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We provide an efficient algorithm to compile quantum circuits for fault-tolerant execution. We target
surface codes, which form a two-dimensional grid of logical qubits with nearest-neighbor logical opera-
tions. Embedding an input circuit’s qubits in surface codes can result in long-range two-qubit operations
across the grid. We show how to prepare many long-range Bell pairs on qubits connected by edge-disjoint
paths of ancillae in constant depth that can be used to perform these long-range operations. This forms
one core part of our edge-disjoint path compilation (EDPC) algorithm, by easily performing many parallel
long-range Clifford operations in constant depth. It also allows us to establish a connection between sur-
face code compilation and several well-studied edge-disjoint path problems. Similar techniques allow us
to perform non-Clifford single-qubit rotations far from magic state distillation factories. In this case, we
can easily find the maximum set of paths by a max-flow reduction, which forms the other major part of
EDPC. EDPC has the best asymptotic worst-case performance guarantees on the circuit depth for compil-
ing parallel operations when compared to related compilation methods based on SWAP gates and network
coding. EDPC also shows a quadratic depth improvement over sequential Pauli-based compilation for
parallel rotations requiring magic resources. We implement EDPC and find significantly improved per-
formance for circuits built from parallel controlled-NOT (CNOT) gates, and for circuits that implement the
multicontrolled X gate CkNOT.
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I. INTRODUCTION

Quantum hardware will always be somewhat faulty
and subject to decoherence, due to inevitable fabrication
imperfections and the impossibility of completely isolat-
ing physical systems. For large computations, it becomes a
certainty that faults will occur among the many qubits and
operations involved. Fault-tolerant quantum computation
(FTQC) can be implemented despite this by encoding the
information in a quantum error correcting code and apply-
ing logical operations that are carefully designed to process
the encoded information with an acceptably low effective
error rate.

The surface code [1,2] provides a promising approach
to implement FTQC. Firstly, it can be implemented using
geometrically local operations on a patch of qubits in a
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two-dimensional (2D) grid, which is the natural setting
for many hardware platforms, including superconducting
[3,4] and Majorana [5] qubits. Secondly, the logical qubits
it encodes remain protected even for relatively high noise
rates, with a threshold of around 1% [6]. Thirdly, a suffi-
ciently general set of elementary logical operations can be
performed fault tolerantly on qubits encoded in the sur-
face code using lattice surgery [7]. By tiling the plane
with surface code patches, a 2D grid of logical qubits is
formed, where the elementary operations are geometrically
local; see Fig. 1. When combined with magic state dis-
tillation [8], these operations become universal for quan-
tum computing. Indeed, this approach, which we refer to
as the surface code architecture, is seen as among the
most promising by many research groups and companies
working in quantum computing [3,9–11].

In this work, we seek to minimize the resources required
to fault tolerantly implement a quantum algorithm using
the surface code architecture, which we refer to as the
surface code compilation problem. For concreteness, we
assume that the input quantum algorithm is expressed as
a quantum circuit composed of preparations and destruc-
tive measurements of individual qubits in the Z or X
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FIG. 1. Logical qubits (light and dark gray patches) encoded in the surface code form a 2D grid. The elementary operations can
be applied on any lattice translations of those shown. Their times in units of surface code logical time steps are as follows. 0 logical
time steps: single-qubit preparation in the X basis (i) and the Z basis (ii). Destructive single-qubit measurement, which moves the
patch outside of the code space, in the X basis (iii) and the Z basis (iv) take 0 steps. 1 logical time step: two-qubit measurement of
XX (v) and ZZ (vi). A move of a logical qubit from one patch to an unused patch (vii). Two-qubit preparation (viii) and destructive
measurement (ix) in the Bell basis. 3 logical time steps: a Hadamard gate, which uses three ancilla patches (x). See Appendix A for
further details.

basis, controlled-NOT (CNOT), Pauli-X , Pauli-Y, Pauli-Z,
Hadamard (H ), phase (S), and T gates. Our results can be
easily generalized to broader classes of input quantum cir-
cuits. The output is the quantum algorithm executed using
the elementary logical surface code operations shown in
Fig. 1. Ultimately, we would like to minimize the physi-
cal space-time cost, which is the product of the number of
physical qubits and the time required to run an algorithm.
To avoid implementation details, we instead minimize the
more abstract logical space-time cost, which is the number
of logical qubits (the circuit width) multiplied by the num-
ber of logical time steps (the circuit depth) of the algorithm
expressed in elementary surface code operations. The logi-
cal and physical space-time costs are expected to be 1-to-1
and monotonically related (see Appendix B), such that
minimizing the former should minimize the latter.

A well-established approach to implement surface code
compilation is known as sequential Pauli-based computa-
tion [13], where non-Clifford operations are implemented

by injection using Pauli measurements, and Clifford oper-
ations are conjugated through the circuit until the end.
The circuit that is run in this approach then consists of a
sequence of high-weight Pauli measurements that can have
overlapping support, leading them to be measured one
after the other. For large input circuits, this can be prob-
lematic because highly parallel input circuits can become
serialized with prohibitive runtimes.

A major challenge to solve the surface code compila-
tion problem is that quantum algorithms typically involve
operations between logical qubits that are far apart when
laid out in a 2D grid. One approach to deal with a long-
range gate is to swap logical qubits around until the pair
of interacting qubits are next to one another [14]. How-
ever, this can result in a deep circuit; see Fig. 2(a). A more
efficient approach is to create long-range entanglement by
producing Bell pairs, which, for example, can be used to
implement a long-range CNOT gate with a constant-depth
circuit [12,15,16] [see Fig. 2(b)]. Both of these approaches
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FIG. 2. Application of a CNOT(q0, q1)

gate on qubits at distance k + 1 using sur-
face code operations in two ways. (a) Using
a SWAP-based approach requires �(n) depth
using operations from Fig. 1, while (b) gen-
erating and consuming a Bell pair [12] can
be implemented in constant depth. The clas-
sical function f computes Pauli corrections
on the output qubits.
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can be implemented with the elementary operations of the
surface code.

Moreover, algorithms typically consist of many long-
range operations that can ideally be performed in parallel.
For swap-based approaches, this can be done by consider-
ing a permutation of the logical qubits that is implemented
by a sequence of SWAP gates [17–19]. Finding these SWAP
circuits reduces to a routing problem on graphs [14,20].
There are efficient algorithms that solve this problem for
certain families of graphs [14,21], but finding a minimal
depth solution is NP-hard in general [22]. Alternatively,
linear network coding can be used to prepare many long-
range pairs in constant depth [23–28], and then these Bell
pairs can be used to implement operations on pairs of dis-
tant qubits. But a major barrier for using linear network
coding is the lack of known efficient algorithms to find
linear network codes.

In this paper, we provide a solution to the surface code
compilation problem that generalizes the use of entan-
glement for long-range CNOT gates discussed above to
the implementation of many long-range operations in par-
allel. In particular, we propose the edge-disjoint path
compilation (EDPC) algorithm, which is a computation-
ally efficient classical algorithm tailored to the elementary
operations of the surface code architecture. We find evi-
dence that our EDPC algorithm significantly outperforms
other approaches by performing a detailed cost analysis for
the execution of a set of quantum circuit benchmarks.

EDPC reduces the problem of executing quantum cir-
cuits to problems in graph theory. Logical qubits corre-
spond to graph vertices, and there is an edge between
qubits if elementary surface code operations can be applied
between them. We show how to perform multiple long-
range CNOT gates in constant depth along a set of edge-
disjoint paths in the graph. In other words, long-range
CNOT gates can be performed simultaneously, in one round,
if their controls and targets are connected by edge-disjoint
paths. This leads to the well-studied problem of finding
maximum edge-disjoint path sets [29]. The ability to per-
form long-range CNOT gates along with the elementary
operations allows compilation of Clifford operations. We
also give a construction for edge-disjoint path sets that are
asymptotically optimal in the depth of worst-case sets of
independent CNOT gates.

The final operations that complete our gate set for uni-
versal quantum computation with the surface code are T
gates. The T gates are not natural operations on the surface
code, but can be implemented fault tolerantly by consum-
ing specialized resource states, called magic states. Magic
states can be produced using a highly optimized process
called magic state distillation, which we assume occurs
independently of the computation on our code. We assume
that logical magic states are available in a specified region
of the grid. EDPC reduces magic state delivery to simple
MAX FLOW instances that have known efficient algorithm

TABLE I. A comparison in the depth of surface code compi-
lation algorithms [that use �(n) space] for various input circuits
of width n. We compare the worst-case performance for a single
long-range CNOT gate, for CNOT circuits with n/2 parallel CNOT
gates, and for k rotations with k ∈ N that need to be performed at
the boundary.

Input circuit (compiled depth)

Algorithm
One CNOT

gate
n/2 parallel
CNOT gates

k parallel
rotations

Sequential Pauli 0 0 �(k)
SWAP �(

√
n) �(

√
n) �(

√
n)

Network coding �(1) �(
√

n) �(
√

k)
EDPC �(1) �(

√
n) �(

√
k)

[30]. We compare the depth of input circuits compiled
using surface code compilation algorithms in the literature
and EDPC in Table I.

The outline of the paper is as follows. In Sec. II, we
construct key higher-level components from the basic sur-
face code operations in Fig. 1, including simple long-range
operations. These long-range operations allow us to per-
form many parallel CNOT operations given vertex-disjoint
and edge-disjoint paths that connect the data qubits in
Sec. III. Because of its importance to the algorithms, there
we also compare the state-of-the-art graph algorithms for
finding vertex-disjoint or edge-disjoint sets of paths and
analyze their relation to our algorithms. We complete our
gate set by giving an algorithm for efficient remote rota-
tions using magic states at the boundary in Sec. IV. Putting
parallel long-range CNOT and remote rotations together,
we construct our circuit compilation algorithm, EDPC, in
Sec. V. Finally, we compare the performance of EDPC to
prior surface code compilation work in Sec. VI, note its
connections to network coding, and give numerical results
comparing the space-time performance with a SWAP-based
compilation algorithm.

