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Fermionic linear optics (FLO) is a restricted model of quantum computation, which in its original form
is known to be efficiently classically simulable. We show that, when initialized with suitable input states,
FLO circuits can be used to demonstrate quantum computational advantage with strong hardness guar-
antees. Based on this, we propose a quantum advantage scheme, which is a fermionic analog of boson
sampling: fermion sampling with magic input states. We consider in parallel two classes of circuits:
particle-number conserving (passive) FLO and active FLO that preserves only fermionic parity. Using
low-dimensional continuous symmetry groups that underpin these classes of quantum circuits, we prove
anticoncentration and robust average-case hardness of computation of output probabilities probabilities.
Taken together, these findings provide hardness guarantees comparable to the paradigm of random cir-
cuit sampling and boson sampling, the leading candidates for attaining quantum computational advantage.
Our scheme is experimentally feasible. FLO circuits are relevant for quantum chemistry and many-body
physics, and have been successfully implemented in superconducting architectures. We also argue that
due to the structured nature of FLO circuits, they can be efficiently certified using resources scaling
polynomially with the system size, with partial trust in the quantum device.
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I. INTRODUCTION

Universal fault-tolerant quantum computers are
expected to exceed capabilities of classical computers in
many applications including optimization problems, simu-
lation of many-body quantum systems, machine learning,
and code breaking. However, practical requirements for
implementations of quantum algorithms generally require
the noise level to be below a certain stringent threshold
and an encoding of logical qubits into a large number
of physical qubits [1]. Despite the impressive progress
made along the road to realize a large-scale fault-tolerant
quantum computer as shown in the proof-of-principle
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demonstrations of error correction [2] and fault toler-
ance [3], what we have at present and in the near future
are noisy intermediate-scale quantum (NISQ) devices [4]:
NISQ processors having the order of tens or hundreds of
qubits.

The paradigm of quantum computational advantage
[7,8] (also known as supremacy) aims to develop schemes
showing computational advantage of restricted-purpose
quantum machines under minimal theoretical assumptions
while minimizing hardware requirements. Importantly,
given the current status of complexity theory, a rigorous
separation of the power of quantum and classical comput-
ers cannot be made without plausible assumptions such as
the noncollapse of the polynomial hierarchy (a weaker ver-
sion of P �= NP). Current quantum advantage schemes are
usually based on the problem of sampling, i.e., the task of
generating samples of a distribution generated by a given
quantum circuit or a specifically tuned device (see, how-
ever, Ref. [9] for an alternative proposal involving relation
problems that challenges classical computers in the play-
ground of shallow circuits). The first candidate for demon-
stration of quantum computational supremacy was boson
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sampling [10] that proposed to sample from photonic net-
works that were initialized in single-photon photon states
of several modes. Subsequent sampling proposals include
the instantaneous quantum polynomial (IQP) sampling
[11,12], the random circuit sampling (RCS) [13–15], the
quantum Fourier sampling [16], and many other schemes
[17–21] that usually operate on multiqubit systems that
undergo evolutions under restricted gate sets (there exist,
however, other proposals that use Gaussian states [22,23]
or atomic systems [18,24]). Currently random circuit
sampling and boson sampling are considered to be the
most promising candidates for demonstration of quantum
supremacy, both in terms of experimental feasibility and
theoretical hardness guarantees.

RCS is the task of sampling from the output distri-
bution of a randomly selected quantum circuit. RCS has
been recently experimentally demonstrated in a system
of 53 superconducting qubits arranged in the planar lay-
out, and using random two-qubit-local circuits of depth 20
[25]. Beside its experimental feasibility in current NISQ
architectures, this quantum advantage proposal also enjoys
strong hardness guarantees based on two technical results
available for random quantum circuits: a worst-to-average-
case reduction of the hardness of computing the output
probabilities [14,15] and anticoncentration [26,27].

Independently of RCS, the original proposal of boson
sampling received a lot of interest due to the experimental
progress in the field of integrated photonics [28]. Cur-
rently, the state-of-the-art experiments involve 14 indis-
tinguishable photons in 20 modes [29], while a recent
work [30] reported demonstration of Gaussian boson sam-
pling (i.e., a variant of boson sampling with Gaussian input
states) using 50 squeezed states at the input of a 100-mode
photonic network. Worst-to-average-case reduction for the
exact computation of the probabilities in boson sampling
was proven in Ref. [10]. Shortly after completion of

this work worst-to-average-case reductions were provided
for approximate computation of outcome probabilities in
boson sampling [31] and Gaussian boson sampling [32].
The anticoncentration property remains unproven for both
schemes.

In this work, we propose a quantum advantage scheme
based on a fermionic analog of boson sampling: fermion
sampling with magic input states. In our scheme a suit-
able input state |�in〉 in d = 4N fermionic modes is
transformed via fermionic linear optical (FLO) transfor-
mation V, and is measured using particle-number resolv-
ing detectors (see Fig. 1). We consider in parallel two
classes of circuits: particle-number conserving (passive)
FLO and active FLO that preserves only the fermionic
parity [33,34] and is closely related to matchgate cir-
cuits introduced by Valiant [35]. Mathematically, these
classes of circuits can be understood as fermionic rep-
resentations of the Lie groups U(d) and SO(2d). This
observation allows us to prove our main technical results.
We first show anticoncentration for probabilities in random
FLO circuits of both kinds. Moreover, we prove robust
average-case hardness of computation of probabilities. To
achieve this we adapt the worst-to-average-case reduction
based on Cayley transform [15] to our scenario, when
instead of the defining representation of the unitary group
one considers higher-dimensional representations of low-
dimensional Lie groups. Taken together, these findings
give hardness guarantees matching that of the paradigm
of RCS and boson sampling. We also argue that, due
to the structural properties of FLO gates, one can effi-
ciently certify them with resources scaling polynomially
with the system size, assuming partial trust in the quantum
device.

We argue that our scheme is feasible to realize experi-
mentally. While experimental realization of linear-optical
transformation in systems of real fermionic systems is
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FIG. 1. The setup considered in our
work. We run a FLO circuit UFLO (pas-
sive or active) with input state |�in〉 =
|�4〉⊗N and sample bitstrings x with the
probability distribution p(x) induced
by the circuit. Using Jordan-Wigner
transformation that encodes fermions
in qubits, the state |�4〉 can be easily
prepared as shown in the inset to the
left. The decomposition of the circuits
into an elementary gate set can be real-
ized by the fermionic analogs of exist-
ing layouts for linear optical networks
[5,6] as discussed in Appendix A.
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FIG. 2. Plots for the minimum depth required in circuits of a
fixed number of quadruples for the ratio (EX )2/EX 2, with X =
| 〈x|V |�in〉 |2 (V is the random circuit and |�in〉 is the quadruple
input) to surpass a threshold defined in the legend. For compari-
son the linear depth in the number of modes is shown. The data
suggests that the depths required to obtain the anticoncentration
property scale sublinearly.

usually hard because of Coulomb interaction (see, how-
ever, Ref. [36]), we make use of the fact that this class
of operations is relevant for performing quantum chem-
istry and many-body simulations on a quantum com-
puter [37–40]. Specifically, after a standard Jordan-Wigner
encoding of qubits into fermions, our sampling proposal
becomes readily implementable by restricted set of gates
and layouts native to superconducting qubit architecture
used in simulations of quantum chemistry [41]. A generic
FLO transformation can in this way be implemented in
depth ∝ N in contrast to this the RCS scheme can be
implemented in depth

√
N . In the Jordan-Wigner encod-

ing, the magic input states can be prepared using three
entangling gates per each and every disjoint block of four
qubits and particle-number measurements are realized via
standard computational basis measurement (see Fig. 1).
While using circuits of linear depth might seem challeng-
ing at first sight, this requirement follows solely from our
proof techniques that guarantee anticoncentration when
sampling from uniform distribution on passive and active
FLO circuits. However, we give numerical evidence out-
come probabilities corresponding to active FLO circuits
anticoncentrate in much smaller depth (see Fig. 2). In fact,
it is plausible that active FLO circuits’ anticoncentrate
in logarithmic depth, just like random quantum circuits
formed from universal gates, as proved by the recent work
by Dalzell et al. [42].

A. Significance of results and relation to prior work

1. Relevance of the technical results for hardness of
fermion sampling

A first step in establishing hardness of any quantum
advantage proposal is showing hardness of sampling up

to relative error. Sampling in relative error refers to the
task in which a classical computer, given a classical
description of the quantum process of interest (e.g., input
states, arrangement of gates in the device, etc.), is chal-
lenged to efficiently sample from the probability distri-
bution {qx} that for every output x satisfies |px − qx| ≤
αpx, where {px} is the true probability distribution pro-
duced by the device and α > 0 is a constant. To estab-
lish hardness of sampling up to some relative error, it
suffices to show that certain probabilities produced by
the device are #P-hard to compute [47], assuming that
polynomial hierarchy does not collapse. This hardness of
quantum probabilities for specific circuits and outcomes
(i.e., in the worst case) was proven long ago for a cir-
cuit built from universal gates [48,49]. For nonuniversal
models of quantum computation a standard technique for
establishing #P-hardness of computation of probabilities
is based on showing that a particular nonuniversal model
becomes universal when postselection is allowed [10,11,
18,19,50–52]. Relative error approximation is however
too strong to be a reasonable notion of approximation
from the physical perspective. This is because even a very
small amount of experimental noise can render very large
relative error.

A more realistic notion of approximate sampling is
based on additive error [10,20] in which classical computer
is supposed to efficiently produce samples from probabil-
ity distribution {qx} satisfying

∑
x |px − qx| ≤ ε, where ε

is the error parameter. Establishing hardness for additive
error approximate sampling is however much more chal-
lenging than in the case of relative error. Assuming non-
collapse of the polynomial hierarchy, the currently existing
techniques [10,12,20] establish this hardness using Stock-
mayer approximate counting algorithm [53] and by relying
on two technical properties of a given quantum advan-
tage proposal: (i) anticoncentration of outcome probabil-
ities, and (ii) #P-hardness of relative error approximate
computation of outcome probabilities on average. Anti-
concentration refers to property that probability amplitudes
px(V) are typically not too small, compared to their aver-
age value, for random circuits V defining a given quan-
tum advantage proposal. Anticoncentration property has
been shown in several schemes [12,17,19,24,27], while
for others, including Fourier sampling [16] and boson
sampling [10] it remains unproven. On the other hand,
average-case #P-hardness of relative error approximate
computation of px(V) has not been proven to date for
the existing quantum advantage proposals. There however
exist intermediate results that support it in the form of
average-case #P-hardness of exact computation of px(V)

for boson sampling [10], RCS [14], and related schemes
[24]. These works adopt the polynomial interpolation
technique from Ref. [10] and to prove worst-to-average-
case hardness reduction. This reduction has been recently
improved by Movassagh [15] for RCS who showed that it
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is average-case #P-hard to approximate px(V) in additive
error exp[−�(N 4.5)], where N is the number of qubits.

In this work, in order to justify computational hardness
of the proposed fermion sampling scheme we prove the
following results:

(i) Anticoncentration of probabilities px(V) in the out-
put of the scheme for both passive and active FLO
circuits initialized in magic states.

(ii) Robust worst-to-average-case hardness reduction
for computation of probabilities for passive and
active FLO circuits initialized in magic states up to
error exp[−�(N 6)].

Instrumental to our proofs is the fact that active and passive
FLO circuits are representations of the low-dimensional
(of dimensions scaling polynomially with the number of
fermionic modes d) Lie groups U(d) and SO(2d), respec-
tively. For the anticoncentration property, we do not use
the 2-design property (which is not satisfied for FLO
unitaries), but instead prove it relying on specific group-
theoretic properties of FLO circuits. For the worst-to-
average-case reduction, we follow the state-of-the-art tech-
nique by Movassagh [15], which utilizes Cayley path to
construct a low-degree rational interpolation between the
worst-case and average-case circuits, while generalizing it
in two significant directions. First, while the interpolation
in Ref. [15] is performed directly using physical circuits,
ours is performed at the level of group elements, which are
then represented as circuits (see Fig. 3). Secondly, while
Ref. [15] applies the interpolation to local one- and two-
qubit gates that constitute the circuit, we directly apply it
to a global circuit while maintaining the low-degree nature
of the rational functions, which is required for the robust
reduction.

These results put fermion sampling at the comparable
level as RCS [14,15] in terms of state-of-the-art hardness
guarantees, surpassing that of boson sampling. The advan-
tage of our scheme compared to RCS is that FLO circuits
can be efficiently certified due to their low-dimensional
structural properties. The apparent disadvantage is the
size of the required circuits—RCS can be implemented in
depth

√
N [13,27], while our scheme requires depth of the

structured circuit scaling like N . A more comprehensive
comparison of fermionic sampling scheme with other pro-
posals in the literature is given in Table I. We compare
the schemes in terms of guarantees for hardness sam-
pling: average-case hardness, anticoncentration, as well as
experimental results implementing the schemes or similar
results.

2. Comparison with boson sampling

Boson sampling [10], the first quantum advantage pro-
posal based on sampling, relies on the fact that the prob-
ability amplitudes of indistinguishable bosons initially
prepared in a Fock state and passing through linear-optical
network, can be expressed via matrix permanents. Compu-
tation of permanent is know to be #P-hard in the worst case
[54]. In contrast, the analogous amplitudes for fermions
are given by the determinant, which can be computed effi-
ciently. Physically, this difference in complexity can be
attributed to the fact that bosonic Fock states are non-
Gaussian bosonic states, while their fermionic counter-
parts are in fact fermionic Gaussian states [55]. Thus, to
make a closer analogy with boson sampling, we define our
fermion sampling using non-Gaussian input states |�in〉 =
|�4〉⊗N , where |�4〉 = 1/

√
2(|0011〉 + |1100〉). This state

can be prepared easily on a quantum computer but at
the same time can be expressed as an exponential sum

U

Worst-case circuit Generic circuit

representation

FIG. 3. � is a group representation from G to [a subgroup �(G) of] the group U(H) of all quantum circuits on Hilbert space H
(typically of exponential dimension). The Cayley path gθ = goFθ (g) ∈ G gives a rational interpolation between a fixed element g0 and
g1 = g0g. This gives rise to a rational interpolation between circuits C := �(g0) and �(g0)�(g) = �(g0g). To carry out worst-to-
average-case reduction we consider g0 to be group element corresponding to the worst-case circuit C while g is chosen to be a generic
element of the Lie group G.
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TABLE I. Summarized information for some sampling schemes proposed for quantum supremacy. The first column lists the different
sampling schemes: random circuit sampling (RCS) [13,14,25,26,43,44], boson sampling (BS) [10,28,29,31], Gaussian boson sampling
(GBS) [22,30,45], instantaneus quantum polynomial (IQP) [12,46], and fermion sampling. The second and third columns indicate if
worst-case and average-case hardness for computing the output probabilities has been proven in the approximate case. The third column
indicates if the circuits involved in the scheme fulfill the anticoncentration property, the fourth column shows if the scheme has some
certification procedure for the circuits involved and the final column indicates if there are experiments that realize the sampling scheme.
The boson sampling entry on experiments represents the fact that the current experimental setups are proof-of-principle experiments.

of orthogonal Fock states. This is sufficient to guarantee
hardness of the corresponding probability amplitudes. It
was shown by Ivanov and Gurvits [56,57] that if |�in〉 is
transformed via particle-number preserving (passive) FLO
transformation, the probability amplitudes are related to
mixed discriminants of matrices, which is known to be
#P-hard, because they can be efficiently reduced to per-
manent. In the context of active FLO transformations,
auxiliary states |�4〉 are known to promote this class of
transformations to universality [58] (see also Ref. [59]),
which can be used to show #P-hardness of probabili-
ties arising from active FLO circuits initialized with such
non-Gaussian states. We conclude the comparison with
boson sampling by clarifying the role of the measure-
ments used. Our proposal uses fermionic particle-number
measurements, which are themselves fermionic Gaussian.
This differentiates fermion sampling from boson sampling
schemes. This includes Gaussian boson sampling [22] in
which bosonic squeezed states (that are bosonic Gaussian)
are transformed using linear optics, and finally measured
using (non-Gaussian) particle-number detectors. In that
proposal non-Gaussian character of the particle-number
measurement is crucial for hardness [60].

3. Comparison to existing benchmarking protocols

A convincing demonstration of quantum supremacy
requires a means to build confidence that the output q(x)

of the quantum device is close to the ideal distribution
p(x). Such verification can be done with differing lev-
els of efficiency depending on the level of trust in the
functioning of the device. Of the highest standard (requir-
ing minimal assumptions) of such verification is to certify
whether q(x) = p(x) or

∑
x |px − qx| > ε for some small

ε > 0—that is, we are ruling out all adversarial distribu-
tions that are ε away from p(x)—using only the classical
output statistics of the sampling device. Building on a clas-
sical result on identity testing of probability distributions,
Ref. [61] showed that such form of stringent, device-
independent certification is infeasible for most prominent
quantum supremacy distributions, requiring exponentially
many samples.

In reality, however, the experimenters do have prior
knowledge about the functioning of various components
of their device and the model of the physical noise. This
prompts one to move away from the minimal assump-
tions. If one insists on only making use of the classical
output statistics, benchmarking protocols of the cross-
entropy type [13,14,25], allow one to rule out distributions
that are otherwise ideal but are corrupted by depolariz-
ing noise with few samples. (Reference [14] derives an
entropic condition on distributions that are ruled out by
the cross entropy difference proposed in Ref. [13].) Thus,
some amount of effort in the analysis of Google’s exper-
iment [25] is dedicated to benchmarking the error model
and validating their assumptions. The downside is that this
type of measure requires one to actually compute the ideal
quantum supremacy probabilities, which are presumed to
be extremely hard to compute when the number of qubits
is large. For boson sampling, a weaker form of certifi-
cation based on state discrimination [62] can be made
fully efficient (that is, efficient in both the number of sam-
ples and computation time), but can only certify against
a fixed adversarial distribution (for example, the uniform
distribution).

