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We present a voltage gate-based method for controlling the Majorana transmon, using a sinusoidal
modulation of the induced offset charge ng . Working in the transmon regime and in the instantaneous
eigenstates basis, we find the time evolution under this protocol that realizes tunable X -Z rotations. We
optimize the parameters of the system for different single-qubit gates in both the laboratory frame and
the qubit rotating frame, obtaining qubit control errors 1 − F smaller than about 2 × 10−4. In addition to
this, we conduct an analysis of the effects of the charge noise, assuming wide-band 1/f additive noise in
ng , both for the free and the driven evolutions. For the free evolution, the relaxation and dephasing rates
are calculated perturbatively, obtaining long dephasing times of the order of milliseconds at the system’s
sweet spots. For the driven case, the average fidelity for the X gate is obtained via a numerical simulation,
demonstrating remarkable resilience.
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I. INTRODUCTION

Superconducting circuits based on the transmon qubit
[1–3] are among the most studied platforms for quan-
tum information processing, showing promising results in
terms of coherent control and scalability [4,5]. Following
their huge success, new designs [6–10] are continuously
being proposed to accelerate the development of either
fault-tolerant [11] or noisy intermediate-scale quantum
(NISQ) computers [5]. These include ideas for hybrid plat-
forms where new solid-state elements are embedded in
the superconducting circuit to improve both their con-
trollability and their sensitivity to various decoherence
mechanism [12–18]. Specifically, embedding topologi-
cal superconductors, which harbour collective topologi-
cal excitations such as Majorana zero modes (MZMs)
[19–21], into superconducting circuit architectures, could
lead to new ways for detecting them and potentially
to new qubit designs. Either semiconducting nanowires
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with strong spin-orbit coupling or topological insulator
nanowires and nanoribbons represent promising candi-
dates for the creation and manipulation of MZMs [22–33].
Several experimental studies show progress towards build-
ing topological Josephson junctions using indium-based
semiconducting materials like InAs or InSb [34–39] or
bismuth-based topological insulators such as Bi2Se3 and
Bi2Te3 [40–44].

Because of their intrinsic topological protection, the
introduction of MZMs in hybrid devices may be proven
useful for quantum information processing [45–54]. Sev-
eral works propose qubit designs and protocols for imple-
menting topologically protected braiding operations, either
by spatially moving the Majorana modes via electro-
static gates [45,53] or by applying equivalent methods
such as Coulomb-assisted braiding [47,48] and projective-
measurement based protocols [46,51,52]. These schemes
rely on the precise adiabatic control of electrostatic gates,
effective charging energies, or tunnel couplings to quan-
tum dots, exposing the stored quantum information to
multiple decoherence effects related to the use of nearby
electrodes [55–59]. In addition to this, from an engineer-
ing point of view, these braiding-based proposed qubits
are highly complex devices, and hence a simpler qubit
design would be beneficial. Following this direction, an
alternative approach for the realization of Majorana-based
hybrid qubits [49,50,54,60] introduces a weak interaction
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energy EM originating from the partial overlap of neigh-
boring MZMs. When operating in the “Majorana trans-
mon” regime EM � EC � EJ , with EC and EJ the charg-
ing and Josephson energies of the circuit, the spectrum
resembles that of a harmonic oscillator with each level
doubled and each doublet well separated from the others
[49,50]. The introduction of the coupling EM inevitably
sacrifices the full topological protection of the system.
However, the electrostatic dipole coupling between levels
of the same doublet is exponentially suppressed, mak-
ing the lowest two energy levels protected from radiative
decay. The embedding of this system in a circuit QED
architecture has been shown to be a promising tool for
the qubit readout [50,61] or in general, for a reliable
detection method of the Majorana modes [29–31]. Recent
works [50,54,62] also started to explore the challenge
of controlling the qubit state. The high anharmonicity
in the spectrum in principle means that fast gates could
be obtained without introducing unwanted transitions to
higher-energy levels; hence, the use of a transmission line
resonator [50] has been proposed for the control of the
qubit. Nonetheless, because of the said vanishing intradou-
blet dipole couplings and the symmetry of the interdoublet
ones, a two-tone drive that exploits the transitions to higher
doublets needs to be used to obtain coherent oscillations,
leading to long gate times [50]. In other theoretical work
[54] on Majorana-based qubits it was shown that coher-
ent oscillations can arise from a combination of different
parameters’ switches starting and ending in the charging
regime EC � EJ . It was also recently suggested [62] to
use multiple sweeps through an avoided crossing of the
spectrum for the manipulation of MZMs in Josephson
junctions, exploiting the Landau-Zener-Stückelberg inter-
ferometry effect. Other types of time-modulated parametric
manipulations have also been considered for qubit read-
out in works on similar Majorana-based setups [63,64].
This raises the intriguing possibility that similar methods
could be used to resolve the pending challenge of how to
implement a universal set of fast, single-qubit gates in the
Majorana transmon.

In this work, we propose a precise and systematic volt-
age gate-based method for the control of the Majorana
transmon qubit exploiting the dynamical modulation of the
induced offset charge parameter ng , where ng is measured
in units of Cooper pair charge 2e, and consequentially
analyze it under the effect of charge noise. The periodic
modulation of such a parameter, in the Majorana trans-
mon regime defined above, introduces a nonlinear driving
term in the Hamiltonian of the lowest doublet’s subspace
that we show can be used to realize a set of high-fidelity
single-qubit gates. Furthermore, we show that even if the
parameter modulation itself represents a potential decoher-
ence channel of the system, the analysis conducted for both
the free and driven evolution under intrinsic 1/f charge
noise effect yields long relaxation and dephasing times.

This shows how the modulation of this specific internal
parameter of the system, which is experimentally con-
trolled via an external voltage bias Vg ∝ ng , can represent
a possible alternative to the microwave control or other
gate-based schemes.

The high anharmonicity of the system allows us to
restrict the dynamics to the lowest-energy doublet of the
spectrum. We employ the basis of the instantaneous eigen-
states of this subspace and, making use of the counter-
rotating hybridized rotating-wave method approximation
[65], we find the solutions of the model beyond the
rotating-wave approximation regime and show that a sinu-
soidal modulation of ng(t) leads to an effective rotation of
the qubit about an axis lying in the x-z plane. This rotation
axis is indeed tunable via the other internal parameters EM
and EJ , thus making any single-qubit gate involving an X
or Z rotation possible. The use of the instantaneous eigen-
states of the Hamiltonian as the computational basis for the
qubit instead of the parity states of the parent supercon-
ducting system obviates the need for tuning the interaction
energy EM to the charging regime [54] for the initializa-
tion and readout stages, reducing any unwanted transitions.
When the parameters involved are optimized, we obtain an
implementation of an X gate with control error (infidelity
1 − FG) ∼ 10−4, which is in accordance with the threshold
for implementing fault-tolerant quantum computation [11].
The hybridization due to EM makes the system itself sensi-
tive to modulations of ng(t) over the range [0, 1/2]; hence,
we study the effect of additive, Gaussian 1/f noise fluc-
tuations on the offset charge parameter ng . Other sources
of charge noise can of course be present in the system and
have been analyzed elsewhere [66,67]; however, here we
decide to focus on noise that is intrinsic to the system and
happening on relevant timescales. We use a perturbative
analysis of the Liouville equation to derive the relaxation
and dephasing rates for the free evolution and we find that
the system presents a sweet spot at ng = 0, with dephasing
time Tφ ∼ 1.4 − 14 ms that is typically beyond the cur-
rent state-of-the-art transmon [4]. This is also significant
because ng = 0 represents the initial and final values for
the gate protocol, and thus also the idle point when imple-
menting a quantum algorithm. For the driven evolution,
the additive noise is simulated numerically during the pro-
tocol, leading to a reduction of the X gate fidelity smaller
than 0.01%. The protocol also shows low sensitivity to sys-
tematic errors on the initial value of the offset charge ng(0)
and on the parameters EM and EJ .

The paper is structured as follows. Section II presents
an overview of the system and the protocol chosen. In
Sec. III A an effective rotation of the qubit about a tun-
able axis of the x-z plane is derived. Section III B extends
this method for the implementation of various single-
qubit gates. Finally, Sec. IV presents the effect of the 1/f
charge noise on the system. In Sec. V we summarize and
conclude.
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II. THE MAJORANA TRANSMON QUBIT IN THE
INSTANTANEOUS EIGENBASIS

The hybrid system studied is based on the basic charge
superconducting qubit where a Josephson junction (JJ) is
capacitively coupled to an external voltage gate Vg (also
known as a Cooper pair box). In order to introduce topo-
logical states in the system, a nanowire that can host
Majorana zero modes in its topological phase is placed
across the JJ, so that the topological phase can be induced
just in the proximity of the right and left superconducting
leads and the equivalent of two topological nanowires are
created on top of them. The nanowire used can be either
a semiconductor with strong spin-orbit coupling or a topo-
logical insulator, two materials where, in the presence of an
external magnetic field, the formation of these topological
excitations at their edges has been predicted [22,24–26].
Figure 1(a) presents a scheme of the hybrid system host-
ing the localized Majorana zero modes, represented at the
edges of the topological nanowires. Besides the energy
contributions HT coming from the superconducting part,
the model includes the tunneling interaction term HM orig-
inated from the partial overlap of the neighboring MZMs
near the Josephson junction. This term can be tuned by
a local voltage gate at the Josephson junction [49] and

(a) (b)

FIG. 1. Overview of the Majorana transmon (MT) system. (a)
Schematic setup of the MT, with the two topological nanowires
hosting Majorana zero modes (MZMs) γ1-γ4 placed on top of
the leads that form the Josephson junction in a charge qubit. In
this way, the two topological superconductors present the charge
qubit Hamiltonian as a bulk Hamiltonian. An interaction term of
the two neighboring MZMs γ2 and γ3 is introduced in the sys-
tem and hybridizes states with different fermionic parity. There
is no charge transfer between the electrostatic gates at potential
difference Vg (colored in orange) and the other parts of the sys-
tem. (b) Schematic representation of the qubit energy dispersion
and control. The qubit subspace coincides with the lowest dou-
blet of the MT and it is represented by the red lines, while the
dotted black lines are the uncoupled transmon levels. The sys-
tem HT + HM presents an avoided crossing at ng = 1/4 so that a
sinusoidal modulation of the internal parameter ng (i.e., the volt-
age gate Vg) sweeping across the range [0, 0.5] will introduce
nonadiabatic transitions in the system.

hybridizes the eigenstates |�e/o
k 〉 of HT with different rel-

ative parity, that is, the parity of the relative number of
fermions across the Josephson junction. We work in the
transmon regime EJ � EC, with EJ and EC the Joseph-
son and charging energies of the system, respectively,
where the eigenstates of HT can be approximated by the
eigenstates of the harmonic oscillator at the zeroth-order
perturbation theory [3]. In this regime, when the Majorana
interaction energy EM is small compared to the charging
energy, EM � EC, the term hybridizes only eigenstates of
HT within the same energy band k, creating a doublet struc-
ture in the spectrum. The total Hamiltonian H = HT + HM
can be written into a block diagonal form in the basis
of |�e/o

k 〉, each block representing the subspace at fixed
transmon band k [50]:

H (k) =
(
εh.o.

k + tk cos (2πng) EM
EM εh.o.

k − tk cos (2πng)

)
.