II. KEY CIRCUIT COMPONENTS FROM
SURFACE CODE OPERATIONS

Recall that our goal in this work is to develop an effi-
cient classical compilation algorithm that reexpresses a
quantum algorithm into one that uses the elementary oper-
ations of the surface code with a low logical space-time
cost. In Appendix A we give an overview of the sur-
face code and justify the resource costs of the elementary
operations shown in Fig. 1. The initial quantum algorithm
is assumed to be expressed as a circuit diagram involv-
ing preparations and measurements of individual qubits
in the computational basis, controlled-not (CNOT), Pauli-
X , Pauli-Y, Pauli-Z, Hadamard (H ), phase (S), and T
gates. In this section we build and calculate the cost of
some key circuit components from the elementary surface
code operations in Fig. 1. The contents of this section are
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(a)

CNOT gate

(b)

SWAP gate

FIG. 3. A CNOT gate can be implemented
in depth 2 using ZZ and XX joint measure-
ments with a |+〉 ancilla state, followed by
classically controlled Pauli corrections. The
SWAP gate can be implemented using four
move operations and two ancillae in depth 2.

reproductions or straightforward extensions of previously
known circuits.

A. Single-qubit operations

Some of the operations of the input circuit can be imple-
mented directly with elementary surface code operations,
namely the preparation and measurement of individual
qubits in the measurement basis, and the Hadamard gate
(provided three neighboring ancillary patches are avail-
able as ancillae; see Fig. 1). Pauli operations do not need
to be implemented at all since they can be commuted
through Clifford gates and arbitrary Pauli gates [31] and
can therefore be tracked classically and merged with the
final measurements. For this reason, while we occasion-
ally explicitly provide the Pauli corrections where instruc-
tive, we often show equivalence of two circuits only up
to Pauli corrections. The remaining single-qubit opera-
tions in the input circuit, namely the S and T gates, can
be implemented using magic states and are addressed in
Sec. IV.

B. Local CNOT and SWAP gates

An important circuit component is the CNOT gate, which
can be implemented as shown in Fig. 3(a) [32]. The qubits
involved in this example are stored in adjacent patches, i.e.,
it is local. Another useful operation is a SWAP of a pair of
qubits stored in nearby patches. The surface code’s move
operation shown in Fig. 1 gives a straightforward way to
implement this, as shown in Fig. 3(b). With these imple-
mentations, the CNOT gate requires one ancilla patch, while
a SWAP gate requires two. Both are depth 2.

C. Long-range CNOT gates using SWAP gates

Typical input circuits for surface code compilation will
involve CNOT operations on pairs of qubits that are far apart
after layout. A very intuitive approach to apply a long-
range CNOT(q1, q2) gate is shown in Fig. 4. This involves
making use of SWAP gates to first move the qubits q1 and
q2 so that they are near one another, and then use the
local CNOT gate in Fig. 3(a). Let the path P = v1v2 · · · vk
for k ∈ N, where v1 = q1 and vk = q2. As each SWAP gate
has depth 2, we get a circuit of depth 2�(k − 1)/2� since
we can perform SWAP gates on either end simultaneously.
Afterwards, the two qubits are adjacent and we simply
perform a CNOT gate in depth 2.

A lower bound on the depth it takes to perform a long-
range CNOT gate using SWAP gates is proportional to the
length of the shortest q1-q2 path. To move a qubit k patches
using a SWAP gate takes depth exactly 2k. Therefore, to
move the control and target to the middle of the shortest
path connecting them, it must take time proportional to at
least half the length of the path.

D. Long-range CNOT gate using a Bell pair

A circuit component that we make extensive use of in
this paper is the long-range CNOT using a Bell pair [12].
This allows us to apply CNOT gates in depth 2 between any
pair of qubits (provided there is a path of ancilla qubits that
connects them).

To understand the construction, we first show in
Fig. 5(a) how to prepare a longer-range Bell pair from two
Bell pairs. By iterating this construction one can form a
circuit to prepare a long-range Bell pair at the ends of any
path of adjacent ancilla patches in depth 2. Next, we show

1 12 233

k–1

k+1

k–1
2

2

2
P P

FIG. 4. A nonlocal CNOT can be implemented using SWAP gates that take depth 2�(k − 1)/2� using a zigzag of ancilla patches along
the path P of length k. The figure shows the case when k is odd and the depth of the SWAP circuit is 2(k − 1). The patches on the path
can store other logical information, which will simply be moved during the SWAP gates. The patches adjacent to the path are ancillae
that are used to implement the SWAP gates.
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Preparing a longer-range Bell pair
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CNOT by consuming a Bell pair
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B B B

P
Z

Z

X X

(d)

Preparing and consuming a Bell pair
for long-range CNOT II

FIG. 5. A long-range CNOT can be
implemented in depth 2 by first prepar-
ing a Bell pair. (a) Joining Bell pairs with
Bell measurements. This can be iterated
to form a long-range Bell pair along any
path of ancillae in depth 2. (b) A Bell pair
can be used to apply a CNOT. (c),(d) The
first and second steps of a depth-2 circuit
that implements a CNOT between a pair
of patches at the end of a path of ancilla
patches by preparing and consuming a
Bell pair.

in Fig. 5(b) how to implement a CNOT operation between
qubits stored in patches neighboring a pair of patches stor-
ing a Bell pair. Putting these together, using a path of
ancilla patches between a pair of qubits, a long-range CNOT
gate can be implemented in depth 2 in a two-step circuit
shown in Figs. 5(c) and 5(d), respectively. This approach
can be used to implement the CNOT in a depth-2 circuit
using any path from the control to the target qubit that
starts with a vertical edge and ends with a horizontal edge.
There is also flexibility in the precise arrangement of the
Bell pairs and Bell measurements along the path using the
circuits in Appendix C.

Note that here we have focused on implementing a
long-range CNOT gate by constructing and consuming a
Bell pair. However, a similar strategy (of first preparing a
long-range Bell pair in the patches at the ends of a path
of ancillae) can be used to implement other long-range
operations, such as teleportation.

III. PARALLEL LONG-RANGE CNOT GATES
USING BELL PAIRS

Here, we generalize the use of Bell pairs from the setting
of compiling an individual nonlocal CNOT gate into surface
code operations to the setting in which a set of parallel non-
local CNOT gates are compiled. In Fig. 1 and the circuit
components in Sec. II, ancilla qubits are used to perform
some operations on data qubits. To consider the compila-
tion on large sets of qubits, we must specify the location
of data and ancilla qubits: here we assume a 1 data to 3
ancilla qubit ratio, as illustrated in Fig. 6.

In Sec. III A we discuss some relevant background on
sets of vertex-disjoint paths (VDPs) and sets of edge-
disjoint paths (EDPs) in graphs. Then in Sec. III B we
define the VDP subroutine and the EDP subroutine that
apply parallel CNOT gates at the ends of a particular type
of VDP or EDP set. In Sec. III C, we show how to use the

EDP subroutine to compile more general CNOT circuits and
prove bounds on the performance of this approach.

A. Vertex-disjoint paths and edge-disjoint paths

In Sec. II D we saw that a long-range CNOT gate could
be implemented with the use of a Bell pair produced with
a path of ancilla qubits connecting the control and target
of the CNOT gate. A barrier to implement multiple CNOT
gates simultaneously can arise when an ancilla resides in
the paths associated with multiple different CNOT gates.
This motivates us to review some relevant theoretical
background concerning sets of paths on graphs.

Given a graph G, a set of paths P is said to be a VDP
set if no pair of paths in P share a vertex, and an EDP set
if no pair of paths in P share an edge. Note that a set of
vertex-disjoint paths is also edge disjoint. Further consider
a set of terminal pairs T = {(s1, t1), . . . , (sk, tk)} for ter-
minals si, ti ∈ V(G), the vertices of G, and i ∈ [k]. We then
say that a set of paths P is a VDP set for T (respectively an
EDP set for T ) if P is a VDP set (respectively an EDP set),
and each path in P connects a distinct pair in T . These path
sets do not necessarily connect all pairs in T . In what fol-
lows, we pay special attention to the square grid graph [see
Fig. 7(a)]. The grid graph is relevant for qubits in the sur-
face code as shown in Fig. 1, where the vertices correspond
to code patches and edges connect vertices associated with
adjacent patches [33].

The problems of finding a maximum (cardinality) VDP
set for T or a maximum EDP set for T have been
well studied and there are known efficient algorithms
capable of finding approximate solutions to each. Unfor-
tunately, on grids it is particularly hard to approximate
the maximum VDP set. In particular, for N := |V(G)|,
there exist terminal sets for which no efficient algorithm
can find an approximate solution to within a 2O(log1−ε N )

factor of the maximum set size for any ε > 0, unless
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(a)

CNOT gates and edge-disjoint paths

(b)

Execution stages assignment

(c)

 First stage: state preparation

(d)

Second stage: measurements

FIG. 6. The EDP subroutine
implements a set of parallel CNOT
gates connected by an operator EDP
set. We assume a qubit ratio of 1
to 3 of data (black) to ancilla (gray
and white). (a) The input to the
EDP subroutine is a set of CNOTs
and an associated EDP set. (b) We
fragment the EDP set into two VDP
sets consisting of segments of the
original paths, and implement the
compiled circuit over two depth-2
stages, one for each of these sets.
(c) During the first stage we prepare
a Bell pair between the ends of the
segments in the first VDP set. (d)
During the second stage we perform
joint Bell measurements between
the ends of segments in the second
VDP set, producing long-range Bell
pairs on ancillae adjacent to the
control and target of each CNOT.
Then, long-range CNOTs can easily
be applied by using the long-range
Bell pairs (Sec. II D). See Figs. 8
and 9 for further details of the
long-range operations used here.

NP ⊆ RTIME(N poly log N ) [34]. However, efficient algo-
rithms are available if one is willing to accept a looser
approximation to the optimal solution. For example, a
simple greedy algorithm is an O(

√
N )-approximation

(a)

Grid graph

(b)

Operator graph

FIG. 7. The graphs used in this paper. (a) The grid graph where
each surface code patch corresponds to a vertex and is connected
to its neighbors. (b) The operator graph for a set of terminal pairs
T that correspond with a parallel CNOT circuit. EDP sets for T
on this graph are also operator EDP sets.

algorithm for finding the maximum VDP set [35,36], i.e.,
it produces a VDP set to within an O(

√
N ) multiplicative

factor of the optimal solution for any graph, not just the
grid. For grids, the best efficient algorithm that is known
is an Õ(N 1/4)-approximation algorithm [37], where Õ(·)
hides logarithmic factors of O(·).