Assuming the ability to change input states or measure-
ment settings (trusted preparations and measurements),
direct certifications for several quantum advantage archi-
tectures can be devised that are fully efficient. One such
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line of works [24,26,63] is based on the idea of fidelity
witness of output states.

In our work, we offer a way to characterize FLO cir-
cuits assuming the ability to prepare certain product input
states and perform trusted Pauli measurements. The certi-
fication is indirect as it certifies only a component of the
experiment (the circuit) but not the quantum supremacy
distribution itself. However, the protocol suggests that a
direct certification of fermion sampling can be developed
similar to that of boson sampling as our scheme is anal-
ogous to the characterization of linear optical networks
[60] whereas no such scheme exists at present for random
circuit sampling.

4. Relation to fermionic quantum computation

Quantum computing with (active) FLO circuits has
received significant attention over the years. While FLO
circuits with unentangled input states and measurements
are efficiently simulable classically, they constitute a
“maximally classical” subset of quantum circuits in the
sense that an addition of any non-FLO unitary allows
one to reach any unitary on the relevant Hilbert space
[64]. Thus, similar to Clifford circuits, FLO circuits with
additional resources constitute an interesting model of
universal quantum computing [55,58]. Here we review
the most important results about computational power
of FLO circuits and their extensions. Common notions
of simulation in the literature fall into two classes of
strong and weak simulations: strong simulation refers to
the ability to compute the marginal probability of any
chosen outcome, whereas weak simulation refers to the
ability to sample from the output probability distribu-
tion. Strong classical simulability of FLO circuits can
be traced back to the work of Valiant [35] in which
he introduced so-called matchgates for the purpose of
studying algorithms for graphs. Assuming computational-
basis input states and measurements, circuits of nearest-
neighbor (NN) matchgates in one-dimensional (1D)
layout can be strongly simulated on a classical computer
in polynomial time, even with adaptive measurement in
the computational basis [33]. Soon after the introduction
of matchgates, their classical simulability was connected to
exact solvability in physics as NN matchgate circuits can
be mapped to evolutions of noninteracting fermions via
the Jordan-Wigner transformation [33,34] and extended
to classical simulability of dissipative FLO and nonuni-
tary matchgates [65,66]. The geometric locality restriction
is nontrivial as matchgate computation becomes quan-
tum universal when the NN condition is lifted [67] or
the linear chain of qubits is replaced by more general
graphs [68].

When one considers arbitrary product input states, adap-
tive computation using FLO circuits with such inputs
can be simulated classically [69]. This is in striking

contrast to the case of Clifford circuits in which supplying
single-qubit magic states and adaptive measurement in the
computational basis suffices for universal quantum com-
putation [70]. Since every fermionic state (or qubit state
with a fixed parity) of fewer than four qubits is Gaussian
[71,72], FLO circuits with computational-basis measure-
ment must be supplied with at least a four-qubit magic
input state to attain universality. The first example of such
a state is |a8〉 = 1/

√
2(|0000〉 + |1111〉) (which can be

converted to |�4〉 used in our scheme, see the proof of
Lemma 15) was introduced in Ref. [58] along with the
corresponding state-injection scheme for universal quan-
tum computation using Ising anyons. A much more general
result was established in Ref. [59] where it was showed
that all non-Gaussian states, when supplied in multiple
copies, allow one to perform universal quantum compu-
tation. Finally, weak classical simulability of FLO circuits
with noisy magic input states was studied in Refs. [72,73],

Alternatively to magic input states, adding an arbitrary
non-FLO gate [55,64,74] (see also [75]), or entangled
measurements such as nondestructive parity measurement
[55,76], also allows one to perform universal quantum
computation. When the final measurement is restricted
to only one qubit line and no adaptive measurement is
allowed during the computation, the circuits are classically
simulable in the strong sense even with magic input states.
This result was first proven for an arbitrary product input
state in Ref. [67] and observed to generalize to any product
of O(log m)-qubit states in Ref. [77]. Recently compre-
hensive investigation of the complexity landscape of FLO
circuits with auxiliary resources are given in Ref. [77],
which investigated the hardness of FLO circuits depend-
ing on the following: (i) whether the input is a product state
or copies of entangled magic states, (ii) whether adaptive
measurements are allowed, (iii) whether the final measure-
ment is performed only on a single qubit or on all qubits.
It was established there that strong simulation of FLO cir-
cuits is #P-hard in all cases considered except ones that
are already known to be classically simulable [33,67,69].
Using the standard postselection argument [11], it is possi-
ble to show that weak simulation FLO circuits with magic
input states and no adaptive measurement implies collapse
of the polynomial hierarchy (see Appendix G). This sce-
nario coincides with one of the settings considered in this
work. However, in this work we are concerned with estab-
lishing hardness of fermion sampling up to additive error,
which, as explained earlier, is a property much harder to
establish.

Organization of the paper.—First, in Sec. II we lay
out basic notations and concepts, focusing mostly on the
fermionic context. Then in Sec. III we formally define
our quantum advantage proposal and give a high-level
overview of our results and their significance. We also
present there arguments in favor of experimental feasibility
of our scheme. In Sec. IV we discuss possible applications
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of our work and present future research directions. In the
subsequent Sec. V we prove that output probabilities of
FLO circuits initialized in suitable magic states anticon-
centrate for generic active and passive FLO circuits. These
results, together with known [56] worst-case #P-hardness
of probability distributions, is then used in Sec. VI to prove
hardness of approximate fermion sampling. Section VII
is devoted to the quantitative analysis of the Cayley path
transformation for unitary and orthogonal groups. Section
D focuses on polynomials associated to the probabilities in
our FLO sampling scheme. In Sec. VIII we use technical
results from the two preceding parts to prove, following
Ref. [15] worst-to-average-case reduction for hardness of
computing probabilities in our quantum advantage scheme.
In the final Sec. IX we show that in the Jordan-Wigner
encoding an unknown FLO unitary can be efficiently certi-
fied using resources scaling polynomially with the number
of fermionic modes. The Appendix consists of four parts
and contains auxiliary technical results. In Appendix A,
we describe in detail the decomposition of FLO circuits
into elementary one- and two-qubit gates. In Appendix E,
we give details of the computations needed in the proof of
anticoncentration of our results. In Appendix F, we prove a
lemma concerning the stability of the FLO representations
(an analog of the stability result proved standard boson
sampling [78]), which is used in the tomography scheme
of FLO unitaries. In Appendix C we prove the technical
lemma concerning total variation distance between Haar
measures on groups G = U(d), SO(2d) and their deforma-
tions via Cayley path. Finally, in Appendix G we prove
#P-hardness of probabilities in shallow-depth active FLO
circuits.

II. NOTATION AND BASIC CONCEPTS

In this section we describe the main concepts and
notation needed in the paper. Specifically, we introduce
the language of second quantization, vital for describing
fermionic systems. We define passive and active fermionic
linear optical circuits. Finally, we survey Jordan-Wigner
transformation, which allows implementation of fermionic
systems and associated unitaries acting on them in terms
of spin systems and standard quantum circuits. All these
ingredients allow us to formally define our scheme for
attaining quantum computational advantage with FLO cir-
cuits.

Let H be a finite-dimensional Hilbert space. Normal-
ized vectors in this space are denoted by |�〉 , |�〉 etc.
Such normalized vectors give rise to pure states, i.e., rank-
1 non-negative operators on H. For the sake of brevity, we
use the notation � = |�〉〈�| , � = |�〉〈�| etc. We use the
symbol D(H) for the set of all (possibly mixed) quantum
states on H. Finally, by U(H) we denote group of unitary
operators on H. We consider a system of fermions with
single-particle Hilbert space being C

d. The Hilbert space

associated to this system is a d-mode Fock space

HFock(C
d) =

d⊕

n=0

n∧
(Cd), (1)

where
∧n

(Cd), is the totally antisymmetric subspace
of (Cd)⊗n describing states consisting of exactly n
fermions, and

∧0
(Cd) = span

C
(|0F〉), where |0F〉 is the

Fock vacuum. Any basis {|1〉 , |2〉 , . . . , |d〉} of single-
particle Hilbert space defines a family of creation and
annihilation operators acting on HFock(C

d): f †
j and fj ,

respectively, where j = 1, 2, . . . , d. These operators sat-
isfy canonical anticommutation relations {fj , f †

k } ≡ fj f †
k +

f †
k fj = δj ,k and {fj , fk} = {f †

j , f †
k } = 0, with δj ,k being the

Kronecker symbol.
Given this set of creation and annihilation operators, it is

natural to introduce the so-called Fock basis states, which
forms a basis of HFock(C

d), as

|x〉 := (f †
1 )x1(f †

2 )x2 · · · (f †
d )xd |0F〉 (2)

for any x ∈ {0, 1}d, where we use the notation (f †
1 )0 = I.

Throughout the paper, we denote the set {1, . . . , d} as [d].
Given an arbitrary subset X ⊂ [d], it is also be useful to
introduce the notation |X 〉 for the Fock basis state |x〉 with
xj = 1 if j ∈ X and xj = 0 otherwise. We also use

(X
k

)
to

denote the collection of subsets of finite set X of size k [we
assume the convention

(X
k

) = ∅ if |X | < k].
Considering the direct sum decomposition of the Fock

space into fixed particle-number subspaces in Eq. (1), a
specific Fock basis state |X 〉 (with |X | = n) is an ele-
ment of the n-particle subspace

∧n
(Cd). Note that since∧n

(Cd) can be regarded as a subspace of (Cd)⊗n, it is
natural to consider such a Fock basis state |X 〉 (where
X = {a1, . . . an} with ai < aj if i < j ) as an element in
(Cd)⊗n, which is given by the formula

|X 〉 = |a1〉 ∧ |a2〉 ∧ . . . ∧ |an〉

= 1√
n!

n∑

i1,...in=1

εi1,i2,...,in |ai1〉 ⊗ |ai2〉 ⊗ · · · |ain〉. (3)

Here and throughout the paper we use the generalized
Levi-Civita symbol, i.e., for any string of positive integers
(k1, k2, . . . , kn) with ki �= kj if i �= j we define εk1,k2,...,kn =
(−1)p , where p is the parity of the permutation π for which
kπ(i) < kπ(j ) if i < j and p is its parity, while εk1,k2,...,kn = 0
if some of the entries in (k1, k2, . . . , kn) coincide.

A passive fermionic linear optical transformation on the
n-particle subspace

∧n
(Cd) ⊂ (Cd)⊗n is given as a trans-

formation U⊗n restricted from being a (Cd)⊗n → (Cd)⊗n

function to being a
∧n

(Cd) →∧n
(Cd) map. Passive FLO
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can be understood abstractly as the irreducible representa-
tion of the low-dimensional symmetry group U(d) in the
Hilbert space

∧n
(Cd)

�pas : U(d) −→ U

(
n∧

(Cd)

)
, (4)

U �−→ U⊗n
∣∣∧n(Cd)

. (5)

That is, we get a representation of U(d) on a fixed parti-
cle fermionic subspace. A useful equivalent definition is
that for any U = eiK ∈ SU(d), �pas is the restriction of the

Fock state unitary ei/2
∑

n,m Knmf †
n fm to the subspace

∧n
(Cd).

An important concept when discussing passive FLO
transformations are Slater determinant states. These are
states of the form |�〉 = |ξ1〉| ∧ ξ2〉 ∧ . . . ∧ |ξn〉, where
{|ξi〉}n

i=1 ⊂ C
d is a set of orthonormal vectors of the one-

particle Hilbert space C
d. By definition, Fock basis states

are special cases of Slater determinant states. And pas-
sive FLO transformations act transitively on the set of
Slater determinant states. The overlap between any two
Slater determinant states, |�〉 = |ξ1〉| ∧ |ξ2〉 ∧ . . . ∧ |ξn〉
and |�〉 = |φ1〉 ∧ |φ2〉 ∧ . . . ∧ |φn〉, can be expressed by
the simple determinant formula

〈�|�〉 = det C, Ci,j = 〈ξi|φj 〉. (6)

A standard way to measure fermionic systems is to perform
particle-number measurement, i.e., a projective measure-
ment in the Fock basis basis |x〉 defined previously. Upon
obtaining measurement result labeled by X , numbers xi
have the interpretation of number of particles in mode i.

Let us next introduce the self-adjoint Majorana mode
operators

m2j−1 = fj + f †
j , m2j = −i (fj − f †

j ), (7)

with anticommutation relations {mj , mk} = 2 Iδj ,k. These
operators define parity operator Q = id

∏2d
i=1 mi in HFock

(Cd). The subspace of HFock(Cd) that corresponds to
eigenvalue of +1 of Q is spanned by Fock states |n〉 hav-
ing even number of particles. In what follows, we refer to
this vector space as the positive parity subspace and denote
it by H+

Fock(C
d). Majorana operators allow to define also

active fermionic linear optical transformations. We say that
a fermionic unitary U is free, Gaussian, or linear opti-
cal, if it can be written as an exponential of a quadratic
Hamiltonian, i.e., U = eiH , where

H = i
4

2d∑

j ,k=1

Aj ,k mj mk, (8)

and A = −AT ∈ R
2d×2d. Active FLO transformation form

a group, which can be conveniently understood in terms of

(projective) representation of the SO(2d) group [79]:

�act : SO(2d) −→ U[HFock(C
d)] (9)

O �−→ exp

⎛

⎝1
4

2d∑

i,j=1

[log(O)]ij mimj

⎞

⎠ , (10)

Often the restriction of �act to the positive parity sub-
space H+

Fock(C
d) is considered, we do not use a new

symbol for this restricted representation rather simply
refer to it by writing �act : SO(2d) → U[H+

Fock(C
d)]. Pure

positive-parity Gaussian states are defined as pure states
the form � = �(O) |0F〉〈OF |�(O)†, for O ∈ SO(2d). In
other words, pure positive-parity Gaussian fermionic states
are states that can be generated from the vacuum by active
FLO transformations. Similarly, it is possible to define
negative-parity pure fermionic Gaussian states as states
generated by active FLO from, say, a Fock state with a
single excitation.

If we look at the action on the operators, we get an
actual (i.e., nonprojective) representation. In particular, a
single Majorana operator evolves under an active FLO
transformation as follows:

U† mj U =
2d∑

k=1

Ojk mk, (11)

where U = e−iHt with H = i/4
∑2d

j ,k=1 Aj ,kmj mk and
O = e−A ∈ SO(2d).

We also use the notation Gpas and Gact to denote, respec-
tively, passive and active fermionic linear optical gates.
The name comes from the fact that these gates transform
single creation and Majorana operators to linear combina-
tion of creation and Majorana operators, respectively.

An important ingredient when discussing how to imple-
ment FLO transformations on qubit systems is the
Jordan-Wigner transformation, that provides an equiva-
lence between fermion and qubit systems through the
unitary mapping VJW : HFock(C

d) → (C2)⊗d given as the
following mapping between

VJW

(
(f †

1 )x1(f †
2 )x2 · · · (f †

d )xd |0F〉
)
=

d⊗

p=1

∣∣xp
〉

(12)

for all x = (x1, x2, . . . , xd) ∈ {0, 1}d, which in turn induces
an isomorphic mapping between Majorana and spin oper-
ators

m2p−1 �→ VJW m2p−1 V†
JW = Z1 · · · Zp−1Xp , (13)

m2p �→ VJW m2p V†
JW = Z1 · · · Zp−1Yp , (14)

where p ∈ [d]. To make the connection between fermions
and qubit systems even more transparent, one often intro-
duces the occupation number notation for vectors in
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HFock(C
d) as |x〉 := (f †

1 )x1(f †
2 )x2 · · · f †

d )xd |0F〉 for any x ∈
{0, 1}d. As the |x〉 vectors are mapped via the Jordan-
Wigner transformation to the computational basis states,
they are also called the fermionic computational basis
states in HFock(C

d).
Since groups U(d) and SO(2d) are compact groups (for

comprehensive introduction to the theory of Lie groups and
their representations, see Refs. [80,81]), each possesses
a unique normalized integration measure invariant under
any group translation called Haar measure. We donate this
measure by μG for the G one of the symmetry groups
above. Invariance of μG means that any measurable subset
A ⊂ G and any h ∈ G, we have that

μ(hA) = μ(Ah) = μ(A). (15)

The above condition to the level of expectation values
(averages) reads
∫

G
dμ(g)f (gh) =

∫

G
dμ(g)f (hg) =

∫

G
dμ(g)f (g), (16)

where f is any integrable function on G and h ∈ G.
We denote by νpas the distribution of the unitaries V =
�pas(U), where U ∼ μU(d) and by νact distribution of the
unitaries �act(O), where O ∼ μSO(2d). In order to keep the
notation compact we suppress the dependence of these
measures on d and n (values of these parameters are
implied from the context).

Finally, we use the following notation to denote growth
of functions: let f and g be two positive-valued functions.
We write f = O(g) if and only if limx→∞ f (x)/g(x) < ∞
and f = o(g) if and only if limx→∞ f (x)/g(x) = 0.

III. MAIN RESULTS

In this part we formally define our scheme for demon-
stration of quantum computational advantage and present
informally the main results of this work. In the end we
comment on the practical feasibility of our quantum advan-
tage scheme.

Having reviewed the basic concepts needed, we are now
ready to formally introduce our quantum advantage pro-
posal, which is illustrated in Fig. 1. We have a system of
d = 4N fermionic modes. The input state of the scheme
is an N -fold tensor product the non-Gaussian magic state
|�4〉 = (|1100〉 + |0011〉)/√2, i.e.,

|�in〉= |�4〉⊗N . (17)

Note that states equivalent to this have been used in FLO
computation schemes in Refs. [56,58,59]. After the initial-
ization, a generic FLO operation is applied either respect-
ing the particle-number conservation (passive scheme) or
not (active scheme). Any FLO unitary can be decomposed

into two-qubit FLO gates of linear depth either in diamond,
triangle, or brickwall layouts, see Figs. 1 and 4. The choice
of the FLO operation V is done via the probability distribu-
tions νpas and νact induced from the Haar measures on U(d)

and SO(2d), respectively (see Sec. II).
For a particular type of FLO circuit, the computational

task we address is the ability to sample from the output
distribution

px(V, �in) = |〈x|V|�in〉|2 , (18)

where output bitstring satisfies |x| = 2N and |x|-even for
passive FLO and active FLO, respectively. This computa-
tional task is referred to as fermion sampling. We prove
four main technical results that underpin the hardness of
fermion sampling.

