
PRX QUANTUM 3, 020353 (2022)

Stream Privacy Amplification for Quantum Cryptography

Yizhi Huang , Xingjian Zhang , and Xiongfeng Ma *

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing
100084, China

 (Received 25 January 2022; accepted 16 May 2022; published 10 June 2022; corrected 13 July 2022)

Privacy amplification is the key step to guarantee the security of quantum communication. The exist-
ing security proofs require the accumulation of a large number of raw key bits for privacy amplification.
This is similar to block ciphers in classical cryptography that would delay the final key generation since
an entire block must be accumulated ahead of privacy amplification. Moreover, any leftover errors after
information reconciliation would corrupt the entire block. By modifying the security proof based on quan-
tum error correction, we develop a stream privacy-amplification scheme, which resembles the classical
stream cipher. This scheme can output the final key in a stream way, prevent error from spreading, and
hence can put privacy amplification ahead of information reconciliation. The stream scheme can also help
to enhance the security of trusted-relay quantum networks and improve the practicality of randomness
extraction for quantum random number generators.

DOI: 10.1103/PRXQuantum.3.020353

I. INTRODUCTION

As one of the first applications of quantum-information
science, quantum key distribution (QKD) aims at estab-
lishing an information-theoretic secure key between two
distant parties, Alice and Bob [1,2]. It applies fundamental
laws of quantum physics to guarantee secure communi-
cation. The procedures of QKD can be divided into two
parts: quantum operation and data postprocessing. Quan-
tum operation includes the preparation, transmission, and
measurement of quantum states for Alice and Bob to
share raw key bits. The purpose of postprocessing is to
extract an identical and private key from the raw data.
This can be guaranteed by information reconciliation and
privacy amplification, where the former guarantees the
identity of key strings and the latter removes any potential
information leakage to a possible eavesdropper, Eve [3,4].

Over the past three decades of development, QKD has
experienced tremendous advancement from initial demon-
strations in laboratories to practical implementation [5]. In
fiber, the communication distance has been pushed over
500 km [6,7]. Using quantum satellites, the communi-
cation distance has reached an intercontinental level [8].
Researchers have also pushed QKD to a secret key rate of

*xma@tsinghua.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

more than 10 Mbits/s [9]. In addition to point-to-point link-
ing, a number of field-test QKD networks have been con-
ducted in many countries [10–15]. In particular, China has
recently successfully completed the 2000-km-long fiber-
optic backbone link between Beijing and Shanghai [16].
Therefore, QKD is already a mature technique for real-life
applications [17].

With the exciting developments on the experimental
side, improving the practicality of QKD systems has
become one of the essential issues in the field. Among
all the stages in a QKD session, privacy amplification is
one of the bottlenecks, which might still be technically
difficult to implement in some realistic conditions. Exist-
ing privacy-amplification methods run as follows. After
information reconciliation, Alice randomly chooses a hash
function and sends it to Bob via a public classical channel.
Both users hash their reconciled key strings with the hash
function and obtain the final key. In practice, the family
of Toeplitz-matrix hashing is widely adopted. Due to the
matrix multiplication, privacy amplification can only pro-
cess a block of reconciled key bits at a time. Though recent
security-analysis techniques have shown that the key rate
can still be positive, with critical block sizes on the order
of kilobits [18], smaller block sizes tend to make privacy
amplification inefficient, resulting in lower key rates. To
guarantee the efficiency of privacy amplification, the block
size is normally large in practice, typically on the order
of megabits [18]. Alice and Bob cannot perform privacy
amplification until they accumulate an entire block of a
reconciled key. This block feature of privacy amplification
would cause unpleasant delays in some practical scenarios.
For instance, in the satellite case, since the quantum signals

2691-3399/22/3(2)/020353(19) 020353-1 Published by the American Physical Society

https://orcid.org/0000-0003-0764-2981
https://orcid.org/0000-0003-0677-6996
https://orcid.org/0000-0002-9441-4006
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.020353&domain=pdf&date_stamp=2022-07-13
http://dx.doi.org/10.1103/PRXQuantum.3.020353
https://creativecommons.org/licenses/by/4.0/

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

can be transferred only when the ground station can “see”
the satellite with a clear atmosphere, it may take the satel-
lite several orbits to accumulate enough data for one block
of privacy amplification. Due to the unpredictable condi-
tion of the atmosphere, such a delay could take as long as
days [19].

There are other cases where block privacy amplifica-
tion could cause problems. If the ratio of the reconciled
key to the final key is extremely large, the computational
cost for the hash function can be very heavy. Such an issue
has been encountered in randomness extraction of quantum
random number generation (QRNG) as well, especially
in the device-independent case [20]. Due to the similar-
ity between the definitions of randomness extraction and
privacy amplification [21], randomness extractors can be
constructed by using universal hashing functions [22,23]
and have the same block feature as existing privacy-
amplification schemes. The problem of the heavy compu-
tational cost is more serious in QRNG due to the larger
amount of data and it restricts further improvement of the
real-time generation speed.

Moreover, with block privacy amplification, the leftover
error in information reconciliation would spread out to the
entire block. Information reconciliation is normally done
by bilateral error correction. For some error-correction
schemes, there is a small probability of leaving some
errors uncorrected. If Alice’s and Bob’s two strings are
not exactly the same, the output strings from block privacy
amplification will be totally different due to the universal
property of the hash family.

Furthermore, existing quantum network implementa-
tions rely on trusted relays for key distribution [16], due
to the limited transmission distance of point-to-point QKD
links. Trusted QKD networks have been widely used in
building intercity or backbone QKD communication links,
such as the Hefei network [24] and the Beijing-Shanghai
backbone link [16]. In the trusted-network scenario, all
intermediate relays must be trusted because each of the
relays can produce the final key. If one relay becomes com-
promised, the security of the whole network will be seri-
ously threatened. In practice, it is challenging and expen-
sive to guarantee high-level secure relays, which hinders
the further commercialization and application of QKD.
There are some attempts to reduce the dependence on
trusted relays. Unfortunately, these solutions either require
duplicate resources [25] or still assume that the intermedi-
ate relays do not attack the network intentionally [26].

To address these issues, we reexamine the security
proof for QKD based on quantum error correction [27],
where privacy amplification is reduced from phase-error
correction [28]. As a clear and simple showcase, we
mainly focus on the Bennett-Brassard-1984 QKD protocol
(BB84) [1] and go back to the original Lo-Chau secu-
rity proof [27]. By rearranging the phase-error-correcting
gates and error-syndrome measurement, we divide privacy

amplification into two steps: (a) the generation of pseu-
dorandom bits from a preshared key seed and a hash
function; and (b) XOR of the pseudorandom string from
(a) and the reconciled key. We also prove that the hash-
ing matrix in (a) can be reused. Then, Alice and Bob can
generate pseudorandom bits offline. For real-time privacy
amplification, they only need to perform the XOR opera-
tion in a bitwise manner. In the spirit of stream ciphers,
the new scheme is conceptually different from the exist-
ing block privacy-amplification schemes. Such an essential
difference guarantees the new scheme with the follow-
ing practical features: (1) it can output final key bits in a
stream way; (2) it will not spread the errors of the input bit
stings; and (3) it can be carried out ahead of information
reconciliation.

The rest of this paper is organized as follows. In Sec. II,
we review QKD protocols and recap the security proof
based on quantum error correction and its reduction to the
prepare-and-measure case. In Sec. III, we reduce quan-
tum phase error correction to a new privacy-amplification
procedure with a stream output and introduce its possible
combination with delayed privacy amplification, classical
cryptography, and QRNG. Finally, we conclude the paper
and discuss possible future directions in Sec. IV.

II. PRELIMINARIES

A. QKD protocols and security definition

Here, we introduce the first and probably the most well-
known QKD protocol, BB84 [1], and its entanglement
version, Bennett-Brassard-Mermin-1992 (BBM92) [29].
Then, we show how their security can be established.

The procedures of the BB84 protocol are listed in
Table I. Alice and Bob have a quantum channel for
state transmission and an authenticated classical channel
for data postprocessing. In practice, photons are widely
used as the information carrier in quantum communica-
tion. Various degrees of freedom of a photon can be used
for qubit encoding. For example, the four BB84 states
{|0〉 , |1〉 , |+〉 , |−〉} can be encoded into four polarization
states of a photon, namely, vertical, horizontal, 45◦, and
135◦, respectively.

When Alice prepares a qubit in the Z basis and Bob
measures in the same basis, an error occurs when their bit
values are different. The errors in the Z basis are called bit
errors. Similarly, when they operate in the X basis, a phase
error occurs when their bits are different. Let us denote the
bit- and phase-error rates by eb and ep , respectively:

eb = number of bit errors
n

,

ep = number of phase errors
n

. (1)

020353-2

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

TABLE I. BB84 protocol [1], a prepare-and-measure protocol.

(1) State preparation. Alice randomly prepares qubits in one of the four states |0〉, |1〉, |+〉, and |−〉, where |0〉 and |1〉 form the Z
basis and |±〉 = (|0〉 ± |1〉)/√2 form the X basis.

(2) State transmission and measurement. Alice sends the encoded qubits to Bob through a quantum channel. Bob measures each
received qubit in the Z or X basis randomly.

(3) Key sifting. Alice and Bob announce their choices of bases publicly, through an authenticated classical channel. They keep
only the bits where they use the same bases and discard the rest. They accumulate n sifted key bits.

(4) Key distillation. Alice and Bob perform classical postprocessing, including information reconciliation and privacy amplifica-
tion, to generate a secret key from the n-bit sifted key.

Measurements on the two bases are noncommuting. Due to
quantum mechanics, with any attempt to extract nontrivial
information from the qubits, Eve would inevitably intro-
duce disturbance, such as errors, making eb, ep �= 0. Intu-
itively, Alice and Bob share a private key if eb = ep = 0.

Before the security analysis, we introduce an
entanglement-based protocol with EPR pairs, BBM92, in
Table II. The BBM92 protocol can be reduced to the BB84
protocol if Alice measures her half of the state in the Z or X
basis. Based on her measurement result, Alice equivalently
sends a qubit in |0〉, |1〉, |+〉, or |−〉 to Bob.