The situation is better for approximation algorithms of
the maximum EDP set: there is a �(

√
N )-approximation

algorithm [38] for any graph, and on grids Aumann and
Rabani [39] showed an O(log N )-approximation algorithm
that was later improved to an O(1)-approximation
algorithm [29,40]. In practice, these algorithms can be
technical to implement and can have large constant pref-
actors in their solutions that can be prohibitive for the
instance sizes that we consider. A simple greedy algorithm
forms an O(

√
N )-approximation algorithm [35] for find-

ing a maximum EDP set on the two-dimensional grid and
does not suffer from the constant prefactors of the asymp-
totically superior alternatives. The dominant runtime com-
plexity of this greedy algorithm is mainly in finding short-
est paths for each terminal pair, giving an O(|T |N log N )

runtime upper bound by Dijkstra’s algorithm [41].
It is informative to consider the comparative size of

the maximum EDP and VDP sets for the same terminal
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set T . Since any VDP set is also an EDP set, the size of
the maximum VDP set for T cannot be larger than the
maximum EDP set for T . Moreover, one can construct
some cases of T on the grid [29] in which the maximum
EDP set is a factor

√
N larger than the maximum VDP

set [29]. For example, consider the set of terminal pairs
T = {[(i, 1), (L, i)] | i ∈ [L]} of an L × L grid graph, where
vertex (i, j ) denotes the vertex in row i and column j . All
terminals can be connected by edge-disjoint paths but the
maximum VDP set is of size one.

In Sec. III B, we show that both VDP and EDP sets for
T can be used to form constant-depth compilation subrou-
tines for disjoint CNOT circuits. Ultimately, as will become
clear in Sec. III B, each path in the EDP or VDP sets for
T allows us to implement one more CNOT gate in paral-
lel by a compilation subroutine. In this work, we focus
on EDPs rather than VDPs for two main reasons. Firstly,
as mentioned above, better approximation algorithms exist
for finding maximum EDP sets than for finding maximum
VDP sets on the grid. Although, in practice, we make use
of the greedy O(

√
N )-approximation algorithm for finding

maximum EDP sets in this work. Secondly, as was also
mentioned above, the maximum EDP set is at least as large
as the maximum VDP set.

An important open problem that could ultimately influ-
ence the performance of the surface code compilation
algorithm we present in this work is whether an alterna-
tive approximation algorithm for finding maximum EDP
sets can be used that performs better in practical instances.

B. Long-range CNOT subroutines using VDPs and
EDPs

Here we present one of our main technical contribu-
tions, namely a description of how to implement a set of
long-range CNOT gates at the end of VDP and EDP sets
using surface code operations. This is central to our overall
surface code compilation algorithm presented in Sec. V.

Consider the L × L square grid graph G [see Fig. 7(a)],
which consists of vertices V(G) = [L] × [L] for [L] :=
{1, . . . , L} and undirected edges

E(G) = {[(i, j ), (i, j + 1)] | i ∈ [L], j ∈ [L − 1]}
∪ {[(i, j ), (i + 1, j )] | i ∈ [L − 1], j ∈ [L]}. (1)

Here, vertices correspond to qubits stored in surface code
patches, and edges connect qubits on adjacent patches (see
Fig. 1). We color the vertices of G with three colors: black,
gray, and white (see Fig. 6). All vertices with both even
row and even column indexes are colored black and cor-
respond to data qubits (where data qubits correspond to
qubits in the input circuit). The vertices (corresponding to
ancilla qubits) with both odd row and odd column indexes
are colored white, and all remaining vertices are colored
gray. This gives us a 1 : 3 data qubit to ancilla qubit ratio.

We set n to equal the number of black vertices, i.e., the
number of data qubits.

Because of the designation of some vertices as data
qubits and others as ancilla vertices in our layout, and due
to the asymmetry of two-qubit operations along horizontal
and vertical edges in Fig. 1, we add some restrictions to
the paths we consider. We define an operator path to be
a path P = v1v2 · · · vk for k ∈ N such that v1 and vk cor-
respond to data qubits and its interior v2 · · · vk−1 are all
ancilla qubits. Moreover, v1 to v2 must be a vertical edge,
and vk−1 to vk must be a horizontal edge. Then an opera-
tor VDP (respectively EDP) set is a set of vertex-disjoint
(respectively edge-disjoint) operator paths. In addition, we
require that the ends of the paths in the operator EDP set
do not overlap. With the coloring assignments of the grid
graph G, it is easy to see that the first and last vertexes of an
operator path are colored black. In what follows, we show
how we can implement CNOT gates between the data qubits
at the ends of the paths in an operator VDP (EDP) set in
constant depth.

First consider an operator VDP set P . It is straightfor-
ward to see that we can simultaneously apply long-range
CNOT gates along each P ∈ P as in Fig. 5 in depth 2. We
call this the VDP subroutine.

Now consider an operator EDP set P . An EDP set can
have intersecting paths, and the ancilla qubits at intersec-
tions appear in multiple paths, preventing us from simulta-
neously producing Bell pairs at their ends. We circumvent
this by producing Bell pairs across a path in two stages by
splitting the path into segments; see Fig. 8. We show that
P can be fragmented into two VDP sets P1 and P2 that,
together, form P . More precisely, each path P ∈ P can be
built by composing paths contained in P1 and P2 such that
each path in either P1 or P2 appears in precisely one path
in P . We say that the paths in P1 and P2 are segments of
paths in P . This forms the basis of the EDP subroutine,
which is presented in Algorithm 1 and illustrated with an
example in Fig. 6.

We show the following lemma, which restricts the adja-
cency of crossing vertices. As will become clear later, the
adjacent crossing vertices impose systems of constraints on
fragmenting P , and their restricted adjacency of any oper-
ator EDP set ensures that a fragmentation into two VDP
sets always exists.

Lemma 1: Given an operator EDP set P , a crossing ver-
tex is a vertex contained in more than one path in P .
Let the set of crossing vertices be Vc. Then the induced
subgraph G[Vc] contains only three kinds of connected
components:

1. isolated vertices;
2. a horizontal path, where each vertex (i, j ) in the

connected component can only be adjacent to (i −
1, j ) and (i + 1, j );
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(a)

Long-range Bell pair preparation

(b)

Long-range Bell measurement

(c)

Two-stage Bell preparation using segments

FIG. 8. (a) For segments marked in
white, we use long-range Bell pair
preparation in depth 2. (b) For seg-
ments marked in black, we then use
long-range Bell pair measurement in
depth 2. (c) The Bell measurements in
stage 2 stitch together the Bell pairs
made in phase 1, resulting in a Bell
pair in the qubits at the ends of the full
path.

3. a vertical path, where each vertex (i, j ) in the con-
nected component can only be adjacent to (i, j − 1)

and (i, j + 1).

Proof. We consider all possible colors of a vertex (i, j ) in
a connected component of G[Vc]. Black vertices cannot be
crossing vertices by the definition of an operator EDP set
so cannot be contained in Vc. It is then easy to see that
white vertices in Vc satisfy the lemma.

Therefore, the only relevant case is when (i, j ) is a
gray vertex. The vertices (i + 1, j ) and (i, j + 1) are white
and (i + 1, j + 1) is black. We show that these white ver-
tices cannot both be crossing vertices. Suppose that they
are; then both edges between the white vertices and the
black vertex, [(i + 1, j ), (i + 1, j + 1)] and [(i, j + 1), (i +
1, j + 1)], are in P . This is a contradiction with the fact
that the interior of operator EDPs cannot contain a black

vertex so it must be at the end of two paths, but an oper-
ator EDP set cannot contain two paths ending at the same
vertex. By the same argument applied to the other white
neighbors of (i, j ) we see that only (i − 1, j ) and (i + 1, j )
or (i, j − 1) and (i, j + 1) can both be crossing vertices,
and the claim follows. �

We now prove that P can be fragmented.

Theorem 2: We can fragment an operator EDP set P to
produce vertex-disjoint sets of segments P1 and P2. If P is
vertex disjoint then P1 = P and P2 = ∅.

Proof. We assign edges for inclusion in segments in P1 or
P2 by an edge labeling l(e) : E(G) → {1, 2}. Given a label-
ing of all edges e in the paths of P , we can assign edges
l(e) = b to segments in Pb. Therefore, given a labeling of

[Fig. 8(a), or 9(b), or 9(c)]

[Fig. 8(b), or 9(d), or 9(e)]

Algorithm 1. EDP subroutine: to apply CNOTs to the data qubits at the endpoints of a set of edge-disjoint paths P , where the interior
of each path is supported on ancilla qubits. The depth is at most 4.
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all edges in paths in P , it is easy to construct P1 and P2.
We now label all edges in the paths in P and prove that
their labeling guarantees the vertex-disjointness property
of P1 and P2.

We constrain the labeling around every crossing vertex v

so that the VDP property is satisfied. Clearly, v is contained
in the interior of exactly two paths, P1 and P2. Let v be
contained in edges e1 and e′

1 of P1, and edges e2 and e′
2 of

P2; then we impose the constraints

l(e1) = l(e′
1), (2)

l(e2) = l(e′
2), (3)

l(e1) �= l(e2), (4)

guaranteeing the vertex disjointness of segments at v since
a segment of P1 must span both e1 and e′

1, and a segment
of P2 must span both e2 and e′

2 with a different label.
We show there always exists a feasible solution given

these constraints. If we consider the graph G[Vc] induced
by crossing vertices Vc then we see that every connected
component in G[Vc] gives a system of constraints. The
adjacency of G[Vc], by Lemma 1, is such that each system
has one degree of freedom, which we decide arbitrarily.

Finally, for every vertex-disjoint path P ∈ P , assign
l(e) = 1 to all edges e in P. All remaining edges can be
labeled arbitrarily. �

The depth of a CNOT circuit produced by the EDP sub-
routine for an operator EDP set P is at most 4. If P
happens to be vertex disjoint then the depth is 2 since all
paths are assigned to phase 1 by Theorem 2.

C. Compiling parallel CNOT circuits with the EDP
subroutine

In this section we consider how to compile input par-
allel CNOT circuits using the EDP subroutine. We define
the terminal pairs T ⊆ V(G) × V(G) to be the pairs of
control and target qubits for each CNOT gate in the par-
allel CNOT circuit. To use the EDP subroutine, we need to
find operator EDP sets P1, . . . ,Pk that connect all termi-
nal pairs in T . We refer to any such set {P1, . . . ,Pk} as
a T -operator set. The depth of the compiled implementa-
tion is minimized when the size k of the T -operator set is
minimized.