The first result is anticoncentration for FLO circuits.
Informally speaking it states that for the considered family
of circuits and fixed output x values |〈x|V|�in〉|2 are typi-
cally not much smaller compared to they average average
value.

Result 1: (Anticoncentration for generic FLO circuits.)
Let ν = νpas or ν = νact be uniform distribution over pas-
sive and, respectively, active FLO circuit acting on 4N
fermion modes. Let �in be the input state to our quantum
advantage proposal. Then, there exist a constant C ≥ 1
such that for every outcome x and for every α ∈ [0, 1]

Pr
V∼ν

(
px(V, �in) >

α

|H|
)

>
(1 − α)2

C
, (19)

where H =∧2N
(C4N ) for passive FLO and H =

H+
Fock(C

4N ) for active FLO.

The formal version of this result is given in Theorem 1.
It is important to emphasize that in the course of the proof
of this results we do not use the property of gate sets of
interest forming an (approximate) 2-design [26]. In fact, it
can be proved that measures νpas, νact do not form a projec-
tive 2-design. We perform the proof of anticoncentration
by heavily using group-theoretical techniques and partic-
ular properties of fermionic representations of symmetry
groups U(d) and SO(2d).

In line with standard methodology based on Stock-
meyer’s algorithm [53], anticoncentration, and hid-
ing property we reduce approximate sampling from
{px(V, �in)} to approximate computation of particular
probability px0(V, �in) (see Theorem 2). This allows us
to prove hardness of approximate fermion sampling in
Theorem 3 by conjecturing noncollapse of the polynomial
hierarchy (cf. Conjecture 2) and average-case hardness of
computation approximate computation of px0(V, �in) in
relative error (cf. Conjecture 1).
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Remark 1: It is important to stress that in the passive
FLO case our anticoncentration results do not follow from
anticoncentration results for the determinant proved in
Ref. [10]. The reason is that our probability amplitudes
can only be expressed via determinants of submatrices
of U ∈ U(d) (cf. Sec. D). Also, these submatrices cannot
be approximated via Gaussian matrices (we work in the
regime in which the number of modes d is comparable to
the total number of particles n).

To give evidence for Conjecture 1, we prove a worst-
to-average-case reduction that allows us to prove a weaker
version of approximate hardness result.

Result 2: (Worst-case to average reduction for approxi-
mate computation of probabilities.) Let ν = νpas or ν =
νact be uniform distribution over passive and, respectively,
active FLO circuit acting on 4N fermion modes, and let
�in be the input state to our quantum advantage pro-
posal. It is #P-hard to approximate probability px0(V, �in)

to within accuracy ε = exp[−�(N 6)] with probability
greater than 1 − o(N−2) over the choice of V ∼ ν.

Formal versions of above result can be found in
Theorem 7. To obtain the above result we generalize
the method developed recently by Movassagh [15] in the
context of random quantum circuits. The key technical
ingredient a Cayley path, which gives rational interpola-
tion between quantum circuits. We realize that, for the
purpose of the two reductions given above, it is possible to
apply it directly on one level of the Lie group underlying a
particular class of FLO transformation [U(d) and SO(2d)

for passive and active FLO, respectively]. We then use
the fact that fermionic representations can be realized low
degree of polynomials in entries of matrices of appropriate
symmetry groups. This observation allows us to adapt the
reduction method of Movassagh with relative ease.

Remark 2: In the course of the proof of the above result
we realize a technical issue in Movassagh [15]. Correc-
tion of the proof gives worse than claimed tolerance for
error ε = exp[−θ(N 4.5)] (for the Google layout), which is
still better than the one claimed here. On the other hand,
application of our reduction in conjunction with recent
improvements over the Paturi lemma by Bouland et al.
and Kondo et al. [31,82] (published after the comple-
tion of this work) boost error tolerance of our scheme to
ε = exp{−θ [N 2 log(N )]}.

Finally, the experimental feasibility of our proposal is
further increased by the fact that due to the structure
of FLO circuits, they can be efficiently certified using
resources scaling polynomially with the system size.

Result 3: (Efficient tomography of FLO circuits.) Let V
be an unknown active FLO circuit on a system of d qubits
that encodes d fermionic modes. Assume we have access to
computational basis measurements and single-qubit gates.
Then V can be estimated up to accuracy ε in the diamond
norm by repeating r ≈ d3/ε2 rounds of experiments, each
involving O(d2) independent single-qubit state prepara-
tions and single Pauli measurements at the end of the
circuit.

The rigorous formulation of the above, together with the
explicit protocol for carrying out tomography, is provided
in Sec. IX. Importantly, our method avoids exponential
scaling inherent to the general multiqubit tomography pro-
tocols. Moreover, it can also be viewed as a fermionic
analog of the certification methods developed previously in
the context of photonics and bosonic linear optics [83–85].

Implementation of the scheme
It is important to stress that our proposal has a strong

potential for experimental realization, e.g., on quantum
processors with superconducting qubit architectures. The
actual implementation should be feasible already on near-
term quantum devices, as the construction of parametric

FIG. 4. Circuit layouts implementing arbitrary passive and active FLO transformations. These layouts are based on the decomposi-
tion of arbitrary elements of the U(d) and SO(2d) groups into a sequence of nearest-neighbor Givens rotations and a diagonal matrix.
The depicted two-qubit gates in the passive FLO case are of the type Dpas(α1, α2) [see Eq. (20)], while the single-qubit gates are Z
rotations. The two-qubit gates in the active FLO case are of the type Dact({βi}) [see Eq. (21)] and the single-qubit gates are Pauli
unitaries. The extra layer of red colored two-qubit gates are only needed in the active case. The decomposition of the two-qubit gates
Dpas(α1, α2) and Dact({βi}) into native gates of superconducting qubit architectures are provided in Fig. 5.
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programmable passive linear optical circuits, due to their
relevance in quantum chemistry, has been already exper-
imentally demonstrated on Google’s Sycamore quantum
processor [37].

The preparation of the input fermionic magic state
|�4〉⊗N , vital to our proposal, can be performed by apply-
ing on the computational basis state |0〉⊗4N a simple con-
stant depth circuit consisting of three CNOTs and three
one-qubit gates per quadruple blocks of qubits as shown
in Fig. 1. One can implement an arbitrary passive FLO (or
basis rotation in the quantum chemistry lingo) in linear
depth using only nearest-neighbor gates and assuming a
minimal linearly connected architecture [38,39]. Two such
layouts are depicted in Fig. 4. In terms of two-qubit gates,
the triangle layout has a depth of d−1, while the depth of
the brickwall layout is only d/2. These circuits are analo-
gous to the layouts of boson sampling circuits [5,6] and are
based on decomposing a unitary U ∈ U(d) into individual
Givens rotations, which we describe in Appendix A. In the
passive FLO case, the two-qubit gates have the form

Dpas(α1, α2) = (e−iα1Z1/2eiα1Z2/2) eiα2(X1X2+Y1Y2)/2, (20)

and the final one-qubit gates are Z rotations. The triangle
and the brickwall layout can also be used to decompose
an arbitrary active FLO operation [39,40], however, in
this case the two-qubit gates will have a more compli-
cated structure (as they arise from merging several Givens
rotations):

Dact({βi}) = (eiβ5Z1/2eiβ6Z2/2) ei(β3X1X2+β4Y1Y2)/2

× (eiβ1Z1/2eiβ2Z2/2), (21)

and the one-qubit unitaries at the end of the circuit are
either Pauli matrices or identities. The derivations of these
statements are given in Appendix A, they are based on
the decomposition of arbitrary elements of the U(d) and
SO(2d) groups into a sequence of nearest-neighbor Givens
rotations and a diagonal matrix. The passive FLO represen-
tation of the Givens rotations and of the diagonal matrix are
then translated to two-qubit gates of the type Dpas(α1, α2)

and a series single-qubit Z rotations in a layout the depicted
Fig. 4. In the active FLO case several represented Givens
rotations are merged into two-qubit gates of type Dact({βi})
and the single-qubit unitaries at the end of the circuit are
Pauli gates.

In the experimental demonstration of programmable
passive FLO transformations by the Google team [37],
the native gates of the Sycamore processors, the

√
iSWAP

gates and single-qubit Z rotations, are used. The iSWAP and

√
iSWAP gates, defined as

iSWAP =

⎛

⎜⎝

1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

⎞

⎟⎠ ,

√
iSWAP =

⎛

⎜⎜⎝

1 0 0 0
0 1√

2
−i√

2
0

0 −i√
2

1√
2

0
0 0 0 1

⎞

⎟⎟⎠ , (22)

are exactly introduced in quantum computing as standard
gates because they are native in superconducting qubit
architectures [86]. It is important to note that these gates
are actually FLO gates. This lucky coincidence supports
the feasibility of our proposal, since the Givens rotations
for passive FLO, i.e., the two-qubit gates Dpas(α1, α2) in
the layouts of Fig. 4, can be decomposed into two

√
iSWAP

gates and four single qubit Z-rotations as depicted in part
(a) of Fig. 5. The two-qubit gates used in the active FLO
setup, Dact({βi}), can be decomposed into three iSWAP
gates shown in part (b) of Fig. 5.

In Result 1 the anticoncentration of passive and active
FLO circuits is presented. This result gives for active FLO
random circuits an estimation of the constant Cact which
is computed by bounding the expectation values from
the Paley-Zygmund inequality (EX )2/EX 2, with X =
| 〈x|V |�in〉 |2 where V is the random circuit. As shown
in Fig. 4, we have assumed that the random circuits have
linear depth with respect to the number of modes, nonethe-
less it is still possible that the anticoncentration property
is obtained for lower depths. Note that at shallow depth
the so-called property of data hiding is also present, this
property states that given | 〈x|V |�in〉 |2 and a fixed state
|x0〉 there is a FLO circuit Vx such that |〈x|V |�in〉|2 =
|〈x0|Vx |�in〉|2. For more detail of the data hiding property
see Lemma 1. To test that anticoncentration is obtained
at shallow depth, we simulate noiseless fermion sampling
experiments with up to 28 qubits using the IBM Qiskit
simulator [87]. As in Fig. 1, we initialize the input with
a fixed number of quadruples |�4〉. We perform simu-
lations for 1, 2, . . . , 7 quadruples, for each of these, we
compute the output probability of a fixed output string for
an average of 26 000 circuits for each number of quadru-
ples. The circuits used have the brickwall architecture from
Fig. 4. From each random circuit the output probability
of a fixed output string is computed. With the obtained
output probabilities, the expectation values in the Paley-
Zygmund inequality (EX )2/EX 2 are computed. In Fig. 2
we plot for each fixed number of quadruples the minimum
depth required for the ratio of expectation values to sur-
pass a certain threshold and compare to the case where
the depth is linear with respect to the number of modes.
The simulations suggest that the depths required to obtain
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(a)

(b)

iSWAP

iSWAP

iSWAP

iSWAP

FIG. 5. Decomposition of (a) the Givens rotation in the passive FLO setting, Dpas(α1, α2), in terms of
√

iSWAP gates and (b) the
merged Givens rotations in the active FLO setting, Dact({βi}), in terms of iSWAP gates. RW(α) (with W ∈ {X , Y, Z}) denotes the one-
qubit rotation gate eiαW. The gates H̃ are defined by the relations H̃ZH̃ = Y and H̃YH̃ = Z.

anticoncentration are shallow as the number of modes is
increased, wherein the case for seven initial quadruples
and a threshold of 0.4 the number of layers required is
7. Moreover, in the random circuit sampling setup it has
been found that anticoncentration is obtained in logarith-
mic depth, our simulations show that this could also be the
case in our setup.

IV. DISCUSSION AND OPEN PROBLEMS

We believe that our results and techniques used to
establish them will be of relevance also for problems not
directly related to fermion sampling. The first group of
potential applications is related to the structure of our
quantum advantage scheme. As discussed in the intro-
duction, quantum advantage proposals are typically not
constructed because of their practical usefulness. How-
ever, recently several proposals for applications of boson
sampling [10] and Gaussian boson sampling [22,23] have
been suggested. These include combinatorial optimization
problems [88,89], calculation of Franck-Condon profiles
for vibronic spectra [90,91], molecular docking [92], and
machine learning using graph kernels [93]. Admittedly a
feasible scalability is unlikely for those applications that
should produce as an answer one specific bitstring (or a few
specific bitstrings), as the output probabilities are gener-
ically exponentially suppressed. However, different types
of applications than those, like dense graph sampling or
using graph samples for graph-kernel methods, might turn
out to be useful. It should be mentioned that all of those
application are based on the fact that this type of sampling,
unlike the generic random circuit sampling, have a very
structured nature, as they are based on the fact that one
can sample with probabilities proportional to the perma-
nents and Hafnians of certain matrices constructed from
the circuit description. In particular, most of the mentioned
applications use the fact that one can sample with prob-
abilities proportional to the permanents and Hafnians of
certain matrices constructed from the circuit description.
These polynomial functions of matrix entries encode inter-
esting properties, e.g., for adjacency matrices of graphs
they provide the number of cycle covers and perfect

matchings of the graph, respectively. In our proposal simi-
lar
polynomials appear when describing the sampling prob-
abilities: the mixed discriminant [57] and their general-
izations (e.g., mixed Pfaffian [94]), which also encode
important graph properties. Thus, we have good rea-
sons to believe that our proposal, besides provid-
ing a robust computational advantage setup, might
also be used for other algorithms with interesting
applications.

We also want to emphasize the universality of our
techniques for establishing anticoncentration and worst-to-
average-case reduction for structured random circuits. Our
anticoncentration result exploits group-theoretic properties
of fermionic circuits and can be likely generalized to other
scenarios where low-dimensional group structure appears.
Moreover, our generalization of the worst-to-average-case
reduction of Movassagh [15] can be applied to any sam-
pling problem provided outcome probabilities can be inter-
preted as polynomials on low-dimensional groups (Cayley
transformation that underlines the reduction can be defined
on arbitrary Lie groups). For example, one can view boson
sampling in the first quantization picture where the group
of linear optical networks acts on the totally symmetric
subspace of N qudits, where d is the number of modes
(or other representation when bosons are partially distin-
guishable [95]), as opposed to the totally antisymmetric
representation for fermions.

We conclude this part with stating a number of interest-
ing problems that require further study.

Role of non-Gaussianity for hardness and anticoncen-
tration. In practice magic states are not perfect and a high
level of noise can bring these states into the convex hull of
Gaussian states [58,72,73], which we know are efficiently
simulable classically under FLO evolutions and Gaussian
measurements. How much noise does our hardness result
tolerate? The same question applies to anticoncentration
of output probabilities, in which case we do not yet have a
proof that FLO circuits with Gaussian inputs do not anti-
concentrate, but we have numerical evidence that proofs
based on the Paley-Zygmund inequality do not work (see
Remark 6).
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Fermion sampling with less magic. In our scheme, all
the input qubit lines are injected with magic states. Do the
hardness result and anticoncentration hold if we use only,
say, O(log m) magic states?

Algorithms for classical simulation. Devising algo-
rithms to approximately simulate FLO circuits with magic
input states on average would not only lead to useful appli-
cations (for example, in the context of quantum chemistry),
but is also vital to understand the complexity landscape
of random FLO circuits. For the RCS scheme employed
in Google’s experiment with qubits placed on a 2D grid,
advances in classical simulation techniques imposed a
limit on the robustness of the average-case hardness that
can be achieved with the current worst-to-average-case
reduction that is agnostic to the circuit architecture and
depth [96].

Tomography and certification of FLO circuits and
fermion sampling. In this work, we gave only an efficient
method to estimate an unknown FLO circuit (A related
benchmarking of FLO circuits was recently proposed in
Ref. [97]). It is interesting to extend our scheme beyond
unitary circuits and to devise a method for which sample
complexity and number of experimental settings exhibit an
optimal scaling with the system size. Additionally, with
further assumption on how the quantum device operates
(e.g., the noise model), is there a simple diagnostic tool for
fermion sampling similar to cross-entropy benchmarking
for RCS [13]?

V. ANTICONCENTRATION OF FLO CIRCUITS

In this section we prove that outcome probabilities in
fermionic circuits initialized in the state �in anticoncen-
trate for Haar random fermionic linear optical circuits.
We prove anticoncentration for both passive and active
fermionic linear optics. Our proof is based on interpreta-
tion of these circuits in terms of representation of group
U(d) and SO(2d), where d is the number of fermionic
modes used.

Let H be a Hilbert space and let {|x〉} be a fixed (com-
putational) basis of H. For V ∈ U(H) and a pure state |�〉.
In what follows we denote by px(V, �) the probability of
obtaining outcome x on some input state |�〉 on which
unitary V was applied. Born rule implies

px(V, �) = | 〈x|V |�〉 |2. (23)

In what follows we restrict our attention to H =∧2N
(C4N ) (for passive FLO) and H = H+

Fock(C
4N ) (for

active FLO). Moreover, for x ∈ {0, 1}4N vectors |x〉 denote
standard Fock states (cf. Sec. II). In both of the cases con-
sidered the set of allowed x is different (see Theorem 1 for
more details).
Definition 1: (Anticoncentration of ensemble of unitary
matrices). Let ν be an ensemble (probability distribution)

of unitary matrices U(H). We say that that ν exhibits anti-
concentration on input state |�〉 if and only if for every
outcome x of computational basis measurement

Pr
V∼ν

(
px(V, �) >

α

|H|
)

> β, (24)

where α, β are positive constants.

