hand has simply
units of wealth [w] ($, £, . . .).

B. Arimoto’s α-mutual information and Rényi channel
capacity

We start this subsection by introducing the α-mutual
information measures of interest (also known as depen-
dence measures [38,39]) and particularly, Arimoto’s α-
mutual information [41]. A reminder note on notation
before we start: we consider random variables (RVs)
(X , G, . . .) on a finite alphabet X , and the probability mass
function of X represented as pX satisfying pX (x) ≥ 0,
∀x ∈ X , and

∑
x∈X pX (x) = 1. For simplicity, we omit the

alphabet when summing, and write pX (x) as p(x) when
evaluating. The support of pX as supp(pX ) := {x|p(x) >

0}, the cardinality of the support as |supp(pX )|, and the
extended line of real numbers as R := R ∪ {∞,−∞}. We
now start by considering the Rényi entropy.

Definition 1: (Rényi entropy [35]) The Rényi entropy of
order α ∈ R of a PMF pX is denoted as Hα(X ). The orders
α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞) are defined as

Hα(X ) := 1
1− α

log

(
∑

x

p(x)α
)

. (21)

The orders α ∈ {0, 1,∞,−∞} are defined by continu-
ous extension of Eq. (21) as H0(X ) := log |supp(pX )|,
H1(X ) := H(X ), with H(X ) := −∑x p(x) log p(x) the
Shannon entropy [34], H∞(X ) := − log maxx p(x) =
− log pmax, and H−∞(X ) := − log minx p(x) = − log pmin.
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The Rényi entropy is a function of the PMF pX and there-
fore, one can alternatively write Hα(pX ). However, we
keep the convention of writing Hα(X ).

The Rényi entropy is mostly considered for positive
orders, but it is also sometimes explored for negative val-
ues [36,66–68]. In this work we use the whole spectrum
α ∈ R. We now consider the Arimoto-Rényi extension of
the conditional entropy.

Definition 2: (Arimoto-Rényi conditional entropy [41])
The Arimoto-Rényi conditional entropy of order α ∈ R

of a joint PMF pXG is denoted as Hα(X |G). The orders
α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞) are defined as

Hα(X |G) := α

(1− α)
log

⎡

⎣
∑

g

(
∑

x

p(x, g)α

)1/α
⎤

⎦ .

(22)

The orders α ∈ {0, 1,∞,−∞} are defined by continu-
ous extension of Eq. (22) as H0(X |G) := log maxg |supp
(pX |G=g)|, H1(X |G) := H(X |G), with H(X |G) := −∑x,g
p(x, g) log p(x|g) the conditional entropy [34], H∞(X |G)

:= − log
∑

g maxx p(x, g), and H−∞(X |G) := − log
∑

g
minx p(x, g). Arimoto-Rényi conditional entropy is a func-
tion of the joint PMF pXG and therefore, one can alterna-
tively write Hα(pXG). However, we keep the convention of
writing Hα(X |G).

We remark that there are alternative ways to Rényi
extend the conditional entropy [37]. The Arimoto-Rényi
conditional entropy is however, the only one (amongst
five alternatives [37]) that simultaneously satisfy the fol-
lowing desirable properties for a conditional entropy
[37]: (i) monotonicity, (ii) chain rule, (iii) consistency
with the Shannon entropy, and (iv) consistency with the
∞ conditional entropy (also known as min entropy).
Consistency with the conditional entropy means that
limα→1 Hα(X |G) = H(X |G), and similarly for property
(iv). In this sense, one can think about the Arimoto-Rényi
conditional entropy as the “most appropriate” Rényi exten-
sion (if not the outright “proper” Rényi extension) of the
conditional entropy. We now consider Arimoto’s mutual
information, and its associated Rényi channel capacity

Definition 3: (Arimoto’s α-mutual information [41]) Ari-
moto’s mutual information of order α ∈ R of a joint PMF
pXG is given by

Iα(X ; G) := sgn(α) [Hα(X )− Hα(X |G)] , (23)

with the Rényi entropy (21) and the Arimoto-Rényi condi-
tional entropy (22). The case α = 1 reduces to the stan-
dard mutual information [34] I1(X ; G) = I(X ; G), with

I(X ; G) := H(X )− H(X |G). Arimoto’s α-mutual infor-
mation is a function of the joint PMF pXG and therefore,
one can alternatively write Iα(pXG) or Iα(pG|X pX ), the lat-
ter taking into account that pXG = pG|X pX . We use these
three different notations interchangeably.

Definition 4: (Rényi channel capacity [41,42,69,70]) The
Rényi channel capacity of order α ∈ R, of a conditional
PMF pG|X is given by

Cα(pG|X ) := max
pX

Iα(pG|X pX ). (24)

The case α = 1 reduces to the standard channel capacity
[34] C1(pG|X ) = C(pG|X ) = maxpX I(X ; G).

We remark that there are alternative candidates as
Rényi-extensions of the mutual information [37,39]. In
particular, we highlight the α-mutual information mea-
sures of Sibson [40], Csiszár [42], and Bleuler-Lapidoth-
Pfister [38], which we address in the Appendices as
I V
α (X ; G) with the label V ∈ {S, C, BLP} representing each

case. These α-mutual informations are going to be useful,
in particular, due to their connection to conditional Rényi
divergences. We address these information-theoretic quan-
tities in Appendix A. We now extend these information-
theoretic quantities to the quantum domain.

C. Arimoto’s α-mutual information and Rényi channel
capacity in a quantum setting

We now move on to describe Arimoto’s α-mutual infor-
mation in a quantum setting, as well as the Rényi channel
capacity.

Remark 1: (Arimoto’s α-mutual information in a quan-
tum setting) We address Arimoto’s α-mutual informa-
tion between two classical random variables encoded
into quantum objects. Explicitly, the random variable X
is encoded in an ensemble of states E = {ρx, p(x)} and
therefore, we address it as XE . On the other hand, G
is considered as the random variable obtained from a
decoding measurement D = {Dg = |g〉〈g|} and therefore,
we address it as GD. We consider a conditional PMF as
p (M,S)

G|X , given by p(g|x) := Tr[Dg�M(ρx)], S := {ρx} a set
of states, and the quantum-to-classical (measure-prepare)
channel associated to the measurement M given by

�M(σ ) :=
∑

a

Tr[Maσ ] |a〉〈a| , (25)

with {|a〉} an orthonormal basis. We effectively have
p(g|x) := Tr[Mgρx] and therefore we can think about
the decoding variable GD,E as GM,E . We are now inter-
ested in the α-mutual information quantifying the depen-
dence between variables XE and GM,E , when encoded and

020366-8



CHARACTERIZATION OF QUANTUM BETTING... PRX QUANTUM 3, 020366 (2022)

decoded in the quantum setting described previously. We
then consider Arimoto’s α-mutual information:

Iα(X ; G)E ,M := sgn(α)
[
Hα(X )E − Hα(X |G)E ,M

]
, (26)

with the standard Rényi entropy (21) and the Arimoto-
Rényi conditional entropy (22) for the quantum condi-
tional PMF described above. In a similar manner, we are
also interested in a noisy Arimoto’s α-mutual informa-
tion for any quantum channel N (·), which we write as
Iα(X ; G)E ,M,N , where the conditional PMF is now given
by p(g|x) = Tr[MgN (ρx)]. In particular, we are going to
be interested in the quantity

Iα(X ; G)E ,N := max
M

Iα(X ; G)E ,M,N . (27)

We now consider the Rényi capacity in this quantum
setting.

Remark 2: (Rényi capacity of a quantum conditional
PMF) The Rényi capacity of order α ∈ R of a quantum
conditional PMF p (M,S)

G|X is given by

Cα

(
p (M,S)

G|X
)

:= max
pX

Iα
(

p (M,S)

G|X pX

)
. (28)

The quantity we are interested in the quantum domain
is the Rényi capacity of order α of a quantum-classical
channel.

Definition 5: (Rényi capacity of a quantum-classical
channel) The Rényi capacity of order α ∈ R of a quantum-
classical channel �M associated to the measurement M is
given by

Cα(�M) := max
S

Cα

(
p (M,S)

G|X
)
= max

E
Iα
(

p (M,S)

G|X pX

)
,

(29)

with the maximization over all sets of states S = {ρx} or
over all ensembles E = {ρx, p(x)}.

We now address a resource-theoretic approach for mea-
surement informativeness and nonconstant channels.

D. The quantum resource theories of measurement
informativeness and nonconstant channels

The framework of QRTs has proven a fruitful approach
towards quantum theory [4,5]. In this work we particularly
deal with convex QRTs of measurements, channels. We
start with the QRT of measurement informativeness [12].

Definition 6: (QRT of measurement informativeness [12])
Consider the set of positive operator-valued measures
(POVMs) acting on a Hilbert space of dimension d. A

POVM M is a collection of POVM elements M = {Ma}
with a ∈ {1, . . . , o} satisfying Ma ≥ 0 ∀a and

∑
a Ma = 1.

We now consider the resource of informativeness [12]. We
say a measurement N is uninformative when there exists
a PMF qA such that Na = q(a)1, ∀a. We say that the mea-
surement is informative otherwise, and denote the set of all
uninformative measurements as UI.

The set of uninformative measurements forms a convex
set and therefore, defines a convex QRT of measurements.
We now introduce the notion of simulability of mea-
surements, which is also called classical postprocessing
(CPP).

Definition 7: (Simulability of measurements [71,72]) A
measurement N = {Nx}, x ∈ {1, . . . , k} is simulable by the
measurement M = {Ma}, a ∈ {1, . . . , o} when there exists
a conditional PMF qX |A such that Nx =

∑
a q(x|a)Ma, ∀x.

The simulability of measurements defines a partial order
for the set of measurements, which we denote as N �M,
meaning that N is simulable by M. Simulability of the mea-
surement N can alternatively be understood as a classical
postprocessing of the measurement M.

Two quantifiers for informativeness are the following.

Definition 8: (Generalized robustness and weight of infor-
mativeness) The generalized robustness [7,12] and the
weight [21,30] of informativeness of a measurement M are
given by

R (M) :=
min

r ≥ 0
N ∈ UI

M
G

{

r
∣
∣
∣
∣Ma + rM G

a = (1+ r)Na

}

, (30)

W (M) :=
min

w ≥ 0
N ∈ UI

M
G

{

w
∣
∣
∣
∣Ma = wM G

a + (1− w)Na

}

. (31)

The generalized robustness quantifies the minimum
amount of a general measurement M

G that has to be added
to M such that we get an uninformative measurement N.
The weight on the other hand, quantifies the minimum
amount of a general measurement M

G that has to be used
for recovering the measurement M.

These resource quantifiers are going to be useful later
on. We now introduce the QRT of nonconstant channels.

Definition 9: (QRT of nonconstant channels) Consider the
set of completely positive trace-preserving (CPTP) maps
acting on a Hilbert space of dimension d. We now con-
sider the resource of nonconstant channels. We say that
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a channel N (·) is constant, when there exist a state ρN
such that N (ρ) = ρN , ∀ρ ∈ D(H). We say that a channel
is nonconstant otherwise, and denote the set of all constant
channels as C.

We now consider information-theoretic quantities for
various general QRTs.

E. Arimoto-type information-theoretic quantities for
general QRTs of measurements, channels, states, and

state-measurement pairs

We now address a generalization of Arimoto’s α-mutual
information to the concept of Arimoto’s gap for general
resources of measurements, channels, states, and state-
measurement pairs. In order to introduce the concept of
Arimoto’s gap, let us first fix some notation. In this sub-
section we consider general QRTs with arbitrary resources,
meaning that we address a set of free measurements as F,
and a set of free channels as F , which are usually assumed
to be convex and closed sets [25,28,30]. We now introduce
the concept of Arimoto’s gap, which is defined in terms
of the standard Arimoto’s α-mutual information, and for
which we introduce here two variants as follows.

Definition 10: (Arimoto’s gap for measurements and
channels [28,51]) Consider a set of free measurements as
F, and a pair (E , M), Arimoto’s gap on POVMs of order
α ∈ R for such a pair is given by

GF

α(X ; G)E ,M := Iα(X ; G)E ,M −max
N∈F

Iα(X ; G)E ,N. (32)

Similarly, consider a set of free channels F and a triple
(E , M,N ), Arimoto’s gap on channels of order α ∈ R for
such a triple is given by

GF
α (X ; G)E ,M,N

:= Iα(X ; G)E ,M,N − max
Ñ∈F

max
N

Iα(X ; G)E ,N,Ñ . (33)

Similarly to the previous section, we also address a more
refined quantity as

GF
α (X ; G)E ,N := max

M

GF
α (X ; G)E ,M,N . (34)

These quantities are information-theoretic in nature,
being defined in terms of Arimoto’s α-mutual informa-
tion. We can think about them as the maximum gap, in
terms of the Arimoto’s α-mutual information, between the
free set F (F) and the fixed object of interest M (N ).
These two measures can be thought of as generalizations
of Arimoto’s noisy α-mutual information and Arimoto’s
α-mutual information, respectively. This can be checked

by setting (F = UI) and (F = C), for which we get

GUI

α (X ; G)E ,M = Iα(X ; G)E ,M, (35)

GC
α(X ; G)E ,M,N = Iα(X ; G)E ,M,N . (36)

This is because uninformative measurements achieve
p(g|x) = Tr[Mgρx] = p(g) Tr[ρx] = p(g), and similarly
for constant channels p(g|x) = Tr[MgÑ (ρ)] = Tr[MgρÑ ]
= p(g), meaning that random variables G and X are
independent from each other in both cases and therefore

max
N∈UI

Iα(X ; G)E ,N = max
Ñ∈C

max
N

Iα(X ; G)E ,N,Ñ = 0. (37)

Inspired by these information-theoretic quantities for mea-
surements and channels, we now also consider Arimoto-
type gaps for states as well as for a hybrid scenario with
state-measurements pairs. Similarly for the case of mea-
surements and channels, we address a set of free states
as F , which is usually assumed to be convex and closed
[25,28]. We now define two variants of the concept of
Arimoto’s gap for QRTs of states as well as for QRTs of
state-measurement pairs.