(1)

Here εh.o.
k is the kth energy level of a harmonic oscillator

with frequency
√

8ECEJ and the term tk cos (2πng) is the
transmon energy dispersion derived with the WKB treat-
ment, with tk ∝ EC(−1)k+1(EJ /EC)

k/2+3/4e−
√

8EJ /EC , k ∈
N. In particular, ng is a dimensionless parameter represent-
ing the induced offset charge between the superconducting
islands, in units of the Cooper pair charge 2e, and can
include the contribution coming from the action of an
external electric voltage on the qubit, Vg ∝ ng (additional
details about the solutions of this model can be found in
Appendix A). It should be noted that the scheme shown in
Fig. 1 is consistent with the use of the parameters regime
EM � EC � EJ . The energies EM and EJ are in fact both
tunneling parameters and so they are directly proportional
to the nanowire and the superconducting junction cross-
sectional area, respectively. More realistic modelings of
devices leading to Eq. (1) exist in the literature [29,54]
and support its validity in the aforementioned parameter
regime.

One of the consequences of working with two
very different energy scales EM and EJ is the high
anharmonicity gained in the spectrum, given by αr =
(εh.o.

1 − εh.o.
0 )/2EM = √

2ECEJ /EM � 1. The lowest dou-
blet remains well isolated from the rest of the spectrum
and can form the qubit computational subspace. Another
important feature of this model is the exponential sup-
pression of the intradoublet dipole interaction with the
electrostatic field. This makes the chosen qubit subspace
robust against radiative decay, but it forces the use of
higher transmon bands when it is controlled via a super-
conducting cavity [50]. Here we aim to control the qubit
without exiting the computational subspace, so that the
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Hamiltonian takes the form

H ≡ H (k=0) = t0 cos (2πng)σz + EMσx, (2)

where we have dropped a constant term εh.o.
0 , and t0 <

0. The solutions of the qubit Hamiltonian (2) can be
expressed in terms of the states at fixed parity |�e/o〉 ≡
|�e/o

k=0〉 as rotated-parity states, i.e.,

|�+〉 = sin η |�e〉 + cos η |�o〉 , (3a)

|�−〉 = cos η |�e〉 − sin η |�o〉 , (3b)

E± = ±
√

E2
M + t20 cos2 (2πng), (3c)

where η[ng] ≡ 1
2 atan2[EM , |t0| cos (2πng)] is the mixing

angle. We note that the system presents an avoided cross-
ing at ng = 1/4 [see Fig. 1(b)], and thus we decide to study
the effect of a nonadiabatic modulation of such an internal
parameter via the external gate Vg . We derive the effec-
tive time-dependent Hamiltonian HI (t) of the system in
the eigenstates basis {|�+〉 , |�−〉} when a generic mod-
ulation ng(t) is applied. We call |ψ(t)〉 and |ψI (t)〉 the
states of the system respectively expressed in the bases
{|�e〉 , |�o〉} and {|�+〉 , |�−〉}, while Ry[η(t)] ≡ eiη(t)σy ,
with η(t) ≡ η[ng(t)] the mixing angle defined above, is
the change-of-basis transformation that connects them.
Inserting |ψ(t)〉 = Ry[η(t)] |ψI (t)〉 into the Shrödinger
equation for |ψ(t)〉, the effective Hamiltonian for |ψI (t)〉,
HI (t) ≡ R−1

y [η(t)]H(t)Ry [η(t)] − i�R−1
y [η(t)]∂tRy[η(t)], is

obtained as

HI (t) = −
√

E2
M + t20 cos2(2πng(t))σz+

− h EM t0 sin[2πng(t)]
2[E2

M + t20 cos2(2πng(t))]
n′

g(t)σy (4)

with n′
g(t) ≡ ∂tng(t). This demonstrates that ng(t) intro-

duces a direct driving term between the two qubit eigen-
states |�+〉 and |�−〉. To maximize the effect of this
nonadiabatic modulation, we can choose a function of ng(t)
that sweeps multiple times through the range [0, 1/2], pass-
ing by the avoided crossing at ng = 1/4. A condition for
the sweeping speed can be calculated to reduce the leakage
to higher doublets of the system. Denoting by |�n〉 and En
a generic eigenstate and eigenenergy of the Hamiltonian
H = HT + HM , this condition is given by [68]

1
n′

g(t)
� max

∣∣∣∣ [∂H/∂ng]mn

(�Emn)2

∣∣∣∣ ∼ 1
EJ

(
EJ

32EC

)1/4

,

where [∂H/∂ng]mn = 〈�m|∂H/∂ng|�n〉 and �Emn =
Em − En. Because of the fact that EJ � EM , two very
different energy scales are present in the system, which
are the interdoublet gap energy �εh.o.

01 = εh.o.
1 − εh.o.

0 and

the intradoublet energy 2EM , with �εh.o.
01 � 2EM . Thus, a

sweeping speed n′
g(t) can be chosen in order to maintain

the nonadiabatic transitions within the qubit subspace.

III. THE GATE PROTOCOL

A. System dynamics under parametric modulation

Hamiltonian (4) describes the dynamics originating
from a generic time-dependent modulation of the parame-
ter ng , using {|�+〉 , |�−〉} as the computational basis. We
now aim to find a configuration of the system that results in
the implementation of a specific single-qubit gate G after
a time tF . To gain more understanding of the dynamics,
we analyze H [ng(t)] in the fixed parity basis {|�e〉 , |�o〉},
Eq. (2), and project it onto the eigenstates basis at the end
of the protocol. Also, in this section the convention � = 1
is used. We choose to modulate the ng parameter as a sinu-
soidal function centered at the avoided crossing ng = 1/4
and with amplitude 1/4:

ng(t) = 1
4 [1 − cos(ωt)]. (5)

Here ω is the frequency of the oscillation and T = π/ω

represents half of the period, i.e., the time it takes ng to
sweep the range [0, 1/2] once. Since the applied exter-
nal voltage Vg is directly proportional to ng , both share
the same time dependence. In particular, both start and
end smoothly at zero, making the signal straightforward
to implement in realistic setups (see Appendix B). The fre-
quency of the signal is suitably optimized later depending
on the single-qubit gate one wants to implement. Using this
modulation, the time-dependent Hamiltonian of the system
in the fixed parity basis {|�e〉 , |�o〉} is obtained as

H(t) = −|t0| sin[(π/2) cos(ωt)]σz + EMσx (6)

with σi=x,y,z being the Pauli operators. In this section we
make use of the Jacobi-Anger expansions [69],

eiz cos θ ≡ J0(z)+ 2
∞∑

n=1

(−1)nJ2n(z) cos(2nθ)

− 2i
∞∑

n=1

(−1)nJ2n−1(z) cos[(2n − 1)θ ], (7a)

eiz sin θ ≡ J0(z)+ 2
∞∑

n=1

J2n(z) cos(2nθ)

+ 2i
∞∑

n=1

J2n−1(z) sin[(2n − 1)θ ], (7b)

to find an approximation of the system’s dynamics. In par-
ticular, we employ Eq. (7a) to express the sinusoidal term
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in Hamiltonian (6) as a series expansion in cosines, and
keep the zeroth-order term:

H ′ = −2|t0|J1(π/2) cos(ωt)σz + EMσx. (8)

The system is now analogous to a two-level system cou-
pled to a sinusoidal external drive. While the ordinary
rotating-wave approximation is valid only for very small
values of the ratio 2t0J1(π/2)/EM , we apply the counter-
rotating hybridized rotating-wave (CHRW) method [65]
that is valid in a much larger area of the parameters’ space.
Instead of removing progressively the counter-rotating-
wave contributions at different orders of harmonics as is
done for obtaining the Bloch-Siegert Hamiltonian [70],
the CHRW method uses a transformation that contains
the contributions of all the harmonics, as we now detail.
Letting A = 2|t0|J1(π/2), we define the unitary transfor-
mation

T = e−i(A/ω)κ sin(ωt)σz , (9)

with κ a free parameter that will be conveniently cho-
sen later [see Eq. (12)]. Again using the Jacobi-Anger
expansions, Eq. (7b), the transformed Hamiltonian H̃ =
T H ′T † + i(∂tT )T † takes the form

H̃ = −A(1 − κ) cos(ωt)σz + EM cos
(

2Aκ
ω

sin(ωt)
)
σx

+ EM sin
(

2Aκ
ω

sin(ωt)
)
σy


 −A(1 − κ) cos(ωt)σz + EM J0

(
2Aκ
ω

)
σx

+ 2EM J1

(
2Aκ
ω

)
sin(ωt)σy , (10)

where we have neglected the higher-order harmonic terms.
The coefficients of the σz and σy are time dependent;
hence, it is useful to work in the basis of σx, and express
the approximated Hamiltonian (10) in terms of its ladder
operators σ (x)+ and σ (x)− , with σ (x)+,− = 1

2

(
σz ∓ iσy

)
:

H̃ 
 EM J0

(
2A
ω
κ

)
σx

+
{
−A

2
(1 − κ)+ EM J1

(
2A
ω
κ

)}
(eiωtσ

(x)
+ + e−iωtσ

(x)
− )

−
{

A
2
(1 − κ)+ EM J1

(
2A
ω
κ

)}
(eiωtσ

(x)
− + e−iωtσ

(x)
+ ).

(11)

We choose the variable κ such that the counter-rotating
terms eiωtσ

(x)
+ and e−iωtσ

(x)
− of Eq. (11) vanish:

A(1 − κ)− 2EM J1

(
2A
ω
κ

)
= 0. (12)

In this way, after neglecting the higher-order harmonic
terms, the CHRW-approximated Hamiltonian takes the
form

H̃CHRW 
 EM J0(z)σx

− 2EM J1(z)(e−iωtσ
(x)
+ + e+iωtσ

(x)
− ), (13)

where we have defined z ≡ 2Aκ/ω. We set � = 2EM J0(z)
and g = 8EM J1(z), and we express H̃CHRW in the rotating
frame of the drive as

H̃ (RF)
CHRW = VH̃CHRWV†+i(∂tV)V†

= �− ω

2
σx − g

4
(σ

(x)
+ + σ

(x)
− ), (14)

where V = e+i(ω/2)tσx . Equation (14) is equivalent to the
Hamiltonian of a spin placed in a constant magnetic field
[70], so that it yields the time-evolution operator

Ũ(RF)
CHRW = cos

(
�

2
t
)

I − i sin
(
�

2
t
)

2H̃ (RF)
CHRW

�

= cos
(
�

2
t
)

I + i sin
(
�

2
t
){

g
2�
σz − i

(�− ω)

�
σx

}
,

(15)

with � =
√
(�− ω)2 + g2/4. In order to express the

dynamics in the instantaneous eigenstates basis, we trans-
form the evolution operator back into the laboratory frame,
ŨCHRW = e−i(ω/2)tσx Ũ(RF)

CHRW, we add the phase accumulated
from the first transformation, and we rotate the evolution
into the eigenstates basis {|�+〉 , |�−〉} using Ry[η(t)] =
eiη(t)σy , with η(t) = 1

2 atan2(EM , |t0| sin[(π/2) cos(ωt)]),
as defined in Sec. II. In this way, the time evolution
operator in the instantaneous eigenstates’ basis takes the
form

UI (t) 
 R−1
y [η(t)]T †V†Ũ(RF)

CHRW(t)Ry[η(0)]. (16)

We can now see what the evolution looks like after n oscil-
lations, i.e., for ωtF = n · 2π or, equivalently, tF = 2nT (T
was defined earlier as half of the period of oscillation).
Because of the periodicity of T and V, these two operators
become proportional to the identity operator I at t = 2nT,
explicitly T †(2nT) = I and V†(2nT) = (−1)nI. For the
same reason, we have η(2nT) = η(0) ≡ η0. This leads to
the following expression for the evolution operator:

UI (2nT) 
 (−1)nR−1
y [η0]Ũ(RF)

CHRW(2nT)Ry[η0]. (17)

As Ũ(RF)
CHRW(2nT) contains only σz and σx terms, and as the

rotation Ry about the y axis operates within the x-z plane,
UI (2nT) represents a rotation about an axis that lies in this
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said plane. This means that potentially, for specific values
of the parameters of the system, this protocol can generate
single-qubit gates that include any X or Z rotations. To see
how this protocol can represent a specific gate operation
G, the fidelity FG = 1

4 |Tr(U†
I (t)G)|2 can be computed. For

the FX , we get

FX (2nT) 
 |(�− ω)|t0| − EM g/2|2
(E2

M + t20)(g2/4 + (�− ω)2)
sin2(n�T).

