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Magic (nonstabilizerness) is a necessary but “expensive” kind of “fuel” to drive universal fault-tolerant
quantum computation. To properly study and characterize the origin of quantum “complexity” in compu-
tation as well as physics, it is crucial to develop a rigorous understanding of the quantification of magic.
Previous studies of magic mostly focused on small systems and largely relied on the discrete Wigner
formalism (which is only well behaved in odd prime power dimensions). Here we present an initiatory
study of the magic of genuinely many-body quantum states that may be strongly entangled, with focus
on the important case of many qubits, at a quantitative level. We first address the basic question of how
“magical” a many-body state can be, and show that the maximum magic of an n-qubit state is essentially
n, simultaneously for a range of “good” magic measures. As a corollary, the resource theory of magic has
asymptotic golden currency states. We then show that, in fact, almost all n-qubit pure states have magic
of nearly n. In the quest for explicit, scalable cases of highly entangled states whose magic can be under-
stood, we connect the magic of hypergraph states with the second-order nonlinearity of their underlying
Boolean functions. Next, we go on and investigate many-body magic in practical and physical contexts.
We first consider a variant of measurement-based quantum computation where the client is restricted to
Pauli measurements, in which magic is a necessary feature of the initial “resource” state. We show that
n-qubit states with nearly n magic, or indeed almost all states, cannot supply nontrivial speedups over
classical computers. We then present an example of analyzing the magic of “natural” condensed matter
systems of physical interest. We apply the Boolean function techniques to derive explicit bounds on the
magic of certain representative two-dimensional symmetry-protected topological states, and comment on
possible further connections between magic and the quantum complexity of phases of matter.
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I. INTRODUCTION

The Clifford group and the closely associated stabilizer
formalism [1,2] are a central notion in quantum computa-
tion and many related areas. The Clifford group on n qubits
is defined as the normalizer of the n-qubit Pauli (aka dis-
crete Weyl) group, and can be generated by the Hadamard
gate, the π/4-phase gate, and the controlled-NOT gate.
Then the quantum states that can be prepared by acting
Clifford operations on a canonical trivial state are called
stabilizer states. The celebrated Gottesman-Knill theorem
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[2,3] indicates that a quantum computation with only Clif-
ford or stabilizer components, despite being capable of
generating as much entanglement as possible and exhibit-
ing very rich structures, can be efficiently simulated by a
classical computer. In other words, nonstabilizer features
are needed in order to enable universal quantum com-
putation and achieve the desired quantum computational
advantages. Moreover, the Clifford operations are gener-
ally considered relatively cheap in fault-tolerant quantum
computation by virtue of the widely studied stabilizer
quantum error correction codes [1,4,5], which are gen-
erated by Clifford operations themselves. All in all, the
nonstabilizerness, commonly referred to as “magic,” rep-
resents a particular key resource for quantum computation,
both from a fundamental and a practical point of view. A
rigorous, quantitative understanding of magic would play
key roles in the study of quantum computation and com-
plexity in many ways. For example, a direction of great
recent interest is to link magic measures to the costs of
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classical simulation algorithms [6–11]. Indeed, the quan-
tification of other important quantum resource features
such as entanglement [12,13] and coherence [14,15] has
been a characteristic research line of quantum information,
which help understand and characterize “quantumness” in
various scenarios.

Previous studies on magic measures (e.g., Refs. [4,6–
11,16–19]) largely focused on small or weakly correlated
systems. Little is known about magic in entangled many-
body systems. In particular, the number of stabilizer states
grows very rapidly and their geometric structures become
highly complicated as one increases the size of the system,
which makes the calculation or even numerical analy-
sis of magic measures on large states difficult in general.
Some fundamental mathematical questions that we would
like to understand include the following. How “magical”
can many-body quantum states be? How much magic do
generic states typically contain? How can we calculate the
magic of many-body states? Moreover, much of our exist-
ing understanding on magic relies on the discrete Wigner
formalism [20,21] (see, e.g., Refs. [4,9,18,22]), which is
easier to deal with and allows for simple magic measures,
but usually only well defined and connected to the magic
theory for qudits of odd prime dimensions. Given the clear
importance of qubit systems, we would like to have a
systematic general theory of magic.

Another important motivation comes from a physics
perspective. A theme of many-body physics is to char-
acterize or classify different phases of matter according
to their physical features such as symmetry, magnetism,
or superconductivity, through certain order parameters.
A new perspective that has drawn great interest is to
investigate the “quantum complexity” of phases, which
is encoded in, e.g., the cost of probing or simulating
them and their computational power. Important relevant
topics include, among others, the computational univer-
sality in measurement-based quantum computing (MBQC)
[23–26], sign problems for Monte Carlo methods (see,
e.g., Refs. [27–29]), etc. Can we find some “order parame-
ters” to probe these computation-related features of many-
body systems? Given the fundamental connection between
magic and quantum computation, exploring the roles of
many-body magic would be a promising direction to go.

In this work, we investigate magic in general many-
body quantum systems at a quantitative level from both
mathematical and physical perspectives. We first give a
systematic introduction of magic measures induced from
general resource theories, and discuss their relations with
several other known magic measures. Importantly, we give
an argument about a range of “good” resource measures,
showing that any measure that satisfies certain consistency
conditions in terms of state transformation is sandwiched
in between the min-relative entropy of resource and the
free robustness. That is, the min-relative entropy of magic
and the free robustness of magic are in some sense the

“extremes” of the family of (suitably regularized) magic
measures. We show that the roof values of such consis-
tent magic measures on an n-qubit state are essentially n,
implying that the resource theory of magic has asymptotic
currency states that play important roles in the study of
resource manipulation. We also show that the magic mea-
sures typically take value very close to n on an n-qubit
pure state, which resembles the situation of entanglement
(the well-known Page’s theorem and its variants [30–34]).
Then, we turn to the quest for explicit methods for ana-
lyzing the many-body magic of certain states. In this work
we consider the family of hypergraph states [35], which
are widely relevant in MBQC [36–38], quantum error cor-
rection [39,40], quantum many-body physics [36,41], etc.
As will be discussed in more detail, hypergraph states con-
stitute a natural and rich class of magic states generated
by Ck−1Z (multi-controlled-Z) gates, which are diagonal
gates in the kth level of the Clifford hierarchy (the first
two levels of which constitute the Clifford group) [42,43]
closely associated with degree-k Boolean functions. We
find that the magic of hypergraph states can be understood
by analyzing the second-order nonlinearity of their under-
lying Boolean functions or Reed-Muller codes (which is a
problem of great interest also in coding theory and cryptog-
raphy), thus establishing connections between many-body
magic, Boolean function analysis, and coding theory. Next,
we make some observations about many-body magic in
regard to quantum computation and condensed matter
physics. First, the quantum computational power of many-
body states manifests itself in the MBQC [23,24] setting,
one of the standard models of quantum computation. Here
we suggest considering a practical variant of MBQC that
we call Pauli MBQC, where the client is allowed to make
Pauli measurements only and thus the magic of the quan-
tum computation is completely supplied by the resource
state prepared offline. We show that many-body states with
nearly n magic, and indeed almost all states, cannot sup-
port universal quantum computation, or even nontrivial
speedups over classical computers. That is, akin to the sit-
uation that most states are too entangled to be useful for
conventional MBQC [44,45], here, most states are “too
magical” to be useful in the Pauli MBQC model, which
highlights the curious phenomenon that the computational
power is not simply determined by the amount of compu-
tational resource. This is a no-go result in the high-magic
regime, and eventually we would like to find more fine-
grained relations between magic and computational power.
Then, we take a first look at the magic of many-body sys-
tems of interest in condensed matter physics, extending the
efforts of applying resource theory to physics in the con-
texts of, e.g., thermodynamics (see, e.g., Ref. [46]) and
asymmetry (see, e.g., Refs. [47,48]). A particularly inter-
esting case that we focus on is the symmetry-protected
topological (SPT) phases, where magic is expected to be
a key physical feature, especially beyond one dimension
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[36,49]. As a demonstration, we employ the Boolean func-
tion techniques to derive explicit bounds on the magic
of certain representative SPT ground states defined on
different two-dimensional (2D) lattices, based on their
hypergraph state form. A general conclusion is that the
magic of such SPT states is rather weak compared to typ-
ical entangled states (although generically necessary and
robust [49]), which goes hand in hand with their short-
range entangled feature, and is consistent with the Pauli
MBQC universality known for certain cases. Lastly, we
discuss possible further relations of many-body magic and
the many facets of the quantum complexity of phases of
matter. We hope to raise further interest in the characteri-
zation and application of many-body magic in condensed
matter physics, and stimulate further explorations into the
connections between quantum computation, complexity,
and physics. (The quantitative behavior of magic in differ-
ent many-body systems of physical interest was recently
independently investigated in Refs. [50,51].)

