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Bosonic quantum error-correcting codes offer a viable direction towards reducing the hardware over-
head required for fault-tolerant quantum information processing. A broad class of bosonic codes, namely
rotation-symmetric codes, can be characterized by their phase-space rotation symmetry. However, their
performance has been examined to date only within an idealistic noise model. Here, we further analyze
the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction
circuit. To this end, we numerically compute the average gate fidelity, including measurement errors into
the noise model of the data qubit. Focusing on physical measurement models, we assess the performance
of heterodyne and adaptive homodyne detection in comparison to the previously studied canonical phase
measurement. This setting allows us to shed light on the role of different currently available measurement
schemes when decoding the encoded information. We find that with the currently achievable measurement
efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even
potential. In addition, we perform a detailed analysis of Gottesman-Kitaev-Preskill (GKP) codes using a
similar error-correction circuit that allows us to analyze the effect of realistic measurement models on
different codes. In comparison to RSB codes, we find for GKP codes an even greater reduction in perfor-
mance together with a vulnerability to photon-number dephasing. Our results show that highly efficient
measurement protocols constitute a crucial building block towards error-corrected quantum information
processing with bosonic continuous-variable systems.
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I. INTRODUCTION

The principle of quantum error correction (QEC) is to
encode the logical information redundantly in a subspace
of a much larger Hilbert space. Bosonic codes that make
use of the infinite-dimensional Hilbert space of a single
bosonic mode [1–4] have emerged as a hardware effi-
cient alternative to conventional codes utilizing multiple
two-level systems [5–8]. This extended Hilbert space of a
single bosonic mode enables one to tailor the encoding of
the logical information to a specific noise channel [9–15],
adapted to the physical system in which the bosonic code is
realized. Despite the flexibility in choosing the encoding,
many bosonic codes belong to a larger class of codes that is
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characterized by a discrete rotation symmetry [16]. These
instances of bosonic codes are called rotation-symmetric
bosonic (RSB) codes or bosonic rotation codes.

From an experimental perspective, bosonic codes have
advanced considerably in recent decades and various code
states such as cat states [2,10,17], binomial states [11],
and Gottesman-Kitaev-Preskill (GKP) states [3] have been
realized in electromagnetic modes of superconducting
microwave circuits [18–21] and motional modes of trapped
ions [22–24]. Importantly, it has been shown experimen-
tally that bosonic codes can reach, and even go beyond, the
break-even point for error correction [25,26], which is the
point where the error-corrected qubit’s lifetime is as good
as that of an unencoded qubit realized in the same hard-
ware. Experimental progress towards fault-tolerant error
correction has been made recently as well [26–30]. How-
ever, in the current literature on error-correcting schemes
with bosonic codes the error model typically focuses on
state preparation errors [31–33], while gate and measure-
ment errors are either excluded or described by a simplified
error model to make the analysis less unwieldy. Only
recently, studies have begun focusing on the practical
realization of qubit gates for GKP codes with finite energy
[34–36].
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In this work we study single-mode bosonic qubits under-
going simultaneous loss and dephasing followed by error
correction. Our main goal is to shed light on the role of
different currently available measurement schemes when
decoding the encoded information, and we therefore model
other elements, such as state preparation, gates, and the
ancillae used in the error-correction circuit to be essentially
noiseless. In particular, this allows us to directly compare
to the previous results in Ref. [16]. Moreover, this setting
may serve as a model for a quantum communication sce-
nario where a bosonic code is used to transmit information
over a noise channel, while the operations used for encod-
ing and decoding the information can be done with high
fidelity.

In particular, we consider error correction of RSB
and GKP codes through a Knill-type teleportation-based
error-correction circuit that has seen an increased inter-
est recently [16,32,37,38]. For RSB codes, we numerically
investigate the error-correction potential of the scheme
proposed in Ref. [16] by computing the average gate
fidelity when the logical X measurements are realized
by (finite-efficiency) heterodyne and adaptive homodyne
measurements and compare the results to the ideal but
unphysical canonical phase measurement that was con-
sidered in Ref. [16]. To this end, we assume that the
noisy encoded qubit is the result of a simultaneous loss
and dephasing channel before the abovementioned error-
correction circuit is applied. Our numerical results show
that RSB codes can in principle still reach the break-
even point for error correction, but undergo a substantial
decrease in performance for state-of-the-art measurement
schemes. In the second part of the article, we extend our
analysis to GKP codes using a similar error-correction cir-
cuit in which homodyne detection takes the role of logical
measurements in order to compare the effect of realis-
tic measurement models on different codes. GKP codes
are theoretically expected to outperform RSB codes if the
noise channel consists of only single-photon losses and
error correction is implemented via the optimal recovery
map [39,40]. However, here we not only identify an even
greater sensitivity to finite measurement efficiencies for
GKP codes compared to RSB codes, but also a vulner-
ability to photon-number dephasing noise. We find that
within this extended noise model the performance of GKP
codes can fall behind that of RSB codes in experimen-
tally relevant parameter regimes. In addition, at the level
of methodology, we show that, for GKP codes, the average
gate fidelity can be exactly related to the logical success
probability if the noise is characterized by Gaussian ran-
dom displacement channels and no noise propagates to
the output system. This equivalence allows for a quan-
titative comparison between numerically exact bonafide
finite-energy GKP states with an approximate analytical
model obtained from the twirling approximation. Impor-
tantly, we find that the two approaches give the same

results in this setting. This comparison between the two
approaches has been missing in the literature since the
introduction of the state-twirling approximation for the
description of GKP states in Ref. [41]. As this approx-
imation is the basis for current studies of fault-tolerance
thresholds with topological-GKP codes [32,33,38,42], our
study significantly corroborates these results.

The subsequent sections are organized as follows. In
Sec. II we review basic properties and notation of rotation-
symmetric bosonic codes, including logical operations as
well as propagation and correction of single-mode errors.
We give definitions for the subclasses of RSB codes that
we have analyzed in this paper, namely cat and bin
codes, in Sec. II C. The setup and noise model that is stud-
ied is laid out in Sec. III and the different realizations of the
logical X measurements in terms of phase measurements
are described in Sec. III B. Our numerical results for RSB
codes are presented in Sec. IV. To allow for a comparison
to finite-energy GKP codes, we first introduce their basic
properties and a slightly modified error model in Sec. V
before presenting the results at the end of the section. We
end the paper with a discussion and an outlook in Sec. VI.

II. ROTATION-SYMMETRIC BOSONIC CODES

A bosonic encoding has an N -fold rotation symmetry if
its two-dimensional code space projector,

�̂code = |0〉〈0|code + |1〉〈1|code, (1)

commutes with the discrete rotation operator

R̂N = ei2π n̂/N , (2)

where n̂ = â†â is the number operator, that is, n̂ |n〉 = n |n〉
for Fock states |n〉 , n ∈ N0. Here, â and â† denote the
annihilation and creation operators of a single bosonic
mode, respectively. They obey the canonical commutation
relation [â, â†] = 1.

We define an order-N RSB code through the additional
requirement that the operator

ẐN = R̂2N = eiπ n̂/N (3)

acts as the logical Z gate with eigenvalues ±1 on the code
subspace defined by �̂code. (The choice of logical Z over
logical X is of course arbitrary, but we do not consider
codes where R̂2N acts as a non-Pauli gate, such as GKP
codes [16], to be RSB codes.)

This requirement allows for constructing the computa-
tional states |μN 〉code (μ = 0, 1) of any order-N rotation
code in terms of a finite superposition of rotated normal-
ized primitive states (R̂N )

m |�〉. That is, ẐN |μN 〉code =
(−1)μ |μN 〉code if and only if the computational basis
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states can be written as [16]

|μN 〉code = 1
√Nμ

2N−1∑

m=0

(−1)μmeiπmn̂/N |�〉 , (4)

with normalization constants Nμ. Such a primitive state
|�〉 uniquely defines an order-N RSB code and we can
therefore fully describe any RSB code through its primi-
tive state and its rotation symmetry N . The constraint on
the primitive state |�〉 is that it must have at least par-
tial support on the code states, that is, 〈2kN |�〉 �= 0 and
〈(2k′ + 1)N |�〉 �= 0 for some integers k and k′, respec-
tively. This constraint originates from the Fock space struc-
ture of the code states |μN 〉code that is enforced through
the operator ẐN and illustrated in Fig. 1(a). Therefore, it is
straightforward to realize that the computational states can
be written alternatively as [16]

|μN 〉code =
∞∑

k=0

f(2k+μ)N |(2k + μ)N 〉 , (5)

with Fock space coefficients fkN . Observe that this yields
a Fock space distance dn = N between the logical code
states |μN 〉code that is illustrated in Fig. 1(a). Furthermore,
if |fkN | = |f(k+1)N | for all k, we refer to the rotational code
as a number-phase code. The reason is that these codes
have a vanishing phase uncertainty, as we discuss in more
detail in Sec. III B. Because (ideal) number-phase codes
are unphysical, we instead refer to codes that satisfy the
above relation in the limit ncode → ∞ as approximate
number-phase codes; see Sec. II C for examples.

In contrast to the computational states |μN 〉code, the
dual-basis code states,

|±N 〉code = (|0N 〉code ± |1N 〉code)/
√

2, (6)

have support on each Fock state |kN 〉 and can be repre-
sented as

|±N 〉 = 1√
2

∞∑

k=0

(±1)kfkN |kN 〉 . (7)

The |+N 〉code (|−N 〉code) state is constructed from prim-
itive states |�〉 that are rotated by an angle πm/N with
m even (odd), as evident from Eq. (4). This means that
the two states are separated by a “rotational distance”
dθ = π/N in phase space. In contrast, the computational
states |μN 〉 have zero rotational distance and occupy the
same phase sectors. This is illustrated in Fig. 1(b).