(18)

This expression can be used to find the optimal values for
T = π/ω, EM and EJ (represented by |t0|). Also, specifi-
cally for the X and the Hadamard gates, exact conditions
for these parameters can be found (see Appendix C for
details). As an example, Fig. 2 shows the implementation
of the X gate when Eq. (18) is maximized for n = 2, i.e.,
to obtain an X gate after two oscillations (tF = 4T). For
the simulation, we use values of charging and Josephson
energies EC and EJ that are realistic for a superconducting

(a) (b)

(c)

(d) (e)|Ψ0,+(tF)Ò

|Ψ0,–(0)Ò

y y

x x

z z |Ψ0,evenÒ

|Ψ0,oddÒ

FIG. 2. Implementation of an ng-modulated X gate in the
Majorana transmon system, when FX is maximized for tF = 4T.
(a) Evolution of the populations for the lowest two states of the
Majorana transmon as a function of t/T, with T = π/ω, using the
protocol described in Sec. III A. The Black dashed lines indicate
the quantity calculated without the CHRW approximation. (b)
Plot of the ng signal sent to the qubit. (c) Fidelity 1

4 |Tr(U†
I X )|2

during the operation, with its maximal value at t = 4T. (d) Evolu-
tion of the state on the Bloch sphere, also showing the evolution
of the instantaneous eigenstates in the parity basis represented in
blue and orange. (e) Evolution of the state in the parity basis of
|�e〉 and |�o〉. For all panels, EC/h = 0.4 GHz, EJ = 10EC, and
EM = 0.012EC.

circuit apparatus. The resulting frequency of oscillation for
ng(t) is of the order of tens of megahertz, which should be
experimentally achievable given that pulses at much higher
frequencies have already been implemented in the past
on the first charge qubits [71]. A more detailed argument
about the experimental implementation of this protocol can
be found in Appendix B. In Fig. 2(a) it can be seen that the
evolution of the qubit level populations under the CHRW
approximation, extracted from Eq.(16), matches the exact
evolution quite accurately. Figure 2(b) presents the shape
of the ng signal that is sent for implementing the gate, while
in Fig. 2(c) the fidelity FG = 1

4 |Tr(U†
I (t)G)|2 is plotted,

clearly showing its maximal value at t = 4T. In addition
to this estimates, the evolution of the state of the system
and the eigenstates at each value of t ∈ [0, 4T] are shown
on the Bloch sphere in Figs. 2(d) and 2(e). Since we start
and end the protocol at integer numbers of ng oscillations,
we can note that this specific X gate with tF = 4T already
includes its half rotation

√
X

†
at its midway point t = 2T

(dashed red arrow on the same Bloch sphere), a single-
qubit gate operation that can be useful when implementing
a quantum algorithm.

B. Other single-qubit gates and initialization

Using the same ng modulation, Eq. (5), other gates
involving X or Z rotations can be obtained. Since we
are working in the laboratory frame, any rotation about
the z axis is efficiently implemented during a free evolu-
tion. Hence we focus on other types of single-qubit gates
useful for quantum computing, which are the X and the
Hadamard gates. Figure 3 compares the optimization plots
for the X gate with tF = 4T and the Hadamard gate with
tF = 2T, and shows the implementation of the Hadamard
gate on the Bloch sphere starting from the ground state
|�−〉. Table I shows the optimal values for these gates with
different tF . To obtain these values, we fix EJ /EC = 10 for
all the calculations. In fact, if we expand κ , Eq. (12), up to
the second order in |t0| [65],

κ 
 ω

ω + 2EM

(
1 + 4J 2

1 (π/2)EM |t0|2
(ω + 2EM )3

)
,

we can use it to express the quantity �/ω in terms of
2EM/ω and |t0|/ω as

�

ω



[(
2EM

ω
− 1

)2

+ 8J 2
1 (π/2)

2EM/ω + 1
|t0|2
ω2

2EM

ω

− 8J 4
1 (π/2)

(2EM/ω + 1)3
|t0|4
ω4

2EM

ω

]1/2

, (19)

and the optimal points for the fidelity lie along the reso-
nant curves of fixed �/ω [solid, white lines in Figs. 3(a)
and 3(b)]. Since t0(EC, EJ ) exponentially decreases as a
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(a) (b) (c)
|Ψ0,+(tF)Ò

FH
CHRW (2T)FX

CHRW (4T)

|Ψ0,–(0)Ò

z
H

y

x

FIG. 3. Optimization graphs and Bloch sphere evolution in the laboratory frame for the X and Hadamard H gates with protocol time
tF = 4T and tF = 2T, respectively. (a) Optimization graph representing the fidelity for the X gate as a function of 2EM/ω and A/ω,
with A = 2|t0|J1(π/2). The red dot indicates the optimal point used for the evolution in Fig. 2. (b) Optimization graph representing the
fidelity for the Hadamard gate as a function of 2EM/ω and A/ω, with A = 2|t0|J1(π/2). The blue dot indicates the optimal point of FH
in the laboratory frame. The optimal point for FX is kept in red for comparison. In both (a) and (b) the calculation is done using the
CHRW approximation. The white lines represent the resonances and antiresonances of the sinusoidal component of the two fidelities:
sin (n�T) = 1 (solid lines) and sin (n�T) = 0 (dashed lines). The black dotted line represents the curve along which the gate can be
optimized by only changing the frequency, keeping EJ and EM fixed at the values optimized for the X gate, in case the switch between
the two gates is needed. (c) Evolution on the Bloch sphere of a state starting in the ground state |�−〉 using the optimal parameters for
the Hadamard gate [blue dot in (b)]. For all panels, the charging and Josephson energies are EC/h = 0.4 GHz and EJ = 10EC.

function of EJ /EC, the value EJ /EC = 10 is chosen to bal-
ance between having short gate times (high values of the
frequency of oscillation ω) and remaining in the transmon
regime EJ � EC.

Either the X or the Hadamard gate can be chosen for
implementing quantum algorithms in the system. In fact,
given that we can obtain arbitrary z-axis rotations under
free evolution, two possible finite single-qubit gate sets
[72,73] are the standard set of {H , S, T} or the set consisting
of the Pauli matrices and the π/8 gate, {X , Y, Z, T}, with
the Pauli Y gate generated using the composition of the
other two, Y = −iXZ. Working in the laboratory frame has
the advantage of not having to deal with internal parameter
switching when changing the gates, because the parame-
ters EJ and EM need to be optimized only for the X (and

consequently
√

X
†
) or the H gate, depending on the single-

qubit set chosen. On the other hand, it requires precise
timing during idle times, since in between two gates or
algorithms the qubit has to complete an integer number of
2π z rotations.

Alternatively, the ng protocol can be studied in the
rotating frame of the qubit, where the evolution opera-
tor, Eq. (17), takes the form URF

I (2nT) = e−in�qTσz UI (2nT)

with �q = 2
√

t20 + E2
M . It this case the same type of ng

modulation can be used to produce gates representing finite
z rotations. Table II shows the optimized values of the
fidelity and the parameters for the gates mentioned above.
Note that the phase gate can be performed using the π/8
gate, S = T2

π/8. The optimization plots and evolution on the
Bloch sphere for these gates can be found in Appendix C.
Working in this frame surely removes the need of precise
timing during idle times. However, since each gate has
different optimized values for EM , the tuning of this inter-
nal parameter is needed when implementing a sequence
of single-qubit gates. When a gate operation G is applied
to the qubit, before implementing the following G̃ oper-
ation, the EM parameter needs to be switched from the
value optimized for G to that optimized for G̃, keeping
ng fixed at ng = 0. This operation has to be done neces-
sarily adiabatically in order to avoid unwanted transitions

TABLE I. Table of optimized values of EM/EC and T for different gates and tF at fixed EJ /Ec = 10, in the laboratory frame.
The Z and π/8 are not indicated here because they can be obtained by exploiting the qubit’s free evolution. For all calculations,
EC/h = 0.4 GHz. The parameter values are suitably rounded to ensure a precision at the sixth digit for the unit fidelities (CHRW) and
at the fourth digit for all the other values of F . Some of these optimal values are indicated in the optimization plots of Fig. 3: with a
red dot for the X gate with tF = 4T and a blue dot for the Hadamard gate with tF = 2T.

With CHRW Without CHRW

Gate tF FGate(tF) EM/EC TGate (ns) FGate(tF) EM/EC TGate (ns)

X 4T 1 0.012 189.3 0.9998 0.012 189.8
X 2T 1 0.005 167.9 0.9997 0.005 169.4
Hadamard 2T 1 0.00759 186.5 0.9998 0.00779 184.4
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TABLE II. Table of optimized values of EM/EC and T for different gates and tF in the rotating frame at the qubit frequency. For all
calculations, EC/h = 0.4 GHz and EJ /EC = 10. The parameter values are suitably rounded to ensure a precision at the sixth digit for
the unit fidelities (CHRW) and at the shown significant digit for all the other values of F . For the optimization plots and the evolution
in the Bloch sphere, see Appendix C.

Gate (rotating frame) With CHRW Without CHRW

tF FRF
Gate(tF) EM/EC TGate (ns) FRF

Gate(tF) EM/EC TGate (ns)

X 4T 0.99995 0.012 189.0 0.99997 0.012 189.5√
X

†
2T 0.99997 0.012 94.5 0.99992 0.012 95.1

Z 4T 1 0.00626 223.7 1 0.00626 223.7
Hadamard 6T 0.963 0.0063 596.0 0.954 0.00627 599.2
Hadamard 8T 0.982 0.00944 571.4 0.978 0.00941 573.6
T†
π/8 4T 1 0.00898 340.0 1 0.0089 342.2

between the qubit levels. Conditions and estimates for the
required switching time are derived in Appendix D. When
choosing the Pauli-based universal gate set in the rotating
frame, both methods can lead to high fidelity gates, with
maximum control errors 1 − FG of 2 × 10−4. However,
in the rotating frame of the qubit the z rotations turn out
to be slower than during the free evolution. In fact, using
the optimized values for the X gate referred in Table I in
the laboratory frame, the free evolution of the qubit with

a frequency �q = 2
√

t20 + E2
M leads to a Z gate (i.e., a π

rotation about the z axis) in about 50 ns. In contrast, in the
rotating frame, where the Z gate is performed using the ng
protocol, the calculated gate time after two periods (4T)
results to be about 200 ns (see Table II and Appendix C for
details). In the end, it is important to comment on the possi-
ble initialization process for the gate. The protocol in fact
relies on the initial value of the offset charge, ng(0) = 0.
The value of ng is hard to calibrate for EJ � EM , but it
can be easily tuned in the charging regime. Hence, a possi-
ble initialization protocol can be to start in a regime where
EJ ∼ EC and EM > 0, calibrating ng(0) and moving the
value of EJ adiabatically back to the working regime.