Definition 11: (Arimoto’s gap for states and for state-
measurement pairs) Consider a set of free states F, and
a triple (�, M, ρ), then, Arimoto’s gap on states of order
α ∈ R for such a triple is given by

GF
α (X ; G)�,M,ρ := Iα(X ; G)�,M,ρ −max

σ∈F
Iα(X ; G)�,M,σ .

(38)

Similarly, consider a set of free states F, a set of free
measurements F, and a triple (�, M, ρ), then, Arimoto’s
gap on state-measurement pairs of order α ∈ R for such a
triple is given by

GF ,F
α (X ; G)�,M,ρ := Iα(X ; G)�,M,ρ −max

σ∈F
N∈F

Iα(X ; G)�,N,σ .

(39)

Similarly to the previous variants on Arimoto’s gaps,
we have that these information-theoretic measures can be
understood as quantifying the maximum gap, in terms of
the standard Arimoto’s α-mutual information, between the
set of free objects and a fixed triple (�, M, ρ). The first
variant was first introduced in Ref. [28] whilst the second
multiobject variant was first introduced in Ref. [51].

Here we finish with the preliminary concepts and theo-
retical tools needed to describe our main results which we
do next.
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III. QUANTUM BETTING TASKS WITH RISK
AVERSION

We now introduce the main new operational tasks that
we consider in this work. We start by describing quan-
tum betting tasks being played by gamblers with different
risk tendencies. This is inspired by both standard quantum
state discrimination and horse-betting games in classical
information theory.

Horse-betting (HB) games were first introduced by
Kelly in 1956 [73], a modern introduction can be found, for
instance, in Cover and Thomas [34], as well as in the lec-
tures notes by Moser [74]. Recently, Bleuler, Lapidoth, and
Pfister generalized HB games in order to include a factor
β = 1− R [38], representing the risk aversion of the gam-
bler (Bob) playing these games, with standard HB games
being recovered by setting β = 0, corresponding to R = 1,
i.e., a risk-averse Bob.

Inspired by this, here we introduce three types of quan-
tum betting tasks. First, we introduce quantum state betting
games. Specifically, we introduce two variants of QSB
games in the form of quantum state discrimination (QSD)
with risk, and quantum state exclusion (QSE) with risk.
We then introduce the central figure of merit for QSB
games—the isoelastic certainty equivalent, and show how
it generalizes the quantification of standard quantum state
discrimination and exclusion. We then introduce important
variants of this first game. In particular, we introduce noisy
quantum state betting games and quantum-channel betting
games, which generalizes both quantum-channel discrimi-
nation and exclusion. The tasks considered in this section,
and the way they relate to each other is depicted in Fig. 2.

A. Quantum state betting games

Consider two rational agents, a referee (Alice) and a
gambler (Bob). Alice is in possession of an ensemble
of quantum states E = {ρx, p(x)}, x ∈ {1, . . . , K}, and is
going to send one of these states to Bob, say ρx. We address
here a quantum state, or state for short, as a positive
semidefinite (ρx ≥ 0) and trace one (Tr(ρx) = 1) operator
in an finite-dimensional Hilbert space.

As above, we consider two different classes of state bet-
ting games, gain games, and loss games. In a gain game,
Alice offers Bob odds o(x), which is a positive function
(o(x) > 0, ∀x) but not necessarily a PMF, such that if Bob
places a unit bet on the state being ρx, and this is the cor-
rect state, then Alice will pay out o(x) to Bob. In a loss
game, on the contrary, we take the “odds” to be negative,
o(x) < 0, for all x, such that if Bob places a unit bet on ρx,
then he will have to pay out to Alice an amount |o(x)| [75].

In order to decide how to place his bets, Bob is allowed
to first perform a quantum measurement on the state
given to him by Alice. In general, this will be a pos-
itive operator-valued measure, M = {Mg}, Mg ≥ 0 ∀g,

FIG. 2. Operational tasks based on betting and risk aversion.
Quantum state betting, quantum-subchannel betting, quantum-
channel betting, quantum state discrimination and exclusion,
quantum-channel discrimination and exclusion. A→ B means
that the task A is more general than B.

∑
g Mg = 1, which will allow him to (hopefully) extract

some useful information from the state.
Let us assume that Bob measures the state he receives

from Alice using a measurement M = {Mg}, producing a
measurement result g, with probability given by the Born
rule, p(g|x) = Tr[Mgρx]. Bob will then use this result to
decide on his betting strategy. We assume that he bets all
of his wealth, and divides this in some way amongst all
the possible options x ∈ {1, . . . , K}. That is, Bob’s strat-
egy is a PMF bX |G, such that Bob bets the proportion
b(x|g) of his wealth on state x being the sent state, when
his measurement outcome was g [76]. We note that Bob’s
overall strategy is then defined by the pair (bX |G, M). We
also note that the PMF pX from the ensemble of states
together with the conditional PMF pG|X from the measure-
ment implemented by Bob, defines the joint PMF pXG :=
pG|X pX .

Therefore, when the quantum state was ρx, and Bob
obtained the measurement outcome g, he bet the propor-
tion of his wealth b(x|g) on the actual state, and hence
Alice either pays out w(x, g) = o(x)b(x|g) in the case of
a gain game, or Bob has to pay Alice the amount |w(x, g)|
[i.e., he loses |w(x, g)|] in a loss game. We can view gain
games as a generalization of state discrimination. Here,
since Bob is winning money, it is advantageous, in gen-
eral, for him to correctly identify the state that was sent.
On the other hand, we see that loss games can be viewed
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as a generalization of state exclusion, since now in order to
minimize his losses, it is useful for Bob to be able to avoid
or exclude the state that was sent.

Finally, we note that the settings of the game are spec-
ified by the pair (oX , E). It is important to stress that by
assumption Bob is fully aware of the settings of the game,
meaning that the pair (oX , E) is known to him prior to play-
ing the game, and therefore he can use this knowledge in
order to select an optimal betting strategy bX |G.

B. Figure of merit for quantum state betting games

Given these two variants of QSB games, we now want
analyze the behavior of different types of gamblers (rep-
resented by different utility functions), according to their
risk tendencies. We consider quantities of interest like in
the previous sections such as expected wealth, expected
utility, and similar. In particular, we model gamblers with
utility functions displaying constant relative risk aversion
(CRRA) and therefore, the utility functions we consider are
isoelastic functions uR(w) (18). The figure of merit we are
interested in is then the isoelastic certainty equivalent wICE

R
with R ∈ R. For risk R ∈ (−∞, 1) ∪ (1,∞), this quantity
is given by

wICE
R (bX |G, M, oX , E)

= u−1
R

(
EpXG [uR(wXG)]

)
,

=
[
∑

g,x

[
b(x|g)o(x)

]1−Rp(g|x)p(x)

]1/(1−R)

. (40)

The cases R ∈ {1,∞,−∞} are defined by continuous
extension of Eq. (40). In summary, the game is specified
by the pair (oX , E), the behavioral tendency of Bob is
represented by the utility function uR(wXG) with a fixed
R ∈ R, the overall strategy of Bob is specified by the
pair (bX |G, M), and the figure of merit here considered
is the isoelastic certainty equivalent (20). We can alter-
natively address these operational tasks as horse-betting
games with risk and quantum side information, or quan-
tum horse-betting (QHB) games for short, and we describe
this in more detail later on.

Bob is in charge of the measurement and the betting
strategy (bX |G,M), so in particular, for a fixed measure-
ment M, Bob is interested in maximizing the ICE (max-
imizing gains in a gain game, and minimizing losses in a
loss game) so we are going to be interested in the following
quantity:

max
bX |G

wICE
R

(
bX |G, M, oX , E) ,

for a fixed QSB game (oX , E) with either positive or neg-
ative odds, and Bob’s risk tendencies being fixed, and
specified by an isoelastic utility function uR.

C. Quantum state betting games generalize
discrimination and exclusion games

We now show that quantum state betting games with risk
can indeed be seen as generalizations of standard quantum
state discrimination and exclusion games. We can see this
by considering a risk-neutral (R = 0) Bob playing a gain
game (positive odds, which are constant): oc(x) := C, C >

0, ∀x, in which case we find that the quantity of interest
becomes

max
bX |G

wICE
0 (bX |G, M, oc

X , E) = C max
bX |G

∑

g,x

b(x|g)p(g|x)p(x),

= CPQSD
succ (E , M). (41)

For more details on standard quantum state discrimination
games we refer to Refs. [12,28]. Therefore, standard quan-
tum state discrimination can be seen as a special instance
of quantum state betting games with constant odds, and
played by a risk-neutral player. Similarly, for a loss game,
with negative constant odds o−c(x) := −C, C > 0, ∀x:

max
bX |G

wICE
0 (bX |G, M, o−c

X , E)

= C max
bX |G
−
∑

g,x

b(x|g)p(g|x)p(x),

= −CPQSE
err (E , M). (42)

For more details on standard quantum state exclusion
games we refer to Refs. [30,31]. Therefore, standard quan-
tum state exclusion can be seen as a quantum state betting
game constant negative odds, again played by a risk-
neutral player.

D. Noisy quantum state betting games

We now introduce noisy quantum state betting games.
We first note that standard QSB games (from the previ-
ous section) implicitly assume that the states that Alice
(referee) sends to Bob (player) are perfectly transmitted,
meaning that they are not affected by undesired interac-
tions due to the environment. This is an idealized situation,
and a more realistic scenario including such effects can
be addressed by considering a completely positive trace-
preserving map (or quantum channel) N , so that the prob-
ability of obtaining an outcome g after receiving the state
ρx is now given by p(g|x) = Tr[MgN (ρx)]. We refer to
this more general and realistic scenario as NQSB games.

Definition 12: (Noisy quantum state betting games) The
isoelastic certainty equivalent for a noisy quantum state
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betting game is given by

wNQSB
R (bX |G, M, oX , E ,N ) := wICE

R (bX |G,N †(M), oX , E)

(43)

with p(g|x) = Tr[N †(Mg)ρx] = Tr[MgN (ρx)], N (·) a
completely positive trace-preserving map, M = {Mg} a
POVM, and the POVM N †(M) := {N †(Mg)}. The cases
R ∈ {1,∞,−∞} are defined by continuous extension of
Eq. (43).

We note that we recover standard QSB games by consid-
ering a noiseless scenario N (·) = id(·). Whilst noisy QSB
games can be seen as noiseless QSB games by considering
the POVM N †(M) := {N †(Mg)}, it is still important from
a physical point to view to make the distinction between
both noisy and noiseless scenarios. Later on we see how
this is relevant for the resource theory of nonconstant
channels.

E. Quantum-channel betting games

In this subsection we introduce quantum-channel betting
games. Taking inspiration from the previous QSB games,
where Bob (player) is asked to bet on an ensemble of states,
we now consider Bob being asked to bet instead on a set
of channels � = {�x}, distributed according to a PMF pX .
In this scenario, Bob is in possession of a quantum state ρ,
which he would consequently send to Alice (referee). Alice
then proceeds to generate the ensemble {�x(ρ), p(x)}, and
send back one of these states to Bob. Bob then proceeds to
measure the received state with a fixed POVM M = {Mg},
and use the extracted information g in order to place a bet
bX |G and effectively play the game. Following a similar
logic to the case for QSB games, we can formalize and
derive a figure of merit for QCB games in terms of the
isoelastic certainty equivalent as follows.

Definition 13: (Quantum-channel betting) The isoelastic
certainty equivalent for a quantum-channel betting game
is given by

wQCB
R (bX |G, oX , pX , �, ρ, M) := wICE

R (bX |G, M, oX , E�,ρ)

(44)

with p(g|x) = Tr[Mg�x(ρ)], � = {�x(·)} a set of com-
pletely positive trace-preserving maps, M = {Mg} a
POVM, and E�,ρ := {�x(ρ), p(x)}. The cases R ∈
{1,∞,−∞} are defined by continuous extension of
Eq. (44).

First, we note here that these tasks can be further
extended to quantum subchannel betting games where we
address a set of subchannels � = {�x(·)}, or set of com-
pletely positive trace-nonincresing (CPTNI) maps, with

p(x, g) = Tr[Mg�x(ρ)]. Second, whilst QCB can be seen
as noiseless QSB games with the ensemble given by
E�,ρ := {�x(ρ), p(x)}, it is still important to distinguish
these two cases from a physical point of view, this, because
in a QCB game Bob (player) is now allowed to have an
influence on the ensemble of states as E = E�,ρ . Third,
we can see that QCB games generalize standard channel
discrimination and standard channel exclusion as follows.
Consider a risk-neutral (R = 0) Bob playing a gain game
(positive odds, which are constant): oc(x) := C, C > 0, ∀x,
in which case we find that the ICE becomes

max
bX |G

wQCB
0 (bX |G, oc

X , pX , �, ρ, M)

= C max
bX |G

∑

g,x

b(x|g) Tr[Mg�x(ρ)]p(x),

= CPQCD
succ (�, ρ, M), (45)

with � = {�x(·)} a set CPTP maps, M = {Mg} a POVM.
Therefore, standard quantum-channel discrimination can
be seen as a special instance of quantum-subchannel bet-
ting games with constant odds, and played by a risk-
neutral player. For more details on standard quantum-
channel discrimination (QCD) games we refer the reader to
Refs. [25,28]. Similarly, for a loss game, with negative
constant odds o−c(x) := −C, C > 0, ∀x:

max
bX |G

wQCB
0 (bX |G, o−c

X , pX , �, ρ, M)

= C max
bX |G
−
∑

g,x

b(x|g) Tr[Mg�x(ρ)]p(x),

= −CPQCE
err (�, ρ, M), (46)

with � = {�x(·)} a set of CPTP maps, M = {Mg} a
POVM. Therefore, standard quantum-channel exclusion
can be seen as a quantum channel betting game with con-
stant negative odds, again played by a risk-neutral gambler.
For more details on standard quantum-channel exclusion
(QCE) games we refer the reader to Refs. [30,31]. We now
proceed to address our main results.