A. Logical operations

Quantum computing schemes with number-phase
codes are based on the availability of an encoded CZ =

d
n

=
N

|02 |12

|Θ

dθ =
π

N

(a) (b)

FIG. 1. Fock space and phase-sector structure of RSB codes
with order N = 2 rotation symmetry. (a) The computational
states of order-N codes have support only on each 2N th Fock
state, with the |1N 〉 state offset by N from the |0N 〉 state. This
introduces a number distance dn = N between the codewords.
(b) The dual basis code states |±N 〉 can be constructed as the
superpositions of N rotated primitive states |�〉. Here, we asso-
ciate the blue (red) primitive states to the |+2〉 (|−2〉) dual-basis
code word that occupies the white (gray) phase sectors exclu-
sively. The number distance dn of computational states |μN 〉
translates to a rotational distance dθ = π/N for dual-basis states
|±N 〉.

diag(1, 1, 1, −1) gate, state preparation P|�N 〉 of encoded
states |�N 〉, and measurements MX in the logical |±N 〉
basis. The CZ gate between two RSB codes of order N and
order M corresponds to a controlled-rotation (CROT) gate,
that is,

CZNM ≡ CROTNM = exp
(

i
π

NM
n̂ ⊗ n̂

)
. (8)

With the entangling CROT gate, any gate GH, with G =
diag(λ1, λ2) diagonal in the computational basis (|λ1|2 =
|λ2|2 = 1) and H the Hadamard gate, can be executed
using the teleportation circuit

cro
t

(9)

where the ancilla system is prepared in the state |GM 〉 =
(λ1 |0M 〉 + λ2 |1M 〉)/√2. Here and in the following we
use the convention that i = 0 for the measurement out-
come “+” and i = 1 for the outcome “−”. To achieve
universality, it is sufficient to be able to prepare the
states |+M 〉, |TM 〉 = (|0〉M + eiπ/4 |1M 〉)/√2, and |+iM 〉 =
(|0〉M + i |1M 〉)/√2 that yield for G the identity [43], the
non-Clifford T-gate, and the phase gate S, respectively.
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B. Error correction

Any practical implementation of a quantum computing
scheme will suffer from errors. Even though small errors,
i.e., errors that do not lead to a false decoding of the logical
information, are acceptable for bosonic encodings [3], it is
still necessary to perform error correction periodically to
prevent the accumulation of small errors into such a logical
error. As was shown in Ref. [16], implementing the uni-
versal set of operations through the teleportation circuit in
Eq. (9) already ensures that small errors will not be ampli-
fied too badly when they propagate through the circuit. We
review the method of error correction by teleportation for
RSB codes in the following and describe the propagation
of errors in Appendix B for completeness.

Error correction can be implemented by sequentially
performing two one-bit teleportations [cf. Eq. (9)] with
ancillae prepared in |+M 〉 and |+L〉, respectively [16].
This represents a continuous-variable version of Knill-
type error correction [44,45]; see also Appendix A for
a summary of Knill-type error correction in the discrete-
variable case. Under the premise that the ancilla |+M 〉
does not undergo any number-shift errors before the CROT
gates are executed and that the second ancilla |+L〉 is
noise-free, the resulting quantum channel RKnill ◦ N of
the teleportation circuit in Fig. 2 is a logical (qubit to
qubit) channel [16]. Here, we denote by N the initial
noise channel. In other words, the resulting output qubit
state ρ̂L = RKnill ◦ N (ρ̂N ) encoded into an order-L rota-
tion code represents the same logical state as the initial
logical state ρ̂N that was encoded into an order-N rotation
code up to logical errors. That is, the output state takes the
form [16]

RKnill ◦ N (ρ̂N ) = 1
4

3∑

i,j =0

∑

x
cij (x)P†

i∗(x)Piρ̂LP†
j Pi∗(x),

(10)

where the weights cij (x) = Tr[M̂x1 ⊗ M̂x2 σ̂ij ], associated
with measurement outcomes x = (x1, x2), depend on the
realization of the MX measurement described by the
positive operator-valued measurement (POVM) elements
{M̂x1/2} and the operators Pi ∈ {I , Z, X , XZ} represent log-
ical Pauli operators on the encoded output state ρ̂L. The
operator σ̂ij represents the damaged two-mode dual-basis
code states that are obtained by commuting the noise
channel N through the CROT gate, that is,

σ̂ij = UCROT ◦ N ◦ U†
CROT(|i〉〈j |), (11)

where |i〉 = H |aN 〉 ⊗ H |bM 〉, ab is the binary represen-
tation of i, and UCROT· = CROT · CROT†. The problem of
recovering the original logical state reduces to determin-
ing the correct Pauli recovery Px for each application of

cro
t

cro
t

FIG. 2. Bosonic version of Knill-type error correction for
number-phase codes. In the case of noise-free ancillae the circuit
implements a logical (qubit to qubit) channel, also referred to as
the telecorrection circuit. The recovery map RKnill corresponds
to a change of the Pauli frame and is determined by the measure-
ment outcomes x = (x1, x2); see the main text for details. Thus,
a logical error on the output state occurs only if the decoding of
the MX measurement is faulty.

the error-correction circuit. As in Ref. [16], we guess the
most likely Pauli correction Pi∗(x) based on a maximum
likelihood decoder

i∗(x) = max
i=0,...,3

Tr[M̂x1 ⊗ M̂x2 σ̂ii]. (12)

C. Examples of RSB codes

We restrict our analysis to two classes of rotational
number-phase codes, namely, bin (binomial) and cat
codes. Our choice of these codes is motivated by the
following observations. Firstly, the results of Ref. [16]
indicate that bin codes outperform almost all other
number-phase codes. Secondly, the increased interest in
dissipatively engineered cat states [14,46–48] motivates
further analysis of those codes. Furthermore, cat states
with up to 100 photons have already been prepared in
experiments [18], whereas to our knowledge, the largest
prepared binomial state contained only a few photons.
This observation is relevant because the results of Ref.
[16] as well as Sec. IV indicate performance sweet spots
for relatively large average code photon number ncode =
Tr(�̂coden̂)/2 in many cases.

1. cat codes

cat codes are the earliest form of single-mode RSB
codes [2]. The computational code states |μN 〉cat are most
straightforwardly constructed from their primitive that are
coherent states |�〉cat = |α〉 = e−|α|2/2 ∑

k α
k/

√
k! |k〉,

and α > 0 without loss of generality. The rotated superpo-
sition of the primitive yields the computational basis states,

|μN 〉cat = 1
√Nμ

2N−1∑

m=0

(−1)μm |αeimπ/N 〉 (13)

with normalization constants Nμ. From the Fock space
representation of the coherent state, the coefficients {fkN }

020334-4



PERFORMANCE OF TELEPORTATION-BASED... PRX QUANTUM 3, 020334 (2022)

in Eq. (5) are obtained as

fkN =
√

2N 2

Ni
e−|α|2/2 αkN

√
(kN )!

(14)

with Ni = N0 and Ni = N1 for even and odd k, respec-
tively.

2. bin codes

The class of bin codes was first introduced in Ref. [11],
designed explicitly to correct against photon loss, photon
gain, and photon dephasing errors up to a certain order.
Their name originates from the binomial coefficient that
weights each Fock state that is used to construct the code
words, that is,

|μN 〉bin =
�K/2�−μ∑

k=0

√
1

2K−1

(
K

2k + μ

)
|(2k + μ)N 〉 (15)

for the computational basis code states |μN 〉bin. Here the
truncation parameter K relates to the number of errors that
are exactly correctable; see Ref. [11] for details. By com-
parison to Eq. (5), the Fock space coefficients {fkN } can be
directly identified from Eq. (15).

III. PROBLEM SETUP AND NOISE MODEL

In their previous study, Grimsmo et al. [16] assumed
ideal preparation of the ancillary state |+M 〉, ideal CROT
gates, as well as an ideal phase measurement: the so-
called canonical phase measurement. Their simplified
noise model suggested that cat and bin codes can go
beyond break even by several orders of magnitude. Nev-
ertheless, implementation of the telecorrection circuit in
Fig. 2 poses many challenges. A particular challenge lies
in performing the logical MX measurement. This mea-
surement translates to a phase-estimation problem based
on a single copy of the encoded qubit state. Here we go a
step further and study the telecorrection circuit in Fig. 3.
This considers realistic measurement models on the top
(data) rail. These models differ from the canonical phase
measurement and are discussed in Sec. III B. We start in
Sec. III A by describing the noise channel.