For the key-distribution task, Alice and Bob need to
make sure that their key bit strings are identical and uni-
formly random from Eve’s point of view. To satisfy these
two requirements, the ideal key state shared by Alice and
Bob, and any outside adversary Eve, is defined to be the
following classical-classical-quantum state:

ρideal = 2−n
∑

k∈{0,1}n

|k, k〉A,B 〈k, k| ⊗ ρE , (2)

where systems A, B are keys held by Alice and Bob and
system E is held by Eve. In the ideal key state, Alice’s and
Bob’s key bit strings are identical. Eve’s system ρE is inde-
pendent of the key k, which brings her no more information
about the key string than a random guess. This definition
follows the works of Ben-Or et al. [30] and Renner and
König [31].

In practice, however, Alice and Bob cannot generate an
ideal key. It is reasonable to allow for a small failure prob-
ability. That is, Alice and Bob can generate a key state that
is very close to an ideal one. To put the idea into a rigorous

form, if the realistic key state

ρkey =
∑

kA,kB∈{0,1}n

Pr(kA, kB) |kA〉A 〈kA| ⊗ |kB〉B 〈kB|

⊗ ρE(kA, kB) (3)

satisfies

1
2

min
ρE

‖ρkey − ρideal‖1 ≤ ε, (4)

the protocol will be ε secure. Here, the distance measure
is the trace distance. For two density matrices ρ, σ , the
measure is defined as

1
2
‖ρ − σ‖1 = 1

2

∑

i

|λi|, (5)

where λi are eigenvalues of the operator ρ − σ . The
choice of the trace-distance measure is that it satisfies the
requirements of a composable-security framework [30,31].
Definition 1: (QKD ε security). A QKD protocol is ε

secure if the generated state ρkey given in Eq. (3) is ε close
to the ideal key state ρideal given in Eq. (2) with respect to
the trace-distance definition.

This definition, usually referred to as soundness, guar-
antees that once the protocol is not aborted, the gen-
erated key is private with a high probability. In the
composable-security framework, there is another security
parameter, completeness—i.e., the protocol success prob-
ability—which guarantees that one protocol is not trivial
and that it does not always abort. For most protocols,
completeness can be easily established, so we do not dis-
cuss the completeness parameter in this work. To connect

TABLE II. BBM92 protocol [29], an entanglement version of BB84.

(1) State preparation. Alice prepares EPR pairs, |�+〉 = (|00〉 + |11〉)/√2. She stores one half of the pairs locally and sends the
other half to Bob.

(2) State storage. Upon receiving a qubit, Bob stores the state in quantum memories. If the qubit has been lost in the channel or
the quantum storage fails, they discard the pair.

(3) Quantum error correction. Alice and Bob measure a random sample of the stored qubit pairs to estimate the quantum bit- and
phase-error rates, eb and ep . They apply quantum error correction to the remaining stored qubit pairs. They share n (almost)
perfect EPR pairs.

(4) Key measurement. Both Alice and Bob measure the EPR pairs in the local Z basis to obtain the final key.

020353-3

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

the security definition and the EPR pairs, we employ the
following lemma.

Lemma 1: (Lemma 1 in [18]). If Alice and Bob share a
quantum state ρAB that is εf close to the ideal key state
before projective measurements onto |�+〉⊗n, i.e.,

〈�+|⊗n
ρAB |�+〉⊗n ≥ 1 − εf , (6)

then the QKD protocol is ε secure with ε = √
εf (2 − εf).

Combining Lemma 1 and the security definition, we can
conclude that if the state ρAB shared by Alice and Bob
before the measurement of a QKD protocol satisfies Eq. (6)
with a small εf , this protocol is ε secure. Therefore, the
security of QKD is closely related to entanglement and the
purpose of the security proof is to realize Eq. (6).

B. Security analysis based on quantum error
correction

In establishing the security analysis of QKD, important
tools such as entanglement distillation [32] and quantum
error correction have been proposed and developed. A
profound discovery is the connection between key pri-
vacy and entanglement. The number of generated keys
can be elegantly linked with distillable entanglement under
local operations and classical communication [27]. One
can distill almost perfect entanglement via quantum bit-
and phase-error correction before measuring the quan-
tum state to obtain the final key. Though security can be
proven via entanglement distillation, one does not need
to carry out this procedure in reality. Quantum bit- and
phase-error correction can be carried out using classical
means once the parameters are well estimated in the vir-
tual quantum scenario [28]. In this framework, quantum
bit-error correction corresponds to information reconcili-
ation and quantum phase-error correction is transformed
into privacy amplification. Below, we briefly introduce
the security analysis based on quantum error correction
[27,28]. In the following discussions, we call a state trans-
mission and measurement that generates a pair of raw key
bits a QKD round. After many rounds, Alice and Bob accu-
mulate enough raw key bits as a block for postprocessing,
which we call a QKD session.

Alice and Bob aim to establish a perfect Einstein-
Podolsky-Rosen (EPR) pair |�+〉 = (|00〉 + |11〉)/√2 for
each round, where |0〉 and |1〉 are the eigenstates of the
Pauli operator σz. Due to channel disturbance or Eve’s
interference, the EPR pairs shared by Alice and Bob after
n rounds of state transmission are usually imperfect. We
denote the state of these data pairs as ρAB. The difference
between ρAB and |�+〉〈�+|⊗n can be seen as disturbance
and can be characterized by the bit-error rate eb and the

phase-error rate ep :

eb = 1
2
(1 − Tr[ρAB(σz ⊗ σz)

⊗n]),

ep = 1
2
(1 − Tr[ρAB(σx ⊗ σx)

⊗n]), (7)

where σx is another Pauli operation and we take the Z
basis for key generation. The values of eb and ep can be
obtained by parameter estimation. Here, the bit- and phase-
error rates defined in Eq. (7) are consistent with those in
Eq. (1). Note that Eq. (1) defines error frequencies, while
Eq. (7) defines error probabilities. Strictly speaking, these
two definitions are only the same in the infinite-data-size
limit, n → ∞. In the finite-data-size regime, there is a
deviation between them, caused by statistical fluctuations.
For simplicity, we ignore the difference for the moment
and we take it into account in the evaluation of the failure
probability of quantum error correction.

If eb = ep = 0, this means that for the pair of qubits ρ

in each round,

Tr[ρ(σz ⊗ σz)] = 1, (8)

Tr[ρ(σx ⊗ σx)] = 1, (9)

which indicates that ρ = |�+〉〈�+|. To realize Eqs. (8)
and (9), Alice and Bob can apply the quantum circuit
shown in Fig. 1 to do the quantum bit- and phase-error cor-
rection. Quantum bit-error correction guarantees Eq. (8)
and quantum phase-error correction guarantees Eq. (9).

The cost of quantum error correction comes from the
ancillary EPR pairs used during the procedure. As an
analog to the cost in classical error correction, the num-
ber of ancillary EPR pairs equals the number of parity
check bits. Then, bit- and phase-error correction will cost
tb = nh(eb) and tp = nh(ep) ancillary EPR pairs, respec-
tively, where h(x) = −x log(x) − (1 − x) log(1 − x) is the
binary entropy function. Throughout this work, all loga-
rithms are base 2. These costs can be derived from the cost
in classical error correction, the details of which we leave
to Appendix A. Therefore, the net generation rate of EPR
pairs is given by [28],

r = 1 − h(eb) − h(ep). (10)

We can further reduce the procedure to a prepare-and-
measure one by moving the final measurement to the front
of quantum error correction. The reduction of quantum
bit-error correction is straightforward, since all the oper-
ations can be done equivalently on classical data bits and
it finally becomes information reconciliation. In contrast,
the final measurement cannot be moved ahead of the quan-
tum phase-error correction directly. Alice and Bob can
replace the final measurements with a properly chosen
joint measurement, which can be moved ahead of quantum

020353-4

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

(a)

(b)

FIG. 1. (a) Quantum bit- and phase-error correction. The measurements in all the figures are Z-basis measurements by default. “CC”
is short for classical communication. The ⊕ operation means XOR operations on classical bit strings. H represents the Hadamard gate
applied to each of the involved qubits. I/σx represents an identity or σx operation on the qubits, depending on the error syndrome. (b)
In the linear case, the hash functions can be represented by matrices and realized by a series of controlled-NOT (CNOT) gates between
the data (as control) and ancillary (as target) qubits. The measurement outcomes of ancillary qubits would give the parity information
of the data qubits.

phase-error correction [28]. Then, the joint measurement
becomes a classical operation called privacy amplification.
Finally, quantum error correction is reduced to a “measure-
ment + postprocessing” procedure. The reduction is in the
spirit of the Shor-Preskill security proof [28]. We leave the
details to Appendices C and D.

Due to the joint measurement, each final key bit depends
on the measurement results from all the n data qubits.
Hence, for privacy amplification, Alice and Bob need
to wait for all the quantum states to be transmitted and
measured in a QKD session. We call this block privacy
amplification.

III. STREAM PRIVACY AMPLIFICATION

A. Reduction of quantum error correction

In the aforementioned reduction, Alice and Bob cannot
move the final key measurement ahead of phase-error cor-
rection directly. The main obstacle is that the Hadamard
gate does not commute with the dephasing operation
caused by the final key measurement,

�Z⊗n[ρA] =
∑

�k∈{0,1}n

∣∣∣�k
〉〈

�k
∣∣∣ ρA

∣∣∣�k
〉〈

�k
∣∣∣ , (11)

where ρA denotes the state that Alice holds and the
dephasing operation is defined with respect to the key-
measurement basis Z⊗n with outcomes �k. The operation on
Bob’s side is similar. In the Shor-Preskill reduction, Alice
and Bob essentially construct a joint Z-basis measure-
ment that commutes with hash operations to circumvent
this problem. As a result, this makes privacy amplifica-
tion operate in blocks. Here, we rearrange the reduction of

the phase-error-correcting gates and keep the individual Z-
basis measurements in the quantum phase-error correction.
Consequently, we can render stream privacy amplification.

