
PRX QUANTUM 3, 020346 (2022)

Kinetically Constrained Quantum Dynamics in Superconducting Circuits

Riccardo J. Valencia-Tortora ,1,* Nicola Pancotti ,2,† and Jamir Marino1

1
Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz D-55099, Germany

2
AWS Center for Quantum Computing, Pasadena, California 91125, USA

 (Received 17 December 2021; accepted 5 May 2022; published 2 June 2022; corrected 1 July 2022)

We study the dynamical properties of the bosonic quantum East model at low temperature. We show
that a naive generalization of the corresponding spin-1/2 quantum East model does not possess analogous
slow dynamical properties. In particular, conversely to the spin case, the bosonic ground state turns out to
be not localized. We restore localization by introducing a repulsive interaction term. The bosonic nature of
the model allows us to construct rich families of many-body localized states, including coherent, squeezed,
and cat states. We formalize this finding by introducing a set of superbosonic creation-annihilation opera-
tors that satisfy the bosonic commutation relations and, when acting on the vacuum, create excitations that
are exponentially localized around a certain site of the lattice. Given the constrained nature of the model,
these states retain memory of their initial conditions for long times. Even in the presence of dissipation,
we show that quantum information remains localized within decoherence times that are tunable with the
parameters of the system. We propose an implementation of the bosonic quantum East model based on
state-of-the-art superconducting circuits, which could be used in the near future to explore the dynamical
properties of kinetically constrained models in modern platforms.
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I. INTRODUCTION

Robust storage of quantum information and decoher-
ence induced by external baths are two important limiting
factors that mitigate against a large-scale adoption of mod-
ern quantum technologies [1]. The storage of quantum
information is a challenging task, as most interacting quan-
tum systems tend to thermalize quickly. Once equilibrium
is reached, the properties of the initial configurations are
hard to retrieve, as they are ergodically scattered among
exponentially many degrees of freedom [2]. In order to
overcome this obstacle, many proposals have attempted
to confine quantum information into conserved or quasi-
conserved quantities [3–19]. These proposals range from
strongly disordered many-body localized [20,21] or glassy
systems [22–29], in which thermalization is impeded by
the presence of disordered potentials, to “fracton” systems,
in which dynamical constraints induce fragmentation on
the space of reachable configurations [30–37], and quan-
tum scarred systems, in which certain classes of initial

*Corresponding author. rvalenci@uni-mainz.de
†This work was done prior to joining Amazon

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

states show coherent oscillations for times longer than
typical relaxation times [38–51]. Most of these phenom-
ena often rely on such delicate properties that any weak
coupling with an external environment could potentially
become detrimental.

Quantum kinetically constrained models (KCMs) have
recently attracted attention due to their distinctive dynam-
ical properties. Motivated by the slowness of their clas-
sical counterparts, researchers have started to investigate
their quantum generalizations, such as the quantum East
model, the quantum Fredricksen-Andersen model, and
others [52–58].

In this work, we explore the low-temperature dynamical
properties of the bosonic quantum East model, a gener-
alization of the spin-1/2 model studied in Refs. [26,59],
in which spin excitations can only be created on sites to
the “east” of a previously occupied one. Our contributions
can be summarized as follows. (i) We show that repulsive
density-density interactions are necessary to entail local-
ization in the ground state, in contrast to East models with
a finite-dimensional local Hilbert space. (ii) We exploit the
properties of the localized phase and the bosonic nature
of the model, to construct families of non-Gaussian many-
body states that are useful for quantum-information pro-
cessing. (iii) We illustrate how localization enhances the
robustness of these states against decoherence. (iv) Finally,
we propose an implementation of the bosonic quantum
East model based on chains of superconducting qubits.
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In the spin-1/2 case, evidence has been provided in sup-
port of a dynamical transition from a fast thermalizing
regime to a slow nonergodic one [26,59]. In particular,
in Ref. [59], it has been argued that the slow dynamics
is a byproduct of the localized nature of the low-energy
eigenstates of the model. Namely, the corresponding wave
functions contain nontrivial excitations only on a small
compact region of the lattice and they are in the vacuum
state everywhere else. This has direct consequences for the
dynamical properties of the system, as the localized states
can be used as building blocks to construct exponentially
many “slow” states in the size of the system.

The dynamical transition observed in Ref. [59] is not
guaranteed to survive in the bosonic case. In fact, we pro-
vide strong numerical evidence that this is not the case
for the most naive bosonic generalization of the spin-1/2
model. In order to restore localization at low temperature,
we consider a modified model in which density-density
interactions—absent in the bare spin case—play a cru-
cial role. More precisely, we show that the ground state
remains localized as we increase the finite cutoff of the
local Fock-space dimension only in the presence of repul-
sive interactions. We support our findings by combining
numerical and analytical approaches. Within the local-
ized phase, the ground state is well approximated by a
product state for any value of interaction. It is therefore
well approximated by a matrix product state, making large
system size and local Fock-space dimension numerically
accessible (cf. Secs. II and III).

The bosonic generalization of the spin-1/2 East model
opens up a number of directions, including the construction
of many-body versions of archetypal states that are rele-
vant for quantum-information applications such as coher-
ent states, squeezed states, and cat states [60]. These states
possess the same properties as their single-mode counter-
parts, although they are supported on a few neighboring
sites. We provide a formal description of these objects
by proposing a simple adiabatic protocol that defines a
set of superbosonic creation-annihilation operators (Sec.
IV). These operators fulfill the canonical bosonic com-
mutation relations and they are exponentially localized
in the neighborhood of a given site on the lattice. This
allows us to construct an effective noninteracting theory
at low temperature in terms of these operators, in which
the Hamiltonian is reminiscent of the l-bit construction in
many-body localization (MBL) [61–64].

In Sec. V, we couple the system to different noise
sources and, via a detailed numerical analysis, we show
that localized states retain some memory of their initial
condition even in the presence of strong dissipation (see
Fig. 1). First, we consider the effects of dephasing noise
coupled to bosonic occupations, which preserves the “East
symmetry” (see the definition in Sec. II). In this scenario,
the localized states are barely altered by the environment.
We show that the fidelity between the time-evolved state

(a)

(b)

FIG. 1. (a) A chain of driven superconducting qubits cou-
pled via exchange interaction g. In the red box, we write the
low-energy effective interaction between the j th and (j + 1)th
superconducting qubits. (b) A sketch of a localized state sub-
ject to external noise (arrows). The visibility of the initial peak
with respect to the rest of the system [measured by the imbal-
ance I(t)] decays exponentially with a time τ much larger
than the characteristic operational time scales of state-of-the-art
superconducting circuits.

and the initial state decays exponentially with a long deco-
herence time, controlled by the parameters of the Hamilto-
nian, the initial state, and the strength of the noise. Second,
we consider the effects of particle losses that break the
“East symmetry.” As expected in this situation, the magni-
tude of the fidelity decays exponentially fast in time, with
a decoherence time that is parametrically small in the loss
rate. It is important to stress that as the localized states have
nontrivial structure only on a small support, any external
noise that does not act in their immediate vicinity leaves
them essentially invariant. This set of noise-resilient prop-
erties renders the many-body states studied in this work
qualitatively different from localization induced by disor-
der, which is inherently fragile to decoherence (for studies
on MBL systems coupled to a bath or external noise, see
Refs. [65–70]). In particular, in Sec. VI we argue that our
localized states can be manipulated on time scales shorter
than the characteristic relaxation and decoherence times of
superconducting qubit wires.

In fact, our proposal for an implementation of the
bosonic quantum East model based on superconduct-
ing qubits is one of the key findings of this work. In
recent years, unprecedented quantum control of interact-
ing superconducting qubits with microwave photons has
been reached in circuit-QED platforms [71–79]. These
circuits allow quantum-information-processing tasks and
the quantum simulation of paradigmatic light-matter inter-
faces. Superconducting Josephson junctions allow us to
introduce nonlinearity in quantum electrical circuits, which
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is a key factor in protecting quantum resources, by making
these platforms resilient to noise and errors. This is a key
factor of merit for any superconducting qubit, ranging from
the established transmon to, for instance, the more recently
developed superconducting nonlinear asymmetric induc-
tive element (SNAIL) [80,81]. Here, we consider a chain
of superconducting qubits (see Refs. [80,82–89]), which
can be described as anharmonic oscillators, coupled via a
hopping term (cf. Fig. 1). In the limit of weak coupling
and low anharmonicity, we find an effective description of
such superconducting qubits array in terms of the bosonic
quantum East chain.

The paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian of the model, enumerate its symme-
tries, and compare it to previous works on similar models.
In Sec. III, we explore the localization properties of the
ground state of the model. In particular, we show when the
transition point is independent of the size of the cutoff of
the local Fock-space dimension and how the localization
length behaves in the proximity of the transition. On the
localized side of the transition, we quantitatively compare
results extracted with tensor-network methods and mean
field, and we show that they are in excellent agreement.
In Sec. IV, we introduce a description in terms of super-
bosonic operators, which allows us to generalize coherent,
squeezed, and cat states. In Sec. V, we study the robust-
ness of these localized states against noise source. In Sec.
VI, we present the implementation of the Hamiltonian for
the bosonic quantum East model, based on a chain of
superconducting qubits.

II. BOSONIC QUANTUM EAST MODEL

We investigate the following Hamiltonian with open
boundary conditions:

H = −1
2

L∑

j =0

n̂j

[
e−s
(

âj +1 + â†
j +1

)
− εn̂j − Un̂j +1 − 1

]
,

(1)

where âj and â†
j are bosonic annihilation and creation oper-

ators acting on site j , respectively; e−s controls the con-
strained creation and annihilation of bosons; ε is the on-site
density-density interaction; and U is the nearest-neighbor
density-density interaction.

As discussed in Sec. I, Eq. (1) is a kinetically con-
strained “East” model. The unidirectional constrained fea-
ture has consequences for the accessible portion of the
Hilbert space by the dynamics. Namely, any initial state
with a product of vacua from the left edge up to a given
site in the bulk will exhibit nontrivial dynamics only on the
right side of the lattice after the first occupied site. For sake
of concreteness, let us consider the state |00100 . . . 0〉. Via
subsequent application of the Hamiltonian given in Eq. (1),

we have

|00120 . . . 0〉 . . .
↗

|00100 . . . 0〉 → |00110 . . . 0〉 → |001110 . . . 0〉 . . .
↘
|00100 . . . 0〉 . . . (2)

where → represents the action of the constrained creation
and annihilation of bosons at each step of perturbation the-
ory. The occupation of the first nonvacant site and of those
at its left cannot change as a consequence of the “East”
constraint. More formally, the Hamiltonian commutes with
the projectors:

P(n0, k) = P
⊗k−1

j =0
0,j ⊗ Pn0,k ⊗ 1

⊗j>k
j , (3)

where Ps,j = |s〉j j 〈s| is the projector on the Fock state with
s particles on site j , 1j is the identity acting on site j ,
and k and n0 are, respectively, the position and occupation
of the first nonvacant site. We can split the Hilbert space
into dynamically disconnected sectors Hn0,k, such that
the action of P(n0, k) is equivalent to the identity, while
the action of the other projectors gives zero. For exam-
ple, the state |00100 . . . 0〉 ∈ H1,2 (note that the first site
index is 0). Furthermore, since

∑L
k=0
∑∞

n0=1 P(n0, k) = 1,
these sectors {Hk,n0} constitute a complete and orthog-
onal basis of the whole Hilbert space H, namely H =⊕L

k=0
⊕∞

n0=1 Hn0,k.
In the following, we focus on a certain block specified

by k, n0, and the number of “active” sites L right next to the
kth one. Since the action of H on sites to the left of the kth
one is trivial, the index k is physically irrelevant for our
purpose and we therefore choose k = 0 without any loss
of generality. Exploiting this property, we write the Hamil-
tonian given in Eq. (1) as HL+1 =∑n0

HL+1(n0), where
HL+1(n0) is

HL+1(n0) = ĥ1+

− 1
2

L∑

j =1

n̂j

[
e−s
(

âj +1 + â†
j +1

)
− εn̂j − Un̂j +1 − 1

]
,

(4)

with ĥ1 ≡ − 1
2 n0

[
e−s
(

â1 + â†
1

)
− εn0 − Un̂1 − 1

]
and

n0 ∈ N+. Furthermore, since HL+1(n0) commutes with
the operators acting on the (L + 1)th site, we can rep-
resent it as the sum of an infinite number of commut-
ing terms HL+1(n0) =∑βr

Hβr
L (n0)⊗�

βr
L+1, where �β

L is
the projector over the eigenstate |βr〉 with eigenvalue
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βr = rU − e−2s/U of the operator
(
Un̂L+1 − e−s

(
âL+1 + â†

L+1

))
, where r ∈ N, and

Hβr
L (n0) = ĥ1+

− 1
2

L−1∑

j =1

n̂j

[
e−s
(

âj +1 + â†
j +1

)
− εn̂j − Un̂j +1 − 1

]

+ 1
2

n̂L
[
βr + εn̂L + 1

]
. (5)

In Sec. III, we focus on the properties of the ground state of
the Hamiltonian given in Eq. (5) within a certain symmetry
sector.