There are reasons to believe that the compilation strat-
egy for parallel CNOT circuits formed by finding a minimal
T -operator set and applying the EDP subroutine should
produce low-depth output circuits. For sparse input cir-
cuits, i.e., those with a small number of CNOTs, one can
expect a small T -operator set to exist, giving a low-depth
output. On the other hand, we now prove that there are
dense CNOT circuits for which the EDP subroutine with a
minimal size T -operator set produces a compiled circuit
with optimal depth (up to a constant multiplicative factor).

Theorem 3: Let a parallel input CNOT circuit with corre-
sponding terminal pairs T be given, and let the n qubits of
the input circuit be embedded in a grid among 3n ancilla
qubits according to the layout in Fig. 6. For simplicity, we
assume that n is both even and the square of an integer.
We can find a T -operator set of size at most 2

√
n − 1 in

polynomial time.

Proof. For each CNOT gate, we construct an operator path
and argue that all such paths can be grouped into O(

√
n)

disjoint EDP sets. For simplicity, in the following, we
specify paths by a sequence of key vertices, with each con-
secutive pair of key vertices connected by the shortest path
(which is a horizontal or a vertical line).

We now construct an operator path for each CNOT oper-
ation, where the associated control vertex is v = (vx, vy) ∈
V(G) and the target vertex is u = (ux, uy) ∈ V(G). We can
always form an operator path to connect u and v given by
the following sequence of five key vertices: v, (vx, vy −
1), (ux − 1, vy − 1), (ux − 1, uy), u. This path consists of
one vertical end segment, one horizontal interior segment,
one vertical interior segment, and finally a horizontal end
segment.

Having assigned a path to each CNOT gate, we now show
that any of these operator paths can share an edge with at
most 2(

√
n − 1) of the other paths. Since the operator paths

have distinct endpoints, two different paths cannot share an
edge on either of their end segments v, (vx, vy − 1) and on
(ux − 1, uy), u. Therefore, pairs of these operator paths can
only share an edge on their interior segments. The hori-
zontal interior segment of the operator path from v to u
can share an edge with at most

√
n − 1 other paths. To see

this, consider an operator path from v′ = (v′
x, v′

y) ∈ V(G)

to u′ = (u′
x, u′

y) ∈ V(G) that shares at least one horizon-
tal edge with the operator path from v to u. Explicitly,
this means that the segment (vx, vy − 1), (ux − 1, vy − 1)

shares an edge with the segment (v′
x, v′

y − 1), (u′
x − 1, v′

y −
1), which implies that vy = v′

y . Since the terminals are
unique, there can only be

√
n − 1 other CNOTs with the

control sharing the vy coordinate. An analogous argument
applies for vertical segments, such that the operator path
from u to v can share an edge with at most 2(

√
n − 1) other

operator paths.
Let us construct a graph H where each vertex represents

an operator path as constructed above. We connect two
vertices in H if the associated paths share an edge. Every
vertex in H has degree at most 2(

√
n − 1); therefore, H is

(2
√

n − 1) colorable using the (polynomial time) greedy
coloring algorithm. We construct a T -operator set of size
2
√

n − 1 by grouping the paths associated with each color
in a set of edge-disjoint paths. �

We now show a general lower bound on compiling par-
allel CNOT circuits to the surface code architecture. Our
strategy will be to consider a parallel CNOT circuit with
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control data qubits in an area with small boundary that
generates an amount of entanglement across the boundary
proportional to the area for a given initial state. However,
each elementary surface code operation is local such that
only those operations acting at the boundary can increase
the entanglement across it. The depth of any implemen-
tation of the CNOT circuit is then lower bounded by the
entanglement that it generates over the boundary size
[42,43].

Theorem 4: Consider a surface code architecture of n
data qubits embedded in a grid where all ancilla qubits
are in the |0〉 state. For any positive integer k ≤ n/2, there
exists a parallel CNOT circuit of k CNOT gates with asso-
ciated terminal pairs T that needs depth �(

√
k) to be

implemented on the surface code architecture.

Proof. Consider a CNOT circuit with terminal pairs T with
control qubits on data vertices in a square region, VL, and
target qubits on vertices outside VL. We initialize the 2k
data qubits associated with T to a product state |+〉k |0〉k,
with |+〉 on control qubits and |0〉 on target qubits (the
remaining data qubits are initialized in an arbitrary prod-
uct state and ignored). After applying the CNOT circuit, we
obtain k Bell pairs. Therefore, the (von Neumann) entropy
of the reduced state of the data qubits in VL has increased
from 0 to k.

Consider a circuit C of depth d that implements the par-
allel CNOT circuit. Any elementary operation of the surface
code acting only within VL or within V̄L := V(G) \ VL or
classical communication (together, LOCC) cannot increase
the entropy of the state on VL. Moreover, as we show
below, each elementary operation that acts both on VL and
on V̄L can increase the entropy by at most a constant 4. We
can therefore upper bound the increase in entropy due to C
by 4d times the number of vertices adjacent to VL, which
is proportional to

√
k. To attain the k increase in entropy,

we therefore need d = �(
√

k).
We now bound the increase in entropy of any elemen-

tary operations acting on VL and V̄L to at most 4. All such
elementary operations are built from a single XX or a ZZ
measurement and single qubit operations (Appendix A),
which cannot increase the entropy. It is possible to imple-
ment XX and ZZ measurements acting on VL and V̄L using
two CNOT gates and operations acting only within VL or
within V̄L. The increase in entropy in VL by a CNOT oper-
ation is bounded by 2 [44, Lemma 1]. Therefore, XX
measurements, ZZ measurements, and indeed any elemen-
tary operation of the surface code can increase the entropy
by at most 4. �

In practice, it can be difficult to find minimal-size T -
operator sets. However, when the minimal size T -operator
set is k, in the following theorem we show that a T -
operator set {P1, . . . ,Pl} with size at most l = O(k log|T |)

can be found by a greedy algorithm that iteratively finds the
maximum operator EDP set for remaining terminals in T .

Theorem 5: On the grid of n vertices, the greedy
algorithm for finding T -operator sets repeats the follow-
ing two steps, for i = 1, . . . , |T |, until there are no more
terminal pairs to connect:

1. find a maximum operator EDP set Pi for T ,
2. remove all terminal pairs in Pi from T .

The set {P1, . . . ,Pk} is a T -operator set and is an
O(log|T |)-approximation algorithm for finding minimum-
size T -operator sets.

Proof. We base our proof on Ref. [39]. Assume that the
minimum-size T -operator set is {Q1, . . . ,QK} for some
size K . Then there is an operator EDP set Qi, for i ∈ [K],
such that |Qi| ≥ |T |/K . Therefore, the number of uncon-
nected terminal pairs is reduced by at least a factor (1 −
1/K) each iteration and it will require at most O(K log|T |)
iterations to connect all terminal pairs [45]. �

To make use of Theorem 5, we would ideally like to
have an algorithm to find maximum operator EDP sets on
the grid; however, the efficient algorithms we discussed
in Sec. III A fall short of this in two ways. Firstly, they
find EDP sets rather than operator EDP sets, and secondly
they provide approximate maximum sets rather than max-
imum sets. Fortunately, we find an equivalence between
operator EDP sets on the grid and EDP sets on a graph
that we call the T -operator graph [see Fig. 7(b)]. The T -
operator graph is a copy of the grid graph but with all
vertices corresponding to control qubits in T only having
vertical outgoing edges, and with all vertices correspond-
ing to target qubits in T only having horizontal incoming
edges, and all remaining vertices corresponding to data
qubits are removed. An EDP set for terminal pairs T on
the T -operator graph is an operator EDP set on the grid.
It is easy to see that a maximum operator EDP set for T
on the grid is equivalent to a maximum EDP set for T on
the T -operator graph. Using an approximation algorithm
for finding the maximum operator EDP set also still gives
approximation guarantees for minimizing the T -operator
set, as shown in the following corollary.

Corollary 6: The greedy algorithm for finding min-
imum T -operator sets, but with a κ-approximation
algorithm for finding maximum operator EDP sets, gives
an O(κ log|T |)-approximation algorithm for finding mini-
mum T -operator sets.

Proof. We modify the proof of Theorem 5 such that
every iteration we connect a (1 − κ/K) fraction of uncon-
nected terminal pairs using the κ-approximation algorithm
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(a)

Long-range CNOT in two stages

(b)

Long-range X prep. with ZZ meas.

(c)

Long-range Z prep. with XX meas.

(d)

Long-range teleport with ZZ meas.

(e)

Long-range teleport with XX meas.

FIG. 9. Detailed implementation
of the steps in Fig. 6. For each seg-
ment that is scheduled in phase 1,
we use (b) and (c); and for each sub-
path that is scheduled in phase 2, we
use (d) and (e). In (d) variables x0
and z0 are equal to the total parity
of all long-range Bell measurements
applied during stage 1 on the CNOT
path. Each of these operations takes
depth 2. Panels (d) and (e) share
variables a and b.

for finding maximum operator EDP sets. Therefore we
obtain a O(κ log|T |)-approximation algorithm for finding
minimum T -operator sets. �

The equivalence between operator EDP sets on the grid
and EDP sets on the T -operator graph motivates us to seek
an efficient algorithm to find approximate maximum EDP
sets on the T -operator graph as a key part of our EDPC
algorithm. The algorithms we discussed in Sec. III A come
close to doing this, but some of them are intended for find-
ing approximate maximum EDP sets on the grid rather than
on the T -operator graph and even if they are adapted, the
guarantees of the size of the approximate minimum EDP
sets they produce may not apply in the case of the T -
operator graph. The algorithms described in Refs. [39,40]
for finding approximate maximum EDP sets on the grid
do not directly apply to the operator graph. While it
seems straightforward to adapt the O(log n)-approximation
algorithm [39], the algorithms in Refs. [39,40] are complex

to implement and have large constant-factor overheads,
which can make them impractical on small instance sizes.

In EDPC, we instead combine the theoretical worst-case
bounds of Theorem 3 with the pragmatic performance of
a greedy approach, which does not have a large constant
overhead, in Algorithm 2. By Theorem 4 this gives us
asymptotically tight performance in the worst case. The
runtime of this algorithm is dominated by O(|T |) itera-
tions of approximately maximizing the operator EDP set
in time O(|T |n log n). We leave it as an open question to
find better approximation algorithms for finding maximum
operator EDP sets that give improved performance outside
the worst case and that may also improve the runtime since
less iterations over T are required.

