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Characterization protocols have so far played a central role in the development of noisy intermediate-
scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to
continue in building the next generation of devices—ones that can surpass classical computers for par-
ticular tasks—but progress in characterization must keep up with the complexities of intricate device
noise. A missing piece in the zoo of characterization procedures is tomography, which can completely
describe non-Markovian dynamics over a given time frame. Here, we formally introduce a generalization
of quantum process tomography, which we call process tensor tomography. We detail the experimen-
tal requirements, construct the necessary postprocessing algorithms for maximum-likelihood estimation,
outline the best-practice aspects for accurate results, and make the procedure efficient for low-memory
processes. The characterization is a pathway to diagnostics and informed control of correlated noise. As
an example application of the hardware-agnostic technique, we show how its predictive control can be
used to substantially improve multitime circuit fidelities on superconducting quantum devices. Our meth-
ods could form the core for carefully developed software that may help hardware consistently pass the
fault-tolerant noise threshold.
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I. INTRODUCTION

Central to the theme of progress in quantum comput-
ing has been the development and application of quantum
characterization, verification, and validation (QCVV) pro-
cedures [1–7]. These techniques model and identify the
presence of errors in a quantum-information processor
(QIP). These errors may have different origins, such as
coherent control noise, decoherence, crosstalk, or state-
preparation-and-measurement (SPAM) errors. The oper-
ational description of open quantum dynamics has been
immensely useful in describing the noise present in QIPs
[8,9]. Typified by mappings of density operators, a discrete
snapshot of a given noisy process can be characterized
through a series of experiments on the QIP. The result-
ing object is the gold standard for describing two-time
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errors on a quantum device: a completely positive trace-
preserving (CPTP) map.

CPTP maps, however, are not sufficient to describe
all dynamics present on real quantum devices. A generic
quantum stochastic process represents many times and car-
ries correlations across multiple time scales as a rule rather
than the exception [10]. The emergence of adverse effects
from temporal correlations in quantum processes is known
as non-Markovian noise and arises from mutual interaction
between a system and its complex environment. Standard
CP maps—such as those characterized by quantum pro-
cess tomography (QPT)—cannot describe reduced system-
environment (SE) dynamics arising from a correlated state.
Famously, this leads to CP divisibility of a process as a
granular measure of non-Markovianity [11–13] and pro-
hibits their use in the detailed study of multitime quantum
correlations.

The discourse on device quality is mostly shaped
through conventional benchmarks either at the low
level—by emphasis on the fidelity of individual gates—or
at the high level—through holistic measures such as quan-
tum volume [14]. However, there is a discontinuity in these
abstractions: the former does not consider the effects of
intrinsic temporal context, by which we mean the ten-
dency of past gate choices to be correlated with future gate
outcomes. Meanwhile, the latter coarsely summarizes the

2691-3399/22/3(2)/020344(30) 020344-1 Published by the American Physical Society

https://orcid.org/0000-0001-6673-6676
https://orcid.org/0000-0002-2054-9901
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.020344&domain=pdf&date_stamp=2022-05-27
http://dx.doi.org/10.1103/PRXQuantum.3.020344
https://creativecommons.org/licenses/by/4.0/


G.A.L. WHITE et al. PRX QUANTUM 3, 020344 (2022)

average performance of a QIP in high-width high-depth
random circuits. Indeed, recent progress in quantum com-
puting has led to the engineering of very-low-error gates
[15–17] but evidence has shown that NISQ devices do not
behave like the sum of their parts. Typically, they per-
form worse than predicted by constituent gate errors alone,
which ignore non-Markovian quantum processes present
in reality [4,6,18]. A simple example of how this complex
noise can impact the outcome of an experiment is that the
choice of a gate in the past may influence the action of a
gate applied at the present. The two gates do not simply
multiply out. Correlated noise can be particularly deleteri-
ous not only in its complexity but in its ability to reduce
or even completely eliminate the effectiveness of quantum
error-correcting codes [19,20]. Importantly, there is ample
evidence that Markov models are insufficient to fully cap-
ture the dynamics exhibited by current generation quantum
devices [7,18,21–23], thus motivating the present work.

The characterization of general quantum stochastic pro-
cesses is the first step in explicating correlated noise on
quantum processors. Contextual noise detection has been
rigorously studied under a null-hypothesis standpoint in
prior work. That is, a successful approach has been to
probe for a change in measurement statistics—or some
other invariant property of the data—both with and without
the presence of a context variable [24–27]. This includes
non-Markovian noise under its umbrella, where the con-
text is limited to circuit-level decisions. However, a clear
procedure and a systematic framework for characterizing
contextual noise has been notably absent; there are several
technical and fundamental challenges that make this task
highly nontrivial.

In this work, we formally flesh out a part of this
missing puzzle piece in quantum tomography, which
we call process tensor tomography (PTT). Specifically,
PTT addresses the subclass of non-Markovian noise.
Dynamical maps—estimated by QPT—break down when
employed for multitime processes with memory. Instead,
these dynamics are well described by the process tensor,
a recently developed mathematical framework to repre-
sent quantum stochastic processes [28]. We first focus
on formalizing the tomographic reconstruction of generic
multitime quantum processes and discuss the challenges
and pitfalls that lie in the way. We then turn our atten-
tion to sparingly characterizing processes while overcom-
ing many of these obstacles by integrating PTT with
maximum-likelihood estimation (MLE). This approach is
then applied efficiently for the case of processes with low
memory, described by their Markov order [29]. We empha-
size that this work adopts a constructive approach to solve
the problem of statistically robust non-Markovian quan-
tum process tomography in full generality. Consequently,
we consider relatively small numbers of steps on single-
qubit systems. The scalability of the method is intrinsically
linked to the complexity of the process under scrutiny.

For environments with relatively few relevant degrees
of freedom or processes with quickly decaying memory,
we foresee no fundamental obstacles to simplifying and
scaling up the techniques introduced here [30–33]

The MLE-based PTT (or MLE PTT) has several advan-
tages over linear-inversion PTT (LI PTT); it is significantly
more efficient than standard inversion methods, as well
as overcoming the difficulties of positivity and causality
conditions. Yet, it grows exponentially in the number of
time steps. To overcome this, we accommodate for sparse-
ness in the complexity of the dynamics. Low-memory
processes are ubiquitous in nature and our characteriza-
tion tools leverage this to offer both an experimentally
and computationally more efficient description of the pro-
cess. In particular, this permits us to quantify the degree to
which a limited-memory model fails to predict laboratory
observations. This significantly enhances previous results
that quantify how memoryless models break down [22,34].
Moreover, our methods establish a trade-off between the
level of characterization complexity and a desired approx-
imation. Our measures have both simple interpretations
and a clear recipe to expand the model should they fail to
adequately explain the data.

To show the efficacy of this approach, we report the
real device characterization of multitime quantum stochas-
tic processes in a way that is both consistent and fully
inclusive of non-Markovian dynamics. There are three key
motivators for these implementations: to benchmark quan-
tum devices and diagnose non-Markovian noise, to study
the structure of quantum stochastic processes, and for pre-
cise enhanced control of non-Markovian systems. As such,
we first show MLE PTT to be highly reliable at character-
izing multitime dynamics. The reliability and the efficiency
of these methods allows us to implement noise-aware
control to significantly reduce the noise present across a
variety of contexts. We demonstrate not only the utility of
our technique here but also its necessity by showing that
improvement is contingent on the inclusion of higher-order
(i.e., multitime) temporal correlations in the model.

Our paper is structured as follows. In Sec. II, we give a
brief background on quantum state tomography (QST) and
QPT before continuing into the theory of quantum stochas-
tic processes and tomographic reconstruction of a process
tensor. This analyzes our non-Markovian characterization
in context. In Sec. III, we derive the main components of a
MLE-PTT protocol, including a positive causal projection
necessary for reconstructed process tensors to be physi-
cal. This procedure is then benchmarked and validated on
IBM Quantum devices. Specifically, the number of circuits
required for accurate LI PTT in a real setting scales as
O(N k

oc), where Noc is the number of (overcomplete) inputs
per time step and k is the number of time steps. The MLE-
PTT procedure reduces this to O(N k

MLE), where Noc = 24
and NMLE = 10. Using the tools of Sec. III, in Sec. IV we
motivate and advance the theory of quantum Markov order,
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in which we determine how to adaptively truncate weaker
long-time temporal correlations in the model. This tem-
pers the exponential scaling to a linear scaling, i.e., O(k ×
N �

MLE), where � is the fixed Markov order. This is not
only practical but it provides an accessible diagnostic to
the complexity of device noise. In Sec. V, we demonstrate
noise-aware control over a non-Markovian process, which
is based on the noise-characterization methods of previous
sections. Namely, we characterize noise for Markov orders
of � = {1, 2, 3} and use this information to significantly
increase the fidelity of several NISQ devices by using non-
Markovian correlations as a resource. We show that the
performance of the machine improves when the Markov
order is chosen to be higher. This leads to a trade-off rela-
tion between characterization complexity and accuracy of
the characterization.

A. Summary of quantum characterization

Before we proceed, we briefly analyze where PTT sits
among the existing characterization techniques. Frame-
works for dynamics in the literature can be broadly classed
under dynamical-map or master-equation formalisms. The
former captures only two-time correlations that, in the
presence of non-Markovian noise, will fail to describe mul-
titime processes when composed together [8]. This applies
clearly to QPT but also to any QCVV procedures born
out of the umbrella of quantum channels, such as gate-set
tomography (GST), randomized benchmarking (RB), and
Hamiltonian tomography [1,22,35–37]. The latter is gen-
erally a function of at most three-time correlations and be
reduced to a family of dynamical maps [38].

In the case where these approaches are insufficient
to characterize features of non-Markovian noise, ad hoc
extension techniques exist to detect a departure from the
Markov assumptions. These detect some parts of the non-
Markovian character but are not generalizable or predic-
tive. Their application is typically as witnesses or for
shallow diagnostics but cannot rigorously measure the
memory or be employed systematically to control the sys-
tem. Common examples include memory kernels for mas-
ter equations [39] or statistical tests to establish causal con-
nections between environmental factors or gate choices,
and system-level dynamics [23–27]. Statistical tests have
also been employed to quantify the confidence with which
breakdown of Markovianity can be described [22].

In a precise way, PTT is a direct generalization of the
QPT framework: instead of estimating a single dynam-
ical map, it estimates a sequence of possibly correlated
dynamical maps. These temporal correlations may be arbi-
trarily strong. Thus it is, to the best of our knowledge,
the only procedure demonstrated to fit the criteria of sys-
tematically capturing this difficult and important class of
noisy dynamics. Moreover, it is fully general, without rely-
ing on underlying microscopic models. It carries some of

the same associated baggage (exponential scaling in full
generality, assumptions about prior calibrations)—but can
also be imbued with the modifications and simplifications
that make the QPT framework a rich tool for quantum
characterization. A guiding set of simplifying assumptions
can reduce the experimental burden of characterization at
the expense of either a possible sacrifice in accuracy or
information gain; for example, in compressed-sensing or
tensor-network models [30,40]. We also foresee that many
of the ideas that either arise from or utilize QPT could be
applied to PTT, further extending this branch of QCVV
and error mitigation [2].

We conclude this section by emphasizing the extent to
which the methods and theory in this work offer a depar-
ture from those introduced in Ref. [21]. This previous work
has shown that non-Markovian characterization is possible
on real quantum devices by implementing the process-
tensor mapping through linear inversion. In particular, it
is a demonstration of how to effectively wield the spa-
tiotemporal version of Born’s rule [Eq. (10) and Fig. 1(c)]
on quantum processors—thus permitting characterization
and control regardless of the strength of the SE interac-
tion. However, the shortcomings are that the process tensor
itself (and thus any rigorous non-Markovian measures)

(b)

(c)

(a)

FIG. 1. (a) The conventional model of open quantum systems
tracks the state of the system as a function of time, but cannot
build up multitime joint statistics. (b) The quantum stochastic
process picture considers the response of the system to different
sequences of gates; by considering all trajectories of the system,
correlations between different times may be exactly character-
ized and quantified. (c) A pictorial description of how linear
expansion in a basis by the process tensor preserves intermediate
dynamics and expresses an arbitrary sequence.
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is not estimated. Further, the averaging over sampling
statistics is made very expensive through an overcomplete
basis—and no guarantees are made of a completely posi-
tive or causal mapping. Finally, the structure of the process
is left opaque, such that all possible operational trajectories
are considered. This leaves it impossible to leverage any
sparseness in the real process.

By fleshing out PTT in a sophisticated way, the present
work provides a clear framework by which a process tensor
may be estimated using a minimal complete basis in a man-
ner that is both physical and statistically robust. We also
show how decaying correlations in the memory may be
truncated to offer an efficient characterization of the non-
Markovian process and finally how all of the above may be
employed to provide superior control of a quantum device.

II. A HIERARCHY OF QUANTUM TOMOGRAPHY

We start by outlining the fundamentals of QST, QPT,
and PTT. These procedures build on each other; for a
d-dimensional system, QST requires a set of O(d2) exper-
iments, QPT is most easily thought of as d2 QSTs and
requires O(d4) experiments, and PTT requires O(d4k)

experiments, where k = 1, 2, . . . is the number of time
steps [21,41,42]. The familiarity of the first two lays the
groundwork for the latter. The treatment and practical
concerns of each technique are similar with respect to
real data. One key difference lies in the fact that due to
the higher-dimensional superoperator basis, especially for
PTT, small errors can become magnified and require closer
attention. In addition to an overview of tomography, we
present the conceptual developments of PTT in this section
and scrutinize its proclivities—such as with respect to
hardware control restrictions and SPAM error.

Fundamentally, quantum tomography is an exercise in
reconstructing linear maps from experimental data. This
can be accomplished by measuring the input-output rela-
tions on a complete basis for the input space. A disconnect
between theory and experiment occurs when, in practice,
the input vectors are faulty in some way (such as noisy

preparation) or the measured output frequencies differ from
that of the real population (due to a noisy probe or finite
sampling error) [41]. As well as producing an object that
may disagree with experiment for inputs away from the
characterization, the resulting estimate might not even be
physical. A variety of different methods may be employed
to overcome some of these problems: the collection of
more data, the elevation of inputs and outputs to the model
[42,43], employing an overcomplete basis in the charac-
terization [44], and the treatment of the measured data to
fit a physical model [45]. These techniques are applicable,
regardless of the model type, and we discuss their utility in
PTT.

Before examining the PTT description of quantum
stochastic processes, we emphasize parallels with more
conventional tomography in QST and QPT, such that the
content can appear more familiar to readers. Along our
exposition, we emphasize a “hierarchy” in the sense that
the information of each level is strictly contained within
the characterization of the next level. That is to say, QPT
can describe the reconstructed state of QST and PTT can
describe the dynamical map of QPT. We present a sum-
mary of each map in Table I, as well as their physical
requirements, and continue to flesh out here.