A. Noise model

As in Ref. [16], we consider noisy states that are the
result of a noise channel N (ρ̂) that is obtained by integrat-
ing the Gorini-Kossakowski-Sudarshan-Lindblad master
equation

∂

∂t
ρ̂ = κD[â]ρ̂ + κφD[n̂]ρ̂, (16)

cro
t

cro
t

FIG. 3. Noise model considered for the telecorrection circuit
in Fig. 2. We restrict our numerical analysis to the two classes
of RSB codes discussed in Sec. II C. The encoded data qubit
undergoes a simultaneous loss and dephasing channel N (·) prior
to error correction. The noise channel is obtained by integrat-
ing master equation (16). The measurement on the data (top)
rail has efficiency η, while we model the second measurement
on the middle ancilla rail to be near noiseless by choosing an
M = 1 cat code with very large α. In Sec. IV A we analyze the
performance of different realizations of the phase measurement
for the logical MX measurement. We simulate the canonical
phase measurement (CAN), the heterodyne measurement (HET),
and the adaptive homodyne scheme (AHD) for unit efficiency in
Sec. IV A. The results for finite efficiencies in the measurement
chain are discussed in Sec. IV B.

up to some time τ . Here κ and κφ describe the single-
photon loss rate and the number dephasing rate, respec-
tively, and D(Ô)ρ̂ = Ôρ̂Ô† − 1

2 Ô†Ôρ̂ − 1
2 ρ̂Ô†Ô is the

Lindblad dissipator. The resulting quantum channel can be
decomposed into a Kraus form; see Ref. [16]. In all simula-
tions (except for Sec. IV B) we consider equal rates κφ = κ

even though the noise channels for microwave cavities
are typically dominated by photon loss, that is, κ/κφ ∼
102 [49]. However, the dispersive coupling to ancillary
qubits used for control leads to an increased dephasing
rate of the cavity. This can be due to thermal excitations
in the qubit resulting in frequency fluctuations of the cav-
ity, for example. Furthermore, the choice of this relatively
large dephasing rate can also be motivated as representing
a simplified model for additional noise in the telecorrection
circuit that we describe in the following.

The components that are required to implement the
telecorrection circuit in Fig. 2 are

(i) preparation P|+M 〉 of dual-basis code state |+M 〉;
(ii) CROT gates;

(iii) phase measurements for the MX measurement.

In principle, any of these three components can be faulty.
However, our numerical analysis focuses on realistically
modeling the phase measurements on the data mode
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[component (iii)] because they represent a crucial com-
ponent of the error-correction protocol and are found
to quickly dominate all other noise sources for realistic
parameters, as we show in Sec. IV.

To be explicit, we compare three schemes for the phase
measurement: (a) canonical phase measurements (CAN),
(b) heterodyne detection (HET), and (c) adaptive homo-
dyne detection (AHD). An experimental implementation of
these schemes will suffer from finite measurement efficien-
cies 0 ≤ η < 1. In the microwave domain, measurements
typically achieve efficiencies in the range 0.4 ≤ η ≤ 0.75
[50–52]. A practical measurement of an encoded bosonic
qubit state must necessarily include mapping the state from
a high-Q to an overcoupled low-Q readout mode (with
Q ∼ 1/κ the quality factor) prior to measurement. It is
possible that an amplification step can be included prior
to releasing the state to a standard microwave chain, thus
effectively increasing η. We do not include any detailed
modeling of such a practical scheme here, and simply
consider different η in the range 0.5 ≤ η ≤ 1.0.

We model inefficient measurements by passing the noisy
data state N (ρ̂N ) through a fictional beam splitter before
an ideal measurement is performed [53]. For a measure-
ment with efficiency η, the noisy state N (ρ̂N ) transforms
as

N (ρ̂N ) �→ Trr{ÛBS[N (ρ̂N )⊗ |0〉〈0|r]Û†
BS}, (17)

where r is a fictitious reservoir mode (with annihilation
operator r̂) into which some information is transferred. The
beam splitter transformation is given by

ÛBS = earccos (
√
η)(â† r̂−âr̂†). (18)

By performing the trace over the reservoir mode (Trr[·])
the information is effectively lost and the output state can
be used to model an inefficient measurement.

There are also various types of errors that could occur
during the execution of CROT gates implemented through
the unitary ÛCROT = exp

[
i(t/tg)(π/NM )n̂ ⊗ n̂

]
in time tg .

For example, number-shift errors in one of the modes
occurring during the execution of the gate will impose a
rotation error [see Eq. (B3) in Appendix B] on the other
mode. The precise rotation angle will be proportional to the
time that is left after the number-shift error occurred until
the controlled rotation is completed, that is, the specific
timing of the number-shift error determines the additional
rotation error on the mode. However, in any case this rota-
tion error is upper bounded by πk/NM ; cf. Eq. (B3). Thus,
we can conservatively model number-shift errors during
the execution of CROT gates by a higher initial photon loss
rate κτ [54]. A similar narrative follows for any coher-
ent error that occurs during the execution of the CROT
gate and joint pure loss evolution. Undesired self-Kerr
evolution (about Kn̂2) on both modes will be a typical

coherent error in any experiment where the controlled rota-
tion is implemented through a cross-Kerr interaction. The
effect of coherent Kerr errors on the code performance
were analyzed in Ref. [39]. Surprisingly, the authors found
that small amounts of Kerr K � 1 can benefit cat codes
in the case of optimal recovery protocols. Here we assume
that the unitless Kerr parameter K is small, so that the
influence of the Kerr-type errors can be approximated by
increased dephasing errors [55]. Lastly, we do not model
errors during state preparation, and we consider perfect
encoding Scode = Ŝ · Ŝ† of the logical information, where
Ŝ = |0〉〈0|code + |1〉〈1|code is the encoding operation.

In particular, with this noise model, the complete chan-
nel is a logical one, that is, any residual errors on the output
state are logical errors that occur as a result of wrongly
decoding at least one of the phase measurements. There-
fore, we can set L = 1 for the (output) bottom rail and
use the trivial Fock encoding. Additionally, we choose
a simple M = 1 cat code with α = 10 for the middle
ancilla qubit [16] that ensures that measurement errors on
the ancilla are negligible compared to all other noise, so
that we can consider the ancilla to be essentially noiseless.
Note that in our noise model where only the data qubit
evolves under the noise channel N (ρ̂) there is no incen-
tive to consider different encodings or different realizations
of the phase measurement for the first ancilla qubit. The
reason for this is that the ancilla is noise-free and thus
one can in principle increase the photon number of the
ancilla arbitrarily to obtain any desired accuracy of the
phase measurement, that is, any imperfections in the mea-
surement chain can be counteracted by increasing ncode of
the ancilla. The study of noisy ancilla systems and ancilla
measurements is in particular meaningful within a fault-
tolerant setting. This is however beyond the scope of this
work and will be subject to a future publication.

We illustrate our noise model and initial states in Fig. 3.

B. Different types of phase measurements

Defining a suitable observable for the phase in the
infinite-dimensional Hilbert space of the harmonic oscilla-
tor has been an elusive task [56–58]. Nonetheless, a POVM
F̂(φ) for the continuous quantum optical phase φ can be
defined [59]. Requiring that the POVM elements F̂(φ) are
invariant under phase shifts (phase space rotations) and
unbiased, they assume the general form [59,60]

F̂(φ) = 1
2π

∞∑

n,m=0

eiφ(m−n)Hmn|m〉〈n|, (19)

where H is a positive-semidefinite Hermitian matrix with
real and positive entries, and φ ∈ [0, 2π). Furthermore,
the completeness relation

∫ 2π
0 F̂(φ) dφ = 1 implies that

Hmm = 1 for all m ≥ 0. The different types of phase
measurements are characterized through the off-diagonal
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elements of H that must be less or equal to one. For the
canonical phase measurement (CAN), all elements of H
are equal to one. This property allows F̂CAN(φ) to be
expressed in terms of pure phase states, that is, F̂CAN(φ) =
1/2π |φ〉〈φ| with

|φ〉 =
∞∑

n=0

einφ |n〉 . (20)

It can be shown that this property, which is related to the
factorization of Hmn into Hmn = HmH ∗

n , is unique to the
canonical phase measurement and that any other phase
measurement that is described by Eq. (19) corresponds to a
statistical mixture of canonical phase measurements [59].
However, canonical phase measurements are unphysical
[60] and in any realistic phase measurement the off-
diagonal elements of H will be less than unity, reflecting
the aforementioned property that they can be understood
as statistical mixtures of canonical phase measurements.

Therefore, a good phase measurement is characterized
by a matrix H with elements near the diagonal that are
close to unity. Intuitively, the deviation from unity of
these matrix elements is connected to how much infor-
mation about the average photon number in addition to
the information about the phase φ is acquired during the
measurement. For the canonical phase measurement, no
information about the photon distribution is obtained.

Heterodyne measurements are the most convenient way
to obtain information about the phase distribution of the
quantum state of a microwave field mode. This mea-
surement can be realized by performing two homodyne
measurements of orthogonal quadratures x̂θ = (eiθ â +
e−iθ â†)/

√
2 and x̂θ+π/2 = p̂θ simultaneously (at the cost

of adding noise to both quadratures); see Refs. [61,62] for
a comprehensive review. This realizes a measurement of
the coherent state projector |α〉〈α| and the phase infor-
mation is simply obtained from arg(α) = φ. The matrix
HHET for heterodyne detection is immediately obtained
by expressing |α〉〈α| in the Fock basis, marginalizing the
radial component and comparing the result with Eq. (19)
such that one finds that [60]

HHET
mn = �[(n + m)/2 + 1]√

�(n + 1)�(m + 1)
, (21)

where �(x + 1) = x! is the gamma function. A (theoret-
ically) better alternative to heterodyne detection is adap-
tive homodyne detection (AHD). In contrast to ordinary
homodyne detection where the measurement of a single
quadrature x̂θ is performed, in the adaptive scheme the
phase θ , which is set by a local oscillator (LO), is con-
tinuously updated based on the measurement history, such
that the information gain about the photon distribution is
minimized. The theoretical development of adaptive
homodyne measurements is contained in Refs. [60,63,64]

and recent experimental results can be found in Ref. [52].
The analytical expression for the matrix elements of HAHD

is nontrivial and is presented in Appendix C as given in
Ref. [60] for completeness. Note that the form for HAHD

given there assumes instantaneous feedback of the LO
phase θ , meaning that our results will give only an upper
bound on the performance of the telecorrection circuit with
adaptive homodyne measurements. The H matrices for
the canonical, heterodyne, and adaptive homodyne mea-
surements are visualized in Fig. 4 for m ≤ 20. From this
figure we expect that adaptive homodyne detection should
outperform heterodyne detection.