IV. REMOTE ROTATIONS WITH MAGIC STATES

Thus far, we have discussed the surface code compi-
lation of all the input circuit operations listed in Sec. I
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Algorithm 2. Bounded T -operator set algorithm: an approximation algorithm for minimizing the T -operator set size that combines
the theoretical guarantees from Theorem 3 with pragmatic performance using the greedy algorithm of Theorem 5.

except for the single-qubit rotation gates S = Z(π/4) and
T = Z(π/8). In this section we design a subroutine for
the compilation of parallel rotation circuits. The S and
T gates can be implemented by using specially prepared
magic states |S〉 and |T〉, respectively. Magic states can
be prepared using a highly optimized process known as
magic state distillation [46], which distills many faulty
magic states that are easy to prepare into fewer robust
states. Still, producing both |S〉 and |T〉 involves consid-
erable overhead. The |S〉 state is used to apply the S gate
in a “catalytic” fashion, whereby the state |S〉 is returned
afterwards. On the other hand, the state |T〉 is consumed to
apply the T gate. The reason for this distinction is rooted
in the fact that the S gate is Clifford but the T gate is
non-Clifford.

In this work, we do not address the mechanism by which
magic states are produced, but instead assume that these
states are provided at specific locations where they can be
used to implement gates. More specifically, we assume that
rotation gates S and T [and also Clifford variations of these
such as X (π/8) = Tx and X (π/4) = Sx] can be applied
as a resource on specific ancilla qubits B ⊆ V(G) at the
boundary of a large array of logical qubits [Fig. 10(a)].
This will allow sufficient space outside the boundary where
highly optimized magic state distillation and synthesis cir-
cuits can be implemented. Because a large number of
magic states are used in the computation, we consider hav-
ing magic state distillation adjacent to and concurrent with
computation we are concerned with in this paper to be a
reasonable allocation of resources.

(a)

Long-range CNOT operations for diagonal gates

(b)

Remote Z(θ) and X(θ)

FIG. 10. We assume the capability of performing S and T gates at the boundary qubits (red) where it is easy for us to supply the
requisite S and T magic states. We can then execute S or T gates in the Z or X basis for our circuit by using long-range CNOT gates
and the circuits in (b). For example, to execute S or T on qubits G3, E7, and HTH on G7, we apply long-range CNOT gates between
pairs (G3, G1), (E7, A7), (A5, G7), and then execute S or T on G1, A7, HTH on A5. We can continue applying other Clifford gates to
qubits G3, E7, and G7 right after performing the long-range CNOT gate, without waiting for the Z correction, since we can propagate
the correction through Clifford operations.
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We need a technique to apply remote rotations to data
qubits that can be far from the boundary, making use of
the rotations that can be performed at the boundary. We
make use of the property that any Z rotation (including T or
S) has the same action when applied to either qubit in the
state α |00〉 + β |11〉. In particular, these two qubits need
not be close to one another, so we can apply Z rotations
remotely. A similar notion holds for X rotations (including
Tx = HTH or Sx = HSH ) and α |++〉 + β |−−〉. Given
a qubit q that needs to perform a Z rotation requiring a
magic state, we apply a remote Z rotation [Fig. 10(b)]: by
performing a long-range CNOT(q, q′) to a boundary ancilla
q′ ∈ B prepared in |0〉. Therefore we can apply the Z rota-
tion remotely and use an X measurement on q′ to collapse
the state back to one logical qubit. Similarly, for a qubit q
that needs to perform an X rotation requiring a magic state,
we apply a long-range CNOT(q′, q) to an ancilla q′ prepared
in |+〉 on the boundary, giving

CNOT |+〉 (α |+〉 +β |−〉) = α |++〉 + β |−−〉 . (5)

Therefore we apply the X rotation remotely and collapse
the state back by a single-qubit Z measurement of q′.

The task of compiling a parallel rotation circuit therefore
reduces to applying a set of CNOT gates from the boundary
to the sites of the rotation gates. This can be achieved by
finding an appropriate EDP set and running the EDP sub-
routine of Algorithm 1. Compared to the task of finding an
EDP set for parallel CNOT gates of Sec. III, there is one sim-
plifying condition here: any boundary qubit can be used
for each CNOT gate when applying remote rotations. As we
explain below, we can find the maximum EDP set for the
compilation of remote rotations by solving the following
(unit) MAX FLOW problem [47].
Definition 7 (MAX FLOW): Given a directed graph G and
source and sink vertices s, t ∈ V, we wish to find a flow

for all edges of G, f (e) : E(G) → R, that is skew symmet-
ric, f [(u, v)] = −f [(v, u)], and, for v ∈ V(G) \ {s, t}, must
respect the constraints

f (e) ≤ 1, (6)

and
∑

u:(v,u)∈E(G)

f [(v, u)] = 0, (7)

such that the outgoing source flow |f | := ∑
u:(s,u)∈E(G)

f [(s, u)] is maximized.
To understand why this yields a maximum EDP, we first

point out that a solution for which f has binary values pro-
vides an EDP set by building paths from those edges e
for which f (e) = 1. Moreover, this EDP set must be max-
imum, because a larger EDP set would imply a larger flow
than f , which is the maximum flow by definition. Indeed,
the Ford-Fulkerson algorithm [30] solves MAX FLOW in
runtime bounded by O(|E(G)||f |) and finds flow values
f (e) ∈ {0, 1} on all e ∈ E(G) because of the unit capac-
ity constraints, f (e) ≤ 1. Therefore, f corresponds to a
maximum EDP set [47, Sec. 7.6].

The remote rotation subroutine (Algorithm 3) executes
a set of parallel single-qubit rotations. Each iteration can
be performed in depth 4 using the EDP subroutine. On the
surface code architecture, we can give strong guarantees on
the number of iterations required to execute a set of parallel
rotations by the MAX FLOW to min-cut equivalence.

Theorem 8: The remote rotation subroutine executes all
rotations in Gm in depth O(

√|Gm|).

Proof. The function max_rotations (Gm) that is a
part of the remote rotation subroutine finds a maximum
flow connecting the data qubits performing rotations to
the boundary where every additional unit of flow is one

Algorithm 3. Remote rotation subroutine: executes parallel single-qubit rotations that require magic states at the boundary by a MAX
FLOW reduction. Using the EDP subroutine (Algorithm 1), we can perform remote rotations (Fig. 10) on each set of qubits connected
to the boundary by P in depth 4.
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more rotation executed. This maximum flow is equal to
the minimum edge cut separating the data qubits from
the boundary [30]. The boundary of a rectangle contain-
ing |Gm| vertices on the grid is of size �(

√|Gm|), giving a
minimum cut size of �(

√|Gm|). Thus, at most O(
√|Gm|)

iterations of the while loop in the remote rotation subrou-
tine are necessary to implement all remote rotations, as
claimed. �

We bound the runtime of the remote rotation subroutine
by O(n2

√|Gm|) as follows. At most O(
√|Gm|) iterations of

the while loop are necessary (see the proof of Theorem
8). Each iteration, the call to max_rotations (Gm)

is dominated by solving a MAX FLOW instance using
the Ford-Fulkerson algorithm [30], which has a runtime
bounded by O(n2).

One could consider a number of generalizations and
variations of this compilation subroutine for parallel rota-
tion circuits. For instance, when the number of rotation
gates is small, it may be useful to find VDP sets rather than
EDP sets so that the VDP subroutine rather than the EDP
subroutine can be applied. There is a different reduction to
MAX FLOW in this case that can be obtained by replacing
each vertex with two vertices, one with an incoming edge
and one with an outgoing edge, connected by a directed
edge with capacity 1. This guarantees that only one flow
can pass through every vertex.

Although we do not consider other single-qubit rotations
in our input circuit for compilation, it is worth noting that
any single-qubit rotation gate Z(θ) can be approximately
synthesized to arbitrary precision [48] using |S〉 and |T〉
states along with the surface code operations shown in
Fig. 1. The approach used to apply S and T gates shown
in Fig. 10(a) can also be used to apply any rotation Z(θ)

within the grid of surface codes by synthesizing the rota-
tion at the boundary. However, if one considers more
general rotations in the input circuit, the time needed for
synthesis at the boundary will need to be accounted for and
accommodated by other aspects of the overall surface code
compilation algorithm. Another extension that can be con-
sidered is if multiqubit diagonal gates are allowed in the

input circuit. We show how X and Z rotations generalize
to multiqubit diagonal gates in Appendix D, although we
do not use this in our surface code compilation algorithm.

V. EDPC SURFACE CODE COMPILATION
ALGORITHM

In this section we construct the EDPC algorithm for
compiling universal input circuits into surface code opera-
tions by combining the subroutines in Algorithms 1 and 3
for compiling long-range CNOT gates and Z/X rotations,
respectively. First we provide a more formal definition of
surface code compilation.
Definition 9 (Surface code compilation): Consider an
input quantum circuit of operations C = g1g2 · · · g
, which
is a list of length 
 of operations gi for i ∈ [
], consisting
of state preparation in the X or Z basis; the single-qubit
operators X , Y, Z, H , S, T, Sx = HSH , and Tx = HTH ;
CNOT operations; and X , Z measurements. Then a surface
code compilation produces an equivalent output circuit O
in terms of surface code operations (Fig. 1) on a grid of
surface codes with S, T, Sx, and Tx rotations applied only
at the grid’s boundary.

The surface code compilation algorithm EDPC
(Algorithm 4) combines the bounded T -operator set
algorithm for parallel CNOT gates with the remote rotation
subroutine. Note that the input circuit is considered to be
a sequence of operations rather than a series of time steps
that specify the operations in each time step, such that l is
the number of operations of the input circuit, not the depth.

We bound the classical runtime of EDPC given an input
circuit with depth D acting on n qubits. It is useful to note
that each of the D layers of the input circuit can be decom-
posed into a set of parallel rotations followed by a set of
parallel CNOT gates, each acting on at most n qubits. Recall
that the remote rotation subroutine has a runtime bounded
by O(n2.5), whereas compiling a set of parallel CNOT gates
has a runtime of at most O(n3 log n). Thus, EDPC has a
runtime bounded by O(Dn3 log n).