A. Quantum state and quantum process tomography

The foundation of most QCVV procedures is the esti-
mation of quantum states and quantum channels on an
experimental device. By quantum state, we mean the
density-matrix representation of a system at a given time.
A quantum channel—or quantum stochastic matrix or
dynamical map—then expresses the evolution of some
state between two times and has a freedom in representa-
tion. A convenient choice for QPT employs the Choi rep-
resentation. Here, using the Choi-Jamiolkowski isomor-
phism (CJI), CP maps may be given by a positive-matrix
representation as a quantum state, exploiting the corre-
spondence between B(Hin) → B(Hout) and B(Hout) ⊗
B(Hin). Here, B(H) denotes the space of bounded linear

TABLE I. Detail on different levels of the quantum tomography hierarchy, pertinent to experimental reconstruction. QST reconstructs
a density operator, ρ, a positive matrix with unit trace representing the quantum state. QPT reconstructs a quantum channel, E , through
its action on different states. This map must be both CP and TP, conditions which, in Choi form, manifest themselves as positivity and
affine constraints on the matrix. Finally, PTT reconstructs a process tensor Tk:0 through its action on different control operations. This
object must have a positive-matrix Choi form and must respect causality. The information of each column is strictly contained in the
column to the right.

Quantum state Quantum process Process tensor

Characterization object Density operator ρ Quantum channel E Process tensor Tk:0

Mapping HS → HS B(HS) → B(HS)
⊗k

i=1 B(B(HS)) → B(HS)

Observed probabilities pi = Tr [�iρ] pij = Tr
[
(�i ⊗ ρT

j )Ê
]

pi, �μ = Tr
[
(�i ⊗ Bμk−1T

k−1 ⊗ · · · ⊗ Bμ0T
0 )ϒk:0

]

Positivity constraint ρ � 0 Ê � 0 ϒk:0 � 0

Affine constraint Tr [ρ] = 1 Trout[Ê] = Iin Trout [ϒk:0] = Iin ⊗ ϒk−1:0 ∀ k
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operators on a Hilbert space H. Explicitly, for some chan-
nel E , its Choi state Ê is constructed through the action of E
on one half of an unnormalized maximally entangled state∣∣�+〉 = ∑d

i=1 |ii〉, with identity map I on the other half:

Ê := (E ⊗ I)
[|�+〉〈�+|] =

d∑
i,j =1

E [|i〉〈j |] ⊗ |i〉〈j |. (1)

All reconstruction of experimental properties must begin
with a probe to read out quantum information. This
extraction comes from a known positive-operator-valued
measure (POVM) J := {�i}L

i=1 with associated elements
called “effects.” To reconstruct any state, J must span
the space of density matrices B(HS), a characteristic
known as informational completeness (IC). For some den-
sity matrix ρ, a POVM yields observable probabilities for
each effect in accordance with Born’s rule:

pi = Tr[�iρ]. (2)

For a quantum channel, its action is given in terms of its
Choi state by

E [ρin] = Trin

[
(I ⊗ ρT

in)Ê
]

= ρout. (3)

These input-output relations are sufficient to reconstruct
both a state ρ and a channel E . That is, the measurement pi
for each element of J is sufficient to construct ρ and the
measurement {ρ ′

i} := {E[ρi]}n
i=1 for a full basis of inputs

is sufficient to construct Ê . This is accomplished with the
construction of a dual set D := {�i}L

i=1 to linearly inde-
pendent J , satisfying Tr[�i�j ] = δij . Similarly, let {ωj }
be the dual set to {ρi}. Note that in practice, linear inde-
pendence may be relaxed with an overcomplete basis in
the case where L, n > d2, where a matrix pseudoinverse
is used to find the dual set, rather than an inverse (for fur-
ther details, see Appendix A). Then, we may (respectively)
express ρ and Ê as

ρ =
L∑

i=1

pi�i and Ê =
n∑

i=1

ρ ′
i ⊗ ωT

i , (4)

which, by design, are consistent with Eqs. (2) and (3),
respectively. By combining the two above equations, Ê
may also be decomposed in terms of POVM effects as

Ê =
L∑

j =1

n∑
i=1

p ′
j �j ⊗ ωT

i . (5)

Note that the �j and ωi matrices are not usually positive
but the resulting ρ is both positive with unit trace and the
resulting Ê is both positive and trace preserving, in that its
marginal input is maximally mixed. These conditions are
written explicitly in the final row of Table I.

B. Process tensor tomography

A typical approach to studying dynamical processes
consists of monitoring the state of the system as a func-
tion of time, as in Fig. 1(a) [11]. Although effects such
as coherent state oscillation can flag non-Markovianity,
any interrogation of the system necessarily disrupts its
future evolution. For this reason, joint statistics cannot be
measured across time and, consequently, multitime cor-
relations cannot be characterized. As a result, quantum
non-Markovian effects, which can have a variety of dif-
ferent physical sources, have been historically difficult to
theoretically describe, much less experimentally capture.
Often, non-Markovian effects are quantified in terms of
“leftover” error, inferred by the extent to which Markov
models break down [13,22,34].

Recently, the process-tensor framework [28] (and the
process-matrix framework [46]) have been proposed as
a generalization of classical stochastic processes to the
quantum domain. Importantly, this generalization allows
for the study of multistep temporal correlations—or non-
Markovianity—in quantum systems. An important feature
of the PTT formalism is that it maps all possible tempo-
ral correlations onto spatial correlations over sequences
of CPTP channels, leaving non-Markovian measures as
operationally well defined as for any quantum or classical
spatial correlation. The application of conventional many-
body techniques allows for necessary and sufficient mea-
sures of device non-Markovianity, as well as the more fine-
grained study of operation-specific context dependence.
This fills a gap in the library of QCVV resources [1].

Any continuous-time quantum stochastic process can be
discretized in a number of time steps: Tk = {t0, t1, . . . , tk}
(for example, in the context of a quantum circuit). A finite-
time process tensor is then a marginal of the continuous-
time process tensor [47], which represents all possible
correlations in Tk. To capture statistics for each ti ∈ Tk,
the experimenter applies an IC basis of control operations,
each of which changes the trajectory of the state and maps
to an output. In completing this procedure for all times,
all trajectories consistent with Tk may be inferred. This
is depicted in Fig. 1(b). This is sufficient both to con-
struct all joint statistics, and to predict the output subject
to any generic sequence. Figures 1(a) and 1(b) contrast the
traditional approach to open quantum dynamics and PTT
framework.

To be precise, we consider the situation in which
a k-step process is driven by a sequence Ak−1:0
of control operations, each represented mathematically
by CP maps—Ak−1:0 := {A0,A1, . . . ,Ak−1}—after which
we obtain a final state ρk(Ak−1:0) conditioned on this
choice of interventions. These controlled dynamics have
the form

ρk (Ak−1:0) = trE[Uk:k−1 Ak−1 · · · U1:0 A0(ρ
SE
0 )], (6)
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where Uk:k−1(·) = uk:k−1(·)u†
k:k−1. Equation (6) can be used

to define a mapping from past controls Ak−1:0 to future
states ρk (Ak−1:0), which is the process tensor Tk:0:

Tk:0 [Ak−1:0] = ρk(Ak−1:0). (7)

The logic of the process tensor is depicted in Fig. 1(c),
mirroring the trajectory sketch in Fig. 1(b).

In this sense, the process tensor is designed to account
for intermediate control operations and quantifies quantum
correlations between past operations and future states. Just
as in the case of CPTP maps, it can be shown that the pro-
cess tensor too has a many-body Choi representation [28].
Both states ρ and channels Ê have affine conditions ensur-
ing unit probability and trace preservation, respectively.
Similarly, the Choi state of the process tensor ϒk:0 also has
affine conditions: these guarantee causality. That is, any
future control operations cannot affect the past statistics.
These facets of the process tensor are all possible to recon-
struct experimentally, using many of the techniques from
QPT and QST. We directly employ and build upon these
ideas in this work. We start from the direct linear-inversion
construction of the process-tensor Choi state and then pro-
ceed with maximum-likelihood estimation and truncated
Markov models. Along the way, we make explicit the par-
allels between QPT and PTT as a generalization in Fig. 2
for pedagogical purposes. In particular, Fig. 2(b) contrasts
the generalized CJI of the process tensor with the standard
channel CJI, emphasizing the extension made.

We begin by discussing the linear-inversion construc-
tion of the process tensor direct from experimental data,
which has recently been reported in Ref. [21]. The esti-
mate here comes from (pseudo)inverting the feature matrix
on observed data. The resulting object need not be physi-
cal and though it may be consistent with its measurement
basis, it may not even serve as a good indicator for the
behavior of other sequences.

The sequence of interventions Ak−1:0 is a CP map repre-
sented through the CJI as a 2k-partite quantum state—i.e.,
through action on a maximally entangled state at each of
the k time steps. When the operations at each time step are
chosen independently, the sequence is given by Ak−1:0 =⊗k−1

j =0 Aj . Each time-local operation may be expanded into
a basis {Bμj

j } such that any CP map can be expressed as

Aj = ∑d4

μj =1 α
μj
j Bμj

j . The subscript j allows for the pos-
sibility of a different basis at each time; meanwhile the
superscript μj denotes the elements of that particular set.
The complete spatiotemporal basis is

{B �μ
k−1:0} =

⎧⎨
⎩

k−1⊗
j =0

Bμj
j

⎫⎬
⎭

(d4,d4,...,d4)

�μ=(1,1,...,1)

, (8)

with vector of indices �μ. To construct the process ten-
sor, therefore, it suffices to measure the output ρ

�μ
k :=

ρk(B
�μ
k−1:0) for each �μ [see Fig. 2(f)]. To do so, we make use

of the dual set {�μj
j } such that Tr[Bμj

j �
νj
j ] = δμj νj . Then,

the Choi state ϒk:0 of the process tensor Tk:0 is given by

ϒk:0 =
∑

�μ
ρ

�μ
k ⊗ �

�μ T
k−1:0, (9)

where {� �μ
k−1:0} = {⊗k−1

j =0 �
μj
j } satisfies Tr[B �μ

k−1:0�
�ν
k−1:0] =

δ �μ�ν . We remark here that the Choi form of a process tensor
is a (2k + 1)-partite state with alternating input and output
indices.

We use the notation oj to denote an output leg of
the process at time tj and ij for the input leg of the
process at time tj −1. The collection of indices is there-
fore {ok, ik, . . . , o2, i2, o1, i1, o0}. These correspond to the
marginals of the process, {Êk:k−1, . . . , Ê2:1, Ê1:0, ρ0} as
shown in Fig. 2(b). Note that this ordering is opposite to
the arrow of time in quantum circuits, following instead
the convention of matrix multiplication.

Once characterized, the action of the process tensor on
a sequence of operations is found by projecting the pro-
cess tensor onto the Choi state of this sequence (up to a
transpose). That is,

ρk(Ak−1:0) = Trok

[
ϒk:0

(
Iok ⊗ Ak−1 ⊗ · · ·A0

)T
]

, (10)

where ok is every index except ok. This equation, reminis-
cent of the Born rule [48,49], can determine the output of
any sequence of operations (that are consistent with Tk)
and is inclusive of all intermediate SE dynamics as well as
any initial correlations. The prediction of outcomes subject
to control sequences naturally makes the process tensor a
very useful object for quantum control.

The generalized CJI of the process tensor maps the mul-
titime process onto a many-body state. Consequently, most
of the analytical tools used for the description of spatial
correlations can also be employed to describe the temporal
correlations of the process. This provides a key motiva-
tor for carrying out PTT: the reconstructed process-tensor
Choi state provides all information about any spatiotempo-
rally correlated behavior in a quantum device. This makes
it a very useful diagnostic tool for near-term quantum
devices: one can qualitatively and quantitatively describe
the complexity of the interaction of the system with its
environment.

Conventional measures of non-Markovianity are well
motivated but typically only describe a subset of
non-Markovian processes. That is to say, they are sufficient
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Process tensor

(d)

(f)

(b)(a)

(c)

(e)

Project onto
input to obtain

output

Tomographic
reconstruction

Mapping:
action on
bell pairs

Quantum channel

Resulting
Choi state

FIG. 2. Operation, manipulation, and characterization analogs between quantum process tomography and process tensor tomogra-
phy. (a) The Choi-Jamiolkowski isomorphism represents a quantum process E by the density matrix Ê using the action of E on one half
of a maximally entangled state. (b) In the generalized CJI, SE unitaries act on one half of a maximally entangled state per time step.
Correlations between times (denoted using red dashed lines) are then mapped onto spatial correlations between each output leg of a Bell
pair. The result is a collection of (possibly correlated) CPTP maps, as well as the average initial state. (c) The outcome of E on some
ρin is obtained by projecting the Choi state onto I ⊗ ρT

in and tracing over the input space. (d) The outcome of a process conditioned on
a sequence of operations Ak−1:0 is obtained by projecting the Choi state of ϒk:0 onto the Choi state

⊗k−1
i=0 Ai and tracing over the input.

Each Ai maps the output state of the ith CPTP map to the input leg of the (i + 1)th CPTP map. (e) To reconstruct Ê experimentally,
prepare a complete set of states {ρi}, apply E , and reconstruct the output state with an IC POVM {�j }. (f) To reconstruct ϒk:0, measure
each final state of the system subject to a complete basis of CP maps {Bμj

j } at each time. Note that the blue unitaries here are symbolic
of any SE interactions and not gates that need to be performed.

but not necessary measures [10–13,50–54]. The process
tensor gives rise to both a necessary and sufficient measure
of non-Markovianity through all CP-contractive quasidis-
tance measures between ϒk:0 and its closest Markov pro-
cess tensor according to that distance. A Markovian pro-
cess is one without any correlations in its Choi state—i.e., a
product state of some CPTP maps Êj +1:j and average initial
state ρ0. In general, the closest product state is not found
with an analytic form; however, there exist convenient
choices. One example is the relative entropy, S[ρ‖σ ] =
Tr[ρ(log ρ − log σ)]. For this, the closest Markov process

tensor is obtained by discarding the correlations. That is,

ϒMarkov
k:0 = Trk [ϒk:0] ⊗ Trk−1 [ϒk:0] ⊗ · · · Tr0 [ϒk:0] ,

(11)

where j is the trace over every index except oj and ij .
These marginals constitute the above average CPTP maps
exactly. Once reconstructed with PTT, this informs the user
how close their device performs when compared to a tem-
porally uncorrelated (not necessarily noiseless) Markov
model.
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C. Performing PTT on NISQ devices

To reconstruct the process tensor, a minimal complete
basis for the process tensor requires d4

S operations span-
ning the superoperator space B(B(HS)) at each time step.
One mathematically convenient basis is an IC POVM,
followed by a set of IC preparation states that are inde-
pendent of the measurement outcomes. However, this
procedure requires fast projective control in device hard-
ware. Although some progress has been made on this
front [55], fast control, in practice, is often too noisy and
leads to a poor reconstruction. An exception to this is the
recent work on process characterization with intermedi-
ate measurements completed by Xiang et al. in Ref. [56].
A different approach to this measure-and-prepare strategy
could implement this entire basis set through an interac-
tion between the system qubit and an ancilla, followed
by projective measurement in which the outcome of the
ancilla is recorded. This too is problematic in practice, as
system-ancilla interactions will generate an operation that
effectively depends on the circuit.

For a typical NISQ device, all intermediate operations
are limited to unitary transformations and a measurement
is only allowed at the end—or if midcircuit measure-
ment with feed-forward is possible, it is typically much
slower than SE dynamics. Nevertheless, it is possible to
work within the experimental limitations and implement
an informationally incomplete set of basis operations. This
constructs what is known as a restricted process tensor [57]
and has full predictive power for any operation in a sub-
space of operations. That is, these objects are well defined
as maps over the span of their incomplete basis but do not
form positive operators and do not uniquely fix a Choi state
of a process tensor.