IV. MAIN RESULTS

We are now ready to present the main results of this
work.

A. Arimoto’s α-mutual information and quantum
state betting games

The main motivation now is to compare the performance
of two gamblers via the maximized isoelastic certainty
equivalent maxbX |G wICE

R

(
bX |G, M, oX , E). Specifically, we

want to compare (i) a general gambler using a fixed mea-
surement M with (ii) the best uninformative gambler,
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meaning a gambler who can implement any uninformative
measurement N ∈ UI, or equivalently, a gambler described

by the quantity maxN∈UI maxbX |G wICE
R

(
bX |G, N, oX , E).

We have the following main result.

Result 1: Consider the a QSB game defined by the pair (osgn(α)c
X , E) with constant odds as osgn(α)c(x) := sgn(α)C, C > 0,

∀x, and an ensemble of states E = {ρx, p(x)}. Consider a gambler playing this game using a fixed measurement M in
comparison to a gambler being allowed to implement any uninformative measurement N ∈ UI. Consider both gamblers
with the same attitude to risk, meaning that they are represented by isoelastic functions uR(W) with the risk parametrized
as R(α) := 1/α. Each gambler is allowed to play the game with the optimal betting strategies, meaning they can each
propose a betting strategy independently from each other. Remembering that the gamblers are interested in maximizing
the isoelastic certainty equivalent, we have the following relationship:

Iα(X ; G)E ,M = sgn(α) log

⎡

⎣
maxbX |G wICE

1/α

(
bX |G, M, osgn(α)c

X , E
)

maxN∈UI maxbX |G wICE
1/α

(
bX |G, N, osgn(α)c

X , E
)

⎤

⎦ . (47)

This shows that Arimoto’s α-mutual information quantifies the ratio of the isoelastic certainty equivalent with risk R(α) :=
1/α of the game defined by (osgn(α)c

X , E), when the QSB game is played with the best betting strategy, and when we compare
a gambler implementing a fixed measurement M against a gambler using any uninformative measurement N ∈ UI.

The full proof of Result 1 is in Appendix B. We now
analyze two cases of particular interest (α ∈ {∞,−∞}), as
the following corollaries.

Corollary 1: In the case α→∞ we recover the result
found in Ref. [12]. Explicitly, we have

C∞(�M) = max
E

I∞(X ; G)E ,M,

= log

[

max
E

PQSD
succ (E , M)

maxN∈UI PQSD
succ (E , N)

]

, (48)

where PQSD
succ (E , M) is the probability of success in the

quantum state discrimination game defined by E , with the
gambler using the measurement M, given explicitly by

PQSD
succ (E , M) := max

qG|A

∑

g,a,x

δg
x q(g|a)p(a|x)p(x), (49)

with p(a|x) := Tr[Maρx], and the maximization over all
classical postprocessing qG|A. We remark that the Rényi
capacity of order ∞ has also been called the accessible
min information of a channel, and denoted as I acc

∞ (�M)

[12,49]. This shows that quantum state betting with risk
(QSBR(α)) becomes equivalent to quantum state discrimi-
nation when α→∞.

Corollary 2: In the case α→−∞ we recover the result
found in Ref. [30]. Explicitly, we have

C−∞(�M) = max
E

I−∞(X ; G)E ,M,

= − log

[

min
E

PQSE
err (E , M)

minN∈UI PQSE
err (E , N)

]

, (50)

where PQSE
err (E , M) is the probability of error in the

quantum state exclusion game defined by E , with the
gambler using the measurement M explicitly given by

PQSE
err (E , M) := min

qG|A

∑

g,a,x

δg
x q(g|a)p(a|x)p(x). (51)

with p(a|x) := Tr[Maρx], and the minimization being per-
formed over all classical postprocessing qG|A. We remark
that the Rényi capacity of order −∞ has also been called
the excludible information of a channel, and denoted as
I exc
−∞(�M) [30,51]. This shows that quantum state betting

with risk (QSBR(α)) becomes equivalent to quantum state
exclusion when α→−∞.

In Appendix C we provide further details on these two
corollaries.

Result 1 establishes a connection between Arimoto’s
α-mutual information and QSB games, which recovers
two known cases at α ∈ {∞,−∞} [12,30]. We empha-
size that the right-hand side of Eq. (47) is a completely
operational quantity, which represents the advantage that
an informative measurement provides when being used
as a resource for QSB games, whilst the left-hand side
is the raw information-theoretic mutual information mea-
sure proposed by Arimoto and consequently, this result
provides an operational interpretation of Arimoto’s α-
mutual information in the quantum domain.

Furthermore, it shows that the Rényi parameter can
be interpreted as characterizing the risk tendency of the
gamblers as R = 1/α. It is also interesting to note that
this works for all ensembles E = {ρx, p(x)}, all measure-
ments M = {Mg}, as well as for the whole range of the
Rényi parameter α ∈ R, including negative values. We
summarize the interpretation of this result in Fig. 3.
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QSE
α → −∞

QSD
α → ∞

QSE
Risk averse

QSE
Risk seeking

QSD
Risk seeking

QSD
Risk averseQSD

QSE

α < 0

α ≥ 0

FIG. 3. Possible scenarios for quantum state discrimination
and quantum state exclusion games being played by gamblers
with different risk tendencies: risk averse, risk seeking, or risk
neutral, with the risk being parametrized as R(α) = 1/α. Result
1 establishes that Arimoto’s mutual information quantifies the
shaded region for α ∈ R, meaning that it characterizes risk-
averse gamblers playing either QSD (α ≥ 0) and QSE games
(α < 0). The left-bottom corner (α→−∞) and the top-right
corner (α→∞) represent a risk-neutral gambler R = 0 playing
either standard exclusion or discrimination games, respectively.
This means that standard QSD games can be understood as a
risk-neutral gambler playing QSD games with risk. Similarly,
standard QSE games can be understood as a risk-neutral gam-
bler playing QSE games with risk. The middle point at α→ 0
represents the transition between a maximally risk-averse gam-
bler playing QSD games and a maximally risk-averse gambler
playing QSE games.

We also highlight here that Result 1 lies at the inter-
section of three major fields: quantum theory, information
theory, and the theory of games and economic behavior.
We believe that this result has the potential to spark further
cross-fertilization of ideas between these three major areas
of knowledge, with only these particular examples cur-
rently being unfolded. We now address the characterization
of additional tasks based on betting and risk aversion.

B. Arimoto’s mutual information and noisy quantum
state betting games

We now naturally would like to address a characteriza-
tion for NQSB games in the same vein that their standard
counterpart. Intuitively, we are now addressing a general
quantum channel N (·) as a new ingredient, and that Bob
is still in charge of the decoding measurement M. From
the noiseless scenario, we understand that Arimoto-like
quantities are giving account for the amount of side infor-
mation being conveyed to Bob. When we consider Bob
using a fixed measurement, a decisive factor that natu-
rally emerges is the resource of informativeness, because
this resources defines the frontier for the cases when side
information can or cannot be transmitted. In noisy QSB
games the other hand, with a general channel N (·), the
same reasoning leads to consider the resource of noncon-
stant channels, this, because they will effectively destroy
the side information carried by the state since p(g|x) =
Tr[NgN ′(ρx)] = Tr(NgρN ′) = p(g), for all constant chan-
nels N ′, and for all measurements N. The following result
confirms this intuition, and consequently characterizes
NQSB games.

Result 2: Consider a NQSB game defined by the pair (osgn(α)c
X , E) with constant odds as osgn(α)c(x) := sgn(α)C, C > 0,

∀x, an ensemble of states E = {ρx, p(x)}. Consider a gambler playing this game being able to implement any measurement
M, and having access to a fixed channel N . We want to compare this first gambler against a second gambler also being
allowed to implement any measurement N, but now having access only to constant channels N ′ ∈ C. Consider both
gamblers with the same attitude to risk, meaning that they are represented by isoelastic functions uR(W) with the risk
parametrized as R(α) := 1/α. Each gambler is allowed to play the game with optimal betting strategies, meaning they
can each propose a betting strategy bX |G independently from each other. Remembering that the gamblers are interested
in maximizing the isoelastic certainty equivalent, we have

Iα(X ; G)E ,N = sgn(α) log

⎡

⎣
maxM maxbX |G wNQSB

1/α

(
bX |G, M, osgn(α)c

X , E ,N
)

maxN ′∈C maxN maxbX |G wNQSB
1/α

(
bX |G, N, osgn(α)c

X , E ,N ′
)

⎤

⎦ . (52)

This means that Arimoto’s noisy mutual information quantifies the ratio of the ICE with risk R(α) := 1/α of the NQSB
game defined by (osgn(α)c

X , E), when the NQSB games are being played with the best betting strategy, and when we compare
a gambler implementing a fixed channel N against a gambler using any constant channel N ′ ∈ C.
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The proof of this result follows a similar argument as
that of Result 1. We have seen that two natural resources
have emerged, or equivalently, two sets of free objects:
(i) the set of uninformative measurements and (ii) the set
of constant channels. We then wonder whether the results
so far presented are unavoidably linked to these particular
resources or, on the other hand, whether they are particu-
lar cases of a more general underlying structure governing
the relationship between information-theoretic quantities
and operational tasks for general QRTs. We address such a
question in the next subsection, where we address an exten-
sion of these results to general QRTs of measurements and
channels with arbitrary resources.

C. QSB and noisy QSB games for general QRTs of
measurements and channels

We have seen that both uninformative measurements
and nonconstant channels are related to Arimoto’s
mutual information, and we now want to address gen-
eral resources. In order to do this we can expect to
need quantities, which are more general than Arimoto’s
mutual information. We now consider Arimoto’s gaps
introduced in the previous sections, and provide oper-
ational characterizations for these information-theoretic
quantities in terms of QSB and NQSB games as
follows.

Result 3: Consider a set of free measurements as F and a couple (E , M), then, Arimoto’s gap on POVMs of order α ∈ R

for such a couple can be written as

GF

α(X ; G)E ,M = sgn(α) log

⎡

⎣
maxbX |G wQSB

1/α

(
bX |G, osgn(α)c

X , E , M
)

maxN∈F maxbX |G wQSB
1/α

(
bX |G, osgn(α)c

X , E , N
)

⎤

⎦ . (53)

Similarly, consider a set of free channels F and a triple (E , M,N ), then, Arimoto’s gap on channels of order α ∈ R for
such a triple can be written as

GF
α (X ; G)E ,N = sgn(α) log

⎡

⎣
maxM maxbX |G wNQSB

1/α

(
bX |G, osgn(α)c

X , E , M,N
)

maxÑ∈F maxN maxbX |G wNQSB
1/α

(
bX |G, osgn(α)c

X , E , N, Ñ
)

⎤

⎦ . (54)

This means that Arimoto-type gaps quantify the usefulness of a given measurement (channel) M (N ) when playing QSB
(NQSB) games, in comparison with the best free measurements (channels) N ∈ F (Ñ ∈ F).

The proof of Result 3 follows a similar logic to that
of Result 1 but, for completeness, we present its proof in
Appendix D. It is interesting to note the level of general-
ity of this result. This result holds true for any α ∈ R, any
ensemble E , any measurement M, any channel N , as well
as any reasonable and physically motivated choices of sets
of free measurements F and free channels F . In particular,
by specifying the sets of free objects we can recover some
of the previous results as corollaries.

Corollary 3: Imposing the set of free measurements to be
the set of uninformative measurements in (53) (F = UI),
we recover Result 1 (47). Similarly, imposing the set of
free channels to be the set of constant channels in Eq. (54)
(F = C), we recover Result 1 (52).

We have so far addressed QSB games and more
generally NQSB games. The main idea behind these

operational tasks is the inclusion of the concept of bet-
ting, which is represented by the constant relative risk-
aversion coefficient R, and which is ultimately related to
the Rényi parameter as R = 1/α. We now address the fact
that the concept of betting is a useful and powerful concept
that allows for the generalization of additional operational
tasks. In particular, we now address the characterization of
quantum-channel betting games.

D. QCB games and QRTs of states and
state-measurement pairs

Similarly to the case for noisy quantum state betting
games, we would now like to characterize quantum sub-
channel betting games in terms of information-theoretic
quantities. We now provide an operational interpretation
for Arimoto-type quantities for QRTs of states and hybrid
multiobject scenarios, in terms of quantum-channel betting
games.
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Result 4: Consider a set of free states as F and a triple (�, M, ρ), then, Arimoto’s gap on states of order α ∈ R for such
a triple can be written as

GF
α (X ; G)�,M,ρ = sgn(α) log

⎡

⎣
maxbX |G wQCB

1/α

(
bX |G, osgn(α)c

X , �, ρ, M
)

maxσ∈F maxbX |G wQCB
1/α

(
bX |G, osgn(α)c

X , �, σ , M
)

⎤

⎦ . (55)

Similarly, consider a set of free states F, a set of free measurements F, and a triple (�, M, ρ), then, Arimoto’s gap on
state-measurement pairs of order α ∈ R for such a triple can be written as

GF ,F
α (X ; G)�,M,ρ = sgn(α) log

⎡

⎣
maxbX |G wQCB

1/α

(
bX |G, osgn(α)c

X , �, ρ, M
)

maxσ∈F
N∈F

maxbX |G wQCB
1/α

(
bX |G, osgn(α)c

X , �, σ , N
)

⎤

⎦ . (56)

These two statements mean that Arimoto’s gap quantifies the usefulness of resourceful objects when compared to gamblers
only having access to free objects.