Circuits compiled by EDPC can be bounded in depth
as listed in Table I. Our claim for a single CNOT gate is

Algorithm 4. EDPC: a surface code compilation algorithm for any circuit C = g1 · · · g
. An operation gi is available if it has not
been executed and all operations gj with overlapping support, for j < i, are executed.
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trivial. Theorems 3 and 4 show that parallel CNOT circuits
are compiled to a depth of �(

√
n), and Theorem 8 shows

that k parallel rotations are compiled to a depth of O(
√

k).
It is then easy to see that a circuit of depth D compiles
to a circuit of depth at most O(D

√
n). If we assume that a

remote rotation must be performed for each rotation requir-
ing magic states at the boundary (in particular, it requires a
long-range CNOT gate as in EDPC), then Theorem 4 shows
an �(

√
k) lower bound on the depth to apply k CNOT

operations with the boundary.
There are various modifications of EDPC that are worth

considering. Firstly, the bounded T -operator set algorithm
(Algorithm 2) can be improved by better algorithms
for finding maximum operator EDP sets. Secondly, the
requirement to execute all available gates before moving
on to the next set could be relaxed. This could increase the
number of long-range gates that are performed in parallel,
but would require careful scheduling with Hadamard gate
execution, which may block some paths. Lastly, EDPC
leans heavily on finding operator EDPs and the EDP sub-
routine, but a similar surface code compilation algorithm
could be constructed from operator VDPs and the VDP
subroutine instead. We believe that larger maximum EDP
sets allows EDPC to apply more gates simultaneously
(see Sec. III A), and more so if algorithms for approxi-
mation maximum operator EDP sets can be adopted from
EDP approximation algorithms [39,40]. Both of these fea-
tures can give asymptotic improvements at only a 2 times
depth increase over the VDP subroutine. However, it is
not difficult to construct instances where a VDP-based
approach would give a lower depth, motivating a more
nuanced trade-off between our EDP-based approach and
a VDP-based approach.

VI. COMPARISON OF EDPC WITH EXISTING
APPROACHES

In this section, we compare EDPC with other
approaches in the literature. We first mention some of
the features and shortcomings of the well-established
approach of Pauli-based computation Sec. VI A. Then we
address a more recently proposed compilation approach
based on network coding in Sec. VI B. In Sec. VI C we
specify a SWAP-based compilation algorithm [14] and use
this as a benchmark for numerical studies of the perfor-
mance of an implementation of EDPC in Sec. VI D.

A. Surface code compilation by Pauli-based
computation

One well-established surface code compilation approach
is known as Pauli-based computation, which is described
in Ref. [13]. For an algorithm expressed in terms of Clif-
ford and T gates, Pauli-based computation first involves
reexpressing the algorithm as a sequence of joint mul-
tiqubit Pauli measurements along with additional ancilla

qubits prepared in T states. This reexpressed circuit has no
Clifford operations, and the circuit depth can be straight-
forwardly deduced from the input circuit since each T
gate results in two [49] joint Pauli measurements [50].
This reexpression of the circuit essentially comes from first
replacing each T gate by a small gate teleportation circuit
consisting of an ancilla in a T state and a two-qubit joint
Pauli measurement, and then commuting all Clifford oper-
ations to the end of the circuit. The main advantage of the
Pauli-based computation approach is that all Clifford gates
are removed from the input circuit, resulting in no cost for
CNOT circuits in Table I.

That said, this approach has a major drawback. When
a Clifford circuit is commuted through a two-qubit joint
Pauli measurement, it is transformed into Pauli mea-
surements that can have support on all logical qubits.
Therefore, the resulting circuit may contain measurements
with large overlapping support that need to be performed
sequentially (even when the T gates in the input circuit are
acting on disjoint qubits during the same time step). The
sequential nature of the joint measurements causes a fixed
rate of T-state consumption that does not grow with the
number of logical qubits and results in a �(k) depth for k
parallel rotations, as listed in Table I. The depth for parallel
rotations is significantly higher than EDPC and could lead
to a larger space-time cost for circuits with many T gates
per time step.

A modified version of this Pauli-based computation
compilation algorithm can be used to implement more T
gates in parallel [13, Sec. 5.1]. However, as highlighted in
Sec. V.A of Ref. [49], this results in a significant increase
of total logical space-time cost when compared to the stan-
dard Pauli-based computation compilation algorithm, even
when disregarding the increased T-factory costs that would
be needed to achieve a higher T-state production rate.

In contrast with Pauli-based computation, one of our
goals when designing the EDPC algorithm was to main-
tain the parallelism present in the input circuit, such that
input circuits with higher numbers of T gates per time step
are compiled to circuits with a higher T-state consumption
rate.

B. Surface code compilation by network coding

Another approach to surface code compilation, based on
the field known as linear network coding [51], can be built
from the framework put forward in Ref. [28]. Similar to
our EDPC algorithm, the essential idea in this compila-
tion scheme is to generate sets of Bell pairs in order to
implement operations acting on pairs of distant qubits.

In the abstract setting of network coding [52], one is
given a directed graph GNC and a set of terminal pairs T =
{(s1, t1), . . . , (sk, tk)} for source terminals si ∈ V(GNC) and
target terminals ti ∈ V(GNC) for i ∈ [k]. Messages are
passed through edges according to a linear rule. Namely,
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the value of the message associated with an edge is given
as a specific linear combination of the values of those
edges that are directed at the edge’s head. One can con-
sider the task of “designing a linear network code” by
specifying the linear function at each edge in the graph
such that, when any messages are input via the source
vertices s1, . . . , sk, then those same messages are copied
over to the corresponding output via the target vertices
t1, . . . , tk.

A number of works have considered how linear network
coding theory can be applied to the quantum setting [23–
27]. In Ref. [28] a construction for a constant-depth circuit
is given to generate Bell pairs across the terminal pairs T
on a set of ancilla qubits corresponding to the vertices of
GNC with CNOT gates allowed on the edges of GNC. This is
similar to, but not precisely the same scenario as, what we
consider for surface code compilation in this paper since
the basic operations are CNOT gates rather than the elemen-
tary operations of the surface code, and since only ancilla
qubits are considered without any data qubits. However,

it should be quite straightforward to modify the approach
in Ref. [28] to form a surface code compilation algorithm.
For example, one could use a layout similar to that which
we use for EDPC in Fig. 6, with GNC corresponding to
a connected subset of ancilla qubits among a set of data
qubits. The Bell pairs produced by the linear network cod-
ing approach could then be used to compile long-range
operations between data qubits.

In such a network-coding-based compilation algorithm,
the task of compiling an input circuit into surface code
operations would largely rely on subroutines for (1) iden-
tifying T to implement the circuit’s long-range gates, and
(2) designing a linear network code for T . A major bar-
rier to forming a usable compilation algorithm with linear
network coding is that we are unaware of the existence of
any efficient algorithm to design linear network codes, or
even to identify if a given terminal pair set admits any lin-
ear network code. Even if such a linear network code can
be found efficiently, there exist sets T for which network
coding cannot provide a depth advantage over EDPC.

Algorithm 5. SWAP compilation: we construct an algorithm based on the greedy depth mapper algorithm from Ref. [14]. Let us
implicitly define route(π), for mapping π , which finds a SWAP circuit for implementing partial permutations [14]. We can compute
the required partial permutation from the current mapping of qubits, and the given future mapping π .
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Any surface code compilation algorithm of CNOT cir-
cuits with k parallel CNOT gates, including EDPC and
algorithms using network coding, is lower bounded in the
worst case by Theorem 4 to a depth of �(

√
k). This bound

is loose when k is superconstant and sublinear in n since
EDPC has a trivial upper bound of O(k) and a bound of
O(

√
n) by Theorem 3 on the compiled circuit depth. There-

fore, it remains an open question whether network coding
can give an advantage for the compiled circuit depth for
such k.

C. Surface code compilation by SWAP gates

Here we specify a SWAP-based compilation algorithm,
stated in Algorithm 5, which we use to benchmark our
EDPC against in Sec. VI D. We assume the 1-to-1 ancilla-
to-data qubit ratio as illustrated in Fig. 11. This is more
qubit efficient than the 3-to-1 ratio we use for EDPC, and
it allows the SWAP gadget in Fig. 3(b) to be implemented
between diagonally neighboring data qubits.

The first step of the SWAP-based compilation algorithm
is to assign each of the input circuit’s qubits to a data
qubit in the layout. Then, the gates in the input circuit
are collected together into sets of disjoint gates. Before
each set of gates, a permutation built from SWAP gates is
applied, which repositions the qubits so that the gates in
the set can be applied locally. We assume that the available
local operations are the same as for our EDPC algorithm.
In particular, we assume that the rotation gates (S, T, Sx,
and Tx) can only be implemented at the boundary and that
other single-qubit operations are performed as described
in Sec. II A. One exception is that we make the simplify-
ing assumption that the Hadamard gate can be performed
without the need of three ancilla patches to simplify our

FIG. 11. On a rotated L1 × L2 grid (here, 4 × 5), we can imple-
ment an odd-even pattern of swap gates on data qubits (gray)
using ancillae (white). Row-wise and columnwise SWAP gates
used in SWAP routing on a grid [21] can be modified as shown
above so that the ancillae used for SWAP gates do not overlap.
Therefore, any arbitrary permutation on a rotated grid can be
implemented in space-time 4(L1 + 1) + 2(L2 + 1).

analysis—this assumption could lead to an underestimate
of the resources required for this SWAP-based compilation
algorithm.

There are two main components of our SWAP-based
algorithm that remain to be specified: how the permuta-
tions are implemented, and how we choose to separate the
input circuit into a sequence of sets of disjoint gates. To
permute the positions of data qubits, sequences of SWAP
operations are used. Any permutation of the n vertices
in a square grid can be achieved in at most 3

√
n rounds

of nearest-neighbor swap gates [20]. To do this involves
three stages, with the first and third stages each involv-
ing rounds of SWAP-gates within rows only, and the second
stage involving rounds of SWAP-gates within columns only.
A round of SWAP gates within either rows only or within
columns only is implemented with surface code opera-
tions as shown in Fig. 11. This immediately shows that
this approach is asymptotically tight for parallel circuits
because the depth of a SWAP-based approach is lower
bounded by the

√
n diameter of the architecture grid for

one long-range CNOT or rotation gate from the center of
the grid. Therefore, a parallel input circuit is compiled by
the SWAP-based algorithm to an output circuit with depth
�(

√
n), including all the examples in Table I.