The Hamiltonian given in Eq. (1) can be linked to its
spin-1/2 version [59] by setting U = ε = 0 and replac-
ing the bosons with hard-core ones. Since the Hilbert
space of each spin is finite, the “East” symmetry is largely
reduced with respect to the bosonic case. Each symme-
try sector Hk,n0=1 is specified only by the position of the
first excitation, since n0 is bound to be zero or one. The
ground-state properties within a symmetry sector Hk,n0=1,
where the position k of the first nonempty site is again
irrelevant, have been investigated in Ref. [59]. It has been
observed that the probability of finding an occupied site in
the ground state decays exponentially fast around the first
occupied site when s > 0, namely

〈n̂j 〉 ∼ exp[−j /ξ(s)], (6)

where the expectation value is taken on the ground state
and we introduce the localization length ξ > 0. The local-
ization length ξ is the typical distance from the first occu-
pied site such that the state becomes a trivial product state
that is well approximated by the vacuum.

In Sec. III, we investigate the conditions for localization
of the ground state at finite values of s upon trading spins
(hard-core bosons) for bosons. Such generalization is not
taken for granted. The amplitude for “eastern” particle cre-
ation can now be enhanced by the prefactor n0, suggesting
that the transition may be qualitatively established when
(n0e−s) ∼ 1. This would imply a critical value sc ∝ log n0,
which is parametrically large in n0, pushing the extension
of the localized phase up to s → ∞. Nonetheless, we show
in Sec. III that a localized phase still occurs for s > 0
whenever repulsive interactions are included in Eq. (1).

III. LOCALIZATION TRANSITION

In this section, we show that the Hamiltonian in Eq. (5)
displays a localization-delocalization transition at finite s
and U > 0. We give numerical evidence corroborated by
analytical observations that repulsive interactions are nec-
essary to observe such a transition at finite s. We use the
inverse localization length ξ−1 controlling the decay of the

average occupation number in space [cf. Eq. (6)] as a proxy
for the transition.

In the following, we fix ε = 0 and the symmetry sector
βr=0 in Eq. (5), unless mentioned otherwise. The addi-
tional nonlinear term proportional to ε would complicate
the analysis from a technical standpoint without altering
the main contents of the paper. For the sake of clarity,
Appendix A shows that, for U = 0 and ε > 0, the local-
ization properties of the ground state remain qualitatively
similar to those discussed in the main text.

In order to investigate the properties of the ground state,
we resort to a combination of mean-field arguments, exact
diagonalization (ED), and density matrix renormalization
group (DMRG) methods [90]. Since we aim to explore
large system sizes, we mainly resort to the DMRG and we
use ED as a benchmark when both methods can be used.
Interestingly, we find that mean field is able to analytically
predict the location of the transition point obtained via the
DMRG.

We compute the ground state |ψ0(n0)〉 at fixed n0, s,
and U. We fix the system size at L = 15. This value
is sufficiently large to capture the localized tail of the
ground state, without relevant finite-size effects. Although
the local Fock space is infinite, in order to treat the model
numerically, we need to fix a finite cutoff �. We work
with Fock states |0〉 through |�〉, such that the spin-1/2
case of Ref. [59] is recovered at � = 1. In Appendix B,
we show how localization is only mildly dependent on
the sector selected by the occupation n0 of the zeroth site.
Accordingly, in the following, we set n0 = 1.

The Hamiltonian is one dimensional, local, and gapped
at finite �; therefore, its ground state can be efficiently
accessed via a matrix product state (MPS) formulation
of the DMRG [90]. The main source of error is given
by the finite cutoff �. Indeed, the properties of |ψ0(n0)〉
can change nontrivially as a function of �. More pre-
cisely, for any finite cutoff �, the model falls into the
class of localized systems studied in Ref. [59]. As a result,
|ψ0(n0)〉 is always localized for a large enough s at finite�
but this does not imply localization for � → ∞. Indeed,
although U > 0 makes the spectrum of the Hamiltonian
in Eq. (1) bounded from below, it does not ensure that its
ground state is still localized in space when s is finite. In
the following, we extract the � → ∞ limit via a scaling
analysis.

In Fig. 2, we show the average occupation number 〈n̂j 〉
as a function of site j for some values of s at fixed U = 1.
For s not large enough, the average occupation does not
change smoothly with the site j and it saturates the cut-
off �, meaning that there are strong finite-cutoff effects. In
contrast, for s large enough, the occupation decays expo-
nentially in j , matches Eq. (6) well, and does not change
upon increasing the cutoff �. The value of s at which this
change of behavior occurs depends on U, as we discuss in
more detail in this section.
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100

〈n̂j〉

s = −0.20
s = 0.05
s = 0.10
s = 0.20

FIG. 2. The average occupation number of the ground state for
different values of s at fixed nearest-neighbor density interaction
U = 1. We fix L = 15, a cutoff � = 30 to the maximal occu-
pation number, and n0 = 1. In the plot, we do not display the
occupation n0 of the zeroth site that fixes the “East symmetry”
sector. The dashed lines are the exponential fit, the slope of which
is −1/ξ , where ξ is the localization length [cf. Eq. (6)].

In order to check the effects of a finite� cutoff, we com-
pute the probability of having k bosons on site j , namely
the expectation value of the projector Pk,j = |k〉j j 〈k|,
where |k〉j is the Fock state with k particles on site j . In
Fig. 3, we show 〈Pk,j 〉 as a function of k and j for typ-
ical localized and delocalized ground states, respectively.
The results in the delocalized phase are not reliable, since
the observable suffers finite-cutoff effects. Instead, in the
localized phase,

〈Pk,j 〉 ∼ e−k/ξF ,j , (7)

with ξF ,j > 0 for any site j . The exponential decay in the
localized phase sheds additional light on the fact that the
system is well described by a finite effective cutoff (for
additional details, see Appendix C).

For each value of U and �, the inverse of the local-
ization length goes from values smaller than or equal to
zero to positive values as s increases. We identify the
region where 1/ξ ≤ 0 as the delocalized phase, while the
region where 1/ξ > 0 is identified as the localized phase.
In the delocalized phase, strong finite cutoff effects can
lead to a positive localization length ξ . In order not to
mistakenly identify these points as belonging to the local-
ized phase, we fix a threshold λ > 0 and for each � and
U we identify the transition point sc(U,�) as the value
of s such that 1/ξ ≤ λ and 1/ξ > λ for s smaller and
greater than sc(U,�), respectively. We choose λ ≈ 10−1.
The results are weakly affected by this choice of λ. Further-
more, the precise location of the transition point sc(U,�)

1 4 7 10 13
j

0

5

10

15

20

25

30

s = −0.20

〈Pk,j〉

1 4 7 10 13
j

10−12

10−10

10−8

10−6

10−4

10−2

100

FIG. 3. The probability of having k ∈ [0,�] bosons on site
j ∈ [1, L] in the ground state. In the plot, we do not display
the occupation n0 of the zeroth site that fixes the “East symme-
try” sector. We fix L = 15, � = 30, n0 = 1, and U = 1. In the
left panel, we consider a typical configuration in the delocalized
phase (s = −0.20). The cutoff is saturated over many sites. The
staggered feature is due to the repulsive nearest-neighbor inter-
action. In the right panel, we consider a typical localized ground
state (s = 0.05). Along each site j , the probability of having k
bosons, 〈Pk,j 〉, drops exponentially fast with k. The light color
means that the value is smaller than 10−12.

is beyond the scope of this work, since we are interested
in engineering states deep in the localized phase, as we
discuss extensively in Sec. IV.

As discussed above, in the delocalized phase, results are
strongly dependent on the cutoff, since the average occu-
pations always saturate their artificial upper bound. This
circumstance allows us to draw only qualitative conclu-
sions on the physics at s < sc in the case of the bosonic
East model (� → ∞).

In Fig. 4, we show the inverse of the localization length
ξ swiping s for different values of� at fixed U. For U = 0,
the transition point sc(U = 0,�) always increases with �.
Instead, when U > 0, the transition point converges to a
finite value independent of � for � → ∞. In the inset of
Fig. 4, we show the numerically extracted transition point
sc(U,�) as a function of � and U. For U > 0, it is possi-
ble to extract a finite value of sc(U) ≡ lim�→∞ sc(U,�).
Instead, for U = 0, the transition point scales as sc(U =
0,�) ∝ log(�), suggesting that in the actual bosonic sys-
tem we have sc(U = 0) = ∞, meaning that there is no
transition. Therefore, whenever U > 0, the system under-
goes a delocalized-localized transition at finite sc(U). In
Fig. 5, we show the inverse of the localization length ξ
as a function of s for different values of U at fixed �.
The transition point sc depends on the competition between
the dynamical term, controlled by e−s, and the nearest-
neighbor density term, proportional to U. The former
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FIG. 4. The inverse of the localization length ξ in a system of
L = 15 “active” sites in the symmetry sector n0 = 1 and βr=0.
The main plot shows the inverse of the localization length ξ−1

as a function of s for different values of � ∈ [1, 30] and U.
The darker lines correspond to larger values of �. The square
is the mean-field estimate of sc in the bosonic case (� = ∞).
The inset shows the behavior of sc(U,�) as a function of �
for U = 0 (red) and U = 0.1 (blue). The circles correspond to
numerically extracted values from the DMRG results, while the
continuous lines are the mean-field estimate sc ≈ log(1/

√
U),

which matches the numerics at large �.

favors the delocalization of the state, while the latter favors
its localization. Indeed, in the U → 0 limit, we provide
evidence that the bosonic system is always delocalized
if s < ∞. Instead, in the large-U limit, the Hamiltonian
is approximated by U

∑
i n̂in̂i+1 + n̂i, the ground state of

which in a specific symmetry sector at given total particle
number is simply |n0〉|00 . . . 0〉.

The role of the interaction term U in the localization
of the bosonic system can be appreciated in a mean-field
treatment. We project the Hamiltonian into the manifold of
coherent product states |φ〉 =⊗L

j =1 |αj 〉j , with âj |αj 〉j =
αj |αj 〉j . We evaluate the Hamiltonian given in Eq. (4) in
this basis:

〈φ|H(n0)|φ〉 = −1
2

L∑

j =0

|αj |2
(
2e−sαj +1 − U|αj +1|2 − 1

)
,

(8)

where |αj |2 is the average number of particles in
the coherent state at site j . From unidirectional-
ity of the interaction, we can write 〈φ|H(n0)|φ〉 =

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
s

0

1

2

3

4

5

6

7
1/ξ

10−1 100

U

0

2
localized

delocalized

sc(U)

U = 0.10
U = 0.20
U = 0.40
U = 0.60
U = 1.00

FIG. 5. The inverse of the localization length ξ in a system of
L = 15 “active” sites in the symmetry sector n0 = 1 and βr=0.
We fix the cutoff � = 30. The main plot shows the inverse of
the localization length ξ−1 as a function of s for different val-
ues of U. We plot the error bars on top of each point. In the
inset, we plot the transition point sc(U) as a function of U.
The dots represent the extracted sc(U) ≡ lim�→∞ sc(U,�). The
dashed line is the mean-field estimate for the transition point
sMF

c (U) = log(1/
√

U).

− 1
2

∑
j |αj |2hj (αj +1, s, U), where hj (αj +1, s, U) = (2e−s

αj +1 − U|αj +1|2 − 1
)
. For energetic stability the effective

field hj (αj +1, s, U) on site, j should be negative:

(
2e−sαj +1 − U|αj +1|2 − 1

)
< 0 ⇒

⇒ s > log
(

2αj +1

1 + U|αj +1|2
)

≡ sc(αj +1). (9)

Since the system does not conserve the number of parti-
cles, there can be an unbounded number of excitations in
the ground state within a fixed symmetry sector. Therefore,
in order to have localization at a mean-field level, it is nec-
essary that Eq. (9) holds for any value of αj +1 ∈ [0, ∞),
namely s > maxαj +1 sc(αj +1), and for all sites. For U > 0,
such a condition is satisfied if s > log(1/

√
U), which turns

to be in very good agreement with the DMRG numerical
findings (see Fig. 5). Instead, for U ≤ 0, there is no finite
value of s that fulfills Eq. (9) for all αj +1.