To further analyze the differences between the three real-
izations of phase measurements, we compute the modular
phase uncertainty [16]

�meas
N (θ) = 1

|〈eiNθ 〉meas|2 − 1, (22)

where the mean modular phase 〈eiNθ 〉meas is related to a
measurement scheme by

〈eiNθ 〉meas =
∫ 2π

0
eiNθ�(θ)dθ

= 1
2

∞∑

k=0

|fkN f(k+1)N H meas
kN ,(k+1)N | (23)

with �(θ) = Tr[F̂meas(θ)|+N 〉〈+N |], where F̂meas is the
POVM associated with the chosen measurement scheme.
Note that Eq. (23) shows that in order to minimize the
modular phase uncertainty, Eq. (22), for an order-N RSB
code, the matrix elements HkN ,(k+1)N should be close to
unity, i.e., 1 − HkN ,(k+1)N � 1. In Fig. 5 we study the per-
formance of the different measurements for order N = 3
cat and bin codes. We observe that the canonical phase
measurement and adaptive homodyne detection perform
similarly, that is, the modular phase uncertainty is domi-
nated by the code states and not by the realization of the
measurement. In contrast, the modular phase uncertainty
for order N = 3 cat codes is increased by roughly a factor
of 2 for heterodyne measurements; see Fig. 5(a). This fac-
tor of 2 is anticipated from the results of Ref. [64] in which
the phase uncertainty of coherent states with respect to
our measurement schemes is obtained from semiclassical
methods. The gap between adaptive homodyne detection
and heterodyne detection widens for bin codes where the
modular phase uncertainty of the latter is increased by
roughly a factor of 2.5; see Fig. 5(b).

IV. NUMERICAL RESULTS FOR RSB CODES

In this section we present and discuss our numerical
results for the telecorrection circuit subject to the noise
model described in Sec. III. We begin by comparing the
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FIG. 4. Visualization of the matrix H for different realizations of phase measurements. (a) Canonical phase measurement (CAN). (b)
Heterodyne detection (HET). (c) Adaptive homodyne detection (AHD). A good phase measurement is characterized by Hmn = 1 for all
m, n; see (a). The comparison of (b) and (c) to HCAN in (a) therefore indicates a clear performance advantage of adaptive homodyne
detection over heterodyne measurements for the realization of the logical MX measurement; see the main text for more details.

performance of the different phase measurement schemes
that were presented in Sec. III B for the ideal case of unit
efficiency η = 1 in the measurement chain.

To assess the performance of the error-correction pro-
tocol, we numerically compute the average gate fidelity
[65,66] F of the resulting quantum channel after apply-
ing the most likely logical Pauli correction based on the
maximum likelihood decoder [Eq. (12)].

A. Comparison of measurement schemes

In all cases we classify whether encoding the logical
information and performing error correction by teleporta-
tion is advantageous by computing the average gate fidelity
for a trivial Fock qubit |μ〉triv = |μ〉 (μ = 0, 1) subject to
the same noise channel N without error correction. This

10 20 30 40
ncat

10−1

100

Δ
N

(θ
)

(a)

10 20 30 40
nbin

(b) can
het
ahd

FIG. 5. Comparison of the modular phase uncertainty
�MEAS

N (θ) for order N = 3 number-phase codes and different
realizations of the phase measurements. In (a) for cat codes
and in (b) for bin codes. The continuous lines in (a) emphasize
that cat codes are defined for continuous parameter α (with
α2 = ncat) while markers in (b) emphasize that bin codes are
defined only for discrete values of nbin. Connecting lines in (b)
are a guide for the eye.

yields a break-even point above which the bosonic encod-
ing is not beneficial. We represent the break-even point
by a gray dashed line and shade the region where error
correction is not beneficial in pink in all subsequent fig-
ures. We begin by comparing the error-correction potential
of the telecorrection circuit for different perfectly efficient
(η = 1) realizations of phase measurements. Exemplary
results for order N = 2bin and cat codes and selected
noise strengths κτ are presented in Fig. 6. As observed in
Ref. [16], the results for cat and bin codes are qualita-
tively similar with a small performance advantage for bin
codes. Furthermore, we find that there is a hierarchy in per-
formance between the different realizations of phase mea-
surements. The heterodyne measurement achieves the low-
est average gate fidelity, followed by the adaptive homo-
dyne measurement and the canonical phase measurement.
This hierarchy was anticipated from the discussion in Sec.
III B and Fig. 4 therein. Additionally, for any measurement
scheme and noise strength, there exists a code character-
ized by its average photon number ncode, i.e., a sweet spot,
that maximizes the average gate fidelity. We can formu-
late the main takeaway message from Fig. 6 as follows: by
replacing the canonical phase measurement of the encoded
data qubit with a physically realizable HET measurement,
the break-even potential for RSB codes using error correc-
tion by teleportation (Fig. 2) reduces significantly, while
with AHD measurements the reduction is relatively small.
Nonetheless, using realizable measurement models, RSB
codes can still perform better than break even, even though
this comes at the cost of code words with increased average
photon number ncode in comparison to the results obtained
with CAN measurements. Increasing the code size comes at
the cost of increasing the susceptibility towards nonlinear
coherent error sources, such as self- and cross-Kerr interac-
tions. The effects of those are not included in this numerical
analysis and are beyond the scope of this work.
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FIG. 6. Average gate infidelity for order N = 2bin (top) and cat (bottom) codes as a function of the average code photon number
ncode for different phase measurement schemes. The results are obtained by simulating the telecorrection circuit in Fig. 3 with equal loss
and dephasing strength κτ = κφτ . Columns show results for different amounts of noise κτ before error correction is performed. Error
correction is beneficial whenever the infidelity falls below the dashed line that indicates the break-even point, that is, the performance
of the trivial Fock encoding without error correction. Note the different scaling of the y axis through the columns with different κτ .

To further analyze the break-even potential for realis-
tic measurement models, we compute the average gate
fidelity for different rotation symmetry N . Figure 7 shows
the average gate infidelity 1 − Fopt for the bin code with
the optimal ncode as a function of the total noise strength
κτ = κφτ . We can identify two central points from the
shown results that are qualitatively similar for bin and
cat codes. First, observe that 1 − Fopt drops proportion-
ally to the total noise κτ for sufficiently small values κτ .
Remarkably, the proportionality constant is approximately
the same independently of the concrete realization of the
phase measurement scheme and the functional dependence
only differs by a measurement dependent offset. Second,
the gap between the heterodyne and adaptive homodyne
measurement schemes increases with the order N of the
code. It is unclear whether this trend continues arbitrarily.
However, our analysis is limited to order N ≤ 4 codes due
to the large Fock space needed to reach the required numer-
ical accuracy for N ≥ 5, which makes simulation difficult.
It should be emphasized, however, that Fig. 7 obscures the
fact that the similar scaling and performance of all mea-
surement schemes comes at the cost of larger code states,
as discussed above.

B. Finite detection efficiencies

Up to this point we have limited our numerical analy-
sis to perfectly efficient (η = 1) measurements. However,
the case of finite measurement efficiencies 0 ≤ η < 1 is
relevant in the microwave domain where measurement
efficiencies are typically limited to the range 0.5 ≤ η ≤
0.75 [50–52]. As mentioned above, one might hope that

η can be effectively increased by a cleverly designed
measurement scheme that amplifies the signal prior to
releasing it to the measurement chain. We analyze the
impact of finite measurement efficiencies on the average

10−4

10−3

10−2

10−1

1
−

F o
p
t

Break eve
n

(a)

10−6

10−4

10−2

1
−

F o
p
t

(b)

10−3 10−2 10−1

κτ

10−7

10−5

10−3

10−1

1
−

F o
p
t

(c)

can
het
ahd

FIG. 7. Maximum average gate infidelity as a function of noise
strength κτ for bin codes, and different realizations of the phase
measurement. For each value of κτ , the code with the optimal
average photon number ncode that maximizes 1 − F is chosen.
Panels (a)–(c) show the results for the order N = 2, order N = 3,
and order N = 4 bin codes, respectively.
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gate fidelity for different realizations of the phase measure-
ment for order N = 3 bin codes in the panels of Fig. 8.
In this figure we exemplify our findings for two differ-
ent noise strengths κτ = κφτ = 1 × 10−2 (top row) and
κτ = κφτ = 1 × 10−3 (bottom row). It should be empha-
sized that the observations described below are qualita-
tively similar for all codes and noise strengths that we have
studied. We point out a few observations from Fig. 8 that
are worth mentioning. First, the response to a finite effi-
ciency in the measurement realization for the CAN and AHD
measurements is similar. More importantly, the telecorrec-
tion circuit for RSB codes is not extremely sensitive to
finite efficiencies, that is, for high measurement efficien-
cies (η = 0.9), the average gate fidelity does not reduce
abruptly in comparison to the ideal case (η = 1). However,
by reducing the efficiencies further to values η = 0.75 and
η = 0.5, significant gaps to the ideal case arise, reducing
the break-even potential for approximate number-phase
codes. Nevertheless, it is in principle still possible to reach
break even if the noise rate is low enough; see in par-
ticular the results for HET measurements with η = 0.5 in
Fig. 8(e). The results also highlight a significant poten-
tial for improvement that comes with the development of
advanced phase measurement techniques such as adaptive
homodyne detection over standard heterodyne detection
[cf. Figs. 8(b) and 8(c)] in order to increase the break-even
potential of RSB codes.