There is considerable freedom in how to collect together
gates from the input circuit into sets of disjoint gates. In our
implementation in Algorithm 5, we use the greedy depth
mapper algorithm from Ref. [14], with a small modifica-
tion to ensure that the S and T gates are performed at the
boundary. This algorithm also incorporates some further
optimizations as described in Ref. [14], including a par-
tial mapping of qubits to locations, leaving the remaining
qubits to go anywhere in an attempt to minimize the SWAP
circuit depth.

D. Numerical results

Here we numerically compare the performance of EDPC
with the SWAP-based compilation algorithm (Algorithm 5)
when applied to a number of different input circuits.
Note that our implementation of the EDPC compila-
tion algorithm here differs slightly from that given in
Algorithm 4, by greedily executing CNOT gates earlier
where possible. See Appendix E for details of the imple-
mentation.

Our first input circuit example consists of random par-
allel CNOT circuits of different gate densities. The density
nCNOT of a circuit is how many of the data qubits are
involved in a CNOT gate in any such set. Therefore, nCNOT =
0.1n means that 10% of all qubits (n) are performing a
CNOT gate in each set. For each data point, we sample
ten random circuits and plot the mean space-time cost in
Fig. 12 with the standard error of the mean in the shaded
region. The runtime of the SWAP protocol is bounded by
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FIG. 12. Space-time cost of a ran-
domly sampled set of disjoint CNOT gates
with standard error of the mean (shaded
region) compiled to the surface code
using EDPC and SWAP compilation. We
generate ten random circuits for each
number of qubits (n) consisting of a set
of disjoint CNOT gates of varying density;
the number of randomly selected qubits
involved in a CNOT gate is given by
nCNOT. At all densities we see improved
performance and scaling using EDPC.

2 days, which is insufficient for larger instances of these
random circuits at high densities.

We also consider a more structured input circuit, namely
implementing half of a multicontrolled-X gate, CkNOT. We
consider decompositions of a CkNOT gate for k integer
powers of 2, but only compile the first half of the circuit,
given in Fig. 13(a). A T-efficient implementation of the
CkNOT gate uses measurement and feedback for uncom-
putation [53], which are not captured in our model (see
Sec. VII). We plot the space-time cost of compiling the
half CkNOT gate in Fig. 13(b). We see that the dependence
on the number of qubits k is worse for SWAP-based com-
pilation, and results in a larger space-time cost starting at
64 qubits. Unfortunately, the SWAP-based compilation is

quite slow: we ran the algorithm for at most 3 days and
9 hour at each data point and were only able to obtain
results up to 128 qubits. However, the data we were able
to obtain indicates a crossover for compiling a half CkNOT
gate. The SWAP-based compilation has better space-time
performance for small instances, while EDPC has a better
space-time performance for compiling large CkNOT gate.

VII. CONCLUSION

In this paper, we have introduced the EDPC algorithm
for the compilation of input quantum circuits into oper-
ations that can be implemented fault tolerantly with the
surface code. The heart of this algorithm lies in the EDP
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Compilation of half CkNOT

FIG. 13. We compare the space-time
cost of compiling a T-gate optimized cir-
cuit decomposition for a half CkNOT gate
to the surface code using EDPC and SWAP
compilation. We see in the log-log plot
(b) that dependence of the space-time cost
on n gives a higher scaling dependence in
the case of SWAP compilation than EDPC.
This results a lower space-time cost for
EDPC starting from 64 qubits.
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subroutine, which can implement both sets of parallel
long-range CNOT gates and sets of parallel rotations in
constant depth using existing efficient graph algorithms to
find sets of edge-disjoint paths. EDPC has advantages over
other compilation approaches, including Pauli-based com-
putation, network-coding-based compilation, and SWAP-
based compilation. We numerically find that EDPC sig-
nificantly outperforms SWAP-based circuit compilation in
the space-time cost of random CNOT circuits for a broad
range of instances, and for larger CkNOT gates. However,
many details of EDPC can be improved, as it is only a first
step towards using long-range operations for surface code
compilation.

EDPC requires sets of constrained edge-disjoint paths,
which we call operator paths and run almost entirely along
ancilla qubits. Better algorithms for finding maximum sets
of edge-disjoint operator paths could improve EDPC. It
seems likely that an O(log n)-approximation algorithm for
finding maximum EDP sets on grids [39] can be mod-
ified to give an algorithm for finding maximum sets of
edge-disjoint operator paths on grids. A polylogarithmic
approximation algorithm for this task would imply an
approximation algorithm for minimizing the depth, up
to a polylogarithmic factor, of compiling parallel CNOT
gates using the EDP subroutine. In practice, it is, how-
ever, also important to find approximation algorithms with
reasonable constant prefactors.

The runtime complexity of EDPC for an input circuit
of depth D acting on n qubits is O(Dn3 log n). This is
significantly faster than the SWAP-based compilation in
Sec. VI C, which was found to be O(Dn5) in Ref. [14]. We
found that our implementation of the SWAP-based compi-
lation implementation runtime is much slower than that of
EDPC on small instances, and found that the SWAP-based
algorithm had impractically long runtimes when applied to
circuits beyond a few hundred qubits, the regime of large-
scale applications of quantum algorithms [54,55]. Potential
ways to further improve EDPC’s runtime include using a
dynamical decremental all-pair shortest path algorithm in
the greedy approximation of the maximum EDP set, or
by finding faster and better approximation algorithms for
finding the maximum set of edge-disjoint operator paths.

Any diagonal gates in the Z (or X ) basis can be per-
formed remotely on the boundary, including CCZ gates [56]
(see Appendix D). Therefore, our results on applying Z(θ)

rotations can be extended to diagonal gates, which will
benefit circuit depth.

Even with the capability to perform long-range oper-
ations, it may still be helpful to localize the quantum
information on some part of the architecture such as by
permuting the data qubits. In particular, the size of the EDP
set is bounded above by the minimum edge cut separating
the terminals. Therefore, it may be beneficial to first redis-
tribute quantum information where it is needed to ensure
that large EDP solutions exist. It is straightforward to

construct a long-range move of a data qubit to an ancilla
in depth 2 from a long-range CNOT gate, by performing the
CNOT gate targeting a |0〉 ancilla state and measuring the
source in the X basis up to Pauli corrections. It is also
straightforward to adapt the EDP subroutine to perform
sets of these long-range moves along operator paths, now
ending at the ancilla, in depth 4. The depth to permute only
a few qubits a long distance can be improved significantly
by this technique. For example, a SWAP of the two cor-
ners of an L × L grid architecture takes O(1) depth using
long-range move operations, as opposed to �(L) depth
using conventional SWAP gates. It remains an open ques-
tion how to trade off permuting data qubits (using SWAP
gates or long-range moves) and directly using long-range
CNOT gates.

We have assumed that classical feedback is not present
in the input circuit for clarity of presentation. EDPC can
readily be extended to the setting of classical feedback in
the input circuit to form a “just-in-time” surface code com-
pilation algorithm. To do so, a larger computation would
be broken up into a sequence of circuit executions with-
out classical feedback, where prior measurement results
specify the next circuit to compile and execute.
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APPENDIX A: SURFACE CODE ARCHITECTURE

Here we review some basic details of the surface code,
focusing on the elementary logical operations shown in
Fig. 1. This is intended as a high-level overview to pro-
vide some intuition of how the logical operations in Fig. 1
arise and what their resource costs are. For more thorough
reviews of surface codes, see Refs. [3,57,58].

To implement the surface code, we assume that physi-
cal qubits are laid out on the vertices of a 2D grid, with
nearest-neighbor interactions allowed. For concreteness,
we describe here an implementation of lattice surgery with
the rotated surface code with half-moon boundary [59],
although our EDPC algorithm can use other implementa-
tions. A single surface code patch encodes a single logical
qubit in 2d2 − 1 physical qubits, where the odd parame-
ter d is known as the code distance that corresponds to
the level of noise protection; see Fig. 14(a). For clarity,
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(a)

Surface code patch

(b)

X-Stabilizer decoding graph

FIG. 14. (a) A d = 5 surface code patch implemented in a grid
of data physical qubits (black disks), and ancilla physical qubits
(white disks). Error correction is implemented with single-qubit
operations and CNOT gates between pairs of qubits connected
by a dashed edge. The Z- and X -type stabilizers are associated
with alternating red and blue faces. (b) A decoding graph that is
defined by associating an edge with each qubit and a vertex for
each stabilizer. If stabilizers are measured perfectly, Z errors on
data qubits (marked in red) can be corrected by finding a mini-
mum weight matching (green edges) of vertices associated with
unsatisfied X stabilizers (yellow disks).

within this section of the appendix we refer to physical
qubits and logical qubits explicitly; however, in other sec-
tions we often drop the word “logical” when referring to
logical qubits for brevity.

We designate every odd physical qubit as a data phys-
ical qubit in the patch, and every even physical qubit as
an ancilla physical qubit to facilitate a stabilizer measure-
ment; see Fig. 14(a). The code space of a surface code
consists of those states of the data physical qubits that are
simultaneous +1 eigenstates of the set of stabilizer gen-
erators. The stabilizer generators can be associated with
faces and are either X ⊗ X ⊗ X ⊗ X or Z ⊗ Z ⊗ Z ⊗ Z
operators for the bulk (interior) of the code or X ⊗ X or
Z ⊗ Z operators on the boundary. We can see that the log-
ical Z operator, ZL, defined as any path of single-qubit Z
operators on physical qubits connecting the rough bound-
aries, commutes with all stabilizers. Similarly, the logical
X operator, XL, is a path of X operators connecting the
smooth boundaries.

For quantum error correction, it is necessary to repeat-
edly measure stabilizer generators. Stabilizer generators
can be measured by running small circuits consisting of
the preparation of the ancilla physical qubit, CNOT gates
between the ancilla physical qubit, and the data physical
qubits, followed by measurement of the ancilla physical
qubit. Error correction can be performed by associating
qubits with edges and stabilizer generators with vertices
of a so-called decoding graph; see Fig. 14(b). A classi-
cal algorithm known as a decoder is used to infer a set
of edges (specifying the support of the X or Z correction)
given a subset of vertices (corresponding to unsatisfied Z

or X stabilizers, that is, stabilizer generators with measure-
ment outcome −1). Figure 14(b) shows an example of this
in the setting of perfect stabilizer measurements, although
this can be generalized to handle faulty measurements by
repeating measurements.