The key idea of the new reduction is to cancel all the
Hadamard gates in quantum phase-error correction, shown
in Fig. 1. The controlled-NOT (CNOT) gate in the circuit
always appears in pairs on Alice’s and Bob’s sides. We
focus on one pair of CNOT gates in the quantum phase-
error-correction part, as depicted in Fig. 2(a). First, noting
that H 2 = I , we add two consecutive Hadamard gates
after each output qubit of the CNOT gate. Then, the four
Hadamard gates before and after each CNOT gate exchange
the roles of the control and target qubits, H⊗2CαβH⊗2 =
Cβα , where Cαβ denotes a CNOT gate with control qubit α

and target qubit β and Cβα is the other way around. For
Bob’s data qubit, the phase-error-correcting operator I/σx
becomes I/σz since σz = HσxH . Hence, we prove that cir-
cuits (a) and (b) in Fig. 2 are equivalent. Since the new
phase-error-correcting operator I/σz does not affect the Z-
basis measurement, this step can be skipped along with the
error-syndrome measurements on the ancillary qubits. The
remaining operations commute with the dephasing opera-
tion, �Z⊗n . Alice and Bob can add Z-basis measurements
on ancillary qubits after the CNOT gates, since they are
irrelevant at that point. Finally, they can move the final
measurement ahead of quantum error correction, as shown
in Fig. 2(c).

So far, we have only considered one CNOT gate. The
hash operation in phase-error correction shown in Fig. 1 is
composed of many CNOT gates. This reduction also works
for the general hash-operation case. With this argument, by
inserting consecutive Hadamard gates H 2 = I after each
CNOT gate of the phase-error-correction part in Fig. 1, we

020353-5

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

(a)

(c)

(b)

(d)

FIG. 2. Circuit (a) is derived from the quantum phase-error-correction phase in Fig. 1 by adding Hadamard gates in dashed boxes
that form identity operations. We take one pair of CNOT operations for illustration. Circuit (b) is equivalent to circuit (a) by considering
the following facts: H⊗2CαβH⊗2 = Cβα , H 2 = I , and HσxH = σz . Since neither the identity nor the σz gate affects the Z-basis mea-
surement, the operations in the dashed box of circuit (b) are redundant and can be removed. Then by moving the Z-basis measurement
on ancillary qubits ahead of the hash operation and changing quantum-control flips to classical-control flips, circuit (b) turns into circuit
(c), a “measurement + postprocessing” case. Circuit (d) shows the case of multiple CNOT pairs, taking the hashing circuit in Fig. 1(b)
as an example. In the end, both Alice and Bob employ circuit (d) to obtain final key strings.

can reduce the whole quantum error-correction circuit to
the “measurement + postprocessing” case, as shown in
Fig. 2(d).

With the new reduction, the final key is determined by
single-qubit measurements plus bit flips. The Z-basis mea-
surement on the ancillary EPR pairs will provide Alice
and Bob with a secure key seed. The bit flips are con-
trolled by the seed and the hashing matrix. Then, the ith
final key bit, extracted from the ith data qubit, is indepen-
dent of the other data qubits. Hence, the new procedure
can output the final key in a stream, i.e., the users can
obtain a secure key bit once a pair of raw key bits is
reconciled successfully between Alice and Bob. Follow-
ing the term “stream cipher” in classical cryptography,
we call this stream privacy amplification, as presented in
Table III. The hashing matrix M in step (1) is the trans-
pose of the original hashing matrix used in the quantum
phase-error-correction phase of Fig. 1, because the origi-
nal hashing matrix acts on X basis while M acts on the Z
basis. The cost of stream privacy amplification lies in step

(2), where nh(ep) preshared secure bits are consumed. The
final key rate matches Eq. (10). Note that we consider the
infinite-data-size limit here. The finite data-size effects due
to statistical fluctuations have been well considered in the
literature and are shown in Appendix A.

With the above deduction, the failure probability of
privacy amplification ε is given by that of quantum phase-
error correction. Given a phase-error pattern from a typ-
ical set determined by parameter estimation, a randomly
chosen hash function can identify it with a high probabil-
ity 1 − ε. This is the reason why Alice and Bob need a
random hashing matrix in step (1) of Table III. Details of
error correction and its failure probability are presented in
Appendix A.

Note that the phase-error pattern must be set before
choosing the random hash function. That is, Eve cannot
know the hashing matrix before Alice and Bob obtain the
raw key bits. Naively, Alice can randomly pick up a matrix
and send it to Bob via an authenticated but nonencrypted
channel, as in the conventional case in block privacy

TABLE III. Stream privacy amplification.

After information reconciliation, denote Alice’s and Bob’s reconciled key as �a ∈ {0, 1}n.
(1) Alice and Bob randomly choose a hashing matrix M of size nh(ep) × n.
(2) Alice and Bob use an nh(ep)-bit seed, �d ∈ {0, 1}nh(ep), to generate a pseudorandom string, �d · M , where the dot product between

the row vector and the matrix needs to take modulo 2 addition.
(3) The final key is given by �k = �d · M ⊕ �a.

020353-6

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

amplification. Since this public transmission of the hash-
ing matrix must be done after quantum measurement, Alice
and Bob have to wait for the whole block to be transmit-
ted and measured. Then, they lose the “stream” property in
privacy amplification.

To solve this problem, we apply a different approach, in
which Alice and Bob generate an identical random hash-
ing matrix locally with a preshared key and never reveal
it in public. Then, they can prepare this matrix [step (1)]
and the pseudorandom string [step (2)] before quantum
transmission. A naive implementation of this approach, in
which Alice and Bob generate M and �d in each run of
the privacy amplification, could consume too many pre-
shared secure bits, as for most of the universal hashing
matrices, the number of random bits required to gener-
ate the matrix is larger than the data size n. Fortunately,
with the following theorem, Alice and Bob can reuse the
private hashing matrix in multiple QKD sessions with a
failure probability that increases linearly, satisfying the
composable-security definition [30,31]. Since the failure
probability can be exponentially small, the same hashing
matrix can be used for many QKD sessions. Therefore, the
cost of generating this hashing matrix is shared with these
sessions, making the average cost negligible.

Theorem 1: (Reuse of hashing matrix in privacy amplifi-
cation). Given a QKD session, the failure probability of a
randomly chosen hashing matrix for privacy amplification
is upper bounded by ε. Then, for m QKD sessions, if Alice
and Bob apply the same randomly chosen matrix for each
session, the probability that privacy amplification fails in
at least one session is upper bounded by mε.

Proof. Following the aforementioned deduction of quan-
tum error correction, the failure probability of privacy
amplification is determined by phase-error correction.
Now, the question becomes that given m phase-error pat-
terns, if Alice and Bob randomly pick a hash function
to correct all the errors, what is the failure probability
that at least one phase-error pattern is unsuccessfully cor-
rected? In Appendix B, we provide the failure probability
of reusing hash functions for error correction, as given
by Lemma 4. Using this result, the answer to the above
question is mε. �

Before running QKD sessions, Alice and Bob can per-
form steps (1) and (2) in Table III and prepare the pseudo-
random string in advance. They only need to run step (3)
in privacy amplification during real-time QKD, which is
essentially composed of simple XOR operations and much
faster than hash operations. In block privacy amplification,
the computational complexity of the matrix multiplication
with Toeplitz hashing is O(n log n) with the fast-Fourier-
transform algorithm, where n is the length of the reconciled

key string [23,33]. In contrast, the computational complex-
ity of step (3) is n and hence stream privacy amplification
is faster in real-time QKD, especially when the data size is
large.

In reality, Alice and Bob need parameter estima-
tion before privacy amplification. This might restrict the
“stream” feature since the parameters cannot be accurately
estimated until the whole data block is accumulated. Nev-
ertheless, when the link between Alice and Bob is stable,
they can foresee the parameters and apply them to stream
privacy amplification. In practice, it is not difficult to main-
tain stability in a quantum communication network [16].
In addition, the users can double check the parameters
after the transmission of the whole block. If the predicted
parameters are within a reasonable range, they keep the
key. Otherwise, if the actual parameters show that the
implemented privacy amplification cannot guarantee secu-
rity, this implies that the length of the seed chosen in step
(2) of Table III is insufficient. Alice and Bob can then
choose another seed, according to the difference between
the predicted and actual parameters, to carry out additional
privacy amplification on the key to make it secure.

Note that the stream scheme can work for any block
size in QKD implementations. In order to make privacy
amplification efficient, Alice and Bob can employ a large
data size without causing delays in real-time key gener-
ation. Compared with the previous ones, the unique fea-
ture of the new scheme—stream output—can make QKD
more practical in scenarios such as the satellite-to-ground
link [8].

Moreover, the bit-error locations in the input string will
remain the same after stream privacy amplification, since
the final key bit is only determined by the pseudoran-
dom bit and the raw key bit at the same location. As
a result, the errors will not spread out and then privacy
amplification can even be performed ahead of informa-
tion reconciliation. This feature increases the flexibility of
data postprocessing. For example, privacy amplification
and information reconciliation can be performed in par-
allel. The recently proposed scenario of distributed private
randomness distillation [34] is also a potential application
of the new scheme.

B. Application I: Enhancing the security of
trusted-relay QKD network

The major issue of a trusted-relay QKD network lies in
the trustworthiness of the intermediate nodes. There are
some attempts to reduce the requirement on trusted relays,
one of which is delayed privacy amplification [35,36]. In
the normal case, all the QKD links between two end users,
Alice and Bob, will generate secure keys between neigh-
boring nodes. Then, the intermediate relays swap the keys
by announcing the XOR results of two keys generated with
two neighbors. In the delayed privacy-amplification case,

020353-7

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

the relays swap the key right after information reconcilia-
tion. Then, Alice and Bob perform privacy amplification
without the relays. In this case, they can eliminate the
relays from the final key generation process. That is, the
relays do not obtain the final key directly. Of course, if the
relays listen to classical communication to obtain privacy-
amplification matrices, they can still obtain the whole final
key string. Therefore, the delayed privacy-amplification
scheme only works for honest but curious relays.

Now, we can combine stream privacy amplification with
delayed privacy amplification to further reduce the trust-
worthiness of the intermediate relays. After information
reconciliation, all relays swap their keys by announcing
the XOR results of two neighboring keys. Then, Alice and
Bob will share a reconciled key string �a, which is also
known to the relays. Note that Alice and Bob perform the
steps in Table III locally. In particular, in step (2), they
generate the pseudorandom string �d · M privately. Hence,
the relays cannot know the final key without �d · M . If
the relays want to learn the final key, they need to figure
out �d and M . The seed �d is private and changes in every
QKD session. The hashing matrix M , on the other hand, is
reused for many sessions in stream privacy amplification,
so the relays might figure it out from final and reconciled
key strings in past sessions by methods such as differen-
tial cryptanalysis. These analysis methods often consume
a lot of computational resources. For an even higher secu-
rity level with fewer assumptions on the relays, we can
add another layer of security based on the computational
complexity on the intermediate nodes. In practice, this
combined scheme further reduces the requirement of the
trustworthiness of the relays and enhances the security of
trusted-relay QKD networks.