The results can be understood qualitatively by realiz-
ing the effect of inefficiencies on the primitive state of
cat codes that is the coherent state |α〉. In that case,
the effect of Eq. (17) is to reduce the amplitude α �→√
ηα of the primitive state without increasing its uncer-

tainty 〈α| (x̂ − 〈x̂〉)2 |α〉 = 1/2. As a result, measurements
with high efficiencies do not alter 1 − F significantly
[67]. Only for large losses in the measurement chain does
this effect become significant, effectively increasing the
modular phase uncertainty �N (θ).

The maximum average gate fidelity at the code sweet
spot for finite-efficiency measurements behaves qualita-
tively similar to the instance with unit efficiency in Fig. 7.
The quantitative difference is a reduction in the break-even
potential. This reduction is small for η = 0.9 and becomes
noticeable for η = 0.75 and η = 0.5.

V. GOTTESMAN-KITAEV-PRESKILL CODES

Another candidate towards fault tolerance with bosonic
codes was developed by Gottesman et al. [3] to pro-
tect against (small) shifts of the phase space variables x
and p . It therefore differs from the RSB codes introduced
above, which are designed to protect against loss, gain,
and dephasing errors. An earlier study has shown a the-
oretical performance advantage of GKP codes over codes
that belong to the RSB class [39] for the case of a pure
loss noise channel. This theoretical advantage motivated

further research towards practical computation with GKP
codes [34,35]. Here, we contribute to these developments
by studying the performance of teleportation-based error
correction with GKP codes using realistic measurement
models and comparing these results with those obtained
in Sec. IV for RSB codes. To assess the performance, we
carry out exact Fock space simulations as well as cal-
culations using an approximate analytical model that is
based on the twirling approximation. This model is com-
monly used for estimating fault-tolerant thresholds of GKP
codes concatenated with stabilizer codes [38,41,42,68,69].
We note that teleportation-based error correction for GKP
codes with the Knill C4/C6 scheme was analyzed in
Ref. [70] using the twirling approximation.

We begin by reviewing relevant notation for GKP codes
before describing the analyzed noise model and error-
correction circuit.

A. Background

The GKP encoding is a continuous-variable stabilizer
code defined via the two commuting stabilizers [3]

Ŝx = ei2
√
π x̂ = Z2, (24a)

Ŝp = e−i2
√
π p̂ = X 2. (24b)

The two stabilizers in Eq. (24) act as translation operators
in phase space so that the ideal code states |0〉gkp (|+〉gkp)
and |1〉gkp (|−〉gkp) become infinite superpositions of posi-
tion (momentum) eigenstates located at even and odd
multiples of

√
π , respectively. That is, the unnormalized

ideal code states take the form

|μ〉gkp =
∞∑

n=−∞

∣∣(2n + μ)
√
π

〉
x (25)

forμ = 0, 1, where |x〉x denotes the position eigenstate sat-
isfying x̂ |x〉x = x |x〉x. The dual-basis code states |±〉gkp
are obtained from Eq. (25) through the Fourier relation
p̂ = exp

{
iπ â†â/2

}
x̂ exp

{−iπ â†â/2
}

[3], that is,

|±〉gkp =
∞∑

n=−∞

∣∣[2n + (1 ± 1)/2]
√
π

〉
p , (26)

where |p〉p denotes a momentum eigenstate. The ideal code
states allow for correcting a continuous set of displace-
ments with shifts of at most

√
π/2 along both quadratures.

These shift errors can be corrected either by Steane-type
or Knill-type error correction through measurement of the
stabilizers and suitable correction operations [3,31]. We
consider Knill-type error correction in the following in
more detail to compare it to the telecorrection circuit used
for arbitrary RSB codes discussed in Sec. III.
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FIG. 8. Average gate infidelity for the telecorrection circuit (Fig. 2) with inefficient measurement models. Before error correction is
applied the initial state is subject to noise of total strength κτ = κφτ = 1 × 10−2 in panels (a)–(c) (top row) and κτ = κφτ = 1 × 10−3

in panels (d)–(f) (bottom row). Each column shows a different realization of the phase measurement. The figure shows the results for
order N = 3 bin codes that are defined only for discrete ncode values. Continuous lines are shown to improve readability. Error
correction with RSB codes is beneficial whenever the infidelity falls below the dashed line that indicates the break-even point.

B. Noise model and error-correction circuit

The ideal GKP code states |μ〉gkp are infinite energy
states and therefore unphysical. In practice, the ideal,
infinitely squeezed code states need to be approximated
by states with finite squeezing. This can be achieved, for
example, by regularizing the code states as [41,71]

|μδ〉gkp ∝ Êδ |μ〉gkp , (27)

where Êδ is an envelope operator that suppresses high-
energy contributions. Here we choose

Êδ = e−δ2(n̂+1/2) (28)

with regularization parameter δ that characterizes the
squeezing of each individual peak. It is noteworthy that
other approximations of GKP states are possible [see Refs.
[3,39,72] and also Eq. (E1) in Appendix E]; however,
these approximations have been shown to be equivalent
to the regularization through the envelope operator in
Eq. (28) [73].

The Knill-type error-correction circuit that we are con-
sidering for GKP codes is shown in Fig. 9. The error-
correction capabilities of this circuit are analogous to that
in Fig. 2 for RSB codes. In order to obtain a logical chan-
nel from the circuit, we must slightly alter the noise model
that was considered in Sec. III for RSB codes. The reason
is that the regularization in Eq. (28) leads to a propaga-
tion of errors through the entangling CZ = exp

(
ix̂1 ⊗ x̂2

)

gate to the output state ρ̂out. To render the resulting chan-
nel logical, we therefore assume that the ancilla states
are regularized only after the CZ gate between them has
been performed. This assumption is made so that we can

compare the results of this section to the previous ones.
For the data rail, the noise model is unchanged, that is,
the simultaneous loss and dephasing channel N acts on
the regularized encoded qubit state Êδ |ψ〉gkp. The logical
MX measurement in this case corresponds to a homodyne
measurement along the p quadrature. Hence, the resulting
output state ρ̂out is given by an expression that is analo-
gous to Eq. (10). The measurement outcome is decoded
by closest-integer decoding, that is, by rounding each of
the measurement results p = (p1, p2) mod 2

√
π to the

nearest integer 0 or 1.

FIG. 9. Teleportation-based error-correction circuit for GKP
codes with the type and location of noise terms we are consid-
ering. We assume that the ancilla states are regularized through
Eδ only after they are entangled through the CZ operation such
that this circuit implements a logical channel of the form Eq.
(10). The regularized input state is then subject to a simultane-
ous loss and dephasing channel N that is obtained from master
equation (16). The measurement model assumes standard homo-
dyne detection and we model finite efficiencies 0 ≤ η ≤ 1 either
by a pure loss channel Lη or by random displacement channel
Nσ that is obtained by concatenating Lη with an amplification
channel AG with gain G = 1/η; see the main text for details.
The recovery map RKnill depends on the measurement outcome
p = (p1, p2); cf. Eq. (10).
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In the spirit of the noise model for RSB codes we model
finite-efficiency (0 < η < 1) homodyne measurements by
a lossy beam splitter before an ideal measurement; see
Eq. (17). Here and in Fig. 9 we denote the loss chan-
nel corresponding to a measurement with efficiency η by
Lη. Because GKP codes are designed to protect against
shift errors, it is common [3,39,42,68] to concatenate the
loss channel Lη with an amplification channel AG with
gain G = 1/η that exactly compensates for the losses and
transforms Lη into a random displacement channel Nσ =
A1/η ◦ Lη with variance σ 2 = (1 − η)/η [40,74], where
Nσ is given by

Nσ (·) = 1
πσ 2

∫
exp

[
−|α|2
σ 2

]
D̂(α) · D̂†(α)d2α. (29)

We compare both of the abovementioned approaches (i.e.,
with and without AG) in Sec. V C.

1. Analytical model through the twirling approximation

Fock space simulations of the error-correction circuit in
Fig. 9 are quickly unmanageable for δ � 1 even though
the average photon number ngkp is relatively small com-
pared to the Fock space truncation Ntrunc required. This can
be understood from the special structure of the code states
|μδ〉gkp in phase space that have peaks far from the origin
and thus require Fock states |n〉 with large n, even though
the peaks have low weight.

To circumvent this issue, an analytical tractable model
can be devised by realizing that the envelope operator
can be expressed in terms of a coherent superposition of
displacements [42,73]. By applying uniformly random dis-
placements, the coherent superposition can be converted
to an incoherent mixture of Gaussian displacements [42].
This conversion is known as state twirling, but it is unphys-
ical as it requires the application of displacements D̂(α)
with infinite energy (α → ∞) [75]. Still, state twirling is
useful for GKP codes to derive an approximate analytic
model as it reduces the problem to tracking the variance
σ 2
gkp of a single Gaussian distribution with zero mean if all

other noise channels can be converted by twirling to ran-
dom displacement channels with variance σ 2

noise as well.
This is the case for typical noise processes such as single-
photon loss and gain, but it is unknown if this is also
possible for the number dephasing channel.