II. MAGIC: RESOURCE THEORY AND
MEASURES

Here we review the magic measures we mainly con-
sider in this paper, which are rooted in the resource theory
framework, and summarize their relations with other use-
ful measures studied in the literature.

We first formally define the notation. The Clifford group
on n-qubits Cn is defined as the normalizer of the n-qubit
Pauli group Pn composed of tensor products of I , X , Y, Z
on n qubits with phases ±1, ±i:

Cn = {U : UWU† ∈ Pn for all W ∈ Pn}.

Then the pure stabilizer states are generated by Clifford
group elements acting on the trivial computational basis
state |0〉⊗n. We denote by STAB the convex hull of all sta-
bilizer states, whose extreme points are precisely the pure
stabilizer states. Also, denote by S the set of all states.
Then, STAB is a convex polytope inside S , in dimension
4n − 1 and with 2�(n

2) vertices, for n qubits. It is a highly
symmetric object, with the Clifford group acting multiply
transitively on the vertex set.

The Gottesman-Knill theorem [2,3] provides motiva-
tions for understanding the quantum computation advan-
tages through the resource theory of magic [4], where the
stabilizer polytope STAB is considered to be the set of free
states, as speedups over classical computers require states
outside STAB. The set of free operations relevant in this
work is the set of all STAB-preserving or, equivalently,
magic nongenerating operations, which is the maximal
set of free operations that strictly contain several other
choices studied before, including stabilizer protocols [4]
and completely STAB-preserving operations [10,11,52].

A central task in resource theories is the quantification
of resource through resource measures. From the metathe-
ory of general resource theories, we have straightaway
the following important measures of magic that satisfy
fundamental properties such as monotonicity under free
(STAB-preserving, which include Clifford) operations,
faithfulness, etc.

(a) Min-relative entropy of magic:

Dmin(ρ) = min
σ∈STAB

Dmin(ρ‖σ)

with the min-relative entropy Dmin(ρ‖σ) := − log
Tr�ρσ , where �ρ is the projector onto the sup-
port of ρ. For a pure state |ψ〉, Dmin(ψ) =
− log maxφ∈STAB |〈ψ |φ〉|2.

(b) Max-relative entropy of magic:

Dmax(ρ) = min
σ∈STAB

Dmax(ρ‖σ)

with the max-relative entropy Dmax(ρ‖σ) := log
min{λ : ρ ≤ λσ }, where the matrix inequality ρ ≤
λσ means that λσ − ρ is positive semidefinite. This
measure is also known as log-generalized robust-
ness, Dmax(ρ) = log(1 + Rg(ρ)), where

Rg(ρ) = min s ≥ 0 such that

ρ ∈ (1+s)STAB − sS .

Here the subscript “g” is a label for “general-
ized robustness,” signifying its difference with the
free-robustness measure that will also be discussed.

(c) Free robustness of magic:

R(ρ) = min s ≥ 0 such that

ρ ∈ (1+s)STAB − s STAB.

The log-free robustness is LR(ρ) = log[1 + R(ρ)].

We now provide some general intuitions for these mea-
sures. Note that Dmin, Dmax are both divergences that
characterize the “distance” between two states in a cer-
tain sense, so Dmin, Dmax measure the minimum such
distances to the set of free states (STAB). In particular,
roughly speaking, Dmin, Dmax respectively correspond to
the minimum and maximum “extremes” of the widely
studied family of quantum Rényi relative entropies (see,
e.g., Refs. [53,54] for more comprehensive discussions
on quantum Rényi relative entropies). Moreover, the
robustness-type measures Dmax and LR are intuitively
related to the amount of “noise” needed to erase the
resource (magic) upon mixture, where Dmax considers all
possible noise states and LR considers free noise states
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(from STAB). Operationally, these measures and their vari-
ants play fundamental roles in the characterization of the
rates of resource conversion, in the practical one-shot
(finite resource) setting [17,55]. It is worth noting that the
theory of magic is a particularly interesting one where
these three types of measures are all nontrivially defined
and inequivalent at the same time, in contrast to many
other important resource theories (for example, in coher-
ence theory, LR is not even finite [56], and in bipartite
entanglement theory, Dmax and LR coincide [57,58]).

Note that, for any state ρ, it holds that

Dmin(ρ) ≤ Dmax(ρ) ≤ LR(ρ). (1)

In Appendix A, we give an argument supporting that
“good” resource (magic) measures satisfying certain con-
sistency conditions induced from state transformability are
sandwiched between the min-relative entropy of resource
(Dmin) and the free robustness (LR). In the following,
when we say a magic measure f is “consistent,” we mean
that Dmin ≤ f ≤ LR.

These measures have close relations with several other
recently studied important magic measures arising from
various contexts.

(a) Stabilizer extent [7]: the stabilizer extent for pure
stateψ is defined as ξ(ψ) := min(

∑ |cφ|)2 such that
|ψ〉= ∑

φ∈STAB cφ|φ〉. It holds that ξ(ψ)= 2Dmax(ψ)

= 1 + Rg(ψ). Note that, for general states including
mixed ones, we have the convex roof extension of
stabilizer extent and the dyadic negativity [11], both
of which reduce to ξ on pure states.

(b) Stabilizer fidelity [7]: the stabilizer fidelity for pure
state ψ is defined as F(ψ) := maxφ∈STAB |〈ψ |φ〉|2.
It holds that F(ψ) = 2−Dmin(ψ).

(c) Stabilizer rank [6,7,59]: for pure state ψ , the
exact stabilizer rank is defined as χ(ψ) := min k ∈
N such that |ψ〉 = ∑k

i=1 ci|φi〉,φi ∈ STAB, and the
approximate or “smooth” version is given by
χε(ψ) := minχ(ψ ′) such that ‖ψ − ψ ′‖ ≤ δ. We
have the bound χε(ψ) ≤ 1 + ξ(ψ)/ε2 = 1 +
2Dmax(ρ)/ε2.

(d) Wigner negativity and mana [4,60]: for state ρ

in odd prime power dimensions, we can define
magic measures such as mana M (ρ) based on the
negative values of the discrete Wigner representa-
tion. We have the bound M (ρ) ≤ LR(ρ)+ 1. See
Appendix B for detailed definitions and proofs.

In the present paper, we focus on multiqubit systems, but it
is worth noting that the Pauli group, and thus the Clifford
group as its normalizer, generalize to arbitrary local dimen-
sion d, the theory being algebraically most satisfying if d
is a prime power. The appendix includes some considera-
tions for odd prime power dimensions. In odd dimensions,

a necessary (but for mixed states not sufficient) condition
for a state being in STAB is that it has a non-negative
discrete Wigner function [21,22]. The so-called mana mea-
sures how much negativity the Wigner function has [4].
Building on this, the so-called thauma measures [18] are
also defined by minimum divergences (such as the max-
and min-relative entropies above), but for odd prime power
dimensions, relative to positive semidefinite matrices with
non-negative discrete Wigner function.

III. BEHAVIORS OF MAGIC MEASURES

As noted, the behaviors of magic measures on gen-
eral, entangled many-body states is little understood. The
most fundamental questions are about their roof and typi-
cal values, which we now study. It is easy to see that the
maximum value of the min- and max-relative entropies
of magic over product states (and indeed over all fully
separable states) is

Dmax(SEP) = Dmin(SEP) = [log(3 −
√

3)]n ≈ 0.34n,

attained on the tensor product of the “golden state” G =
1
2 [I + (X + Y + Z)/

√
3)] [17], due to weak additivity.

Note that these measures carry fundamental operational
interpretations in terms of value in transformations. How
large can they get when we consider general states?

First, observe that the value of Dmax or log-generalized
robustness (and so of all entropic measures) is capped at n.

Theorem 1. On an n-qubit system, maxρ Dmax(ρ) ≤ n.

Proof. The generalized robustness of magic is upper
bounded by the generalized robustness of coherence, since
STAB contains all diagonal density matrices. The maxi-
mum value of the log-generalized robustness of coherence
is n [56]. �

The free robustness could in general be much larger than
the generalized robustness or even infinite (e.g., in coher-
ence theory). But here we find that LR is virtually also
bounded above by n.

Theorem 2. For any n-qubit state ρ, R(ρ) ≤ √
2n(2n + 1).