The proof of this result follows a similar logic as
that of Result 1 but, for completeness, we present its
proof in Appendix E. Similarly to the case for QSB
and NQSB games, we have that quantum-channel betting
games can also be characterized by means of Arimoto-type
information-theoretic quantities, for single-object QRTs
of states with arbitrary resources, but also for more
exotic scenarios as the case of multiobject QRTs of
state-measurement pairs. The second statement general-
izes some of the multiobject results presented in Ref. [51],
which considered the cases for α ∈ {+∞,−∞}, and so
this result generalizes this to the whole extended line of
real numbers α ∈ R.

E. Arimoto’s mutual information and horse-betting
games in the classical regime

We now consider operational tasks based on betting
and risk aversion in the form of horse-betting games with
risk and side information, without making reference to
quantum theory, and derive a result interpreting Arimoto’s
mutual information as quantifying the advantage pro-
vided by side information when playing such horse-betting
games.

We consider here the gambler now having access to a
random variable G, which is potentially correlated with the
outcome of the “horse race” X and therefore, the gam-
bler can try to use this for her and his advantage. This
means that these horse-betting games are defined by the
pair (oX , pGX ), and the gambler is in charge of propos-
ing the betting strategy bX |G. We highlight here that this
contrasts the case of QSB games, because there the gam-
bler could in principle be in charge of intervening in the
conditional PMF pG|X , as the gambler had access to a mea-
surement and pG|X = Tr(Mgρx), whilst here on the other

hand, pGX = pG|X pX is a given, and the gambler cannot
in principle influence the PMF pG|X . However, the figure
of merit is still the isoelastic certainty equivalent for risk
R ∈ (−∞, 1) ∪ (1,∞), which is now written as

wICE
R (bX |G, oX , pXG)

:=
[
∑

g,x

[
b(x|g)o(x)

]1−Rp(x, g)

]1/(1−R)

.

(57)

The cases R ∈ {1,∞,−∞} are defined again by continu-
ous extension of Eq. (57). A HB game is then specified by
the pair (oX , pGX ), and the gambler plays this game with a
betting strategy bX |G.

Horse-betting games were characterized by Bleuler,
Lapidoth, and Pfister, in terms of the BLP-CR divergence
[38] (see Appendix A for more details on this). We now
modify these tasks in order to consider both gain games
(when the odds are positive) and loss games (when the
odds are negative), and relate Arimoto’s mutual informa-
tion to HB games with the following result, which can be
derived in a similar manner as the previous ones.

Result 5: Consider a horse-betting game defined by the
pair (osgn(α)c

X , pXG) with constant odds as osgn(α)c(x) :=
sgn(α)C, C > 0, ∀x, and a joint PMF pXG. Consider a
gambler playing this game having access to the side infor-
mation G, against a gambler without access to any side
information. Consider both gamblers with the same atti-
tude to risk, meaning they are represented by isoelastic
functions uR(w) with the risk parametrized as R(α) :=
1/α. The gamblers are allowed to play these games
with the optimal betting strategies, which they can each
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choose independently from each other. Remembering that
the gamblers are interested in maximizing the isoelastic
certainty equivalent, we have the following relationship:

Iα(X ; G)= sgn(α) log

[
maxbX |G wICE

1/α(bX |G, osgn(α)c
X , pXG)

maxbX wICE
1/α(bX , osgn(α)c

X , pX )

]

.

(58)

This means that Arimoto’s mutual information quantifies
the ratio of the isoelastic certainty equivalent with risk
R(α) := 1/α of the games defined by (osgn(α)c

X , pXG), when
each HB game is played with the best betting strategy, and
we compare the performance of a first gambler who makes
use of the side information G, against a second gambler,
which has no access to side information.

We emphasize that this result is purely “classical,” as it
does not invoke any elements from quantum theory. This
result also complements a previous relationship between
HB games and the BLP-CR divergence [38]. Here, on the
other hand, we characterize instead the ratio between the
two HB scenarios, where we compare a first gambler with
access to side information against a second gambler having
no access to side information. We now address a particular
known case as the following corollary.

Corollary 4: In the case α = 1, which means HB games
with risk aversion given by R = 1, we get

I(X ; G) = max
bX |G

U0(bX |G, oc
X , pXG)−max

bX
U0(bX , oc

X , pX ),

(59)

with I1(X ; G) = I(X ; G) the standard mutual information,
and U0 := log wICE

0 the logarithm of the isoelastic cer-
tainty equivalent. This is a particular case of a relationship
known to hold for all odds o(x) [34,74].

We now come back to the QRT of measurement infor-
mativeness, and explore further connections between Ari-
moto’s mutual information, QSB games, and additional
information-theoretic quantities in the form of quantum
Rényi divergences and resource monotones.

F. Quantum Rényi divergences

Considering that the KL divergence is of central impor-
tance in classical information theory, it is natural to con-
sider quantum extensions of such a quantity. There are
many ways to define quantum Rényi divergences [77–83],
with most of the effort being concentrated on divergences
as a function of quantum states. Recently however, diver-
gences and entropies for additional objects like channels
and measurements have been started to be explored [84–
86]. We are now interested in addressing quantum Rényi

divergences for measurements. The approach we take here
takes inspiration from both: measured Rényi divergences
for states [83,87,88], as well as Rényi conditional diver-
gences in the classical domain [38,40,42]. Explicitly, we
invoke the measures for Rényi conditional divergences,
and use them to define measured Rényi divergences for
measurements.

Definition 14: (Measured quantum Rényi divergence of
Sibson.) The measured Rényi divergence of Sibson of order
α ∈ R and a set of states S = {ρx} of two measurements
M = {Mg} and N = {Ng} is given by

DS
α (M||N) := max

pX
Dα

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣q(N,S)

G|X
∣
∣
∣pX

)
, (60)

with the maximization over all PMFs pX , and the con-
ditional PMFs p (M,S)

G|X and q(N,S)

G|X given by p(g|x) :=
Tr(Mgρx), q(g|x) := Tr(Ngρx), respectively, and D(·|| · |·)
the conditional Rényi divergence of Sibson [40], which is
defined in Appendix A.

We now use this measured Rényi divergence in order
to define a distance measure with respect to a free set
of interest, the set of uninformative measurements in this
case.

Definition 15: (Measurement informativeness measure of
Sibson.) The measurement informativeness measure of Sib-
son of order α ∈ R and set of states S of a measurement
M is given by

ES
α (M) := min

N∈UI
DS

α (M||N), (61)

with the minimization over all uninformative measure-
ments.

Interestingly, it turns out that this quantity becomes
equal to a quantity, which we have already introduced.

Result 6: The informativeness measure of Sibson is equal
to the Rényi capacity of order α ∈ R of the measurement
M as

ES
α (M) = Cα

(
p (M,S)

G|X
)

, (62)

with the quantum-classical channel associated to the mea-
surement M (25).

The proof of this result is in Appendix F. This result
establishes a connection between Rényi mutual informa-
tion (which are used to define the Rényi channel capac-
ity) and quantum Rényi divergences of measurements
(which is used to define the measurement informative-
ness measure). We now consider the quantity Eα(M) :=
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maxS ES
α (M) = Cα(�M) and analyze the particular cases

of α ∈ {∞,−∞}.

Corollary 5: The measurement informativeness measure
of Sibson recovers the generalized robustness and the
weight of resource at the extremes α ∈ {∞,−∞} as

E∞(M) = log [1+ R(M)] , (63)

E−∞(M) = − log [1−W(M)] , (64)

with the generalized robustness of informativeness (30)
[12], and the weight of informativeness (31) [30].

This result follows from the fact that the Rényi chan-
nel capacity becomes the accessible min-information and
the excludible information at the extremes α ∈ {∞,−∞},
together with the results from Refs. [12,30]. Result 3 there-
fore establishes a connection between Rényi mutual infor-
mations and quantum Rényi divergences of measurements.
Inspired by these results, we now proceed to propose a
family of resource monotones.

G. Resource monotones

Resource quantifiers are special cases of resource mono-
tones, which are central objects of study within QRTs
[5,32]. Two common families of resource monotones are
the so-called robustness-based [6,8–17] and weight-based
[8,21–24] resource monotones. Inspired by the previous
results, we now define measures, which turn out to be
monotones for the order induced by the simulability of
measurements and furthermore, that this new family of
monotones recover, at its extremes, the generalized robust-
ness and the weight of informativeness.

Definition 16: (α measure of informativeness) The α mea-
sure of informativeness of order α ∈ R of a measurement
M is given by

Mα(M) := sgn(α)2sgn(α)Eα(M) − sgn(α), (65)

with Eα(M) := maxS ES
α (M) and the measurement infor-

mativeness measure defined in Eq. (61).

The motivation behind the proposal of this resource
measure is because (i) it recovers the generalized robust-
ness and the weight of resource as M∞(M) = R(M) and
M−∞(M) = W(M) and, (ii) it allows the following opera-
tional characterization.

Remark 3: The α measure of informativeness of order
α ∈ R of a measurement M characterizes the performance
of the measurement M, when compared to the performance
of all possible uninformative measurements, when playing
the same QSB game as

max
E

maxbX |G wICE
1/α

(
bX |G, N, oc

X , E)

maxN∈UI maxbX |G wICE
1/α

(
bX |G, N, oc

X , E)

= 1+Mα(M), (66)

min
E

maxbX |G wICE
1/α

(
bX |G, N, o−c

X , E)

maxN∈UI maxbX |G wICE
1/α

(
bX |G, N, o−c

X , E)

= 1−Mα(M), (67)

Operational Tasks Resource Monotones

Dependence Measures Rényi Divergences

R(M)

W(M)

DS
∞(M||N)

DS
α(M||N)

DS
−∞(M||N)

QSE

QSD

QSBR(α) Mα(M)

I∞
(
p

(M,E)
GX

)

Iα

(
p

(M,E)
GX

)

I−∞
(
p

(M,E)
GX

)

FIG. 4. A four-way correspondence for the QRT of mea-
surement informativeness. The correspondence is parametrized
by the Rényi parameter α ∈ R ∪ {∞,−∞}. The outer rect-
angle represents α = ∞, the inner rectangle represents α =
−∞, and the shaded region in between represents the values
α ∈ R. This four-way correspondence links operational tasks,
dependence measures, Rényi divergences, and resource mono-
tones. The operational task is quantum state betting played by
a gambler with risk aversion R(α) = 1/α. This task general-
izes quantum state discrimination (recovered when α→∞), and
quantum state exclusion (recovered when α→−∞). Iα(p (M,E)

GX )

is Arimoto’s dependence measure, from which we recover
the accessible information I acc

∞ (�M) when α→∞, and the
excludible information I exc

−∞(�M) when α→−∞, with �M the
measure-prepare channel of the measurement M. We introduce
DS

α (M||N), the quantum Rényi divergence of two measurements
M and N for a given set of states S = {ρx}. We also introduce
Mα(M), a new family of resource monotones, which generalize
the robustness of informativeness R(M) (when α→∞) and the
weight of informativeness W(M) (when α→−∞). The outer
rectangle was uncovered in Ref. [12], whilst the inner rectan-
gle was first uncovered in Ref. [30]. The main set of results of
this paper is to fill the shaded region, and connect these two
correspondences for all α ∈ R.
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for α ≥ 0 and α < 0, respectively. These two equali-
ties follow directly from the definitions and the previous
results.

This result is akin to the connections between general-
ized robustness characterizing discrimination games, and
the weight of resource characterizing exclusion games.
We now also have that the α measure of informative-
ness defines a resource monotone for the simulability of
measurements.

Result 7: (The α measure of informativeness is a resource
monotone.) The α measure of informativeness (65) defines
a resource monotone for the simulability of measure-
ments, meaning that it satisfies the following properties.
(i) Faithfulness: Mα(M) = 0↔M = {Ma = q(a)1}; (ii)
monotonicity under measurement simulation: N �M→
Mα(N) ≤ Mα(M).

The proof of this result is in Appendix G. It would be
interesting to find a geometric interpretation of this mea-
sure, in a similar manner that its two extremes admit a
geometric interpretation as in Eqs. (30) and (31), as well
as to explore additional properties, like convexity, in order
to talk about it being a resource quantifier. It would also
be interesting to explore additional monotones, in partic-
ular, whether the isoelastic certainty equivalent forms a
complete set of monotones for the simulability of measure-
ments, this, given that this holds for the two extremes at
plus and minus infinity.

Altogether, the above results establish a four-way task-
mutual information-divergence-monotone correspondence
for the QRT of measurement informativeness, by means of
a risk-aversion factor parametrized by the Rényi parame-
ter α as R(α) = 1/α, as quantitatively summarized as four
chains of equalities below, and qualitatively depicted in
Fig. 4.