Remark 3: In this work we are concerned with families of
probability distributions that are defined on Hilbert spaces
of increasing dimension, parametrized by the total num-
ber of fermionic modes d. In this context, motivated by
the structure of the proof of hardness of sampling (see
Theorem 3) we are interested in cases when α, β = �(1),
i.e., are independent on |H|.

Below we state our main result regarding anticoncen-
tration of fermionic linear circuits initialized in the tensor
product of Fermionic magic states

|�in〉= |�4〉⊗N , (25)

where |�4〉 = 1/
√

2(|0011〉 + |1100〉). Note that |�in〉 ∈∧2N
(C4N ).

Theorem 1: (Anticoncentration for fermionic linear opti-
cal circuits initialized in product of magic states.) Let
Hpas =

∧2N
(C4N ) and let Hact = H+

Fock(C
4N ) be Hilbert

spaces describing 2N Fermions in 4N modes and positive
parity Fermions in 4N modes. Let Gpas and Gact be, respec-
tively, passive and active FLO transformations acting on
the respective Hilbert spaces and distributed according to
the uniform measures νpas and νact (see Sec. II). Let |�in〉
be the initial state to which both families of circuits are
applied. Then, for every x of Hamming weight |x| = 2N
we have

Pr
V∼νpas

(
px(V, �in) >

α

|Hpas|
)

>
(1 − α)2

Cpas
, (26)

where Cpas = 5.7 and |Hpas| =
(4N

2N

)
. Moreover, for every

x with even Hamming weight we have

Pr
V∼νact

(
px(V, �in) >

α

|Hact|
)

>
(1 − α)2

Cact
, (27)

where Cact = 16.2 and |Hact| = 24N /2.

Proof. In order to prove Eqs. (26) and (26) we start with
a standard tool used when proving anticoncentration—the
Paley-Zygmund inequality. It states that for arbitrary non-
negative bounded random variable X and for 0 < α < 1,

020328-13



OSZMANIEC, DANGNIAM, MORALES, and ZIMBORÁS PRX QUANTUM 3, 020328 (2022)

we have

Pr
X

(X > αEX ) ≥ (1 − α)2 (EX )2

EX 2 . (28)

We use this bound for X = | 〈x|V |�in〉 |2, where V ∼ νpas
or V ∼ νpas. Recall that, as explained in Sec. II, linear
circuits Gpas and Gact can be understood in terms of rep-
resentations of symmetry groups U(d) and SO(2d). Haar
measures on these symmetry groups induce uniform dis-
tributions on the Gpas and Gact. Therefore, for k = 1, 2 we
have

E
V∼ν

[
px(V, �in)

k] =
∫

G
dμ(g)

[
tr(|x〉〈x|�(g)�in�(g)†)

]k
,

(29)

where μ is the Haar measure on a Lie group G, and � is
a unitary representation of G in a suitable Hilbert space
H. The case of passive FLO corresponds to G = U(4N )

and � = �pas while for active FLO we have G = SO(8N )

and � = �act [cf. Eqs. (4) and (9)]. Both groups are irre-
ducibly represented in Hilbert spaces Hact and Hpas by
virtue of Schur lemma unitaries �(g) forming a 1-design.
Consequently,

E
V∼ν

[px(V, �in)]

=
∫

G
dμ(g)

[
tr(|x〉〈x|�(g)�in�(g)†)

]

= tr
(
|x〉〈x|

∫

G
dμ(g)

[
�(g)�in�(g)†]

)
= 1

|H| ,
(30)

where in the last equality we use the 1-design property
and the fact that |x〉 ∈ H is a normalized vector. Computa-
tion of the second moment can be greatly simplified by the
usage of group theory. Let us first rewrite E

V∼ν

[
px(V, �in)

2
]

in the form convenient for computation:

E
V∼ν

[
px(V, �in)

2]

=
∫

G
dμ(g)

[
tr(|x〉〈x|⊗2 �(g)⊗2�⊗2

in (�(g)†)⊗2]

= tr(A�,G�in ⊗ �in), (31)

where, due to unitarity of representation �, and invariance
of Haar measure under transformation g �→ g−1

A�,G =
∫

G
dμ(g)

[
�(g)⊗2 |x〉〈x|⊗2 (�(g)†)⊗2] . (32)

Operator A�,G acts on two copies of the original Hilbert
space, H⊗H and is a manifestly G invariant in the sense

that for all g we have [AG,�, �(g)⊗2] = 0. The integration
in Eq. (32) can be carried out explicitly because objects
in question have very specific properties that are rooted
in the fact that Fock states constitute generalized coher-
ent states of the considered representations of U(4N ) and
SO(8N ) (cf. Remark 5 for more details). Let |�〉 be a fixed
pure state in H and let |x〉 be a fixed fermionic Fock state
belonging to appropriate Hilbert space H

∃g ∈ G such that

� = �(g) |x〉〈x|�(g)† ⇐⇒ |�〉⊗2 ∈ H̃, (33)

where H̃ ⊂ H⊗H is the carrier space of certain unique
irreducible representation of G. In other words, it appears
as one of the irreducible representations in the decomposi-
tion of the space H⊗H, where G is represented via g �→
�(g)⊗2. Let P̃ be the orthonormal projector onto H̃ ⊂
H⊗H. Due to property (33) we get that supp(A�,G) ⊂ H̃.
Combining this with G-invariance of A�,G we get, using
Schur lemma, that A�,G must be proportional to P̃. The
proportionality constant follows easily from normalization
of A�,G. Putting this all together we obtain

A�,G = 1

|H̃|
P̃. (34)

Inserting the expressions for the first and second moments
to Payley-Zygmund inequality we get

Pr
V∼ν

(
px(V, �in) >

α

|H|
)

≥ (1 − α)2 |H̃|
|H|2

1

tr(P̃�in ⊗ �in)
.

(35)

From the above expression it is clear that anticoncentration
is controlled by (i) the ratio of |H̃|/|H|2 and (ii) expec-
tation value tr(P̃�in ⊗ �in). We give explicit forms of the
projectors P̃, as well as the dimensions |H̃| for both passive
and active FLO in Lemmas 12 and 14 in Appendix E 3.
From the expressions given there we obtain [98]

|H̃pas|
|Hpas|2 ≥ 1

N
,

|H̃act|
|Hact|2 ≥ 1√

πN
. (36)

For passive FLO this gives [recall that |x| = 2N and
Hpas =

∧2N
(C4N )]

Pr
V∼νpas

(
px(V, �in) >

α
(4N

2N

)
)

≥ (1 − α)2 1
N

1
tr(Ppas�in ⊗ �in)

. (37)
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FIG. 6. Plots of the logarithm of the expression (E73) (blue)
and log(Cpas/N ) = log(5.7/N ) (orange), which constitutes a
valid upper bound for all N ≤ 1000.

Similarly, for active FLO we obtain [recall that |x| is even
and Hact = H+

Fock(C
4N )] we have

Pr
V∼νact

(
px(V, �in) >

α

24N−1

)

≥ (1 − α)2 1√
πN

1
tr(Pact�in ⊗ �in)

. (38)

In order to complete the proof we need the following
inequalities:

tr(Ppas�in ⊗ �in) ≤ Cpas

N
, tr(Pact�in ⊗ �in) ≤ Cact√

πN
.

(39)

Proof of the above relies on the explicit form of the
projectors as well as some combinatorial considerations.
The details are given in the Appendix (see specifically
Lemma 13 for of passive FLO and Lemma 15 for active
FLO). �

Remark 4: In the course of proving Eq. (39) in Appen-
dices we arrive at upper bounds on tr(Ppas�in ⊗ �in) and
tr(Pact�in ⊗ �in) that are efficiently computable as a func-
tion of N . The numerics shown in Figs. 6 and 7 strongly
suggest that the bounds provided by the values Cpas =
5.7 and Cact = 16.2 given here are not tight and can be
improved by better proof techniques, specifically up to
Cpas ≤ 2.4 and Cact ≤ 2.7.

Remark 5: The existence of projector P̃ such that
equivalence in Eq. (33) holds follows from the group-
theoretical characterizations of Slater determinants as well
as pure fermionic Gaussian states with positive parity.
Namely, these classes of states constitute examples the
so-called generalized coherent states of simple, compact,
and connected Lie groups [SU(d) and spin(2d)] that are
irreducibly represented in the appropriate Hilbert space

[
∧n

(Cd) and H+
Fock(C

d), respectively]. The fact that such
classes of states can be characterized via the quadratic
condition A |�〉⊗2 = 0 is a known result in algebraic
geometry [99]. This was translated to the quantum infor-
mation language in Ref. [100], later rephrased as Eq. (33)
and used to characterize correlations in systems consisting
of indistinguishable particles [101,102] (see also Chap-
ter 3 of Ref. [103]). An equivalent characterization of
pure fermionic Gaussian states was also independently dis-
covered by Bravyi in the context of fermionic quantum
information [65] (see also Ref. [72]).

Remark 6: A curious reader may wonder whether anti-
concentration holds also if FLO circuits that are initialized
in free Gaussian states �Gauss (with a fixed number of
particles for passive FLO). For such states tr(P̃�Gauss ⊗
�Gauss) = 1 and therefore for such we cannot get strong
anticoncentration inequalities using Eq. (35). We have
also tried to use higher moments in conjugation with the
Payley-Zygmund inequality but this did not work. We
leave the question whether FLO circuits anticoncentrate
when acting on Gaussian states as an open problem.

VI. HARDNESS OF SAMPLING

In this part we use anticoncentratio of FLO circuits
and standard complexity-theoretic conjectures to prove
classical hardness for sampling from FLO circuits initial-
ized by magic states. We adopt to the fermionic setting
standard techniques [12,17,18,20] that use the anticoncen-
tration property to prove hardness of sampling based on
conjectures about hardness of approximation of probability
amplitudes px(V, �in) to within relative error.

We start with a formal definition of a sampling problem
defined by FLO circuits initialized in magic input states.

Definition 2: (Fermion sampling task). Let Hpas =∧2N
(C4N ) and let Hact = H+

Fock(C
4N ) be Hilbert spaces

2000 4000 6000 8000
N

–4

–3

–2

–1

FIG. 7. Plots of the logarithm of the expression (E103) (blue)
and log(Cact/

√
N ) = log(16.2/

√
πN ) (orange), which is a valid

upper bound for all N ≤ 7000.
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describing 2N fermions in 4N modes and positive par-
ity fermions in 4N modes. Let Gpas and Gact be passive
and active FLO transformation. Let V be a FLO circuit on
the Hilbert space Hpas or Hact and let p(V) denote prob-
ability distribution px(V, �in). Given a description of V,
sample from a probability distribution q(V) that is ε close
to p(V, �in) in l1 norm (twice the total variation distance)

‖p(V) − q(V)‖1 =
∑

x

|px(V) − qx(V)| ≤ ε, (40)

in time poly(N ).
Remark 7: It is more convenient to use l1 norm in place
of the total variation distance (TVD) as it appears more
directly in the proof of Theorem 2.

It was realized in Refs. [10,12] that, by virtue of Stock-
meyer’s theorem, the hardness of classically sampling
from px(V, �) up to an additive error is connected to
the hardness of computing px(V, �) for most instances
of x and U. In particular, the existence of a classical
machine that performs the sampling task implies average-
case approximation in a low level of the complexity class
called the polynomial hierarchy. To prove this fact, we
start by defining the notion of approximating in the average
case.
Definition 3: An algorithm O is said to give an (η, δ)-
multiplicative approximate of qz on average over the prob-
ability distribution P of inputs z if and only if O outputs
Oz such that

Pr
z∼P

[|Oz − qz| ≤ ηqz] ≥ 1 − δ. (41)

Remark 8: For applications to hardness of sampling, z
will generally be a tuple of inputs (V, x), a FLO circuit and
a measurement outcome. Correspondingly, P will be the
joint probability distribution V ∼ νpas and x ∼ unif(Hpas)

in the case of passive FLO [respectively, V ∼ νact and x ∼
unif(Hact) in the case of active FLO], where x ∼ unif(H)

is the uniform distribution of outcomes restricted to the
Hilbert space H.

We now prove the hiding property [10,12,14] of FLO
circuits. This allows us to focus on the hardness of a
particular outcome probability.

Lemma 1: (Hiding property for FLO.) Consider a fixed
state |x0〉 ∈ Hpas (Hact, respectively) then for any V pas-
sive FLO (active FLO, respectively) and |x〉 ∈ Hpas (Hact,
respectively) there is a passive (active) FLO Vx such that
|〈x|V |�in〉|2 = |〈x0|Vx |�in〉|2

Proof. It is enough to show that given x there is Vx passive
(active) FLO such that Vx |x0〉 = |x〉 up to a global phase.
In the passive case this is achieved with gates implement-
ing fermionic swaps U[i,j ] such that U[i,j ]f †

i U[i,j ]† = f †
j and

U[i,j ]f †
j U[i,j ]† = f †

i , the order in which they are applied
is defined by |x〉. The same can be accomplished in the
active FLO case with operators −im2im2i+1 changing the
number of fermions (but not parity) and quasi braiding
operators U(p ,q) to exchange the Majorana operators to the
corresponding places. The quasibraidings act on Majorana
operators as U(p ,q)mp(U(p ,q))† = mq, U(p ,q)mq(U(p ,q))† =
mp and U(p ,q)mx(U(p ,q))† = mx when x �= p , q. �

An additional ingredient required for a quantum sam-
pling advantage is anticoncentration, which states that
most output probabilities of a random circuit are suffi-
ciently big so that the approximation error to computing
the probabilities is small relative to the probabilities being
computed. Both average-case hardness and anticoncentra-
tion provide robustness of the sampling task to noise.

Theorem 2: (From approximate sampling to approxi-
mately computing probabilities.) Let Hpas =

∧2N
(C4N )

and let Hact = H+
Fock(C

4N ) be Hilbert spaces describing
2N Fermions in 4N modes and positive parity Fermions
in 4N modes. Consider in parallel passive FLO circuits
and active FLO circuits acting on the input state |�in〉.
If there is a classical algorithm C that performs fermion
sampling as described in Definition 2 with the l1 error
1/(64C), where C is the constant Cpas = 5.7 (respectively,
Cact = 16.2) appearing in the anticoncentration condition
for passive FLO circuits (respectively, active FLO circuits)
in Theorem 1.

Then there is an algorithm in BPPNP (The class BPPNP

stands for Probablistic bounded-error classical random-
ized computation equipped with oracle for solving prob-
lems in NP.) that approximates the probability px0(V, �in)

for an arbitrary but fixed fiducial outcome x0 up to mul-
tiplicative error 1/4 + o(1) on 1/(8C) fraction of FLO
circuits drawn from the distribution ν = νpas for passive
FLO circuits (respectively, νact for active FLO circuits.)

The proof of the above theorem is given in the Appendix
and follows the standard reduction based on Stockmayer
algorithm [12,20]. Alternatively, one could arrive at a
similar result in two steps: first showing that a classi-
cal approximate sampler implies approximations up to an
additive error ε/|H|, where ε is the TV distance achieved
in the sampling task in the polynomial hierarchy, then
showing that anticoncentration improves the approxima-
tions to multiplicative ones [14]. The alternative proof
may be beneficial when anticoncentration does not hold
or is undesirable, for example, when anticoncentration
renders (black box) certification of quantum advantage
infeasible [61].

Armed with Theorem 2, we now state the other conjec-
tures needed before proving the hardness of sampling.
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Conjecture 1: (Average case of approximating proba-
bilities on FLO circuits initialized in |�in〉). Comput-
ing a [1/4 + o(1), 1/(8C)]-multiplicative approximate to
px0(V, �in) for 1/(8C) fraction of V sampled from the
Haar distribution ν is #P-hard. (C = Cpas, ν = νpas for pas-
sive FLO circuits and C = Cact, ν = νact for active FLO
circuits).

Conjecture 2: The polynomial hierarchy does not col-
lapse.

Remark 9: The motivation for Conjecture 1 comes from
the fact that computing exactly the probabilities is #P-hard,
this can be seen by writing the output as a polynomial as
in Lemma 10, it has been shown that computing a perma-
nent exactly reduces to computing this polynomial and it is
known that computing the permanent exactly is #P-hard.

Theorem 3: (Hardness of sampling from FLO circuits ini-
tialized in |�in〉.) If Conjectures 1 and 2 are true, then there
is no efficient classical algorithm that can approximately
sample with l1 error 1/(64Cpas) [respectively, 1/(64Cact)]
from output probability distributions induced by passive
(respectively, active) FLO circuits with the input given by
|�in〉.

Proof. By Theorem 2, if there were an approximate sam-
pler with respect to passive (respectively, active) FLO cir-
cuits with input |�in〉, then there would exist an algorithm
BPPNP that [1/4 + o(1), 1/(8C)]-multiplicative approxi-
mates px0(V, �in) in for 1/(8C) fraction of passive (respec-
tively, active) FLO circuits. Where C = Cpas in the passive
case and C = Cact in the active. By Conjecture 1 this is a
#P-hard problem. It is known [104] that BPP is inside the
third level of the polynomial hierarchy, i.e., BPPNP ⊆ �3.
By a well-known result of Toda [105] PH ⊆ P#P and thus
PH ⊆ �3. �

VII. CAYLEY PATH FOR UNITARY AND
ORTHOGONAL GROUPS

In this section, following Ref. [15], we introduce a ratio-
nal interpolation between elements of the low-dimensional
symmetry groups underlying FLO transformations. In
what follows by G we denote either of the Lie group U(d)

or SO(2d). The rational interpolation is constructed from
the Cayley transform, which is a rational mapping form
the Lie algebra g into the corresponding group G. For
both groups we give upper bounds for the TVD between
the Haar measure μG on G and and its deformations
μθ

G obtained via Cayley path. These bounds imply TVD
bounds between distributions of the corresponding FLO
circuits. This and other technical results established below
will be called upon in the proof of the worst-to-average-
case reduction in Sec. VIII.