C. Application II: Information-theoretic toolbox for
classical encryption analysis

There is an interesting property of the pseudorandom
string �d · M generated in step (2) of Table III. On the one
hand, parameter estimation provides an upper bound on
the information leakage of nh(ep) bits about the raw key
string �a. On the other hand, the security proof guaran-
tees that the information leakage is removed via the simple
XOR operation �k = �d · M ⊕ �a. This implies that �d · M has
at least an nh(ep)-bit uncertainty to Eve. In the security
analysis, we do not assume in advance which part of the
nh(ep)-bit information on �a is known by Eve. Then, for
any nh(ep) bits from �d · M , the corresponding nh(ep)-bit
substring will be uniformly distributed from Eve’s point
of view, as shown in Fig. 3. This property is called k-wise
independence in classical cryptography and is an essential
requirement of many stream ciphers [37].

The above observation inspires a new tool for the secu-
rity analysis of classical encryption based on quantum

FIG. 3. An illustration of the pseudorandomness property of
�d · M . The red-shaded area in the reconciled key denotes the
nh(ep)-bit information leakage to Eve. This leaked information
can be the bit values of the key or the parity information about the
key. After the XOR of the reconciled key and the pseudorandom
string �d · M , the reconciled key becomes the final secure key and
is uniformly distributed from Eve’s point of view. That is, Eve’s
knowledge about the key is removed. As a corollary, the corre-
sponding yellow-shaded area in the pseudorandom string should
be uniform to Eve as well.

phase-error correction. First, we note that the hash func-
tion for phase-error correction is not necessarily linear.
Alice and Bob can employ an arbitrarily nonlinear code
to extend the seed to a pseudorandom string in step (2)
of Table III, as shown in Fig. 4(a). This extension opera-
tion can be treated as a pseudorandom number generator.
Second, we can further generalize this stream privacy
amplification as a joint function of the reconciled key and
the seed, as shown in Fig. 4(b). The joint operation can be
treated as a classical encryption box. Alice and Bob can
employ sophisticated schemes here, such as the advanced
encryption standard (AES) and lattice-based encryption
algorithms. Third, we can express the classical operation
in the quantum form, as a joint operation
 acting on data
and ancillary qubits, as shown in Fig. 4(c). Since the opera-
tion is classical,
 commutes with the dephasing operation
in Eq. (11):
[�Z⊗n(ρ)] = �Z⊗n[
(ρ)]. By definition,

is a dephasing incoherent operation (DIO) [38]. At last, we
can move
 ahead of measurement. Since phase-error cor-
rection is virtual in the security analysis, Alice and Bob
can add an extra operation � on the ancillary qubits if
necessary, as shown in Fig. 4(d).

Similar to stream privacy amplification, we can analyze
the security of the final output of Fig. 4(d) by going back to
the Lo-Chau security proof based on quantum error correc-
tion. The DIO
 is determined by the classical encryption
algorithm, which is viewed as the encoding for a quan-
tum error-correcting code. With this code, Alice and Bob
exchange the measurement results of ancillary qubits as
a phase-error syndrome, which should give information
about the phase errors of data qubits. According to the
security analysis, Alice and Bob do not need to actually
correct phase errors since this will not affect the final key.
Then, Alice and Bob can add an extra virtual operation �

020353-8

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

(a) (b)

(c) (d)

FIG. 4. (a) A schematic diagram for stream privacy amplification. The process of extending the seed can be treated as a pseudoran-
dom number generator in step (2) of Table III. (b) The generalization of the extension and XOR operations as a joint operation, which
can be seen as a classical encryption box. (c) The quantum form of (b). The classical joint operation becomes a DIO
. (d) Changing
the order of
 and measurement. The final measurement on ancillary qubits can be arbitrary with an extra operation �.

on the ancillary qubits between
 and measurement. They
can optimize � to maximize the error-correction capa-
bility led by
. The security of the final output of the
classical encryption will be determined by the phase-error-
correction capability of the corresponding code. Since we
consider the most general attacks in QKD, the method
provides a generic information-theoretic analysis tool for
classical encryption algorithms.

D. Application III: Stream randomness extraction

Besides QKD, privacy amplification also plays a vital
role in many other quantum cryptographic tasks, such as
QRNG. In general, the raw data generated from a prac-
tical QRNG system are not uniformly random. Due to
device imperfection, some information about the raw data
might even be leaked and might lead to potential secu-
rity loopholes. Thus, user Alice needs to apply random-
ness extraction to the raw data. By definition, randomness
extraction is essentially the same as privacy amplification.
As a result, the stream privacy-amplification technique can
also be directly applied to QRNG—stream randomness
extraction.

In QRNG, the amount of intrinsic randomness in the
raw data is usually quantified in terms of min-entropy [39].
This randomness measure can be converted to the number

of phase errors in a virtual quantum error-correction proto-
col [40]. Then, one can convert common block randomness
extraction to a stream manner, as presented in Table IV.

For the data postprocessing of practical QRNG, stream
randomness extraction can be a favored choice. In this
context, Alice can fully characterize the quantum devices
in use and hence has good empirical knowledge of the ran-
domness generation rate. In other words, the min-entropy
of output randomness can be well predicted in advance.
With this property, steps (1) and (2) in Table IV can be
done separately in advance without access to the raw data.
This enables the main steps of postprocessing to be carried
out in parallel with the generation of raw data, which can
reduce the storage requirements and modularize quantum
random number generators. In addition, the computational
complexity of real-time postprocessing [step (3)] is only n
and hence helps to solve the current bottleneck of real-time
random number generation—slow extraction.

IV. DISCUSSION AND CONCLUSIONS

In this work, we propose a stream privacy-amplification
scheme, where Alice and Bob locally generate a pseu-
dorandom bit string and XOR it with the reconciled key
to obtain the final key. This scheme has a stream out-
put feature and hence can prevent unpleasant delay and
error spreading in practice. In contrast to conventional

TABLE IV. Stream randomness extraction.

Alice generates a raw bit string from the QRNG device, denoted as �a ∈ {0, 1}n, the min-entropy of which is Hmin.
(1) Alice randomly chooses a hashing matrix M of size (n − Hmin) × n.
(2) Alice uses an (n − Hmin)-bit seed, �d ∈ {0, 1}n−Hmin , to generate a pseudorandom string, �d · M , where the dot product between

the row vector and the matrix needs to take modulo 2 addition.
(3) The final random bit string is given by �k = �d · M ⊕ �a.

020353-9

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

block schemes, stream privacy amplification can be carried
out ahead of information reconciliation, which makes the
data postprocess more flexible. In addition, stream privacy
amplification can enhance the security of a trusted-relay
QKD network and improve the practicality of randomness
extraction for quantum number generators.

We need to emphasize that although we reduce the
stream privacy amplification from the Lo-Chau security
proof, the technique is independent of security proofs.
Other security-proof methods, such as Koashi’s comple-
mentarity approach [41], can also be easily extended
to the stream privacy-amplification case. Moreover, the
concept is rather generic and can be applied to other
QKD schemes, such as the six-state, continuous-variable,
measurement-device-independent, two-way communica-
tion postprocessing, and decoy-state schemes [5]. The
practical issues, including realistic circumstances, hard-
ware imperfections, and statistic fluctuations, will affect
the parameter settings of stream privacy amplification,
especially the length of the seed string and the size of the
hashing matrix. One can combine with existing analysis
methods to deal with these practical issues. In Appendix E,
we give an example of employing stream privacy amplifi-
cation in the Gottesman-Lo-Lütkenhaus-Preskill (GLLP)
framework [42]. The further applications of stream pri-
vacy amplification in other quantum cryptographic tasks
such as quantum oblivious transfer [43,44] are also worth
studying.

Here, our proof is mainly based on phase-error correc-
tion. According to Ref. [40], in general, this approach is
equivalent to the one based on the quantum leftover hash-
ing lemma [45]. An interesting direction is to reconsider
the new scheme from the entropic approach point of view.

Our security analysis provides a new perspective to
examine classical encryption algorithms information theo-
retically through quantum-information theories. Rigorous
assessment of classical encryption algorithms, such as
AES and lattice-based encryption, is often a formidable
challenge. To the best of our knowledge, there has been lit-
tle consideration to date in the context of the information-
theoretic study of these encryption algorithms.

ACKNOWLEDGMENTS

We thank Guang Yang, Guoding Liu, Pei Zeng, and
Hongyi Zhou for the helpful discussions. This work was
supported by the National Natural Science Foundation
of China under Grants No. 11875173 and No. 12174216
and by the National Key Research and Development Pro-
gram of China under Grants No. 2019QY0702 and No.
2017YFA0303903.

APPENDIX A: ERROR CORRECTION

We briefly review error correction and derive its cost
in this section. Suppose that Alice and Bob have two

n-bit strings, �x, �y ∈ {0, 1}n, before error correction. The dif-
ferences between these two strings are the errors to be
corrected, represented by an error string �e = �x ⊕ �y. Bob
aims to reconcile his bit string to Alice’s. For this purpose,
the essential task is to locate all the errors, i.e., to figure
out the error string �e. Denote each bit in an error string as a
binary random variable, Ei ∈ {0, 1}. An error in the ith bit
is represented by Ei = 1. The error string is the joint ran-
dom variable of {Ei}, denoted �E. We use the corresponding
lowercase letters to denote the specific realizations of ran-
dom variables. All the possible error strings form a linear
space � with a size of |�| = 2n. Denote the probability
that an error string �e ∈ � occurs by p(�e). In general, the
joint random variable is not independent and identically
distributed (IID).

Before error correction, Alice and Bob need to esti-
mate the set of possible errors. In parameter estimation, we
allow a failure probability ε ≥ 0. With the probability of
1 − ε, the error string will fall into the ε-smallest probable
set T ε

�E . The aim of parameter estimation is to upper bound
the cardinality of the probable error set, or error cardinality,
via the statistics of all measurements in an experiment [18].