Summary of results for measurement informativeness: Four-way quantum correspondence between operational tasks,
mutual information measures, quantum Rényi divergences, and resource monotones for the QRT of measurement informa-
tiveness. This is quantitatively summarized in the following four chains of equalities, going from α→∞ passing through
α = 0 until α→−∞ as follows (definitions and proofs in the main text and appendices):

max
E

I∞(X ; G)E ,M = log

[

max
E

pQSD
succ (E , M)

maxN∈UI PQSD
succ (E , N)

]

= log [1+ R(M)] = max
S

min
N∈UI

DS
∞(M||N),

max
E

Iα≥0(X ; G)E ,M = log

[

max
E

maxbX |G wICE
1/α

(
bX |G, M, oc

X , E)

maxN∈UI maxbX |G wICE
1/α

(
bX |G, N, oc

X , E)
]

= log [1+Mα(M)] = max
S

min
N∈UI

DS
α (M||N),

max
E

Iα<0(X ; G)E ,M = − log

[

min
E

maxbX |G wICE
1/α

(
bX |G, M, o−c

X , E)

maxN∈UI maxbX |G wICE
1/α

(
bX |G, N, o−c

X , E)
]

=− log [1−Mα(M)] = max
S

min
N∈UI

DS
α (M||N),

max
E

I−∞(X ; G)E ,M = − log

[

min
E

PQSE
err (E , M)

minN∈UI PQSE
err (E , N)

]

= − log [1−W(M)] = max
S

min
N∈UI

DS
−∞(M||N).

V. CONCLUSIONS

In this work, we have proposed that using the ideas of
betting, risk aversion, and utility theory are a powerful way
of extending the well-studied tasks of quantum state dis-
crimination and quantum state exclusion. We have used
this to introduce various quantum operational tasks based
on betting and risk aversion, or quantum betting tasks. In
particular, we have shown that this places two recently
discovered four-way correspondences [12,30] into a much
broader continuous family of correspondences. For the first
time, this shows that there exist deep connections between
operational state identification tasks, mutual information
measures, Rényi divergences, and resource monotones.

The seven main results in this paper are the follow-
ing. First, we relate Arimoto’s α-mutual information (in
the quantum domain) to the quantum state betting games
with risk, for the QRT of measurement informativeness.
As corollaries of this result, we recover the previous two
known relationships relating: (i) the accessible informa-
tion to quantum state discrimination, and (ii) the excludible
information to quantum state exclusion. Second, we char-
acterize NQSB games for the QRT of nonconstant chan-
nels in terms of Arimoto’s mutual information. Third, we
consider a generalization of the two previous scenarios to
general QRTs of measurements with arbitrary resources
(beyond that of informativeness) and QRTs of channels
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with general resources (beyond that of nonconstant
channels), and relate QSB and NQSB games to Arimoto-
type measures. Fourth, we address quantum-channel bet-
ting games, and consider this task for QRTs of states with
arbitrary resources, as well as a hybrid scenario in a mul-
tiobject regime, addressing QRTs of state-measurement
pairs, in which states and measurements are simultane-
ously considered in possession of valuable resources. Fifth,
we relate Arimoto’s mutual information to horse-betting
games with side information in the classical regime, with-
out invoking quantum theory. This result can be seen as
giving a very clean operational interpretation of Arimoto’s
mutual information, showing that it exactly quantifies the
advantage provided by side information, and that the Rényi
parameter can be understood operationally as quantifying
the risk aversion of a gambler. Sixth, using the insights
from the results on the QRT of measurement informa-
tiveness, we derive new quantum-measured Rényi diver-
gences for measurements. Seventh, we introduce resource
monotones for the order generated by the simulability
of measurements, which additionally recover the resource
monotones of generalized robustness, as well as the weight
of informativeness. Finally, results 1, 6, and 7 are ele-
gantly connected via a four-way correspondence, which
substantially extended the two correspondences previously
uncovered [12,30], which we now understand to be the two
extremes of a continuous spectrum.

We believe our results are the start of a much broader
and deeper investigation into the use of betting, risk aver-
sion, utility theory, and other ideas from economics, to
obtain a broader unified understanding of many topics in
quantum information theory. Our results raise many ques-
tions and open up various avenues for future research, a
number of which we briefly describe below.

A. Open problems, perspectives, and avenues for
future research

1. An exciting broad possibility, is to explore more
generally the concept of risk aversion in quantum
information theory. This is a concept that we are just
starting to understand and incorporate into the the-
ory of information and therefore, we believe this is
an exciting avenue of research, which could have
far-reaching implications when considered for addi-
tional operational tasks, like Bell-nonlocal games,
and interactive proof systems.

2. Similarly, the scenario considered here represents
the convergence of three major research fields: (i)
quantum theory, (ii) information theory, and (iii) the
theory of games and economic behavior. Specifi-
cally, we borrowed the concept of risk aversion from
the economic sciences in order to solve an open
problem in quantum information theory. We believe
that this is just an example of the benefits that can
be obtained from considering the cross-fertilization

of ideas between these three major current research
fields. Consequently, it would be interesting to keep
importing further concepts (in addition to risk aver-
sion), as well as to explore the other direction,
i.e., whether quantum information theory can pro-
vide insights into the theory of games and eco-
nomic behavior. We believe this can be a fruitful
approach for future research. In particular, horse-
betting games are a particular family of a larger
family of tasks, which are related to the investment
in portfolios [34], and it therefore would be interest-
ing to explore quantum versions of the operational
tasks that emerge in these scenarios.

3. The set of connections we have established here are
by means of the Rényi entropies, and we have seen
that the parameter α is intimately linked to the risk
aversion of a gambler. It is interesting to speculate
whether other types of connections might be possi-
ble. For example, Brandao [89] previously found a
family of entanglement witnesses that encompassed
both the generalized robustness and the weight
of entanglement. We do not know if this is inti-
mately related with our findings here, or whether our
insights might shed further light, e.g., operational
significance, on these entanglement witnesses and
their generalizations.

4. We were led to introduce new measured quantum
Rényi divergences for measurements in this work.
We believe that they should find relevance and
application in settings far removed from the specific
setting we considered here. It would also be interest-
ing to further explore their relevance in other other
areas within quantum information theory.

5. We have also introduced new resource monotones,
for which we do not yet have a full understanding. In
particular, unlike numerous other monotones, these
do not yet have an obvious geometric interpretation.
It would be interesting to develop such ideas further.

6. It would be interesting to explore additional mono-
tones, in particular, whether the isoelastic certainty
equivalent wICE

R(α) forms (for all α) a complete set of
monotones for the order induced by the simulability
of measurements, this, given that this is the case for
the two extremes at α ∈ {∞,−∞} [12,30].

7. We point out that we have used information-
theoretic quantities with the Rényi parameter α

taking both positive and negative values. Whilst
negative values have been explored in the liter-
ature, it is fair to say that they have not been
the main focus of attention. Here we have proven
that information-theoretic quantities with negative
orders posses a descriptive power different from
their positive counterparts and therefore, it would
be interesting to explore their usefulness in other
information-theoretic scenarios.

020366-21



ANDRÉS F. DUCUARA and PAUL SKRZYPCZYK PRX QUANTUM 3, 020366 (2022)

ACKNOWLEDGMENTS

We thank Patryk Lipka-Bartosik, Tom Purves, Noah Linden, and Roope Uola for insightful discussions. We also thank
Ryuji Takagi and two anonymous referees for valuable comments on the first version of this manuscript. A.F.D. acknowl-
edges support from COLCIENCIAS 756-2016 and the UK EPSRC (EP/L015730/1). P.S. acknowledges support from a
Royal Society URF (UHQT).

Note added.—We became aware of a related work by Tirone et al. [90], where they address Kelly betting with a
quantum payoff in a continuous variable setting.

APPENDIX A: RÉNYI DIVERGENCE, CONDITIONAL RÉNYI DIVERGENCES, MUTUAL
INFORMATIONS, AND RÉNYI CHANNEL CAPACITY

In this Appendix we address the information-theoretic quantities represented in Fig. 5 namely, the Rényi divergence, the
conditional Rényi (CR) divergences of Sibson, Csiszár, and Bleuler-Lapidoth-Pfister, their respective mutual informations,
and the Rényi channel capacity.

1. The Rényi divergence

Definition 17: (Rényi divergence [35,36]) The Rényi divergence (R divergence) of order α ∈ R of PMFs pX and qX is
denoted as Dα(pX ||qX ). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞) are defined as

Dα(pX ||qX ) := sgn(α)

α − 1
log

[
∑

x

p(x)αq(x)1−α

]

. (A1)

The orders α ∈ {1, 0,∞,−∞} are defined define by continuous extension of Eq. (A1) as

D1(pX ||qX ) := D(pX ||qX ), (A2)

D0(pX ||qX ) := − log
∑

x∈supp(pX )

q(x), (A3)

D∞(pX ||qX ) := log max
x

p(x)
q(x)

, (A4)

D−∞(pX ||qX ) := − log min
x

p(x)
q(x)

. (A5)

α ≥ 1 Dα(·||·)

DS
α(pG|X||qG|pX) DC

α (pG|X||qG|pX) DBLP
α (pG|X||qG|pX)

IS
α(X ; G) IC

α (X ; G) IBLP
α (X ; G)

Cα(pG|X)

max
pXmax

pX

max
pX

min
qG

min
qG

min
qG

FIG. 5. Hierarchical relationship between the Rényi divergence Dα(·||·), conditional Rényi divergences DV
α(·|| · |·), mutual informa-

tions I V
α (X ; G), and the Rényi channel capacity Cα(pG|X ) with α ≥ 1, and V ∈ {S, C, BLP} a label specifying the measures of Sibson

[40], Csiszár [42], and Bleuler-Lapidoth-Pfister [38]. The mutual information associated to the BLP conditional Rényi divergence was
independently derived by Lapidoth-Pfister [43] and Tomamichel-Hayashi [44]. In this work we address the capacities generated by
Sibson and Arimoto.
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with the standard Kullback-Leibler divergence given by D(pX ||qX ) :=∑x p(x) log(p(x)/q(x)) [33,34].

2. Conditional Rényi divergences

Definition 18: (Sibson’s conditional Rényi divergence [40].) Sibson’s conditional Rényi divergence (S CR divergence)
of order α ∈ R of PMFs pX |G, qX |G, and pX is denoted as DS

α(pG|X ||qG|X |pX ). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞)

are defined as

DS
α(pG|X ||qG|X |pX ) := sgn(α)

α − 1
log

∑

x

p(x)
∑

g

p(g|x)αq(g|x)1−α . (A6)

The orders α ∈ {1, 0,∞,−∞} are defined by continuous extension of Eq. (A6) as

DS
1(pG|X ||qG|X |pX ) := D(pG|X ||qG|X |pX ), (A7)

DS
0(pG|X ||qG|X |pX ) := − log

∑

x∈supp(pX )

p(x)
∑

g∈supp(pG|X=x)

q(g|x), (A8)

DS
∞(pG|X ||qG|X |pX ) := log max

x∈supp(pX )
max

g

p(g|x)
q(g|x) , (A9)

DS
−∞(pG|X ||qG|X |pX ) := − log min

x∈supp(pX )
min

g

p(g|x)
q(g|x) , (A10)

with the conditional Rényi divergence given by D
(
pG|X ||qG|X |pX

)
:= D

(
pG|X pX ||qG|X pX

)
, the latter being the standard

KL divergence [33,34].

Definition 19: (Csiszár’s conditional Rényi divergence [42].) Csiszár’s conditional Rényi divergence (C CR divergence)
of order α ∈ R of PMFs pX |G, qX |G, and pX is denoted as DC

α (pG|X ||qG|X |pX ). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞)

are defined as

DC
α (pG|X ||qG|X |pX ) := sgn(α)

α − 1

∑

x

p(x) log

[
∑

g

p(g|x)αq(g|x)1−α

]

. (A11)

The orders α ∈ {1, 0,∞,−∞} are defined by continuous extension of Eq. (A11) as

DC
1 (pG|X ||qG|X |pX ) := D(pG|X ||qG|X |pX ), (A12)

DC
0 (pG|X ||qG|X |pX ) := −

∑

x∈supp(pX )

p(x) log
∑

g∈supp(pG|X=x)

q(g|x), (A13)

DC
∞(pG|X ||qG|X |pX ) :=

∑

x∈supp(pX )

p(x) log
[

max
g

p(g|x)
q(g|x)

]

, (A14)

DC
−∞(pG|X ||qG|X |pX ) := −

∑

x∈supp(pX )

p(x) log
[

min
g

p(g|x)
q(g|x)

]

, (A15)

with the conditional Rényi divergence given by D
(
pG|X ||qG|X |pX

)
:= D

(
pG|X pX ||qG|X pX

)
, the latter being the standard

KL divergence [33,34].

Definition 20: (Bleuler-Lapidoth-Pfister conditional Rényi divergence [38,91].) The Bleuler-Lapidoth-Pfister conditional
Rényi divergence (BLP CR divergence) of order α ∈ R of PMFs pX |G, qX |G, and pX is denoted as DBLP

α (pG|X ||qG|X |pX ).
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The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞) are defined as

DBLP
α (pG|X ||qG|X |pX ) := |α|

α − 1
log

∑

x

p(x)

[
∑

g

p(g|x)αq(g|x)1−α

]1/α

. (A16)

The orders α ∈ {1, 0,∞,−∞} are defined by continuous extension of Eq. (A16) as

DBLP
1 (pG|X ||qG|X |pX ) := D(pG|X ||qG|X |pX ), (A17)

DBLP
0 (pG|X ||qG|X |pX ) := − log max

x∈supp(pX )

∑

g∈supp(pG|X=x)

q(g|x), (A18)

DBLP
∞ (pG|X ||qG|X |pX ) := log

∑

x∈supp(pX )

p(x) max
g

p(g|x)
q(g|x) , (A19)

DBLP
−∞(pG|X ||qG|X |pX ) := − log

∑

x∈supp(pX )

p(x) min
g

p(g|x)
q(g|x) , (A20)

with the conditional Rényi divergence given by D
(
pG|X ||qG|X |pX

)
:= D

(
pG|X pX ||qG|X pX

)
, the latter being the standard

KL divergence [33,34].