The Lie algebras u(d) and so(2d) of U(d) and SO(2d)

are defined to be

u(d) = {X ∈ C
d×d|X † = −X }, (42)

so(2d) = {X ∈ R
2d×2d|X T = −X }, (43)

where X T denotes the transpose of the matrix X .
Remark 10: We do not use the physicists’ convention,
which requires that elements of Lie algebra X satisfy
exp(iθX ) ∈ G. Therefore, in particular, here u(d) [respec-
tively, so(d)] consists of skew-Hermitian (respectively,
antisymmetric) matrices.

Every element X ∈ g defines a one-parameter path in
G: {exp(θX )}θ∈R, via the exponential map, exp : g → G.
Both orthogonal and unitary groups are compact and con-
nected. Therefore, exponential map is surjective and can
be used to parametrize G, and provides an interpolation
between any two group elements. However, the interpola-
tion is not polynomial in nature, and while it is possible to
truncate the power series of exp to obtain a polynomial
interpolation [14], the resulting interpolation represents
circuits that are not unitary (cf. [15]).

To remedy this, Ref. [15] employs an algebraic Cayley
transformation between u(d) and U(d). This transforma-
tion can be however defined more generally as a mapping
between Lie algebra and the corresponding Lie group
[106]. For our needs it is enough to consider the case of
unitary and special orthogonal groups.
Definition 4: Let G be U(d) or SO(2d), and let g denotes
its Lie algebra. The Cayley transform is a mapping f :
g → G defined via

f (X ) = (I − X )(I + X )−1. (44)

It is easy to see that the image of f (g) equals a dense
subset G̃ = {g ∈ G | {−1} /∈ sp(g)} consisting of elements
of G (i.e., unitary or orthogonal matrices) that do not have
−1 in their spectrum. On G̃ the inverse of f is well defined.
Specifically, f −1 : G̃ → g is given by

f −1(g) = (I − g)(I + g)−1, (45)

where g ∈ G̃. This explicit form of the inverse map can
be verified directly from the definition of f . Cayley map
defines a path deformation between g0 ∈ G and g0f (X ) as
follows (see Fig. 8).

Cayley map can be used to define a rational interpolation
between arbitrary group elements. To this end consider first
the map Fθ : G̃ → G, given by

Fθ (g) = f [θ f −1(g)], θ ∈ [0, 1]. (46)

The above mapping can be evaluated explicitly (note that
elements of the considered Lie groups are normal matrices
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FIG. 8. Path deformation defined by the Cayley map in
Eq. (44). A path is induced between element g0 ∈ G and g0g by
taking X = f −1(g) ∈ g and considering the perturbation gθ =
g0f (θX ).

and therefore functional calculus can be performed effec-
tively in the same way as if we were dealing with functions
of a real variable):

Fθ (g) = (1 − θ)I + (1 + θ)g
(1 + θ)I + (1 − θ)g

, θ ∈ [0, 1]. (47)

For both orthogonal and unitary operators we have ‖g‖
= 1. Therefore, for θ ∈ (0, 1] the denominator of (47) does
not vanish and therefore we can use (47) to define Fθ to
be a function defined on whole G, while for any g ∈ G
we get that limθ→0 Fθ (g) = I. Therefore, for θ ∈ [0, 1] the
denominator of Eq. (47) does not vanish and therefore we
can use Eq. (47) to define Fθ as a function defined on
whole G. Importantly, for the fixed input as θ goes from
0 to 1 we move on a rational path form the identity I to g.
Consequently the path

gθ = g0Fθ (g), θ ∈ [0, 1] (48)

is a rational interpolation between a fixed group element g0
(which can correspond, for example, to a worst-case #P-
hard FLO circuit) and a completely generic group element
g0g.

It is important to note that both f (θX ) and X can be
simultaneously brought into a block-diagonal form by con-
jugation by elements of the group: M �→ gMg−1. It follows
from the fact that f (θX ) is simply a function of X and
then the transformation properties of elements of g under
the conjugation by elements of G. For the case of X ∈ u(d)

we have an elementary fact from linear algebra that there

exist a unitary U ∈ U(d) such that

UXU† =
d∑

j=1

φj Xj , (49)

where Xj = i |j 〉〈j |. Similarly, for any X ∈ so(2d) there
exist O ∈ SO(2d) such that

OXOT =
d∑

j=1

φj X̃j , (50)

where X̃j = |2j 〉〈2j − 1| − |2j − 1〉〈2j | is the generator
for the j th block. These statements have analogs on the
level of elements of the group. Every unitary U can be
transformed into a diagonal form

diag(eiφ1 , eiφ2 , . . . , eiφd) = exp

⎛

⎝
d∑

j=1

φj Xj

⎞

⎠ . (51)

For elements SO(2d), the block diagonalization amounts
to the geometric fact that any 2d-dimensional rotation can
be decomposed into d-independent planar rotations of the
form exp

(∑d
j=1 φj X̃j

)
.

The following lemma, which we prove in Appendix C,
shows that for 1 − θ ≤ o(1/d2) the distribution of ele-
ments of the group g, and gθ = g0Fθ (g), where g ∼ μG,
are close in total variation distance.

Lemma 2: (TV distance between the Haar measure in G
and its θdeformation.) Let G be equal to U(d) or SO(2d).
Let g0 ∈ G be a fixed element in G. Let g ∼ μG an let
gθ = g0Fθ (g), for θ ∈ [0, 1] and Fθ : G → G defined in
Eq. (47). Let now μθ

G denotes the induced measure accord-
ing to which gθ is distributed. Assume furthermore that
θ ∈ [1 − �, 1], for � > 0. We then have

∥∥μU(d) − μθ
U(d)

∥∥
TVD

≤ d2�/2,
∥∥μSO(2d) − μθ

SO(2d)

∥∥
TVD

≤ d2�/2. (52)

Remark 11: A similar analysis was carried out in
Ref. [15] for the case of unitary group U(d). There, how-
ever, considerations were carried out for d = O(1). This
was justified because gates in question were only single-
and two-qubit gates. The above lemma can be viewed as
an extension of the analysis given there in the sense of
allowing arbitrary relation between d and �.

The robustness of the quantum supremacy claim will
be tied directly to the degree of the rational functions that
interpolate between quantum circuits (Appendix D). Here
we give the explicit rational functions and their degrees
in the Cayley-path interpolation gθ = Fθ (g) at the group

020328-18



FERMION SAMPLING: A ROBUST QUANTUM... PRX QUANTUM 3, 020328 (2022)

level, Eq. (47), in U(d) and SO(2d). [A similar result for
U(d) was derived in Ref. [15] ].

In the case of U(d), since g can always be diagonalized
by some element h: hgh−1 =∑d

j=1 eiφj |j 〉〈j |, we have that

gθ =
d∑

j=1

(1 − θ) + (1 + θ)eiφj

(1 + θ) + (1 − θ)eiφj
g0h−1 |j 〉〈j | h (53)

=
d∑

j=1

1 + iθ tan(φj /2)

1 − iθ tan(φj /2)
g0h−1 |j 〉〈j | h (54)

= 1
Qg(θ)

d∑

j=1

Pj (θ)g0h−1 |j 〉〈j | h =:
Pg0,g(θ)

Qg(θ)
, (55)

where

Qg(θ) =
d∏

j=1

[1 − iθ tan(φj /2)], (56)

Pj (θ) = [1 + iθ tan(φj /2)]
∏

1≤k≤d
k �=j

[1 − iθ tan(φk/2)]

(57)

are both polynomials of degree d in θ , and Pg0,g(θ) is a
formal polynomial that depends on the matrices g and g0.

The same calculation applies to the case SO(2d),
except that now each eigenspace is two dimensional
and spanned by Ij = |2j − 1〉〈2j − 1| + |2j 〉〈2j | and
X̃j = |2j 〉〈2j − 1| − |2j − 1〉〈2j |. Again, let hgh−1 =∑d

j=1(cos φj Ij + sin φj X̃j ), and one has

gθ = g0

d∑

j=1

[1 + cos φj + θ2(1 − cos φj )]−1

× {[1 + cos φj − θ2(1 − cos φj )
]
Ij

+ 2θ sin φj h−1X̃j h
}

(58)

= g0

d∑

j=1

[1 − θ2 tan2(φj /2)]Ij + 2θ tan(φ/2)h−1X̃j h
1 + θ2 tan2(φj /2)

(59)

= 1
Qg(θ)

d∑

j=1

(
Pdiag

j (θ)g0Ij + Poff
j (θ)g0h−1X̃j h

)
(60)

=:
Pg0,g(θ)

Qg(θ)
, (61)

where in Eq. (59) we divided both the numerator and the
denominator by 1 + cos φj and

Qg(θ) =
d∏

j=1

[1 + θ2 tan2(φj /2)], (62)

Pdiag
j (θ) = [1 + θ2 tan2(φj /2)]2

×
∏

1≤k≤d
k �=j

[1 + θ2 tan2(φj /2)]2, (63)

Poff
j (θ) = 2θ tan(φj /2)

∏

1≤k≤d
k �=j

[1 + θ2 tan2(φj /2)]2 (64)

are polynomials in θ of degree 2d, 2d, and 2d − 1, respec-
tively, and Pg0,g(θ) is a formal polynomial that depends on
the matrices g and g0.

Below we give a lower bound for Qg(θ) to assure
that the rational function does not blow up, and an upper
bound for generic g ∈ G, which will be crucial for a robust
reduction in Sec. VIII. Note that the coefficients of the
polynomial Qg(θ) depends only on generalized eigenval-
ues of g (eiφj in the unitary case and cos φj , sin φj in the
orthogonal case) and hence Q(θ) can be precomputed in
time polynomial in d by diagonalizing g, computing each
tan(φj /2), which is just an algebraic function of eiφj , and
computing the final result.

Lemma 3: Let Qg(θ) be the polynomial in defined in
Eq. (56) for G = U(d) and in Eq. (62) for G = SO(2d).
Let now �̃ > 0. Then we have the following inequalities:

Pr
g∼μU(d)

⎧
⎨

⎩
∣∣Qg(θ)

∣∣2 ≤
[

1 +
(

θπ

�̃

)2
]d
⎫
⎬

⎭ ≥ 1 − d
�̃

π
,

(65)

Pr
g∼μSO(2d)

⎧
⎨

⎩
∣∣Qg(θ)

∣∣2 ≤
[

1 +
(

θπ

�̃

)2
]2d
⎫
⎬

⎭ ≥ 1 − d
�̃

π
.

(66)

In addition, for all g, |Qg(θ)|2 ≥ 1 for both U(d) and
SO(2d).

Proof. Since g ∈ G is Haar distributed, every general-
ized eigenphase φj is distributed uniformly on the interval
[−π , π ] [107]. Therefore, for every j we have

Pr
g∼μG

(
φj ∈ [π − �̃, π ] ∪ [−π ,−π + �̃]

)
= �̃

π
. (67)

It is easy to verify that for φj ∈ [−π + �̃, π − �̃] we
have

∣∣tan(φj /2)
∣∣ ≤ π/�̃. Using the union bound over dif-

ferent φj , j ∈ [d] we obtain that with probability at least
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1 − d(�̃/π),

∣∣tan(φj /2)
∣∣ ≤ π/�̃ for all j ∈ [d]. (68)

Using the definition of polynomials Qg(θ) from Eqs. (56)
and (62), we obtain the claimed inequalities (65) and (66).

�

Remark 12: We believe that the inequalities stated in
Lemma 3 can be greatly improved by the usage of more
sophisticated techniques from random matrix theory. How-
ever, for our purposes these crude estimates are sufficient
(see proof of Theorem 7).

VIII. ROBUST AVERAGE-CASE HARDNESS OF
OUTPUT PROBABILITIES OF FERMIONIC

CIRCUITS

In this part we give strong evidence for Conjecture
1 used to show classical hardness of sampling from
fermionic linear circuits initialized in |�in〉 (cf. Theorem
3). There we conjectured that it is #P-hard to approxi-
mate probabilities px(V, �in) = | 〈x|V |�in〉 |2 of generic
FLO circuits initialized in |�in〉 to relative error. To
support the conjecture we prove weaker theorems show-
ing average-case #P-hardness of exact computation of
px(V, �in) (Theorem 5) and extend it further to average-
case #P-hardness of approximating p(x|V, �in) up to error
ε = exp[−�(N 6)] (Theorem 7), where N is the number of
states |�4〉 used.

To establish this we combine previously known worst-
case hardness results (see discussion in Sec. VI) and
adopt to our setting rational interpolation method based
on Cayley transform introduced recently by Movassagh
[15]. We also use the fact that both passive FLO circuits
(Gpas) as well active FLO (Gact) are representations of low-
dimensional symmetry group G [equal to U(d) or SO(2d)].
As shown in the previous section, this implies that, when
evaluated on the Cayley path gθ , the circuit rise to out-
come probabilities being rational functions of low degree
(cf. Lemma 11). This low-degree structure allows worst-
to-average-case reductions to be performed for the family
of circuits considered. Specifically, we reduce the problem
of computation of the worst-case probability p(x|V0, �in)

to computing p(x|V, �in), for V being typical passive or
active FLO circuit.

We need the following result that guarantees that it is
possible to recover an unknown rational function F(θ)

from a set of its values at different points, even if some
of the evaluation are erroneous.

Theorem 4: (Berlekamp-Welch for rational functions
[15].) Let R(θ) be a rational function of degree deg(R) =
(d1, d2). A set of points S = {(θ1, r1), (θ2, r2), . . . , (θL, rL)}

specifies R(θ) uniquely provided L > d1 + d2 + 2t, where

|{ i ∈ [L] |R(θi) �= ri}| ≤ t. (69)

Moreover, R(θ) can be recovered in polynomial time in L
and deg(R), when S is given.

Recall that in our quantum advantage scheme we
have d = 4N , |�in〉 = |�4〉⊗N , for |�4〉 = (|0011〉 +
|1100〉)/√2 (therefore for the case of passive FLO n =
2N ). Let now g0 ∈ G be an element of the symmetry group
such that px0(V0, �in) is #P-hard to compute, where V0 =
�(g0) and x0 is the specific output state. We use a Cayley-
path interpolation between g0 and Haar-random elements
from G

gθ = g0Fθ (g), g ∼ μG. (70)

Let μθ
G be the distribution of gθ obtained in this way. In

Lemma 2 we proved bounds for the TV distances ‖μG −
μθ

G‖TVD. These bounds can be directly translated on the
level of the corresponding circuits. Indeed, let Vθ = �(gθ )

and let νθ
G denote the distribution of the corresponding

quantum circuits obtained by appropriate representation �

of G. Since distribution of the Haar random FLO circuits
νpas, νpas are obtained in exactly the same way we get from
the monotonicity of TV distance (cf. Sec. II).

∥∥∥νpas − νθ
pas

∥∥∥
TVD

≤ 8N 2�,
∥∥νact − νθ

act

∥∥
TVD ≤ 8N 2�, (71)

where θ ∈ [1 − �, 1]. Finally, from Lemma 11 we know
that probabilities R(θ) = tr[|x0〉〈x0|�(gθ )ρ�(gθ )

†] are
rational functions of the deformation parameter θ of
degrees,

passive FLO: deg(R) = (16N 2, 16N 2),

active FLO: deg(R) = (32N 2, 32N 2), (72)

and act that passive and active fermionic linear circuits
give an average to worst-case reduction for outcome prob-
abilities generated by fermionic circuits.

Theorem 5: (Average-case #P-hardness of computation
of outcome probabilities of FLO circuits.) Let V0 be a FLO
circuit such that computing px0(V0, �in) = |〈x0|V0 |�in〉|2
is #P-hard, where V0 is element of either passive or active
FLO circuits and the output Fock state |x0〉 belongs to the
suitable Hilbert space Hpas =

∧2N
(C4N ) for passive FLO

and Hact = H+
Fock(C

4N ), respectively.
Then it is #P-hard to compute px0(V, �in) = |〈x0|V

|�in〉|2 with probability α > 3/4 + δ, δ = 1/poly(N ),
over the the uniform distribution of circuits: V ∼ νpas for
passive FLO and V ∼ νact for active FLO.
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Remark 13: Due to hiding property (see Lemma 1) both
active and passive FLO gates can permute between possi-
ble output Fock states |x〉 in Hpas =

∧2N
(C4N ) and Hact =

H+
Fock(C

4N ), respectively. Therefore, using the invariance
of the Haar measure on G, we can transform x0 above into
any other output x satisfying |x| = 2N (for passive FLO)
and |x| even (for active FLO).

Proof. We first fix the symmetry group G describing a
class of FLO circuits. The proof is virtually identical
for both G = U(4N ) and G = SO(8N ). Suppose that O
is an oracle that given a description of �(g) computes
|〈x0|�(g) |�in〉|2 with high probability, i.e.,

Pr
g∼μG

[O[�(g)] = |〈x0|�(g) |�in〉|2
]

> α. (73)

The uniform distribution of FLO circuits νG is obtained by
setting V = �(g), where g ∼ μG [recall that νG = νpas for
G = U(4N ) and νG = νact for G = SO(8N )]. Therefore,
Eq. (73) is equivalent to

Pr
V∼νG

[O(V) = |〈x0|V |�in〉|2
]

> α. (74)

In what follows we argue that oracle O can be used
to compute the #P-hard probability in polynomial time.
The argument presented below follows steps from worst-
to-average-case reduction for permanents of Gaussian
matrices from Ref. [10], and its modification that involv-
ing rational interpolation from Ref. [15]. We consider a
rational path interpolation gθ = g0Fθ (g) between worst
case g0 and =g′ = g0g, where g is chosen according to
Haar measure on G. We call O on L distinct FLO cir-
cuits �(gθ1), �(gθ2), . . . , �(gθL), where θi ∈ [1 − �, 1],
and the parameter � will be chosen later. We use evalu-
ations {O[�(gθi)]}L

i=1 to efficiently reconstruct the rational
function using Berlekamp-Welch algorithm for rational
functions R(θ) = |〈x0|�(gθ ) |�in〉|2 (cf. Theorem 4). If
the reconstruction is successful, evaluation of R(θ) at θ =
0 gives us the #P-hard probability R(0) = |〈x0|V0 |�in〉|2
[we use here V0 = �(g0)].