Given the error cardinality |T ε
�E |, Alice and Bob need to

exchange a certain amount of parity information to cor-
rect the errors. There exists an error-correction protocol to
remove all errors by exchanging an amount of parity-check
bits upper bounded by

IEC = log |T ε
�E | − log εEC, (A1)

where εEC ≥ 0 is the failure probability of error correction.
In the rest of this appendix, we show how to derive

Eq. A1 and calculate the cost IEC associated with the
error rate. Let us start with the definition of the ε-smallest
probable set.

Definition 2: (ε-smallest probable set). Given 0 ≤ ε <
1
2

,
a random variable X ∈ X that has a finite range |X | < ∞
and probability mass function pX , the ε-smallest probable
set of X is defined as the smallest set, T ε

X , such that a real-
ization of X lies in it with a failure probability no larger
than ε,

T ε
X = arg min

S
|S|

such that Pr(X ∈ S) ≥ 1 − ε. (A2)

To tackle the cardinality of the ε-smallest probable set,
one method is to use the weight of error strings. For
an n-bit string �e ∈ {0, 1}n, we define a weight function,
quantifying the number of 1s in the string,

wt(�e) =
n∑

i=1

ei. (A3)

020353-10

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

We can bound the cardinality of a set via bounding the
weights of the strings, as shown in the following lemma.

Lemma 2: Given constants c ≥ 0, 0 < r < 1, and n ∈ Z
+,

the cardinality of the n-bit-string set,

D(c) = {�e ∈ {0, 1}n | wt(�e) ∈ C
}

, (A4)

C =
{

[0, nr + c], r ≤ 1
2 ,

[nr − c, n], r > 1
2 ,

(A5)

can be upper bounded by

|D(c)| < 2nh(r)+c
∣∣∣log r

1−r

∣∣∣. (A6)

Proof. When r = 1/2, the bound in Eq. (A6) is trivial. The

case for r >
1
2

is the same as the one for r <
1
2

by switch-
ing the definitions of bits 0 and 1, so we only need to prove

the lemma for r <
1
2

.
We introduce a function of a binary variable e ∈ {0, 1},

p(e) =
{

r, e = 1,
1 − r, e = 0,

(A7)

and we can show that

∑
�e∈{0,1}n

2
∑n

i=1 log p(ei) =
n∏

i=1

[p(ei = 0) + p(ei = 1)] = 1.

(A8)

For a bit string �e = (e1, . . . , en) with a weight of wt(�e) = k,
we define a function

g(k) = k log r + (n − k) log(1 − r) =
n∑

i=1

log [p(ei)].

(A9)

For �e ∈ D(c), we have k ∈ [0, nr + c] and g(k) is a

decreasing function of k when r <
1
2

, so

g(k) ≥ g(nr + c)

= (nr + c) log r + (n − nr − c) log(1 − r)

= −nh(r) − c
∣∣∣∣log

r
1 − r

∣∣∣∣ . (A10)

Then, combining Eqs. (A8)–(A10), we have

1 =
∑

�e∈{0,1}n

2
∑n

i=1 log p(ei)

=
∑

�e∈{0,1}n

2g(k)

≥
∑

�e∈D(c)

2g(k)

≥ 2−nh(r)−c
∣∣∣log r

1−r

∣∣∣|D(c)|, (A11)

where the third and fourth inequalities cannot take equal
signs simultaneously. Finally, we obtain Eq. (A6). �

Because the weight of an n-bit string �e satisfies 0 ≤
wt(�e) ≤ n, one can combine the two intervals of Eq. (A5)
in the lemma to obtain a smaller set, as given in the
following corollary.

Corollary 1: Given constants c ≥ 0, 0 < r < 1, and n ∈
Z

+, the cardinality of the n-bit-string set,

D(c) = {�e ∈ {0, 1}n | wt(�e) ∈ [nr − c, nr + c]
}

, (A12)

can be upper bounded by

|D(c)| < 2nh(r)+c
∣∣∣log r

1−r

∣∣∣. (A13)

We remark that the result holds even when the random
variables, Ei, associated with the set D(c) are arbitrarily
correlated and not necessarily IID. Alice and Bob can use
Lemma 2 to bound the cardinality of the ε-smallest proba-
ble set if they can estimate r and c. Before error correction,
they can estimate the error rate with a failure probability
of ε, say, via the random sampling method. Suppose that
they obtain an error frequency of r in the test samples.
Without loss of generality, we assume that r ≤ 1/2. In the
asymptotic case n → ∞, the number of errors in the data
is given by nr. With a finite data size, the rate fluctuates
around r. Alice and Bob can bound the number of errors,
wt(�e) ≤ nr + c, via the random sampling method, where
c/n represents the deviation of the error rate from the test
samples. The deviation c/n is usually related to the fail-
ure probability of parameter estimation ε and typically has
an order of 1/

√
n [18]. Using r, c, and n, they can apply

Lemma 2 to determine the error cardinality.
Here, we introduce another method to upper bound the

cardinality of typical error sets, which is tighter under more
restricted conditions [18].

Lemma 3: ([18]). Given constants c, r ≥ 0 and n ∈ Z
+

satisfying r + c/n ≤ 1/3, the cardinality of the n-bit-string
set,

D(c) = {�e ∈ {0, 1}n | wt(�e) ∈ [0, nr + c)
}

, (A14)

can be upper bounded by

|D(c)| < 2n·h(r+ c
n). (A15)

020353-11

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

Proof. By definition, we have

|D(c)| =
∑

0≤k<nr+c

(
n
k

)

<

(
n

�nr + c�
)

≤ 2n·h(r+ c
n). (A16)

The first inequality holds when r ≤ 1/3. �
This lemma provides a tight bound because in

Eq. (A16),

(
n

�nr + c� − 1

)
≤

∑

0≤k<nr+c

(
n
k

)
<

(
n

�nr + c�
)

, (A17)

and the last inequality in Eq. (A16) is also tight in the
logarithm sense.

When the error rate deviation is small, c/n � 1, we can
take the Taylor-series expansion of h(r + c/n) at r and we
can obtain

h
(

r + c
n

)
= h(r) + h′(r)

c
n

+ h′′(r)
2!

(c
n

)2
+ · · ·

= h(r) + c
n

log
1 − r

r
+ h′′(r)

2!

(c
n

)2
+ · · ·

(A18)

By comparing Eqs. (A6), (A15), and (A18), one can see
that Lemma 2 is a first-order approximation of Lemma 3.
Since h′′(r) < 0, Lemma 3 provides a tighter bound than
Lemma 2. On the other hand, Lemma 2 does not require
r ≤ 1/3, so it can be applied to more general cases.

Now, we show how to locate the errors given the prob-
able error set T ε, where ε is the failure probability for
parameter estimation,

∑
�e∈T ε p(�e) ≥ 1 − ε. In the follow-

ing, we introduce error correction based on universal hash
functions.
Definition 3: (Universal hash family). A family of func-
tions F mapping elements �e in a space T to another
space S is called a universal hash family if the proba-
bility of a randomly chosen hash function outputting the
same hashing result for any two different strings is upper
bounded by

∀�ei �= �ej ∈ T , Pr
f ∈F

[
f (�ei) = f (�ej)

] ≤ 1
|S| . (A19)

Given the probable error set T ε, Alice and Bob decide a
universal hash family F and choose a hash function f ∈ F
randomly. Alice applies the hash function to her bit string
�x and sends the hashing result �sA = f (�x) to Bob, who cal-
culates the syndrome �s = f (�e) based on �sA, �y, and f . If the

hash functions are linear, then

�s = �sA ⊕ �sB

= f (�x) ⊕ f (�y)

= f (�x ⊕ �y)

= f (�e). (A20)

The linear hash function is normally implemented by
multiplication of a hashing matrix.

If there is only one error string �e ∈ T ε that satisfies
f (�e) = �s, then in principle Bob can figure out �e correctly.
The probability of Bob figuring out a wrong error string is
upper bounded by

∑

�e′∈T ε\{�e}
Pr

f ∈F
[
f (�e′) = f (�e)] ≤

∑

�e′∈T ε\{�e}

1
|S|

<
|T ε|
|S|

= 2−(IEC−k)

≡ εEC, (A21)

where T ε \ {�e} denotes the subset of T ε excluding the
element �e, the first inequality comes from Eq. (A19),
the second inequality comes from |T ε \ {�e}| = |T ε| − 1,
IEC = log |S| is the effective length of syndrome �s, and
k = log |T ε| is the logarithm of error cardinality. The fail-
ure probability εEC approaches zero exponentially with
respect to IEC − k. If IEC − k is large enough, the fail-
ure probability will become negligible, such that Bob can
almost certainly figure out �e and then perform error cor-
rection according to the syndrome. We emphasize that εEC
is the failure probability for error correction and is differ-
ent from the failure probability ε for parameter estimation.
We can derive Eq. (A1) from Eq. (A21) by taking the
logarithm,

−IEC − log |T ε| = log εEC. (A22)

The cardinality of Tε is given by Lemma 2. Then, we have

1
n

IEC = 1
n

log |T ε| − 1
n

log εEC

< h(r) + c
n

∣∣∣∣log
r

1 − r

∣∣∣∣ − 1
n

log εEC

n→∞−→ h(r). (A23)

In the third line, we take the asymptotic limit, c/n → 0,
because normally in parameter estimation c has an order

020353-12

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

of 1/
√

n, and 1/n log εEC → 0 since εEC is a constant.
This gives Shannon’s source-encoding theorem in classical
information theory.

APPENDIX B: REUSE OF HASH FUNCTION

In the derivation of Eq. (A21), we implicitly assume that
errors cannot depend on the choice of the hash function.
This requirement can be further understood in an adver-
sary scenario, where the error string �e is determined by an
adversary, Eve. In this case, Eve does not know the hash
function chosen by Alice and Bob before she fixes the error
string �e or before Alice and Bob obtain their bit strings �x
and �y, respectively. Otherwise, with prior knowledge of the
hash function, Eve can choose the error string craftily such
that it lies outside the error space that the chosen hash func-
tion can handle. As a result, Alice and Bob cannot figure
out the correct error string �e and the error correction will
fail. To guarantee this requirement, there are two possible
ways for Alice and Bob to decide the hash function:

(1) Alice and Bob decide the hash function after the
error string is fixed, i.e., after the bit strings �x, �y
are obtained. Then, they exchange some random
bits through a public channel to determine a hash
function randomly.