Therefore, maxρ LR(ρ) ≤ n + 2−n−1.

Proof. The free robustness is a linear program (LP),

1 + R(ρ) = min
∑

|cφ| such that ρ =
∑

φ∈STAB

cφφ,

(2)
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where the cφ are real coefficients. Its dual LP is well
known, i.e.,

1 + R(ρ) = max Tr ρA such that | TrφA| ≤ 1

for all φ ∈ STAB, (3)

where the maximum runs over Hermitian matrices A. Thus,

max
ρ

1 + R(ρ) = max ‖A‖ such that | TrφA| ≤ 1

for all φ ∈ STAB, (4)

where ‖ · ‖ denotes the operator (spectral) norm. We
expand A in the Pauli basis, A = ∑

P αPP, so that

‖A‖2 ≤ Tr A2 = 2n
∑

P

α2
P. (5)

On the other hand, a pure stabilizer state φ is given by an
Abelian subgroup G of the Pauli group that does not con-
tain −1 or indeed any other scalars except 1, of maximum
cardinality 2n, and a character χ : G → ±1:

φ = 2−n
(

1 +
∑

P∈G\1
χ(P)P

)

. (6)

Thus, for a dual feasible A,

TrφA = α1 +
∑

P∈G\1
χ(P)αP ≤ 1. (7)

Now note that [
√

1/2nχ(P)]P,χ is a unitary matrix, and so

∑

P∈G

α2
P = 2−n

∑

χ

( ∑

P∈G

χ(P)αP

)2

≤ 1, (8)

because of Eq. (7).
Now, we use the fact [61] that the Pauli group mod-

ulo phases is a union of 2n + 1 stabilizer subgroups that
intersect only in the identity: P̃n \ 1 = ⋃2n

j =0 Gj \ 1. This
allows us to obtain from the last equation, by summing
over j ,

∑

P

α2
P ≤ (2n + 1)α2

1 +
∑

P =1

α2
P

=
2n

∑

j =0

∑

P∈Gj

α2
P

≤ 2n + 1. (9)

Together with Eq. (5), we obtain ‖A‖2 ≤ 2n(2n + 1), con-
cluding the proof. �

Remark. Observe that in the proof we did not actually
use the set of all stabilizer states, only the 2n(2n + 1) states
from a complete set of mutually unbiased bases. An anony-
mous referee of an earlier version of this paper has pointed
out that the above result holds in fact more generally for
the free robustness with respect to any complex projective
2-design (recall that a complete set of mutually unbiased
bases is an instance of that), and that a simpler proof can
be given.

Indeed, consider any Hermitian A satisfying the con-
straints of dual program (3) for all φ ∈ D, where D is
the 2-design, coming with a probability distribution p(φ).
Then,

1 ≥
∑

φ∈D
p(φ)Tr(|φ〉〈φ|⊗2A⊗2)

= 2
2n(2n + 1)

Tr�symA⊗2

= 1
2n(2n + 1)

Tr(1 + S)A⊗2

= 1
2n(2n + 1)

[(Tr A)2 + Tr A2], (10)

where �sym is the projector onto the symmetric subspace
and S is the swap operator; the second line follows from
the definition of 2-design, and the last line follows from
the “swap trick,” Tr SA⊗2 = Tr A2. So we have ‖A‖2 ≤
‖A‖2

2 = Tr A2 ≤ 2n(2n + 1), and the rest of the proof is as
above.

Geometrically, this result indicates in a rough sense that
STAB occupies the whole state space quite well, so that
optimizing over all states in the definition of robustness
does not help much as compared to optimizing over STAB
only. While in the resource theory of entanglement, there
are several studies into the relative volume of the separable
states starting with Ref. [62], we are not aware of similar
results for STAB.

Now that the log-generalized robustness and log-free
robustness of an n-qubit state are shown to be upper
bounded essentially by n, as are all other measures of
present interest, we turn to the question of whether there
are highly magical states that approach the upper bounds.
Here, we show that the min-relative entropy of magic (and
thus all entropic measures) of a Haar-random state typ-
ically gets close to n, which means that, in fact, almost
all states achieve nearly maximum values of all consistent
magic measures.

Theorem 3. Let |ψ〉 be a random n-qubit state drawn from
the Haar measure. Then, for any n ≥ 6,

Pr{Dmin(ψ) ≤ γ } < exp(0.54n2 − 2n−γ ). (11)
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This implies that

Pr{Dmin(ψ) < n − 2 log n − 0.63} < exp(−n2). (12)

Proof. This result is a nonasymptotic variant of Claim 2 of
Ref. [7]. Let |φ〉 be any n-qubit state. For Haar random |ψ〉,
the probability density function of α = |〈φ|ψ〉|2 is given
by p(α) = (2n − 1) (1 − α)2

n−2 (see, e.g., Refs. [63–
65]). So the cumulative distribution function is given by
Pr{|〈φ|ψ〉|2 ≥ β} = (1 − β)2

n−1 ≤ exp[−(2n − 1)β].
By the union bound, we have

Pr
{

max
φ∈STAB

|〈φ|ψ〉|2 ≥ ε
}

≤ |STABn| exp(−(2n − 1)ε),

(13)

where |STABn| is the cardinality of the set of n-qubit pure
stabilizer states. It is known [66] that

|STABn| = 2n
n−1∏

k=0

(2n−k + 1). (14)

It can be verified that |STABn| = 2cnn2
with cn mono-

tonically decreasing with n (asymptotically, |STABn| =
2[1/2+o(1)]n2

). Note that c6 ≈ 0.784, so for n ≥ 6, |STABn|
< 20.78n2

. Continuing (13), for n ≥ 6 and ε > 0,

Pr
{

max
φ∈STAB

|〈φ|ψ〉|2 ≥ ε
}
< 20.78n2

exp(−(2n − 1)ε)

< exp(0.54n2 − (2n − 1)ε)

≤ exp(0.54n2 − 2n+log ε).

By the definition of Dmin, the above translates to the
general bound

Pr{Dmin(ψ) ≤ γ } < exp(0.54n2 − 2n−γ ).

In order for the right-hand side to be ≤ exp(−n2), we need
0.54n2 − 2n−γ ≤ −n2, which implies that

γ ≥ n − 2 log n − log(0.54 + 1) > n − 2 log n − 0.63.

This completes the proof. �
Note that we state the result for n ≥ 6, simply because,

for n < 6, it turns out that n − 2 log n − c′
n < 0, where c′

n
is the best corresponding constant emerging from the same
derivation, so that the induced bounds are trivial.

The situation is reminiscent to the well-studied case
of entanglement, where the Haar-random values of cor-
responding measures are nearly maximal [30,33,34,44].
Furthermore, this result readily implies that�(n) constant-
size magic states or gates are needed to synthesize a n-qubit
Haar-random state with overwhelming (> 1 − e−O(n2))

probability, since each of them can only supply constant
magic.

Then an interesting question is when do (approximate)
unitary t-designs generate such nearly maximal magic with
high probability. It was recently shown by Haferkamp et al.
[67] that Õ[t4 log(1/ε)] single-qubit non-Clifford gates
(independent of n) are sufficient to form ε-approximate
unitary t-designs for sufficiently large n. Again, because
each single-qubit gate can only generate constant magic,
this result indicates that approximate designs of order at
least t = �̃(n1/4) (treating ε as a constant) are needed to
guarantee nearly maximal, or indeed even linear magic
(in terms of all consistent magic measures). In light of a
conceptually similar result for entanglement that unitary
designs of order approximately n generate nearly maximal
min-entanglement entropy [33,34], we further conjecture
that unitary O(n)-designs are sufficient to achieve nearly
maximal Dmin. A line of research of great importance
and recent interest in physics is to understand the evolu-
tion of “complexity” in chaotic or “scrambling” physical
dynamics through solvable models such as random quan-
tum circuits composed of random local gates (see, e.g.,
Refs. [68–72]). Combining with the well-known result
that t-designs can be approximated by O(poly(t)) random
gates [73], we expect that all divergence-based measures of
entanglement and magic as probes of complexity become
nearly maximal with O[poly(n)] gates, or O[poly(n)] depth
and time. As an interesting comparison, note that the cir-
cuit complexity, roughly defined as the minimum number
of gates needed to simulate the dynamics, is expected to
grow (linearly) for exponential time (indeed, the Haar mea-
sure has exponential circuit complexity, and relatedly, a
recent result formally links exponential designs to epsilon
nets of the unitary group [74]); see, e.g., Refs. [75–79]
for more detailed discussions on such phenomena and
their physical relevance. To summarize, the saturation of
entropic measures is expected to happen upon convergence
to O(n)-designs that is in the polynomial time regime,
whereas the more refined circuit complexity should grow
for much longer (exponential) time.