The excellent agreement between the DMRG and the
mean-field analysis can be explained by observing that the
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ground state |ψ0〉 (excluding the zeroth site, which fixes
the symmetry sector) obtained via the DMRG is
well approximated via a product state, namely |ψ0〉 ≈⊗L

j =1 |φj 〉. To further investigate the nature of the
state |ψ0〉, we consider the correlator �j ≡ (〈n̂j n̂j +1〉 −
〈n̂j 〉〈n̂j +1〉). We use this operator as a proxy for non-
Gaussian correlations. We compare �j computed on the
ground state obtained via the DMRG and the one com-
puted assuming that the same state is Gaussian in the
operators {â(†)j }L

j =1, using Wick’s theorem. As shown in
Appendix D, the closer we are to the transition point
sc, the more the state develops non-Gaussian features at
distances j � ξ . On the contrary, deep in the localized
phase, the Gaussian ansatz captures the actual correla-
tions at all sites well. Indeed, in the large-s limit, the
Hamiltonian turns out to be diagonal in the number basis,
namely H(s � 1) ∼∑j (n̂j n̂j +1 + n̂j ), the ground state of
which is |n0〉|00 . . . 0〉, which is a product state of Gaussian
states (excluding the zeroth site, which fixes the symmetry
sector).

The localized tail can be explained in a more intuitive
way via the adiabatic theorem. Indeed, the Hamiltonian is
gapped in the localized phase when U > 0; therefore, we
can adiabatically connect two ground states within it. In
particular, we can link any localized ground state to the
one at s = ∞. This choice is particularly convenient since
the Hamiltonian is diagonal in the number basis at s =
∞, H(s → ∞) =∑j =1(Un̂j n̂j +1 + n̂j )/2 and its ground
state at the fixed symmetry sector is simply |n0〉

⊗L
j =1 |0〉j .

Then, the evolution with the adiabatically changing Hamil-
tonian will dress the initial site with an exponentially
localized tail. In Sec. IV, we further exploit the adiabatic
theorem to design the many-body version of a variety
of states that are relevant in quantum-information setups,
such as coherent states, cat states, and squeezed states.

IV. LOCALIZED-STATE ENGINEERING

In Sec. III, we have discussed the localization proper-
ties of the ground state of the bosonic quantum East model
within each symmetry sector specified by the occupation
n0 of the first nonvacant site. In this section, we show that
the ground states of different symmetry sectors are con-
nected via bosonic creation and annihilation operators. We
use this infinite set of localized states to construct the local-
ized versions of cat, coherent, and squeezed states that are
relevant for quantum-information purposes. These states
share the same properties as their single-mode counter-
parts, although they are supported on a few neighboring
sites toward the East as the ground states.

Starting with a given symmetry sector fixed by n0, our
aim is to find operators A and A† that obey the bosonic
canonical commutation relations

[
A,A†

] = 1, with the

defining property

(
A†)n0 |0〉 = N |n0〉 ⊗ |ψ0(n0)〉 := N |̃n0〉, (10)

where |ψ0(n0)〉 is the localized tail of the ground state at
fixed symmetry sector n0 and N is a constant. In other
words, by acting n0 times on the bosonic vacuum state with
the operator A†, we aim to retrieve the localized ground
state of the Hamiltonian in Eq. (1) in the symmetry sec-
tor with n0 particles on the first nonvacant site. From now
on, we refer to these operators as superbosonic creation
and annihilation operators since, in contrast to single site
annihilation and creation operators, they act on a localized
region of the system, by creating or destroying a bosonic
localized tail along the chain. Likewise, we refer to the
localized ground states |̃n0〉 as superbosons.

In order to find an explicit form for such operators, we
employ the adiabatic theorem. From numerical evidence,
our Hamiltonian is gapped within the whole localized
phase (see Fig. 6). Therefore, there exists a slow tuning
of s that enables us to connect two localized ground states
at fixed values of U and n0. We consider such a unitary
transformation U(s, U) linking the ground state for s = ∞
with the target one at s > sc(U) in a fixed symmetry sec-
tor specified by the occupation n0 of the first nonvacant

FIG. 6. The gap of the Hamiltonian in Eq. (5) as a func-
tion of s ∈ [0.5, 4] for different values of the occupation n0 of
the first nonempty site. The inset shows the maximum matrix
element maxn Vn(s)/n0 ≡ maxn〈ψn(s)|V|ψ0(s)〉/n0 of the pertur-
bation V =∑j n̂j (âj +1 + â†

j +1) between the nth excited state and
the ground state at fixed s. We fix a system size L = 6, cutoff
� = 3, and nearest-neighbor density-density interaction U = 1.
The transition point is at sc(U = 1) ≈ 0. The results are weakly
affected (of the order of few percent) by the finite cutoff � for
s � 2.
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site. We fix s = ∞ as our starting point since the Hamilto-
nian is diagonal in the number operator when s → ∞ and
its ground state is simply the tensor product |n0〉 ⊗j ≥1 |0〉j .
By the adiabatic theorem, the unitary operator takes the
following form [91,92]:

U(s, U) = T exp
[
−i
∫ T

0
dtH (s(t))

]
, (11)

where T indicates the time-ordering operator and s(t) is
a function that interpolates from s(t = 0) = ∞ and s(t =
T) = s. The function s(t) has to be chosen such that it
satisfies [91,92],

1
�(t)2

max
n�=0

∣∣〈
n(t)|Ḣ(t)|
0(t)〉
∣∣� 1, (12)

at all times t. In Eq. (12), the state |
n(t)〉 is the nth excited
eigenstate of the Hamiltonian computed at time t; Ḣ(t)
is the time derivative of the Hamiltonian, which encodes
the information about the specific protocol; and, finally,
�(t) ≡ E1(t)− E0(t) is the gap at time t. For a reasonably
fast protocol, we require �(s) ∼ O(1) in the parame-
ter regime of interest. We write H [s(t)] = H(s = ∞)+
J (t)V, where H(s = ∞) =∑j (n̂j + Un̂j n̂j +1)/2, and V =
∑

j n̂j (âj +1 + â†
j +1) is the coupling that we adiabatically

switch on through the time-dependent protocol J (t) =
−e−s(t)/2. The time derivative of the Hamiltonian then
reads Ḣ(t) = J̇ (t)V. Let us focus on the perturbation V and
the gap � at first and then on the specific protocol J (t).
In Fig. 6, we show the gap of the Hamiltonian and the
maximum matrix element maxn Vn(s) ≡ 〈ψn(s)|V|ψ0(s)〉
connecting the ground to the nth excited state as a func-
tion of s at fixed U. Within the localized phase, the gap is
O(1) and the maximum matrix element maxn Vn(s) ∼ n0,
where n0 is the occupation of the first nonempty site fix-
ing the symmetry sector. Due to the kinetic constraint, the
largest matrix element maxn Vn(s) is between the localized
ground state and the second localized state perturbatively
close to the product states |n0100 . . . 〉 (note that this is
not necessarily the first excited state). Therefore, the lead-
ing contribution comes from the first few sites, since the
other terms are exponentially suppressed in the localiza-
tion length of |
0〉. Let us consider, as a possible adiabatic
protocol, the linear ramping J (t) = −e−st/(2T), where t ∈
[0, T], with T as the total duration time. From Eq. (12),
the total time T has to satisfy T � n0e−s. Recall that we
set the on-site bare frequency of the bosons as our energy
scale and therefore the time T is expressed in that unit
as well. In Sec. VI, we propose a possible experimental
implementation of the bosonic quantum East model based
on superconducting qubits. The typical on-site bare fre-
quency of superconducting qubits is O(GHz), leading to

T � (n0e−s)ns ∼ 1ns, which is within the typical coher-
ence time of O(1 μs) of state-of-the-art superconducting
qubits [71].

For s(t) that satisfies Eq. (12), we obtain

U(s, U)|n0〉0

L⊗

j =1

|0〉 = eiθ |̃n0〉, (13)

where θ is a phase acquired during the adiabatic time
evolution [91,92]. Using |n0〉0 =

(
â†

0

)n0 |0〉/√n0! and
U(s, U)|00 . . . 0〉 = |00 . . . 0〉, we obtain

(
A(s, U)†

)n0 |̃0〉 = eiθ
√

n0!|̃n0〉, (14)

where |̃0〉 ≡ |00 . . . 0〉 and A(s, U)† = U(s, U)â†
0U(s, U)†.

We can straightforwardly generalize Eq. (14) taking
into account the position j starting from which we
want to embed the state |̃n0〉. We define Aj (s, U)† =
U(s, U)â†

j U(s, U)†, the action n0 times of which on the

bosonic vacuum generates the state |0〉⊗�<j
� ⊗ |̃n0〉. Dif-

ferently from the generic interacting case, the dressed
operator A(†)

j (s, U) acts nontrivially in a region exponen-
tially localized around j . The operator Aj (s, U)(†) satisfies
the bosonic commutation relations, since they are con-
nected via a unitary transform to the bare bosonic operators
â(†)j . Therefore, they are bosonic operators. As anticipated,
we call the operators Aj (s, U)(†) superbosonic annihila-
tion(creation) operators.

Since the transition point sc is essentially independent
of the value of n0 (see Appendix B), we can design a pro-
tocol that obeys the adiabatic theorem for any initial state
|n0〉 ⊗ |0 . . . 0〉. Furthermore, since these states belong to
dynamically disconnected symmetry sectors, Hk=0,n0 , for
any values of s and U, it is possible to adiabatically evolve
them independently of each other. Therefore, any lin-
ear combination of initial states turns under the adiabatic
protocol into

U(s, U)
∑

n0

cn0 |n0〉 ⊗ |0 . . . 0〉 =
∑

n0

cn0

(
A(s, u)†

)n0 |̃0〉

=
∑

n0

cn0eiθ(n0,s,U,T) |̃n0〉,

(15)

where θ(n0, s, U, T) is the phase acquired during the adi-
abatic time evolution. As discussed in Appendix B, deep
in the localized phase the spectrum depends linearly on
n0, with small corrections. Since the phase acquired dur-
ing the adiabatic evolution depends on the energy of the
given state during the protocol, we have θ(n0, s, U, T) ∼
n0f (s, U, T), where f (s, U, T) is a function that is depen-
dent on the specific protocol. This has important con-
sequences for the state engineering that we discuss in
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the following. As an example, let us consider as initial
state of the adiabatic preparation the coherent state |α〉 ≡
|α〉0

⊗
j ≥1 |0〉j , where

|α〉0 =
∞∑

n=0

e−|α|2/2αn

√
n!

|n〉0. (16)

Using Eq. (15), the state |α〉 turns into

U(s, U)|α〉 =
∞∑

n=0

e−|α|2/2αn

√
n!

eiθ(n,s,U,T) |̃n〉

=
∞∑

n=0

e−|α′|2/2α′n
√

n!
|̃n〉, (17)

where α′ = αeif (s,U,T). In Fig. 7, we compute the overlap
between U(s(t), U)|α〉 and the superbosons |̃n(s(t), U)〉 for
different values of α at the initial time t = 0 and at the
final time t = T of the adiabatic transformation. At the ini-
tial time, we have U(s(0), U)|α〉 = |α〉 and |̃n(s(0), U)〉 =

1 3 5 7 9
n

−0.4

−0.2

0.0

0.2

0.4

t = 0

〈n|α〉

1 3 5 7 9
n

t = T

〈ñ|U(s, U)|α〉

real part (numerical)
imaginary part (numerical)

real part (analytical)
imaginary part (analytical)

FIG. 7. At t = 0, the system is prepared in a single-body
coherent state |α〉 = |α〉0

⊗L
j =1 |0〉j , where |α〉0 is a coherent

state on the first site with α = 1.5. At time t ≥ 0, we apply the
adiabatic protocol defined in Eq. (11) to the state |α〉 up to time
t = T, obtaining |̃α′〉. In the left panel, we compute the probabil-
ity amplitudes 〈n|α〉, where |n〉 = |n〉0

⊗L
j =1 |0〉j is an eigenstate

of the number operator n̂0. The data (symbols) match the ampli-
tudes of a single-site coherent state with α = 1.5 (continuous
and dashed line). In the right panel, we compute the probabil-
ity amplitudes 〈̃n|U(s, U)|α〉, where |̃n〉 is a superboson [cf. Eq.
(10)] with n excitations on the first site. The data (symbols) match
the amplitudes of the localized version of a coherent state defined
in Eq. (17) well, with α′ = 1.5e1.42i (continuous and dashed line).

|n〉 ⊗ |00 . . . 0〉. At the final time, we have |̃n(s(T), U)〉 =
|̃n〉. In Fig. 7, the overlaps are in very good agreement with
Eq. (17) and we obtain the desired state in Eq. (17) with
a fidelity ≈ 0.9994 for α = 1.5. We expect that when α is
large, the fidelity achieved by the protocol becomes small,
since corrections to the linear dependence of θ(n, s, U, T)
from n become important. We call the localized version of
a coherent state |̃α〉 ≡ U(s, U)|α〉 a supercoherent state.