(2) Alice and Bob decide the hash function randomly by
consuming some preshared private randomness and
keep the hash function secret from Eve. In later error
correction, they can reuse the same matrix at a cost,
namely that the total failure probability increases
linearly with the number of sessions. We state the
result formally in Lemma 4.

Lemma 4: Given a set of error strings T ε and a family of
hash functions F , ∀�e ∈ T ε, suppose that the failure prob-
ability of a randomly chosen hash function to identify �e
is upper bounded by εEC. For any m error strings in T ε,
the failure probability of a randomly chosen hash function
to simultaneously identify all the m error strings in each
session is upper bounded by mεEC.

Proof. ∀�e ∈ T ε, the failure probability of error correction
is given by Eq. (A21):

Pr
f ∈F

[∃�e′ ∈ T ε \ {�e}, s.t., f (�e′) = f (�e)] ≤ εEC, (B1)

where the probability is defined in the hashing family.
Then, the failure probability of identifying m error strings
simultaneously is given by

Pr
f ∈F

[∃�e′ ∈ T ε, s.t., �e′ �= �e1, f (�e′) = f (�e1) or �e′ �= �e2,

f (�e′) = f (�e2) or . . . or �e′ �= �em, f (�e′) = f (�em)
]

≤
m∑

i=1

Pr
f ∈F

[∃�e′ ∈ T ε \ {�ei}, s.t., f (�e′) = f (�ei)
]

≤ mεEC, (B2)

where the first inequality follows the union bound and �ei ∈
T ε is the error string in the ith session. �

Here, we note that Eve does not know the hash function
f before she determines the error patterns �ei. That is, her
choices of �ei should be independent of Alice’s and Bob’s
choice of f ∈ F . Otherwise, the failure-probability bound
might not hold. Interestingly, this is not the case if Alice
and Bob can verify the leftover errors in corrected strings,
say, by exchanging an authentication tag [18]. Then, the
failure probability is determined by the error-verification
process but not the property of the hashing family. In this
case, the hash function can be fixed at the beginning and
known to Eve.

APPENDIX C: QUANTUM ERROR CORRECTION
WITH HASHING

As mentioned in the main text, we can use Eq. (6) to
further derive Eqs. (8) and (9), which are related to the
bit and phase error, respectively, and these two equations
can be achieved by quantum error correction. We divide
the procedure for quantum error correction into two steps:
bit-error correction to guarantee Eq. (8) and phase-error
correction to guarantee Eq. (9).

Quantum error correction can be seen as an extension of
classical error correction and accomplished by using uni-
versal hashing [46–48]. In the classical case, Alice and Bob
each possess a bit string. The differences between these
two strings are called “errors.” The main job of classical
bilateral error correction is to figure out the error locations.
Alice hashes her string and sends the parity information to
Bob. With the same hash function, Bob hashes his string
and compares it to Alice’s. After enough iterations of this
procedure, Bob can figure out the error locations and flip
his corresponding bits to correct the errors. In the end,
Bob’s bit string is reconciled with Alice’s. The number of
parity-check bits is given by nh(e) in the Shannon limit,
where n is the bit-string length and e is the error rate.
For the case of a finite data size, there is the possibility
that error correction will fail. Details of error correction
along with analysis of the finite size effect and the failure
probability are presented in Appendix A.

In the following discussions, we consider linear hash
functions, which can be represented by hashing matrices,
for simplicity. One of the most widely used linear hash
families is the family of Toeplitz matrices. The elements
in a Toeplitz matrix M satisfy ∀i − j = i′ − j ′, Mij = Mi′j ′
and there are m + n − 1 free bits in a Toeplitz matrix of
size m × n. We give an example of the Toeplitz hashing

020353-13

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

matrix as follows:

M =

⎛

⎜⎜⎝

1 0 1 1 0 · · ·
0 1 0 1 1 · · ·
0 0 1 0 1 · · ·
...

. . . · · ·

⎞

⎟⎟⎠

nh(e)×n

. (C1)

As shown before, if Alice and Bob randomly choose a
Toeplitz matrix of size nh(e) × n for error correction, the
efficiency converges to the Shannon limit very quickly
when n is large.

Now, we can apply classical error correction to the quan-
tum case. Let us start with quantum bit-error correction.
The parity hashing on the raw key bit strings can be imple-
mented by a series of CNOT gates between the data qubits
and ancillary EPR pairs, as shown in Fig. 5, which is a con-
crete example of the quantum bit-error-correction part in
Fig. 1(a). Alice and Bob can obtain the parity information
by measuring the ancillary qubits. The measurement result
of one ancillary qubit will reflect 1 bit of parity information
of the data qubits. The measurement results on Alice’s and
Bob’s ancillary pair will be different if there is an odd num-
ber of errors in these control qubits and the results will be
the same if there is no error or an even number of errors.
Alice sends the parity information to Bob, who then fig-
ures out the error syndromes and corrects the errors. The
property of the universal hash family guarantees that Bob
can correct all the errors with a small failure probability.

A similar approach can be employed for quantum phase-
error correction, with additional Hadamard gates before
hash operations and measurements.

In entanglement distillation, both bit- and phase-
error correction should be successfully implemented. The
two quantum error-correction procedures are carried out
sequentially. Hence, we need to make sure that these
two error-correction procedures do not interfere with each
other. Fortunately, by using ancillary EPR pairs, we can
decouple these two steps using the following lemma.

Lemma 5: (Bit- and phase-error-correction decoupling
[49]). By using EPR pairs as ancillary qubits, bit-error
correction has no effect on phase errors and vice versa.

Proof. Let us first show that the phase-error-measurement
results are the same with or without the bit-error-correcting
operations. The phase error is evaluated when both Alice
and Bob perform the X -basis measurement on the data
qubits, denoted by the measurement of the joint observable
σx ⊗ σx. From Fig. 1(a), we can see that the bit-error-
correcting operations on the data qubits are essentially I ,
σx, and σz. The operations I and σx will not change the
X -basis measurement outcomes. The operation σz comes
from the CNOT gate between the data and ancillary qubits.
Since Alice’s and Bob’s hash functions are the same, the
CNOT gates always appear in pairs. That is, if there is a
CNOT gate between Alice’s share of a data-qubit pair and

FIG. 5. An illustration of quantum bit-error correction. As an example, the circuit corresponds to the hashing matrix M in Eq. (C1).
The ith row of M corresponds to the CNOT control data qubits targeting on the ith ancillary qubit and the j th column of M corresponds
to the CNOT target ancillary qubits controlled by the j th data qubit. The measurement result of one ancillary qubit equals the XOR sum
of the Z-basis measurement results of the ancillary qubit and its controlling data qubits. By comparing the measurement results, Bob
can learn the 1-bit parity information of the data qubits. After knowing enough parity information on the data qubits, Bob can locate
the bit errors and correct them with the quantum gate σx. A similar circuit can be applied for quantum phase-error correction, with
additional Hadamard gates according to Fig. 1(a).

020353-14

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

(a) X

data

ancilla · · ·

=

(b) X

H H · · ·

⇒

(c) X

H

FIG. 6. A diagram showing the reason why bit-error correction does not change phase errors. In the showcase, we take a pair of
CNOT gates as an example. In the figures, we only depict the circuit on Alice’s side and the circuit is the same on Bob’s side. Here, the
control qubit is one of the data qubits and the target qubit is one of the ancillary qubits, as shown in Fig. 5. The equivalence of (a)–(c)
comes from the fact that σx = HσzH and H⊗2 |�+〉 = |�+〉.

an ancillary EPR pair, there will be a CNOT gate between
Bob’s share of the data-qubit pair and the ancillary EPR
pair. From the circuit equivalency shown in Fig. 6, we
can see that the σz operation always appears in pairs on
Alice’s and Bob’s data qubits. That is, the σz operation
will simultaneously flip Alice’s and Bob’s X -basis mea-
surement results, which leaves the measurement results
of σx ⊗ σx on the data-qubit pairs unchanged. Therefore,
quantum bit-error correction does not affect phase errors.

With the duality between the X and Z bases, using the
same arguments, we can also prove that the phase-error
correction will not affect bit errors. �

APPENDIX D: REDUCTION FROM QUANTUM
OPERATIONS TO CLASSICAL ONES

Now, we want to reduce the quantum operations to
classical ones, mainly following the Shor-Preskill secu-
rity proof [28]. By classical, we mean that Alice and Bob
can equivalently perform the operations after key measure-
ment, which then become classical data processing on key
bits. The key idea is to move the final measurement ahead
of quantum error correction. Then, bit-error correction
becomes classical bilateral error correction and phase-
error correction becomes privacy amplification. To do so,
we need to make sure that the dephasing operation �Z⊗n

in Eq. (11) caused by the final Z-basis measurement on
each side commutes with all the quantum error-correction
operations.

Looking back at Fig. 1(a), it is not difficult to see that
bit-error correction only consists of I , σx, and CNOT gates.

These quantum operations commute with the dephasing
operation �Z⊗n . Therefore, Alice and Bob can change
the order of Z-basis measurement and bit-error correction.
By doing so, quantum operations are replaced with corre-
sponding classical operations on the measurement results,
as shown in Fig. 7. For example, the σx gate becomes a
flip on classical bits and the CNOT gate becomes a classical
control-flip operation. Finally, quantum bit-error correc-
tion becomes classical bilateral error correction, a typical
information reconciliation method.

Quantum phase-error correction is more complicated
because it contains one more operation, the Hadamard
gate, which does not commute with the dephasing oper-
ation, �Z⊗n . Here, we follow the idea of the Shor-Preskill
security proof to reduce phase-error correction into classi-
cal privacy amplification [28].

First, in the quantum circuit shown in Fig. 1(a), we
combine the Hadamard gate together with the adjacent
Z-basis key-generation measurement, which becomes the
X -basis measurement. The phase-error-correcting opera-
tion on Bob’s side is essentially σx, which does not affect
the result of the X -basis measurement. Therefore, nei-
ther the correction operation nor the phase-error-syndrome
measurement is necessary and the circuit of quantum
phase-error correction becomes the one shown in Fig. 8(a).