A closely related result is the following.

Theorem 4. For any n,

max
ρ∈S(H⊗n

2 )

Dmin(ρ) > n − 2 log n + 0.96. (15)

The bound can be improved to

max
ρ∈S(H⊗n

2 )

Dmin(ρ) > n − 2 log n − log ln 2 + 1 + ε (16)

for any ε > 0, for sufficiently large n. (For any ε > 0, there
exists some N ∈ N such that, for any n ≥ N, the above
bound holds.)
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Proof. Following the derivation of (11) in the proof of
Theorem 3, we obtain

Pr{Dmin(ψ) ≤ γ } < 2cnn2
exp(−2n−γ ), (17)

where cn = log(|STABn|)/n2. Therefore, as long as

γ < n − 2 log n − log(cn ln 2), (18)

it holds that Pr{Dmin(ψ) ≤ γ } < 1 and thus maxψ Dmin
(ψ) > γ . For n ≥ 7, it holds that cn < 0.74, and
thus maxψ Dmin(ψ) > n − 2 log n − log(0.74 ln 2) > n −
2 log n + 0.96. Recall that Dmin(G⊗n) = log(3 − √

3)n �
0.34n, where G = 1

2 [I + (X + Y + Z)/
√

3]. For n < 7, it
can be verified that n − 2 log n + 0.96 < 0.34n holds. So
the first claimed bound follows.

To obtain the second bound for large n, recall that cn =
1/2 + o(1) as n → ∞ [66] and apply it to (18). Substitut-
ing this into (18) leads us to the claimed bound. �

Remark. The feature of STAB used in the proofs of The-
orems 3 and 4 is the number of pure stabilizer states. In
particular, the key message that Dmin > n − O(log n) typ-
ically holds essentially comes from the number of free
pure states being 2poly(n) and can thus be generalized to all
theories with this property.

In conclusion, we see that the maximum values of all
consistent magic measures ( f such that Dmin ≤ f ≤ LR)
are approximately n for n-qubit states. The results poten-
tially have implications on the asymptotic reversibility of
magic state transformations. We say a theory is reversible
if resource states can be transformed back and forth
using the free operations without loss. The main result of
Ref. [80] is that reversibility holds asymptotically, i.e., in
the independent and identically distributed (i.i.d.) limit and
with respect to the transformation rate, for general resource
theories satisfying several natural axioms, if the set of free
operations not only includes all resource nongenerating
operations, but one allows a certain class of approxi-
mately resource nongenerating operations, which is a bit
unsatisfying from a fundamental conceptual point of view.
Indeed, it is recently shown [81] that entanglement theory
with exactly resource nongenerating operations is asymp-
totically irreversible. On the other hand, for example, the
resource theory of coherence under the nongenerating set
(maximal incoherent operations) is already asymptotically
reversible [82]. For magic, our Theorems 2 and 4 imply
the existence of a sequence of asymptotic golden currency
states [17]. By the results in Ref. [17], any resource theory
such that LR(ρn) and Dmin(ρn) are asymptotically equal
to n for some sequence of n-qubit “currency” states ρn is
asymptotically reversible if and only if the two rates of dis-
tillation and of formation, to and from the currency states,
respectively, are asymptotically equal.

Now we comment on the implications to the classi-
cal simulation of quantum computation. An idea that has
drawn considerable interest is to devise classical sim-
ulation algorithms based on the efficient simulation of
stabilizer quantum computation [1,66]. Here, one consid-
ers the general quantum computation model built upon
Clifford operations aided by magic states, which are used,
e.g., to emulate non-Clifford gates by state injection [42]
or as the resource state of Pauli MBQC (see Sec. V).
Since the Clifford part is “cheap,” we are particularly inter-
ested in how the cost of the simulation algorithms depends
on magic and how to optimize it. For example, there
are two leading methods: (i) stabilizer decomposition, for
which the cost depends on the (smooth) stabilizer rank
[6,7,59]; (ii) quasiprobability method based on stabilizer
pseudomixture (also applies to mixed states), for which the
cost depends on the free robustness of magic [8]. Given
the belief that the cost scales at least exponentially on
magic (otherwise, there will be improbable complexity the-
ory consequences), the efforts are devoted to reducing the
exponent. Improvements over the worst-case, brute-force
simulation cost rely on input magic states with special
structures, such as a collection of |T〉 states that admit
low-rank stabilizer decompositions [6,7,59]. The fact that
almost all states must have LR ≈ n and maximal stabilizer
rank (because lower-rank states are only a finite number
of lower-dimensional manifolds, which form a measure-
zero set) tells us that these simulation methods typically
give us no improvement, even in the exponent, over brute-
force simulation. That is, to facilitate even slight quantum
advantage, let alone a significant one, the resource magic
states have to have very special structures. Interestingly,
on the other hand, it turns out the typical magic results also
indicate that most states are not able to supply nontrivial
advantages over classical methods in solving NP problems
in the Pauli MBQC model, despite being difficult to sim-
ulate using classical methods. This will be unraveled in
Sec. V.

IV. HYPERGRAPH STATES AND BOOLEAN
FUNCTIONS

The preceding analysis shows that almost all quantum
states have close to maximal magic, with respect to any
magic measure. But we lack explicit constructions for
highly magical states. Here we go in this direction by
looking at hypergraph states, which are generalizations
of graph states that possess highly flexible entanglement
structures determined by an underlying hypergraph.

We first formally define graph and hypergraph states.
Graph states constitute an important family of many-body
quantum states that plays key roles in various areas of
quantum information, in particular, quantum error correc-
tion and MBQC. Given a graph G = {V, E} defined by a
set of n vertices V and a set of edges E, the corresponding
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n-qubit graph state is given by

|�G〉 :=
∏

i1,i2∈V
{i1,i2}∈E

CZi1i2H⊗n|0〉⊗n, (19)

where CZ and H are respectively the standard controlled-
Z and Hadamard gates. Note that both gates are in the
Clifford group, so graph states are stabilizer states. Con-
versely, it is known that every stabilizer state is equivalent
to a graph state, up to a tensor product of local Clifford
unitaries [83,84]. Graph states thus already exhibit rich
entanglement structures, indeed the same as general stabi-
lizer states, which include most quantum error correcting
codes known. More generally, one can define hypergraph
states [35] based on hypergraphs, where the hyperedges
may contain k ≥ 2 vertices and represent Ck−1Z gates that
acts Z on one of the qubits conditioned on the k − 1 others
being 1. That is, given a hypergraph G̃ = {V, E} defined
by a set of n vertices V and a set of hyperedges E, the
corresponding n-qubit hypergraph state is given by

|�G̃〉 :=
∏

i1,...,ik∈V
{i1,...,ik}∈E

Ck−1Zi1···ik H⊗n|0〉⊗n. (20)

It is important to note that the Ck−1Z gates when k > 2
that are additionally allowed compared to the graph states
are not Clifford gates, and thus may generate magic. [More
precisely, Ck−1Z gates are in the kth level but not the
(k − 1)th level of the Clifford hierarchy [42,43].] Because
of the rich structure of the Ck−1Z gates, the hypergraph
states provide us with a natural, flexible family of many-
body magic states.

An important observation is that the hypergraph (includ-
ing graph) states admit representations in terms of Boolean
functions:

|�〉 = 2−n/2
∑

x∈Z
n
2

(−1)f (x)|x〉. (21)

Here f (x) : Z
n
2 → Z2 is a Boolean function

f (x) =
∑

i1,...,ik∈V
{i1,...,ik}∈E

xi1 · · · xik , (22)

which we call the characteristic function of the hyper-
graph state |�〉. Each f corresponds to a hypergraph state
(modulo a global phase) and there are 22n−1 possibilities
[35]. For a graph state, f (x) = ∑

i1,i2∈V, {i1,i2}∈E xi1xi2 is a
function with only quadratic terms, where each term corre-
sponds to an edge, and there are now only 2(

n
2) possibilities.

Any quadratic characteristic function (which may addi-
tionally include linear terms xi) induces a stabilizer state
because a term xi simply corresponds to a Pauli-Z gate on

the ith qubit. Call such states induced by quadratic char-
acteristic functions quadratic states and denote the set of
quadratic states Q. Quadratic states are graph states with
additional phases. Note that, although the set of quadratic
states does not include all stabilizer states [with additional
local H and P freedom; see Eq. (26)], that is, Q � STAB,
the size of Q is close to that of STAB, both scaling roughly
as 2n2/2 asymptotically.