By calculating how the quadrature noise of the data and
ancilla states is transformed by the circuit in Fig. 9, one
finds that the probability for decoding one of the homodyne
measurement outcomes wrongly is given by

Perr(σdata, σanci) = 1 − psucc(σdata)psucc(σanci), (30)

where the individual success probabilities psucc(σ ) are
given by

psucc(σ ) = 1√
2πσ 2

∑

n∈Z

∫ (2n+1/2)
√
π

(2n−1/2)
√
π

e−z2/2σ 2
dz. (31)

In the presence of other noise channels that are charac-
terized by a Gaussian probability distribution the effective
variance can be calculated as σ 2

eff = ∑
i∈I σ

2
i with I a set

of indices that represents all possible noise sources. In
particular, for the model in Fig. 9, we obtain

σ 2
eff,data = 1

2
(δ2

data + δ2
anci)+ 1 − η

η
, (32a)

σ 2
eff,anci = 1

2
(δ2

data + δ2
anci), (32b)

where the factor 1/2 appears due to the relation δ2 = 2σ 2
gkp

and the last term in Eq. (32a) is the result of modeling
the finite efficiency measurements by a random displace-
ment channel before the ideal homodyne measurement.
For more details, see, e.g., Refs. [32,42,68,76].

C. Numerical results

In this section we present our numerical results for the
noise model and error-correction circuit described in Sec.
V B and compare them to the analytical results obtained
through the twirling approximation if applicable. To this
end, we numerically compute the entanglement fidelity
FE [77] while assuming perfect encoding and decoding
of the logical information, as defined in Sec. III A. How-
ever, note that, for a d-level system, FE and F are related
through the relation [65]

F = dFE + 1
d + 1

(33)

with d = 2 for the case of the logical qubit-to-qubit chan-
nel considered here, so that a quantitative comparison is
possible. Furthermore, it can be shown (see Appendix D
for details) that the logical error probability Perr obtained
from the twirling approximation can be related to the
entanglement fidelity FE , and therefore also to the aver-
age gate fidelity F . Simulation details are described in
Appendix E.

1. Comparison of analytical and numerical results

We begin by considering the case where the only noise
sources are finite squeezing δ and finite measurement effi-
ciency η in order to establish a comparison between the
exact Fock space simulation of the regularized GKP states
and the twirling approximation. The results for this case
are summarized in Fig. 10, which shows the average gate
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FIG. 10. Comparison of the average gate infidelity 1 − F
of the telecorrection circuit in Fig. 9 in the absence of the
loss and dephasing channel N , calculated through numerical
Fock space simulations (filled circles) and through the twirling
approximation (solid lines) as a function of the regularization
parameter δ = δdata = δanci (squeezing �(dB)

gkp ). We show results
for unit-efficiency homodyne detection as well as finite detec-
tion efficiency 0 ≤ η < 1 modeled as a random displacement
channel Nσ = A1/η ◦ Lη; see the main text for details. Addi-
tionally, open circles show 1 − F when finite efficiencies are
modeled by a pure loss channel Lη and the decision boundaries
of the closest-integer decoding are rescaled by

√
η. Numerical

results are obtained with Fock space truncation Ntrunc = 250 that
is sufficient up to δ ≈ 0.225.

infidelity 1 − F as a function of δ = δdata = δanci for vari-
ous measurement efficiencies η. We observe an excellent
agreement between the Fock space simulation and the
twirling approximation for η = 1 up to δ ≈ 0.225 when the
Fock space truncation Ntrunc = 250 becomes insufficient.
This corresponds to a squeezing level of approximately
�
(dB)
gkp = 10 log10(1/2δ

2) ≈ 10 dB. For 0.75 ≤ η ≤ 0.95,
the agreement is reduced with η, but the twirling approxi-
mation still presents a relatively tight upper bound on the
achievable infidelity. Note, however, that, for η = 0.75 and
δ < 0.25, the infidelity 1 − F has almost reached a plateau
since the noise due to the finite efficiency measurement
now dominates.

Our results therefore strengthen the recent results for
fault-tolerance thresholds obtained for GKP-surface codes
in Ref. [32] in the sense that the twirling approximation
results in tight bounds for the achievable physical error
rates if all noise besides the state regularization can be
described by a Gaussian random displacement channel
Nσ . However, our results also indicate that the average
gate infidelity 1 − F , and therefore also the logical error
rate Perr, are highly sensitive to finite measurement effi-
ciencies. For example, a measurement efficiency of 95%
increases the achievable infidelity at δ = 0.25 by an order
of magnitude in comparison to the ideal case η = 1. This
agrees well with the results of Fukui [76], who presented

η ≈ 92.2% as a lower bound on the necessary efficiency
for topologically protected measurement-based quantum
computing with GKP codes.

In Fig. 10 we also show 1 − F for the case when
finite efficiencies are modeled by a pure loss channel
Lη, that is, losses are not compensated through ampli-
fication. This noise model does not admit a description
within the analytical model introduced above and we are
restricted to numerical Fock space simulations. For this
case, we rescale the decision boundaries of the closest-
integer decoding by

√
η to amount for the losses. We

find that this improves the decoding significantly over
the standard decision boundaries. Similar ideas were dis-
cussed in Ref. [68] and are denoted as classical computer
(cc) amplification. We can draw the following conclusions
from Fig. 10. First, our results show that it is not bene-
ficial to perform amplification through a quantum-limited
amplification channel A1/η that exactly compensates for
the losses. The reason is that the photon loss channel Lη
increases the variance of each peak and moves each peak
by a factor

√
η closer to the origin. Effectively, only the

peak variance increases when the decision boundaries are
rescaled. Fukui et al. [68] showed that the noise added
by this procedure is only half as large as that of the ran-
dom displacement channel Nσ = A1/η ◦ Lη, that is, the
effective variance is σ 2

cc = (1 − η)/2η. Indeed, we have
checked that our exact Fock space simulation of a regular-
ized state that is subject to the loss channel Lη before the
ideal homodyne measurement shows excellent agreement
with the results obtained from the twirling approximation
when Lη is modeled by an effective displacement chan-
nel with effective variance σ 2

cc. Furthermore, comparing
Fig. 8 in Sec. IV and Fig. 10 here, our results demonstrate
that GKP codes are much more sensitive to finite detection
efficiencies than RSB codes.

2. Comparison to RSB codes

We now compare the performance of GKP and RSB
subject to the same noise channel N that is obtained by
integrating Eq. (16) and describes simultaneous loss and
dephasing.

We limit our analysis to a single value κτ = 5 × 10−3,
but consider different ratios κ/κφ ∈ {1, 10, 100} because
we find GKP codes to be quite sensitive to photon-number
dephasing. We choose κτ = 5 × 10−3 in order to be able
to resolve some effects of the noise channel for the acces-
sible parameter range δ � 0.225. The results are shown in
Fig. 11.

The results for gkp codes are computed choosing
δdata = δanci and both measurements in Fig. 9 corre-
spond to homodyne measurements. While we are restricted
to �

(dB)
gkp ≈ 10 dB due to computational constraints, we

still reach the up-to-date best fault-tolerance threshold
of �(dB)

gkp ≈ 9.9 dB computed recently in Ref. [32]. We
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FIG. 11. Performance of gkp and bin codes subject to the same initial noise channel described by Eq. (16) with κτ =
5 × 10−3 and different ratios κ/κφ ∈ {1, 10, 100} in panels (a)–(c). Solid lines show results for the respective telecorrection cir-
cuits (Figs. 2 and 9) with unit-efficiency measurements, while dashed lines show the results obtained for a measurement with
efficiency η = 0.95. We consider RSB codes of orders N = 4 and M = 1 for the data and ancilla qubits in Fig. 2, respectively,
and ndata = nanci. The logical X measurements are both realized as AHD measurements. For the gkp code, we set δcode = δanci.
We are limited to ngkp < 10 (�(dB)

gkp ≈ 10 dB) for the Fock space simulation due to numerical constraints. Insets show enlarged
views of this region. Error correction is beneficial whenever the infidelity falls below the dashed line that indicates the break-even
point. The results for bin codes are defined only for discrete values of ncode and we show continuous lines only for improved
readability.

choose an order N = 4 bin code as a representative of
the class of RSB codes for the top rail in Fig. 2. We
choose for the ancilla system an M = 1 cat code as in
Sec. IV, but now with the same photon number as the
data qubit, that is, ndata = nanci. Additionally, we assume
that both measurements are realized as adaptive homodyne
measurements for the RSB code. We show results for unit-
efficiency detectors as well as detectors with efficiency
η = 0.95 and adjust the decision boundaries for the gkp
code as described in Sec. V C 1. We deviate here from the
procedure of Sec. IV in the above described way in order
to create matching conditions for gkp and cat codes.