Second, since Alice’s and Bob’s positions are now
symmetric, we focus on Alice’s side. We show that she
can replace the individual key measurement with a series
of joint X -basis measurements and still obtain an [n −
nh(ep)]-bit secure final key, as shown in Fig. 8(b). The
joint measurement can be represented by an n-bit vector

FIG. 7. The transformation from quantum bit-error correction to information reconciliation. The left-hand circuit is the quantum
bit-error-correction part in Fig. 1. The “Flip” gate means that Alice and Bob flip the corresponding classical bits. Bob calculates the
error syndrome using his parity information and that sent by Alice and then flips his erroneous bits to reconcile the key.

020353-15

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

(a) (b) (c)Alice or Bob

Alice or Bob

FIG. 8. (a) The reduced circuit from the phase-error-correction part in Fig. 1 by considering the following two facts: Hadamard+Z-
basis measurement = X -basis measurement; neither the identity nor the σx gate affects the X -basis measurement. Now, Alice’s and
Bob’s circuits become the same. (b) The reduction of Alice’s circuit: remove the measurement on the ancillary qubits since the results
do not affect the measurement on data qubits; replace individual X -basis measurements with joint X -basis measurements on data qubits;
and explicitly express the hash operation with the CNOT gates shown in Fig. 1(b) as an example. If the joint X -basis measurements
commute with the hash operation, the circuit in the red dashed box does not affect the measurements and hence can be removed. (c)
Further reduction of Alice’s circuit: remove the redundant circuit in the red dashed box and combine joint X -basis measurements with
the Hadamard gates, which become joint Z-basis measurements. Finally, Alice can obtain an n[1 − h(ep)]-bit secure key from the joint
Z-basis measurements in a QKD session.

�v, which measures the observable

O�v,x =
n⊗

i=1

σvi
x , (D1)

where the vi are the element values of �v. Here, we require
�vs to be linearly independent, so that the final key is still
secure after phase-error correction. Note that since the
key measurements differ from the ones in Fig. 8(a), the
obtained key bits may be different.

The effect of hash operations on the n data qubits is
either identity when the measurement outcome of the
ancillary qubit is 0 or a series of n-qubit operations con-
sisting of σz and I when the outcome is 1. For example,
the hash operation corresponding to the first row vector �m1
of the matrix in Eq. (C1) is an identity or

O �m1,z = σz ⊗ I ⊗ σz ⊗ σz ⊗ I · · · . (D2)

In general, we represent the operation corresponding to the
ith row vector �mi of the matrix M as follows:

O �mi,z =
n⊗

j =1

σ
Mij
z , (D3)

where Mij is the value of the element in the ith row and the
j th column of the matrix.

Normally, the operators in Eqs. (D1) and (D3) do not
commute because [σx, σz] �= 0. Fortunately, we have [σx ⊗
σx, σz ⊗ σz] = 0. To make sure that a joint X -basis mea-
surement commutes with a series of Z operations, we only
need to design the joint X -basis measurement such that the
number of qubits that are applied with the σz operation and
measured in the X basis is even. That is, �mi · �v = 0 holds,
∀i ∈ {1, 2, 3, . . . , nh(ep)}. This is equivalent to finding the

kernel of M . The kernel of the matrix M is defined as the
set of vectors such that

ker M = {�v : M �v = �0}. (D4)

In phase-error correction, the hashing matrix that we use
has a full rank. Therefore, the rank of ker M is n − nh(ep),
or, ker M can be constructed from [n − nh(ep)] linearly
independent vectors. We arrange these vectors in columns
and form a matrix, V, which is of size n × [n − nh(ep)].
We call the matrix V the dual matrix of M . Then, we can
design joint X -basis measurements according to this dual
matrix, where each joint measurement corresponds to a
column vector of V according to the correspondence in
Eq. (D1). By construction, these joint measurements all
commute with the hash operation.

Finally, the commutation property shows that the hash
operation will not affect the results of the joint X -basis
measurements. Then, Alice and Bob can remove the hash
operation along with the ancillary qubits. The joint X -basis
measurements can be further combined with the Hadamard
gate and become the joint Z-basis measurements, as shown
in Fig. 8(c). The measurement results of the joint Z-basis
measurements give an [n − nh(ep)]-bit secret key.

With the reduction, one can see that the ancillary EPR
pairs are unnecessary for phase-error correction, as shown
in Fig. 8(c). Does that mean that there is no cost of shared
private randomness in phase-error correction? Unfortu-
nately, the answer is no. The cost is reflected in the joint
Z-basis measurement. The number of final key bits is
determined by the number of joint Z-basis measurements,
which is limited by the kernel of the hashing matrix for
phase-error correction.

Meanwhile, the joint Z-basis measurement is compatible
with bit-error-correction reduction. After considering the
cost of shared private randomness in bit-error correction,

020353-16

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

the net gain of the secret key is n[1 − h(eb) − h(ep)] bits,
which matches the key rate in Eq. (10).

Here are a few notes on information reconciliation and
privacy amplification:

(1) We take the family of Toeplitz matrices as an exam-
ple here. The decoding for such random-Toeplitz-
matrix hashing is computationally hard in practice.
To bypass the hardness in information reconcili-
ation, more practical error-correcting codes, such
as the low-density parity-check code [50,51], are
used. For privacy amplification, Alice and Bob can
still adopt random-Toeplitz-matrix hashing, as the
decoding is unnecessary for phase-error correction.

(2) In general, the failure probability of error correc-
tion ε is a property of the hash family. But if Alice
and Bob can perform error verification, the fail-
ure probability of error correction is determined by
the verification process instead [18]. In this case,
the hash function can be prefixed and known to
Eve at the beginning. This is the case for informa-
tion reconciliation. Unfortunately, there is no way
to verify the result of privacy amplification, because
the virtual quantum phase-error correction is not
implemented in real life.

(3) The reduction from quantum phase-error correc-
tion to privacy amplification is different from Shor-
Preskill’s original argument, where the Calderbank-
Shor-Steane quantum error-correcting code is
adopted.

APPENDIX E: GLLP FRAMEWORK

In practical implementation, the devices may deviate
from the ideal assumptions in the security analysis. The
actual error rate may also vary from the prior estimation
from random sampling due to statistical fluctuations. We
need to take these issues into account in the security analy-
sis, where they affect the secure key rate given in Eq. (10).
Thus, in practice, we also need to modify the parame-
ter settings of the stream privacy-amplification scheme
accordingly. Here, we take the GLLP framework as an
example to show how the stream scheme can be combined
with existing approaches to handle the practical issues.

In Ref. [42], Gottesman et al. have established a general
framework for security analysis with realistic devices. In
this framework, Alice and Bob characterize their devices to
quantify the deviation from the ideal case. For this purpose,
Alice and Bob can perform a virtual measurement on the
devices and then, for each round, they tag the sifted key bit
as “good” if the virtual measurement projects to the ideal
case and “bad” if it is the orthogonal case. More generally,
Alice and Bob can label sifted key bits with an arbitrary tag
g and derive the corresponding phase-error rate eg

p . Then,

we can obtain the extended GLLP key-rate formula [52],

r ≥ −h(eb) +
∑

g

qg

[
1 − h(eg

p)
]

, (E1)

where eb is the bit-error rate and {qg} gives the ratio
of the sifted key bits with tag g, satisfying

∑
g qg = 1

and gq ≥ 0, ∀g. The first term on the right-hand side of
Eq. (E1) represents the cost of information reconciliation
and the second term corresponds to the ratio of privacy
amplification.

With this formula, we can directly employ stream pri-
vacy amplification to the GLLP framework. Here, we
still consider the case of performing information rec-
onciliation first and then privacy amplification in the
postprocessing. We denote the length of the sifted key
string as n. If Alice and Bob perform encryption in
information reconciliation, then in stream privacy ampli-
fication, the seed length is n

∑
g qgh(eg

p) and the size

of the hashing matrix is
[
n

∑
g qgh(eg

p)
]

× n. As for the
case where Alice and Bob do not perform encryption
in information reconciliation, the seed length will be
n

[
h(eb) + ∑

g qgh(eg
p)

]
and the size of the hashing matrix

will be
[
nh(eb) + n

∑
g qgh(eg

p)
]

× n in stream privacy
amplification. The remaining steps are the same as those
in Table III.

As we can see from this example, the new scheme is
highly portable. Given a QKD protocol in the presence of
practical issues, once the users can analyze the amount of
information leakage and obtain a good estimation, they can
carry out privacy amplification in a stream way. Thus, the
stream scheme is adequate to deal with practical issues.

[1] C. H. Bennett and G. Brassard, in Proceedings of the
IEEE International Conference on Computers, Systems and
Signal Processing (IEEE Press, New York, 1984), p. 175.

[2] A. K. Ekert, Quantum Cryptography Based on Bell’s
Theorem, Phys. Rev. Lett. 67, 661 (1991).

[3] C. H. Bennett, G. Brassard, and J.-M. Robert, Privacy
amplification by public discussion, SIAM J. Comput. 17,
210 (1988).

[4] U. Maurer, Secret key agreement by public discussion from
common information, IEEE Trans. Inf. Theory 39, 733
(1993).

[5] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure
quantum key distribution with realistic devices, Rev. Mod.
Phys. 92, 025002 (2020).

[6] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu,
J.-Y. Guan, Z.-W. Yu, H. Xu, and J. Lin, et al., Sending-or-
Not-Sending with Independent Lasers: Secure Twin-Field
Quantum Key Distribution over 509 km, Phys. Rev. Lett.
124, 070501 (2020).

020353-17

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1137/0217014
https://doi.org/10.1109/18.256484
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/PhysRevLett.124.070501

HUANG, ZHANG, and MA PRX QUANTUM 3, 020353 (2022)

[7] X.-T. Fang, P. Zeng, H. Liu, M. Zou, W. Wu, Y.-L. Tang,
Y.-J. Sheng, Y. Xiang, W. Zhang, and H. Li, et al., Imple-
mentation of quantum key distribution surpassing the linear
rate-transmittance bound, Nat. Photon. 14, 422 (2020).

[8] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L.
Zhang, D. Rauch, M. Fink, J.-G. Ren, and W.-Y. Liu,
et al., Satellite-Relayed Intercontinental Quantum Net-
work, Phys. Rev. Lett. 120, 030501 (2018).