This formalism allows us to analyze certain magic prop-
erties of hypergraph states through Boolean functions.
Given two hypergraph states |�〉 and |� ′〉 with character-
istic functions f and f ′ respectively, we have

〈�|� ′〉 = 2−n
∑

x∈Z
n
2

(−1)f (x)+f ′(x) = 1 − 21−nwt( f + f ′),

(23)

where wt(f ) denotes the Hamming weight of f , i.e., the
number of 1s in the truth table of f . Therefore, wt( f + f ′)
(also called the Hamming distance between f and f ′)
essentially counts the number of noncollisions between
f and f ′. Here, we are interested in the minimization of
wt( f + f ′) over all quadratic f ′, namely the second-order
nonlinearity or nonquadraticity of f, formally defined as

χ(f ) := min
quadratic f ′wt( f + f ′). (24)

Note that the codewords of the rth order binary Reed-
Muller codes of length 2n, denoted by RM(r, n), are
given by Boolean functions of algebraic degree at most
r on n variables [85]. That is, quadratic functions gener-
ate RM(2, n). The nonquadraticity generalizes the well-
studied nonlinearity of Boolean functions (an associated
key notion is that of a “bent function”), which has impor-
tant applications in cryptography and coding theory (see,
e.g., Refs. [85,86]). This leads to lower bounds on the max-
imum overlap between |�〉 with stabilizer states, because
a quadratic characteristic function induces a stabilizer state
as argued. Using Eq. (23), we obtain the following bound
on Dmin in terms of nonquadraticity:

Dmin(�) ≤ − log max
q∈Q

|〈�|q〉|2 = −2 log(1 − 21−nχ(f )).

(25)

As mentioned, it is known that all stabilizer states can be
generated by single-qubit Clifford gates acting on graph
states (which form a subset of Q) [83,84]. Note that Q
is closed under single-qubit Pauli operators up to global
phases. So any pure stabilizer state |s〉 takes the form

|s〉 =
⊗

i∈I
Pi

⊗

j ∈J
Hj |q〉, (26)

where P, H are respectively the phase gate and the
Hadamard gate, |q〉 ∈ Q is a quadratic state, and I ,J are
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respectively the set of indices of qubits that P, H act on. So,
the interesting question of how tight the inequality in (25)
is, namely how close the maximum overlap with respect to
Q is compared to that with respect to STAB (note that Q
is almost as large as STAB), comes down to the effects of
such local P, H gates. We leave this as an open problem
for future study.

The above technique allows us to obtain bounds on the
magic of generally highly entangled states of arbitrary size,
from the nonquadraticity of Boolean functions. In Sec. VI,
we use this technique to analyze certain physically moti-
vated hypergraph states, which serve as explicit examples.
Also, results on Boolean functions and Reed-Muller codes
lead to several general understandings. The maximum pos-
sible nonquadraticity χ is equivalent to the covering radius
of the second-order Reed-Muller code RM(2, n), denoted
by r(RM(2, n)) [87]. Determining the covering radii for
codes is an important but generally difficult task. For gen-
eral n, there are only bounds known for r(RM(2, n)). The
best upper bound to our knowledge is from Ref. [88],

maxχ(f ) ≡ r(RM(2, n)) ≤ 2n−1 −
√

15
2

2n/2 + O(1).

(27)

Thus, by (25),

Dmin(�) ≤ n − log 15 + o(1). (28)

We learn from this bound that, for any hypergraph state
|�〉, the min-relative entropy of magic Dmin(�) is upper
bounded by n − log 15 ≈ n − 3.9 in the large-n limit. We
also have lower bounds coming from simple covering
arguments [89]:

maxχ(f ) ≥ 2n−1 −
√

ln 2
2

n2n/2 + O(1). (29)

This implies that there exists a hypergraph state |�〉 such
that

− log max
q∈Q

|〈�|q〉|2 ≥ n − 2 log n − log ln 2 + o(1). (30)

Recall that Q and STAB are very similar sets, and that we
believe that the left-hand side is close to Dmin, especially
in the present high-magic regime. This bound is very close
to the Haar-random value in Theorem 3, but unfortunately
is also not constructive. To our knowledge, the Boolean
function with the largest nonquadraticity in the literature is
the modified Welch function (see, e.g., Ref. [90]) defined
as fW(x) = tr(x2r+3), where r = (n + 1)/2, n odd. We
have χ(fW) ≈ 2n−1 − 2(3n−1)/4, so, for the corresponding

hypergraph state �W, it holds that

Dmin(�W) ≤ − log max
q∈Q

|〈�W|q〉|2 ≈ 0.5n. (31)

As a side note, the algebraic degree of fW (and thus the
largest size of the hyperedges of the hypergraph asso-
ciated with �W) is only 3. Although we know that the
typical magic of a random state is close to n, we do not
yet have specific constructions of many-body states with
such high magic. The situation is reminiscent of, e.g.,
the superadditivity of classical capacity [91], which is
shown for certain random ensembles, but no deterministic
construction is known. To conclude, the quantification of
many-body magic provides a new, physical motivation for
further studying the nonquadraticity of Boolean functions,
especially high-degree ones.

V. PAULI MEASUREMENT-BASED QUANTUM
COMPUTATION

MBQC [23,24] is a profound and promising model for
quantum computation, where one prepares a many-body
entangled state offline, and then executes the compu-
tation by a sequence of local measurements adaptively
determined by a classical computer on this resource state.

This model is naturally tied to resource theory as it
essentially formalizes quantum computation as free online
manipulations of a resource state. Standard MBQC only
allows single-qubit measurements, so entanglement among
qubits in the initial state becomes the key resource fea-
ture, and a core line of study is to understand the degree
of entanglement that supports universal quantum compu-
tation (see, e.g., Refs. [44,45,92,93]).

Here we consider a variant where one is restricted to
measuring mutually compatible Pauli observables (includ-
ing multiqubit ones such as X ⊗ X , which cover entangled
measurements, for the greatest generality), which we call
Pauli MBQC. This is desirable both practically and con-
ceptually, in a similar spirit as the well-known magic
state model based on magic state distillation and injec-
tion [42,94]. Clearly, we would like the online procedures
to be as simple as possible for implementation and fault
tolerance; moreover, the “magic” of the computation is
now isolated to offline resource state preparation, which
paves the way for understanding and analyzing the genuine
“quantumness” in MBQC models. (In fact, the magic state
model is a subclass of Pauli MBQC where no entanglement
is required in the input resource state.) As a comparison,
the standard MBQC using cluster states [23,92] requires
online measurements in “magical” bases since cluster
states are stabilizer states, leaving certain computational
nonclassicality in the online part.

More generally, in this Pauli MBQC setting, it is clear
that many-body magic states are necessary to achieve
quantum speedups due to the Gottesman-Knill theorem.
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Known resource states useful for Pauli MBQC include
a certain hypergraph state introduced by Takeuchi et al.
[37], and the Miller-Miyake state [36] (which will be dis-
cussed in the next section). A central question is whether
all magic resource states can supply significant speedups
over classical algorithms, or support universal quantum
computation. In the case of standard MBQC, it is known
that resource states with “too much” entanglement (and
thereby most states) are not useful for quantum speedups
[44,45]. Here we show that similar rules also hold for Pauli
MBQC and magic states, by adapting the arguments in
Ref. [44]. Intuitively, if the resource state is too “magical,”
any Pauli measurement scheme will produce outcomes
that are too uniform across all possible ones so that they
can be well simulated by classical randomness, or, more
precisely, so that the set of witnesses for the problem is suf-
ficiently large to allow for an efficient probabilistic search.
Indeed, the known examples of Pauli MBQC such as
Takeuchi-Morimae-Hayashi [37] and Miller-Miyake [36]
are based on resource states prepared by Clifford+CCZ
circuits with specific structures, which are expected to
have only “medium” magic (∼ cn, where 0 < c < 1); see
Sec. VI. The formal result and proof are as follows.

Theorem 5. Pauli MBQC with any n-qubit resource
state |�〉 with Dmin(�) ≥ n − O(log n) cannot achieve
superpolynomial speedups over BPP machines (classical
randomized algorithms) for problems in NP.