3. Relationship between the Rényi divergence and CR divergences

Remark 4: ([38,91]) Relating conditional Rényi divergences to the Rényi divergence. For any conditional PMFs pG|X ,
qG|X , and any PMF pX we have

DS
α(pG|X ||qG|X |pX ) = Dα(pG|X pX ||qG|X pX ), (A21)

DC
α (pG|X ||qG|X |pX ) =

∑

x

p(x)Dα(pG|X=x||qG|X=x). (A22)

4. Mutual informations

Definition 21: (Mutual informations of Sibson [40], Csiszár [42], and Bleuler-Lapidoth-Pfister [38].) The mutual
information of Sibson, Csiszár, and Bleuler-Lapidoth-Pfister of order α ∈ R of a joint PMF pXG are defined as

I V
α (X ; G) := min

qG
DV

α

(
pG|X ||qG|pX

)
, (A23)

with the label V ∈ {S, C, BLP} denoting each case, the minimization being performed over all PMFs qG, and DV
α(·|| · |·)

the conditional Rényi divergences of Sibson, Csiszár, and Bleuler-Lapidoth-Pfister, of order α ∈ R, as defined previously.
The case α = 1 reduces, for all three cases, to the standard mutual information [34] I V

1 (X ; G) = I(X ; G). Similarly to
Arimoto’s measure, we also use the notation I V

α (pXG) and I V
α (pG|X pX ) interchangeably.

5. Relationship between CR divergences

Lemma 1: Consider the conditional Rényi divergences of Sibson, Csiszár, and Bleuler-Lapidoth-Pfister, then

α ∈ [−∞, 0], DBLP
α (· · · ) ≤ DC

α (· · · ) ≤ DS
α (· · · ) , (A24)

α ∈ [0, 1], DBLP
α (· · · ) ≤ DS

α (· · · ) ≤ DC
α (· · · ) , (A25)

α ∈ [1,∞], DC
α (· · · ) ≤ DBLP

α (· · · ) ≤ DS
α (· · · ) . (A26)
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Proof. The cases α ∈ [0, 1] and α ∈ [1,∞] have already been proven in the literature [38]. A similar argument can be
followed in order to prove the cases α ∈ [−∞, 0]. For completeness, we address it in what follows.

Part (i) We start by proving that for α ∈ [−∞, 0] we have DC
α (·|| · |·) ≤ DS

α (·|| · |·). We prove it for α ∈ (−∞, 0) and
the extremes follow because of continuity. Starting from Sibson’s measure times the positive factor (α − 1) sgn(α) we get

(α − 1) sgn(α)DS
α

(
pG|X ||qG|pX

) = log

[
∑

x

p(x)
∑

g

p(g|x)αq(g|x)1−α

]

, (A27)

≥
∑

x

p(x) log

[
∑

g

p(g|x)αq(g|x)1−α

]

, (A28)

= sgn(α)(α − 1)DC
α

(
pG|X ||qG|pX

)
. (A29)

In the first equality we use the definition of Sibson’s conditional Rényi divergence (A6). The inequality follows because
of Jensen’s inequality [92], and because log(·) is a concave function. In the last equality we use the definition of Csiszár’s
conditional Rényi divergence (A11). Dividing both sides by sgn(α)(α − 1), which is positive because α ∈ (−∞, 0),
proves the claim.

Part (ii) We now want to prove that for α ∈ [−∞, 0], we have DBLP
α (·|| · |·) ≤ DC

α (·|| · |·). Similarly, we prove it for
cases α ∈ (−∞, 0) with the extremes following because of continuity. Starting from Csiszár’s measure:

DC
α

(
pG|X ||qG|pX

) = sgn(α)

α − 1

∑

x

p(x) log

[
∑

g

p(g|x)αq(g|x)1−α

]

, (A30)

= |α|
α − 1

∑

x

p(x) log

[
∑

g

p(g|x)αq(g|x)1−α

]1/α

, (A31)

≥ |α|
α − 1

log

⎡

⎣
∑

x

p(x)

(
∑

g

p(g|x)αq(g|x)1−α

)1/α
⎤

⎦ , (A32)

= DBLP
α

(
pG|X ||qG|pX

)
. (A33)

The first equality we use the definition of Csiszár’s conditional Rényi divergence (A11). In the second equality we multiply
by one 1 = α/α and reorganize conveniently. The inequality follows because of Jensen’s inequality [92], because log(·)
is a concave function, and because the coefficient sgn(α)α/(α − 1) is negative for α ∈ (−∞, 0). In the last equality we
use the definition of the Bleuler-Lapidoth-Pfister conditional Rényi divergence (A16).

�

6. Relationship between mutual informations

Lemma 2: Consider the mutual informations of Sibson, Csiszár, and Bleuler-Lapidoth-Pfister, then

α ∈ [−∞, 0], I BLP
α (·|·) ≤ I C

α (·|·) ≤ I S
α (·|·) , (A34)

α ∈ [0, 1], I BLP
α (·|·) ≤ I S

α (·|·) ≤ I C
α (·|·) , (A35)

α ∈ [1,∞], I C
α (·|·) ≤ I BLP

α (·|·) ≤ I S
α (·|·) , (A36)

Proof. The cases α ∈ [0, 1] and α ∈ [1,∞] were proven in Ref. [38], and they follow by considering the previous lemma
on the less or equal order between the conditional Rényi divergences and, by considering that the mutual informations are
defined in terms of the conditional Rényi divergences by minimizing over pX (A23). The cases α ∈ [−∞, 0] follow the
same argument. �
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7. The Rényi channel capacity

Having defined these mutual informations, we now address the fact that some of them become equal when maximizing
over PMFs pX , whilst keeping fixed the conditional PMF pG|X .

Lemma 3: (Rényi channel capacity [41,42,69].) The mutual information of Arimoto and Sibson of order α ∈ R become
equal when maximized over pX , and we refer to this quantity as the Rényi capacity of order α. The Rényi capacity of order
α ∈ R, of a conditional PMF pG|X is

Cα(pG|X ) := max
pX

I V
α (pG|X pX ), (A37)

with V ∈ {A, S}, the maximization over all PMFs pX , and the mutual information of Sibson as in Eq. (A23), and
Arimoto’s mutual information as in the main text. The case α = 1 reduces to the standard channel capacity [34]
C1(pG|X ) = C(pG|X ) = maxpX I(X ; G).

This lemma, for the cases α ≥ 0, has been proven in different places in the literature [40,42,69]. For completeness,
here we provide a proof for the cases α < 0. We can understand this result as Cα(pG|X ) being the Rényi capacity of
the classical channel specified by the conditional PMF pG|X , which simultaneously represents the mutual information of
Arimoto and Sibson. One can similarly address Rényi capacities using the rest of the mutual information, but using these
two are enough for our purposes.

Proof. The cases for α ∈ [0,∞) have been proven in different places in the literature [41,42,69]. We therefore address
only here the interval (−∞, 0). Addressing Arimoto’s measure for α ∈ (−∞, 0):

max
pX

I A
α

(
pG|X pX

) 1= max
pX

|α|
α − 1

log
∑

g

(
∑

x

p(g|x)α p(x)α
∑

x′ p(x′)α

)1/α

, (A38)

2= max
rX

|α|
α − 1

log
∑

g

(
∑

x

p(g|x)αr(x)

)1/α

. (A39)

In the first equality we replaced and reorganized the definition of Arimoto’s mutual information (23). In the sec-
ond equality we use the fact that both maximizations are equal, because from an optimal p∗X , we can construct a
feasible rX as r(x) := p∗(x)α/(

∑
x′ p
∗(x′)α) and conversely, from an optimal r∗X , we can construct a feasible pX as

p(x) = r∗(x)1/α/(
∑

x′ r
∗(x′)1/α). We now relate the quantity in Eq. (A39) to the quantity obtained from Sibson’s. We

now consider Sibson’s CR divergence and invoke the identity [42] ∀pG|X , qG, pX :

DS
α

(
pG|X ||qG|pX

) = DS
α

(
pG|X ||q∗G|pX

)+ Dα

(
q∗G|qG

)
, (A40)

with the PMF q∗G given by

q∗G(g) :=
(∑

x p(x)p(g|x)α)1/α

∑
g

(∑
x p(x)p(g|x)α)1/α

. (A41)

This identity can be checked by directly substituting Eq. (A41) into the rhs of Eq. (A40). We can now get an explicit
expression for Sibson’s mutual information, because minimizing Eq. (A40) over qG is obtained for qG = q∗G, this, because
the Rényi divergence is non-negative for α ∈ (−∞, 0) [36]. We therefore get

I S
α

(
pG|X pX

) = min
qG

DS
α

(
pG|X ||qG|pX

)
, (A42)

= DS
α

(
pG|X ||q∗G|pX

)
, (A43)

= |α|
α − 1

log
∑

g

(
∑

x

p(x)p(g|x)α
)1/α

. (A44)
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Maximizing this quantity over pX we get

max
pX

I S
α

(
pG|X pX

) = max
pX

|α|
α − 1

log
∑

g

(
∑

x

p(x)p(g|x)α
)1/α

, (A45)

which is the same quantity than in Eq. (A39) for Arimoto’s measure. Altogether, we have that starting from either Sibson
or Arimoto, we arrive to the same expression when maximizing over pX , as per Eqs. (A45) and (A39). Consequently, the
capacities they each define is the same, thus proving the claim. �

8. Information-theoretic measures in the quantum domain

Mutual informations in the quantum domain are defined via their Rényi conditional divergences counterparts as

I V
α (X ; G)E ,M := min

qG
DV

α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣pX

)
, (A46)

with the quantum conditional PMFs p (M,E)

G|X and q(N,E)

G|X given by p(g|x) := Tr(Mgρx), q(g|x) := Tr(Ngρx), respectively, the
minimization over all PMFs qG, and the classical conditional Rényi divergences of Sibson, Csiszár, and Bleuler-Lapidoth-
Pfister, which we address with a label V ∈{S, C, BLP}.

APPENDIX B: PROOF OF RESULT 1

We start by mentioning that the tasks, which are of interest to us are quantum state betting games, but that from
an operational point of view, they are equivalent to “horse-betting games with risk and quantum side information,” or
quantum horse-betting games for short. Given this equivalence, in this Appendix we would address QSB games as QHB
or HB games only.

In order to prove Result 1 we need two theorems on horse betting with risk: one for HB games without side information,
and the other for HB games with side information. These two theorems depend on the Rényi divergence and the BLP
conditional Rényi divergence from Appendix A.

1. Preliminary steps

We start by addressing a simplified notation.

wICE
R (bX |G, oX , pXG) := wICE

R (bX |G, M, oX , E), (B1)

with p(x, g) = p(g|x)p(x), p(g|x) = Tr[Mgρx]. We also notice that optimizing over uninformative measurements N ∈ UI,
meaning Ng = p(g)1, ∀g, is equivalent to a horse-betting game with risk but without side information because p(g|x) =
Tr(Ngρx) = p(g) Tr(1ρx) = p(g) and then

max
bX |G

max
N∈UI

wICE
R (bX |G, oX , pXG) = max

bX |G
max
N∈UI

[
∑

g,x

[
b(x|g)o(x)

]1−Rp(g|x)p(x)

]1/(1−R)

, (B2)

= max
bX |G

max
pG

[
∑

g,x

[
b(x|g)o(x)

]1−Rp(g)p(x)

]1/(1−R)

, (B3)
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= max
bX |G

[
∑

x

(

max
pG

∑

g

b(x|g)1−Rp(g)

)

o(x)1−Rp(x)

]1/(1−R)

, (B4)

= max
bX |G

[
∑

x

(

max
g

b(x|g)1−R
)

o(x)1−Rp(x)

]1/(1−R)

, (B5)

= max
bX

[
∑

x

[
b(x)o(x)

]1−Rp(x)

]1/(1−R)

, (B6)

= max
bX

wICE
R (bX , oX , pX ). (B7)

This defines a HB game without side information, meaning without the random variable G. We now define the auxiliary
function of the logarithm of the isoelastic certainty equivalent as

UR(bX |G, oX , pXG) := sgn(o) log
∣
∣wICE

R (bX |G, oX , pXG)
∣
∣ , (B8)

and similarly without side information as

UR(bX , oX , pX ) := sgn(o) log
∣
∣wICE

R (bX , oX , pX )
∣
∣ , (B9)

with sgn(o) as a shorthand for the sign of the odds o(x), ∀x. We also highlight here that we are interested in the strategy
that achieves

max
bX

wICE
R (bX , oX , pX ), (B10)

and we can see that this is equivalent to finding the best strategy for the auxiliary optimization:

max
bX

UR(bX , oX , pX ). (B11)

2. Horse-betting games with risk

We now present two results on horse-betting games. We remark here that we invoke these results, in contrast with
the original presentation in Ref. [38], with the following modifications in the notation: (i) the original version involves
a parameter β, here instead we directly use the risk-aversion parameter R, taking into account that these two parameters
are related as β = 1− R, (ii) we have defined the Rényi divergence as a non-negative quantity, for all α ∈ R, even for
negative values of alpha, and this explains the appearance of the term sgn(R), (iii) we allow for the odds and consequently
the wealth to be negative, and this explains the appearance of the term sgn(o). We now address a result that characterizes
this task in terms of the R divergence.