IV. CHARGE NOISE EFFECTS IN THE SYSTEM

In the previous section we showed how the modulation
of ng can be used to control the system. Unfortunately,
this also means that charge noise affecting this variable
can potentially cause decoherence. This kind of noise is
typical of superconducting devices and can come from dif-
ferent sources. In this work we focus on the effect of the
1/f noise on ng , which is intrinsic to the system since
it is theorized to be coming from the coupling to ran-
dom charge fluctuators [74]. The other intrinsic source of
noise involved in the charge noise is telegraph noise due to
quasiparticle poisoning that will not be considered here. In
fact, even if the parity switching time is not known for sys-
tems that are theorized to carry Majorana quasiparticles,
it has been measured in the range 1–10 μs in Josephson

junction-based devices [75], and there has been recent evi-
dence of a parity switching time of about 160 μs for a
semiconducting nanowire-based system [76]. These values
are relatively larger than the gate time of our protocol, and
hence we can focus on the analysis of the effect of the 1/f
noise. Once the coupling with the noise source is assumed
weak, the main effect of this dissipation channel can be
considered to be a classical stochastic fluctuation of the
parameter involved and can be characterized through the
power spectral density (PSD) of the noise process [4,74].
Stochastic noise modifies the dynamics of a two-level sys-
tem depending on which component of the Bloch-sphere
vector it is affecting. When the Hamiltonian presents the
noise fluctuations in the σx or σy term, the dynamics is
affected along the z axis of the Bloch sphere and leads to
relaxation. On the other hand, fluctuations in the σz term
of the Hamiltonian affects the dynamics on the x-y plane,
leading to pure dephasing. These dissipation processes
manifest themselves in the dynamics of the density matrix
of the system. In particular, when the noise in the Hamilto-
nian is “well behaved” (i.e., short correlated, with no sin-
gularity in the spectrum), as it is for white noise, either the
Bloch-Redfield theory [77,78], the Born-Markov master
equation approach [79], or the weak-damping path integral
approach [80–82] can be used to model the dynamics and
lead to an exponential decay for both the energy levels’
populations and the density matrix’s coherence terms. The
1/f noise is usually introduced as a longitudinal fluctua-
tion in the Hamiltonian [4,74]. However, in some works
transverse contributions have also been considered, and
due to the fact that relaxation is a resonant phenomenon,
a perturbative (diagrammatic) technique seems to lead, for
the transverse component of the 1/f noise, to the same
result as the Bloch-Redfield approach [83,84]. For a gen-
eral, two-level system under free evolution starting from
ψ(t = 0) = [c0, c1]T, assuming that the terms containing
correlations between transverse and longitudinal compo-
nents of the noise can be neglected and in the limit of zero
temperature, the time-dependent density matrix of ψ(t)
under noise fluctuations takes the form:
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ρψ(t) =
(

1
2 [1 − (|c1|2 − |c0|2)e−�1t] c0c∗

1e−χ(t)e−�1
2 teiδωt

c∗
0c1e−χ∗(t)e−(�1/2)te−iδωt 1

2 [1 + (|c1|2 − |c0|2)e−�1t]

)
, (20)

where the factors e−�1t and e−(�1/2)t, with �1 relaxation
rate, come from the Bloch-Redfield transversal contribu-
tion, while fz = e−χ(t) is the pure dephasing factor con-
taining the pure dephasing rate �∗

2 and originates from
the longitudinal contribution only. If the Hamiltonian can
be written as H = H0 + V(t), with V(t) containing the
noise fluctuations in its parallel Vz(t) and transverse V⊥(t)
components, a perturbative expansion of the Liouville
equation ∂tρ̃(t) = −(i/�)[V(t), ρ(t)] can be applied (see
Appendix E). Within the assumption of weak, stationary,
and averaged-to-zero noise, the expressions for�1 and χ(t)
are given by

�1 = 2
�2

∫ ∞

0
dτ 〈V⊥(0)V⊥(τ )〉 cos[E01τ/�], (21)

χ(t) = 4
�2

∫ t

0
dt′′

∫ t′′

0
dt′ 〈Vz(t′′)Vz(t′)〉 , (22)

with χ(t) dependent on the noise statistics and spectrum.
In fact, once V⊥(t) and Vz(t) are expressed in terms of δng ,
it can be seen that the decoherence rates are related to the
autocorrelation of the noise Cδng (τ ) = 〈δng(0)δng(τ )〉 and
thus to its PSD Sδng (ω) = (1/2π)

∫ +∞
−∞ Cδng (τ )e

iωτdτ . In
particular, �1 contains the value of Sδng (ω) at the reso-
nant frequency of the system E01/�, while the form of χ(t)
depends both on the expression of the PSD and the posi-
tion of its cutoff frequencies ωIR and ωUV with respect to
the evolution time [74]. Here we use a wide-band noise
approximation, which assumes a noise bandwidth wide
enough that the inverse of the dephasing time T∗

2 falls
between the noise cutoffs, i.e., ωIR ≤ 2π/T∗

2 � ωUV. The
choice of this assumption can be verified self consistently,
once the values of the dephasing times are determined.
Since 1/f noise has been detected at frequencies f �
1 MHz, as far as we obtain values of T∗

2 such that T∗
2 �

1 μs, we can consider the wide-band assumption valid. An
extensive description and derivation of the equations used
in this section can be found in Appendix E.

A. Free evolution

Specifically to our system, for the nondriven case, we
can derive the relaxation and dephasing rates �1 and �∗

2 by
perturbatively expanding the Hamiltonian expressed in the
diagonal basis of instantaneous eigenstates, Eq. (4). At first
leading orders of the noise contribution, the Hamiltonian is

given by

HI [ng + δng(t)] 
 −
√

E2
M + t20 cos2(2πng)σz

+ π t20 sin(4πng)√
E2

M + t20 cos2(2πng)

δngσz

− hEM t0 sin(2πng)

2[E2
M + t20 cos2(2πng)]

(δng)
′σy

+ O(δn2
g), (23)

which is in the form H(t) = H0σz + Vzδngσz + Vy(δng)
′σy ,

with Vz ≡ ∂H0/∂ng , and unusually contains the deriva-
tive of the noise in the σy term instead of a first-order
term in δng . This term comes from the nonadiabatic transi-
tions’ contribution due to the fact that the noise affects the
instantaneous eigenstates of the system over time. Here we
therefore assume that the noise modulation is a differen-
tiable function, and that ∂tng(t) can be uniquely defined.
From Eq. (21), the expression of the relaxation rate can be
obtained as

�
(1)
1 
 2

�2 |Vy |2
∫ +∞

0
dτ 〈(δng)

′(0)(δng)
′(τ )〉 e−iω01τ

= 4π
�2 |Vy |2S(δng)′(f01). (24)

From the Fourier transform properties, if the PSD of
the noise variable δng is Sδng (ω) = α/ω, ωIR < ω <

ωUV, we have S(δng)′(ω) = ω2Sδng (ω) = αω. Knowing that

ω01 = 2π f01 = 2π · 2
√

E2
M + t20 cos2(2πng), the decoher-

ence rate �1 is given by

�
(1)
1 
 2(2π)3

(
(EM t0 sin(2πng))

2

4(E2
M + t20 cos2(2πng))2

)
2π f01α

= α(2π)4
E2

M t20 sin2(2πng)

[E2
M + t20 cos2(2πng)]3/2

. (25)

For the calculation of the pure dephasing, under the
assumption of wide-band 1/f noise, the modulus of the
dephasing factor |fz| takes the form of an almost-Gaussian
decay function at leading order in 1/ωIRt (see Appendix E

020340-9



LUPO, GROSFELD, and GINOSSAR PRX QUANTUM 3, 020340 (2022)

for details), i.e.,

|fz| 
 e−(4/�2)|Vz |2α ln [2π/(ωIRt)]t2 , (26)

from which we obtain the following condition for the pure
dephasing time T∗

2 ≡ 1/�∗
2 :

(
4π2 t20 sin(4πng)√
E2

M + t20 cos2(2πng)

)2

α ln
(

1
fIRT∗

2

)
(T∗

2)
2 = 1. (27)

B. Analysis near sweet spots

From Eq. (23), it can be seen that both the coeffi-
cients |Vy | and |Vz| of the Hamiltonian vanish at ng = 0,
with |Vz| also vanishing at ng = 1/4. To determine the
decoherence effects at these sweet spots, the next lead-
ing order terms in the Hamiltonian expansion have to
be taken into account. With regards to �1, this term is
given by V(2)y δng(δng)

′, with V(2)y ≡ ∂Vy/∂ng . It should
be noted that the variable representing the transverse
noise contribution at this point, δng(δng)

′, is generally
not Gaussian. However, it can be shown that its spectrum
is regular at ω = 0, so that the Bloch-Redfield approach
used for the first-order contribution still applies. For a
stochastic stationary process x(t), we have, from the prop-
erties of the Fourier transform, Sx x′(ω) = (ω2/4)Sx2(ω).
Hence we can determine the power spectral density for
δng(δng)

′ from the expression of Sδn2
g
, as follows. Know-

ing that, for two jointly Gaussian variables x and y,
we have 〈x2y2〉 = 〈x2〉 〈y2〉 + 2 〈xy〉2, we can approximate
〈δng(0)2δng(τ )

2〉 ∼ 2 〈δng(0)δng(τ )〉2 so that Sδn2
g
(ω)

is given by Sδn2
g
(ω) ∼ (1/π)

∫ +∞
−∞ {Cδng (τ )}2eiωτdτ ∼

8α2ln |ω/ωIR|/|ω| for ωIR � ω � ωUV. We can see that
the power spectral density for δng(δng)

′ follows a quasi-
linear law S∂t(δn2

g)/2
(ω) ∼ |ω| ln |ω|.

Because of the regularity of the spectrum at ω ∼ 0 and
the short correlation time, we can assume that the results
obtained from perturbation theory in Eq. (21) are still
applicable for the relaxation at the optimal point ng = 0
[83]. In this way, the second-order correction to the relax-
ation produces an exponential decay with relaxation rate
given by

�
(2)
1 = 4π

�2 |V(2)y |2Sδng(δng)′(f01)

∼ 8πα2

�2 |V(2)y |2 (2π f01) ln |f01/fIR| (28)

with f01 = 2
√

E2
M + t20 cos2(2πng). With regards to �∗

2 ,
the next leading term in the Hamiltonian expansion is
1
2 V(2)z (δng)

2, with V(2)z ≡ ∂2H0/∂n2
g . Because of the long

correlation time of (δng)
2, the Gaussian approximation and

perturbation theory are no longer valid for the determi-
nation of the pure dephasing effects at the optimal point.
Instead, the Keldysh diagrams’ method gives the following
dynamics for the dephasing factor fz [82] at long times:

|fz(t)| = exp
{
− t

2

∫ +∞

2π/t
ln

(
1 + 4|V(2)z |2

�2 (Sδng (ω))
2
)

dω
}

.