Proof. First note that all Pauli observables have eigenval-
ues ±1, and those defined nontrivially on multiple qubits
(joint measurements) have degenerate eigenstates. Sup-
pose that we measure k (mutually compatible) observables,
labeled Pi, i = 1, . . . , k. The measurement outcome of Pi
is a binary variable yi = ±1, so the collective outcome can
be represented by a bit string y = y1, . . . , yk with 2k pos-
sible values, each of which corresponds to a subspace of
the entire Hilbert space. The probability of obtaining y is
given by

p(y) = Tr(�y |�〉〈�|), (32)

where�y is the projector onto the subspace corresponding
to y. Note that �y takes the form

�y =
2n−k
∑

j =1

|sj ,y〉〈sj ,y |, (33)

where {sj ,y : j = 1, . . . , 2n−k} is an orthogonal basis of
states that are stabilized by {yiPi}, i = 1, . . . , k. There
are 2n−k such stabilizer states because each measurement
halves the dimension. More concisely, measuring a set
of mutually compatible Pauli observables is equivalent to

measuring a partition of the identity composed of stabilizer
codes of the form given by Eq. (33). Therefore, we have

p(y) =
2n−k
∑

j =1

|〈sj |�〉|2 ≤ 2n−k−Dmin(�), (34)

by using standard properties of the trace function and
the definition of Dmin. Suppose that the algorithm suc-
ceeds with probability ≥ 2/3. That is, let G be the set of
strings leading to valid solutions; then

∑
y∈G p(y) ≥ 2/3.

Therefore, the size of G obeys

|G| ≥ 2−n+k+Dmin(�)+1/3. (35)

As a result, one can simulate the above procedure by a clas-
sical randomized algorithm in polynomial time, namely
in BPP. The more specific argument goes as follows. Let
N be the input size of the NP problem. Since the quan-
tum computation is supposed to be efficient, we have
n = poly(N ). One generates k uniformly random bits from
an i.i.d. source and feeds it into the polynomial-time ver-
ifier of the NP problem to see whether it succeeds [this
checking step takes time at most poly(N ) = poly(n)]. If it
fails, generate another random string and check again. The
probability that the algorithm still has not succeeded after
t repetitions satisfies

pf = (1 − |G|/2k)t ≤
(

1 − 2−n+Dmin(�)+1

3

)t

. (36)

So, to achieve success probability ≥ 2/3, namely pf ≤
1/3, the number of repetitions needed satisfies

t ≤ 3 log 3 · 2n−Dmin(�)−1. (37)

When Dmin(�) ≥ n − O(log n), it can be directly seen that
t is upper bounded by poly(n). Multiplying by the check-
ing time, it can be concluded that the total runtime of this
classical simulation is upper bounded by poly(n). �

Combining with results in Sec. III, we see that almost all
states are useless for Pauli MBQC in a strong sense.

Corollary 6. The fraction of states (with respect to the
Haar measure) that can supply nontrivial quantum advan-
tages via Pauli MBQC is exponentially small in n.

We conclude this section by remarking that, as with
many good things, one can have too little and too much
magic to be of any good: indeed, the behavior under Clif-
ford operations of states with “too little” magic can be effi-
ciently simulated classically, ruling out any computational
advantage; while “too much” magic means that the state
may in general be hard to simulate, but its behavior in a
Pauli MBQC protocol is trivial, i.e., essentially random, so
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in this context there is no quantum advantage either. This
highlights that quantum computation requires very delicate
structures or features of quantum systems—although most
of them are hard to simulate classically or contain near-
maximal quantum resource, most of them are also useless.
Only in an intricate intermediate regime can they manifest
a quantum computational advantage.

VI. QUANTUM PHASES OF MATTER

The Clifford group and stabilizer formalism have
become standard notions and tools in recent studies of con-
densed matter physics, but so far there is little discussion
on their physical relevance and the role of magic, espe-
cially at a quantitative level. Here we would like to present
some basic discussions and results on the magic of quan-
tum many-body systems of interest from a phase of matter
perspective, in the hope of stimulating further explorations
in this direction. This section can also be viewed as a
case study of the techniques introduced in Sec. IV for
quantitatively analyzing many-body magic.

Here we consider SPT phases, which have drawn great
interest in the condensed matter community (see, e.g.,
Refs. [95,96] for introductions) and, in particular, been
studied as a useful type of many-body resource states use-
ful for MBQC (see, e.g., Ref. [25] for a review). It has
recently been realized that a wide range of nontrivial SPT
phases in ≥ 2D must contain magic that is “robust” in
a physical sense [49], indicating that magic is a charac-
teristic feature underpinning the physics of such systems.
Here we showcase how to apply the Boolean function tech-
niques introduced in Sec. IV to representative 2D SPT
states. For example, it is known that the Levin-Gu [41]
and Miller-Miyake [36] models have ground states that
are hypergraph states prepared by Clifford+CCZ circuits
defined on corresponding lattices, so that the characteris-
tic functions of these ground states are restricted to cubic
ones, namely third-order Reed-Muller codes RM(3, n). For
concreteness, think about the well-known Levin-Gu state
|�LG〉 [41] defined on the 2D triangular lattice (see Fig. 1),
which takes the form

|�LG〉 = UCCZUCZUZH⊗n|0〉⊗n, (38)

where UCCZ , UCZ , UZ are respectively composed of CCZ,
CZ, Z gates acting on all triangles, edges, and vertices.
More generally, consider third-order hypergraph states

|�̂〉 = UCCZ |�〉, |�〉 ∈ Q, (39)

defined on 2D triangulated lattices (such as the ordinary
triangular lattice and the Union Jack lattice, as depicted
in Fig. 1), where UCCZ represents CCZ gates acting on
all triangles. Note that the Clifford + CCZ preparation
circuits of such states are in the third level of the Clif-
ford hierarchy [42]. Such states are called “Clifford magic

states” in Ref. [7] and are shown to have the property
that the “stabilizer extent,” ξ(�) := min ‖c‖2

1, where c is
the amplitude vector of a decomposition into pure stabi-
lizer states, is equal to 2Dmin(�) due to convex duality. It
is known that the logarithm of the stabilizer extent log ξ
and max-relative entropy monotone Dmax (and thus also
generalized robustness) are equivalent [17,97]. Therefore
we have the collapse property Dmax(�̂) = Dmin(�̂). Using
techniques from Refs. [98,99], we rigorously prove the fol-
lowing crude bounds for the two example lattices (which
hold for both open and periodic boundary conditions).

(a) Triangular lattice: Dmax(�̂) = Dmin(�̂) < 0.56n.
(b) Union Jack lattice: Dmax(�̂) = Dmin(�̂) < 0.46n.

Roughly speaking, our approach is to find proper decom-
positions of the cubic characteristic functions based
on cell structures of the underlying lattices (as illus-
trated in Fig. 1) that allow us to bound its dis-
tance from certain quadratic functions (and thus the
nonquadraticity). See Appendix C for technical details
of the derivation. Note that we expect the above
bounds to be loose, and it can likely be shown that
Dmax(�̂) = Dmin(�̂) ≤ [2 − (2/3) log 6]n � 0.28n for all
regular triangulated lattices (also see Appendix C for
more detailed discussions and probable ways to improve
the bounds), which is achieved by disjoint CCZ gates
(namely, CCZ⊗n/3) because Dmax(CCZ|+ + +〉)/3 =
Dmin(CCZ|+ + +〉)/3 = log(16/9)/3 = 2 − (2/3) log 6
[7]. Also, note that the maximum product-state value
is log(3 − √

3)n ≈ 0.34n, achieved by the product of
qubit golden state 1

2 [I + (X + Y + Z)/
√

3]. So an obser-
vation is that, although the CCZ gates can generate rich
entanglement structures that supply interesting topological
properties, the many-body magic of the corresponding SPT
states is rather weak (likely not even higher than certain
states with no entanglement), despite being generically
necessary and robust [49]. This makes the role of magic

FIG. 1. Two-dimensional triangulated lattices. The shaded
area represents a unit cell, based on which we decompose the
underlying Boolean functions of the systems and derive bounds
on their nonquadracity (details in Appendix C).
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FIG. 2. Extensiveness of magic. After measuring the red ver-
tices by Pauli observables, the system is left with decoupled CCZ
blocks (colored in blue).

more curious. Note that, e.g., the fixed point of the Miller-
Miyake model on the Union Jack lattice [which satisfies
Eq. (39)] is known to be universal for Pauli MBQC [100],
so the bound is consistent with Theorem 5. Nevertheless,
note also that the magic of such many-body states is still
an extensive quantity, i.e., scales with the system size n.
A simple argument is that one can do Pauli measure-
ments on vertices in a periodic manner (Fig. 2 illustrates
the case of the Union Jack lattice; the idea can be gen-
eralized to other regular lattices), which leaves a periodic
array of O(n) uncoupled CCZ blocks, each containing a
certain amount of magic. Note that a characteristic fea-
ture of SPT phases is that they are short-range entangled,
which accords with the rather weak magic. It also indi-
cates that, for SPT phases, the method of calculating the
magic of small lattices and then “scaling up” the results
may help approximate the magic of the whole system well.
For future work, it would be particularly interesting to
look into long-range entangled, intrinsically topologically
ordered systems like topological codes.