We expand on the notion of a restricted process tensor
here by offering an analogous quantum state perspective.
The measurement of ρk subject to some sequence of oper-
ations B �μ

k−1:0 is akin to measuring a many-body observable
on ϒk:0, as per Eq. (10). The reconstruction of ϒk:0 then
lies on the hyperplane defined by

span({�i, B �μ
k−1:0}). (12)

When the set of operations is tomographically incomplete,
ϒk:0 is nonuniquely fixed and thus termed “restricted.”
Consider, for example, in the state case, if only Z and X
measurements are performed on each subsystem. Then a
consistent nonunique state can be estimated with the cor-
rect Z and X expectations. However, the Y expectations
will be a free parameter (up to positivity of the state).

In the special case of unitary control, the Choi states rep-
resenting each intervention are rank-1 projections onto a
maximally entangled state of dimension d2

S. The expansion
of these entangled measurements into a Hermitian basis
yields only nonzero coefficients on the nonlocal terms.

That is, in the Pauli basis for example, we have Tr(Bμl
l ×

I
(il+1) ⊗ P(ol)

j ) = Tr(Bμl
l × P(il+1)

i ⊗ I
(ol)) = 0 ∀ i, j . Uni-

taries are consequently fully orthogonal to the span of
nonunital (where the maximally mixed state is mapped
to something more pure) and trace-decreasing (stochasti-
cally applied) maps. Linear-inversion reconstruction of the
process tensor, then, omits these local expectation values.

A restricted process tensor is not a model restriction
as such, but an observational restriction. Its properties are
fully consistent with the discussed facets of full process
tensors but the mapping is only valid across the span of
observed data. This means, for example, that it will pro-
vide a recipe for complete control (under the restriction)
that is fully inclusive of non-Markovianity. However, the
actual strength of the memory can only be inferred rather
than directly measured. For example, in the absence of
measurement causal breaks, correlations between past and
future measurement statistics cannot be established. More-
over, any measure relying on a full eigendecomposition of
the state (such as quantum mutual information, for exam-
ple) is similarly out of reach. The relevant analogy, then, is
to perform QST without measuring in all possible bases.
The state will not be fully determined but the informa-
tion provided through Born’s rule to predict the future will
still be valid, so long as predictions are made within linear
combinations of the measured bases.

Working within the constraints of NISQ devices, we
need to account for d4

S − 2d2
S + 2 unitary operations at each

time step. For a qubit, this amounts to N = 10 unitary
gates per time step. However, any estimation procedure
will come with sampling error, leading to both an incorrect
and unphysical representation of the map. In a practical
setting with finite sampling error, it is best to set up tomo-
graphic protocols without bias in the basis vectors [58].
This is especially true in high-dimensional spaces, where
even small errors may become significantly magnified.
In Ref. [21], we have found that a minimal single-qubit
(Nmin = 10) unitary basis incurs substantial error in recon-
structing the process. We have thus resorted to an over-
complete basis of Noc = 24, leading to very-high-fidelity
reconstruction for the process tensor, within shot-noise
precision. However, this is very resource demanding, since

number of experiments ∼ O(N k
oc) (13)

for k time steps.
Our focus here is to reduce the requirements of PTT

reconstruction while obtaining accurate estimates. To do
so, in Sec. III we first integrate the maximum-likelihood
optimization for PTT. This has the advantage that we no
longer need an overcomplete basis and thus we can reduce
the base from 24 to 10. In order to do this, we ensure
that the MLE accommodates the affine conditions of the
process tensor; devise a numerical method to generate

020344-8



NON-MARKOVIAN QUANTUM PROCESS TOMOGRAPHY. . . PRX QUANTUM 3, 020344 (2022)

an approximately unbiased basis, which minimizes recon-
struction errors; and develop a projection method to ensure
the physicality of the process tensor. Of course, the MLE
alone is not enough if we also cannot reduce the expo-
nent k. In Sec. IV, we integrate the MLE tools with a more
generic truncation method of Markov order. The idea here
is to truncate small long-time memory to exponentially
reduce the number of reconstruction circuits, while retain-
ing high fidelities for the reconstruction. Along the way,
we demonstrate that both the MLE and the Markov order
methods are practically implementable by applying these
ideas to superconducting quantum devices.

D. SPAM errors in process tensor tomography

It is key to know the limitations of any QCVV proce-
dures, in particular how the estimate is affected by faulty
control—or SPAM errors. In the context of PTT, the usual
notions of SPAM need to be broadened. For example,
quantum channels are assumed to act on “known” input
states; when this assumption breaks, it can be problem-
atic for QPT. In contrast, the initial state is a marginal to
the process tensor and any error is naturally estimated. A
measurement probe, on the other hand, is required to read
out information. Errors that are insensitive to the POVM
effect will absorb into the process. If they are common
to all bases, the predictive capabilities will be unaffected.
However, the estimated process tensor itself will then look
slightly noisier. Accounting for either this or basis-specific
noise can be straightforwardly achieved by using an esti-
mate of the device POVM in the model. Estimates may
be obtained with consistent detector-tomography outputs
from procedures such as GST [22].

For PTT, it is the input quantum operations that are
assumed to be known, replacing “state preparation” in
QPT. In order of increasing consequence, violation of
this assumption can occur in three ways: (i) with gate-
independent error (such as decoherence), (ii) with gate-
dependent coherent error, and, finally, (iii) with significant
SE interaction during the finite-time gate. Similar to the
measurement case, PTT is insensitive to independent error
for the purposes of control, since it does not change the
linear relation between basis elements. The second con-
sideration is more problematic because it can lead to an
inconsistent characterization. This can be resolved in two
ways: by a priori characterizing the gates themselves
through GST or by using an overcomplete basis to average
over the coherent error. Lastly, if a non-Markovian inter-
action occurs with coupling O(1/τp) for control width τp ,
then the process-tensor model will break down. However,
we expect this final possibility to be extremely rare for any
functioning device—but, indeed, it could be circumvented
with virtual gates, such as those described in Ref. [59].

Because the input control must be high fidelity, we view
PTT predominantly as a useful tool for quantum devices

clean enough to be sensitive to non-Markovian dynamics.
In this work, the demonstrated results focus on single-
qubit unitary gates, for which the error is O(10−4). A
future extension to PTT that one might consider is a self-
calibrating simultaneous estimation of both the process
tensor and the input interventions, as in GST. Though
incorrect characterizations through gate errors are not
implausible, single-qubit gate errors for a typical NISQ
device are already smaller than the expected 1/

√
Nshots

sensitivity and most of this error is represented by deco-
herence during the small finite pulse width. Moreover, the
control aspect may be self-consistently checked by com-
paring predictions made from estimates of the process
tensor with random gate sequences on the real device,
offering certification to the characterization. We explore
this concept further in Sec. III B.

III. MAXIMUM-LIKELIHOOD PROCESS TENSOR
TOMOGRAPHY

A major gap in the process tensor tomography toolkit
is its lack of integration with standard tomography estima-
tion tools such as MLE, the underlying principle of which
is to find a physical model estimate that maximizes the
probability with the observed data. Due to the intricate
affine conditions of causality, this integration is nontrivial
in general. The complexity of the procedure grows further
when applied to restricted process tensors, e.g., when con-
trol operations are restricted and/or when a finite Markov
order model is imposed. Our integration naturally accom-
modates all of these variations. We now close this gap and
present a MLE construction for PTT, which helps to put
this on the same footing as other tomographic techniques.
The MLE procedure estimates the physical quantum map
most consistent with the data, according to some desired
measure, while respecting the constraints listed in Table I.
The circuits required for tomography, depicted in Fig. 3(a),
are the same as for linear inversion. That is, the scaling
is the same. However, linear inversion typically requires
an overcomplete basis to naturally average over inconsis-
tencies. Meanwhile MLE treats the data such that a min-
imal tomographically complete basis suffices for accurate
results.

An estimate for the map is coupled with a metric of
goodness (the likelihood) that quantifies how consistent
the map is with the data. The cost function is then min-
imized while enforcing the physicality of the map. The
stored data vector in PTT is the object ni, �μ, which con-
tains the observed measurement probabilities for the ith
effect of an IC POVM, subject to a sequence of k opera-
tions

⊗k−1
j =0 B

μj
j . As is typical in MLE tomography, these

data are fitted to a model for the process, ϒk:0, such that

pi, �μ = Tr
[
(�i ⊗ Bμk−1T

k ⊗ · · · ⊗ Bμ0T
0 )ϒk:0

]
. (14)
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Compare predictionCompute gradient

Positive causal projection Update model

Final non-Markovian
process reconstruction

Repeat until converged
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(b)

FIG. 3. (a) The circuit structure for PTT. An arbitrary state
is fed in, the experimenter acts with all combinations of differ-
ent basis elements at different times, and a final measurement is
recorded. (b) The logical flow of PGDB in the context of our
MLE-PTT procedure. We maximize the likelihood of the model
through iterative gradient descent and the physical projection of
Sec. III A until some convergence condition is achieved. Full
details of the algorithm are shown in Appendix A.

These predictions are then compared to the observed fre-
quencies, ni, �μ. The “likelihood” of ϒk:0 subject to the data
is given by L = ∏

i, �μ(pi, �μ)ni, �μ . The cost function of MLE
algorithms is then the log likelihood, i.e.,

f (ϒk:0) = − lnL =
∑
i, �μ

−ni, �μ ln pi, �μ, (15)

the minimization of which is the maximizer of the like-
lihood. A key part of the appeal to MLE is that the cost
function given in Eq. (15) is convex.

An extensive selection of different semidefinite pro-
gram packages exists in the literature for the log-likelihood
minimization in QST and QPT under the appropriate con-
straints. In our construction of the MLE-PTT procedure,
we employ and adapt the algorithm from Ref. [60], used
for QPT. This algorithm is termed the “projected gradient
descent with backtracking” (PGDB). We select this both
for its simplicity and because it has been benchmarked as
both faster and more accurate than other MLE-QPT algo-
rithms. In this approach, the log likelihood is minimized
using conventional gradient descent but at each iteration,

a projection is made on the step direction to keep the map
physical. The main steps are summarized in Fig. 3(b).

The relevant projection—onto the intersection of the
cone of CP maps with the affine space of TP chan-
nels—is performed using a procedure known as Dykstra’s
alternating-projection algorithm [61]. We offer two key
advancements here for PTT. First, we determine the exact
affine space generated by causality conditions on process
tensors, such that the physical constraints are mathemat-
ically elucidated. Then, we adapt and introduce a conic
projection technique from the optimization literature in
order to project onto the space of completely positive
causal processes [62]. We find this projection method to
far outperform Dykstra’s alternating-projection algorithm
in the problem instances, a fact that may be of independent
interest for QPT. We detail each of these aspects in the fol-
lowing subsection. Finally, we benchmark the performance
of MLE PTT on superconducting quantum devices. These
devices, as mentioned above, are limited to unitary control
in the middle and a measurement at the end. This is insuf-
ficient to uniquely reconstruct the complete Choi state of
a process. As such, our MLE procedure yields an opera-
tionally well-defined restricted process tensor that has been
completed into a full process tensor. One might consider
a “family” of process tensors generated by the intersec-
tion of positive causal matrices with the affine space of
observed experimental data. This yields all possible pro-
cess tensors the restriction of which to unitary operations is
consistent with the observed data. Therefore, further infor-
mation about the full dynamics may be inferred even with
limited data. We focus on the (nonunique) properties of
the restricted process-tensor family in Ref. [63] and the
performance of the restricted process tensor in the present
work.

A. Projecting onto the space of physical process
tensors

Here, we describe in detail the physical conditions
imposed on process tensors, as well as the approach used
for projections onto the space of physical process tensors.
Generally, this projection can be described as a problem
of conic optimization: finding the closest point lying on
the intersection of a cone with an affine subspace. The
affine constraints differ in each category: unit trace for
state tomography, trace preservation for process tomogra-
phy, and causality for the process tensor. Fundamentally,
however, these techniques are applicable to all forms of
quantum tomography, as shown in Table I.

Let ϒk:0 be the Choi form for a k-step process tensor
(we occasionally switch to ϒ for brevity if the number of
steps is not pertinent) and let |ϒ〉〉 := vec(ϒ), where we
employ the row-vectorized convention [64]. We discuss
the mathematical demands of positivity and causality first,
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their individual projections, and then their simultaneous
realization.

Similar to a quantum channel, complete positivity of
a process tensor is guaranteed by positivity of its Choi
representation,

ϒk:0 ∈ S+
n , (16)

where S+
n is the cone of n × n positive-semidefinite (PSD)

matrices with complex entries. For k time steps, n = 22k+1.
The Euclidean projection is computed with a single eigen-
decomposition. Diagonalization of ϒ gives ϒ = UDU†,
where D = diag(λ1, λ2, . . . , λn) is real. Then the projection
onto S+

n is

ProjS+
n
(ϒ) = Udiag(λ+

0 , . . . , λ+
n )U† (17)

with λ+
j := max{λj , 0}.

The Choi state must also obey causality, a generaliza-
tion of trace preservation. This is nontrivial to enforce and
ensures that future events do not influence past statistics. In
the CJI picture of Fig. 2(b), there should be no correlations
between the final input leg and the rest of the process when
the final output leg is traced out. This is also a statement of
containment of the process tensor: that the process over
a subset of the total period is contained within the larger
process tensor:

Trok [ϒk′:0] = Iik ⊗ ϒk′−1:0, (18)

iterated for all values of k′ from 1 to k. This statement is
equivalent to causality in that the past stochastic process is
unaffected by averaging over all future operations.

We approach the problem of causality enforcement in
the Pauli basis. Examining the Choi state, this condition
places constraints on the values of these expectations. Let
P := {I, X , Y, Z} denote the single-qubit Pauli basis, Pn its
n-qubit generalization, and P̃ := {X , Y, Z}. Focusing on the
ik′ subsystem, Eq. (18) can be enforced if all Pauli strings
connecting the identity on the left subsystems with P̃ on the
ik′ subsystem have coefficients of zero. If this condition is
imposed iteratively for all input legs on the process tensor,
then Eq. (18) will hold for all k′. For example, in a two-step
single-qubit process (represented by a five-partite system),
we have

〈Io2Pi2Po1Pi0Po0〉 = 0 ∀ Pi2 ∈ P̃; Po1 , Pi0 , Po0 ∈ P

〈Io2Ii2Io1Pi1Po0〉 = 0 ∀ Pi0 ∈ P̃; Po0 ∈ P.
(19)

A simple way to enforce this condition is with the pro-
jection of Pauli coefficients. In particular, let P be the
elements of P2k+1 the expectations of which must be zero
from Eqs. (18) and (19). We can write this as a single affine

constraint in the matrix equation:

⎛
⎜⎜⎜⎜⎝

〈〈P0|
〈〈P1|

...
〈〈Pm−2|

〈〈I|

⎞
⎟⎟⎟⎟⎠

· |ϒ〉〉 =

⎛
⎜⎜⎜⎜⎝

0
0
...
0
, d

⎞
⎟⎟⎟⎟⎠

, (20)

where d is the normalization chosen for the Choi matrix (in
this work, d = 1).