Analogously, we perform the same analysis considering
as initial state a cat state |C〉 on site j = 0. Indeed, since
the phase factor eif (s,U,T) does not depend on α, given a cat
state

|C〉
⊗

j>1

|0〉j = 1
N
(|α〉0 + eiφ| − α〉0

)⊗

j>1

|0〉j , (18)

where N is a normalization constant, its localized ver-
sion is

|C̃〉 = 1
N
(|α̃′〉 + eiφ| − α̃′〉) , (19)

where |C̃〉 ≡ U(s, U)|C〉 and α′ = αeif (s,U,T). We call |C̃〉 a
supercat state.

We can extend Eq. (17) to states of the form

|ψ〉 = |00 . . . 0〉 ⊗
( ∞∑

n=0

ρnβ
θn|n〉j

)
⊗ |00 . . . 0〉, (20)

where ρn ∈ R and β, θ ∈ C. Indeed, if we apply the adi-
abatic protocol to the state defined in Eq. (20), the phase
acquired can be absorbed into β. Coherent states, cat states,
and squeezed states all fall into the class described in Eq.
(20). In other words, using the adiabatic protocol, not only
can we engineer the localized versions of states such as
coherent and squeezed states but we can do so preserving
their single-mode properties.

For instance, the localized versions of coherent and
squeezed states can be implemented either via the adia-
batic time evolution or the application of an operator M
that is linear or quadratic in the superbosonic operators A.
The operator M can be obtained applying the adiabatic
protocol to its single-site counterpart M , namely M =
U(s, U)MU(s, U)†. For instance, we define the dressed
displacement operator,

D(α) = exp
(
αA†−α∗A

)
, (21)

where α ∈ C is the displacement parameter, and the
dressed squeezed operator,

S(ξ) = exp
[

1
2
(
ζ ∗A2 − h.c.

)]
, (22)

where ζ ∈ C is the squeezing parameter, the action of
which on the vacuum creates a supercoherent and super-
squeezed state, respectively. However, the most natural
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way to prepare such states is by starting from their
single-mode version and then adiabatically turning on the
off-diagonal term ∝ e−s in the Hamiltonian. Note that these
states are Gaussian with respect to the superbosonic oper-
ators A(†) and not with respect to the bare operators â(†).
We call these states super-Gaussian.

We find that superbosons |̃n0〉, with different n0 and
the same position j of the first nonvacant site, are con-
nected via the operators A(†)

j . We see that their localized
feature makes their energies approximately evenly spaced
as a function of n0 (cf. Appendix B). The evenly spaced
energies of different ground states and the fact that the dif-
ferent ground states are connected via a bosonic operator
Aj (s, U)(†) resemble the features of a quadratic Hamil-
tonian, such as the one-dimensional harmonic oscillator.
Adding up these properties, the action of the interacting
Hamiltonian H(s, U) in Eq. (1) in the manifold of the
ground states is approximatively equivalent to a free theory
in the superbosonic operators Aj (s, U)(†), namely

H(s, U) ≈
+∞∑

j =−∞
ε0Aj (s, U)†Aj (s, U), (23)

the eigenstates of which are
⊗+∞

j =−∞(Aj (s, U)†)kj |0〉,
where kj ∈ [0, ∞). The effective Hamiltonian in Eq. (23)
captures the action of the full Hamiltonian Eq. (1) on a
superboson |̃n〉 well up to a certain n that is parametrically
large in s and U, since corrections to the evenly spaced
feature of the ground states’ energies become important
as n increases. Moreover, the effective Hamiltonian in Eq.
(23) neglects the interaction between neighboring super-
bosons. Therefore, in the infinite set of eigenstates of Eq.
(23), only those given by superbosons separated by a large
number of empty sites with respect to the typical local-
ization length ξ approximate eigenstates of the original
model well (up to corrections that are exponentially small
with the distance of two superbosons). For instance, the
state A1(s, U)†Aj �ξ (s, U)†|0〉, which describes two far-
localized excitations, is an eigenstate of the effective theory
in Eq. (23) and, approximately, of the original Hamiltonian
in Eq. (1). Instead, the state A1(s, U)†A2(s, U)†|0〉, which
describes two nearly localized excitations, is an eigenstate
of Eq. (23) with energy 2ε0, while it is not an eigenstate of
the original model in Eq. (1), since we are neglecting the
contribution coming from the interacting part of the Hamil-
tonian. Despite these limitations, the effective Hamiltonian
in Eq. (23) captures the equilibrium properties in the local-
ized phase and the dynamical features of states such as the
supercat state and the supersqueezed state well when the
interacting part between superbosons can be neglected. In
this regard, the properties of the localized phase of quan-
tum East models are reminiscent of the l-bit construction
in MBL [61–64].

Let us consider a supercat state |ψ(t = 0)〉 = |C̃〉
defined in Eq. (19) as an initial state in order to test the

effective quadratic theory in Eq. (23). We evolve it and
compute the fidelity

F(t) = |〈ψ(t)|ψ(t = 0)〉|2. (24)

As shown in Fig. 8, the fidelity displays almost per-
fect oscillations at short times, followed by a drop and
almost perfect revivals. The short-time behavior is com-
patible with a rotation of the supercat state in the dressed
phase space X̃0 = (A0 + A†

0) and P̃0 = −i(A0 − A†
0), as

expected from the effective Hamiltonian in Eq. (23). We
can approximately compute the dynamics of the supercat
state |C̃〉 generated by Eq. (23) as

e−iHt|C̃〉 ≈ 1
N
(
|̃α(t)〉 + eiφ| − α̃(t)〉

)
, (25)

where α(t) = α(t = 0)e−iε0t. The state in Eq. (25) is a
rotating supercat state in the dressed space. From Eq. (25),
we can estimate the expected fidelity. In Fig. 8, we com-
pare the expected value and the numerical results. The
former matches the numerical results up to times para-
metrically large in s and 1/α. On the one hand, nonlinear
corrections are suppressed the more the system is local-
ized. On the other, corrections to the linear dependence of
the energies 〈̃n|Ĥ |̃n〉 become important the larger n is or,
equivalently, α, leading to dephasing processes [93]. The
revivals can be explained considering nonlinear effects;
indeed, perfect revivals are observed for single-mode cat
states with self-Kerr interaction [94] (for a circuit-QED
implementation, see Ref. [95]). Differently from the lat-
ter case, we have an extended state and nearest-neighbor
density-density interactions. As a consequence, pushing
the simulations to longer times we observe no perfect
revivals as in the case of single bosonic modes with
Kerr nonlinearities. Such behavior might be captured by
improving the effective theory introduced in Eq. (23),
adding nonlinearities in the basis of superbosonic degrees
of freedom. This is beyond our current scope and therefore
left as a potential interesting follow-up.

We can extend these dynamical properties to any state
prepared via the adiabatic protocol starting from a state of
the form given in Eq. (20). Indeed, these states evolve anal-
ogously to the supercat state under the effective quadratic
theory defined in Eq. (23). The super-Gaussian states fall
into this class. Once again, we highlight that these states
are Gaussian with respect to the superbosonic operators
A(†) but not with respect to the bare operators â(†).

We have discussed the application of the adiabatic proto-
col to a single-site state embedded in the vacuum; however,
this extends directly to more general initial states. For
instance, we could have started from a product state made
of single-body states separated by a large number of empty
sites, with respect to the localization length ξ , or from a
superposition of those. At the end of the protocol, each one

020346-10



KINETICALLY CONSTRAINED QUANTUM DYNAMICS. . . PRX QUANTUM 3, 020346 (2022)

0 25 50 75 100 125 150
t

0.00

0.25

0.50

0.75

1.00
F(t)

FIG. 8. The coherent dynamics of a supercat state with α =
1.5. We simulate a system of size L = 15. We fix s = 1 and U =
1. We show the dynamics of the fidelity F (dark black line). The
light black line is the expected value from the effective quadratic
theory in Eq. (23) with a numerically extracted ε0 ≈ 0.43.

will be dressed independently of the others. Therefore, the
final state will be made of localized states concatenated one
after the other.

V. EFFECTS OF DEPHASING AND LOSSES

In this section, we investigate the dynamical properties
of the localized states introduced in Sec. IV when coupled
to the environment. Here, we study the effects of two dif-
ferent couplings with an external bath, namely a global
dephasing due to a noise coupled to the local densities,
which commutes with the “East” symmetry, and global
losses, which break the “East” symmetry. Both of these
couplings are experimentally relevant in superconducting-
circuit setups [71], which are at the core of the experi-
mental implementation we propose in Sec. VI. We provide
numerical evidence that local information is erased very
slowly when the environment is coupled via densities to
the system. We show how the characteristic time scales
depend on the parameters of the Hamiltonian, the initial
state, and the strength of the coupling to the environment.
On the contrary, we show that losses are highly disruptive
and that the time scales are dependent on the strength of
the coupling to the environment and the initial state, while
the underlying coherent dynamics does not play a substan-
tial role. At the end of the section, we show that the typical
couplings to the environment currently achieved in super-
conducting circuits are small enough to make the effects of
the coherent dynamics appreciable and observable in the
presence of losses.

We consider the following Linbland master equation:

˙̂ρ = −i[Ĥ , ρ̂] + γ
∑

j

(
L̂j ρ̂L̂†

j −
1
2

{
L̂†

j L̂j , ρ̂
})

, (26)

where ρ̂ is the state of the system, Ĥ is the Hamiltonian in
Eq. (1) with ε = 0, L̂j is the quantum jump operator acting
on site j , and γ is the corresponding rate. In order to effi-
ciently simulate the Lindbland master equation in Eq. (26),
we resort to the quantum trajectories algorithm, which is
based on defining the effective non-Hermitian Hamiltonian

Ĥeff = Ĥ − i
γ

2

∑

j

L̂†
j L̂j , (27)

and alternating the action of the Hamiltonian given in Eq.
(27) with the jump operators {L̂j } based on a stochastic
process (for the details, we refer to Refs. [96,97]). The
dynamics of any observable Ô result from averaging over
N different uncorrelated stochastic trajectories labeled by
η ∈ [1, N ],

〈Ô(t)〉 = 〈Oη(t)
〉
η

, Oη(t) = η〈ψ(t)|Ô|ψ(t)〉η, (28)

where |ψ(t)〉η is the state for a given stochastic trajec-
tory η ∈ [1, N ] at time t and 〈 · 〉η denotes the average
over the different trajectories. We resort to tensor-network
methods for performing the simulations (see Appendix E).
We consider two different jump operators, namely L̂j = n̂j

and L̂j = âj . The former corresponds to dephasing, while
the latter corresponds to losses. We choose such jump
operators in order to investigate the effects of the envi-
ronment when it preserves the “East” symmetry, as for the
dephasing process, or when it does not, as for the global
losses. Both situations are relevant in superconducting-
circuit setups [71]. We compute the observables averaging
over 1000–3000 stochastic realizations depending on the
value of γ and the jump operator.

We study the dynamical properties of superbosons |̃n〉
defined in Eq. (10), since they constitute the building
blocks of any localized state that we can engineer. Then,
we turn our attention to a paradigmatic superposition of
superbosons, namely the supercat state, providing argu-
ments to extend our findings to a class of states to
which supersqueezed and supercoherent states belong. We
consider as initial state |ψk(t = 0)〉 =⊗k−1

j =−∞ |0〉j ⊗ |̃n〉,
where the subscript k in |ψk(t = 0)〉 refers to the position
of the first site of the embedded superboson. Since |̃n〉 is
localized with localization length ξ [cf. Eq. (6)], we can
truncate its support to L′ � ξ sites. Thus, our initial state is

|ψk(t = 0)〉 = |0〉⊗
k−1
j =−∞

j ⊗ |̃n〉L′ ⊗ |0〉⊗
+∞
j =k+L′

j , (29)

where L′ is the size of the superboson support.
In a generic nonintegrable system, we expect informa-

tion about initial states encoded in local observables to
be washed out fast. Here, we want to study how local-
ization and slow dynamics instead protect the information
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encoded in local quantities. We compute the fidelity and
the imbalance. The fidelity [cf. Eq. (24)] provides global
information about the state and sets an upper bound on
the time dependence of the expectation value of any local
observable. Nonetheless, the fidelity is highly sensitive to
any local perturbation of the state. Indeed, it is enough to
have even a single occupied site far from the superbosons
|̃n〉 to make Eq. (24) negligibly small. Among all the pos-
sible local observables, we want to investigate if the initial
localized peak remains well resolved. We therefore com-
pute the imbalance between the occupation of the initial
peak and the second highest peak in the system, namely

I = nk − maxj �=k nj

nk + maxj �=k nj
, (30)

where k is the position of the first site of the embedded state
[cf. Eq. (29)]. The imbalance I ∈ [−1, 1] and for I > 0
the initial peak is the largest one in the system.