(29)

For Sδng (ω) = α/ω and t � tc, with tc ≡ 1/(2|V(2)z |α), this
expression leads to an exponential decay, with dephasing
rate given by

�
∗(2)
2 ∼ −π

�
|V(2)z |α. (30)

Figures 4(a) and 4(b) respectively show the elements of
the Hamiltonian expansion contributing to the decoherence
effects, and the derived relaxation and dephasing times
T1 and T2, with T1 ≡ 1/�1 and T2 obtained by setting
exp{−�1T2/2}fz(T2) = 1/e. The second-order corrections
at the sweet spot are restricted to a very narrow range of ng ,
and thus we neglect the contributions coming from cross-
correlations and approximate �1 
 �

(1)
1 + �

(2)
1 and �∗

2 

�

∗(1)
2 + �

∗(2)
2 . The two times are plotted against the value

of the parameter ng and the value of the noise strength at
the sweet spot ng = 0. The other parameters’ values are
the optimized quantities that can be used for implement-
ing an X -gate operation. The noise is assumed to have
ωIR = 10 Hz, which coincides with the value we use for
the numerical simulation of the driven, noisy evolution
described in the next section. Even if lower noise cutoffs
have been reported in the literature, with values down to
ωIR ∼ 0.1 Hz, we can see from (26) that the dependence

(a) (b)

FIG. 4. Effect of the 1/f charge noise on the Majorana trans-
mon qubit’s free evolution. (a) Contributing elements at the first
two leading orders in the expansion of the Hamiltonian with
respect to the noise δng ; see Eq. (23). (b) Decoherence and
dephasing times for the Majorana transmon qubit as a function
of the noise strength α ∈ [10−6, 10−7] at ng = 0 (left side of the
graph) and as a function of ng ∈ [0, 1/4] for α = 10−7 (right side
of the graph). For all plots, EC/h = 0.4 GHz, EJ = 10EC, and
EM = 0.012EC. Two sweet spots can be noticed here, with ng =
0 being a sweet spot for both the relaxation and the dephasing
effects.
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of the dephasing factor on ωIR is only logarithmic, and
thus the choice of this higher value of noise cutoff car-
ries an error that is not significant for our analysis. From
Fig. 4(b), it can be seen that the values of the relaxation
and the dephasing differ by several orders of magnitude for
most of the range of ng . This is due to the fact that the pro-
tocol is implemented in the basis of the eigenstates of the
system, and the projection positively affects the relaxation,
leaving only the contributions coming from nonadiabatic
transitions between the instantaneous eigenstates. In par-
ticular, we can see that the dephasing time at the sweet
spot ranges from 1.4 to 14 ms, values that are larger than
the dephasing times of the current state-of-the-art super-
conducting qubits [4,85]. For a quantitative comparison,
we can derive the relaxation and coherence times in the
case of a regular transmon without the presence of the
Majorana zero modes, and subjected to the same level of
noise. The relaxation rate in this case can be obtained using
the formula equivalent to Fermi’s golden rule [4,86], �1 =
(1/�2)

∣∣〈�0|∂Hq/∂ng|�1〉
∣∣2 Sδng (ω01), where {|�0〉 , |�1〉}

are the transmon qubit states and ∂Hq/∂ng is the qubit sus-
ceptibility. The latter can be obtained from the expansion
up to the first order in the noise fluctuation δng of the trans-
mon Hamiltonian 4EC(n − ng)

2 − EJ cos(ϕ) and yields
∂Hq/∂ng ∼ 8ECn. The charge operator n has nonzero off-
diagonal elements in the transmon qubit subspace. There-
fore, under the harmonic approximation, we obtain [3]
〈�0|(∂H/∂ng)|�1〉 
 8EC(EJ /8EC)

1/4/
√

2. This quantity
increases with EJ /EC, and for parameters EC = 0.4 GHz,
EJ /EC = 10 and for a 1/f noise with noise strength
α = 10−7, it leads to a relaxation time of T1 = 1/�1 ∼
0.3 ms. Under the same harmonic approximation, this
method leads to an infinite relaxation time for the Majorana
transmon, since the MT intradoublet coupling 〈�+|n̂|�−〉
vanishes [49,50]. If we compare the value of T1 obtained
for a regular transmon with the values shown in Fig. 4,
we can see that the involvement of the Majorana modes
improves the relaxation times by an order of magnitude
ranging from 102 to 106 at the sweet spot ng = 0. We
can also see an improvement in the dephasing time. The
same approach outlined above for the description of the
dephasing under free evolution can be applied to a regu-
lar transmon, with the difference that in the latter case the
energy terms contributing to the dephasing, Vz and V(2)z ,
are proportional to the transmon energy splitting of about
t1 − t0. The Majorana transmon model has a much smaller

qubit splitting,
√

E2
M + t20 cos2(2πng) ∼ t0, that leads to

much smaller values of Vz and V(2)z , dictating the strength
of the dephasing rate 1/T∗

2 in Eqs. (27) and (30). This
means that, for the same values of the system and noise
parameters, the coherence of the qubit is improved by a
factor of t1/t0 = 24(EJ /2EC)

1/2. Quantitatively, in the case
of a transmon qubit with EC = 0.4 GHz, EJ /EC = 10, and
a 1/f noise with noise strength α = 10−7 and infrared

cutoff fIR = 10 Hz, the pure dephasing time ranges from
T∗

2 ∼ 0.3 μs at ng = 1/4, to T∗
2 ∼ 0.15 ms at the sweet spot

ng = 0. Compared to the Majorana transmon’s coherence
times shown in Fig. 4, the improvement due to the presence
of the MZMs is 2 orders of magnitude.

C. Driven evolution

For the driven evolution, because of the nonlinear-
ity of the driving term used for the gate protocol, the
effects of the 1/f noise fluctuations δng(t) are studied
numerically, simulating the evolution of the density opera-
tor ρ(t) using a time-noise series {ñg(tj )}, with ñg(tj ) =
ng(tj )+ δng(tj ), and averaging over 104 noise trajecto-
ries. To obtain a good approximation of the time evolution
operator UI (tN ) = ∏N−1

j =0 UI (tj +1, tj ), with UI (tj +1, tj ) =
exp{−iHI (tj +1)dt/�}, we simulate a stepwise constant
time series for δng(tj ), with noise jumps dependent on
the chosen spectral characteristics, dtJ = 1/2fUV, with fUV
being the high cutoff frequency for the noise PSD, and a
smaller evolution time step dt = 1 ns. The values of the
fluctuations at each jump are calculated through a Gaus-
sian white noise filtering in a chosen frequency range f ∈
[fIR, fUV]. To generalize the white noise filtering includ-
ing a random phase of the variable’s Fourier transform,
a series of complex numbers for the frequency space
x̃k = (1/

√
2)(x̃k,1 + ix̃k,2) is generated, with x̃k,1 and x̃k,2

zero-average Gaussian white noise sequences with unit
variance, with sampling range chosen such that the cor-
respondent time-series step is the dtJ defined above and
the final time is TJ ≥ 1/fIR. The series is then filtered in
the frequency space, ỹk = |H(fk)|x̃k, using a filter ampli-
tude of |H(fk)| = √

S(fk)δf /2, with S(fk) the sampled PSD
defined for positive frequencies, fk = kδf , and δf = 1/TJ .
Both x̃k and |H(fk)| are constructed in such a way that
we obtain a real Fourier series for the variable ỹk. The
resulting 1/f noise time-series variables used for the sim-
ulation are given by δng(tj ) = ∑

k ỹke−i2π jk/N . The gate
fidelity used for optimizing the protocol is not suitable in
this case, because the evolution is no longer unitary when
averaged over the noise trajectories. We need to use the
more generic Uhlmann fidelity [87] between density oper-
ators, averaged over the Hilbert space. Luckily, the average
over noise trajectories of the time-evolution operator act
as a linear, trace-preserving transformation, M[ρ(tN )] =
〈UI (tN )ρ(0)U

†
I (tN )〉traj. Hence, a simplified expression for

the average fidelity can be used [88]:

F̄G = 1
6

∑
j =±x,±y,±z

Tr(Gρj G†M[ρj ]). (31)

Here G is the target unitary gate and ρj represents each of
the eigenstates of the Pauli operator σj . In fact, this expres-
sion allows us to determine F̄G by averaging between only
some specific points in the Bloch sphere.
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(a)

(b)

(c)

(d)

FIG. 5. Effect of the 1/f charge noise δng(t) on the X gate protocol with tF = 4T and stability against variations of other parameters.
(a) Single time-series trajectory of the simulated δng(t) and related periodogram. The noise has been simulated via white noise filtering,
with noise strength α ∼ 10−6, frequency window 10 Hz–50 MHz, and a time step for the stepwise constant series δng(tn) of δt = 1 ns.
In the right panel, the gray curve indicates the noise jumps’ periodogram while the blue curve represents the periodogram of the
stepwise constant time series. (b) Fidelity of the protocol taking into account systematic error on ng(0), without charge noise (solid
blue line) and with charge noise added (dash-dot blue line). The Gaussian distribution of the noise acting on the parameter is sketched
in the background, with values of σng and 3σng (σng ∼ 10−3, assuming Gaussian 1/f noise). Inset: fidelity of the noise-free protocol
varying ng(0) from 0 to 0.5, showing that the protocol is quite stable near ng ∼ 0. Also, it can be noted that FX does not change for
jumps ng → ng + 1/2. (c),(d) Fidelity of the protocol taking into account a systematic error on EJ and EM , without charge noise (solid
blue line) and with charge noise added (dotted blue line). The parameters used at zero noise level are EC/h = 0.4 GHz, EJ = 10EC,
EM = 0.012EC, and T = 189.3 ns.

Figure 5 shows the results of the simulation for the X -
gate protocol, with the parameters of Table I and a total
evolution time of TG ∼ 200 ns. The noise has been pro-
duced with a PSD taking the form S(f ) = α/f for frequen-
cies 10 Hz < f < 50 MHz, and having a flat contribution
S(f ) = S(10 Hz) at lower frequencies f ≤ 10 Hz. We
also set α = 10−6. The use of the Fourier transform con-
strains us to the choice of a limited noise bandwidth. The
bandwidth above, [10 Hz, 50 MHz], has been chosen to
ensure the inclusion of the resonant frequency of the sys-
tem, of the order of ωR ∼ 10 MHz. The absence of the
higher cutoff in the dephasing factor (27) can indicate that
the short-time (large frequency f � 1/TG) noise contri-
butions are not involved in the averaged evolution (this
is a consequence of both the weak coupling between the
system and the noise source and the 1/f behavior of the
PSD), and thus our choice of the higher cutoff above is
based on the condition fUV � 1/TG ∼ 5 MHz. The cho-
sen lower cutoff fIR is the minimum value that we can use
to ensure a high value of fUV in the numerical simulation.
Even if the actual fIR can be lower, we can assume that
the chosen value carries only a logarithmic error on the
dynamics, like in the free evolution case. In the figure, one
of the stepwise constant δng(tj ) trajectories is plotted in
the upper panel [Fig. 5(a)], along with its periodogram. In
Figs. 5(b)–5(d) the average fidelities with respect to fluc-
tuations of the variables ng(t = 0), EJ , and EM are deter-
mined. The protocol turns out to be particularly insensitive

to fluctuations of ng(0), with a fidelity reduction of about
0.02% at 3σng for the combined effect of systematic and
1/f noise. Good results also seem to be achieved in the
case of fluctuations on the other two parameters. In fact, to
have a fidelity drop of the about 0.2%, a systematic error
of 1.5% on EJ and 2% on EM is needed.

V. CONCLUSIONS

In this work we investigated the possibility of control-
ling the Majorana transmon qubit, defined as the lowest
doublet of the Majorana transmon [49,50] energy spec-
trum, exploiting a voltage-gate modulation of the induced
offset charge ng(t). We modeled this dynamical modula-
tion as a sinusoidal function such that it periodically passes
through the avoided crossing point ng = 1/4, introducing
a nonlinear driving term in the Hamiltonian, and worked
in the basis of the instantaneous eigenstates of the sys-
tem. Because of the high anharmonicity present in the
system at EJ � EC � EM , we assumed the dynamics to
be restricted to the lowest doublet of the spectrum. We ana-
lyzed the projected Hamiltonian using the counter-rotating
hybridized rotating-wave method [65] and we demon-
strated that the effective evolution at an integer number
of oscillations results in a combination of x and z rota-
tions whose coefficients can be tuned using the internal and
external parameters of the Hamiltonian. We then proposed
two different protocols for the control of the qubit, one in
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the laboratory frame and the other in the rotating frame of
the qubit frequency, with the first one having the advantage
of faster operations and the absence of internal parameter
switching, and the second one being slower but without the
need of precise timing during idle times. Both the methods
provide a set of single-qubit gates with control error lower
than about 2 × 10−4 when calculated at the zero noise
level. This error is related to the limitation of the control to
a simple sinusoidal function and can potentially be reduced
using optimal control techniques. We also studied the effect
of 1/f additive noise to the parameter ng(t), assuming the
coupling to the noise source to be weak, and the fluc-
tuations Gaussian, stationary, and averaged to zero. We
applied a perturbative analysis to the Liouville equation
and obtained an analytical expression for the relaxation
and the dephasing rates under free evolution. From the
calculations, the system presents a sweet spot at ng = 0
common to both decoherence effects. The dephasing mech-
anism is the one mainly affecting the system in the whole
range of ng ∈ [0, 0.5], and leads to dephasing times Tφ ∼
1.4 − 14 ms at the sweet spot, for noise strength in the
range α ∈ [10−6, 10−7]. These values for Tφ are typically
beyond the current state-of-the-art transmon [4,89]. For the
driven evolution, we performed a numerical simulation of
the effects of the additive noise, modeling δng(t) as a step-
wise constant signal with jumps produced through white
noise filtering. We compared the noise-free and noisy aver-
age fidelities of the X gate to derive a quantitative effect
of the simulated 1/f noise, finding a noise-related reduc-
tion smaller than 0.01%. Finally, we looked at the average
fidelity reduction due to systematic errors in the different
parameters of the system and found low sensitivity to sys-
tematic error in the initial value of ng , ng(0), and on the
parameters EM and EJ .
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APPENDIX A: THEORETICAL DESCRIPTION OF
THE MAJORANA TRANSMON

In this appendix we review the Majorana transmon sys-
tem, which has been introduced in Ref. [49] and applied
or analyzed further in a few other works [30,50,54,61].
We present an overview of the model for completeness of
the discussion and to quantitatively support the harmonic
approximation applied to the projected Hamiltonian in the
lowest doublet of the spectrum, used throughout the paper.