Letting this set the context for our discussion of the
projection routine, consider a full-rank constraint matrix
A ∈ C

m×n2
, variable vector υ, and fixed right-hand side

coefficient vector b. Let V be the affine space:

V = {υ ∈ C
n2 |Aυ = b}. (21)

The projection onto V is given by

ProjV(υ0) = [
I − A†(AA†)−1A

]
υ0 + A†(AA†)−1b. (22)

In general, however, a projection onto S+
n and a projec-

tion onto V is not a projection onto S+
n ∩ V . The conic

and affine constraints are difficult to simultaneously real-
ize. One approach to this is to use Dykstra’s alternating-
projection algorithm, as performed in Ref. [60] for quan-
tum process tomography. This applies a select iterative
sequence of Eqs. (22) and (17). Although this method is
straightforward and has guaranteed convergence, we find
it unsuitable for larger-scale problems. For large gradi-
ent steps, the convergence can take unreasonably many
steps. More importantly, however, each step of the gra-
dient descent requires many thousands of applications of
Eq. (22). Although much of this expression can be pre-
computed, the complexity grows strictly with n, rather than
the number of constraints. Moreover, the matrix inverse
requirement can reduce much of the advantage of having a
sparse A.

In our MLE PTT, instead of Dykstra’s alternating-
projection algorithm, we integrate a variant of the tech-
nique introduced in Ref. [62] and discussed further in
Ref. [65]. This method regularizes the projection into a
single unconstrained minimization, such that only eigen-
decompositions and matrix-vector multiplications by A are
necessary, avoiding the need for Eq. (22). Note that to
guarantee uniqueness of the projection as well as conver-
gence of projected gradient descent in general, the closest
physical process tensor at each step is found in terms
of the Euclidean distance. For further detail on this, see
Refs. [62,66]. Because the projection is the only compo-
nent of PGDB that we change with respect to Ref. [60],
we explicitly walk through the steps in the following
paragraph. We also benchmark this direct conic projec-
tion routine on normally distributed random matrices with
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FIG. 4. A comparison between projection methods imposing
physical conditions on 500 normally distributed random matri-
ces. (a) The average time taken for a single projection for both
Dykstra’s alternating-projection algorithm and the direct conic
projection. We compare conditions set by QST, QPT, and PTT.
(b) The average number of eigendecompositions for each of the
above. This dominates the run time of each method.

respect to Dykstra’s alternating-projection algorithm for
the case of QST, QPT, and PTT in Fig. 4. The scaling for
each method is similar (dominated by the cost of eigende-
compositions) but the absolute savings are of 2 orders of
magnitude.

In each respective regime of tomography, the increased
number of constraints increases the amount of time, on
average, for the projection to complete. However, we find
substantial improvements in both the run time and in the
number of eigendecomposition calls between the direct
conic projection in comparison to Dykstra’s. This is espe-
cially necessary for the fitting of process tensors, where the
difference between the two can be the difference between
a run time of days or of fractions of a minute. We include
QST here for completeness; however, note that the fixed
projection of eigenvalues onto the canonical simplex with
a single diagonalization is more appropriate [67].

We now explicitly step through the direct conic projec-
tion method. For a given υ0, we wish to find the closest (in
Euclidean terms) υ ∈ S+

n ∩ V ; that is, to compute

arg min
υ∈S+

n ∩V
‖υ − υ0‖2. (23)

Note that when we talk about the vector υ being PSD, we
mean that its matrix reshape is PSD. The dual approach
introduces the Lagrangian, which is a function of the pri-
mal variable υ ∈ S+

n and dual variable λ ∈ R
m (for m

affine constraints):

L(υ; λ) = ‖υ − υ0‖2 − λ†(Aυ − b). (24)

Since υ is PSD, it is Hermitian, meaning that the matrix-
vector product Aυ is always real. This avoids the need
for recasting the complex problem into real and imaginary
pairs.

The vector υ that minimizes L for a given λ provides
a lower bound to the solution to the primal problem. We
introduce the dual concave function

θ(λ) := min
υ∈S+

n

L(υ; λ), (25)

the maximum of which is exactly the solution to Eq. (23).
It is shown in Ref. [68] that the minimum given in Eq. (25)
is uniquely attained by υ(λ) = ProjS+

n
(υ0 + A†λ) [68] and

can hence be recast (up to a constant) as

θ(λ) = −‖υ(λ)‖2 + b†λ. (26)

It can further be shown that Eq. (26) is differentiable on R
m

with gradient

∇θ(λ) = −Aυ(λ) + b. (27)

Thus, the solution to the projection problem given in
Eq. (23) becomes an unconstrained minimization problem
of Eq. (26) with respect to λ, opening the door to the
application of a wealth of tested optimization packages.
The solution to the projection is then ProjS+

n
(υ0 + A†λmin).

Specifically, in this work we select the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
to perform this minimization, as we find it to give the
fastest and most reliable solution [69]. Although we do
not implement it here, it is also possible to compute the
Clarke-generalized Jacobian of Eq. (27), allowing for exact
second-order optimization techniques to be used [70,71].
Note also that the difficulty of this minimization is sensi-
tive to the condition number of A. Thus, we find the best
approach to be to always frame affine constraints in the
Pauli basis to ensure a uniform spectrum.

Another favorable reason to apply this conic projection
method is in the arbitrary application of affine constraints.
In Ref. [63], we show how this can be used for searching
(and thus bounding quantities of) manifolds of states con-
sistent with an incomplete set of data. The introduction of a
feature matrix as part of the affine constraint with observed
probabilities permits this exploration. Without the faster
method, we find that this is infeasible to perform.
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Using this modification of PGDB with an updated pro-
jection routine, we are able to implement PTT both in
simulation and in real data. We thus formalize MLE PTT
and are now in a position to benchmark the performance
of MLE-PTT tomography against the linear-inversion
method and look at applications. The results, summarized
in the following sections, suggest full characterization of
quantum non-Markovian dynamics in an object that is both
mathematically minimal and that obeys all of the physical
constraints of a quantum stochastic process.

B. Reconstruction fidelity

In the linear-inversion regime, the action of the process
tensor on basis sequences will result in the experimen-
tally observed density matrices by construction. Note that
by “experimentally observed,” we mean the density matri-
ces as reconstructed by QST. Since a process tensor is a
linear operator, its action on linear combinations of basis
sequences should be exactly the linear combinations of
observed basis actions. This idea is expressed in Fig. 1(c):
the SE evolution between each operation is the same for
all intermediate operations. In a linear combination, these
arbitrarily strong dynamics are entirely accounted for. By
tracing over the input space, we have the following rela-
tionship between the state conditioned on an arbitrary
sequence of operations Ak−1:0 and the states after each
measured basis sequence:

ρk(Ak−1:0) =
∑

�μ
α �μρk(B

�μ
k−1:0), (28)

which is equivalent to Eq. (10). Hence, we may (in prin-
ciple) determine the exact response of the system to any
sequence of operations in the presence of non-Markovian
interaction. We use this as the figure of merit for the quality
of characterization. That is, we compute the fidelity over
random sequences of operation between the state predicted
by the process tensor—Eq. (10)—and what is realized on
the device. In Ref. [21], we have introduced this as the
concept of reconstruction fidelity.

Formally, let the fidelity F between two process tensors
T (1)

k:0 and T (2)

k:0 for a given sequence of interventions Ak−1:0
be given by

F(1,2) [Ak−1:0] = F
(
T (1)

k:0 [Ak−1:0],T (2)

k:0 [Ak−1:0]
)

,

where F(ρ, σ) = Tr
[√√

ρσ
√

ρ

]2

. (29)

Here, T (1) is taken to be the reconstructed process and T (2)

to be the real process, i.e., the experimental outputs. Then,

the average reconstruction fidelity is an estimate of

F :=
∫

dAk−1:0 F(1,2)[Ak−1:0]. (30)

We can use this to estimate the quality of our recon-
struction. The outputs of a real process are simply the
state reconstructions conditioned on a sequence of gates
{A0, . . . ,Ak−1}. This integral can be estimated by per-
forming sequences of randomly chosen operations and
comparing the fidelity of the predictions made by Tk:0 with
the actual outcomes measured. We use this as a metric for
the accuracy with which a process has been characterized.

As well as MLE PTT, we also improve upon LI PTT
through particular choice of a basis. The sampling error
typically averages out to zero on a circuit-by-circuit basis;
however, this noise can be both biased and amplified
if certain regions of superoperator space are overrepre-
sented—i.e., if some elements of the basis overlap more
than others. For this reason, we build upon the idea of a
mutually unbiased basis (MUB) in conventional tomog-
raphy. Unfortunately, mutually unbiased unitary bases
(MUUBs) do not exist in ten dimensions [72]. However, in
Appendix C, we numerically find the best approximation
to a MUUB.

We probe each of these characteristics by looking at
three-step PTT on IBM Quantum devices. Using combi-
nations of basis choice and LI-MLE postprocessing, we
compute the reconstruction fidelities for random sequences
of unitaries. The box plots showing these distributions are
shown in Fig. 5. Each data point constitutes a different
sequence of random unitary gates. The number is then
the fidelity between the density matrix predicted through
action of the reconstruction process tensor on these uni-
tary mappings and the actual density matrix reconstructed
through QST on the device after executing that specific
unitary sequence. The use of MUUB alone finds substan-
tial improvement in characterizing the process. We con-
tinue to use these optimal parameter values as our unitary
control basis for the remainder of this work. Reconstruc-
tion is improved further by MLE PTT, in which we not
only see an increase in median reconstruction fidelity but
there are far fewer outliers in the distribution. Compared
to the random basis linear-inversion case, reconstruction
fidelity increases greatly to within shot noise. This is essen-
tial for both validation of the process characterization and
optimal control of the system.

In Ref. [21] (from which some of this device data is
taken), much of the linear-inversion characterization noise
is overcome with the use of an overcomplete basis—up to
24 unitaries. Since PTT is exponential in the size of the
basis, the employment of maximum-likelihood methods as
shown here can offer a significant reduction in experimen-
tal requirements. Thus, in addition to offering an algorithm
that imposes physicality constraints, we show how to make
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FIG. 5. The reconstruction fidelity of various three-step
process-tensor procedures when using a minimal complete basis.
Each data point represents a different randomly generated unitary
sequence. The top and bottom of the box plots are 75 and 25 per-
centiles, the orange line is the median (figure also printed), the
whiskers are 1.5 times the interquartile range, and any remaining
data points are outliers beyond this. We compare reconstruc-
tions with (a) a randomly generated basis and linear inversion,
(b) a randomly generated basis processed by maximum likeli-
hood, (c) a mutually unbiased unitary basis (MUUB) processed
with linear inversion, and (d) a MUUB processed with maximum
likelihood. The results showcase high-fidelity physical process
tensors with minimal resources, in contrast to Ref. [21] where
the random-basis data are taken.

the technique more practical to implement. The scaling of
MLE is therefore

number of experiments ∼ O(N k
MLE), (31)

where NMLE can now be 10 regardless of the specific basis
choice.

As well as comparing processing methods, we also
juxtapose our approximate MUUB with the minimal ran-
domly chosen unitary basis, where NMUUB = 10. This, too,
sees a drastic improvement of the method: though it is not
guaranteed to produce a physical process tensor, we see
that much-higher-quality predictions are possible without
any additional effort in the linear-inversion approach.

IV. CONDITIONAL MARKOV ORDER

Even in the classical case, the price of characterizing the
joint statistics of a stochastic process in full generality is
exponentially high. Often, however, this is unnecessary in
practice as physical processes are sparse. This is because
the memory must be carried by another physical system,
the size of which then bounds then the size of the memory.
Often in practice, the necessary complexity of a process

characterization only grows modestly with the size of its
memory if, after a certain amount of time, the history and
the future are independent from one another.

In such cases, the joint statistics are no longer required
between those points in time. This motivates the idea of
Markov order [38,73]: the number of previous time steps
in the process that are relevant to the present. Concretely,
in classical theory, a stochastic process is described by
the joint probability distribution of a sequence of events
P(xk, xk−1, . . . , x0), occurring at times {tk, tk−1, . . . , t0}. A
process with Markov order � then conditionally sepa-
rates the future Fj = {tj +�+1, . . . , tk} from the past Pj =
{t0, . . . , tj −1}, given the knowledge of the state in the
memory block Mj = {tj , . . . , tj +�}. That is, the above dis-
tribution takes the form

P(xk, . . . , x0) =
∑
Mj

P(Pj |Mj ) P(Mj ) P(Fj |Mj ). (32)

That is, in order know the probability of an event at a given
time, we only need to look at the past � events. Anything
beyond that will not affect the future. In the case where
memory is indeed infinite but decays in time, we can turn
the last equation into an approximate statement. Impor-
tantly, the complexity of the whole process goes as dk,
where k is not bounded, while the complexity of a pro-
cess with Markov order � goes as d� with a fixed �; that is,
the distribution in Eq. (32) is fully determined by knowing
P(Mj ).

It is possible, roughly speaking, to extend the notion of
Markov order to quantum stochastic processes by replac-
ing P with its quantum counterpart ϒ . We now apply
this idea to MLE PTT and derive a resource-efficient
way to characterize even processes with very large num-
bers of steps. Concretely, integrating MLE PTT with a
Markov order of � would reduce the exponential scaling
in Eq. (31) to

number of experiments ∼ O(k × N �
MLE). (33)

To achieve this, we build upon the ideas established in
Ref. [29] and subsequently realized in Ref. [74].

A summary of our approach is to divide a k-step process
up into a number of smaller overlapping process tensors.
These smaller process tensors are designed to account for
a truncated number of past-time correlations. We then use
MLE estimation to fit each of the memory process tensors
according to a Markov order model chosen by the exper-
imenter. The finite Markov order process-tensor fitting,
adaptive memory blocking, and action across sequences
that we introduce here are all novel features of quantum
Markov order and offer a method by which non-Markovian
behavior on NISQ devices can be feasibly characterized
and controlled. We note in passing that without MLE PTT,
a Markov order integration would not be possible when
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working with restricted process tensors. This is because in
this regime the partial traces of the process tensor are not
well defined, which makes it difficult to split the process
into parts.

A. Structure of quantum Markov order

In the quantum realm, the matter of Markov order is
more nuanced than for classical processes. A quantum
stochastic process has either Markov order one (the output
at any leg is affected only by the previous input) or infinite
Markov order (the memory persists indefinitely). That is
to say, a Choi state may only be written as a product state
or there will exist correlations between all points in time
(though saying nothing about the strength of these cor-
relations). For practical purposes, however—especially in
the context of quantum computing—there exists the useful
concept of conditional Markov order [29].

To properly explain this statement about conditioning,
we first reemphasize that a process tensor represents a
quantum stochastic process. As a consequence, if we gain
extra information about the past—for example, what oper-
ation was applied by the experimenter—then we may
update our description of the process when conditioned
on that choice of operation. This is akin to the quan-
tum state picture: if a measurement is made on one qubit
as part of a many-body system, then the remaining state
can be updated based on the outcome of the measure-
ment. For a dynamical process, this intervention can, in full
generality, be a quantum instrument. A quantum instru-
ment is a set of completely positive trace-nonincreasing
maps, the sum of which is a CPTP map. We employ this
terminology but for readers unfamiliar with the object,
it suffices to interpret this as any way an experimenter
might manipulate a system, including unitaries, measure-
ments, and repreparations. Interested readers may consult
Ref. [75]. The conditional state of the process may then
exhibit past-future independence.

We now introduce Markov order for a quantum stochas-
tic process, as well as the related notion of instrument-
specific conditional Markov order. We then make clear
that processes conditioned on generic operations may only
exhibit approximate conditional Markov order. Finally,
we explicitly walk through our calculations of tomo-
graphically reconstructing processes with an approximate
conditional Markov order ansatz.