When dissipation enters in the form of a dephasing noise
coupled to the bosonic densities, the Lindbland equation
respects the “East” symmetry. The jump operators com-
mute with the operator in Eq. (3). Thus, the n excitations
at the first site of the superbosons |̃n〉 and the empty sites
to its left are conserved. Furthermore, since the the jump
operators are not able to generate excitations out of the vac-
uum and the state is exponentially localized, we can keep
only a few empty sites to the left of |̃n〉L′ without introduc-
ing relevant size effects. For the set of parameters that we
choose, restricting the superboson support to L′ ≈ 10 sites
and keeping only one empty site to its right turns out to be
sufficient. Thus, our initial state is

|ψ(t = 0)〉 = |̃n0〉L′ ⊗ |0〉. (31)

In Fig. 9, we show the dynamics of the fidelity and imbal-
ance for different values of s and noise strength γ keep-
ing U = 1, starting from the state in Eq. (31) with n0 =
1. The imbalance displays an exponential decay I(t) ∼
I(0)e−t/τ , with τ dependent on the initial state, the param-
eters of the Hamiltonian, and the coupling strength γ with
the external bath. The decay time τ increases the more the
system is in the localized phase and the larger is the initial
occupation n0, while it decreases with the noise strength γ
as τ ∝ 1/γ . Therefore, the time decay τ can be enhanced
by either tuning the parameters of the Hamiltonian or
embedding a superboson with n0 large [cf. Eq. (31)]. On
the one hand, increasing s or U helps to protect the local
memory at longer times, at the cost of making the initial
state less entangled. Indeed, in the s, U → ∞ limit, the
Hamiltonian tends to ∝∑i(Unini+1 + ni), the ground state
of which is a product state of eigenstates of number opera-
tors. On the other hand, we can exploit the bosonic nature
of the system and embed a superboson with a larger initial
n0, keeping s small and enhancing the initial state entangle-
ment. It is important to stress that despite the exponential

0 2 4 6 8
tγ

0.7

0.8

0.9

1.0
I(t)

s = 1.00 s = 1.50 s = 2.00

0 2 4 6 8
tγ

0.8

0.9
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FIG. 9. The time evolution of the imbalance [cf. Eq. (30)]
and fidelity [cf. Eq. (24)] starting from the state in Eq. (31)
and subjected to the dissipative dynamics given by Eq. (26)
with quantum jump operator L̂j = n̂j . We fix n0 = 1, U = 1, and
γ = 0.1 and we swipe across different values of s ∈ [1, 2]. The
initial value I(0) ranges from approximately 0.93 to approxi-
mately 0.99 as s increases. We show results for s = {1, 1.5, 2},
on top of which we plot the exponential fit (dashed black line).
Both plots are in linear-linear scale. The light area surrounding
the curves represents the statistical error due to the finite number
of sampled trajectories.

feature of the decay, the time scale τ is generally very large
with respect to the time scales of the coherent dynamics
of the system. From Eq. (30), and inspecting the late-
times average occupation number, the initial peak remains
still well resolved and so does the information encoded
within it.

The fidelity decays exponentially fast in time F(t) ∼
e−t/τ ′

, with a decoherence time τ ′ dependent on the param-
eters of the Hamiltonian, the initial state, and the strength
of the noise. Analogously to the decay time τ of the
imbalance, the decoherence time τ ′ increases the more
the system is in the localized phase and decreases with
the noise strength γ as τ ′ ∝ 1/γ . Contrary to the imbal-
ance, the fidelity drops faster the larger is n0. Indeed,
the conserved initial occupation n0 pumps excitations on
the next site, reducing the typical coherent time scales
by approximately 1/(n0e−s) and effectively enhancing the
effects of the environment.

Under the action of single-body losses, the dynamics no
longer preserve the “East” symmetry. Indeed, losses can
deplete the occupation of the first site, which fixes the
“East” symmetry sector.

Since the vacuum is invariant under the action of losses
and coherent dynamics cannot create excitations to the
West of the initial embedded superboson, we can still con-
sider Eq. (31) as our initial state. In Fig. 10, we show the
dynamics of the fidelity and imbalance for different values
of n0, keeping U = 1, s = 1.5, and γ = 0.1 fixed. Losses
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FIG. 10. The time evolution of the imbalance [cf. Eq. (30)]
and fidelity [cf. Eq. (24)] starting from the state in Eq. (31), with
n0 ∈ {1, 3, 5}, and subjected to the dissipative dynamics given by
Eq. (26) with quantum jump operator L̂j = âj . We fix U = 1,
s = 1.50 (e−s ≈ 0.22), and γ = 0.1. The imbalance initial value
is I(0) ≈ 0.99. In the main figures, we show results for three
different values of n0 = {1, 3, 5}, on top of which we plot the
exponential fit (dashed black line). The imbalance and fidelity
decay as an exponential (the dashed lines are the associated fits).
Both plots are in linear-linear scale. The light area surrounding
the curves represents the statistical error due to the finite number
of sampled trajectories.

turn out to be detrimental to the initial state independent
of the parameters of the Hamiltonian. Instead, the height
of the initial peak plays a substantial role in enhancing the
conservation of the imbalance. Intuitively, if the first site n0
is highly occupied at time t = 0, it will require longer times
to drain all the particles. This leads to an initial plateaux in
the imbalance, followed by an exponential decay toward
the minimum value I(t → ∞) = −1. The decay is well
fitted by I(t) = (Ae−t/τ − 1

)
at long times, where τ ∝ 1/γ

is the relaxation time and A is a constant. The insensitiv-
ity of the time decay with respect to the parameters of the
Hamiltonian indicates that the slow dynamics does not pro-
vide additional protection against this type of coupling to
the environment. Indeed, the decay of the imbalance is due
to the emission of particles from the first occupied site,
which fixes the symmetry sector, and since the coherent
dynamics cannot create excitations on top of it the initial
peak is depleted in time ∝ 1/γ .

The fidelity drops to zero exponentially fast, as
expected, with a decay time that is parametrically small
in the occupation of the initial peak. Indeed, the higher
the peak is, the larger is the probability that the emission
occurs, which immediately produces a state orthogonal to
the initial one.

Despite losses being more detrimental with respect to
dephasing, we show at the end of the section that the coher-
ent dynamics takes place on time scales that are small with
respect to the relaxation time in typical superconducting

circuits (cf. Sec. VI for the experimental implementation
of the bosonic quantum East model).

Note that we can immediately extend our analysis to a
large variety of states. For instance, we can consider states
given by the superposition of superbosons embedded in
different regions of the systems, namely

|
〉 ∝ |ψk(t = 0)〉 + eiθ |ψs(t = 0)〉, (32)

where |ψk(t = 0)〉 is defined in Eq. (29), θ is a phase, and
|s − k| � ξ . These two states are weakly coupled by the
coherent and dissipative dynamics. In a first approxima-
tion, we can apply our analysis to each of them separately
and therefore predict their dynamics easily.

The extension of these results to superposition of super-
bosons embedded in the same support [cf. Eq. (15)] is less
trivial and depends on the specific coupling to the environ-
ment. For instance, a coupling that does not preserve the
“East” symmetry makes the different states dynamically
connected, likely leading to different results from the ones
observed for the single superbosons. On the other hand,
a coupling that preserves the “East” symmetry can also
lead to additional phenomena such as dephasing processes
between the superimposed states. Indeed, we observe that
coupling to the densities is also detrimental. We give fur-
ther details in Sec. V A, exploring the effects of local
dephasing in the system.

A. Local dephasing

We now investigate the effects of local dephasing in the
dynamical properties of a state given by the superposition
of superbosons embedded in the same support. Among
the possible choices, we consider a paradigmatic super-
Gaussian state, namely the supercat state, and then we
generalize.

We consider local dephasing due to noise coupled to the
densities (see, e.g., Ref. [98]). In the case of local dephas-
ing acting on a compact support S , the effective theory in
Eq. (27) turns into

Ĥeff = Ĥ − i
γ

2

∑

j ∈S
L̂†

j L̂j , (33)

where the summation is along the support S . We consider
L̂j = n̂j as the jump operator.

We study the impact of the dephasing as a function of
the strength γ and the extension of its support S . Since
the dephasing preserves the “East” symmetry, we can once
again focus on a system comprising a few sites without
introducing relevant finite-size effects. We initialize our
system in the state

|ψ(t = 0)〉 = |C̃〉L, (34)

where |C̃〉L is a supercat state [cf. Eq. (19)] with sup-
port L and average number of particles |α|2. A support

020346-13



VALENCIA-TORTORA, PANCOTTI, and MARINO PRX QUANTUM 3, 020346 (2022)

0 5 10 15 20
t

0.00

0.25

0.50

0.75

1.00
S = [1, 1]

0 5 10 15 20
t

S = [2, 2]

γ = 0.00
γ = 0.01

γ = 0.10
γ = 1.00

0 5 10 15 20
t

S = [3, 10]

F(t)

FIG. 11. The dynamics of the fidelity [cf. Eq. (24)] of a super-
cat state with α = 1.5 upon changing the noise strength γ and its
support S = [a, b], starting from site a and ending at site b. We
fix U = 1 and s = 1.5. The initial state is exponentially localized
around the site j = 1. The dephasing is highly disruptive only in
an exponentially localized region around the peak (see the first
two columns). Instead, if it acts on a region far from the local-
ized peak, it does not produce any appreciable effect at the scale
shown in the plots. The light area surrounding the curves rep-
resents the statistical error due to the finite number of sampled
trajectories.

of L = 10 turns out to be large enough for the parameters
explored (α = 1.50, s = 1.5, and U = 1). In Fig. 11, we
show the dynamics of the fidelity as a function of the
coupling strength γ and support S . The supercat state is
still localized in space for any γ and S . Nonetheless, the
coherence of the state is highly dependent on γ and S .
Indeed, local dephasing is highly disruptive in an expo-
nentially localized region around the peak, where the state
is mostly located. If, instead, the local dephasing acts on
a region far from the localized peak, it does not produce
any appreciable effect. More precisely, we estimate that the
typical time τ at which the embedded state is appreciably
affected by the noise scales as τ ∼ min|k−j |∈S 1/(γ 〈nj 〉) ∼
min|k−j |∈S e|k−j |/ξ /γ , where k is the site where the peak is
located. We numerically verify the polynomial dependence
of τ on γ . On the contrary, it is not possible to extract the
dependence on the support S with high enough accuracy
from the times explored, because of the slowness of the
decay.

Our findings can be extended to other channels that
do not necessarily preserve the “East” symmetry. For
instance, losses acting far from the localized peak will
not affect local information encoded in the localized state.
Furthermore, we expect that the observed dynamical prop-
erties can be easily extended to any state prepared via the

adiabatic protocol from a state of the form given in Eq.
(20), to which super-Gaussian states belong.

In this section, we have discussed the effects of dephas-
ing and losses, without much emphasis on the actual value
of the coupling strength γ to the environment in typical
superconducting circuits (cf. Sec. VI for the implementa-
tion). As previously mentioned, we set the on-site bare fre-
quency of bosons as our energy scale, which is O(GHz) in
typical superconducting circuits [71]. The typical strength
of the coupling to the environment γ is O(MHz) [71].
Therefore, γ ≈ 10−3 in our dimensionless units. As a con-
sequence, coherent dynamics take place on smaller scales
with respect to the operational times of typical supercon-
ducting platforms of O(1 μs), hinting that the physics of
localized states is potentially observable in state-of-the-art
experiments. Corroboration of this statement with more
quantitative calculations would require an ab initio study
of the dynamics of the architecture introduced in Sec. VI,
which constitutes an interesting follow-up project per se.