We specifically consider the model originally introduced,
which describes the low-energy physics of the hybrid sys-
tem in the topological phase. As described in Sec. II, the
superconducting part of the hybrid qubit consists of a tra-
ditional Cooper pair box. Its Hamiltonian, in the basis of
the relative superconducting phase ϕ = ϕL − ϕR between
the left L and right R junction leads is given by

HT[ng] = 4Ec(−i∂ϕ − ng)
2 − EJ cos (ϕ), (A1)

where −i∂ϕ = n̂ = 1
2 (nL − nR) represents the relative

number of Cooper pairs, with nL (nR) being the Cooper
pair number of the left (right) lead. The eigenfunctions
〈ϕ|�k〉 = �k(ϕ) of HT[ng] are combinations of Mathieu
functions [89] with boundary conditions set by the par-
ity of the charge n, which is even in absence of the spare
electrons, i.e., the wavefunctions have symmetric bound-
ary conditions �k(ϕ + 2π) = �k(ϕ). When the nanowire
is placed on top of the leads, the superconducting proxim-
ity effect helps the formation of the topological phase in
correspondence of the two sections of the junction, and the
formation of the four Majorana zero modes at their edges.
With the Majorana quasiparticles being at zero energy, this
setup is not sufficient to make them appear in the Hamil-
tonian. The Majorana transmon model takes into account
an additional interaction energy term between the neigh-
boring MZMs near the tunnel junction, originating from a
partial overlap. This term can be modeled with a tunneling
Hamiltonian of the form

HM = iEM cos (ϕ/2)γ2γ3, (A2)

where γ2 and γ3 are the creation operators of the neigh-
boring Majorana quasiparticles, and EM represents the
coupling energy. In terms of the electron occupation num-
ber, HM connects states of different relative parities, thus
hybridizing the states of the superconducting system. To
see this, we indicate with NL,R = 2nL,R[mod2] the occu-
pation of the delocalized fermions cL,R = (1/

√
2)(γ1,3 +

iγ2,4) in each nanowire, and identify the two subspaces of
even and odd relative parity as [49]

{eiϕn |NL, NR〉 : NL, NR = 0, 1 ∧ n ∈ Z},{
eiϕn |NL, NR〉 : NL, NR = 0, 1 ∧ n ∈ Z + 1

2

}
. (A3)

Thus, the interaction term (A2) written in terms of cL,R and
c†

L,R allows the transitions

eiϕn |NL, NR〉 ↔ eiϕ(n±1/2) |1 − NL, 1 − NR〉 . (A4)

The relative even and odd parity degrees of freedom can
be described by a two-component vector. In this way the
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Hamiltonian of the combined system HMT = HT + HM can
be written in the form

HMT =
(

HT[ng] EM cos (ϕ/2)
EM cos (ϕ/2) HT[ng]

)
, (A5)

which is the low-energy effective Hamiltonian presented
in Ref. [49]. The delocalized fermions of the nanowires
can introduce spare electrons in the system, and hence
the kth eigenfunction of HT in each parity subspace
is represented by 〈ϕ|�e

k 〉 = (�e
k (ϕ), 0)T and 〈ϕ|�o

k 〉 =
[0,�o

k (ϕ)]
T, with�e,o

k (ϕ) the solution of HT[ng] with sym-
metric and antisymmetric periodic boundary conditions,
respectively [50]. The hybridization due to HM produces a
doublet structure of the spectrum of the combined system.
This is visible even with a low value of the ratio EJ /EC
(see Fig. 6). We can thus conveniently label the eigenstates
of the full Hamiltonian with |�±

j 〉, where j is the energy
band and the ± sign is related to the split levels within the
band (this notation becomes even more useful when work-
ing in the transmon regime). Hence, a generic solution
of Eq. (A5) can be expressed as |�±

j 〉 = ∑
k(α

j
k |�e

k 〉 +
β

j
k |�o

k 〉), with αj
k and β j

k parametrically dependent on the
other variables.

We are interested in the limit of high Josephson energy
EJ � EC (transmon regime). To see the effect that the
interaction term HM has on the system, the energy spec-
trum is plotted in Fig. 6(a). Even with a low value of
EJ /EC = 3 (charging regime), the doublet structure intro-
duced by EM is visible. On the one hand, going towards
EJ /EC � 1 increases the anharmonicity already present
at lower values, but on the other, it “flattens” the energy
bands. Instead, the value of the interaction energy EM is
useful in changing the energy dispersion εk = |Ek,±(0)−
Ek,±(1/4)| [see Fig. 6(a), right panel] without affecting
the anharmonicity. Figure 6(b) shows the matrix elements
of the interaction Hamiltonian (A2) connecting the trans-
mon eigenstates of different parities, in units of EM . Apart
from a linear proportionality with respect to EM , the inter-
action between transmon wavefunctions that belongs to
different energy bands tends to zero as the superconducting
qubit goes into the transmon regime. In fact, the Hamil-
tonian HT[ng] in the limit of EJ /EC � 1 resembles an
anharmonic oscillator, and at zeroth order in

√
EJ /EC its

eigenfunctions can be approximated by the harmonic oscil-
lator wavefunctions. In this case, the overlap 〈�e

k |HM |�o
l 〉

can be shown to yield a polynomial decrease for |k − l|
even, vanishing for |k − l| odd, while being constant for
k = l [50]. This is even more evident when we look at
the contribution of the transmon eigenstates |�e/o

k 〉 to the
linear superposition representing the eigenstates of the
full Hamiltonian HMT in Fig. 7. It can be seen that the
hybridization due to HM happens within each transmon
band for EJ /EC � 5. Since in this work the control of the

(a)

(b)

FIG. 6. (a) The energy spectrum of the Majorana transmon
system. Left: energy spectrum Ek,±(ng) as a function of ng for
the first four energy levels, for EC/h = 0.4 GHz, EJ /EC = 3, and
EM/EC = 0.1. Even if it is not in the transmon regime, because of
the Majorana interaction energy EM � EC, the spectrum presents
a doubletlike spectrum with high anharmonicity. Right: energy
dispersion εk = |Ek,±(0)− Ek,±(1/4)| for k = 0, 1 as a function
of EJ /EC, for different values of EM/EC: 0.12 (solid lines), 0.012
(dashed lines), 0.0012 (dotted lines). (b) Matrix elements of the
interaction Hamiltonian HM (A2) originating from the overlap of
the neighboring Majorana zero modes near the Josephson junc-
tion and connecting transmon states of different relative fermion
parities, in particular connecting the ground state (left) and the
first excited state (right) of one of the parity sectors to the other
eigenstates 〈�e

0/1|HM |�o
k 〉. The calculation is done in units of

EM , for different values of EJ /EC: 0.5 (solid line), 5 (dashed
line), 10 (dotted line), 25 (dash-dot line). For all calculations,
EC/h = 0.4 GHz.

qubit is done within the doublet with k = 0, it is reason-
able to apply the harmonic approximation and neglect the
interaction terms between different doublets. Regarding the
diagonalization of HT[ng], instead of approximating it to an
anharmonic oscillator with a quartic term, we decide to use
the transmon energy dispersion εT

k = εh.o.
k ± tk cos (2πng)

derived from a WKB treatment [3], with εh.o.
k represent-

ing the kth eigenenergy of the harmonic oscillator with
frequency

√
ECEJ and

tk ≡ (−1)k+124(k+1)EC

k!

√
2
π

(
EJ

2EC

)k/2+3/4

e−
√

8EJ /EC .

The Hamiltonian assumes the block-diagonal form (1)
presented in Sec. II:

H (k) =
(
εh.o.

k + tk cos (2πng) EM

EM εh.o.
k − tk cos (2πng)

)
.

(A6)
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FIG. 7. Superposition of the eigenstates of the Majorana trans-
mon with the uncoupled transmon states, where each panel
represents one of the first four eigenstates of the system:
|�−

0 〉 , |�+
0 〉 , |�+

1 〉 , |�−
1 〉. The different lines correspond to con-

tributions from different transmon energy states of different parity
sectors for EJ /EC = 0.5 (solid line), 5 (dashed line), 10 (dotted
line), 25 (dash-dot line). For all calculations, EM/h = EC/h =
0.4 GHz. It can be seen that, for not too high values of EJ , the
contribution from different parity bands is suppressed.

Each block H (k) can be diagonalized with a rotation about
the y axis, i.e.,

|�−
k 〉 = cos (ηk) |�e

k 〉 + sin (ηk) |�o
k 〉 , (A7a)

|�+
k 〉 = − sin (ηk) |�e

k 〉 + cos (ηk) |�o
k 〉 , (A7b)

Ek,± = εh.o.
k ± (−1)k

√
E2

M + t2k cos2 (2πng), (A7c)

where ±1 = s represents the rotated parity and ηk =
((−1)k+1/2)atan2(EM , (−1)k+1tk cos (2πng)) is the mix-
ing angle. In this work we make use of these limit
solutions, restricting the dynamics to the two-dimensional
subspace of k = 0.

APPENDIX B: EXPERIMENTAL REALIZATION

In this appendix we aim to explore the experimental fea-
sibility of the ng modulation proposed for the single gate
protocol. Throughout this study we use values of EC and
EJ that are realistic for superconducting circuit devices [4].
Arguably, small values of EM can be achieved as discussed
in Sec. II. Here we want to determine the physical require-
ments for a clean modulation of the gate voltage of the
qubit. The signal needed for the protocol

ng(t) =
{
(1 − cos(ωt))/4, 0 ≤ t ≤ 2πn/ω,
0, otherwise,

(B1)

can be seen as a pulse with a frequency bandwidth of
about tens of megahertz. We can assume that, in an hypo-
thetical experimental apparatus, it can be reproduced by
an arbitrary waveform generator (AWG), whose effect on
the signal is represented by a Gaussian filter. This kind of
effect has also been taken into account in works on opti-
mal control algorithms in superconducting circuit devices
that use the transfer function formalism [90], assuming
AWG’s sampling rate of 1 gigasample/sec and a Gaus-
sian filtering attenuation of 250 MHz at −3 dB, meaning
that it can be represented by a Gaussian filter of 300 MHz
width. Both the values of the sampling rate and the width
of the Gaussian filter are high enough to ensure a smooth
interpolation of the digitalized input, and a negligible fil-
tering effect on the output signal. A further analysis can be
done regarding the physical effect of the coaxial line that
is usually used for sending the voltage signal to the qubit
in a superconducting circuit setup. In particular, we can
find conditions under which the impedance of the coaxial
line does not alter the said voltage modulation. Consid-
ering that a transmission line has a typical characteristic
(lossless) impedance Z0 of 50 �, and the impedance of a
capacitor in an ac circuit is ZC = 1/(iωC), where C is its
capacitance and ω is the frequency of the ac field across
it, to have minimal effects coming from Z0 we need all
the voltage drop across the transmission line contributing
to the voltage difference of the capacitance used to couple
the coaxial line to the qubit, VC � Vcoax. This translates to
|ZC| � |Zcoax| and thus C � 1/(ω ∗ 50�). Assuming that,
geometrically, C ∼ εd, with d the dimension of a square
capacitor, and ε ∼ 8.85 × 10−10 F/m, it follows that, to
neglect the voltage drop of the coaxial line and have an
ac voltage modulation of about 10 MHz across the capac-
itor, the latter needs to have dimensions d � 2 × 103 m,
which is orders of magnitude larger than the typical size
of a capacitor in a superconducting circuit (micrometers).
These arguments thus show the feasibility of a modulation
of type (B1) in a realistic scenario, and that effects of defor-
mation that can come from the superconducting external
apparatus can be considered irrelevant at the frequency
values presented in this work.