To begin, we describe a k-step process with Markov
order �. When � = 1, the only information relevant to the
CPTP map Êi is the state mapped at the output of the Êi−1
step, described by the oi−1 leg of the process tensor. Con-
sequently, there is no context to the previous gates. The
choice of operation Ai−1 is only relevant insofar as it deter-
mines the output state for time (i − 1). This constitutes
a Markovian process and the dynamics are CP divisible.

Otherwise, it is non-Markovian with � = ∞ [29]. Intu-
itively, one may think of this as the statement that there is
no way to consistently write a generic quantum state with
strictly limited correlations—for example, where each sub-
system might have nearest-neighbor correlations but zero
correlations with any subsystem outside of this.

Although finite � > 1 Markov order is well defined
for classical stochastic processes, where there is only
one basis, there is no generic way to write a quantum
state with correlations persisting to the last � subsystems.
However, future and past statistics may be independent of
one another for quantum stochastic processes when con-
ditioned on the choice of an intermediate instrument. This
notion of conditional Markov order may be described as
follows. Consider a process tensor ϒk:0, which we denote
as ϒFMP with the groupings for the past, the memory, and
the future, respectively:

Pj = {t0, . . . , tj −1},
Mj = {tj , . . . , tj +�},
Fj = {tj +�+1, . . . , tk}.

(34)

Let a sequence of operations Cj +�:j , with k > j + � act
on the memory block of the process. For the moment,
while discussing the basic properties of Markov order
in quantum processes, we omit the j and �. However,
these become important when propagating processes with
a Markov order assumption. Thus, henceforth, Cj +�:j is
expressed as CM . Let {B �μ

M } be a minimal IC basis for these
times, which includes CM , and let {� �μ

M } be its dual set. The
conditional process is given by

ϒ
(CM )
FP = TrM

[
ϒFMPCT

M

]
, (35)

where ϒX is the process tensor across the legs given by the
set(s) X . If the past and the future are independent in this
conditional process, then it can be written as

ϒ
(CM )
FP = ϒ

(CM )
F ⊗ ϒ

(CM )
P , (36)

where

ϒ
(CM )
X = TrMX

[
ϒFMPCT

M

]
X ∈ {F , P}. (37)

Note that the condensed language used here is identical to
the description used in Eq. (10). If Eq. (36) holds for all
elements of {B �μ

M }, then the process, by construction, can
be written as

ϒFMP =
∑

�μ
ϒ

(B �μ
M )

F ⊗ �
�μ
M ⊗ ϒ

(B �μ
M )

P . (38)

A fact of practical importance is that for all sequences
of operations AM �∈ {B �μ

M }, Eq. (36) cannot hold. This is
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because {B �μ
M } is informationally complete, meaning that

some operation sequence from outside the set can be
expressed as a linear combination:

AM =
∑

�ν
α�νB�ν

M . (39)

Contraction of this operation into the process then yields

ϒ
(AM )
FMP = TrM

[
ϒFMPAT

M

]

= TrM

[
ϒFMP

(∑
�ν

α�νB�νT
M

)]

=
∑

�ν
α�νϒ

(B�ν
M )

F ⊗ ϒ
(B�ν

M )

P , (40)

which is no longer a product state, and thus the future and
the past are separable but not completely uncorrelated.

The complexity of characterizing a process grows expo-
nentially in �; we would prefer to drop the instrument-
specific component and employ a generic conditional
Markov order model. Explicitly, in this model, we trun-
cate all conditional future-past correlations, treating the
conditional state as a product, i.e.,

ϒ
(AM )
FMP ≈ ϒ

(AM )
F ⊗ ϒ

(AM )
P . (41)

The cost, or approximation, in doing so is determined by
the actual memory strength of the process over different
times. One meaningful measure of this is the quantum
mutual information (QMI) of the conditional state, the
left-hand side of Eq. (41). Of course, this information is
inaccessible in our truncated characterization. Instead, we
continue to use the reconstruction fidelity and experimen-
tally estimate this model error in the ability of each Markov
order to predict the behavior of actual sequences of random
unitaries [76].

B. Stitching together finite Markov order processes

We turn now to our work in extending the concept of
conditional quantum Markov order to a quantum circuit
context and to tomographic characterization. Here, we are
interested not only in dividing up the process into a sin-
gle past, memory, and future but doing this for all times in
the process. Then, for each time, the previous � − 1 opera-
tions are taken into account. This is performed by iterating
through the above computation: at each time step, dividing
the circuit up into past, memory, and future. Correlations
due to the memory are taken care of via contraction of the
relevant operations, leaving the future and the past con-
ditionally independent. This requires a tomographically
reconstructed process tensor for the relevant memory steps.
These memory process tensors are then stitched together

by the overlapping operation’s map of the earlier output
state. Our goal is to predict ρk(Ak−1:0) by making use of
the Markov order structure. At the first step, we have no
past, P0 = {∅}, and the memory is given by the first �

operations. That is, we have to construct the full process
tensor ϒM0 = ϒ�:0, which contains all of the conditional
states ρj (Aj −1:0) in M0, i.e., j ≤ �. To go beyond time t�,
we need the conditional state ρ�(A�−1:0) given by Eq. (10)
[see also the first line of Eq. (42)]: contracting ϒM0 with
A�−1:0. Importantly, this is the state propagated along with
the sequences of operations. For this reason, the first mem-
ory process tensor is the only one for which the output state
is not traced over, since we are not tracing over any alter-
native pasts. This means that it contracts one more local
operation than the remainder.

To get state ρ�+1(A�:0), we move one step forward with
P1, M1, F1. The relevant information is stored in ϒM0
and ϒM1 = ϒ�+1:1. For this process (and for all interme-
diate blocks in the process), there are three considerations:
first, we must account for the memory through its action
on the sequence A�−1:1 on ϒM1 and trace over its output
index at time t� [see the second line of Eq. (42)], since
this state corresponds to a different fixed past. Finally,
the operation A� connects ϒM0 and ϒM1 by mapping the
state ρ�(A�−1:0) to time t�+1 since, as per our conditional
Markov order assumption, once M1 is accounted for, F1
and P1 are independent, i.e., their dynamics can be treated
as a tensor product. See Fig. 6 for a graphical tensor-
network depiction. Note the distinction between here and
Fig. 2(d). For a full four-step process tensor, estimation of
a single expectation value involves contraction of a tensor
of matrix size 512 × 512. With � = 2 conditional Markov
order, however, this requires only three tensors with matrix
size 32 × 32.

Following this recipe, we proceed forward in single
steps, generating blocks of Pj , Mj , Fj until we reach time
tk, at which point the final state may be read out. For clarity,
the sequence of conditional memory process tensor states
is given by

ρ�(A�−1:0) = Tro�

[
ϒM0

�−1⊗
i=0

AT
i

]
,

ϒ
(Aj −2:j −�)

j := Trj

⎡
⎣ϒMj −�

j −2⊗
i=j −�

AT
i

⎤
⎦ .

(42)

The conditional state ρ�(A�−1:0) has the free index o�, cor-
responding to its output state. All others ϒ

(Aj −2:j −�)

j have
free indices ij and oj , which, respectively, are contracted
with the output and input legs of the operation Aj and
Aj +1, respectively. These are the operations that stitch
together the different conditional memory process tensors,
where the conditional independence means that the state
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FIG. 6. A contraction strategy for mapping multitime gate sequences using a conditional Markov order ansatz. Here, we show how
a four-step process can be modeled by two-step memory process tensors. The memory process tensors are stitched together by first
contracting the relevant operations to their times to account for correlations. After tracing over the state output (denoted by δ), the
conditionally independent parts can be treated as tensor products and thus stitched together with the latest common operation, where
the output of the earlier process tensor is mapped to the input of the later one.

can be mapped as though it is a tensor product. Finally, the
last output leg ok is read out by some POVM.

We condense this k-step Markov order � process in
the object ϒ�

k:0 := {ϒMk−�
, ϒMk−�−1 , . . . , ϒM0}. That is, the

final state is defined by the collective action of each ϒMj as

ρk(Ak−1:0) ≈ ϒ�
k:0 ∗ Ak−1:0

:= Trok

⎡
⎣ϒ

(Ak−2:k−�)

k

⎛
⎝

k−1⊗
j =�

ϒ
(Aj −2:j −�)

j AT
j

⎞
⎠
⎤
⎦ . (43)

Note that since the same control operation may contract
into multiple different memory process tensors, this action
is no longer linear in Ak−1:0.

Recalling our earlier depiction of the process tensor
in Fig. 2, the dynamics can be described as a collec-
tion of correlated CPTP maps {Êj :j −1}. In the CJI picture,
past operations are equivalently seen as measurements on
these earlier states. Thus, the ϒ

(Aj −2:j −�)

j are exactly the

conditional memory states Ê (Aj −2:j −�)

j :j −1 . With correlations
accounted for, they can be treated locally in time. Any

process may be written exactly as a sequence of condi-
tional CPTP maps, but in full generality they depend on
the whole past. Here, they only depend on the memory.
The difference in complexity of characterization is O(N k)

vs O(N �). Putting it all together, we have an equivalent
form of Eq. (43):

ρk(Ak−1:0) ≈ E (Ak−2:k−�)

k:k−1 ◦ Ak−1 ◦ · · · ◦ E (A�:2)

�+2:�+1

◦ A�+1 ◦ E (A�−1:1)

�+1:� ◦ A�[ρ�(A�−1:0)]

with ρ�(A�−1:0) = TM0 [A�−1:0]. (44)

To summarize, the process with a conditional Markov
order � ansatz ϒ�

k:0 is represented by a collection of mem-
ory process tensors {ϒk:k−�, ϒk−1:k−�−1, . . . , ϒ�+1:1, ϒ�:0}.
As discussed, it cannot be represented generically by a
quantum state but this collection of memory process ten-
sors defines its action on a sequence of k operations. The
contraction strategy for a series of control operations (with
k = 4 and � = 2) is shown in Fig. 6. In short:

(1) Contract the first � operations into ϒ�:0, producing
the output state at time t�.
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(2) Contract operations 2 to � into ϒ�+1:1.
(3) Trace over the output index of ϒ�+1:1 at time t�

(since this is not representative of the actual state
of the system subject to all operations).

(4) Taking the (� + 1)th operation to be conditionally
independent of the first, this can be applied across
the tensor product of the two process tensors into the
indices for the output state at time t� and the input
for time t�+1.

(5) Repeat this pattern for the next k − � − 2 process
tensors.

(6) Read out the final state at time tk.

The full details of this computation can be found in
Appendix B, where we fully describe an efficient tensor-
network contraction for the action of ϒ�

k:0.

C. Circuits for ϒMj

With a framework established for constructing and oper-
ating a finite Markov order ansatz, we now explicitly detail
how to tomographically reconstruct this model on a real
device. This procedure does not deviate significantly from
Sec. III. In order to estimate ϒ�

k:0, we must estimate each
of the memory-block process tensors. Recall that each
ϒMj := ϒ�+j :j is equivalent to ϒ�+j :0 with the first j times
projected out onto some series of interventions. In order to
experimentally reconstruct each ϒMj , then, it suffices to fix
the first j operations in the circuit and then perform a com-
plete basis of operations in each position from tj to t�+j and
estimate the associated �-step process tensor. The circuits
required for each of these are illustrated in Fig. 7, with the
fixed operation labeled Bf . As well as sufficiently describ-
ing a Markov order � model, these circuits contain all of the
information required for any lower-order Markov model if
it is a full process tensor. Under the unitary-only restric-
tion, there will be a small number of extra experiments
required for any smaller memory blocks terminating ear-
lier than t�. We also note here that the maximum-likelihood

FIG. 7. Circuits to construct a process tensor with conditional
Markov order �. For a k-step process, ϒ�

k:0, there are k − � + 1
memory process tensors that need to be constructed—each circuit
represents the estimation of each of these, by varying all combi-
nations of all indices from i0 to i�−1. In the other gate positions,
a fixed operation Bf is applied.

procedure of Sec. III is necessary for conditional Markov
order models if the set of instruments is restricted to the
unitaries. This is because Eq. (43) requires local partial
traces but unitary gates are equivalent to entangled mea-
surements in the Choi picture. Hence, if a linear-inversion
restricted process tensor is constructed, the partial traces
will not be well defined.

In the action of ϒ�
k:0, the state generated by each ϒMj

is traced over for all j > 0. Consequently, the fixed opera-
tions that precede Mj in the reconstruction circuits should,
in principle, not affect the final outcome ρk. Since, how-
ever, the conditional Markov order (CMO) ansatz is an
approximation to the true dynamics, then the fixed past
operations will, in practice, affect this approximation. In
the generic case, there is no reason to suspect that any
operation will put forth a better or worse approximation,
hence we arbitrarily set this operation to be the first ele-
ment of the basis set each time. This choice may require
closer attention in practical situations.

With this, we describe how to adaptively characterize a
process with quantum and classical requirements only as
large as the complexity of the noise (or up to the error that
the experimenter is willing to tolerate). Since a process
characterization may be verified through the reconstruc-
tion fidelity, the best approach to this is to progressively
build up and verify a more complex model until the desired
precision is reached. This will depend on the intended
applications of the characterization. We believe that this
is the first procedure to methodically characterize finite
Markov order quantum processes. We expect this to be
extremely useful in stemming the effects of both correlated
and uncorrelated noise on NISQ devices, where the open
dynamics are already clean enough so as to be mostly—but
not strongly—non-Markovian.

D. Estimating memory build-up

We can combine some of the ideas introduced to give
a more fine-grained measure of non-Markovian memory
on quantum devices, both in terms of its length and its
strength. Specifically, these simplified models of the pro-
cess can either be employed to streamline control of the
quantum system or they may be used as a diagnostic
tool by observing how well different restrictions describe
the dynamics. This also validates our method of recon-
structing processes with conditional Markov order in an
efficient way. To estimate non-Markovianity, we construct
increasingly complex models by accounting for increas-
ing memory and quantify how well they describe observed
device dynamics under the measure of reconstruction
fidelity. This measure is computationally convenient, scal-
ing linearly in time steps; has an immediately available
interpretation; and may be performed up to acceptable
approximation or where costs become prohibitive. The
breakdown of conditional Markov order is bounded by
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the maximum conditional quantum mutual information
(CQMI) as described in Ref. [76]. For a three-step process
tensor, the CQMI is taken to be

max
A1

S[ϒ(A1)

3:0 ||Ê (A1)

3:2 ⊗ ϒ
(A1)

2:0 ], (45)

where S[ρ||σ ] := Tr[ρ(log ρ − log σ)] is the von Neu-
mann relative entropy. The conditional Markov order
approximation is illustrated in Fig. 8(a).