To assess the success probability with which the above
scheme evaluates |〈x0|V0 |�in〉|2 correctly we first bound
the success probability with which oracle O computes the
value of px0 [�(gθ ), �in] correctly. Using variational char-
acterization of TV distance and bounds from Eq. (71) we
obtain

Pr
V∼νG

[O(V) = |〈x0|V |�in〉|2
]

− Pr
V∼νθ

G

[O(V) = |〈x0|V |�in〉|2
] ≤ CN 2�. (75)

Combining the above with Eq. (74) we get

Pr
V∼νθ

G

[O(V) = |〈x0|V |�in〉|2
] ≥ α − CN 2�. (76)

Or equivalently

Pr
g∼μG

[O[�(gθ )] = |〈x0|�(gθ ) |�in〉|2
] ≥ α − CN 2�.

(77)

According to rational Berlekamp-Welch algorithm the
number of evaluations L of a rational function R(θ) that
allows reconstruction of it despite having at most t incor-
rect evaluations has to satisfy L > d1 + d2 + 2t. Note that
in the considered case d1 + d2 = �(N 2) [cf. Eq. (72)]. The
probability of having a number of errors that exceeds the
bound allowing for reconstruction of R(θ) can be estimated
using Markov inequality applied for the random variable
counting the number of invalid evaluations of the oracle

t(g) = ∣∣{θi |O[�(gθi)] �= | 〈x0|�(gθi) |�in〉 |2, i ∈ [L]
}∣∣ .

(78)

From the definition of t and the inequality (77) it follows
that Eg∼μGt(g) ≤ [1 − α + CN 2�]L. Using this estimate
in Markov inequality [recall that by assumption α > 3/4 +
δ, for δ = 1/poly(N )] we get

Pr
g∼μG

[
t(g) >

L − d1 − d2

2

]
≤ [1 − α + CN 2�]L

L−d1−d2
2

≤
1
4 − δ + CN 2�

1
2 − d1+d2

2L

. (79)

By choosing � and L such that CN 2� ≤ δ/2 and
d1 + d2/2L ≤ δ/4 [this can be done with � = 1/poly(N )

and L = poly(N ) because d1 + d2 = �(N 2)], we obtain

Pr
g∼μG

[
t(g) >

L − d1 − d2

2

]
≤

1
4 − δ

2
1
2 − δ

4

≤ 1
2
− δ

4
. (80)

The leftmost part of the above inequality is the probability
of failure of our protocol. Therefore, since δ = 1/poly(N ),
we can repeat the procedure polynomially numerous times,
for different choices of �(g), compute R�(g)(0) each
time, and output the majority vote. The probability of suc-
cessfully computing the right result (i.e., |〈x0|V0 |�in〉|2)
can be made exponentially close to 1 in this way. �

We proceed with proving the robust version of the
above result. To this end, we shift to polynomial interpola-
tion because much more is known about its robustness to
errors. To phrase our problem using polynomials we first
note that the rational function Rg0,g = |〈x0|�(gθ ) |�in〉|2,
where gθ = g0Fθ (g) can be written as

Rg0,g(θ) = Dg0,g(θ)

Qg(θ)
, (81)

where for both groups Dg0,g , Qg are real polynomials
of degrees Dg0,g = d1 = �(N 2), Qg = d2 = �(N 2) (cf.
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Lemma 11). Moreover, the denominator Qg(θ) can be
computed efficiently in N [see Eq. (D22)] given a classical
description of g. Hence, we have the following.

Lemma 4: Let Rg0,g(θ) be defined as in Eq. (81) [for
fixed g0, g ∈ G, where G = U(4N ) or G = SO(8N )]. Then
complexity of computation of Rg0,g(θ) and Dg0,g(θ) is
equivalent up to �(N 2) overhead.

The above allows us to use, following Refs. [14,15],
techniques of polynomial interpolation in order to estimate
the hard probability Rg0,g(0). We now state two results
from this domain that are used later in the robust version
of the worst-to-average-case reduction given above.

Lemma 5: (Paturi lemma [108].) Let P(θ) be a poly-
nomial of degree k and suppose that |P(θ)| ≤ ε for θ ∈
[1 − �, 1], � ∈ (0, 1]. Then

P(0) ≤ ε exp[4k(1 + �−1)]. (82)

Remark 14: The above lemma is usually presented in a
slightly different form in which the assumption |P(θ)| ≤
ε for θ ∈ [−�, �] (� > 0) is used to establish P(0) ≤
ε exp[2k(1 + �−1)]. Our result can be deduced from the
former via simple affine change of variables θ �→ θ ′ =
−2/2 − �θ + 1.

Theorem 6: (Values of polynomials bounded at equally
spaced points [109].) Let θi, i = 1, . . . , L be a collection
of L equally spaced points in the interval [1 − �, 1], � ∈
(0, 1). Let P(θ) be a polynomial of degree k. Assume that
for every i, |P(θi)| ≤ ε. Then there exist absolute constants
a, b > 0 such that

max
θ∈[1−�,1]

|P(θ)| ≤ ε exp
(

b
k2

L
+ a
)

. (83)

Remark 15: The problem of bounding values of polyno-
mials that are bounded on a uniformly spaced interval has a
long history and there have been more recent developments
in this topic (see, for example, Ref. [110]). However, for
our purposes the above result by Coppersmith and Rivlin
is sufficient.

Before we formulate our result and prove our main
theorem we need one more technical ingredient. Infor-
mally speaking, since Qg(θ) appears in the denominator
of Eq. (81) we need to ensure that values of Qg(θ) are not
too large for typical values of g. This is achieved by com-
bining Lemma 3 and explicit formulas for Qg(θ) given in
Eq. (D22) we obtain the following.

Corollary 1: Let g ∈ G and let Qg(θ) be the polynomial in
defined in Eq. (D22) for G = U(d) in G = SO(2d). Assume

that n = 2N, d = 4N. Let now �̃ > 0. We then have the
following inequalities:

Pr
g∼μU(d)

⎧
⎨

⎩Qg(θ) ≤
[

1 +
(

θπ

�̃

)2
]16N 2 ⎫⎬

⎭ ≥ 1 − 4N
�̃

π
,

(84)

Pr
g∼μSO(2d)

⎧
⎨

⎩Qg(θ) ≤
[

1 +
(

θπ

�̃

)2
]32N 2⎫⎬

⎭ ≥ 1 − 4N
�̃

π
.

(85)

Combining all technical ingredients stated above we are
in the position to prove our main result.

Theorem 7: (Average-case #P-hardness of approximation
outcome probabilities of FLO circuits.) Let V0 be a FLO
circuit such that computing px0(V0, �in) = |〈x0|V0 |�in〉|2
is #P-hard, where V0 is an element of either passive or
active FLO circuits and the output Fock state |x0〉 belongs
to the suitable Hilbert space Hpas =

∧2N
(C4N ) for passive

FLO and Hact = H+
Fock(C

4N ), respectively.
Let ε = exp[−�(N 6)]. Then it is #P-hard to compute

px0(V, �in) = |〈x0|V |�in〉|2 to accuracy ε with probability
α > 1 − δ, δ = o(N−2), over the the uniform distribution
of circuits: V ∼ νpas for passive FLO and V ∼ νact for
active FLO.

Remark 16: Using the same arguments as in the remark
below Theorem 5 we can transform x0 above into any other
output x satisfying |x| = 2N (for passive FLO) and |x|
even (for active FLO).

Proof. We first fix the symmetry group G describing
a class of FLO circuits. The uniform distribution of
FLO circuits νG is obtained by setting V = �(g), where
g ∼ μG [recall that νG = νpas for G = U(4N ) and νG =
νact for G = SO(8N )]. The general idea of the proof is
similar to the reasoning used to prove Theorem 5. We
start with an oracle O that given a classical description of
V = �(g), is able to approximately compute px0(V, �in) =
|〈x0|�(g) |�in〉|2,

Pr
g∼μG

[∣∣O[�(g)] − | 〈x0|�(g) |�in〉 |2
∣∣ ≤ ε

]
> 1 − δ.

(86)

Equivalently, we have

Pr
V∼νG

[∣∣O(V) − | 〈x0|V |�in〉 |2
∣∣ ≤ ε

]
> 1 − δ. (87)

For a generic Haar random g ∈ G we again consider a
rational path gθ = g0Fθ (g) between g0g and g0, where g0
is an element of the group corresponding to the worst-case
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circuit. Recall that by μθ
G we denoted the distribution of

gθ for g ∼ μG. We now query oracle O multiple times on
gθi , where θi are L equally distributed points in the interval
[1 − �, 1], for � > 0 to be set latter. As done previously in
the proof of Theorem 5 by using variational characteriza-
tion of TV distance and Eq. (71), we obtain that for every
θi ∈ [1 − �, 1]

Pr
g∼μG

[∣∣O[�(gθi)] − | 〈x0|�(gθi) |�in〉 |2
∣∣ ≤ ε

]

> 1 − δ − 8�N 2, (88)

Let now Dg0,g(θ) be a polynomial of degree deg(Dg0,g) =
�(N 2) that we defined Eq. (81). Recall that the denomi-
nator of Rg0,g(θ), Qg(θ) can be computed efficiently (cf.
Lemma 4). Therefore, we can use O to construct an oracle
Õ that computes approximations of values of polynomial
Dg0,g at point θi with potentially high probability over the
choice of g

Pr
g∼μG

[
|Õ[�(gθi)] − Dg0,g(θi)| ≤ εQg(θi)

]

> 1 − δ − 8�N 2, (89)

We now use Corollary 1 to bound Qg(θ) in the above
expression:

Pr
g∼μG

[
Qg(θ) ≤ exp

(
A

�̃
N 2
)]

≥ 1 − 4N
�̃

π
, (90)

where �̃ > 0 and A a positive numerical constant mildly
depending on the group G. Using the bound Pr(A ∩ B) ≥
Pr(A) + Pr(B) − 1 we obtain

Pr
g∼μG

[
|Õ[�(gθi)]−Dg0,g(θi)| ≤ ε exp

(
A

�̃
N 2
)]

> 1 − δ − 8�N 2 − 4N
�̃

π
. (91)

We finally use union bound lower to bound the proba-
bility that Õ is successful for all L equally spaced θi in
[1 − �, 1]:

Pr
g∼μG

[
∀θi|Õ[�(gθi)] − Dg0,g(θi)| ≤ ε exp

(
A

�̃
N 2
)]

> 1 − L

(
δ + 8�N 2 + 4N

�̃

π

)
. (92)

If L ≈ deg(Dg0,g) = �(N 2) the above evaluations of Õ
can be used to recover polynomial P̃g0,g passing through
points {θi, Õ[�(gθi)]} and having identical degree to
Dg0,g . By Eq. (91) and results of Coppersmith and Rivlin

stated in Ref. [109] we know that [note that we set L ≈
deg(Dg0,g) = �(N 2)]

max
θ∈[1−�,1

∣∣P̃g0,g(θ) − Dg0,g(θ)
∣∣

≤ ε exp
(

A

�̃
N 2
)

exp[�(N 2)]

= ε exp
(

�(N 2)

�̃

)
. (93)

Recall that by assumption and definition of Cayley path
Dg0,g(0) encodes a (rescaled) #P-hard probability ampli-
tude. Using Paturi lemma for the polynomial D̃g0,g(θ) −
Dg0,g(θ) we finally obtain

∣∣∣D̃g0,g(0) − Dg0,g(0)

∣∣∣

≤ ε exp
(

�(N 2)

�̃
+ �(N 2)(1 + �−1)

)
. (94)

To sum up, the initially assumed oracle O allows us
to construct an efficient algorithm A that approximately
computes #P-hard quantity Dg0,g(0) = Qg(θ) |〈x0|�(g0)

|�in〉|2:

Pr
g∼μG

{∣∣A[�(g)] − Dg0,g(0)|∣∣ ≤ ε̃}

> 1 − BN 2

(
δ + 8�N 2 + 4N

�̃

π

)
, (95)

where ε̃ = ε exp
(
�(N 2)/�̃ + �(N 2)(1 + �−1)

)
, and

B > 0 is a numerical constant. Success probability of the
protocol to exceeds 1

2 with the following: scaling

� = �(N−4), �̃ = �(N−3). (96)

From the result of Ref. [111] we have #P-hardness guaran-
tees up to constant multiplicative error. Since for #P-hard
quantity this such error implies additive error of magnitude
at most 2−�(N ). Therefore, by setting ε̃ ≤ 2−�(N ), which,
by the virtue of Eq. (96), corresponds to scaling of the orig-
inal error ε = exp[−�(N 6)] allowing to extrapolate to the
hardness neighbored. �

Remark 17: In the course of the proof of the above result
we have realized an inadequate usage of the oracle in the
reduction by Movassagh [15] [the author assumed that
the oracle works as in Eq. (88) but without the neces-
sary dependence on �]. Correction of the proof seems to
give, in that case, worse than claimed tolerance for error
ε = exp[−θ(N 4.5)] (for the Google layout), which is still
better then the one claimed here.
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IX. EFFICIENT TOMOGRAPHY OF FERMIONIC
LINEAR OPTICS

The tomography and certification of gates, i.e., the task
of ensuring that the correct unitary was implemented, is
vital for near-term quantum devices. However, it is often
an inherently challenging problem due to exponential scal-
ing of the number of parameters describing a general
multiqubit quantum operation [112]. Here we show that
the structure of FLO unitaries allows us to perform their
tomography efficiently using resources scaling only poly-
nomially with the system size. As passive fermionic gates
form a subset of active FLO circuits, we focus only on
the tomography of the latter ones, since from this also the
tomography of passive circuit follows.

We use here again the Jordan-Wigner mapping between
the d-qubit system and fermionic Fock space with d phys-
ical modes (see Sec. II), and define the following 2d pure
states:

∣∣+p
X

〉 = I
⊗(p−1) ⊗ H ⊗ I

⊗(d−p)|0〉⊗d

= |0〉⊗(p−1) ⊗ |+X 〉 ⊗ |0〉⊗(d−p), (97)
∣∣+p

Y

〉 = I
⊗(p−1) ⊗ H̃ ⊗ I

⊗(d−p)|0〉⊗d

= |0〉⊗(p−1) ⊗ |+Y〉 ⊗ |0〉⊗(d−p), (98)

where p = 1, . . . , d.
In terms of Majorana operators, one can write the

density matrices of these states as

ρ2p−1 = ∣∣+p
X 〉〈+p

X

∣∣ =
p−1∏

q=1

(
I + im2q−1m2q

2

)(
I +∏p−1

q=1(im2q−1m2q)m2p−1

2

)
d∏

q=p+1

(
I + im2q−1m2q

2

)
, (99)

ρ2p = ∣∣+p
Y〉〈+p

Y

∣∣ =
p−1∏

q=1

(
I + im2q−1m2q

2

)(
I +∏p−1

q=1(im2q−1m2q)m2p

2

)
d∏

q=p+1

(
I + im2q−1m2q

2

)
, (100)

where, as before, p = 1, . . . , d. Expanding these den-
sity matrices in terms of Majorana monomials [given in
Eq. (D14)], we observe that for an arbitrary ρx (x =
1, . . . , 2d) there is only one Majorana monomial of degree
1 appearing, namely mx. Thus, considering the FLO
evolved states VρxV†, the degree 1 Majorana terms will be
of the form [see Eq. (11)] VmxV† =∑2d

y=1 Oyxmy , where
O ∈ SO(2d) is the orthogonal matrix that encodes the FLO
circuit V. In order to obtain arbitrary element of the orthog-
onal matrix Oyx, one needs only to insert the state ρx,
evolve it with the FLO unitary V, and then measure the
expectation value of my :

Oyx = tr(myVρyV†). (101)

Measuring the expectation value of m2q−1 and m2q amounts
to measuring Z1 · · · Zq−1Xq and Z1 · · · Zq−1Yq, respectively.
These can all be done, after a single layer of local base
change operations, through usual computational basis mea-
surements. The graphical presentation of our tomography
scheme is given in Fig. 9. The following theorem show
that the construction outlined above allows recovery of an
unknown FLO circuit V efficiently in d, both in terms of the
number of different setups needed for the implementation
as well as in terms of sample complexity. Importantly, our
results give rigorous recovery guarantees in the diamond
norm, despite the presence of statistical fluctuations.

Theorem 8: (Efficient tomography of active FLO unitary
channels). Let V be an unknown active FLO circuit act-
ing on d qubits. Consider the following estimation protocol

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

or

FIG. 9. Graphical presentation of the tomography protocol of
an active FLO circuit V. A single step of the protocol consists of
(i) preparation of 2d input states

∣∣+p
X

〉
and

∣∣+p
Y

〉
(p = 1, . . . , d),

(ii) transformation of the states via the circuit V, and (iii) for
each of the 2d states measuring the operators Z1Z2 · · · Zq−1Xq
and Z1Z2 · · · Zq−1Yq (q = 1, . . . , d). These operations are then
repeated multiple times in order to gather sufficient statistics
necessary to reconstruct the orthogonal matrix O ∈ SO(2d) that
defines the unitary channel �V associated to V = �act(O).
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using the states ρx and observables my (x, y ∈ [2d]) and
comprising of r independent experimental rounds. A single
experimental round, say the k’th, consists of the following
routines:

(a) For every pair (x, y) ∈ [2d]×2: (i) prepare ρx as
input state; (ii) evolve ρx via the circuit V; (iii)
measure VρxV† using my obtaining outcome m(k)

yx ∈
{−1, 1}.

The outcomes of the k’th round are gathered in the 2d ×
2d matrix M (k) with entries m(k)

yx . After r rounds, define
M̂r := 1/r

∑r
k=1 M (k) as the sample average of matrices

M (k). Then, let Ôr ∈ SO(2d) be defined as the orthogonal
matrix appearing in the polar decomposition of M̂r (i.e.,
M̂r = OrP, where P is a semidefinite real 2d × 2d matrix).
Finally, set V̂ := �act(Ôr) as the estimator of the circuit V
after r rounds of the protocol.