We anticipate that the study of many-body magic will
provide a new and useful perspective on characterizing and
classifying quantum phases of matter. Since the family of
hypergraph states can describe very rich many-body entan-
glement structures that underlie the interesting physics of
quantum matter, we expect the Boolean function tech-
niques just introduced to be widely useful. A natural
direction is to further explore the connections between
magic and computational complexity or power of phases
of matter. For example, a direct question following the
above discussions is whether magic can be used to diag-
nose whether a phase is universal for Pauli MBQC, or
more generally certain notions of “quantum computational
phase transitions.” In particular, noting that the above stud-
ied Miller-Miyake and Levin-Gu models are known to be
universal on the Union Jack lattice but likely not univer-
sal on the triangular lattice [25,36], it would be interesting

to further understand what kinds of magic properties (e.g.,
scaling factors, topological and locality features) really
determine the computational power. On the other hand,
magic determines the cost of many standard methods for
preparing and simulating the systems and could plausi-
bly be connected to related problems like the notorious
sign problem in various forms (see, e.g., Refs. [27–29]).
For example, the extensive property directly indicates that
the run time of the quasiprobability sampling algorithm of
Howard and Campbell [8] is exponential. Also, as recently
found in Refs. [50,51], the behaviors of many-body magic
have strong relevance to the phase transitions of certain
important physical systems, indicating that magic could
be a very useful diagnostic in many-body physics. We
finally refer interested readers to Ref. [49], which shows
the necessity and robustness of magic throughout certain
types of ≥ 2D SPT phases, and contains more results and
discussions about magic from condensed matter perspec-
tives, in relation to symmetries, sign problems, MBQC,
and more.

VII. CONCLUDING REMARKS

In this work, we formally studied the magic of many-
body entangled quantum systems from multiple aspects,
and proposed it as a potentially useful probe of many-
body quantum complexity. We found that magic is a
highly nontrivial resource theory with complicated math-
ematical structures, so that the calculation and analysis
of many-body magic measures are in general difficult but
very interesting. Our results indicate an intriguing inter-
play between magic and entanglement worth further study:
although magic and entanglement are disparate notions,
they may be correlated in the highly entangled regime. For
example, we now know that quantum states are typically
almost maximally entangled and magical at the same time,
but do highly magical states have to be highly entangled in
some sense, or vice versa? On a related note, the problem
of explicitly constructing scalable families of nearly max-
imally magical states with respect to any of the measures
we investigated is still wide open.

As is often the case in resource theories, some of the
most interesting quantifiers are hard to compute, and even
their upper and lower bounds may present serious compu-
tational challenges. In the case of magic, the complexity
of calculations scales badly with n because of the expo-
nential growth of the number of stabilizer states (despite
the observation that the free and generalized robustnesses
are respectively linear and semidefinite programs). The
search for easier bounds thus remains highly important.
For certain condensed matter systems, it may be sufficient
to calculate values for small lattices, but the general case
remains to be explored.

With the present work, we hope to raise further interest
in magic in entangled quantum systems, and magic as a
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new approach to many-body physics. Indeed, as discussed
in the paper, many-body magic could be very relevant to
the characterization of quantum complexity of phases of
matter, such as the cost of simulating certain phases and
the computational power of them.
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APPENDIX A: RANGE OF CONSISTENT
RESOURCE MEASURES

The following argument goes some way to justify that
the min-relative entropy and the free robustness in some
sense define a range of consistent resource measures.

Consider a theory with finite free robustness (i.e., satis-
fying condition FFR defined in Ref. [17]), such as magic
theory in which we are interested here. By the definition of
free robustness, there exists a free state δ ∈ F such that

1
1 + R(φ)

φ + R(φ)
1 + R(φ)

δ ∈ F .

Consider the completely positive and trace-preserving map

E(ω) = (Trψω)φ + (1 − Trψω)δ, (A1)

where ψ and φ are pure states. Note that E(ψ) = φ. It can
be verified that if (1 − Trψω)/Trψω ≥ R(φ), that is,

Trψω ≤ 2−LR(φ), (A2)

then E(ω) ∈ F . When Dmin(ψ) ≥ LR(φ), then, for any
ω ∈ F , (A2) holds and thus E(ω) ∈ F . That is, E is a
resource nongenerating operation. To summarize, the con-
dition Dmin(ψ) ≥ LR(φ) implies that there must exist a
resource nongenerating operation that accomplishes the
one-shot transformation ψ → φ.

The consistency argument goes as follows. Pick a stan-
dard reference resource measure fr such as the relative

entropy of resource (or others satisfying Dmin ≤ fr ≤ LR).
It plays the role of fixing a standard normalization in order
to, e.g., avoid ambiguities about constants. Based on this,
consider the following consistency condition of resource
measure f . If the transformationψ → φ by free operations
is possible then

f (ψ) ≥ fr(φ) and fr(ψ) ≥ f (φ). (A3)

If these are not satisfied then f may be regarded inconsis-
tent with the reference measure fr since comparisons with
fr will rule out feasible free transformations.

This consistency condition implies that Dmin ≤ f ≤
LR. Suppose that there exists ψ such that f (ψ) <
Dmin(ψ). Then there must exist some φ such that
f (ψ) < LR(φ) ≤ Dmin(ψ), so ψ → φ is feasible but
f (ψ) < fr(φ), violating the first consistency condition.
Similarly, suppose that there exists ψ ′ such that f (ψ ′) >
LR(ψ ′). Then there must exist some φ′ such that
f (ψ ′) > Dmin(φ

′) ≥ LR(ψ ′), so φ′ → ψ ′ is feasible
but fr(φ′) < f (ψ ′), violating the second consistency
condition.

We also refer readers to Refs. [101,102] for other argu-
ments about ranges of resource measures.

APPENDIX B: WIGNER NEGATIVITY AND
ROBUSTNESS

Here we discuss the relations between computable
magic measures based on Wigner negativity and free
robustness, which have not explicitly appeared in the
literature before.

Consider odd prime power dimension D = dn, for which
the stabilizer formalism in terms of the discrete Wigner
function is well defined. Detailed introductions can be
found in the literature; see, e.g., Ref. [4]. Here we are
interested in the widely used magic measures defined as
follows. Define the phase space point operators as

A0 = 1
dn

∑

u

Tu and Au = TuA0T†
u, (B1)

where the Tu are the discrete Heisenberg-Weyl (general-
ized Pauli) operators

Tu = ω−a1a2/2Za1X a2 , u = (a1, a2) ∈ Zd × Zd, (B2)

where ω = e2π i/d. For composite systems,

T(a1,a2)⊕(b1,b2)⊕···⊕(u1,u2) = T(a1,a2) ⊗ T(b1,b2) ⊗ · · · ⊗ T(u1,u2).
(B3)

Then, for state ρ in dimension D, the corresponding
discrete Wigner quasiprobability representation is given by

Wρ(u) := 1
dn Tr Auρ. (B4)
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It is known that pure stabilizer states are precisely those
pure states that have non-negative Wigner functions (dis-
crete Hudson’s theorem) [21]. This motivates us to use the
negative values of the Wigner functions to measure magic.
Define W to be the set of all real-valued functions v on
phase space points u with the normalization

∑
u v(u) = 1.

This is an affine space containing all Wigner functions Wρ .
In this space, identify the convex cone of non-negative
functions,

W+ := {v ∈ W : for all u, v(u) ≥ 0}, (B5)

which, by definition, contains all non-negative Wigner
functions, in particular those Wσ of mixtures of stabilizer
states σ ∈ STAB.

Definition 7 (Sum negativity). The sum negativity (or
Wigner negativity) of a state ρ is defined as

N (ρ) :=
∑

u:Wρ(u)<0

|Wρ(u)|

= 1
2

( ∑

u

|Wρ(u)| − 1
)

. (B6)

Theorem 8. For all states ρ, N (ρ) ≤ R(ρ).

Proof. The definition of the Wigner negativity is evidently
equivalent to

N (ρ) = min s such that

Wρ = (1 + s)v − sv′, v, v′ ∈ W+.