We perform this procedure as an example on
ibmq_guadalupe to observe non-Markovianity as a func-
tion of time. For a four-step process, we construct process
tensors ϒ�

4:0 for � ∈ {1, 2, 3}. With a |+〉 state neighbor, the
duration of each step is varied across ten different times,
ranging from 180 ns up to 1800 ns. For each value of
t, we execute 100 sequences of random unitaries {Ui

3:0}
followed by state reconstruction. Then the action of ϒ�

4:0
on Ui

3:0 is used to predict the resulting states. The fidelity
between the predicted state and the actual state is com-
puted and the distribution for each data point is shown in
Fig. 8. We see here the build-up of memory effects; the
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FIG. 8. The build-up of temporal correlations with increasing
interaction time. (a) The CQMI quantifies the error in truncat-
ing correlations beyond � = 2 when conditioned on intermediate
operations. (b) A four-step process is considered, with an increas-
ing wait time after each gate. Using Markov orders � = 1, � = 2,
and � = 3, we quantify how each model reconstructs 100 random
unitary sequences. The points indicate the average fidelity and
the shaded regions indicate the standard deviation. (c) The QMI
and CQMI both increase with the interaction time, bounding the
breakdown of � = 1 and � = 2 models, respectively.

time scales constitute relatively short-depth effective cir-
cuits, meaning that these temporal correlations are likely
to accumulate across practical circuits. Interestingly, the
� = 3 model performs significantly better than the other
two, whereas � = 2 is only marginally better at predicting
the dynamics than � = 1 [77]. This suggests that most of
the memory effects in these devices are higher order—they
persist across multiple times. This observation is substan-
tiated by computing the QMI from Eq. (11), as well as
finding the operation that maximizes the conditional QMI
for the three-step process tensors. The ability to com-
pute these measures comes from our compressed-sensing
approach to PTT, detailed in Ref. [63]. The increase of both
of these non-Markovian measures is shown in Fig. 8(c).
Because of the cumulative build-up, for long-time dynam-
ical processes in real situations, mitigating the effects of
these correlations would require either decoupling early or
fine graining the process into many more time steps. These
memory effects manifest themselves over a time frame of
only a few controlled-NOT (CNOT) gates, indicating that
non-Markovian dynamics are likely a significant class of
noise in regular circuits.

Markovianity breakdown has been previously quanti-
fied in terms of model violation in gate sets or in the
loss of CP divisibility [4,7,53]. However, these approaches
only coarsely diagnose temporal correlations and are not
generic to the process. We present a systematic framework
by which different levels of finite conditional Markov order
may be tested on quantum devices with both a rigorous
foundation and practical interpretation.

V. APPLICATIONS OF MULTITIME
CHARACTERIZATION

The characterization given in PTT can be useful
for qualitatively different applications. Broadly speaking,
these applications fall into two different camps: non-
Markovian diagnostics and non-Markovian optimal con-
trol. In the former, conventional many-body tools are
applied to the Choi state to probe the characteristics of the
temporal correlations via correlations between the CPTP
marginals Êj :j −1. These characteristics can reveal a great
deal about the noise: its complexity, the probability of
Markov-model confusion, the size of the environment,
as well as its quantum or classical nature, to give some
examples [63,78,79]. Since the Choi state is, in general,
nonuniquely defined for a restricted process tensor, we do
not comment on these aspects here. In Ref. [63], we focus
on applying our methods to extract and bound information
about these quantities on NISQ devices, with examples
shown on IBM Quantum devices.

Here, we focus on control. We present some examples
of how a process-tensor characterization can straightfor-
wardly yield superior circuit fidelities on real QIPs and
the extent to which a conditional Markov model can be
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used for this. Reconstruction fidelity validates the ability
of the process tensor to accurately map a given sequence
to its final state. This is especially applicable to near-term
quantum devices the control operations of which are high
in fidelity but the dynamics of which (non-Markovian or
otherwise) are not under control. In the same way that a
mathematical description of a quantum channel may be
used to predict its behavior on any input state, the process
tensor can predict the output state of a process, subject to
any sequence of input operations. A mapping from unitary
gates to outcomes allows an experimenter to ask “What is
the optimal sequence of gates that best achieves this out-
come?” Two key features distinguishing this from regular
quantum optimal control are, first, that after characteriza-
tion, all optimization can be performed classically with
confidence and, second, that the process is fully inclusive
of non-Markovian dynamics, allowing for the suppression
of correlated errors. Simply choose an objective function L
of the final state. Then L (Tk:0 [Ak−1:0]]) classically eval-
uates L conditioned on some operation sequence Ak−1:0
using the process characterization. This can be cast as
a classical optimization problem to find the sequence of
gates that best results in the desired value of L. This idea
has been preliminarily explored in Ref. [21] and applied to
pulse shaping in Ref. [80].

A. Optimization for states using a full process tensor

To demonstrate the utility of this idea, we use the
process tensor to improve the fidelity of IBM Quantum
devices over multitime processes. Note that this charac-
terization overcomes both Markovian and non-Markovian
errors. In particular, we apply many sequences of random
unitaries to a single qubit and measure the final state. Inter-
leaved between each operation is a delay time roughly
equivalent to the implementation duration of a CNOT gate.
We then compare the fidelity of this output state to the ideal
output subject to those unitaries. That is, we generate a set
of ideal outputs,

ρ
ijk
ideal = Ak

3 ◦ Aj
2 ◦ Ai

1[|0〉〈0|], (46)

with a set of values F(ρideal, ρactual). Mirroring these
dynamics, we construct a process tensor the basis of the
inputs of which is at the same time as the target unitaries.
We supplement the reconstruction by using GST to esti-
mate the noisy-device POVM. The estimated POVM is
then used in the MLE processing, rather than the ideal
projective measurements. The purpose of this is to avoid
inflating any circuit improvement. For example, a relax-
ation process during the measurement operation would
be absorbed into the process-tensor estimate and could
be artificially overcome by increasing the |1〉 population.
By accounting for measurement errors in PTT and QST,
we are considering only dynamics during the circuit as

a more representative depiction of generic PTT capabili-
ties. Finally, using the PTT characterization, we determine
which set of unitaries V should be used (instead of the
native ones, A) in order to achieve the ideal output state.
Let each unitary gate V corresponding to the map V be
parametrized in terms of θ , φ, and λ as

V(θ , φ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) eiλ+iφ cos(θ/2)

)
. (47)

The process prediction is then given with

ρ
ijk
predicted(

�θ , �φ, �λ) = T3:0

[
Vk

3 ,V j
2 ,V i

1

]
. (48)

Then, for each combination ijk, we find

arg max
�θ , �φ,�λ

F(ρ
ijk
ideal, ρ

ijk
predicted) (49)

and use these optimal values in sequences on the device.
The results across 216 random sequences are summa-
rized in Fig. 9(a). The average observed improvement
is 0.045, with a maximum of 0.10. In addition, the dis-
tribution of fidelities is much tighter, with the standard
deviation of device-implemented unitaries at 0.0241, com-
pared with our computed values at 0.005 78. We also
repeat similar runs on ibmq_bogota, intended to drive
some characteristics of crosstalk: starting the neighbor in
a |+〉 state followed by four sequential CNOT gates to its
other-side nearest-neighbor between each unitary. Initial-
izing the neighbor in a |+〉 state is intended to generate
a passive entangling interaction between the two qubits
due to the always-on ZZ interaction found in supercon-
ducting transmons. We find that these native fidelities are
much worse than on the ibmq_manhattan, despite possess-
ing similar error rates—implicating the effects of crosstalk.
We emphasize that the noise encountered in all our results
is naturally occurring from device fabrication, rather than
a contrived environment. Nevertheless, the process-tensor-
optimal fidelities in Fig. 9(b) are nearly as high. This
suggests a path forward whereby quantum devices may be
characterized using PTT and circuits compiled according
to the correlated noise of that device. An obvious draw-
back of this is the characterization requirements. We now
investigate carrying out a similar task with our conditional
Markov order model.

B. Optimization for arbitrary circuits with finite
Markov order process tensors

The use of a complete process-tensor model to optimize
circuit sections may be feasible for a small number of gates
and, indeed, may be necessary for highly correlated noise.
However, it is not desirable in a generic sense to charac-
terize redundant information. Moreover, it is impractical
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FIG. 9. The results of using the process tensor (PT) to optimize
multitime circuits with different random single-qubit unitaries.
The x axis indicates the fidelity compared to ideal when the
sequences are run on the device. The y axis is the fidelity of
the sequence when the process tensor is used to optimize to the
ideal case. (a) Here, we have three sequential unitaries with a
wait time interleaved similar to that of two CNOT gates (0.71 μs)
on the ibmq_manhattan (no background). (b) A similar setup is
considered on ibmq_bogota but with the neighboring qubit in a
|+〉 state and subject to four CNOT gates per time step (2.5 μs)
(|+〉 and CNOT background).

to optimize over specific circuits in a state-dependent way
when inputs may be reduced subsystems of a larger reg-
ister. Here, we address both of these points. We target
longer circuits with larger values of k by using a truncated
Markov model. In doing so, we both validate our con-
ditional Markov order methodology and demonstrate the
need to approach the problem of NISQ noise with temporal
correlations in mind. Further, we also change our optimiza-
tion approach: instead of trying to create a specific state on
a circuit-by-circuit basis, we numerically find the sequence
of gates that most closely takes the effective process to be
the identity channel. This allows for arbitrary addressing of
non-Markovian noise without a priori knowing the input
state.

A five-step process is considered with delays of approxi-
mately 1.2 μs after each gate. We characterize this process
using conditional Markov order models of � = 1, � = 2,
and � = 3 under three different cases: no operations on the
background qubits, one nearest neighbor to the system ini-
tialized in a |+〉 state, and, finally, two nearest neighbors

and one next-to-nearest neighbor in a |+〉 state. The first
job takes place on ibmq_montreal and the second and third
on ibmq_guadalupe. The purpose of the latter two analy-
ses is to encourage any (predominantly ZZ) interaction that
realistically might occur between qubits in an algorithm.
We then generate 100 sequences of five random unitary
gates, followed by QST. These sequences serve two pur-
poses: first, we evaluate the reconstruction fidelity for the
different Markov order models and, second, we use these as
our benchmark for adaptively improving the native fidelity
of the device. We select an IC set of unitary gates {Ai} to
be applied in the first circuit position, generating a set of
ideal states {ρideal} := {A[|0〉〈0|}. That is, i indexes a set
of random states. We then parametrize the next four gates,
again, in terms of �θ , �φ, and �λ. However, this time, the gates
are the same for each input. Finally, using each ϒ�

5:0, we
compute

arg max
�θ , �φ,�λ

∑
i

[
F(ρ i

ideal, ρ
i
predicted)

]2
. (50)

In plain words, we are finding the four gates that simulta-
neously best preserve all of our random input states. After
running this optimization for each Markov order model
and each background, we then aim to create the ideal
output from the 100 random sequences, first, by creating
the state with the first gate and then, applying the four
gates found from Eq. (50). Following QST at the end,
we compute the fidelity of each final state with respect
to the ideal. The purpose of this routine is twofold: to
determine whether active circuit improvements (akin to
dynamical decoupling) can be systematically found, even
in the presence of non-Markovian noise, and to ascertain
how the inclusion of higher-order temporal correlations in
the model can help achieve this task. Without random-
izing over the inputs, we find that the � = 1 model will
hide each state in a decoherence-free subspace until the
last gate, which is not a generalizable strategy. The results
of these runs are shown in Fig. 10 for each sequence and
each Markov model, with both the mean circuit fidelities
and reconstruction fidelities printed. With no activity on
neighboring qubits, we find a moderate amount of non-
Markovian noise at this time scale. Interestingly, � = 3
predicts the dynamics moderately better than � = 2, sig-
naling the presence of higher-order correlations in the
dynamics. However, the optimal interventions improve the
average circuit fidelity to a similar level for each. The
generic correctability for given circuit structures may sat-
urate, regardless of the completeness of characterization.
For the second and third situations, the dynamics are more
complex and we see a clear separation between the differ-
ent Markov orders. By accounting for these higher-order
temporal correlations, we are able to more substantially
increase the circuit fidelities, both in terms of the mean
value and in terms of the tightness of the distribution. Only
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FIG. 10. The results of using conditional Markov models to
improve the fidelities of a five-step circuit on ibmq_montreal and
ibmq_guadalupe. We construct conditional Markov order mod-
els for � = 1, � = 2, and � = 3 across five steps under a variety
of background conditions. For randomized inputs, these models
are used to optimize the next four operations. The four optimal
operations are then applied to each input and the results com-
pared to the machine fidelity. The mean and standard deviation
for each set of circuits is listed, as well as the average recon-
struction fidelity of the models. (a) No background operations
are applied. (b) The nearest neighbor to the system is initialized
in a |+〉 state. (c) Two nearest neighbors and one next-to-nearest
neighbor from the system are initialized in a |+〉 state.

in the last case do we find that a Markov model � = 1 is
able to achieve an improvement, further highlighting the
need for our multitime process characterization on NISQ
devices.

VI. DISCUSSION AND CONCLUSIONS

In NISQ devices, circuit performance is not solely deter-
mined by the simple composition of high-fidelity gates
and measurements but exhibits complex non-Markovian

effects. It is therefore unavoidable to pivot the focus
of characterization techniques onto the emergent holistic
behavior of multitime processes. In this paper, we formally
introduce a multitime generalization of quantum process
tomography, in the form of the estimation of process-tensor
models. We present several key advancements that we
believe will be valuable contributions to the community:
we shown how to obtain reliable high-fidelity minimal-
resource estimations of quantum non-Markovian processes
through our fast MLE procedure; we derive a method by
which low-memory ansätze can be implemented; and we
show how to use our tools to improve the performance of
NISQ devices. This is, to the best of our knowledge, the
first development of a maximum-likelihood technique for
reconstructing multitime processes. Moreover, it permits
a modular description of non-Markovian memory. These
facets are important not just for quantum-information pro-
cessing but in the study of multitime correlations that
naturally occur in out-of-equilibrium quantum stochas-
tic phenomena, such as in cold atoms, condensed-matter
physics, and quantum biology [81–86].

Our technique requires computational resources that
scale only linearly in time, while being exponential in
the Markov order. The required Markov order plays two
important roles: it limits the computational requirements
and it benchmarks the degree of non-Markovianity in the
device by answering “How many previous time steps are
relevant to our current description of the dynamics?” The
next step is to further compress the process description by
employing the myriad techniques for efficient tomography
that are well described in the context of QST and QPT
[30,40,87–89]. Alternatively, if one was interested in an
informative snapshot of the temporal correlations, shadow
tomography could efficiently estimate linear functions of
the Choi state, supposing that an informationally complete
basis of operations was available [90].

Applications of the process tensor have been promising
for improving circuit fidelities. However, much more work
needs to be accomplished to render this practical. What is
the minimal characterization required to realize this supe-
rior control? When can it be reused on other qubits? Can
the characterization be used to improve generic (possi-
bly unknown) circuits? The practical and theoretical tools
developed here pave the way for answering many of these
questions.

One important aspect of the results so far is that they
allow for optimizations that mitigate highly correlated
noise. These suggest that current devices may be closer to
fault tolerance than presently realized. For example, the
native error per gate suggested in Fig. 10(c) is approxi-
mately 0.02 in the presence of crosstalk, whereas the appli-
cation of an optimization based on non-Markovian error
characterization reduces this to approximately 0.005. But
this is not the only consideration; not only do our methods
allow for the device to be cleaned up in an absolute sense
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but also the reduction of correlated errors has the effect
of lowering the stringency of quantum error-correcting
thresholds (when compared to a correlated error model).
Thus, a non-Markovian characterization can both raise the
performance while lowering the bar. We strongly believe
that characterization techniques and software will play a
large role in the eventual realization of a fault-tolerant
quantum computer.
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APPENDIX A: PROCESS-TENSOR
CONTRACTION AND MAXIMUM LIKELIHOOD

Throughout the main text, we omit some of the length-
ier computations and descriptions relevant to both linear-
inversion and maximum-likelihood PTT. We include these
as follows for completeness, as well as an outline of our
algorithmic implementation of PTT.