Assume that all routines in the protocol are implemented
perfectly. Furthermore, let δ ∈ (0, 1) be fixed and let �V
and �V̂ be the unitary channels defined by the active FLO
circuits V and V̂, respectively. Then, for the number of
rounds satisfying

r ≥ 28d3

ε2 log
(

4d
δ

)
, (102)

the protocol outputs a FLO circuit V̂ such that ‖�V −
�V̂‖♦ ≤ ε with probability at least 1 − δ.

Remark 18: We believe that it possible to improve the
sampling complexity and the number of quantum circuits
needed for the tomography of an unknown FLO unitary
V. Moreover, we expect that our proof technique can also
be used for the quantum process tomography of general
fermionic Gaussian channels.

There are three key difficulties that need to be circum-
vented in order to establish the above result. The first one
is related to the fact that, by the virtue of Eq. (101), the
protocol estimates an orthogonal matrix O ∈ SO(2d) not
the circuit V or the associated d-qubit channel �V. The
following lemma, proved in Appendix F, allows us to
connect operator-norm distance between elements of the
orthogonal group with the diamond norm between the cor-
responding quantum channels (this result can be viewed as
a fermionic version of the analogous stability result proved
by Arkhipov for standard boson sampling [78]).

Lemma 6: (Stability of the active FLO representation).
Consider two elements of the orthogonal group, O, O′ ∈
SO(2d), and let V and V′ be the corresponding active FLO
unitaries, i.e., V = �act(O) and V′ = �act(O′). Further-
more, let �V and �V′ be the unitary channels defined by
V and V′, respectively. Then the following inequality is

satisfied:

‖�V − �V′‖♦ ≤ 2d‖O − O′‖. (103)

The second technical issue arises because the sample-
average matrices M̂s appearing in the protocol are not
necessarily orthogonal. For this reason we use the (real)
polar decomposition in order to get an orthogonal matrix
from M̂s. The lemma below gives an upper bound for
the possible operator-norm error that can result from this
procedure.

Lemma 7: (Operator-norm stability of the real polar
decomposition [113]). Let O be orthogonal matrix n × n.
Let � be n × n real matrix such that ‖�‖ ≤ 1. Let O�

be the orthogonal transformation appearing in the polar
decomposition of O + �A (i.e., O + � = OO+�P for a
semidefinite real matrix P). We then have the following
inequality:

‖O − O�‖ ≤ ‖�‖. (104)

The above lemma follows as a direct corollary of
Theorem 2.3 in Ref. [113].

The last technical ingredient needed for the proof of
Theorem 8 is the following matrix concentration bound,
which allows control of the magnitude of statistical fluctu-
ations incurred in our scheme.

Lemma 8: (Matrix Bernstein inequality [114]). Let
S(1), . . . , S(r) be independent, centered real n × n random
matrices with uniformly bounded operator norm, i.e., for
all k ∈ [r]

ES(k) = 0, ‖S(k)‖ ≤ L. (105)

Assume furthermore that the entries of each S(k) are inde-
pendently distributed with a variance upper bounded by a
constant, Var(S(k)

ij ) ≤ c.
We then have the following concentration inequality

valid for arbitrary τ > 0:

Pr

(∥∥∥∥∥
1
r

r∑

k=1

S(k)

∥∥∥∥∥ ≥ τ

)
≤ 2n exp

(
− rτ 2

2(nc + L
3 τ)

)
.

(106)

A more general version of the above inequality (that
does not require independently distributed entries of matri-
ces S(k)) can be found in Theorem 1.6.2 from Ref. [114].

Proof. Let us remark first that our tomography protocol
was defined such that the matrices M (k) originating from
different rounds k are independent from each other, and for
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fixed k also their entries m(k)
yx are independent. Furthermore,

by virtue of Eq. (101), we have

Em(k)
yx = Oyx, (107)

where O ∈ SO(2d) is an orthogonal matrix corresponding
to the circuit V. We now apply Lemma 8 to the sequence
of 2d × 2d matrices �(k) := M (k) − O. From definition
matrix elements of �(k) satisfy |�(k)

yx | ≤ 2. From this and
the fact that m(k)

yx ∈ {−1, 1} it easily follows that

‖�(k)‖ ≤ 4d, Var(�(k)
yx ) ≤ 1. (108)

Inserting these estimates in Eq. (106) (and noting that
n = 2d) gives

Pr

(∥∥∥∥∥
1
r

r∑

k=1

�(k)

∥∥∥∥∥ ≥ τ

)
≤ 4d exp

(
− rτ 2

4d(1 + 2
3τ)

)
.

(109)

Recalling that M̂r = 1/r
∑r

k=1 M (k), using the definition of
�(k), and assuming that τ < 1 (in what follows we see
that we can introduce this constraint without the loss of
generality) we obtain

Pr
(∥∥∥M̂r − O

∥∥∥ ≤ τ
)
≥ 1 − 4d exp

(
−rτ 2

7d

)
. (110)

We therefore know that, provided r is high enough, the
sample average M̂ (k) approximates matrix O in operator
norm. Applying Lemma 7 to Ôr, i.e., to the orthogonal
part of the polar decomposition of M̂r [this corresponds to
setting � = M̂r − O in Eq. (104)], we obtain

Pr
(∥∥∥Ôr − O

∥∥∥ ≤ τ
)
≥ 1 − 4d exp

(
−rτ 2

7d

)
. (111)

Recalling that V̂ = �act(Ô) and V = �act(O) and invoking
Lemma 6 we finally arrive to

Pr
(∥∥�V̂ − �V

∥∥
♦ ≤ 2d τ

)
≥ 1 − 4d exp

(
−rτ 2

7d

)
.

(112)

We conclude the proof by setting ε := 2d τ and noting that
Eq. (102) follows from requiring that the right-hand side of
Eq. (112) is larger than 1 − δ. �
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APPENDIX

We collect here technical results that are used in the
main part of the paper. Some of the results stated here can
be of independent interest for further works on quantum
information processing with fermions.

APPENDIX A: DECOMPOSITION OF PASSIVE
AND ACTIVE FLO UNITARIES INTO

TWO-QUBIT GATES

Here we provide the derivation of the decomposition
of arbitrary passive and active FLO gates into two-qubit
gates with layouts depicted in Fig. 4, which was also stud-
ied in Refs. [38–40]. For passive bosonic linear optics the
analogous decompositions were discussed in Refs. [5,6].
The way to obtain these results is to consider the standard
decomposition of U(d) and SO(2d) elements into so-called
Givens rotations and then apply the appropriate FLO rep-
resentations �pas and �act on this decomposition, as we
explain below. For simplicity, we assume that d is even,
which is also the relevant case for our paper.

The (nearest-neighbor) Givens rotations Gk(α, ϕ) ∈
U(d) (k = 1, . . . , d−1) have the form

G(k)(α, ϕ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · eiϕ cos(α) − sin(α) · · · 0
0 · · · eiϕ sin(α) cos(α) · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

(A1)

where only the 2 × 2 block consisting of the entries with
row and column indices k and k + 1 are nontrivial. A
general element U ∈ U(d) can then be decomposed into
Givens rotations in different ways, we consider two of
these (also discussed in Ref. [5]). In the first decomposi-
tion one applies alternatingly (d number of times) a series
of Givens rotations G(k) with odd and even k indices, and
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finally a diagonal unitary T = diag(eiκ1 , eiκ2 , . . . , eiκd) , i.e.,

U = TBd/2Ad/2 . . . B2A2B1A1, (A2)

Aj =
∏

k∈[d−1]
k odd

G(k)(α(k,j ), ϕ(k,j )),

Bj =
∏

k∈[d−1]
k even

G(k)(β(k,j ), ν(k,j )), j ∈ [d/2]. (A3)

Also in the second decomposition one applies alternat-
ingly a series of Givens rotations G(k) with odd and even k
indices, however, this time there is 2d−1 such layers and
in the �th layer there are only Givens rotations up to index
(d−|�−d|), and finally there is again a diagonal unitary
T′ = diag(eiκ ′

1 , eiκ ′
2 , . . . , eiκ ′

d), i.e.,

U = T′A′
dB′

d−1 . . . B′
2A′

2B′
1A′

1, (A4)

A′
j =

d−|2j−d|∏

k=1
k odd

G(k)(γ(k,j ), τ(k,j )),

B′
j =

d−|2j−d|∏

k∈[d−1]
k even

G(k)(δ(k,j ), σ(k,j )), j ∈ [d/2]. (A5)

Note that both decompositions use the same number of
elementary Givens rotations.

Now, given an arbitrary passive FLO transformation
V = �pas(U), with U ∈ U(d), we can use the fact that �pas
is a representation (and thus a homomorphism) and apply
it to the decompositions of Eqs. (A2) and (A4). We obtain

V = �pas(U) = �pas(T)Ld/2Kd/2 . . . L2K2L1K1, (A6)

Kj =
∏

k∈[d−1]
k odd

�pas[G(k)(α(k,j )), ϕ(k,j )],

Lj =
∏

k∈[d−1]
k even

�pas[G(k)(β(k,j ), ν(k,j ))], j ∈ [d/2], (A7)

and similarly

V = �pas(U) = �pas(T′)K ′
dL′

d−1 . . . L′
2K ′

2L′
1K ′

1, (A8)

K ′
j =

d−|2j−d|∏

k=1
k odd

�pas[G(k)(γ(k,j ), τ(k,j ))],

L′
j =

d−|2j−d|∏

k∈[d−1]
k even

�pas[G(k)(δ(k,j ), σ(k,j ))], j ∈ [d/2]. (A9)

Using the definition of �pas and the Jordan-Wigner corre-
spondence between fermions and qubits systems, we have
that

�pas[diag(eiα , eiα2 , . . . , eiαd)]

= eiα1Z ⊗ eiα1Z ⊗ · · · ⊗ eiαdZ , (A10)

�pas[G(k)(α1, α2)] = I
⊗k−1 ⊗ (e−iα1Z/2 ⊗ eiα1Z/2)

× eiα2(X ⊗X +Y⊗Y)/2 ⊗ I
⊗d−k−1.

(A11)

Thus, Eqs. (A16) and (A18) provide exactly the brickwall
and triangle decomposition of Fig. 4.

Let us now turn to the decomposition of an arbitrary
active FLO gate V = �act(O) [O ∈ SO(2d)]. An orthog-
onal matrix O can be decomposed into a sequence of
real Givens rotations G(k)(α) := G(k)(α, 0) ∈ SO(2d) anal-
ogously to the decompositions of a unitary [Eqs. (A2)
and (A4)]. One can apply alternatingly (d number of
times) a series of real Givens rotations G(k) with odd and
even k indices, and finally a diagonal orthogonal matrix
S = diag(s1, s2, . . . , sd) (with si ∈ {1,−1} and

∏2d
i=1 = 1),

i.e.,

U = SDd/2Cd/2 . . . D2C2D1C1, (A12)

Cj =
∏

k∈[d−1]
k odd

G(k)(α(k,j )),

Dj =
∏

k∈[d−1]
k even

G(k)(β(k,j )), j ∈ [d/2]. (A13)

Alternatively, one can apply alternatingly a series of
Givens rotations G(k) with odd and even k indices with
2d−1 layers and in the �th layer there are only real Givens
rotations up to index (d−|�−d|), and finally there is again
a diagonal matrix with signs S′ = diag(s′1, s′2, . . . , s′d), i.e.,

U = S′C′
dD′

d−1 . . . D′
2C′

2D′
1C′

1, (A14)

C′
j =

d−|2j−d|∏

k=1
k odd

G(k)(γ(k,j )),

D′
j =

d−|2j−d|∏

k∈[d−1]
k even

G(k)(δ(k,j )), j ∈ [d/2]. (A15)

Given an arbitrary active FLO transformation V =
�act(O), with O ∈ SO(2d), we can use the fact that
�act is a projective representation (and thus a projec-
tive homomorphism) and apply it to the decompositions
of Eqs. (A12) and (A14), obtaining upto irrelevant signs
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σ , σ ′ ∈ {1,−1} that

V = �act(O) = σ�act(S)Fd/2Ed/2 . . . F2E2F1E1, (A16)

Ej =
∏

k∈[d−1]
k odd

�act[G(k)(α(k,j ))],

Fj =
∏

k∈[d−1]
k even

�act[G(k)(β(k,j ))], j ∈ [d/2], (A17)

and

V = �act(O) = σ ′�pas(S′)F ′
dE′

d−1 . . . F ′
2E′

2F ′
1E′

1, (A18)

E′
j =

d−|2j−d|∏

k=1
k odd

�act[G(k)(γ(k,j ))],

L′
j =

d−|2j−d|∏

k∈[d−1]
k even

�act[G(k)(δ(k,j ))], j ∈ [d/2]. (A19)

Using the definition of �pas and the Jordan-Wigner corre-
spondence between fermions and qubits systems, we have
that

�act(S) = ± X s1Ys2 ⊗ X s3Ys4 ⊗ . . . ⊗ X s2d−1Ys2d ,
(A20)

and

�pas[G(k)(α)] = e−α mkmk+1 =
{

I
⊗(�−1) ⊗ eiαZ� ⊗ I

⊗(d−�) if k = 2� is even
I
⊗(�−1 ⊗ eiαX�X�+1 ⊗ I

⊗(d−�−1) if k = 2� + 1 is odd.
(A21)

Thus, the circuits would resemble the brickwall and lay-
outs, however with depths 2d and (4d−1) on 2d Majorana
lines and not of depth d and 2d − 1 on d qubit lines, see
Fig. 10. (In circuits with Majorana lines, the lines repre-
sent individual operators and gates between two Majorana
lines are unitaries that is composed only of the corre-
sponding two Majorana operators [55].) However, we can
make some simplifications by merging gates as shown
in Fig. 10: in the middle of the circuit we can merge
four two-qubit gates (corresponding to four Givens rota-
tions) of the form eiα1X ⊗X (eiα2Z ⊗ eiα3Z) eiα4X ⊗X and
these are equal to gates of the form Dact({βi}) = (eiβ5Z/2 ⊗
eiβ6Z/2) ei(β3X ⊗X +β4Y⊗Y)/2 (eiβ1Z/2 ⊗ eiβ2Z/2), where the βi’s
have to be chosen to satisfy

cos(α1 + α4) cos(α2 − α3) = cos(θ2) cos(θ1 + θ3),

× sin(α1 + α4) cos(α2 − α3) = sin(θ2) cos(θ1 − θ3),
(A22)

cos(α1 − α4) sin(α2 − α3) = cos(θ2) sin(θ1 + θ3),

× cos(α1 − α4) sin(α2 + α3) = cos(θ5) sin(θ4 + θ6),
(A23)

cos(α1 + α4) cos(α2 + α3) = cos(θ5) cos(θ4 + θ6),

× sin(α1 + α4) cos(α2 + α3) = sin(θ5) cos(θ4 − θ6),
(A24)

where we use the notations θ1 = β1 − β2, θ2 = β3 − β4,
θ3 = β5 − β6, θ4 = β1 + β2, θ5 = β3 + β4, θ6 = β5 + β6.
At the edges of the circuit we may just either have to join

additional local Z rotations to the merged gates, thus it can
be again expressed as Dact({βi}), or it is already of the form
of Dact({βi}). In this way, we obtain exactly the brickwall
and triangle decomposition of Fig. 4 with two-qubit gates
of the form of Dact({βi}).

APPENDIX B: PROOF OF THEOREM 3

Proof. We consider in parallel active and passive FLO
circuits. For passive FLO we have H = Hpas and ν = νpas

FIG. 10. Decomposition of an arbitrary V = �act(O) using
Majorana-line (left) and qubit-line (right) circuit pictures. The
represented Givens rotations can be merged (identical colors
depicting the merged rotations) giving rise to a layout of Fig. 4,
with two-qubit gates of type Dact({βi}).
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while for active FLO we have Hact and ν = νact. With the
fixed input |�in〉 = |�4〉⊗N , we write px(V) = |〈x|V|�in〉|2
for the probability of outcome x [we assume that |x〉 ∈ H],
and p(V) for the output probability distribution of a cir-
cuit V. Suppose that there exists a classical sampler C that
performs fermion sampling for a fixed but arbitrary FLO
circuit V, and denote by q(V) the distribution from which
C samples. Then for a given x, by Stockmeyer’s approx-
imate counting algorithm [53], a BPPNP machine with an
oracle access to C can produce a multiplicative estimates
q̃x(V) of qx(V) such that

|qx(V) − q̃x(V)| ≤ qx

poly(N )
(B1)

for every x. We show that q̃x(V) is also close to px(V) for
most x and V that anticoncentrate. Judiciously applying the
triangle inequality, we have that

|px(V) − q̃x(V)|
≤ |px(V) − qx(V)| + |qx(V) − q̃x(V)| (B2)

≤ |px(V) − qx(V)| + qx(V)

poly(N )
(B3)

≤ |px(V) − qx(V)| + |px(V) − qx(V)| + px(V)

poly(N )
(B4)

= px(V)

poly(N )
+ |px(V) − qx(V)|

(
1 + 1

poly(N )

)
.

(B5)

Given that the distributions p(V) and q(V) are ε close in the
l1 norm, particular probabilities px(V) and qx(V) must be
exponentially close for most x. This statement is made pre-
cise using Markov’s inequality: for a non-negative random
variable X and a > 0,

Pr(X ≥ a) ≤ EX
a

. (B6)

Setting X = |px(V) − qx(V)| and a = ε/(|H|δ), (the prob-
ability is over the outcomes x which is distributed uni-
formly over H, see Remark 8)

Pr
x∼unif(H)

(
|px(V) − qx(V)| ≥ ε

|H|δ
)

≤ Ex∼unif(H)[|px(V) − qx(V)|]|H|δ
ε

≤ δ. (B7)

Combining the probability bound with the inequality (B5),
we have that with probability at least 1 − δ over random

x ∼ unif(H) we have

|px(V) − q̃x(V)| <
px(V)

poly(N )
+ ε

|H|δ
(

1 + 1
poly(N )

)
.