From Fig. 11(a) we can make the important observation
that gkp codes show worse performance in comparison
to bin codes if the photon dephasing noise is relatively
strong (here κφτ = 5 × 10−3). Thus, even though gkp
codes outperform cat codes under a pure loss channel
[39], this advantage diminishes in the presence of photon-
number dephasing. In Figs. 11(b) and 11(c) we consider
the more optimistic cases with κ/κφ = 10 and κ/κφ = 100
corresponding to κφτ = 5 × 10−4 and κφτ = 5 × 10−5,
respectively. In these cases, gkp codes always outperform
bin codes when comparing them at the same average
photon number ncode. It is important to note that RSB
codes typically achieve their optimal performance only
for much larger ncode in comparison to gkp codes. Prac-
tically, this may not be a limiting factor. For example,
cat codes with up to 100 photons have been determin-
istically prepared in experiments [18], while it is still
challenging to prepare gkp codes with more than ten
photons [24,49,78,79].

Another potential advantage of bin codes over gkp
codes becomes apparent when considering measurement

of the data qubit with a finite detection efficiency of η =
0.95 (dashed lines). On the one hand, an inefficiency of
only 5% already leads to a significant performance loss for
gkp codes of roughly an order of magnitude at ncode ≈ 10
in Figs. 11(b) and 11(c). This performance loss prohibits
the gkp code to surpass break even within our simula-
tion constraints (�(dB)

gkp � 10 dB). On the other hand, for
bin codes, the loss of performance is negligible close the
optimal value ncode.

While in Fig. 11 we have considered only a single value
of η �= 1, Fig. 8 contains additional results for bin codes
under a similar noise model, and Fig. 10 contains addi-
tional results for gkp codes in the absence of the noise
channel obtained from Eq. (16). From these results we
expect the gap between gkp and bin codes to widen fur-
ther if η is decreased more towards realistic values, with
gkp codes eventually unable to reach break even for any
ncode, as evident from Fig. 10.

VI. DISCUSSION AND CONCLUSION

In this article we have analyzed the performance of
teleportation-based error-correction circuits for RSB codes
and GKP codes, incorporating finite detection efficiency
in the measurement model. To this end, we have used
exact numerical methods for RSB and GKP codes as well
as an analytical model based on the twirling approxi-
mation for GKP codes. Comparing the performance of
these bosonic codes within the considered noise model,
we have found that RSB codes can outperform GKP codes
either in the presence of photon-number dephasing or finite
measurement efficiencies.
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While fault-tolerant thresholds for bosonic encodings
reported in the literature seem to reach experimentally
feasible squeezing values [32], our study emphasizes the
relevance of incorporating realistic noise models for the
measurement process as well photon-number dephasing in
further studies.

In this sense, our work accompanies previous works
that have considered noisy measurement models for GKP
error-correction schemes, notably Refs. [42,69] for gate-
based computing and Refs. [68,76] for measurement-based
computing. However, the results of Refs. [42,69] assume
that all circuit elements, that is, gates as well as measure-
ments, are comparably noisy. In particular, the thresholds
obtained in Ref. [42] would require measurements with
efficiencies above 99%. Having in mind the currently
achievable measurement efficiencies and the results of our
work that show that the GKP code is sensitive to finite
efficiencies in the measurement, we identify finite mea-
surement efficiencies as a central issue for fault-tolerant
quantum computing with GKP codes. For example, for
topologically protected measurement-based quantum com-
puting that utilizes postselection, Ref. [76] numerically
established a bound on the minimum efficiency η ≈ 92.2%
below which fault-tolerant computation is impossible. We
argue that, for the RSB codes considered here [80], it is
likely that lower measurement efficiencies will be toler-
able in fault-tolerant architectures as the phase measure-
ment is not very sensitive to finite measurement efficien-
cies. A quantitative analysis of this claim is, however,
beyond the scope of this work and is left open for future
study.

We note that our results are not specific with respect to
the analyzed QEC scheme and can be carried over qual-
itatively to, for example, concatenated bosonic codes. In
fact, our results for different types of measurements as
well as the influence of measurement inefficiencies apply
qualitatively to any bosonic QEC scheme in which syn-
drome information is extracted utilizing another bosonic
qubit. Examples of such codes are the surface-GKP code
(Ref. [32] for a teleportation-based version and Ref. [42]
for the gate-based version) as well as a foliated version
of the surface code [81–84] in which data and syndrome
qubits are replaced by codes from the class of rotation
symmetric bosonic codes.

We should emphasize that our numerical analysis is still
rather idealistic and focuses mostly on the issue of realis-
tic implementations of the phase measurement, restricted
to the system that hosts the data qubit. Additionally, we
omit a realistic treatment of state preparation errors of the
ancilla mode or errors during the execution of the entan-
gling gates. However, this noise model can be justified
by recognizing that our main goal is to shed light on the
role of different currently available measurement schemes
when decoding the encoded information. Furthermore, our
model of adaptive homodyne measurements used for the

analysis of RSB codes relies on assuming instantaneous
adjustment of the local oscillator phase. Still, previous the-
oretical [64,85] as well as experimental [52] results suggest
that, even with a finite response time, adaptive homodyne
detection will be superior to standard heterodyne detection.

We conclude by listing open questions for future
research in relation to our work. The question to quan-
tify the performance of RSB codes within a fault-tolerant
setting, for example based on Bacon-Shor or topological
stabilizer codes, remains [16]. Another interesting avenue
is to design numerical methods to simulate RSB codes
effectively. On another note, our scheme further illustrates
the need for improved detection schemes in the microwave
regime to overcome the poor measurement efficiencies.
One may be able to perform a phase preserving amplifi-
cation step before releasing the mode to the measurement
chain. Finally, it is also interesting to consider alternative
approaches to perform the phase measurement, e.g., by
using ancillary qubit systems as they are used in schemes
for GKP error correction [49,71,86].
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APPENDIX A: ERROR CORRECTION BY
TELEPORTATION

Error correction by teleportation was put forward by
Knill [44,45] as a means of increasing the tolerated error
probability per gate in fault-tolerant quantum comput-
ing, as well as reducing the resource overhead that typi-
cal error-correction protocols generated. Here, we briefly
recall these ideas as we make considerable use of them in
the main text of the article.

Knill-EC utilizes the conventional quantum teleporta-
tion protocol that is depicted in Fig. 12. In the initial
step a Bell state (|00〉23 + |11〉23)/

√
2 between systems

two and three is created (blue box). Subsequently, using
a controlled-NOT (CNOT) and a Hadamard gate as well as
measurements in the computational basis, a Bell measure-
ment on the input state and system two is performed with
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FIG. 12. Conventional quantum teleportation circuit. In the
initial step a Bell pair is created with qubits two and three
using the Hadamard and CNOT gates (blue box). Then a Bell
measurement between qubits one and two is performed (red
box), teleporting the initial state |ψ〉 to system three up to Pauli
corrections determined by the measurement result {mx, mz}.

outcome {mx, mz} ∈ {0, 1}2 (red box). The Bell measure-
ment teleports the input state |ψ〉1 to the third system up to
a change of the Pauli frame that is known from the mea-
surement result {mx, mz}. However, this can lead to a Pauli
error if either one of the measurement results is erroneous.

To circumvent the issue of Pauli errors due to unreliable
measurements, one can perform the teleportation circuit
(Fig. 12) with encoded qubits, replacing all qubits and
operations by logical ones. If the code belongs to the class
of stabilizer codes, performing the Bell-basis measurement
is equivalent to performing syndrome measurements of the
check matrix [44,45]. From the syndrome e, the change in
the Pauli frame can be determined. In particular, for a code
with good error-detecting or error-correcting properties,
decoding the syndrome e yields a more reliable result of the
Bell-basis measurement and therefore reduces the error of
the teleported state in comparison with the input state. The
underlying principle can be elevated from discrete-variable
encodings to continuous-variable encodings discussed in
the main text, by replacing blocks that encode n physical
qubits into a single logical qubit, with a qubit encoded into
the continuous degrees of freedom of a physical system.

APPENDIX B: ERROR PROPAGATION FOR RSB
CODES

Grimsmo et al. [16] showed that the Kraus operators of
any single-mode quantum channel can be expanded in the
operator basis

Êk(θ) =
{

eiθ n̂â|k| for k < 0,
(â†)|k|e−iθ n̂ for k ≥ 0,

(B1)

with k ∈ Z representing a shift in the photon number, either
upwards (positive) or downwards (negative). It is there-
fore sufficient to know how an error Êk(θ) propagates
through the gates ẐN and CROTNM . Using the fact that
f (n̂)â = âf (n̂ − 1) for any analytic function f (n̂), we find

that

ẐN Êk(θ) = eiπk/N Êk(θ)ẐN , (B2)

that is, the ẐN gate does not amplify errors. Furthermore,
denoting with an additional superscript a or b the mode an
operator acts on, we find that, for the CROT gate,

CROTNM Êa
k (θ) = Êa

k (θ)Ê
b
0

(
kπ
NM

)
CROTNM . (B3)

The rotation error Êb
0(kπ/NM ) on mode b that has origi-

nated from a number-shift error on mode a is small if |k| <
N/2 because in that case the rotation angle |k|π/NM <

π/2M is small with respect to the rotational distance of
|±M 〉.

It is also useful to consider the propagation of number-
shift errors through the unitary dynamics that are generated
by a Hamiltonian that is quadratic in the number operator
n̂ of a single mode, e.g., the Kerr Hamiltonian ĤK = Kn̂2.
The reason is that the Kerr Hamiltonian Ĥχ allows for
implementing the logical phase gate S = diag(1, i) with-
out the need for the teleportation gadget in Eq. (9) [16].
Commuting Êk(θ) through the unitary generated by this
Hamiltonian introduces an additional rotation error [16,39]

eiĤK Êk(θ)

{
e−iKk2

Êk(θ + Kk)eiĤK for k < 0,
e+iKk2

Êk(θ + Kk)eiĤK for k ≥ 0.
(B4)

We touch upon the issue of undesired unitary Kerr evolu-
tion in Sec. III in more detail when we discuss the analyzed
noise model.