APPENDIX C: SINGLE-QUBIT GATE FIDELITY
EXPRESSIONS

In this appendix we present the expressions for different
single-qubit gates when using the ng-modulated protocol
described in Sec. III A, working in both the laboratory and
the qubit rotating frames. In particular, we present the ana-
lytical formulas for the time evolution operator in the two
frames, finding exact conditions for obtaining the X and
the Hadamard H gates in the laboratory frame and the Z
and the Tπ/8 gates in the rotating frame. We also show the
optimization plots and the implementation on the Bloch
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|Ψ0,+(tF)Ò |Ψ0,+(tF)Ò |Ψ0,+(tF)Ò |Ψ0,+(tF)Ò

FZ
rf,CHRW (4T) FH

rf,CHRW (8T)FX
rf,CHRW (4T)

|Ψ0,–(0)Ò |Ψ0,–(0)Ò |Ψ0,–(0)Ò |Ψ0,–(0)Ò

F rf,CHRW (4T)(p/8)†

z z z
X Z H

y y y y

x x x x

T(p/8)†

FIG. 8. Optimization graphs and Bloch sphere evolution for the X , Z, Hadamard H , and (Tπ/8)† gates working in the rotating
frame of the qubit. Note that the X gate includes (

√
X )† when performed halfway. Upper panels: optimization graphs representing

the fidelity for the specified gate as a function of 2EM/ω and A/ω, with A = 2|t0|J1(π/2). The calculation is done using the CHRW
approximation. The blue dot indicates the optimal point for the specified gate. For comparison, the red dot indicates the optimal
point used for the evolution in Fig. 2, i.e., for the X gate with protocol time tF = 4T. In all the plots the white lines represent the
resonances and antiresonances of the sinusoidal component of the fidelities: sin (2πn ·�T) = 0, 1 (dashed, solid lines) for FX and
FH , sin (2πn ·�T) = 1, 0 (dashed, solid lines) for FZ and F(π/8)† . The black dotted lines represent the curves along which the gate
can be optimized by only changing the frequency, keeping EJ and EM fixed at the values optimized for the X gate. Lower panels:
each gate is implemented on a specific state, using the optimal parameters indicated in the upper panels, and its evolution in the Bloch
sphere is shown. The initial states are (1/

√
2)(|�+〉 + |�−〉) for the Z and (π/8)† gates, |�−〉 for the X and Hadamard H gates. For

all panels, the charging and Josephson energies are EC/h = 0.4 GHz and EJ = 10EC.

sphere of some single-qubit gates in the qubit rotating
frame (Fig. 8).

From Eq. (17), the evolution, in the laboratory frame, at
an integer number of oscillations tF = 2nT is given by

UI (2nT) 
 (−1)nR−1
y [η0]Ũ(RF)

CHRW(2nT)Ry[η0],

with Ũ(RF)
CHRW given by the time-evolution expression found

using the CHRW method, Eq. (15) in Sec. III A, while
η0 = 1

2 atan2(EM , |t0|) is the mixing angle that diagonal-
izes the qubit Hamiltonian at the beginning and the end
of the evolution, Eq. (3a). Knowing that cos(2η0) ≡
|t0|/

√
E2

M + |t0|2 and sin(2η0) ≡ EM/

√
E2

M + |t0|2, we can
explicitly write

UI (2nT) 
 cos(n�T)I − i
sin(n�T)

�

√
E2

M + |t0|2
(cxσx − czσz),

(C1)

where we have

� =
√
(�− ω)2 + g2/4,

cz = |t0|g/2 + (�− ω)EM ,

cx = (�− ω)|t0| − EM g/2,

with the parameters given by

� = 2EM J0(2Aκ/ω),

g = 8EM J1(2Aκ/ω),

κ = Root{A(1 − κ)− 2EM J1(2Aκ/ω)},
A = 2|t0|J1(π/2).

In general, the optimal parameters for implementing a spe-
cific gate G can be determined numerically by maximizing
the gate fidelity FG = 1

4 |Tr(U†
I G)|2. However, it can be

seen that, for the X and Hadamard gates, which are the
ones of interest when working in the laboratory frame, the
parameters can be optimized exactly, looking directly at
Eq. (C1): for the X gate, the parameters’ conditions are
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cz = 0 and n�T = π/2 + mπ , with m = 0, 1, . . . ; (C2a)

while for the Hadamard gate, we need

cz = −cx and n�T = π/2 + mπ , with m = 0, 1, . . . . (C2b)

As an alternative gate implementation, we also want to present the dynamics of the system obtained in the rotating frame
of the qubit at t = 0. Passing to this rotating frame, the time evolution operator takes the form

URF
I (2nT) = e−in�qTσz UI (2nT) 
 cos(n�qT)

{
cos(n�T)I − i

sin(n�T)

�

√
E2

M + |t0|2
(cxσx − czσz)

}

+ sin(n�qT)
{

sin(n�T)

�

√
E2

M + |t0|2
czI − i cos(n�T)σz − i

sin(n�T)

�

√
E2

M + |t0|2
cxσy

}
, (C3)

where we have �q = 2
√

t20 + E2
M . The optimization plots

for the single-qubit gates X , Z, Hadamard H , and (Tπ/8)†

are shown in the upper panels of Fig. 8. The σz rotation
of the rotating frame transformation introduces a σy term
in the Hamiltonian, whose coefficient vanishes when one
of the terms cx, sin(n�qT), or sin(n�T) do. Therefore, to
obtain an X gate, we need sin(n�qT) ∼ 0 and the same
conditions as for the laboratory frame given in Eq. (C2a)
to be fulfilled. The solutions in this case are not exact, but
from the plot of the fidelity FRF

X in Fig. 8, it can be seen that
the optimized points in the area of the parameter space of
interest are close to the same resonances of the laboratory
frame. A similar argument can be made for the Hadamard
gate, which requires both the σx and σz terms. Regarding
the Z gate, we can identify some exact points, obtained for
cos(n�qT) = 0 and sin(n�T) = 0. The other optimized
points presumably belong to the case of sin(n�qT) = 0,
but do not have an exact solution and they are not of
interest for this study. In the same way a subset of exact
solutions can be found for the (Tπ/8)† gate, with the con-
ditions sin(n�T) = 0 (white lines in Fig. 8) and n�qT =
−π/8 + kπ for k ∈ N. Finally, the lower panels of Fig. 8
show the implementation of such gates on the Bloch sphere
in the rotating frame.

APPENDIX D: ADIABATIC CONDITION’S
ESTIMATE WHEN OPERATING IN THE

ROTATING FRAME

In this appendix we present a realistic example of
parameter switching needed when operating in the rotat-
ing frame to apply a simple sequence of single-qubit gates
to the Majorana transmon qubit. In fact, when working
in the rotating frame using the ng-modulated protocol to
implement single-qubit gates, before performing each gate
operation the parameters of the system need to be tuned

to their optimized values, keeping ng = 0. In Table II we
show how the parameters optimization can be done by
keeping EJ fixed, so that only ω and EM need to be tuned
when changing the qubit gate. Because EM represents an
internal parameter of the system, tuning its value can intro-
duce nonadiabatic transitions between its eigenstates |�−〉
and |�+〉. Thus we need to derive the condition for having
an adiabatic evolution during this operation. The switch-
ing between different values of EM can be represented by
a continuous function of time EM (t) and leads to a time-
dependent Hamiltonian that, in the basis {|�−〉 , |�+〉},
presents the nonadiabatic σy term

HSwitch =
√

t20 + E2
M (t)σz + |t0|∂tEM (t)

4π [t20 + E2
M (t)]

σy . (D1)

The adiabatic condition is derived by imposing that the σy
term be negligible with respect to the diagonal σz term:

max
0≤t≤τ

∣∣∣∣ |t0|∂tEM (t)
4π [t20 + E2

M (t)]3/2

∣∣∣∣ � 1. (D2)

This is also equivalent to max|[∂tH(t)]mn/(�Emn)
2| � 1.

Condition (D2) also needs to be combined with the condi-
tion of obtaining an identity operation during the param-
eter’s switch. To give some realistic estimates, we choose
to analyze the case of the two-gate sequence XZ. This is
an adequate case since only single-qubit gates within the
chosen universal set are significant for quantum computing
purposes, and we gave as an example in Sec. III B the set of
gates {H , S, T} and {X , Y, Z, T}. Given that Y = −iXZ, we
can reduce each of these sets to the use of only one gate that
performs a fixed rotation perpendicular to the z axis (either
H or X ) and two gates performing fixed rotations about the
z axis. Thus, it is worth analyzing the case of a sequence
of these two types of single-qubit gates. When we apply
the XZ sequence in the rotating frame, in between these
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two operations we need to tune the parameter EM from EX
M

to EZ
M , optimized values for the X and Z gates, respec-

tively. The function we choose for the smooth switch is
the sinusoidal function

EM (t) = EX
M + EZ

M − EX
M

2
(1 − cos(π t/τ)) (D3)

with τ the time of the switching operation. When calculat-
ing the condition for τ for fulfilling the adiabatic criterion
(D2), using the values of EX

M , EZ
M , and t0 from Table II, we

obtain τ � 10 ns. Regarding the condition for obtaining an
identity operation, we take into account the fact that we are
working with two different rotating frames. The frequency
of the qubit is in fact changing when 0 < t ≤ τ , so that
we need to find a value for τ � 10 ns such that the qubit
performs an integer number of 2π z rotations in that time
interval. The time evolution operator during this operation
is represented by (h = 1)

URF
Switch = ei2π�Zτσz e−i2π

∫ τ
0

√
t20+E2

M (t)dtσz , (D4)

where �Z =
√

t20 + (EZ
M )

2 is the frequency of the
qubit at the end of the protocol. Since approximately∫ τ

0

√
t20 + E2

M (t)dt 
 {
√

t20 + E2
M (0)+

√
t20 + E2

M (τ )}τ/2 =
(�X +�Z)τ/2, we obtain the condition

τ =
[

1
τ

∫ τ

0

√
t20 + E2

M (t)dt −�Z

]−1


 2/|�X −�Z |.
(D5)

In our example of the EX
M -to-EZ

M switch, the timescale
needed is τ ∼ 1 μs. However, we can observe that we can
think about a protocol where we switch EM from EX

M to EZ
M

first, implement the Z gate, and then switch the parame-
ter back from EZ

M to EX
M , using the function ẼM (t) = EX

M +
(EZ

M − EX
M )(1 + cos(π t/τ))/2. In this case, since the prop-

agators for each step of this protocol represent z rotations
and they all commute with each other, the effect of the
EZ

M -to-EX
M switch,

ŨRF
Switch = ei2π�X τσz e−i2π

∫ τ
0

√
t20+Ẽ2

M (t)dtσz , (D6)

approximately cancels the contribution from the EX
M -to-

EZ
M one, Eq. (D4), so that the propagator for the two-

gate sequence becomes URF
XZ(t) = ŨRF

SwitchURF
Z URF

SwitchURF
X 


URF
Z URF

X , given that condition (D2) is fulfilled. We can con-
clude that, when we want to apply the XZ sequence to the
Majorana transmon, we can decide to start and end the
sequence in the system’s configuration with EM = EX

M , so
that the condition for having an identity operation during
the switching of EM is always fulfilled, while the adia-
baticity criterion leads to the switching time’s condition
τ � 10 ns. This is also valid for any two-gate sequence
that includes a finite rotation about the z axis.