Theorem 1: (Bleuler-Lapidoth-Pfister [38,91].) Consider a HB game with risk defined by the triple (oX , pX , R), and a
gambler playing this game with a betting strategy bX . The logarithm of the isoelastic certainty equivalent is characterized
by the R divergence Dα(·||·) as

UR(bX , oX , pX ) = sgn(o) log
∣
∣co
∣
∣+ sgn(o) sgn(R)D1/R(pX ||ro

X )− sgn(o) sgn(R)DR(h(R,o,p)

X ||bX ), (B12)

with the parameter and the PMF

co :=
(
∑

x

1
o(x)

)−1

, ro(x) := co

o(x)
, (B13)

and the PMF

h(R,o,p)(x) := p(x)1/Ro(x)(1−R)/R
∑

x′ p(x′)1/Ro(x′)(1−R)/R . (B14)

Note that the quantities ro
X and h(R,o,p)

X define valid PMFs even for negative odds (o(x) < 0, ∀x).
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We are particularly interested in the best possible betting strategy for a given game (oX , pX ) and fixed R, so we have
the following two corollaries.

Corollary 6: (Bleuler-Lapidoth-Pfister [38,91].) Consider a classical horse-discrimination (HD) game [o+X , meaning
sgn(o) = 1] being played by a risk-averse gambler [R ≥ 0, meaning sgn(R) = 1]. We then want to maximize the logarithm
of the isoelastic certainty equivalent over all possible betting strategies. The gambler plays optimally when choosing
b∗(x) = h(R,o,p)(x) and then

max
bX

UR(bX , o+X , pX ) = UR(b∗X , o+X , pX ),

= log
∣
∣co
∣
∣+ D1/R(pX ||ro

X ). (B15)

This is because the Rényi divergence DR(·||·) is non-negative ∀R ∈ R.

Corollary 7: Consider a classical horse-exclusion (HE) game [o−X , meaning sgn(o) = −1] being played by a risk-averse
gambler [R < 0, meaning sgn(R) = −1]. We then want to maximize the logarithm of the isoelastic certainty equivalent
over all possible betting strategies. The gambler plays optimally when choosing b∗(x) = h(R,o,p)(x) and then

max
bX

UR(bX , o−X , pX ) = UR(b∗X , o−X , pX ),

= − log
∣
∣co
∣
∣+ D1/R(pX ||ro

X ). (B16)

This is because the Rényi divergence DR(·||·) is non-negative ∀R ∈ R.

3. Horse betting with risk and side information

We now address a result that characterizes this task in terms of the BLP CR divergence and the R divergence.

Theorem 2: (Bleuler-Lapidoth-Pfister [38,91].) Consider a HB game with risk and side information defined by the
triple (oX , pXG, R), and a gambler playing this game with a betting strategy bX |G. The utility function of log wealth is
characterized by the the BLP CR divergence DBLP

α (·|| · |·) and R divergence Dα(·||·) as

UR(bX |G, oX , pXG) = sgn(o) log
∣
∣co
∣
∣+ sgn(o) sgn(R)DBLP

1/R

(
pX |G||ro

X |pG
)− sgn(o) sgn(R)DR

(
h(R,o,p)

X |G h(R,o,p)

G

∣
∣
∣
∣
∣
∣bX |Gh(R,o,p)

G

)
,

(B17)

with the parameter and the PMF

co :=
(
∑

x

1
o(x)

)−1

, ro(x) := co

o(x)
, (B18)

and the conditional PMF and PMF

h(R,o,p)(x|g) := p(x|g)1/Ro(x)(1−R)/R
∑

x′ p(x′|g)1/Ro(x′)(1−R)/R , (B19)

h(R,o,p)(g) := p(g)
[∑

x′ p(x′|g)1/Ro(x′)(1−R)/R
]R

∑
g′ p(g′)

[∑
x′ p(x′|g′)1/Ro(x′)(1−R)/R

]R . (B20)

Note that the quantities ro
X , h(R,o,p)

X |G , h(R,o,p)

G define valid PMFs even for negative odds (o(x) < 0, ∀x).

We are particularly interested in the best possible betting strategy bX |G for a given game (oX , pXG) and fixed R, so we
have the following two corollaries.
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Corollary 8: (Bleuler-Lapidoth-Pfister [38,91].) Consider a horse-discrimination game [o+X , meaning sgn(o) = 1] being
played by a risk-averse gambler [R > 0, meaning sgn(R) = 1] with access to side information. We then want to maximize
the logarithm of the isoelastic certainty equivalent over all possible betting strategies. The gambler plays optimally when
choosing b∗(x|g) = h(R,o,p)(x|g) and then

max
bX |G

UR(bX |G, o+X , pXG) = UR(b∗X |G, o+X , pXG),

= log
∣
∣co
∣
∣+ DBLP

1/R (pX |G||ro
X |pG), (B21)

with the BLP CR divergence DBLP
α (·|| · |·). This is because the Rényi divergence DR(·||·) is non-negative ∀R ∈ R.

Corollary 9: Consider a classical horse-exclusion game (o−X ) being played by a risk-averse gambler (R < 0) with access
to side information. We then want to maximize the logarithm of the isoelastic certainty equivalent over all possible betting
strategies. The gambler plays optimally when choosing b∗(x|g) = h(R,o,p)(x|g) and then

max
bX |G

UR(bX |G, o−X , pXG) = UR(b∗X |G, o−X , pXG),

= − log
∣
∣co
∣
∣+ DBLP

1/R (pX |G||ro
X |pG), (B22)

with the BLP CR divergence DBLP
α (·|| · |·). This is because the Rényi divergence DR(·||·) is non-negative ∀R ∈ R.

4. Proving Result 1

In order to prove Result 1 we need two lemmas. Let us start by rewriting the Rényi entropy in a more convenient form:

Hα(X ) = − log [pα (X )] , (B23)

pα (X ) :=
(
∑

x

p(x)α
)1/(α−1)

. (B24)

We are now ready to establish a first lemma.

Lemma 4: (Operational interpretation of the Rényi entropy.) Consider a PMF pX , the Rényi probability of order α ∈ R

can be written as

sgn(α)Cpα(X ) = max
bX

wICE
1/α(bX , osgn(α)c

X , pX ), (B25)

with the maximization over all possible betting strategies bX , and constant odds osgn(α)c(x) := sgn(α)C, C > 0, ∀x.

Proof. We start by considering a HB game with constant odds osgn(α)(x) := sgn(α)C, C > 0, ∀x, and consider a risk-
aversion coefficient parametrized as R(α) := 1/α. We first notice that the best strategy for the gambler is given by (B14)

b∗(x) = p(x)α
∑

x′ p(x′)α
. (B26)

Considering now the isoelastic certainty equivalent and replacing the constant odds and the best strategy we get

wICE
1/α(b∗X , osgn(α)c

X , pX ) =
[
∑

x

p(x)
[
b∗(x)osgn(α)c(x)

](α−1)/α

]α/(α−1)

, (B27)

= sgn(α)C

[
∑

x

p(x)
[
b∗(x)

](α−1)/α

]α/(α−1)

, (B28)
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= sgn(α)C

[
∑

x

p(x)
[

p(x)α
∑

x′ p(x′)α

](α−1)/α
]α/(α−1)

, (B29)

= sgn(α)C

[
∑

x

p(x)
p(x)α−1

[∑
x′ p(x′)α

](α−1)/α

]α/(α−1)

. (B30)

Reorganizing we get

wICE
1/α(b∗X , osgn(α)c

X , pX ) = sgn(α)C

[
∑

x

p(x)α
[∑

x′ p(x′|g)α
](α−1)/α

]α/(α−1)

, (B31)

= sgn(α)C
1

∑
x′ p(x′)α

[
∑

x

p(x)α
]α/(α−1)

, (B32)

= sgn(α)C

[
∑

x

p(x)α
]1/(α−1)

, (B33)

= sgn(α)Cpα(X ), (B34)

and therefore proving the claim. �
We now move on to rewrite the Arimoto-Rényi conditional entropy in a more convenient form:

Hα(X |G) = − log [pα (X |G)] , (B35)

pα (X |G) :=
⎛

⎝
∑

g

(
∑

x

p(x, g)α

)1/α
⎞

⎠

α/(α−1)

. (B36)

We are now ready to establish a second lemma.

Lemma 5: (Operational interpretation of the Arimoto-Rényi conditional entropy.) Consider a joint PMF pXG, the
Arimoto-Rényi conditional entropy of order α ∈ R can be written as

sgn(α)Cpα(X |G) = max
bX |G

wICE
1/α(bX |G, osgn(α)c

X , pXG), (B37)

with the maximization over all possible betting strategies bX |G, and constant odds osgn(α)c(x) := sgn(α)C, C > 0, ∀x.

Proof. We start by considering a HB game with constant odds osgn(α)(x) := sgn(α)C, C > 0, ∀x, and consider a risk-
aversion coefficient parametrized as R(α) := 1/α. We now notice that the best strategy for the gambler with access to side
information is given by (B19)

b∗(x|g) = g(R,o,p)(x|g), (B38)

= p(x|g)1/Rosgn(α)c(x)(1−R)/R
∑

x′ p(x′|g)1/Rosgn(α)c(x′)(1−R)/R , (B39)

= p(x|g)1/R(sgn(α)C)(1−R)/R
∑

x′ p(x′|g)1/R(sgn(α)C)(1−R)/R , (B40)

= p(x|g)1/R
∑

x′ p(x′|g)1/R , (B41)

= p(x|g)α
∑

x′ p(x′|g)α
. (B42)
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Considering now the isoelastic certainty equivalent and replacing the constant odds and the best strategy we get

wICE
1/α(b∗X |G, osgn(α)c

X , pXG) =
[
∑

x,g

p(x, g)
[
b∗(x|g)osgn(α)c(x)

](α−1)/α

]α/(α−1)

, (B43)

= sgn(α)C

[
∑

x,g

p(x, g)

[
p(x|g)α

∑
x′ p(x′|g)α

](α−1)/α
]α/(α−1)

, (B44)

= sgn(α)C

[
∑

x,g

p(x, g)
p(x|g)α−1

[∑
x′ p(x′|g)α

](α−1)/α

]α/(α−1)

. (B45)

Using p(x, g) = p(x|g)p(g) and reorganizing

wICE
1/α(b∗X |G, osgn(α)c

X , pXG) = sgn(α)C

⎡

⎣
∑

x,g

p(g)
p(x|g)α

[∑
x′ p(x′|g)α

] α−1
α

⎤

⎦

α/(α−1)

, (B46)

= sgn(α)C

⎡

⎣
∑

g

p(g)

∑
x p(x|g)α

[∑
x′ p(x′|g)α

] α−1
α

⎤

⎦

α/(α−1)

, (B47)

= sgn(α)C

⎡

⎣
∑

g

p(g)

[
∑

x

p(x|g)α

]1/α
⎤

⎦

α/(α−1)

, (B48)

= sgn(α)C

⎡

⎣
∑

g

[
∑

x

p(x|g)αp(g)α

]1/α
⎤

⎦

α/(α−1)

, (B49)

= sgn(α)C

⎡

⎣
∑

g

[
∑

x

p(x, g)α

]1/α
⎤

⎦

α/(α−1)

, (B50)

= sgn(α)Cpα(X |G), (B51)

and therefore proving the claim. �
We are now ready to prove Result 1.

Proof. (of Result 1.) Consider the Arimoto’s mutual information of order α ∈ R, we have the following chain of
equalities:

Iα(X ; G) = sgn(α)[Hα(X )− Hα(X |G)], (B52)

= sgn(α) log
[

pα(X |G)

pα(X )

]

, (B53)

= sgn(α) log
[

sgn(α)Cpα(X |G)

sgn(α)Cpα(X )

]

, (B54)

= sgn(α) log

[
maxbX |G wICE

1/α(bX |G, osgn(α)

X , pXG)

maxbX wICE
1/α(bX , osgn(α)

X , pX )

]

. (B55)

The first equality is the definition of Arimoto’s mutual information. The second equality comes from replac-
ing the Rényi entropy and the Arimoto-Rényi conditional entropy. The third inequality we have multiplied and
divided by sgn(α)C. The fourth and last equality follows from invoking Lemmas 4 and 5. This proves the
claim. �
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APPENDIX C: PROOF OF COROLLARIES 2 AND 3

Proof. (of Corollary 2.) In the case α→∞, we have

max
E

I∞(X ; G)E ,M = log

[

max
E

maxbX |G wICE
0 (bX |G, M, oc

X , E)

maxN∈UI maxbX |G wICE
0 (bX |G, N, oc

X , E)

]

. (C1)

To prove the claim, it is enough to prove

max
bX |G

wICE
0 (bX |G, M, oc

X , E) = CPQSD
succ (E , M). (C2)

We have already shown this in the main document, but we can also double check it from Lemma 5 from which we have
that for α ≥ 0

max
bX |G

wICE
1/α(bX |G, M, oc

X , E) = Cpα(X |G) (C3)

= C

⎡

⎣
∑

g

[
∑

x

p(x, g)α

]1/α
⎤

⎦

α/(α−1)

. (C4)

Considering now α→∞ we have

max
bX |G

wICE
0 (bX |G, M, oc

X , E) = C
∑

g

max
x

p(x, g). (C5)

Further analyzing this quantity we have

∑

g

max
x

p(x, g) =
∑

g

max
q(x|g)

∑

x

q(x|g)p(x, g), (C6)

= max
q(x|g)

∑

g,x

q(x|g)p(g|x)p(x), (C7)

= max
q(x|g)

∑

g,x

[
∑

a

δa
x q(a|g)

]

p(g|x)p(x), (C8)

= max
q(a|g)

∑

a,g,x

δa
x q(a|g)p(g|x)p(x), (C9)

= PQSD
succ (E , M). (C10)

In the first line we use the identity

max
q(x)

∑

x

q(x)f (x) = max
x

f (x). (C11)

This proves the claim. �

Proof. (of Corollary 3.) The proof of Corollary 3 follows a similar argument as that of Corollary 2. �

APPENDIX D: PROOF OF RESULT 3 ON NOISY QUANTUM STATE BETTING GAMES

The proof of this result is similar to that of Result 1, and we write below for completeness. We start with the case for
QRTs of measurements with general resources.
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Proof. (of first part) Consider the Arimoto’s gap of order α ∈ R, we have the following chain of equalities:

GF

α(X ; G)E ,M = Iα(X ; G)E ,M −max
N∈F

Iα(X ; G)E ,N, (D1)

= sgn(α) log
[

pα(XE |GM)

pα(X )

]

−max
N∈F

sgn(α) log
[

pα(XE |GN)

pα(X )

]

, (D2)

= sgn(α) log
[

pα(XE |GM)

maxσ∈F pα(XE ; GN)

]

, (D3)

= sgn(α) log
[

sgn(α)Cpα(XE |GM)

maxN∈F sgn(α)Cpα(XE ; GN)

]

, (D4)

= sgn(α) log

[
maxbX |G wQSB

1/α (bX |G, osgn(α)

X , E , M)

maxN∈F maxbX |G wQSB
1/α (bX |G, osgn(α)

X , E , N)

]

. (D5)

The first equality is the definition of Arimoto’s gap for a fixed couple (E , M). The second equality comes from replacing
the Rényi entropy and the Arimoto-Rényi conditional entropy. In the third equality we reorganized the expression. In the
fourth equality we have multiplied and divided by sgn(α)C. The fifth and last equality follows from invoking Lemma 5.
This proves the claim. �

We now consider the case for QRTs of channels with arbitrary resources.