The optimal functions are v ∝ (Wρ)+ = max{Wρ , 0} and
v′ ∝ (Wρ)− = min{Wρ , 0}.

On the other hand, the definition of the free robustness
is equivalent to

R(ρ) = min s such that

Wρ = (1 + s)Wσ − sWσ ′ , σ , σ ′ ∈ STAB,

because the Wigner function is an isomorphism, so the
above condition is just one way to express ρ = (1 + s)σ −
sσ ′. Since all Wσ , Wσ ′ ∈ W+, the former minimization is a
relaxation of the latter, and hence the claim follows. �

Ref. [4] also defined an additive version of the sum
negativity.

Definition 9 (Mana). The mana of state ρ is defined as
M (ρ) := log[

∑
u |Wρ(u)|] = log[2N (ρ)+ 1].

Corollary 10. For all states ρ, M (ρ) < LR(ρ)+ 1.

Proof. Elementary calculation yields:

M (ρ) = log(2N (ρ)+ 1)

≤ log(2R(ρ)+ 1)

< log(2R(ρ)+ 2)

= LR(ρ)+ 1,

by Theorem 8. �
Therefore, each upper bound on LR also give bounds on

mana.
This positive Wigner simplex contains the stabilizer

polytope and is geometrically simpler, so the associated
measures are easier to compute. Note that Theorem 8.4 of
Ref. [103] gives a lower bound of M in terms of Dmin that
works for small M . In general, can we lower bound M in
terms of other smaller measures associated with STAB?

Also, note that the negativity and free-robustness mea-
sures are related to the runtimes or other costs of
quasiprobability methods of classical simulation [8,60].

APPENDIX C: CLIFFORD + CCZ CIRCUITS,
CUBIC BOOLEAN FUNCTIONS, AND SPT

PHASES

Here we provide technical details and extensive discus-
sions on how to employ coding theory tools to analyze the
magic of Clifford+CCZ circuits of certain structures that
correspond to 2D SPT phases of interest, supplementing
Sec. VI.

Below we simply denote by RM(r, n) the set of degree-r
Boolean functions on n binary variables. Let f ∈ RM(3, n)
be a cubic Boolean function with n variables. Suppose that
there is a set of indices X = {xc1 , . . . , xcs} such that every
cubic term involves one variable from X , that is, f takes
the form

f (x) =
s∑

i=1

xciqi + q, (C1)

where qi ∈ RM(2, n − s) is the quadratic function associ-
ated with xci so that

∑
i∈{1,...,s} xciqi is the cubic part of

f , and q is quadratic (containing linear terms as well).
We call Eq. (C1) an order-s decomposition of f . Given
some quadratic function q = xQxT, let 2hq be the rank of
the symmetric matrix Q + QT. Following the arguments in
Section 4 of Ref. [98], we see that there exists a quadratic
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function q̃ (given in Theorem 3) such that

wt( f + q̃) = 2n−1 −
∑

r∈F
s
2

2
n−s−1−h∑s

i=1 riqi (C2)

≤ 2n−1 −
∑

r∈F
s
2

2n−s−1−∑s
i=1 rihqi (C3)

= 2n−1 − 2n−s−1
s∏

i=1

(1 + 2−hqi ). (C4)

Therefore, given an order-s decomposition of f , for its
nonquadraticity, we have the bound

χ(f ) ≤ 2n−1 − 2n−s−1
s∏

i=1

(1 + 2−hqi ), (C5)

and thus for the corresponding state |�f 〉, we have

Dmax(�f ) = Dmin(�f )

≤ −2 log(1 − 21−nχ(f ))

≤ 2s − 2 log
s∏

i=1

(1 + 2−hqi ), (C6)

by (25).
We now apply the above general technique to hyper-

graph states on 2D triangulated lattices (depicted in Fig. 3)
given by Eq. (39). As we shall see, the decomposition of
the cubic characteristic functions is based on the lattice
structure.

First consider the triangular lattice. As illustrated in
Fig. 3, consider the lattice to be a tiling of unit cells, each
of which is a hexagon (such as the shaded one). Label the
center vertex of each cell as xi, which is involved in six
CCZ gates (cubic terms) with the six boundary vertices

FIG. 3. Two-dimensional triangulated lattices. For each lat-
tice, the shaded area is the unit cell we choose; the red vertex
is the center vertex that only belongs to its cell; the yellow ver-
tices are shared with neighboring cells. The Boolean functions
are decomposed according to the cells.

(xi1, . . . , xi6) of the cell. So the characteristic function can
be expressed as

fTri(x) =
∑

i

xi(xi1xi2 + xi2xi3 + xi3xi4 + xi4xi5

+ xi5xi6 + xi6xi1)+ q,
(C7)

where q is quadratic, with further constraints that each
boundary vertex is shared by three neighboring hexagons,
so the corresponding variables are actually the same.
Also, boundary vertices never serve as a center vertex.
For simplicity, we make the minor assumption that the
lattice is composed of complete cells. If we consider
periodic boundary conditions then, for m cells, there are
6m/3 = 2m boundary vertices in total. Therefore, we have
n = m + 2m = 3m, so Eq. (C7) gives an order-(s = m =
n/3) decomposition. Also, note that qi = xi1xi2 + xi2xi3 +
xi3xi4 + xi4xi5 + xi5xi6 + xi6xi1, so, correspondingly,

Qi =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (C8)

and hence

hqi = 1
2 rank(Qi + QT

i ) = 3. (C9)

Substituting everything into (C4), we obtain

Dmax(�fTri) = Dmin(�fTri)

≤
(

2
3

− 2
3

log
9
8

)

n

� 0.56n. (C10)

For open boundary conditions, the difference is that there
are O(

√
n) boundary vertices that are shared by less than

three cells, which leads to s = n/3 − O(
√

n). As a result,
the bound is modified by −O(

√
n), and (C10) still holds.

For the Union Jack lattice, we follow a similar proce-
dure. Now we define the unit cell to be a square involving
nine vertices as illustrated in Fig. 3, each of which has one
center vertex involved in eight CCZ gates (cubic terms)
with the eight boundary vertices shared with neighboring
cells. Again, assume that the lattice is composed of com-
plete cells. Consider periodic boundary conditions. Note
that among the eight boundary vertices, four in the corner
are shared by four cells, and four on the edge are shared
by two cells. So, for m cells, there are 4m/4 + 4m/2 = 3m
boundary vertices in total. So n = m + 3m = 4m and thus
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this cell structure gives s = n/4. It can also be verified that
hqi = 4. So, for the corresponding states |�fUJ〉, we have

Dmax(�fUJ) = Dmin(�fUJ)

≤
(

1
2

− 1
2

log
17
16

)

n

� 0.46n, (C11)

by (C4). Similarly, the open boundary conditions lead to a
−O(

√
n) correction. Note that, for the Union Jack lattice,

another natural definition of the unit cell is the small square
with one center vertex and four corner vertices. However,
it can be verified that this cell structure gives s = 1/2,
which leads to a bound worse than (C11).

Finally, we note that we expect the constant factors in
the above bounds to be loose, although they already imply
that the many-body magic of corresponding SPT phases
are much weaker than typical states. Below we outline two
promising paths towards improved bounds. (i) In the above
method, inequality (C3) can be loose, because the shared
terms in the qi corresponding to neighboring cells will be
canceled out in the summation, which leads to the general
effect that h∑

qi <
∑

hqi . Therefore, a direct possibility is
a more refined calculation of (C2) by analyzing h∑s

i=1 riqi .
(ii) Show that the characteristic cubic functions are sepa-
rable [98,99], meaning that in the decomposition with the
smallest possible X under all affine transformations of the
variables, each cubic term involves exactly one variable
from X . Then, by Theorem 4 of Ref. [98], the maximum
nonquadracity of such separable cubic functions is

max
f ∈RM(3,n), f separable

χ(f ) = 2n−1 − 1
2 6�n/3�, (C12)

leading to the following bound for corresponding third-
order hypergraph states |�̂〉:

Dmax(�̂) = Dmin(�̂) ≤
(

2 − 2
3

log 6
)

n � 0.28n.

(C13)

This bound is already attained by CCZ⊗n/3|+ · · · +〉 with-
out interesting entanglement. Note that most cubic func-
tions studied before are indeed separable [98,104,105], so
the above strong upper bound may hold quite generally for
third-order hypergraph states. We believe that the above
cases indeed have separable characteristic functions since
the cubic terms are highly regular.
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