APPENDIX E: CHARGE 1/f NOISE
DECOHERENCE RATE EXPRESSIONS

We derive the expressions for the dephasing and deco-
herence rates during free evolution used in Sec. IV, in
particular Eqs. (21), (22), (24), and (26). In the literature,
several works study the dissipative effects of the 1/f noise
on the evolution of a two-level system [66,74,81,83]. How-
ever, the system considered in this work presents some
noise contribution to the perpendicular component of the
Hamiltonian, which is usually neglected. Here a more
detailed review of the processes involved is desirable. We
assume that the effect of the weak, stationary noise on a
two-level system can be represented in the Hamiltonian by
a classical stochastic perturbation of its longitudinal and
transverse components. If we call xi(t) the variable along
the i axis where the noise component δxi(t) is acting, the
Hamiltonian evolving under free evolution can be approx-
imated to H [δx(t)] 
 H0σz + V(t), with V(t) the term con-
taining the noise fluctuations. In the case of the Majorana
transmon we have V(t) = Vz[δxz(t)]σz + V⊥[δx⊥(t)]σy ≡
Vz(t)σz + V⊥(t)σy . The Liouville equation in the interac-
tion picture is ∂tρ̃(t) = −(i/�)[Ṽ(t), ρ̃(t)], with the den-
sity matrix given by ρ̃(t) = ei(H0t/�)σzρ(t)e−i(H0t/�)σz , and
Ṽ = ei(H0t/�)σz V(t)e−i(H0t/�)σz ≡ Vzσz + V⊥(ei(�01t−π/2)σ z

p +
e−i(�01t−π/2)σ z

m), where we have let �01 = 2H0/� =
E01/�, with E01 qubit energy splitting, and σ z

p ,m = 1
2 (σx ±

iσy). The Liouville equation is iterated once and averaged
over the noise ensemble, yielding

˙̃ρ(t) = − 1
�2

∫ t

0
dt′ 〈[Ṽ(t), [Ṽ(t′), ρ̃(t′)]]〉 , (E1)

where we have set the noise average to zero, 〈Ṽ(t)〉 = 0.
This is widely assumed when calculating the decoherence
rates, since every possible nonzero contribution can poten-
tially be included in H0 [79]. Since the noise source is
weakly coupled to the two-level system, we can assume
that it does not significantly change the components of
the density operator within the evolution timescale; hence,
we can approximate ρ̃(t′) 
 ρ̃(t). The expressions of the
diagonal and transverse components take the form

˙̃ρ00,11(t) = ± 2
�2

∫ t

0
dt′{〈V⊥(t)V⊥(t′)〉 cos[�01(t − t′)]

× (ρ̃11(t)− ρ̃00(t))− 〈V⊥(t)Vz(t′)〉
× e−i(�01t+π/2)ρ̃01(t)

− 〈V⊥(t)Vz(t′)〉 e+i(�01t+π/2)ρ̃10(t)}, (E2a)
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˙̃ρ01(t) = + 1
�2

∫ t

0
dt′{2 〈Vz(t)V⊥(t′)〉 ei(�01t′+π/2)

× (ρ̃11(t)− ρ̃00(t))− 2 〈V⊥(t)V⊥(t′)〉
× ei�01(t−t′)ρ̃01(t)+ 2 〈V⊥(t)V⊥(t′)〉
× ei(�01(t+t′)+π)ρ̃10(t)− 4 〈Vz(t)Vz(t′)〉 ρ̃01(t)},

(E2b)

with ˙̃ρ01(t) = ˙̃ρ∗
10(t). It can be seen that, in Eqs. (E2),

terms containing correlations between transverse and lon-
gitudinal components are present. However, for long times
t � 0, we can apply the secular approximation and neglect
the fast oscillating terms, so that we obtain three uncou-
pled differential equations. With regard to the diagonal
elements, the expression for the polarization 〈σz(t)〉 =
1
2 (ρ11(t)− ρ00(t)) can be obtained as

〈 ˙̃σz(t)〉 =− 4
�2

∫ t

0
〈V⊥(t)V⊥(t′)〉 cos[�01(t − t′)]dt′ 〈σ̃z(t)〉 ,

(E3)

while, for the coherence term ρ01(t), we have

˙̃ρ01(t) = − 1
�2

∫ t

0
dt′{2 〈V⊥(t)V⊥(t′)〉 e+i�01(t−t′)

+ 4 〈Vz(t)Vz(t′)〉}ρ̃01(t). (E4)

When these expressions are formally integrated, they
lead to the form of the density matrix presented in
Sec. IV and to Eqs. (21) and (22). To integrate these
equations, we expand V⊥ and Vz to first order in
the noise, V⊥(t) 
 (∂V⊥[x⊥(t)]/∂x⊥)δx⊥ and Vz(t) 

(∂Vz[xz(t)]/∂xz)δxz. We also make use of the fol-
lowing relations between the autocorrelation Cx(τ ) =
〈δx(0)δx(τ )〉 and the PSD Sx(ω) of the stochastic
variable δx:

Sx(ω) = 1
2π

∫ +∞

−∞
Cx(τ )eiωτdτ , (E5)

Cx(τ ) =
∫ +∞

−∞
Sx(ω)e−iωτdω. (E6)

Integrating Eqs. (E3) and (E4) yields integrals of the form∫ t
0 dt′′

∫ t′′
0 dt′F(t′′, t′) with F a function of t′ and t′′. When

the integrand F(t′′, t′) is symmetric by exchange of t′, t′′,
we have

∫ t

0
dt′′

∫ t′′

0
dt′F(t′′, t′) = 1

2

∫ t

0
dt′′

∫ t

0
dt′F(t′′, t′).

This is true for 〈 ˙̃σz(t)〉, and its integration leads
to the form 〈σ̃z(t)〉 = eG(t) 〈σ̃z(0)〉 and to the Bloch-
Redfield exponential decaying function. Since we assume

the noise stationary, we can write 〈δx⊥(t′′)δx⊥(t′)〉 =
〈δx⊥(0)δx⊥(t′ − t′′)〉 = Cx⊥(t

′ − t′′) and make the change
of variables τ = t′ − t′′ and T/2 = t′ + t′′. Using the
definition of the power spectral density given above, in the
limit of t → ∞ we get

G(t) = − 2
�2

∣∣∣∣∂V⊥
∂x⊥

∣∣∣∣
2 ∫ t

0
dt′′

∫ t

0
dt′ 〈δx⊥(t′′)δx⊥(t′)〉

× cos[�01(t′′ − t′)]


 − 1
�2

∣∣∣∣∂V⊥
∂x⊥

∣∣∣∣
2

t(2πSx⊥(E01/�)+ 2πSx⊥(−E01/�))

= −4π
�2

∣∣∣∣∂V⊥
∂x⊥

∣∣∣∣
2

Sx⊥(E01/�)t

= −�1t, (E7)

which is Eq. (24) in Sec. IV. The evolution of the pop-
ulations in the limit of zero temperature is thus given by
ρ̃11,00 = 1

2 ± 〈σ̃z(t)〉 = 1
2 ± 〈σ̃z(0)〉 e−�1t.

Regarding the evolution of ρ̃01, the integration of
Eq. (E4) yields a decaying function that is still of the form
ρ̃01(t) = eA(t)ρ̃01(0), with the exponent A(t) given by

A(t) = − 2
�2

∫ t

0
dt′′

∫ t′′

0
dt′ 〈V⊥(t′′)V⊥(t′)〉 e+i�01(t′′−t′)

− 4
�2

∫ t

0
dt′′

∫ t′′

0
dt′ 〈Vz(t′′)Vz(t′)〉 . (E8)

The first term in the integral is not symmetric by exchange
of t′ and t′′, but it can be expressed as the sum of a symmet-
ric, real term ∝ cos[�01(t′′ − t′)] and an antisymmetric,
imaginary one ∝ i sin[�01(t′′ − t′)]. The latter introduces a
phase factor in ρ01(t) and does not contribute to the dephas-
ing. The real part can be solved in the same way as the
relaxation factor was calculated above, leading to

− 1
2�2

∣∣∣∣∂V⊥
∂x⊥

∣∣∣∣
2 ∫ t

0
dt′′

∫ t

0
dt′ 〈δx⊥(0)δx⊥(t′ − t′′)〉

× (ei�01(t′′−t′) + e−i�01(t′′−t′)) = −�1

2
t. (E9)

The Vz(t′′)Vz(t′) term contributes to the pure dephasing and
can be integrated as follows [74]:

− 2
�2

∣∣∣∣∂Vz

∂xz

∣∣∣∣
2 ∫ t

0
dt′′

∫ t

0
dt′ 〈δxz(t′′)δxz(t′)〉

= − 2
�2

∣∣∣∣∂Vz

∂xz

∣∣∣∣
2 ∫ +∞

−∞
dωSxz (ω)

∫ t

0
dt′′eiωt′′

∫ t

0
dt′e−iωt′

= − 4
�2

∣∣∣∣∂Vz

∂xz

∣∣∣∣
2( ∫ +∞

0
Sxz (ω) sinc2(ωt/2)dω

)
t2.

(E10)
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Here the integral of the PSD depends on the spectral char-
acteristics of the noise δxz. Usually, the 1/f noise in super-
conducting systems is treated as static noise, which is valid
for ωIR � ωUV � 1/t, with ωIR and ωUV the PSD cutoffs.
When, in the Majorana transmon, the dephasing due to 1/f
noise affecting the offset charge ng is numerically simu-
lated, with the noise frequency within the range 10 Hz <
f < 50 MHz, we obtain T∗

2 ∼ 10 μs, corresponding to
1/T∗

2 ∼ 100 kHz. The noise cannot be considered static in
this case and another approach is needed [74]. The contri-
bution of the function sinc2(ωt/2) is mostly restricted to
ω < 2π/t. Since S(ω) is also peaked at ω ∼ 0, it is reason-
able to restrict the integral to the frequency range ωIR <

ω < 2π/t. When approximating sinc(ωt/2) 
 cos2(ωt/2),
we obtain

∫ +∞

0

1
ω

sinc2(ωt/2)dω



∫ 2π/t

ωIR

1
ω

cos2(ωt/2)dω =
∫ π

ωIRt/2

cos2(y)
y

dy

= −1
2

Ci(ωIRt)+ 1
2

Ci(2π)+ 1
2

ln(2π/ωIRt)


 ln
(

2π
ωIRt

)
+ O(1), (E11)

where Ci(x) is the cosine integral. The expression for the
dephasing factor is therefore given by

|eA(t)| = exp
{

− 2π
�2

∣∣∣∣∂V⊥
∂x⊥

∣∣∣∣
2

Sx⊥(E01/�)t

− 4
�2

∣∣∣∣∂Vz

∂xz

∣∣∣∣
2

αln
(

2π
ωIRt

)
t2

}
, (E12)

which is the expression used for calculating the pure
dephasing factor |fz| = e−χ(t) in Eq. (26).
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