Logical operations can be implemented fault tolerantly
on logical qubits encoded in surface codes. For example,
a destructive logical X measurement of a patch is imple-
mented by measuring all data qubits in the X basis, and
then using a decoder to process the physical outcomes
and reliably identify the logical measurement outcome.
Another important logical operation is the nondestruc-
tive measurement of a logical joint Pauli operator using
an approach known as lattice surgery [7], as shown in
Fig. 15(a). To simplify lattice surgery by lining up the
boundary stabilizers of neighboring patches, we consider a
tiling of the plane using two versions of distance d surface
code patches as shown in Fig. 15(b) that forms a grid of
logical qubits. Logical ZL ⊗ ZL can be measured between
vertical neighbor patches while XL ⊗ XL can be measured
between horizontal neighbor patches.

The allowed fault-tolerant logical operations that we
assume throughout the paper and the resources they require
are listed in Fig. 1. These are largely based on the
rules specified in Ref. [13]. Here we justify the resource
requirements for the logical operations in Fig. 1 not

(a) (b)

Logical ZL ⊗ ZL measurement Patches tiling the plane

FIG. 15. (a) A logical ZL ⊗ ZL measurement is performed by
lattice surgery in the following steps. (i) Stop measuring the
weight-two stabilizers along the horizontal boundary between the
patches. (ii) Reliably measure the bulk faces for a single ver-
tically extended patch. Note that ZL ⊗ ZL can be inferred from
the product of the outcomes of the newly measured red faces.
This temporarily merges the patches to form a single extended
surface code patch. (iii) Reliably measure once more the weight-
two faces along the horizontal boundary between the patches.
This separates the pair of patches. (b) Two types of patches tile
the plane, with ZL ⊗ ZL measurements possible between verti-
cally neighboring patches, and XL ⊗ XL measurements possible
between horizontally neighboring patches.

020342-20



SURFACE CODE COMPILATION VIA EDGE-DISJOINT PATHS PRX QUANTUM 3, 020342 (2022)

FIG. 16. The move operation can be implemented in depth 1
by local and neighboring Pauli measurements. A horizontal move
operation can be implemented by preparing a single-qubit patch
in |0〉, applying joint XX measurement, and then measuring the
original patch in the Z basis (up to Pauli corrections). The ver-
tical move operation follows from applying a Hadamard gate to
the source qubit |φ〉 and a Hadamard gate on the output. Simpli-
fying the circuit gives the right-hand side in the figure, with a ZZ
measurement that is available vertically.

covered in Ref. [13] on a distance-d surface code. For
space analysis, we work in units of full surface code
patches such that if any qubits from a patch are needed
to implement an operation, the full patch is counted. We
show how to implement the operations in terms of more
elementary Pauli measurements. The move operation can
be implemented in depth 1 with the target qubit as ancilla,
as shown in Fig. 16. The Hadamard gate can be imple-
mented in depth 3 with three ancillae patched along with
the move operation, as shown in Fig. 17. Finally, Bell mea-
surement and preparation can be implemented in depth 1,
as shown in Fig. 18.

It is worth mentioning that there is considerable freedom
in the detailed choice and implementation of the surface
code that could have an impact on the space-time cost of
logical operations, both at the physical level but also in
some cases at the logical level. For example the Hadamard
gate could be performed using just one logical ancilla patch
if each patch is padded with extra qubits. We do not explore

(a)

Bell pair preparation

(b)

Bell measurement

FIG. 18. We can implement Bell preparation and measurement
in terms of single- and two-qubit Pauli measurements in depth 1
as given in Fig. 18 [13]. (a) A Bell pair can be prepared from a
(horizontal) joint XX measurement of |00〉 or a (vertical) joint ZZ
measurement of |++〉, up to Pauli corrections. (b) A destructive
Bell measurement can be implemented by a joint XX measure-
ment followed by individual Z basis measurements, or by a joint
ZZ measurement followed by individual X basis measurements.

these alternatives here, but note that our EDPC algorithm
can still be applied if these alternatives are used.

APPENDIX B: LOGICAL SPACE-TIME COST AS A
PROXY FOR THE PHYSICAL SPACE-TIME COST

Here we provide a justification for our use of the logical
space-time cost as a proxy for the physical space-time cost.
As we have seen in Fig. 1 and Appendix A, logical oper-
ations implemented with the surface code require physical
time that scales as d and physical space that scales as d2.
For a logical circuit written in terms of a total of Alogical
elementary logical operations implemented using surface
codes of distance d, the physical space-time cost Aphysical is

(a)

Transversal hadamard

(b)

Extended patch

(c)

Shrunk patch

FIG. 17. Implementation of a Hadamard operation in depth 3 with three ancilla patches. (a) A transverse Hadamard operation is
applied in depth 0 to each physical data qubit, which switches the arrangement of X and Z stabilizer generators compared to the
standard configuration. (b) The patch is extended in depth 1 so that a segment of the standard boundary type is introduced on the right.
(c) The patch is shrunk into a standard surface code patch of the form of the top-left corner of the region [see Fig. 15(b)] in depth 1,
but with its location shifted by a (code distance) d-independent amount. This allows us to shift the patch into the top-left corner in 0
depth (not shown). Then we move the logical qubit to the bottom-left corner in depth 1.
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(a)

CNOT via Bell preparation

(b)

CNOT via Bell measure

(c)

CNOT with control first

(d)

CNOT with target first

FIG. 19. Various implementations of a CNOT gate with inter-
mediate ancilla qubits and Bell operations. In particular, we are
able to apply the control and the target either before (green)
or after (teal) Bell preparation and measurement steps, while
keeping the depth at 2.

approximately

Aphysical ∼ Alogicald3. (B1)

The probability of any of these elementary operations
resulting in a logical failure scales as pfail ∼ (p/p∗)d/2,
where the fixed system parameters are the physical error
rate p and the fault-tolerant threshold for the surface code
p∗. Moreover, we assume that pfail ∼ 1/Alogical to ensure
that the logical circuit is reliable with as small a code
distance as possible. This suggests that the code distance

behaves as

d ∼ 2 log Alogical

log p∗ − log p
. (B2)

Therefore we see that the physical and logical space-time
costs are monotonically related, i.e.,

Aphysical ∼ Alogical(log Alogical)
3. (B3)

APPENDIX C: CNOT VIA BELL OPERATIONS

We list more variations of the standard CNOT gate
[Fig. 3(a)] that use intermediate Bell preparation and mea-
surements on ancillae in Fig. 19. By choosing the right
subcircuit, we see that the long-range operations in Fig. 9
implement a CNOT gate.

APPENDIX D: REMOTE EXECUTION OF
DIAGONAL GATES

A gate D diagonal on k-source qubits in the com-
putational basis can be executed on k ancillae by first
entangling these ancilla qubits using CNOT gates. We call
this remote execution. Let the computational basis be |
〉
for 
 ∈ [2k]; then D |
〉 = exp(iφ
) |
〉. We saw one use
for remote gates in applying rotations at the boundary
requiring magic states (Sec. IV).

We execute D remotely as follows (see Fig. 20). First,
we initialize the ancillae in the state |0〉⊗k. Let the source
qubits be in some pure state

∑

 α
 |
〉 for α
 ∈ C. Then we

apply k transversal CNOT gates controlled on source qubits
so that the overall state becomes

∑

 α
 |
〉 ⊗ |
〉. We now

apply D to the ancillae instead:

(1 ⊗ D)
∑




α
 |
〉 ⊗ |
〉 =
∑




α
 exp(iφ
) |
〉 ⊗ |
〉 .

(D1)

(a)

Diagonal gate in computational basis

(b)

Diagonal gate in Hadamard basis

FIG. 20. (a) Any k-qubit gate diagonal in the computational basis can be remotely executed on k dedicated ancillae by first using
CNOT gates. We use this technique to apply remote Z(θ) rotations [Fig. 10(b)] with magic states at the boundary. (b) Similarly,
gates diagonal in the Hadamard basis also have a remote implementation. Since the Pauli corrections can be commuted through
Clifford circuits, Clifford circuits can be executed immediately after executing the CNOT operations with no need to wait on the remote
operations.
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Algorithm 6. EDPC implementation: the EDPC algorithm (Algorithm 4) differs from our implementation in that it greedily tries to
execute CNOT gates earlier.

We now disentangle the ancillae by measuring them in the
X basis. Let the measurement give outcomes x ∈ {0, 1}k;
then the state on the source qubits is mapped to

∑




α
 exp(iφ
)(−1)(x,
) |
〉 , (D2)

where (x, 
) is the inner product modulo 2 between x and
the binary representation of 
. Applying a Z correction
to each qubit j ∈ [k] controlled on measurement result xj
maps the state to

∑

 α
 exp(iφ
) |
〉, as required.

This technique can be extended to any unitary opera-
tor U since it can be unitarily diagonalized as U = VDV†

by the spectral theorem, for V unitary and D diagonal
operators. A particularly simple case are unitary operators
that are diagonal in the Hadamard basis, where V = H⊗k.
We write U = H⊗kDH⊗k on the source qubits and apply
remote execution of D using our techniques above. We
then simplify the circuit to obtain Fig. 20(b).

APPENDIX E: EDPC IMPLEMENTATION

Here we provide Algorithm 6, which specifies the imple-
mentation of EDPC used for our numerical results pre-
sented in Sec. VI D, here called EDPCI for clarity. EDPCI
differs slightly from EDPC (Sec. V) and we highlight
the differences. Up until line 7 of Algorithm 6, EDPCI
is the same as EDPC. Then, EDPCI greedily attempts to
execute long-range CNOT gates earlier than would occur
in EDPC. In particular, EDPC only executes CNOT gates
after all available rotations have been executed, whereas
EDPCI finds a set Pc on line 9 such that Pc ∪ Pm forms
an EDP set. Now EDPCI concurrently executes long-range
CNOT gates using any edges left over from remote rota-
tions. Moreover, we note that EDPC uses the bounded
T -operator set algorithm (Algorithm 2) to execute a par-
allel CNOT circuit, which additionally finds a bounded

T -operator set Q1 on line 1, whereas EDPCI only finds
Q2 from the bounded T -operator set algorithm if given
a parallel CNOT circuit. As a consequence of this dif-
ference, while a parallel input CNOT circuit is guaran-
teed to compile to an output circuit whose depths is
upper bounded by O(

√
n), EDPCI does not have this

guarantee.
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