[9] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D.
J. Gauthier, Provably secure and high-rate quantum key
distribution with time-bin qudits, Sci. Adv. 3, 00 (2017).

[10] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer,
and H. Yeh, in Quantum Information and Computation III
(International Society for Optics and Photonics, 2005), vol.
5815, p. 138.

[11] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W.
Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, and
J. F. Dynes, et al., The SECOQC quantum key distribution
network in Vienna, New J. Phys. 11, 075001 (2009).

[12] D. Stucki, M. Legre, F. Buntschu, B. Clausen, N. Felber, N.
Gisin, L. Henzen, P. Junod, G. Litzistorf, and P. Monbaron,
et al., Long-term performance of the SwissQuantum quan-
tum key distribution network in a field environment, New
J. Phys. 13, 123001 (2011).

[13] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui,
M. Takeoka, S. Miki, T. Yamashita, Z. Wang, and A.
Tanaka, et al., Field test of quantum key distribution in the
Tokyo QKD Network, Opt. Express 19, 10387 (2011).

[14] T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J.
Wang, H. Yin, K. Chen, and Z.-B. Chen, et al., Field test of
a practical secure communication network with decoy-state
quantum cryptography, Opt. Express 17, 6540 (2009).

[15] S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W.
Li, F.-X. Xu, Z. Zhou, Y. Yang, and D.-J. Huang, et al.,
Field test of wavelength-saving quantum key distribution
network, Opt. Lett. 35, 2454 (2010).

[16] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao,
J. Zhang, K. Chen, J. Yin, J.-G. Ren, and Z. Chen, et al.,
An integrated space-to-ground quantum communication
network over 4,600 kilometres, Nature 589, 214 (2021).

[17] J. Qiu, Quantum communications leap out of the lab, Nat.
News 508, 441 (2014).

[18] C.-H. F. Fung, X. Ma, and H. F. Chau, Practical issues in
quantum-key-distribution postprocessing, Phys. Rev. A 81,
012318 (2010).

[19] S.-K. Liao, J. Lin, J.-G. Ren, W.-Y. Liu, J. Qiang, J. Yin,
Y. Li, Q. Shen, L. Zhang, and X.-F. Liang, et al., Chinese
Phys. Lett. 34, eid090302 (pages 0) (2017).

[20] Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai,
W. Zhang, W.-Z. Liu, C. Wu, and X. Yuan, et al., Device-
independent quantum random-number generation, Nature
562, 548 (2018).

[21] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer, Gen-
eralized privacy amplification, IEEE Trans. Inf. Theory 41,
1915 (1995).

[22] X. Ma, F. Xu, H. Xu, X. Tan, B. Qi, and H.-K. Lo, Postpro-
cessing for quantum random-number generators: Entropy
evaluation and randomness extraction, Phys. Rev. A 87,
062327 (2013).

[23] M. Hayashi and T. Tsurumaru, More efficient privacy
amplification With less random seeds via dual univer-
sal hash function, IEEE Trans. Inf. Theory 62, 2213
(2016).

[24] T.-Y. Chen, X. Jiang, S.-B. Tang, L. Zhou, X. Yuan, H.
Zhou, J. Wang, Y. Liu, L.-K. Chen, and W.-Y. Liu, et al.,
Implementation of a 46-node quantum metropolitan area
network, NPJ Quantum Inf. 7, 134 (2021).

[25] H. Zhou, K. Lv, L. Huang, and X. Ma, IEEE/ACM Trans
Netw p. 1 (2022).

[26] N. Lütkenhaus and X. Ma, System and Method for Quantum
Key Distribution (2016), U.S. Patent 9,294,272.

[27] H. K. Lo and H. F. Chau, Unconditional security of quan-
tum key distribution over arbitrarily long distances, Science
283, 2050 (1999).

[28] P. W. Shor and J. Preskill, Simple Proof of Security of the
BB84 Quantum Key Distribution Protocol, Phys. Rev. Lett.
85, 441 (2000).

[29] C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum
Cryptography without Bell’s Theorem, Phys. Rev. Lett. 68,
557 (1992).

[30] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and
J. Oppenheim, in Proceedings of the Second International
Conference on Theory of Cryptography (Springer-Verlag,
Berlin, Heidelberg, 2005), TCC’05, p. 386.

[31] R. Renner and R. König, in Proceedings of the Sec-
ond International Conference on Theory of Cryptogra-
phy (Springer-Verlag, Berlin, Heidelberg, 2005), TCC’05,
p. 407.

[32] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W.
K. Wootters, Mixed-state entanglement and quantum error
correction, Phys. Rev. A 54, 3824 (1996).

[33] X. Ma, Z. Zhang, and X. Tan, (2011), arXiv preprint
ArXiv:1109.6147.

[34] D. Yang, K. Horodecki, and A. Winter, Distributed Pri-
vate Randomness Distillation, Phys. Rev. Lett. 123, 170501
(2019).

[35] C.-H. F. Fung, X. Ma, H. F. Chau, and Q.-y. Cai, Quantum
key distribution with delayed privacy amplification and its
application to the security proof of a two-way deterministic
protocol, Phys. Rev. A 85, 032308 (2012).

[36] W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus,
Security of quantum key distribution using a simplified
trusted relay, Phys. Rev. A 91, 012338 (2015).

[37] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, Sim-
ple constructions of almost k-wise independent random
variables, Rand. Struct. Alg. 3, 289 (1992).

[38] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium:
Quantum coherence as a resource, Rev. Mod. Phys. 89,
041003 (2017).

[39] X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, Quantum
random number generation, npj Quantum Inf. 2, 1 (2016).

[40] T. Tsurumaru, Equivalence of three classical algorithms
with quantum side information: Privacy amplification, error
correction, and data compression, IEEE Trans. Inf. Theory
68, 1016 (2022).

[41] M. Koashi, Simple security proof of quantum key distribu-
tion based on complementarity, New J. Phys. 11, 045018
(2009).

020353-18

https://doi.org/10.1103/PhysRevLett.120.030501
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1117/12.606489
https://doi.org/10.1088/1367-2630/11/7/075001
https://doi.org/10.1088/1367-2630/13/12/123001
https://doi.org/10.1364/OE.19.010387
https://doi.org/10.1364/OE.17.006540
https://doi.org/10.1364/OL.35.002454
https://doi.org/10.1038/s41586-020-03093-8
https://doi.org/10.1038/508441a
https://doi.org/10.1103/PhysRevA.81.012318
https://doi.org/10.1038/s41586-018-0559-3
https://doi.org/10.1109/18.476316
https://doi.org/10.1103/PhysRevA.87.062327
https://doi.org/10.1109/TIT.2016.2526018
https://doi.org/10.1038/s41534-021-00474-3
https://doi.org/10.1126/science.283.5410.2050
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/10.1103/PhysRevA.54.3824
https://arxiv.org/abs/1109.6147
https://doi.org/10.1103/PhysRevLett.123.170501
https://doi.org/10.1103/PhysRevA.85.032308
https://doi.org/10.1103/PhysRevA.91.012338
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1109{%}2Ftit.2021.3126160
https://doi.org/10.1088/1367-2630/11/4/045018

STREAM PRIVACY AMPLIFICATION... PRX QUANTUM 3, 020353 (2022)

[42] D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill,
Security of quantum key distribution with imperfect
devices, Quantum Info. Comput. 4, 325 (2004).

[43] C. H. Bennett, G. Brassard, C. Crépeau, and M.-H. Sku-
biszewska, in Advances in Cryptology—CRYPTO ’91,
edited by J. Feigenbaum (Springer-Verlag, Berlin, Heidel-
berg, 1992), p. 351.

[44] C.-Y. Wei, X.-Q. Cai, B. Liu, T.-Y. Wang, and F. Gao,
A generic construction of quantum-oblivious-key-transfer-
based private query with ideal database security and zero
failure, IEEE Trans. Comput. 67, 2 (2017).

[45] R. Renner, Security of quantum key distribution, Int. J.
Quantum Inf. 6, 1 (2008).

[46] G. Brassard and L. Salvail, in Advances in Cryptology
EUROCRYPT’93 (1994), vol. 765, p. 410.

[47] N. Lütkenhaus, Estimates for practical quantum cryptogra-
phy, Phys. Rev. A 59, 3301 (1999).

[48] X. Ma, C.-H. F. Fung, J.-C. Boileau, and H. Chau, Uni-
versally composable and customizable post-processing for
practical quantum key distribution, Comput. Secur. 30, 172
(2011).

[49] H.-K. Lo, Method for decoupling error correction from
privacy amplification, New J. Phys. 5, 36 (2003).

[50] R. Gallager, Low-density parity-check codes, IRE Trans.
Inf. Theory 8, 21 (1962).

[51] D. J. MacKay, Good error-correcting codes based on
very sparse matrices, IEEE Trans. Inf. Theory 45, 399
(1999).

[52] X. Ma, Ph.D. thesis, Department of Physics, University of
Toronto (2008), also available in ArXiv:0808.1385.

Correction: A proof change request for Eq. (11) was not imple-
mented properly and has been rectified.

020353-19

https://doi.org/10.1109/TC.2017.2721404
https://doi.org/10.1142/S0219749908003256
https://doi.org/10.1103/PhysRevA.59.3301
https://doi.org/10.1016/j.cose.2010.11.001
https://doi.org/10.1088/1367-2630/5/1/336
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/18.748992
https://arxiv.org/abs/0808.1385

	I.. INTRODUCTION
	II.. PRELIMINARIES
	A.. QKD protocols and security definition
	B.. Security analysis based on quantum error correction

	III.. STREAM PRIVACY AMPLIFICATION
	A.. Reduction of quantum error correction
	B.. Application I: Enhancing the security of trusted-relay QKD network
	C.. Application II: Information-theoretic toolbox for classical encryption analysis
	D.. Application III: Stream randomness extraction

	IV.. DISCUSSION AND CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: ERROR CORRECTION
	. APPENDIX B: REUSE OF HASH FUNCTION
	. APPENDIX C: QUANTUM ERROR CORRECTION WITH HASHING
	. APPENDIX D: REDUCTION FROM QUANTUM OPERATIONS TO CLASSICAL ONES
	. APPENDIX E: GLLP FRAMEWORK
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