1. Construction of a dual set

The procedure to construct the dual operators is as fol-
lows: we compile an IC operation set {Bi} into a single
matrix B. Write each Bi = ∑

j bij �j , where the {�j } form
a Hermitian self-dual linearly independent basis satisfy-
ing tr[�j �k] = δjk. In our case, we select {�j } to be the
standard basis, meaning that the kth column of the matrix
B = ∑

ij bij |i〉〈j | is Bk flattened into a 1D vector. Because
the {Bi} are linearly independent, B is invertible. Let the
matrix F† = B−1 such that B × F† = I. This means that
the rows of F† are orthogonal to the rows of B. The
dual matrices can then be defined as �i = ∑

j fij �j , ensur-
ing that tr[Bi�j ] = δij . Note that in this work, our basis
is restricted to the submanifold of unitary matrices. This
means that the dimension d of the space is less than the
order n of the matrices. Therefore we construct F† as
the Moore-Penrose or the right inverse of B. If a set of
duals is with respect to an overcomplete basis, the same
strategy may also be used. Here, we relax the duality condi-
tion tr[Bi�j ] = δij but retain

∑
i �i = I to ensure that the

expansion of any operation within the basis is complete.

2. Action of Choi states

When written in terms of its dual construction, it
becomes apparent that the action of a quantum channel
through its Choi representation is a linear expansion in
terms of its action on an IC basis of inputs. Here, we step
through this computation and then through the same com-
putation for the process tensor in order to emphasize their
parallels. Explicitly, consider σ = ∑n

i=1 αiρi. The action
of E on σ is given by

Trin

[
(Iout ⊗ σ T)Ê

]

= Trin

[
(Iout ⊗ σ T)

n∑
i=1

ρ ′
i ⊗ ωT

i

]

= Trin

⎡
⎣(Iout ⊗

n∑
j =1

αj ρ
T
j )

n∑
i=1

ρ ′
i ⊗ ωT

i

⎤
⎦

= Trin

⎡
⎣

n∑
i=1

n∑
j =1

ρ ′
i ⊗ αj ρ

T
j ωT

i

⎤
⎦

=
n∑

i=1

n∑
j =1

ρ ′
iαj Tr[ρj ωi]

=
n∑

i=1

αiρ
′
i . (A1)

Similarly, for the action of a process tensor on a generic
sequence of operations Ak−1:0,

Tk:0 [Ak−1:0] = trin

[(
Âk−1:0 ⊗ Iout

)T
ϒk:0

]

= trin

[(
k−1⊗
i=0

ÂT
i ⊗ I

)∑
�ν

(��ν
k−1:0)

T ⊗ ρ�ν
k

]

= trin

⎡
⎣∑

�μ
α �μ

k−1⊗
i=0

B̂μiT
i

∑
�ν

k−1⊗
j =0

�
νj T
j ⊗ ρ�ν

k

⎤
⎦

= trin

⎡
⎣∑

�μ,�ν
α �μ

k−1⊗
i,j =0

{B̂μiT
i �

νj T
j } ⊗ ρ�ν

k

⎤
⎦

=
∑
�μ,�ν

α �μ
k−1∏

i,j =0

tr
[
B̂μi

i �
νj
j

]
ρ�ν

k

=
∑
�μ,�ν

α �μ
k−1∏
i=0

δ �μ�ν ρ�ν
k

=
∑

�μ
α �μρ

�μ
k

= ρk(Ak−1:0). (A2)
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The direct calculation of each expansion coefficient is
therefore given by

α �μ = tr
[
Âk−1:0�

�μ
k−1:0

]

= tr

[
k−1⊗
i=0

Âi�
(μ,i)

]

=
k−1∏
i=0

tr
[
Âi�

μi
i

]
=

k−1∏
i=0

α
μi
i . (A3)

3. Maximum likelihood, cost evaluation, and gradient

Full details and benchmarking of the PGDB algorithm
for QPT can be found in Ref. [60]. Here, we provide the
pseudocode in this context, which forms the basis for our
implementation of MLE PTT.

ProjS+
n ∩V(·) here is the projection subroutine described

in Sec. III. Although we fix the gradient step size here to
be the same as in Ref. [60], we find this to be slightly prob-
lem dependent in terms of its performance. The reason is
that the larger the step, the less physical ϒ

(j )
k:0 − μ∇f (ϒ

(j )
k:0)

tends to be, increasing the run time of the projection sub-
routine. In general, we find that decreasing μ to favor
the run time of the projection is favorable overall to the
performance of the algorithm.

The process-tensor action described in Eq. (A2) is ped-
agogically useful; however, in practice, we compute the
action of some process tensor Tk:0 on a sequence of con-
trol operations Ak−1:0 by projecting its Choi state onto the
sequence of operations, as in Eq. (14). Because the input
operations are always tensor product (omitting the case
of correlated instruments), this can be performed fast as

1: j = 0, n = d2k+1
S

2: Initial estimate: Υ(0)
k:0 = In×n/n

3: Set metaparameters: α = 2n2/3, γ = 0.3
4: while f(Υ(j)

k:0) − f(Υ(n+1)
k:0 ) > 1 × 10−6 do

5: D(j) = Proj
S+

n ∩V

(
Υ(j)

k:0 − μ∇f(Υ(j)
k:0)

)
− Υ(j)

k:0

6: β = 1
7: while f(Υ(j)

k:0) + βD(k)) > f(Υ(j)
k:0) + γβ

〈
D(j), ∇f(Υ(j)

k:0)
〉

do
8: β = 0.5β
9: end while

10: Υ(j+1)
k:0 = Υ(j)

k:0 + βD(j)

11: j = j + 1
12: end while
13: return Υ(est)

k:0 = Υ(j+1)
k:0

Algorithm 1 PGDB

a tensor-network contraction. In this form, computation
of the cost and the gradient is significantly sped up in
comparison to multiplying out the full matrices.

Writing the Choi state of a process tensor ϒk:0 explicitly
with its indices as a rank 2(2k + 1) tensor, we have 2k + 1
subsystems alternating with outputs from the j th step (oj )
and inputs to the (j + 1)th step (ij ), i.e.,

ϒk:0 ≡ (ϒk:0)
bok ,bik ,...,bo0
kok ,kik ,...,ko0

, (A4)

where b is shorthand for bra and k is shorthand for ket.
The basis operation at time step j has indices (we write

its transpose) (Bμj
j )

kij +1 ,koj
bij +1,boj

; meanwhile the POVM ele-

ment �i is written (�i)
bok
kok

. Consequently, the full tensor
of predicted probabilities for all basis elements is given by

pi, �μ =
∑

kok ,kik ,...,ki1 ,ko0
bok ,bik ,...,bi1 ,bo0

(ϒk:0)
bok ,bik ,...,bo0
kok ,kik ,...,ko0

(�i)
bok
kok

(Bμk−1
k−1 )

kik ,kok−1
bik ,bok−1

(Bμk−2
k−2 )

kik−1 ,kok−2
bik−1 ,bok−2

· · · (Bμk−1
k−1 )

ki1 ,ko0
bi1 ,bo0

. (A5)

We use the quantum-information PYTHON library QUIMB [91] to perform this and all future tensor contractions straight-
forwardly. The cost function is then evaluation as in Eq. (15) in the same way: through an element-wise logarithm of pi, �μ
followed by contraction with the data tensor ni, �μ. Since the cost function is linear in ϒk:0, computation of the gradient
∇f /∇ϒk:0 is simply ∇pi, �μ/∇ϒk:0 : (n/p)i, �μ, which expands to

∇f
∇ϒk:0

=
∑
i, �μ

[
(Bμk−1

k−1 )
kik ,kok−1
bik ,bok−1

(Bμk−2
k−2 )

kik−1 ,kok−2
bik−1,bok−2

· · · (Bμ0
0 )

ki1 ,ko0
bi1,bo0

]
ni, �μ
pi, �μ

(A6)

i.e., Eq. (A5) without the inclusion of ϒk:0.
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APPENDIX B: APPROXIMATE CONDITIONAL
MARKOV ORDER

In order to estimate a CMO process tomographically,
we employ MLE PTT as described by the circuits in
Fig. 7. The action of the reduced process tensors under
a finite conditional Markov order model is best posed
as a tensor-network contraction, so that tasks such as
the optimization in Sec. V can be performed quickly.

We show this here. Note that the following extravagant
working is equivalent to Fig. 6 but we write it out in
full generality in order to make the indices explicit and
replication more straightforward. First, the conditional
reduced states of each of the process tensors must be taken
by contracting the relevant control operations (including
final measurement) into the process tensors. These are as
follows:

(
ϒ

(B �μ
�−1:0)

�:0

)bo�

ko�

=
∑

ko0 ,ki1 ,ko1 ,...,ki�−1
bo0 ,bi1 ,bo1 ,...,bi�−1

(ϒ�:0)
bo�

,bi� ,...,bi1 ,bo0
ko�

,ki� ,...,ki1 ,ko0
(Bμ�−1

�−1 )
bi� ,bo�−1
ki� ,ko�−1

· · · (Bμ0
0 )

bi1 ,bo0
ki1 ,ko0

,

(
ϒ

(B �μ
j −2:j −�

)

j :j −�

)boj ,bij

koj ,kij

=
∑

koj −�
,kij −�+1 ,koj −�+1 ,...,kij −1

boj −�
,bij −�+1 ,boj −�+1 ,...,bij −1

(
ϒj :j −�

)boj ,bij ,...,bij −�+1 ,boj −�

koj ,kij ,...,kij −�+1 ,koj −�
δ

boj −1
koj −1

(Bμj −2
j −2 )

bi�−1 ,bo�−2
ki�−1 ,ko�−2

· · · (Bμj −�

j −� )
bij −�+1 ,boj −�

kij −�+1 ,koj −�
,

(
ϒ

(B �μ
k−2:k−�

,�i)

k:k−�

)bik

kik

=
∑

kok−�
,kik−�+1 ,kok−�+1 ,...,kik−1,kok

bok−�
,bik−�+1 ,bok−�+1 ,...,bik−1 ,bok

(ϒk:k−�)
boj ,bij ,...,bik−�+1 ,bok−�

kok ,kik ,...,kik−�+1 ,kok−�
(�i)

bok
kok

δ
bok−1
kok−1

(Bμk−2
k−2 )

bi�−1 ,bo�−2
ki�−1 ,ko�−2

· · · (Bμk−�

k−� )
bik−�+1 ,bok−�

kik−�+1 ,kok−�
. (B1)

Then, the tensor of predicted probabilities pi, �μ is obtained
by stitching each conditional process tensor together with
the overlapping control operations; that is,

∑
ko�

,ki�+1 ,...,kik
bo�

,bi�+1 ,...,bik

(
ϒ

(B �μ
k−2:k−�

,�i)

k:k−�

)bik

kik

(Bμk−1
k−1 )

bik ,bok−1
kik ,kok−1

⎛
⎝

k−1∏
j =�+1

(
ϒ

(B �μ
j −2:j −�

)

j :j −�

)boj ,bij

koj ,kij

(Bμj −1
j −1 )

bij ,boj −1
kij ,koj −1

⎞
⎠

× (Bμ�
� )

bi�+1 ,bo�

ki�+1 ,ko�

(
ϒ

(B �μ
�−1:0)

�:0

)bo�

ko�

, (B2)

which is precisely the generalization of the strategy pre-
sented in Fig. 6. When evaluated from left to right, this
can be performed efficiently since every contraction is
a rank-2 tensor with a rank-4 tensor. Note that in this
instance, the index vector �μ does not run from (0, 0, . . . , 0)

to (d4
S, d4

S, . . . , d4
S) but, rather, for each block of mem-

ory, it contains all d4�
S combinations of basis elements,

with all other operations fixed at μ0. There are therefore
(k − � + 1) · d4�

S values taken by �μ.

APPENDIX C: IDENTIFYING MINIMAL UNITARY
BASIS OVERLAP

The effects of basis overlap in quantum tomography on
the reconstruction have been discussed both with respect
to conventional QST and QPT and, more recently, with
respect to the process tensor. In particular, the process
tensor has shown itself to be highly sensitive to any over-
lap in its control basis. With access to all 16 dimensions
of superoperator space, a mutually unbiased basis can be
constructed in the form of a symmetric informationally
complete (SIC) POVM followed by an update [92]. How-
ever, in the limited case of a unitary-only basis, the ideal
method is less straightforward. A randomly chosen unitary
basis has been shown to adversely affect the reconstruc-
tion fidelity by as much as 30%. Selecting a basis with
mutual overlap here would be ideal, akin to the notion of
a SIC POVM in conventional quantum state tomography.
However, it has been shown that MUUBs do not exist in
dimension 10 (the dimension for single-qubit channels).
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Because of this limitation, we numerically search for a
basis that minimizes its average overlap with the remainder
of the set. This procedure is performed as follows.

We parametrize these gates using the standard QISKIT
unitary parametrization

u(θ , φ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) eiλ+iφ cos(θ/2)

)
. (C1)

For two unitaries u and v, let U and V be their superop-
erator equivalent, according to some representation. The
overlap between the two channels is given by the Hilbert-
Schmidt inner product:

〈A, B〉HS := Tr[A†B]. (C2)

Importantly, this quantity is independent of representation,
allowing us to select a form most desirable for computa-
tion. To this effect, we use the row-vectorized convention
for states. Here, operations are given by U = u ⊗ u∗. The
inner product between two unitaries parametrized as in
Eq. (C1) is then

〈U ,V〉HS = Tr[U†V]

= Tr[(u ⊗ u∗)† · (v ⊗ v∗)]

= Tr[(u† · v) ⊗ (uT · v∗)]

= Tr[u†v] · Tr[u†v]∗

= ∣∣Tr[u†v]
∣∣2 . (C3)

If we write u = u(θ1, φ1, λ1) and v = v(θ2, φ2, λ2), then
Eq. (C3) can be straightforwardly written (after some
simplification) as

Tr[u†v] = cos
θ1

2
cos

θ2

2
+ ei(φ2−φ1) sin

θ1

2
sin

θ2

2

+ ei(λ2−λ1) sin
θ1

2
sin

θ2

2

+ ei(λ2+φ2−λ1−φ1) cos
θ1

2
cos

θ2

2

⇒ 〈U ,V〉HS = 4 cos2
(

1
2
(λ1 − λ2 + φ1 − φ2)

)

× cos2 (θ1 − θ2) . (C4)

This simple expression for the inner product of any two
single-qubit unitaries allows us to construct an objective
function for the straightforward mutual minimization of
overlap between all ten elements of the basis set. Let

U (�θ , �φ, �λ) = {Ui}10
i=1 ≡ {(θi, φi, λi)}10

i=1 (C5)

be our parametrized basis set. A basis set with the least
mutual overlap can then be found by minimizing the sum

TABLE II. A set of 30 parameter values that constitute a set of
ten unitary gates with minimal average mutual overlap.

θ φ λ

U1 1.1148 1.5606 0.8160
U2 −2.1993 −2.0552 −0.3564
U3 0.9616 −0.8573 1.2333
U4 2.2655 −2.7083 0.3154
U5 −0.1013 −0.5548 −1.1472
U6 1.8434 0.8074 −1.1772
U7 −2.2036 1.9589 2.4002
U8 −1.2038 −0.2023 1.2355
U9 2.1791 3.2836 2.3524
U10 −1.3116 2.3082 0.2882

of the squares of each unitary with the remainder of the
set. This minimizes both the average overlap and the vari-
ance of overlaps with the remainder of the set; that is, by
computing

arg min
(�θ , �φ,�λ)

10∑
i=1

∑
j >i

(〈Ui,Uj 〉HS
)2

=
10∑

i=1

∑
j >i

16 cos4
(

1
2
(λi − λj + φi − φj )

)

× cos4 (θi − θj
)

. (C6)

One such ideal set can be found in Table II. This is the basis
set used for the data obtained in the main text. Its overlaps
with respect to the Hilbert-Schmidt inner product are listed
in Table III.