VI. SUPERCONDUCTING-CIRCUIT
IMPLEMENTATION

In this section, we propose an experimental implemen-
tation of the Hamiltonian in Eq. (1) in terms of a sim-
ple superconducting-circuit setup. We consider a chain of
driven superconducting qubits. A superconducting qubit
is basically a quantized LC oscillator with capacitance C
and nonlinear inductance L [71]. This nonlinear depen-
dence can be achieved via a Josephson junction working in
the superconducting regime without introducing undesired
dissipative effects [71,99,100]. In particular, we consider
here the SNAIL introduced in Ref. [81] as our building
block. We consider specifically the SNAIL parameters in
Ref. [101], where kinetically constrained terms (at just
two sites) are obtained using the second-order nonlinear-
ity ∝ (â†â†a + h.c.) of the SNAILs. Differently from Ref.
[101], we do not use the second-order nonlinearity of
SNAILs. Indeed, any superconducting qubit that can be
approximated as an anharmonic oscillator with positive
anharmonicity could be a suitable candidate for our setup
(e.g., the C-shunt flux qubit [102]).

We consider an array of L driven superconducting (SC)
qubits coupled via an exchange interaction as our starting
point. We retain all the energy levels of each SC qubit. The
Hamiltonian can be decomposed as a sum of three terms,
H = H0 + Hdrive + V, where

H0 =
L∑

j =1

ωj â†
j âj +EC

2
â†

j â†
j âj âj ,

Hdrive =
L−1∑

j =1

e−iαj t
(
�j â†

j +εj +1â†
j +1

)
+ h.c.,

V =
L−1∑

j =1

g
(

âj â†
j +1+h.c.

)
, (35)
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where â†
j (âj ) creates (destroys) an excitation in the j th SC

qubit; H0 is the bare Hamiltonian of the SC qubits with
qubit frequencies {ωj }L

j =1 and anharmonicity EC > 0 [71];
Hdrive describes the action of classical drive fields on the
bare SC qubits; and V describes hopping processes that can
be engineered by a common bus resonator [103] or a direct
capacitance [104]. An illustration of the scheme of Eq. (35)
is given in Fig. 1(a).

We work in the weak-coupling regime, g � |ωj −
ωj +1|, and in the low-anharmonicity limit, EC � |ωj −
ωj +1|, for all j . The former condition is necessary in
order to have far-detuned processes connected by V and
therefore to treat V in perturbation theory [105]. The low-
anharmonicity limit is necessary to retrieve a bosonic
model in the effective perturbative Hamiltonian achieved
after treating V with a Schrieffer-Wolf (SW) transformation
in the small-g limit. Each SC qubit j ∈ [1, L − 1] is driven
by a classical drive field of amplitude �j and frequency
αj . These classical drive fields give rise to the desired
interaction together with undesired single-site fields in the
low-energy effective Hamiltonian [106]. In order to get
rid of them, we add another drive field on each SC qubit
j ∈ [2, L] of amplitude εj and frequency αj −1 [107,108].

We are interested in exploiting the multilevel (bosonic)
structure of SC qubits. We do not reduce each component
of the system to a qubit. We therefore introduce the ladder
operators

âj =
∞∑

�=0

√
�+ 1|�, j 〉〈�+ 1, j | ≡

∞∑

�=0

ĉ�,j , (36)

where ĉ�,j is the ladder operator that destroys an excitation
in the (�+ 1)th level and creates an excitation in the �th
level on the j th SC qubit. Analogously, we can define its
Hermitian conjugate, ĉ†

�,j .
We work in the dispersive regime, g � �j ,j +1, where

�i,j = ωi − ωj . We perturbatively diagonalize the Hamil-
tonian H0 + V to second order in g via a SW transforma-
tion S [109]. The drive field terms in Hdrive are modified
by the same SW transformation. From now on, we neglect
terms of order O(g2�j /�

2
j ,j +1) and higher. We move to

the frame that rotates at the frequencies of the drives
and we neglect the fast-oscillating terms by employing
the rotating-wave approximation (RWA). Before detailing
the calculations, we discuss the physics of each term in
the Hamiltonian defined in Eq. (35). The bare Hamiltonian
H0 provides the necessary anharmonicity that we desire.
The perturbation V gives rise to the nearest-neighbor inter-
action, a renormalization of the bare energies of the SC
qubits, and some additional two-excitation processes. The
drive field yields the constrained terms n̂j (âj ±1 + â†

j ±1)

toward “East” and “West.” The time dependence of the
drive fields in the laboratory frame enables us to get rid

of the undesired processes, such as the two-excitation pro-
cesses and the “West” terms, passing in the rotating frame
of the drive fields and employing the RWA.

In order to find the explicit form of the SW transfor-
mation, we follow the prescription in Ref. [110]. First,
we compute η = [H0, V]; we consider η with arbitrary
coefficients as an ansatz for S. Finally, we fix these coef-
ficients, imposing the condition [S, H0] = −V. We obtain
(cf. Appendix F 1)

S =
L−1∑

j =1

∞∑

�,s=0

g

�̃�,j +1 − �̃s,j

(
ĉs,j ĉ†

�,j +1−ĉ†
s,j ĉ�,j +1

)
, (37)

where �̃�,j = (ωj +EC�): the first summation is along the
system, while the second summation is along all the lev-
els of the SC qubits. Using the Baker-Campbell-Hausdorff
expansion, the Hamiltonian in Eq. (1) after the SW trans-
formation reads

H̃ ≡ eSHe−S

≈ H0 + Hdrive + [S, Hdrive] + 1
2

[S, V] + O
(

g2�

�2

)
.

(38)

After lengthy yet standard calculations, we obtain H̃
explicitly dependent on the ladder operators ĉ(†)�,j introduced
in Eq. (36) and with coefficients dependent on the site and
internal levels (see Appendix F 2). Our aim is to write H̃
as a function of the bosonic operators â(†)j . We need to find
a regime in which the coefficients in H̃ are approximately
independent of the specific level, so that we can use Eq.
(36). These coefficients are similar to the one appearing in
Eq. (37). In order to make them level independent, we need

�̃�,j +1 − �̃s,j ≈ ωj +1 − ωj ≡ �j +1,j , (39)

which holds if |�− s| � |�j +1,j |/EC. Since the SC qubit
can have an infinite number of excitations, we have (�−
s) ∈ (−∞, +∞). This means that Eq. (39) cannot be sat-
isfied for all possible � and s if EC �= 0. Nonetheless, it
can be achieved up to a certain value N of � and s, such
that N � |�j +1,j /EC|. Therefore, the coefficients in H̃ sat-
isfy Eq. (39) up to the N th energy level, leading to a
bosonic Hamiltonian that approximates the action of the
full Hamiltonian to states with an occupation that is small
with respect to N (cf. Appendix F 3). The bosonic H̃ still
displays undesired processes, such as hopping and local
fields. We move to a rotating frame of reference via the
unitary transformation

U = exp

⎛

⎝it
L−1∑

j =1

αj n̂j +1

⎞

⎠ (40)
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and we neglect all the oscillating terms by employing the
RWA (cf. Appendix F 4). In doing so, we get rid of almost
all the undesired processes except for some local fields
at the sites j ≥ 2. These fields can be eliminated via the
additional drive fields of amplitudes {εj }, analogously to
what has been done in similar scenarios (see, e.g., Refs.
[107,108]). We tune their amplitudes such that they cancel
the undesired local terms. We obtain the matching con-
dition εj = g�j −1/�j −1,j , with j ≥ 2. This leads to the
effective Hamiltonian

H̃ =
L∑

j =1

ω̃j n̂j +EC

2
n̂j n̂j

+ 2g2EC

�2
j ,j +1

n̂j n̂j +1+g�j EC

�2
j ,j +1

n̂j

(
â†

j +1+âj +1

)
(41)

where ω̃1 = ω1−EC/2 + O(g2/�12) and ω̃j �=1 = ωj
−EC/2 − αj −1 + O(g2/�j ,j +1).

We now evaluate the couplings in Eq. (41), consider-
ing the SNAIL as our SC qubit and using the parameters
of Ref. [101]. We work in the parameter regime in which
the SNAILs Hamiltonian is given by H0 in Eq. (35). We
fix EC ≈ 150 MHz, g = 75 MHz and ωj ≈ 3 GHz. We
consider the classical drive fields with amplitude �j =
−100 MHz (the amplitude has to be negative to have the
correct sign for the constrained hopping), which can be
achieved by adding a π phase to the external drive fields.
Any real system is inevitably coupled to the environment
and SC circuits are no exception. In the context of SC cir-
cuits, two different time scales are defined, namely T1 and
T2 [71]. The time scale T1 is the typical time at which
the coupling with the environment leads excited states to
decay to lower-energy states. The time scale T2 quanti-
fies the coherence time of the system. For consistency
with the chosen parameters (taken from Ref. [101]), we
also consider, as T1 and T2, the values from Ref. [101],
which are T1,2 ≈ 1 μs. We fix the qubit frequencies ωj
and the drive field frequencies αj in order to satisfy: (i)
the dispersive regime, valid for g/�j ,j +1 � 1; (ii) the
low-anharmonicity limit, EC � �j ,j +1; (iii) the validity
of the RWA, namely |αj | � �j , |αj +1 − αj | � �j and
|αj +2 − αj | > g�j +2/�j +1,j +2; (iv) ω̃j ≈ ωj − αj −1 > 0
for j > 1, necessary in order to have localization; (v)
1/T1,2 small with respect to the typical energies in the
effective Hamiltonian in Eq. (41); and (vi) that the system
is in the localized phase.

The more stringent conditions are given by (ii) and
(v). A good trade-off between (ii) and (v) is obtained
at |�j ,j +1| ≡ � ≈ 5EC ≈ 750 MHz, for which the typ-
ical time scale of the kinetically constrained term is
approximately T1,2/2. We have g/�j ,j +1 ≈ 0.1, meaning
that (i) is reasonably satisfied. Condition (iii) is satisfied
by a staggered configuration of the drive fields with an

TABLE I. A possible configuration for the external classical
drive field frequencies {αj } and bare frequency {ωj } of SNAILs
for the experimental implementation of the bosonic quantum
East model in a system of size L = 5. For bigger system sizes,
it is enough to periodically repeat the configuration from site
j = 2 to j = 5. The other parameters are as follows: anharmonic-
ity EC = 150 MHz, bare capacitive coupling g = 75 MHz, and
classical drive field amplitude � = −100 MHz.

j = 1 j = 2 j = 3 j = 4 j = 5

αj (GHz) 0.75 1.6 0.65 1.7 0.75
ωj (GHz) 3 3.75 4.5 3.75 4.5

additional dishomogeneity between next-neighbor drive
field frequencies, for instance: αj = αj −1 + (−1)j (δ +
(j − 1)ζ ) for j ∈ [2, 4] and boundary condition α1 � �

(for larger systems, it is enough to periodically repeat
the configuration of the frequencies), with δ � �, α1 �
�, and ζ � g�/� ≈ 10 MHz. Condition (iv) is satis-
fied by a staggered configuration of the qubit frequencies
as well: ωj +1 = ωj + (−1)j� for j ≥ 2, ω2 = ω1 +�,
with boundary condition ω1 > α1. For instance, we can
consider α1 = 750 MHz, δ = 750 MHz, ζ = 10 MHz,
and ω1 = 3 GHz. These conditions lead to Eq. (41)
being almost translationally invariant (except for dishomo-
geneities in the frequencies ω̃j of the order of approxi-
mately 5%, which can be eliminated via a more fine-tuned
choice of {ωj }). Moreover, condition (vi) is satisfied for
this set of parameters. In Table I, we summarize a possible
set of parameters available in state-of-the-art supercon-
ducting circuits for implementing the bosonic quantum
East model.

VII. PERSPECTIVES

The implementation of a kinetically constrained East
model using superconducting circuits represents a bridge
between the two communities of circuit-QED and noner-
godic quantum dynamics. It has the potential to attract the
former toward fundamental questions regarding dynami-
cal phase transitions and to stimulate the latter toward the
search for quantum-information and metrological applica-
tions of constrained dynamics. Our explicit construction
of localized analogs of squeezed and cat states relying on
the East constraint represents a first stepping stone in this
direction.

A fruitful prosecution of this work is the study of an
analog of the mobility edge separating localized from delo-
calized states in the spectrum of East models (for the
mobility edge in MBL, see Refs. [20,21]). An under-
standing of how such a mobility edge scales with �

is essential for predicting the onset of dynamical transi-
tions in platforms with unidirectional constraints, as well
as of practical interest. For instance, a mobility edge at
finite energy density is a feature of direct relevance for
experimental realizations, since it would yield the
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conditions for performing efficient quantum manipulations
deep in the localized phase when finite-temperature or
heating effects are present. A related interesting question
is the survival of the effective integrable description of the
localized phase discussed in Sec. IV upon increasing the
density of energy above the ground state. This would have
implications for heat- and particle-transport features of the
East model in the nonergodic phase, which would be gov-
erned by the effective integrable description in Eq. (23), as
happens for MBL systems [111].