Proof. (of second part) Consider the Arimoto’s gap of order α ∈ R, we have the following chain of equalities:

GF
α (X ; G)E ,M,N = Iα(X ; G)E ,M,N − max

Ñ∈F
max

N

Iα(X ; G)E ,N,Ñ , (D6)

= sgn(α) log
[

pα(XE |GM)N
pα(X )

]

− max
Ñ∈F

max
N

sgn(α) log
[

pα(XE |GN)Ñ
pα(X )

]

, (D7)

= sgn(α) log
[

pα(XE |GM)N
maxÑ∈F maxN pα(XE |GN)Ñ

]

, (D8)

= sgn(α) log
[

sgn(α)Cpα(XE |GM)N
maxÑ∈F maxN sgn(α)Cpα(XE |GN)Ñ

]

, (D9)

= sgn(α) log

[
maxbX |G wQSB

1/α (bX |G, osgn(α)

X , E , M,N )

maxÑ∈F maxN maxbX |G wQSB
1/α (bX |G, osgn(α)

X , E , N, Ñ )

]

. (D10)

The first equality is the definition of the Arimoto’s gap for a fixed triple (E , M,N ). The second equality comes from
replacing the Rényi entropy and the Arimoto-Rényi conditional entropy. In the third equality we reorganized the expres-
sion. In the fourth equality we have multiplied and divided by sgn(α)C. The fifth and last equality follows from invoking
Lemma 5. This proves the claim. �

APPENDIX E: PROOF OF RESULT 4 ON QUANTUM-CHANNEL BETTING GAMES

The proof of this result similar to that of Result 1, and we write below for completeness. We start with the case for
QRTs of states with arbitrary resources.
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Proof. (of first part) Consider Arimoto’s gap of order α ∈ R, we have the following chain of equalities:

GF
α (X ; G)�,M,ρ = Iα(X ; G)�,M,ρ −max

σ∈F
Iα(X ; G)�,M,σ , (E1)

= sgn(α) log
[

pα(X�|GM)ρ

pα(X )

]

−max
σ∈F

sgn(α) log
[

pα(X�; GM)σ

pα(X )

]

, (E2)

= sgn(α) log
[

pα(X�|GM)ρ

maxσ∈F pα(X�|GM)σ

]

, (E3)

= sgn(α) log
[

sgn(α) C pα(X�|GM)ρ

maxσ∈F sgn(α) C pα(X�|GM)σ

]

, (E4)

= sgn(α) log

[
maxbX |G wQCB

1/α (bX |G, osgn(α)

X , �, ρ, M)

maxσ∈F maxbX |G wQCB
1/α (bX |G, osgn(α)

X , �, σ , M)

]

. (E5)

The first equality is the definition of Arimoto’s gap for a fixed triple (�, ρ, M). The second equality comes from replacing
the Rényi entropy and the Arimoto-Rényi conditional entropy. In the third equality we reorganized the expression. In the
fourth equality we have multiplied and divided by sgn(α) C. The fifth and last equality follows from invoking Lemma 5.
This proves the claim. �

We now consider the case for multiobject QRTs of state-measurement pairs.

Proof. (of second part) Consider Arimoto’s gap of order α ∈ R, we have the following chain of equalities:

GF ,F
α (X ; G)�,M,ρ = Iα(X ; G)�,M,ρ −max

σ∈F
max
N∈F

Iα(X ; G)�,N,σ , (E6)

= sgn(α) log
[

pα(X�|GM)ρ

pα(X )

]

−max
σ∈F

max
N∈F

sgn(α) log
[

pα(X�|GN)σ

pα(X )

]

, (E7)

= sgn(α) log
[

pα(X�|GM)ρ

maxσ∈F maxN∈F pα(X�|GN)σ

]

, (E8)

= sgn(α) log
[

sgn(α)Cpα(X�|GM)ρ

maxσ∈F maxN∈F sgn(α)Cpα(X�; GN)σ

]

, (E9)

= sgn(α) log

[
maxbX |G wQCB

1/α (bX |G, osgn(α)

X , �, ρ, M)

maxσ∈F maxN∈F maxbX |G wQCB
1/α (bX |G, osgn(α)

X , �, σ , N)

]

. (E10)

The first equality is the definition of Arimoto’s gap for a fixed triple (�, ρ, M). The second equality comes from replacing
the Rényi entropy and the Arimoto-Rényi conditional entropy. In the third equality we reorganized the expression. In the
fourth equality we have multiplied and divided by sgn(α)C. The fifth and last equality follows from invoking Lemma 5.
This proves the claim. �

APPENDIX F: PROOF OF RESULT 6

Proof. (of Result 6.) For α > 1 we have

ES
α (M)

1= min
N∈UI

DS
α (M||N), (F1)

2= min
N∈UI

max
pX

DS
α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣q(N,S)

G|X
∣
∣
∣ pX

)
, (F2)

3= min
qG

max
pX

DS
α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣ pX

)
, (F3)
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4= min
qG

max
pX

1
α − 1

log

[
∑

x

p(x)
∑

g

p(g|x)αq(g)1−α

]

, (F4)

5= 1
α − 1

log

[

min
qG

max
pX

∑

x

p(x)
∑

g

p(g|x)αq(g)1−α

]

, (F5)

6= 1
α − 1

log
[

min
qG

max
pX

f S
α (qG, pX )

]

, (F6)

7= 1
α − 1

log
[

max
pX

min
qG

f S
α (qG, pX )

]

, (F7)

8= max
pX

min
qG

1
α − 1

log
[
f S
α (qG, pX )

]
, (F8)

9= max
pX

min
qG

DS
α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣ pX

)
, (F9)

10= max
pX

I S
α

(
p (M,S)

G|X pX

)
, (F10)

11= Cα

(
p (M,S)

G|X
)

. (F11)

In the first equality we use the definition of Eα,S(M). In the second equality we replace DS
α (M||N). In the third equality

we notice that minimizing over uninformative measurements is equivalent to minimizing over PMFs qG. In the fourth
equality we replace Sibson’s CR divergence. In the fifth equality we move the optimization inside log(·) because the term
α − 1 is positive and because log(·) is an increasing function. In the sixth equality we introduce the function

f S
α (qG, pX ) :=

∑

x

p(x)
∑

g

p(g|x)αq(g)1−α . (F12)

In the seventh equality we use Sion’s minimax theorem [93,94] because the function f S
α (qG, pX ) is being optimized over

convex and compact sets, and because it is a convex-concave function. Specifically, the function f S
α (qG, pX ) is convex

in gG because the function f (q) = q1−α with α > 1 and positive values of q, is convex, and because the sum of convex
functions is convex. The function f S

α (qG, pX ) is concave in pX because it is linear in pX . In the eighth equality we take the
maximization out of log(·) because α − 1 is positive and because log(·) is an increasing function. In the ninth equality we
use the definition of Sibson’s CR divergence. In the tenth equality we use the definition of Sibson’s mutual information.
In the eleventh and final equality we use Lemma 3. The cases for 0 < α < 1 and α < 0 follow a similar argument, taking
into account the sign of α − 1, and the convexity and concavity of the function f (q) = q1−α . �

APPENDIX G: PROOF OF RESULT 7

Proof. (of Result 7.) It is straightforward to check that Mα(M) is a resource monotone (meaning that it satisfies (i)
faithfulness and (ii) monotonicity if and only if Eα(M) is a resource monotone. We now prove these properties for Eα(M).
In short, we will expand this function in terms of the Rényi divergence, and exploit the properties of this function.

Part (i) Faithfulness. Consider M ∈ UI, and let us see that this implies Eα(M) = 0 with α ≥ 0:

Eα(M)
1= max

S
min

qG
max

pX
DS

α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣pX

)
, (G1)

2= max
S

min
qG

max
pX

Dα

(
p (M,S)

G|X pX

∣
∣
∣
∣
∣
∣qGpX

)
, (G2)
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3= max
S

min
qG

max
pX

Dα

(
pG pX

∣
∣
∣
∣
∣
∣qGpX

)
, (G3)

4= max
S

max
pX

min
qG

Dα

(
pG pX

∣
∣
∣
∣
∣
∣qGpX

)
, (G4)

5≤ max
S

max
pX

Dα

(
pG pX

∣
∣
∣
∣
∣
∣pGpX

)
, (G5)

6= max
S

max
pX

0 = 0. (G6)

In the first equality we use the definition of the measure. In the second equality we write Sibson’s mutual
information in terms of the Rényi divergence. In the third equality we use the assumption that M ∈ UI. In the fourth
equality we use Sion’s minimax theorem [93,94], using the same arguments as in Result 2. In the fifth inequality we
use that qG = pG is a feasible option. In the sixth equality we invoke the property of the Rényi divergence, which reads
Dα(pX ||qX ) = 0 if and only if qX = pX . This chain means that Eα(M) ≤ 0, and remembering that Eα(M) is non-negative
(being an optimization over the Rényi divergence, which is itself non-negative) implies Eα(M) = 0 as desired.Consider
now that M achieves Eα(M) = 0, and let us prove that M ∈ UI. We have

0 1= Eα(M) (G7)
2= max

S
min

qG
max

pX
DS

α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣pX

)
, (G8)

3= max
S

max
pX

min
qG

DS
α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣pX

)
, (G9)

4= max
S

max
pX

min
qG

Dα

(
p (M,S)

G|X pX

∣
∣
∣
∣
∣
∣qGpX

)
, (G10)

5= max
S

max
pX

Dα

(
p (M,S)

G|X pX

∣
∣
∣
∣
∣
∣q∗GpX

)
. (G11)

The first equality is the assumption. In the second equality we invoke the definition of the measure. In the third equality
we use Sion’s minimax theorem [93,94] as per Result 2. In the fourth equality we expand Sibson’s CR divergence in terms
of the Rényi divergence. In the fifth equality we denote the optimal PMF as q∗G. We now notice that the latter equality
implies

Dα

(
p (M,S)

G|X pX

∣
∣
∣
∣
∣
∣q∗GpX

)
= 0, (G12)

from which we get that p (M,S)

G|X = q∗G. This means that p(g|x) = q(g), ∀g, x, or that Tr[Mgρx] = Tr[q(g)1ρx], Tr[(Mg −
q(g)1)ρx] = 0, ∀g, x, which implies Mg = q(g)1, ∀g, or that M ∈ UI as desired.

Part (ii) Monotonicity for the order induced by the simulability of measurements. Given two measurements N = {Ng},
M = {My} such that N ≤M, we now show that this implies Eα(N) ≤ Eα(M). Let us consider that N ≤M, meaning that
∀g and some sG|Y we have

Ng =
∑

y

s(g|y)My . (G13)

This implies that for any set of states S = {ρx}:

r(g|x) := Tr[Ngρx] =
∑

y

s(g|y)p(y|x), (G14)

with p(y|x) = Tr[Myρx]. We now invoke the data-processing inequality for the Rényi divergence [36] and get

Dα

(
r(N,S)

G|X pX

∣
∣
∣
∣
∣
∣qGpX

)
≤ Dα

(
p (M,S)

G|X pX

∣
∣
∣
∣
∣
∣qGpX

)
, (G15)
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with arbitrary PMFs pX and pG. Recognizing that these quantities are Sibson’s CR divergence leads to

DS
α

(
r(N,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣pX

)
≤ DS

α

(
p (M,S)

G|X
∣
∣
∣
∣
∣
∣qG

∣
∣
∣pX

)
. (G16)

We now perform the optimizations maxS , minqG , maxpX on both sides of the inequality and get

Eα(N) ≤ Eα(M). (G17)

This finishes the proof for the cases α ≥ 0. The cases α < 0 follow a similar argument.
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