APPENDIX D: IBM QUANTUM ANALYSES

The quantum device procedures in this work are carried
out on IBM Quantum cloud devices: ibmq_boeblingen,
ibmq_johannesburg, ibmq_valencia, ibmq_bogota, ibmq_
manhattan, ibmq_montreal, and ibmq_guadalupe. Data
from the first three are the same as the data featured
in Ref. [21], with the exception of the MUUB jobs on
ibmq_valencia, which are newly taken for this work.
The detail of these runs can be found within that ref-
erence. All other data taken from the remainder of the
devices are newly collected for this work. All devices are
fixed-frequency superconducting-transmon quantum com-
puters. Below, we step through the circuits conducted in
Secs. III B and V on these devices.

1. Reconstruction fidelities

Reconstruction fidelity experimentally validates the
quality of a model by comparing predictions made by the
model with data generated by the device, where the data
is not used to create the model. The process tensor estab-
lishes a mapping from a sequence of control operations
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TABLE III. The Hilbert-Schmidt overlap between each element of the numerically constructed (approximate) MUUB. We find this
to be the most uniformly overlapping unitary basis possible and thus optimal for PTT.

Tr[UT
i Uj ] U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 1
U2 0.196 88 1
U3 0.196 88 0.111 11 1
U4 0.167 58 0.196 88 0.196 88 1
U5 0.167 58 0.196 88 0.196 88 0.167 58 1
U6 0.196 88 0.111 11 0.111 11 0.196 88 0.196 88 1
U7 0.032 86 0.196 88 0.196 88 0.167 58 0.167 58 0.196 88 1
U8 0.167 58 0.196 88 0.196 88 0.167 58 0.032 86 0.196 88 0.167 58 1
U9 0.196 88 0.111 11 0.111 11 0.196 88 0.196 88 0.111 11 0.196 88 0.196 88 1
U10 0.167 58 0.196 88 0.196 88 0.032 86 0.167 58 0.196 88 0.167 58 0.167 58 0.196 88 1
Average 0.249 07 0.251 46 0.251 46 0.249 07 0.249 07 0.251 46 0.249 07 0.249 07 0.251 46 0.249 07

to a final state. Therefore, in this context, the compari-
son is between the final state predicted by a process-tensor
model subject to a sequence of operations (from outside the
basis set) with the actual state reconstructed when the same
sequence of operations is run on the device. The results of
Fig. 5 are reconstruction-fidelity distributions for a number
of sequences of three random unitaries.

The procedure for constructing a single-qubit three-step
process tensor is as follows:

(1) Initialize the system.
(2) Wait some time T1.
(3) Apply basis element Uμ0 .
(4) Wait some time T2.
(5) Apply basis element Uμ1 .
(6) Wait some time T3.
(7) Apply basis element Uμ2 .
(8) Wait some time T4.
(9) Measure in X , Y, and Z bases.

The total number of circuits here is 10 × 10 × 10 ×
3 = 3000. Finally, the data are then processed accord-
ing to the LI-MLE processing methods stipulated
in the main text. For LI, this means construct-
ing the density matrix corresponding to each basis
sequence. For MLE, this means shaping the data into
a (6, 10, 10, 10) array, where the first dimension cor-
responds to each of the six effects in the POVM
{|+〉〈+|, |i+〉〈i+|, |0〉〈0|, |−〉〈−|, |i−〉〈i−|, |1〉〈1|}. Note that,
in general, the times Ti can be chosen to be different and to
include whatever background dynamics and circuit struc-
ture the experimenter is interested in. This is simply a
choice of the quantum stochastic process being studied. In
the cases of ibmq_manhattan and ibmq_bogota, the circuit
structures are as described in Sec. V.

Once the process-tensor data are collected and an LI-
MLE model constructed, a number of random unitary
circuits are generated, with each gate chosen by the
SCIPY.STATS.UNITARY_GROUP.RVS() function. These gates

are then run on the real devices, following the same
circuit structure. QST is then performed at the end of each
sequence. The conditional state is computed by contract-
ing the random sequence into the process-tensor model.
Finally, the state fidelity is computed between the predicted
and the actual states. This then forms the data sets shown
in Fig. 5. With all things equal, the average reconstruction
fidelity will necessarily increase with an increased num-
ber of shots per circuit. It will also decrease if the final
states are noisier or more mixed, since this will add to the
variance of sampling statistics.

Once the model is validated to the desired level of accu-
racy, it becomes a useful tool for optimal control of the
non-Markovian system. In Sec. V A, we use the same
process tensors from ibmq_manhattan and ibmq_bogota
to show a circuit-by-circuit improvement of the fidelities
of states generated by IBM Quantum devices. So as to
avoid readout error obfuscating any results, or overstat-
ing any improvements, we first perform GST using the
pyGSTi software package [93] in order to estimate the
actual POVM giving X , Y, and Z projections on the device.
This POVM is then used both in reconstructing the states
and in the PTT estimate.

2. Conditional Markov order circuit improvement

For each of the conditional Markov order tests, a five-
step process with � = 1, � = 2, and � = 3 is considered.
This amounts to reconstructing, respectively, five-, four-,
and three-memory-block process tensors. The structure of
the circuits is similar to the three-step process tensor; how-
ever, not all circuit elements are varied. For example, with
� = 3, this means reconstructing the three process ten-
sors corresponding to circuit structure Uμ0 − Uμ1 − Uμ2 −
�i, U0 − Uμ0 − Uμ1 − Uμ2 − �i, and U0 − U0 − Uμ0 −
Uμ1 − Uμ2 − �i. For � = 2, a subset of the same data
can be reused: fixing μ0 = 0 and varying μ1 and μ2, for
example. The only additional information required is that
a projective measurement needs to be made in position 2
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of the circuit in order to determine the state at the end of
the first � = 2 memory block. A similar process follows
for determination of ϒ1

5:0, with an extra memory-block
process tensor constructed with a projective measurement
at position 1. This totals 3 × (10 × 10 × 10 × 3) = 9000
circuits for ϒ3

5:0, an extra 10 × 10 × 3 = 300 circuits for
ϒ2

5:0, and an extra 10 × 3 = 30 circuits for ϒ1
5:0.

Since the state is being propagated along in our finite
Markov order stitching procedure, it is important that it
is well characterized without measurement error. To this
effect, we use GST again to estimate our POVM. This
is more essential than before, since now our PTT con-
struction is contingent on inputting the correct form of the
operation. This is also true of the unitary gates that we
apply; however, the single-qubit error rates are O(10−4),
compared with measurement errors of O(10−2), and so a
far smaller assumption.

[1] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R.
Parekh, U. Chabaud, and E. Kashefi, Quantum certification
and benchmarking, Nat. Rev. Phys. 2, 382 (2020).

[2] S. Endo, S. C. Benjamin, and Y. Li, Practical Quantum
Error Mitigation for Near-Future Applications, Phys. Rev.
X 8, 31027 (2018).

[3] S. Ferracin, T. Kapourniotis, and A. Datta, Accrediting
outputs of noisy intermediate-scale quantum computing
devices, New J. Phys. 21, 113038 (2019).

[4] G. A. L. White, C. D. Hill, and L. C. L. Hollenberg, Perfor-
mance Optimization for Drift-Robust Fidelity Improvement
of Two-Qubit Gates, Phys. Rev. Appl. 15, 014023 (2021).

[5] R. Harper, S. T. Flammia, and J. J. Wallman, Efficient
learning of quantum noise, Nat. Phys. 16, 1184 (2020).

[6] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F.
Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N.
Kanazawa, and A. Kandala et al., Demonstration of quan-
tum volume 64 on a superconducting quantum computing
system, Quantum Sci. Technol. 6, 025020 (2021).

[7] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J.
Mizrahi, K. Fortier, and P. Maunz, Demonstration of qubit
operations below a rigorous fault tolerance threshold with
gate set tomography, Nat. Commun. 8, 14485 (2017).

[8] S. Milz, F. A. Pollock, and K. Modi, An introduction to
operational quantum dynamics, Open Syst. Inf. Dyn. 24,
1740016 (2017).

[9] S. Milz and K. Modi, Quantum Stochastic Processes and
Quantum Non-Markovian Phenomena, PRX Quantum 2,
030201 (2021).

[10] L. Li, M. J. W. Hall, and H. M. Wiseman, Concepts of
quantum non-Markovianity: A hierarchy, Phys. Rep. 759,
1 (2018).

[11] H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini,
Colloquium: Non-Markovian dynamics in open quantum
systems, Rev. Mod. Phys. 88, 021002 (2016).

[12] I. de Vega and D. Alonso, Dynamics of non-Markovian
open quantum systems, Rev. Mod. Phys. 89, 015001
(2017).

[13] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and detec-
tion, Rep. Prog. Phys. 77, 094001 (2014).

[14] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation,
and J. M. Gambetta, Validating quantum computers using
randomized model circuits, Phys. Rev. A 100, 032328
(2019).

[15] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, and D.
A. Buell et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[16] I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G.
Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Neg-
nevitsky, and M. Stadler et al., A compact ion-trap quantum
computing demonstrator, arXiv:2101.11390 (2021).

[17] Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kan-
nan, M. Kjaergaard, A. Greene, G. O. Samach, C. McNally,
and D. Kim et al., Realization of High-Fidelity CZ and ZZ-
Free iSWAP Gates with a Tunable Coupler, Phys. Rev. X
11, 021058 (2021).

[18] T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R.
Blume-Kohout, Measuring the Capabilities of Quantum
Computers, arXiv:2008.11294 (2020).

[19] B. D. Clader, C. J. Trout, J. P. Barnes, K. Schultz, G.
Quiroz, and P. Titum, Impact of correlations and heavy tails
on quantum error correction, Phys. Rev. A 103, 052428
(2021).

[20] N. H. Nickerson and B. J. Brown, Analysing correlated
noise on the surface code using adaptive decoding algo-
rithms, Quantum 3, 131 (2019).

[21] G. A. L. White, C. D. Hill, F. A. Pollock, L. C. L. Hollen-
berg, and K. Modi, Demonstration of non-Markovian pro-
cess characterisation and control on a quantum processor,
Nat. Commun. 11, 6301 (2020).

[22] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten,
K. Young, and R. Blume-Kohout, Gate set tomography,
arXiv:2009.07301 (2020).

[23] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen,
and R. Blume-Kohout, Detecting crosstalk errors in quan-
tum information processors, Quantum 4, 321 (2020).

[24] K. Rudinger, T. Proctor, D. Langharst, M. Sarovar, K.
Young, and R. Blume-Kohout, Probing context-dependent
errors in quantum processors, Phys. Rev. X 9, 021045
(2019).

[25] A. Veitia, M. P. da Silva, R. Blume-Kohout, and S. J. van
Enk, Macroscopic instructions vs microscopic operations in
quantum circuits, Phys. Lett. A 384, 126131 (2020).

[26] A. Veitia and S. J. van Enk, Testing the context-
independence of quantum gates, arXiv:1810.05945 (2018).

[27] J. Helsen, F. Battistel, and B. M. Terhal, Spectral quantum
tomography, Npj Quantum Inf. 5, 74 (2019).

[28] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M.
Paternostro, and K. Modi, Non-Markovian quantum pro-
cesses: Complete framework and efficient characterization,
Phys. Rev. A 97, 012127 (2018).

[29] P. Taranto, F. A. Pollock, S. Milz, M. Tomamichel, and
K. Modi, Quantum Markov Order, Phys. Rev. Lett. 122,
140401 (2019).

[30] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma,
D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin,

020344-28

https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1088/1367-2630/ab4fd6
https://doi.org/10.1103/PhysRevApplied.15.014023
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1038/ncomms14485
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1103/PRXQuantum.2.030201
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2101.11390
https://doi.org/10.1103/PhysRevX.11.021058
https://arxiv.org/abs/2008.11294
https://doi.org/10.1103/PhysRevA.103.052428
https://doi.org/10.22331/q-2019-04-08-131
https://doi.org/10.1038/s41467-020-20113-3
https://arxiv.org/abs/2009.07301
https://doi.org/10.22331/q-2020-09-11-321
https://doi.org/10.1103/PhysRevX.9.021045
https://doi.org/10.1016/j.physleta.2019.126131
https://arxiv.org/abs/1810.05945
https://doi.org/10.1038/s41534-019-0189-0
https://doi.org/10.1103/PhysRevA.97.012127
https://doi.org/10.1103/PhysRevLett.122.140401


NON-MARKOVIAN QUANTUM PROCESS TOMOGRAPHY. . . PRX QUANTUM 3, 020344 (2022)

and Y.-K. Liu, Efficient quantum state tomography, Nat.
Commun. 1, 149 (2010).

[31] M. Cygorek, M. Cosacchi, A. Vagov, V. M. Axt, B. W.
Lovett, J. Keeling, and E. M. Gauger, Simulation of open
quantum systems by automated compression of arbitrary
environments, Nat. Phys. (2022).

[32] A. Dang, G. A. L. White, L. C. L. Hollenberg, and
C. D. Hill, Process tomography on a 7-qubit quantum
processor via tensor network contraction path finding,
arXiv:2112.06364 (2021).

[33] T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio, Scal-
able Reconstruction of Density Matrices, Phys. Rev. Lett.
111, 020401 (2013).

[34] R. Blume-Kohout, K. Rudinger, E. Nielsen, T. Proctor, and
K. Young, Wildcard error: Quantifying unmodeled errors in
quantum processors, arxiv:2012.12231 (2020).

[35] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and
D. J. Wineland, Randomized benchmarking of quantum
gates, Phys. Rev. A 77, 012307 (2008).

[36] J. Zhang and M. Sarovar, Quantum Hamiltonian Identifica-
tion from Measurement Time Traces, Phys. Rev. Lett. 113,
080401 (2014).

[37] S.-T. Wang, D.-L. Deng, and L.-M. Duan, Hamiltonian
tomography for quantum many-body systems with arbitrary
couplings, New J. Phys. 17, 093017 (2015).

[38] F. A. Pollock and K. Modi, Tomographically recon-
structed master equations for any open quantum dynamics,
Quantum 2, 76 (2018).

[39] S. Lorenzo, F. Ciccarello, and G. M. Palma, Class of exact
memory-kernel master equations, Phys. Rev. A 93, 052111
(2016).

[40] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, Quantum
tomography via compressed sensing: Error bounds, sam-
ple complexity and efficient estimators, New J. Phys. 14,
095022 (2012).

[41] R. Blume-Kohout, Optimal, reliable estimation of quantum
states, New J. Phys. 12, 043034 (2010).

[42] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A.
D. Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen,
Self-consistent quantum process tomography, Phys. Rev. A
87, 62119 (2013).

[43] R. Blume-Kohout, J. Gamble, E. Nielsen, J. Mizrahi, J.
Sterk, and P. Maunz, Robust, self-consistent, closed-form
tomography of quantum logic gates on a trapped ion qubit,
arXiv:1310.4492 (2013).

[44] D. Greenbaum, Introduction to Quantum Gate Set Tomog-
raphy, arXiv:1509.02921 (2015).
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