The insensitivity to noise acting away from localized
peaks could open up a path toward the study of the pro-
tection of spatially separated macroscopic superpositions
of superbosonic states. Given the slow decay of localized
wave packets in the presence of noise, one could conceive
the storage and noise resilience of long-lived many-body
entangled states in faraway regions, with applications to
quantum communication.

To conclude, we observe that the implementation dis-
cussed in Sec. IV may be easily adapted to retain kinetic
terms with both East and West symmetries. This could, for
instance, lead to the formation of localized modes at edges
of the wire, with exciting perspectives for novel forms of
topological states in kinetically constrained models that are
realizable with circuit QED. We are currently focusing our
research efforts in this direction.
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APPENDIX A: ROLE OF ON-SITE
DENSITY-DENSITY INTERACTION

In the main text, we focus on a simplified version of the
model without on-site density-density interactions, to keep
to a minimum the amount of technical details in the course
of the presentation. In the following, we address the role of

on-site density-density interactions, focusing on the local-
ization properties of the ground state and comparing with
the statements in the main text resulting from numerics
performed at U > 0 and ε = 0.

Starting from the Hamiltonian in Eq. (5), we consider
U = 0 and ε ≥ 0. For ε = 0, the model does not display
localization at finite s in the bosonic limit, as extensively
discussed in Sec. III. On the other hand, for ε > 0, the
ground state is localized for s > sc in the bosonic limit,
with sc being parametrically small in ε. We perform the
same scaling analysis as a function of the cutoff � dis-
cussed in Sec. III. In Fig. 12, we show the inverse of the
localization length ξ swiping s for different values of �
at fixed ε. The scaling analysis suggests that the transi-
tion point sc(�, ε) converges to a finite value independent
of � for � → ∞. The overall qualitative picture is there-
fore unaffected if one considers on-site or nearest-neighbor
nonlinearities.

A nonzero value of ε introduces, however, anharmonic
spacings between ground states with different values of
n0. Indeed, we have, for the energy of the ground state,
E(n0) ≈ n0/2 + εn2

0/2. This additional anharmonicity has
an impact on the adiabatic protocol discussed in Sec. IV,
since each adiabatically evolved state U |n0〉0 ⊗⊗j>0 |0〉j
in Eq. (15) would acquire a phase with a nonlinear
dependence in n0, which technically complicates state
preparation without altering the main physical message.
Nonetheless, it is still possible to tame the effect of this
nonlinearity by considering a small enough ε, at the cost
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1/ξ
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0

1
sc(ε, Λ)

= 0.1
= 0.2

FIG. 12. The inverse of the localization length ξ in a system of
L = 15 “active” sites in the symmetry sector n0 = 1, βr=0. The
main plot shows the inverse of the localization length ξ−1 as a
function of s for different values of � ∈ [1, 15] and ε at U =
0. The darker lines correspond to larger values of �. The inset
shows the behavior of sc(ε,�) as a function of � for ε = 0.1
(red) and ε = 0.2 (blue) at U = 0.
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of having a smaller e−s (larger s) and therefore working
effectively deeper in the localized phase. These types of
unnecessary technical complications are at the root of our
choice of working throughout the main text with ε = 0 and
U > 0.

APPENDIX B: PROPERTIES OF THE LOCALIZED
GROUND STATE UPON CHANGING n0

In this appendix, we discuss the properties of the ground
state upon changing the symmetry sector specified by the
occupation n0 of the first nonempty site. We show that
the transition point and the exponential decaying tail of
the ground-state occupation are weakly dependent on n0.
We discuss the dependence of the ground-state energy
on n0, which is relevant in the state preparation via the
adiabatic protocol discussed in Sec. IV.

We perform the same scaling analysis as a function of
the cutoff � discussed in Sec. III (see Fig. 13). We extract
the transition point sc for different values of n0 from the
inverse of the localization length ξ . The existence of a
finite critical point sc in the � → ∞ limit turns out to be
weakly dependent on the specific symmetry sector n0 at
fixed U. We investigate the dependence of the localized
tail of the ground state |ψ0(n0)〉 as a function of n0 (we
exclude the first site, which fixes the symmetry). To this
end, we compute |〈ψ0(n0 = 1)|ψ0(n0)〉|2, with n0 ≥ 1 (see
Fig. 14). We fix n0 = 1 as a reference since we want to see
whether or not the tail is weakly dependent on n0. All the

0.0 0.5 1.0 1.5 2.0 2.5
s

0
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4
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0.5
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sc(U,n0, Λ)

n0 = 1
n0 = 5
n0 = 10
n0 = 20
n0 = 30

FIG. 13. The inverse of the localization length ξ in a system
of L = 15 “active” sites upon changing s for different values of
n0 = 1. We fix U = 0.1. The main plot shows the inverse of the
localization length ξ−1 as a function of s for � = 30. The inset
shows the behavior of sc as a function of� for different values of
n0. The circles correspond to numerically extracted values from
DMRG results. The points are indistinguishable upon changing
n0 for � � 10.

101

n0

10−6

10−4

10−2

100

s = 1.20
s = 1.50

101

n0

s = 1.20
s = 1.50

|〈ψ0(n0 = 1)|ψ0(n0)〉|2

FIG. 14. The overlap of the exponential tail as a function
of n0 ∈ [2, 40] for two different values of U = {0.1, 0.2} and
s = {1.20, 1.50}. We choose these values of U and s since we
are not so deep in the localized phase. The more the system is
within the localized phase, the more the localized tails are weakly
dependent on n0.

ground states are computed by fixing � = 30. The over-
lap |〈ψ0(n0)|ψ0(n0 = 1)〉| strongly depends on s and U.
Indeed, the more the system is in the localized phase, the
more the exponentially localized tail is weakly dependent
on n0. Therefore, deep in the localized phase, |ψ0(n0)〉 is
approximately independent of the specific sector n0 and we
can write

|ñ0〉 ≡ |n0〉 ⊗ |ψ0(n0)〉 ≈ |n0〉 ⊗ |ψ0〉, (B1)

where |ψ0〉 is explicitly independent of n0.
The weak dependence of |ψ0(n0)〉 with respect

to n0 has consequences for the ground-state energy.
Indeed, the expectation value of the Hamiltonian
on Eq. (B1) is

E0(n0) ≡ 〈ñ0|Ĥ |ñ0〉 ≈ 1
2

n0 + O(n0e−1/ξ(n0)), (B2)

where 〈n̂j 〉 ∼ e−j /ξ(n0) since we are in the localized phase.
In Fig. 15, we give numerical evidence of Eq. (B2).

APPENDIX C: SCALING ANALYSIS IN �

In the main text, we show that the bosonic system dis-
plays a delocalized-localized transition at finite s if U > 0.
Here, we show that the ground state is not only localized
but is weakly dependent on the physical cutoff�. This pro-
vides quantitative proof that we can investigate the bosonic
system with a finite � in the localized phase.

We fix the symmetry sector n0 and (s > sc(U), U > 0)
in the localized phase. We compute |ψ0(�)〉 for different
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U = 0.2
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linear fit

FIG. 15. The energies of the ground state as a function of n0
for different values of U at fixed s = 1.5 > sc(U) and cutoff� =
15. The dashed lines are the linear fit. The more we are deep in
the localized phase, the more E(n0) ∝ n0.

values of �. We calculate 1 − |〈ψ0(�)|ψ0(�+ 1)〉|2 as a
function of � (see Fig. 16). The fidelity |〈ψ0(�)|ψ0(�+
1)〉|2 approaches 1 exponentially fast in �. The more the
system is in the localized phase and n0 is small, the faster
is the convergence. This gives the first evidence that the
ground state of the actual bosonic system is well described
with small effective cutoffs.

We compute the variance of the Hamiltonian given
in Eq. (1) over the ground state |n0〉0 ⊗ |ψ0(�)〉, taking
into account the bosonic nature of the original Hamilto-
nian in Eq. (1). This quantity is exactly zero if the state
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Λ

10−12
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10−6

10−3

100
s = 1.20

10 20
Λ

s = 1.50

n0 = 1
n0 = 5

n0 = 10
n0 = 20

n0 = 30

1 − |〈ψ0(Λ)|ψ0(Λ + 1)〉|2

FIG. 16. The scaling analysis of 1 − |〈ψ0(�)|ψ0(�+ 1)〉| as
a function of � at fixed U = 0.1 and s = {1.2, 1.5} for different
values of n0 ∈ [1, 30]. The dots and squares refers to the numer-
ical results obtained at s = 1.2 and s = 1.5, respectively. The
overlap tends exponentially fast to 1 in �. The decay is slower
as n0 increases at fixed s and U.

|n0〉0 ⊗ |ψ0(�)〉 is an eigenstate of H . We aim to see how
this quantity goes to zero as a function of �. In order to
do so, we write the Hamiltonian given in Eq. (1) as the
sum of two terms, H = H− + H+. H− acts on the Hilbert
space spanned by states with an occupation number up to
�, while H+ acts on the Hilbert space spanned by states
with an occupation number greater than �. We label the
sectors on which H± acts nontrivially as the H± sectors,
respectively. We apply the same procedure to the number
operator and the annihilation(creation) operator:

n̂ =
�∑

k=0

k |k〉 〈k| +
∞∑

k=�+1

k |k〉 〈k|

= n̂−+n̂+,

â =
�∑

k=0

√
k|k − 1〉〈k| +

∞∑

k=�+1

√
k|k − 1〉〈k|

= â−+â+. (C1)

The commutator [n̂−, n̂+] = 0, while [â−, â+] =√
�(�+ 1)|�− 1〉〈�+ 1| �= 0. This is because the oper-

ators â(†)± connect the two sectors H±. From Eq. (C1), we
straightforwardly obtain the expressions for H±:

H± = −1
2

∑

i

n̂i,±
[
e−s
(

â†
i+1,±+âi+1,±

)
+

− Un̂i+1,± − 1
]
. (C2)

In our numerical scheme, we fix a finite cutoff �. There-
fore, we are computing the ground state |ψ0(�)〉 of H−.
Since â± are noncommuting operators, the two Hamiltoni-
ans H− and H+ do not commute as well. Therefore, it is
not ensured that |ψ0(�)〉 is an eigenstate of the full Hamil-
tonian H . We compute the variance �H over |ψ0(�)〉 of
the Hamiltonian H = H− + H+,

�H = 〈H+H+〉 + 〈{H+, H−}〉 + 〈H−H−〉 − 〈H 〉2, (C3)

to check whether |ψ0(�)〉 is an eigenstate of H . The terms
in H± that preserve the sectors H± give a zero contribu-
tion in Eq. (C3). Indeed, the ones that keep the system
in the H− sector give a zero contribution since |ψ0(�)〉
is an eigenstate within this sector by definition. Instead,
the ones that keep the system in the H+ sector trivially
give zero since we do not have any occupation larger than
�. The only contribution comes from the operators â(†)±
or, more precisely, the term

(√
�+ 1|�+ 1〉〈�| + h.c.

)
,

which connects the two sectors. Using Eq. (C2), we
straightforwardly obtain

�H = �
e−2s

4

L−1∑

j =0

〈n2
j 〉〈Pj +1,�〉, (C4)

020346-19



VALENCIA-TORTORA, PANCOTTI, and MARINO PRX QUANTUM 3, 020346 (2022)

0 10 20
Λ

10−12

10−9

10−6

10−3

100

s =1.20

10 20
Λ

s = 1.50

n0 = 1
n0 = 5

n0 = 10
n0 = 20

n0 = 30

〈ψ0(Λ)|ΔH|ψ0(Λ)〉

FIG. 17. The scaling analysis of 〈ψ0(�)|�H |ψ0(�)〉 as a
function of � at fixed U = 0.1 and s = {1.2, 1.5} for different
values of n0 ∈ [1, 30]. The dots refer to the numerical results.
The dashed lines are the analytical estimation given by Eq. (C4).
The variance �H decays exponentially fast in �. The decay is
slower as n0 increases at fixed s and U.

where Pj ,k = |k〉j j 〈k| is the projector on the Fock state
with occupation k on site j . The first term of the sum
(j = 0) encodes the information about the fixed symme-
try sector, since 〈n̂2

0〉 = n2
0. The variance given in Eq. (C4)

depends on the mean occupation number and on the pro-
jector over the Fock space on�. In the main text, we show
that the system displays a localized phase in the bosonic
limit, � → ∞, if U > 0. This enables us to estimate Eq.
(C4) in the localized phase. In the localized phase, the
average occupation number of the ground state is 〈n̂j 〉 ∼
e−j /ξ [cf. Eq. (6)]. The exponential decay of the occupa-
tion number along the chain reflects on the behavior of the
expectation value of Pk,j , which decays exponentially fast
in k [cf. Eq. (7)]. Therefore, the series given in Eq. (C4) is
finite for � → ∞ and L → ∞, since each term is expo-
nentially suppressed. In Fig. 17, we numerically compute
the variance�H over |ψ0(n0,�)〉 for different values of�
and n0. Rigorously, the cutoff � limits the accessible n0,
since 〈n̂i〉 ≤ �. Nevertheless, because n0 appears as a con-
stant in the Hamiltonian, we can also compute the ground
state |ψ0(n0,�)〉 for n0 > �. The numerical results match
Eq. (C4) perfectly. The variance goes exponentially fast to
zero. Therefore, an eigenstate of H− is an eigenstate of the
fully bosonic system as well, with a reasonably small cutoff
� when U > 0.