APPENDIX C: H AHD
mn FOR ADAPTIVE

HOMODYNE DETECTION

Here we present for completeness the equation that
determines the matrix elements of the HAHD matrix for
adaptive homodyne measurements denoted as the mark II
scheme in Ref. [60]. We do not attempt to reproduce the
derivation, only giving the result, namely,

HAHD
mn =

�m/2�∑

p=0

�n/2�∑

q=0

γm,pγn,qC(n,m)
p ,q , (C1)

where �m/2� denotes the integer part of m/2 and the
coefficient γm,p is given by

γm,p =
√

m!
2p(m − 2p)! p!

. (C2)
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We can only express C(n,m)
p ,q in terms of a MacLaurin series

expansion [60]. It then takes the form

C(n,m)
p ,q =

∞∑

�=0

∞∑

�′=0

(
(n − m)/2
�

) (
(m − n)/2
�′

)
Mp+�,q+�′

(C3)

with

(
α

n

)
=

n∏

k=1

α − k + 1
k

(C4)

the generalized binomial coefficient and the moments M n,m

recursively defined from

Mn,m = nMn−1,m + mMn,m−1

2(n − m)2 + n + m
(C5)

with initial values

Mn,0 = M0,n = 1
(2n + 1)(2n − 1) · · · 1

= 1
(2n + 1)!!

.

(C6)

In practice, we truncate the series expansion for Eq. (C3)
as it converges sufficiently fast. For large n, m, it usually
suffices to truncate the sums at �max = �′

max ≈ max(n, m).

APPENDIX D: EQUIVALENCE OF
ENTANGLEMENT FIDELITY AND LOGICAL

SUCCESS PROBABILITY

We now show the equivalence of entanglement fidelity
and logical error probability for the logical channel arising
from the error correction by teleportation circuit for GKP
codes. Here, we restrict ourselves to the noise model con-
sidered in Sec. V B, but the extension to arbitrary noise
channels should be straightforward if the noise is agnostic
of the explicit code state.

Recall that the entanglement fidelity FE of the error-
correction circuit (Fig. 9) is given by

F = 1
4

∑

a

∑

x
P(x|a)δRx |Pa (D1)

with P(x|a) = Tr[M̂x1 ⊗ M̂x2N (|a〉〈a|)] the conditional
probability that a basis state |a〉 = |a1〉 ⊗ |a2〉 subject to
the noise N (·) is assigned the measurement outcome
x = (x1, x2)

T. The Kronecker delta δRx |Pa is one whenever
the measurement result yields the correct Pauli recovery
operation Rx and zero otherwise.

In the case of closest-integer decoding, the measurement
operators M̂x can be written as

M̂x =
∑

n∈Z

∫ (2n+x+1/2)
√
π

(2n+x−1/2)
√
π

|p〉〈p|dp ≡
∫

S(x)
|p〉〈p|dp ,

(D2)

where the shorthand S(x) for the integration region denotes
the line segments that are associated with the outcome x.

The twirling approximation converts coherent Gaussian
shifts into incoherent Gaussian shifts so that the logical
state takes the form [42]

ψ̂δ ∝ Nσgkp(|ψ〉〈ψ |gkp)

=
∫

e−(s2+t2)/2σ 2
gkpeisx̂e−itp̂ |ψ〉〈ψ |gkpeitp̂ e−isx̂ dsdt

2πσ 2
gkp

,

(D3)

where we have used Eq. (29) and α = (1/
√

2)(t + is).
Intuitively, the twirling approximation results in a grid
state where every peak is a physical state with the incon-
venience that there are still an infinite number of peaks so
that ψ̂δ still cannot be normalized. To avoid this issue, let
us consider for now a superposition of finitely many states
and take the appropriate limit to infinity at the end, that is,
we express the logical dual-basis code states as

|±〉gkp = lim
Nmax→∞

Nmax∑

n=−Nmax

∣∣p±
n = [2n + (1 ± 1)/2]

√
π

〉
p√

2Nmax
,

(D4)

where |p〉p denotes a momentum eigenstate.
Having established the necessary definitions, we are

now in the position to show that within the twirling
approximation the entanglement fidelity FE and the logical
success probability Psucc(σ ) = 1 − Perr(σ ) coincide. First,
note that P(x|a) factorizes in the case of independent noise,
i.e.,

P(x|a) = Tr1[Mx1N (|a1〉〈a1|)]Tr2[Mx2N (|a2〉〈a2|)].
(D5)

Performing the integrals one derives the expressions for
Tri[MxiNσi(|ai〉〈ai|)] by inserting definitions (D2)–(D4),
e.g.,
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Tr[M̂+Nσgkp(|+〉〈+|)] =
∫

S(+)
〈p|Nσgkp(|+〉〈+|gkp) |p〉 dp

= lim
Nmax→∞

1
2Nmax

Nmax∑

n,m=Nmax

∫

S(+)
dp

∫ ∞

−∞
ds

∫ ∞

−∞
dt 〈p| eisx̂e−itp̂ |p+

n 〉〈p+
n |p+

m eitp̂ e−isx̂ |p〉 e−(s2+t2)/2σ 2
gkp

2πσ 2
gkp

= lim
Nmax→∞

1
2Nmax

Nmax∑

n,m=Nmax

∫

S(+)
dp

∫ ∞

−∞

ds√
2πσgkp

e−s2/2σ 2
gkp−(p+

n −p+
m )

2σ 2
gkp/2〈p|p+

n + s〉〈p+
m + s|p〉

= lim
Nmax→∞

1
2Nmax

Nmax∑

n=Nmax

∫

S(+)

dp√
2πσgkp

e−(p+
n −p)2/2σ 2

gkp

= 1√
2πσgkp

∫

S(+)
e−p2/2σ 2

gkpdp , (D6)

where in the last step we have used the shift invariance of the integral to rewrite the 2Nmax different integrals as 2Nmax
identical integrals. Thus, the result becomes independent of the number of peaks considered in Eq. (D4). We then find the
entanglement fidelity

FE = 1
4

∑

a

∑

x
Tr1[Mx1Nσdata(|a1〉〈a1|)]Tr2[Mx2Nσanci(|a2〉〈a2|)]δRx |Pa

= 1
4

∑

sdata,sanci∈{+,−}
Tr1[MsdataNσdata(|sdata〉〈sdata|)]Tr2[MsanciNσanci(|sanci〉〈sanci|)]

= 1
2πσdataσanci

( ∫

S(+)
e−p2

1 /2σ
2
datadp1

)( ∫

S(+)
e−p2

2 /2σ
2
ancidp2

)

= psucc(σdata)psucc(σanci), (D7)

where we have used the fact that the Kronecker delta
removes one of the sums as there exists only one cor-
rect recovery operation for each initial state. This works
because the noise structure assures that the probability
of choosing the correct recovery operation is always at
least as probable as choosing another recovery operation.
Thus, the entanglement fidelity is equivalent to the logical
success probability when the logical states are described
within the twirling approximation and any other noise
source can be transformed into a random displacement
channel Nσ with variance σ 2.

APPENDIX E: DETAILS ON THE NUMERICAL
IMPLEMENTATION

Our overall numerical implementation builds upon sev-
eral software packages for PYTHON [87–91] as well as
the JULIA [92] programming language. The code for RSB
codes is built upon Ref. [16] that can be found on
GitHub [93].

1. GKP simulation

Numerically, we create regularized GKP states |μδ〉gkp
∝ exp

[−δ2(n̂ + 1/2)
] |μ〉gkp through the equivalence

relation to a weighted sum of squeezed displaced states
given in Ref. [73] that reads

|μδ〉 ∝
∑

s∈Z

e−(π/2)(2s+μ)2 tanh δ2
D̂[(2s + μ)

√
π ]

× Ŝ(− ln
√

sinh δ2 cosh δ2) |0〉 , (E1)

where D̂(α) = exp
(
αâ† − α∗â

)
and Ŝ(r) = exp

[r(â†2 − â2)/2] are the displacement and squeezing opera-
tors, respectively.

For a large truncation in Fock space, the CZ gate for GKP
codes becomes unwieldy to compute through the direct
matrix exponential because the resulting operator is not
sparse. It is useful to note the following decomposition of
the CZ gate [94]:

CZ(s) = BS(θ)[Ŝ1(r)⊗ Ŝ2(r)]BS(θ − π/2) (E2)

with s = 2 sinh r, cos θ = (1 + e2r)−1/2, and BS(θ) =
exp[iθ(â†

1â2 + â†
2â1)] a beam splitter between the two

modes. This representation is useful because the Fock
space representation of the beam splitter can be computed
efficiently with methods for sparse matrices.
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Finally, the measurement basis for the closest-integer
decoding is constructed by expressing the projector |x〉〈x|
in the Fock basis as

|x〉〈x| =
∞∑

n,m=0

e−x2

√
2n+mπn! m!

Hn(x)Hm(x)|n〉〈m| (E3)

with Hn(x) the nth Hermite polynomial. Using numeri-
cal integration, we construct the operators M̂x [Eq. (D2)]
successively from the Fock basis elements |n〉〈m| until a
desired accuracy is reached.
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