APPENDIX D: GAUSSIANITY AND
NON-GAUSSIANITY IN THE GROUND STATE

In Fig. 18, we show the correlator �j = 〈n̂j n̂j +1〉 −
〈n̂j 〉〈n̂j +1〉 as a function of j for different values of s at
fixed U = 1. We compare�j computed on the ground state

2 4 6 8
j

0.00
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0.15

〈n̂j n̂j+1〉 − 〈n̂j〉〈n̂j+1〉

s = 0.02
s = 0.05
s = 0.10
s = 0.20

FIG. 18. The points correspond to the quantity computed on
the ground state obtained via the DMRG; the continuous lines
are the results obtained assuming that the state is Gaussian. We
fix U = 1, n0 = 1, and � = 15.

obtained via the DMRG and the one computed assuming
that the same state is Gaussian in the operators {â(†)j }L

j =1,
which we call �G

j .

APPENDIX E: NUMERICAL METHODS

In this appendix, we provide details of the parameters
adopted for simulating a single stochastic trajectory at the
core of the quantum trajectories method, while we refer
to Ref. [96,97] for details of the algorithm. As stated in
the main text, we resort to tensor networks in order to
numerically integrate a single trajectory. The deterministic
part of the dynamics given by the action of the effec-
tive Hamiltonian defined in Eq. (27) is performed via the
time-evolving block-decimation (TEBD) algorithm with
second-order Suzuki-Trotter decomposition. When a jump
occurs, the corresponding jump operator is easily applied,
being a single-site gate. We fix a time step δt = 5 × 10−3, a
maximal bond dimension χmax = 75, and we keep the sin-
gular values greater than 10−10. We verify that the results
are not affected by the time step δt and χmax. All the
simulations are performed using the ITensor library [114].

APPENDIX F: DETAILS OF
SUPERCONDUCTING-CIRCUIT

IMPLEMENTATION
1. Perturbative construction of the generator S of the

Schrieffer-Wolff transformation

We write the Hamiltonian H0 and the perturbation V as
a function of the operators ĉ(†)�,j defined in Eq. (36):

H0 =
L∑

j =1

∞∑

�=0

ω�,j |�, j 〉〈�, j | ≡
L∑

j =1

∞∑

�=0

ω�,j p�,j ,

V = g
L−1∑

j =1

∞∑

�,s=0

(
c†
�,j cs,j +1 + h.c.

)
, (F1)

020346-20



KINETICALLY CONSTRAINED QUANTUM DYNAMICS. . . PRX QUANTUM 3, 020346 (2022)

where ω�,j = (ωj −EC/2
)

j +ECj 2/2 and we introduce p�,j ≡ |�, j 〉〈�, j | for convenience. We compute the generator η =
[H0, V]:

η =
L∑

j =1

∞∑

�,s=0

g
(
�̃�,j +1 − �̃s,j

) (
c†

s,j c�,j +1 − cs,j c†
�,j +1

)
, (F2)

where �̃�,j = ω�+1,j − ω�,j = (ωj +EC�). Following Ref. [110], the ansatz for the generator S of the SW transformation is

S =∑L
j =1
∑

�,s Aj ,�,s

(
cs,j c†

�,j +1−c†
s,j c�,j +1

)
. We compute [S, H0] and we impose [S, H0] = −V. This condition is satisfied

if Aj ,�,s = g/
(
�̃�,j +1 − �̃s,j

)
. Therefore,

S =
L−1∑

j =1

Sj ,j +1, Sj ,j +1 ≡
∞∑

�,s=0

g

�̃�,j +1 − �̃s,j

(
cs,j c†

�,j +1−c†
s,j c�,j +1

)
. (F3)

2. Commutator of the Hamiltonian with the generator S of the Schrieffer-Wolff transformation

We write the perturbation V =∑L−1
j =1 Vj ,j +1, where Vj ,j +1 = g

∑∞
�,s=0

(
c†
�,j cs,j +1 + h.c.

)
. We compute the commutators

[Sj −1,j , Vj ,j +1], [Sj ,j +1, Vj ,j +1] and [Sj −1,j , Vj ,j +1]:

[Sj ,j +1, Vj ,j +1] =
∑

�,s

2g2EC(
�̃�+1,j +1 − �̃s,j

) (
�̃�,j +1 − �̃s+1,j

)cs,j cs+1,j c†
�+1,j +1c†

�,j +1+
∑

�,s

g2

�̃�−1,j +1 − �̃s,j
�ps,j p�,j +1

+
∑

�,s

2g2EC(
�̃�−1,j +1 − �̃s,j

) (
�̃�,j +1 − �̃s−1,j

)s�ps,j p�,j +1−
∑

�,s

g2

�̃�,j +1 − �̃s−1,j
sps,j p�,j +1 + h.c.,

[Sj ,j +1, Vj −1,j ] =
∑

�,s,q

g2EC(
�̃�,j +1 − �̃s,j

) (
�̃�,j +1 − �̃s−1,j

)scq,j −1ps,j c†
�,j +1+

∑

�,s,q

g2

�̃�,j +1 − �̃s,j
cq,j −1ps,j c†

�,j +1+

−
∑

�,s,q

g2EC(
�̃�,j +1 − �̃s,j

) (
�̃�,j +1 − �̃s+1,j

)c†
q,j −1cs,j cs+1,j c†

�,j +1+h.c.,

[Sj −1,j , Vj ,j +1] =
∑

�,s,k

g2EC(
�̃�,j − �̃s,j

) (
�̃�−1,j − �̃s,j −1

)�cs,j −1p�,j c†
k,j +1−

∑

�,s,k

g2

�̃�,j − �̃s,j −1
cs,j −1p�,j c†

k,j +1+

−
∑

�,s,k

g2EC(
�̃�,j − �̃s,j −1

) (
�̃�+1,j − �̃s,j −1

)cs,j −1c†
�+1,j c†

�,j ck,j +1 + h.c., (F4)

which constitute the building blocks for computing [S, V]. We consider a drive field acting on site j , Hdrive,j =
�j
(
eiαj taj + h.c.

)
. We compute the commutator [S, Hdrive,j ] = [Sj −1,j , Hdrive,j ] + [Sj ,j +1, Hdrive,j ]:

[Sj −1,j , Hdrive,j ] =
∑

�,s

g�j EC(
�̃�−1,j − �̃s,j −1

) (
�̃�,j − �̃s,j −1

)eiαj t�cs,j −1p�,j −
∑

�,s

g�j

�̃�,j − �̃s,j −1
eiαj tcs,j −1p�,j +

−
∑

�,s

g�j EC(
�̃�+1,j − �̃s,j −1

) (
�̃�,j − �̃s,j −1

)e−iαj tcs,j −1c†
�+1,j c†

�,j +h.c.,

[Sj ,j +1, Hdrive,j ] =
∑

�,s

g�j EC(
�̃�,j +1 − �̃s,j

) (
�̃�,j +1 − �̃s+1,j

)e−iαj tsps,j c†
�,j +1+

∑

�,s

g�j

�̃�,j +1 − �̃s,j
e−iαj tps,j c†

�,j +1+h.c.

−
∑

�,s

�j gEC(
�̃�,j +1 − �̃s,j

) (
�̃�,j +1 − �̃s+1,j

)eiαj tcs,j cs+1,j c†
�,j +1+h.c. (F5)
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3. Low-anharmonicity limit

In the following, we explicitly consider the results with L = 4 superconducting qubits for clarity. The generalization
to a larger number of superconducting qubits is straightforward. We work in the limit EC � �ij , such that �̃�,j +1 −
�̃s,j ≈�j +1,j = ωj +1 − ωj . We neglect the contributions coming from the commutators of the drive fields controlled by
{εj }, since, as we show, they give subleading corrections. From Eqs. (F4) and (F5) and using the identities

∑∞
�=0 c�,j = aj ,∑∞

�=0 �p�,j = nj and
∑∞

�=0 p�,j = 1, we obtain

[S, V] ≈ +2g2EC

�2
12

a1a1a†
2a†

2 + 2g2EC

�2
12

n1n2+ g2

�12
n1− g2

�12
n2+g2EC

�2
23

a1n2a†
3−

g2

�23
a1a†

3−
g2EC

�2
23

a†
1a2a2a†

3

+ g2EC

�2
12

a1n2a†
3+

g2

�12
a1a†

3−
g2EC

�2
12

a†
1a2a2a†

3 + 2g2EC

�2
23

a2a2a†
3a†

3 + 2g2EC

�2
23

n2n3+ g2

�23
n2− g2

�23
n3 + h.c.,

+ g2EC

�2
34

a2n3a†
4−

g2

�34
a2a†

4−
g2EC

�2
34

a†
2a3a3a†

4 + g2EC

�2
23

a2n3a†
4+

g2

�23
a2a†

4−
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. (F6)

4. Rotating frame of reference

We focus again on the four superconducting qubits system (cf. Appendix F 3). We change the frame of reference via
the unitary transformation U = exp[it(α1n2 + α2n3 + α3n4)], from which

UHdriveU† = �1(eiα1ta1 + h.c.)+�2(ei(α2−α1)ta2 + h.c.)+�3(ei(α3−α2)ta3 + h.c.)

+ ε2(a2 + h.c.)+ ε3(a3 + h.c.)+ ε4(a4 + h.c.)

U[S, V]U† ≈ +2g2EC

�2
12
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. (F8)

We discard all the oscillating terms employing the RWA in the limits,

α1 � max
(
�1,

g2EC

�2
12

,
g�1EC

�2
12

)
, (F9)

α2 � max
(

g2

�12
,

g2

�23
,

g2EC

�2
12

,
g2EC

�2
23

,
g�2

�12

)
, (F10)

|α1 − α2| � max
(
�2,

g�2EC

�2
23

,
g2EC

�2
23

)
, (F11)

|α2 − α3| � max
(
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�2
34

,
g2EC

�2
34

)
, (F12)
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(
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,
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12

,
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, (F13)
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,
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,

g2EC

�2
23

,
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, (F14)

|α1 − 2α2 + α3| � max
(

g2EC

�2
34

,
g2EC

�2
23

,
gEC�3

�2
34

)
. (F15)

which are satisfied in the dispersive regime and at the low-anharmonicity EC limit via a staggered configuration of the
drive field frequencies with a little dishomogeneity, as discussed in Sec. VI. Discarding the oscillating terms in Eq. (F7)
and Eq. (F8), we obtain

H̃ =
4∑

j =1

(
ω̃j n̂j +EC

2
â†

j â†
j âj âj

)
+

3∑

j =1

(
2g2EC

�2
j ,j +1

n̂j n̂j +1+g�j EC

�2
j ,j +1

n̂j

(
âj +1 + â†

j +1

))
+

4∑

j =2

(
εj − g�j −1

�j −1,j

)(
aj + a†

j

)
.

(F16)

Since we do not want local fields ∝ (aj + a†
j ), we fix the condition εj = g�j −1/�j −1,j with j = 2, 3, 4. We obtain

H̃ =
4∑

j =1

(
ω̃j n̂j +EC

2
â†

j â†
j âj âj

)
+

3∑

j =1

(
2g2EC

�2
j ,j +1

n̂j n̂j +1+g�j EC

�2
j ,j +1

n̂j

(
âj +1 + â†

j +1

))
. (F17)
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In the dispersive regime, the drive field amplitudes εj
are very small compared to the drive fields controlled by
{�j }. Therefore, it is appropriate to neglect the contribu-
tions coming from their commutators with S. The above
calculations can be straightforwardly generalized to the
multisite case, since the superconducting circuits in the
bulk will behave analogously to the second one in the case
treated explicitly above.
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and Z. Papić, Weak ergodicity breaking from quantum
many-body scars, Nat. Phys. 14, 745 (2018).

[39] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
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