(B8)

To turn the above additive upper bound to a multiplicative
one, we use the anticoncentration property (Theorem 1),
which lets us replace 1/|H| by an upper bound px(V)/α

with probability (1 − α)2/C.
In order to do so, we must consider the joint proba-

bility of (V, x) as described in Remark 8. Let A be the
event that px(V) and qx(V) for a fixed V are exponen-
tial close due to Markov’s inequality, and B be the event
that the distribution p(V) anticoncentrates. The probabil-
ity of both “good events” happening is lower bounded
by Pr(A ∩ B) ≥ max{0, Pr(A) + Pr(B) − 1}. That is, if we
denote by A(V, x) an event that

|px(V) − q̃x(V)|

< px(V)

[
1

poly(N )
+ ε

αδ

(
1 + 1

poly(N )

)]
, (B9)

we have that

Pr
V∼ν,x∼unif(H)

[A(V, x)] >
(1 − α)2

C
− δ, (B10)

which can be simplified by using the hiding property
described in Lemma 1. The property implies that px(V) =
px0(Vx) and q̃x(V) = q̃x0(Vx) so that

Pr
V∼ν,x∼unif(H)

[A(V, x)] = E
x∼unif(H)

(
Pr

V∼ν
[A(Vx, x0)]

)
.

(B11)

Moreover, from the invariance of the Haar measure it fol-
lows that for every |x〉 ∈ H, Vx is distributed in the same
way as V. Consequently,

E
x∼unif(H)

(
Pr

V∼ν
[A(Vx, x0)]

)
= E

x∼unif(H)

(
Pr

V∼ν
[A(V, x0)]

)

= Pr
V∼ν

[A(V, x0)] . (B12)

We finally obtain that for every x0,

Pr
V∼ν

{
|pxo(V) − q̃xo(V)| < pxo(V)

[
1

poly(N )
+ ε

αδ

(
1 + 1

poly(N )

)]}
>

(1 − α)2

C
− δ. (B13)
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Following Ref. [11] and requiring a constant ε and
relative error ε/(αδ) (see Remark 19) we may set, for
instance,

α = 1
2

, δ = (1 − α)2

2C
= 1

8C
, ε = αδ

4
= 1

64C
,

(B14)

Stockmeyer’s algorithm is able to output [1/4 + o(1),
1/(8C)]-multiplicative approximates of the output prob-
abilities for 1/(8C) fraction of the (passive or active,
with constant Cpas or Cact, respectively) FLO circuits V
if there is a classical machine that approximately sample
from px(V) for any FLO circuit V within the l1 distance
1/(64C). �

Remark 19: Of the three parameters ε, δ, and α, the l1 dis-
tance ε and the relative error ε/(αδ) are typically assumed
to be constant [1/4 + o(1) for the latter] in quantum advan-
tage proposals [12,18,19,52]. In which case δ is also a con-
stant, and then one optimizes for the constant α. However,
one may allow ε to decay inverse polynomially in the size
of the system while retaining a sensible notion of simula-
tion by the sampling task [10,20]. Doing so allows a more
plausible (weaker) average-case hardness assumption but
the sampling task becomes more demanding.

APPENDIX C: TV DISTANCE BETWEEN HAAR
MEASURE AND ITS CAYLEY-PATH

DEFORMATIONS

In this part we prove Lemma 2 that upper bounds total
variation distance between the Haar measures μG and their
deformed versions μθ

G, for G = U(d) and G = SO(2d). In
what follows we use the notions and notation established
in Sec. VII.

Lemma 9: Let G be equal to U(d) or SO(2d). Let g0 ∈ G
be a fixed element in G. Let g ∼ μG an let gθ = g0Fθ (g),
for θ ∈ [0, 1] and Fθ : G → G defined in Eq. (47). Let now
μθ

G denote the induced measure according to which gθ? is
distributed. Assume furthermore that θ ≤ 1 − �, for � >

0. We then have

∥∥μU(d) − μθ
U(d)

∥∥
TVD

≤ d2�/2,
∥∥μSO(2d) − μθ

SO(2d)

∥∥
TVD

≤ d2�/2. (C1)

Proof. By the block diagonalization previously discussed,
the TVD can be computed in terms of an integral on
maximal torus T of G:

∥∥μG − μθ
G

∥∥
TVD = 1

2

∫

T

dϕ
∣∣μG(ϕ) − μθ

G(ϕ)
∣∣ . (C2)

μG is the distribution for generic g ∈ G of the “generalized
eigenvalues” φ := (φ1, . . . , φd), quantities that are invari-
ant under conjugation by any element of G, and it is given
by the celebrated Weyl’s integration formulas: �

Fact 1: [Weyl’s integration formula for U(d) and SO(d)].

μU(d)(φ) = 1
d!(2π)d

∏

1≤j ,k≤d

∣∣eiφk − eiφj
∣∣2 ,

μSO(2d)(φ) = 2
d!(2π)d

∏

1≤j ,k≤d

4[cos(φk) − cos(φj )]2.

(C3)

To upper bound the TVD, we use the fact that the Haar
measure μG(φ) is induced from μθ

G(ϕ) by the inverse map
F−1

θ to compute μG(ϕ) by Fact 2 below. In particular,
we show that the two measures μG and μθ

G expressed in
the same coordinates ϕ are proportional to each other and
bound the proportionality constant.

Fact 2: (Transport of measure). Let M and N be d-
dimensional smooth manifolds with local coordinates φ =
(φ1, φ2, . . . , φd) and ϕ = (ϕ1, ϕ2, . . . ), μ a measure on M ,
and F : M → N a smooth map. Then

μ̃ = μ ◦ F−1 (C4)

is a measure on N transported under F , where F−1 denotes
the preimage of F . In particular, for any measurable set
A ⊂ N ,

μ̃(A) = μ[F−1(A)] :=
∫

F−1(A)

μ(φ)dφ. (C5)

Explicitly, since the manifolds are locally Euclidean, μ̃(A)

has an expression in terms of the Jacobian:

μ̃(A) =
∫

A
μ[F−1(dϕ)]

∣∣DF−1(ϕ)
∣∣ , (C6)

where
∣∣DF−1(ϕ)

∣∣ is the Jacobian, which by the inverse
function theorem

∣∣DF−1(ϕ)
∣∣ = ∣∣DF[F−1(ϕ)]

∣∣−1
. (C7)

Remark 20: Since F−1(ϕ) = φ, the formula can be inter-
preted as a change of variable from ϕ to φ. In our case,
F−1

θ : T(φ) → T(ϕ) plays the role of F . Equation (C10) is
precisely the change of variable induced by F−1

θ .
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As an intermediate step, let us derive the explicitly
change-of-variable formula from ϕ to φ. By applying to

exp(ϕj X̃j ) = Fθ [exp(φj X̃j )], (C8)

[recalling that X̃ are generators of the maximal torus for
U(d) and SO(2d)] the identity

f −1[exp(φj X̃j )] = − tan(φj /2)X̃j , (C9)

which can be verified by explicitly computing the Cayley
transform (44) of at most a 2 × 2 matrix, we obtain the
change-of-variable formula:

ϕ = 2 tan−1[θ tan(φ/2)]. (C10)

Now we compute and bound (C6)

μG(A) =
∫

A
μG[dφ = Fθ (dϕ)]

∣∣DF−1
θ [φ = Fθ (ϕ)]

∣∣−1
.

(C11)

Throughout the proof, we set θ = 1 − � and notice that
the final upper bound on the TVD would still hold for
θ ≤ 1 − �. The change-of-variable formula (C10) directly
gives the element of the (diagonal) Jacobian

∣∣∂φϕ
∣∣−1 = cos2(φ/2) + (1 − �)2 sin2(φ/2)

1 − �

= 1 − �(2 − �) sin2(φ/2)

1 − �
, (C12)

which attains the minimum when sin2(φ/2) = 1 and the
maximum when sin2(φ/2) = 0. Thus, we have the follow-
ing bound on the Jacobian for both the passive and active
cases:

1 − � ≤ ∣∣∂φϕ
∣∣−1 ≤ 1

1 − �
, (C13)

(1 − �)d ≤ ∣∣DF−1
θ [φ = Fθ (ϕ)]

∣∣−1 ≤ 1
(1 − �)d . (C14)

At last, to bound the TVD, we express the measures μG and
μθ

G in the same coordinates ϕ. For the case of passive FLO,
this can be done by directly applying the inverse of the
deformation map (46) to each group element eiφj , j ∈ [d]

F−1
1−�(eiϕj ) = � + (� − 2)eiϕj

�(eiϕj + 1) − 2
. (C15)

As a result,

|eiφk − eiφj | = ∣∣F−1
1−�(eiϕk ) − F−1

1−�(eiϕj )
∣∣

= (1 − �)
∣∣eiϕk − eiϕj

∣∣
∣∣1 − �

2 (eiϕj + 1)
∣∣ ∣∣1 − �

2 (eiϕk + 1)
∣∣

=: �pas
∣∣eiϕk − eiϕj

∣∣ , (C16)

which implies, via Weyl’s formula (C3) that the two
measures are proportional:

μU(d)(ϕ) = �d(d−1)/2
pas μθ

U(d)(ϕ). (C17)

The proportionality constant �pas attains the maximum
value when eiϕj = eiϕk = 1 and the minimum value when
eiϕj = eiϕk = −1, giving the following bound:

(1 − �)2 ≤ �pas ≤ 1
(1 − �)2 , (C18)

which leads to the bound of the TVD stated in the lemma:

∥∥μU(d) − μθ
U(d)

∥∥
TVD

≤ 1
2

∣∣∣1 − (1 − �)d2
∣∣∣ ≤ d2�

2
;

(C19)

the inequality in the last line can be proved by induction
on d2 ≥ 1.

Turning to the case of active FLO, the change-of-variable formula (C10) implies that for any
j , k ∈ [d],

cos φk − cos φj = (1 − �)2 − tan2(ϕk/2)

(1 − �)2 + tan2(ϕk/2)
− (1 − �)2 − tan2(ϕj /2)

(1 − �)2 + tan2(ϕj /2)
(C20)

= (1 − �)2(cos ϕk − cos ϕj )[
1 − �(1 − �

2 )(1 + cos ϕj )
] [

1 − �(1 − �
2 )(1 + cos ϕk)

] (C21)

=: �act(cos ϕk − cos ϕj ), (C22)
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where we use cos(2θ) = (1 − tan2 θ)(1 + tan2 θ)−1 in
the first line and tan2 θ = [1 − cos(2θ)][1 + cos(2θ)]−1 in
the second line. Thus we have from Weyl’s formula (C3)
that

μSO(2d)(ϕ) = �
d(d−1)/2
act μθ

SO(2d)(ϕ). (C23)

The proportionality constant �act attains the maximum
value when cos ϕj = 1 and the minimum value when
cos ϕj = −1, giving the bound

(1 − �)2 ≤ �act ≤ 1
(1 − �)2 . (C24)

Therefore, the TVD is bounded in a similar manner to the
passive case.

∥∥μSO(2d) − μθ
SO(2d)

∥∥
TVD

≤ 1
2

∣∣∣1 − (1 − �)d2
∣∣∣ ≤ d2�

2
.

(C25)

APPENDIX D: POLYNOMIALS ASSOCIATED TO
PROBABILITIES IN FLO CIRCUITS

In this section, we give the degrees of matrix polyno-
mials associated to fermionic representations of G = U(d)

and G = SO(2d). These polynomials, when evaluated on
the Cayley path gθ in the appropriate group [see Eq. (47)],
give rise to polynomials and rational functions θ for the
outcome probabilities px[�(gθ ), �in] = | 〈x|�(g) |�in〉 |2
in our quantum advantage schemes. The explicit form of
these polynomials is used in Sec. VIII when discussing
worst-to-average-case reductions.

We start with discussing the passive FLO case and then
the active FLO case.

It is useful to introduce the following notation. Given
a d × d matrix M and two subsets of indices X ,Y ⊂
[d] with cardinality n, where X = {a1, a2, . . . an} (ai < aj
if i < j ) and Y = {b1, b2, . . . , bn} (bi < bj if i < j ), we
define MX ,Y as the n × n matrix with entries

(MX ,Y)k,� = Mak ,b�
, k, � = 1, . . . n. (D1)

Lemma 10: Given two Fock basis states |X 〉 , |Y〉 ∈∧n
(Cd) and a U ∈ U(d), the the amplitude between |X 〉

and �pas(U) |Y〉 is provided by the expression

〈X |�pas(U) |Y〉= det(UX ,Y). (D2)

Proof. Let X = {a1, a2, . . . an} (ai < aj if i < j ) and Y =
{b1, b2, . . . , bn} (bi < bj if i < j ). By definition we have

that

�pas(U) |Y〉 = U⊗n |b1〉 ∧ |b2〉 ∧ · · · ∧ |bn〉
= |ξ1〉 ∧ |ξ2〉 ∧ · · · ∧ |ξn〉 , (D3)

where

|ξ�〉=U |b�〉=
d∑

j=1

Uj ,b�
|j 〉 , � = 1, . . . , n. (D4)

Using the last two equations and Eq. (6), we can deduce
that

〈X |�pas(U) |Y〉 = det(C),

Ck,� = 〈ak|ξ�〉 = 〈ak|
d∑

j=1

Uj ,b�
|j 〉 = Uak ,b�

= (UX ,Y)k,�,

(D5)

which proves the statement. �
This lemma allows us to directly obtain the following

result.

Proposition 1: (Degrees of polynomials describing prob-
abilities associated to passive FLO circuits.). Consider a
state |�〉 ∈∧n

(Cd). For an arbitrary U ∈ U(d) the out-
come probability px[�pas(U), �] = | 〈x|�pas(U) |�〉 |2 is
a degree 2n homogeneous polynomial in the entries of U
and U†.

Proof. One can expand the vector |�〉 in terms of the Fock
basis states belonging to

∧n
(Cd) as

|�〉=
∑

Y⊂[d]
|Y|=n

cY |Y〉 . (D6)

Let X ⊂ [d] denote the set of indices corresponding to x
as an indicator function (i.e., |x〉 = |X 〉). Using Lemma 9,
we can write the relevant amplitude as

〈x|�pas(U) |�〉 =
∑

Y⊂[d]
|Y|=n

cY 〈X |�pas(U) |Y〉

=
∑

Y⊂[d]
|Y|=n

cY det(UX ,Y). (D7)

As each term in the sum is a determinant of a n × n subma-
trix of U, this expression gives a homogeneous polynomial
of the entries of U of order n. This in turn directly implies
that px[�pas(U), �] = | 〈x|�pas(U) |�〉 |2 is a degree 2n
polynomial in the entries of U and U†. �
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Lemma 11: (Polynomial for output amplitude of passive FLO [56]). Consider the input state |�in〉 = |�4〉⊗N ∈∧2N
(C4N ). For an arbitrary U ∈ U(4N ) the outcome amplitude is given by

〈x|�pas(U) |�〉 = 1√
2N

∑

(y1,...,yN )∈{0,1}N
det(UT

{2y1+1,2y1+2,...,2yN +4N−3,2yN +4N−2},X ), (D8)

where UT
{2y1+1,2y1+2,...,2yN +4N−3,2yN +4N−2},X indicates the transpose of U with the rows not indexed by {2y1 + 1, 2y1 +

2, . . . , 2yN + 4N − 3, 2yN + 4N − 2} and columns not indexed by X . Note that this is a degree N polynomial in the
entries of U.

Proof. To derive this polynomial, we rewrite the input
fermionic magic state |�in〉 as in Eq. (E18).

|�in〉 = 1√
2N

∑

Y∈Cin

|Y〉 (D9)

= 1√
2N

∑

y∈{0,1}N

∣∣Yy
〉
, (D10)

where Cin consists of subsets labeled by bitstrings [for more
detail, see paragraph after Eq. (E18)]. Using the expression
for the output amplitude in Proposition 1 we write

〈x|�pas(U) |�〉

= 1√
2N

∑

y∈{0,1}N
det(UX ,Yy) (D11)

= 1√
2N

∑

(y1,...,yN )∈{0,1}N

× det(UT
{2y1+1,2y1+2,...,2yN +4N−3,2yN +4N−2},X ), (D12)

where in the last line we replace the definition of Yy and
also use the fact that the determinant is invariant under the
transpose. �

The expression in Eq. (D8) can be rewritten as a mixed
discriminant

D2,2(v1, . . . , v4N ) = 1√
2N

∑

ik=0,1,
k=1,...,N

det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v2i1+1

v2i1+2

v2i2+5

v2i2+6

...
v2iN +4N−3

v2iN +4N−2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(D13)

here vk correspond to the rows of the matrix UT in
Eq. (D12) with the columns not indexed by x removed.

This polynomial over entries of matrices of size 2N × N
is found to be #P-hard in the general case [56]. This
is proven by reducing the computation of the perma-
nent of a weighted adjacency matrix to these polynomi-
als of a transformed adjacency matrix with polynomial
overhead.
Remark 21: For the hardness of sampling what is actually
required is the #P-hardness of computing the square of the
amplitude. In Ref. [56] the permanents used involved only
positive numbers and thus there is no issue in establishing
#P-hardness for the probabilities.

Next we turn to studying the output probabilities after
an active FLO evolution. It is useful to introduce the fol-
lowing notation: given a set of (Majorana) indices A =
{a1, a2, . . . ak} ⊂ [2d] (with ai < aj if i < j ), we define

mA = ma1ma2 · · ·mak . (D14)

These Majorana monomials define an orthogonal (but not
orthonormal) basis in the space of operators with respect
to the Hilbert-Schmidt scalar product

tr(mAm†
B) = (−1)f (|B|) tr(mAmB) = δA,B

1
2d , (D15)

where f (n) = 1 if (n mod 4) ∈ {2, 3} and f (n) = 0 other-
wise.

Consider a subsetA = a1, a2 . . . ak ⊂ [2d] (with ai < aj
if i < j ), then from Eq. (11) and the Majorana anticommu-
tation relations it follows for O ∈ SO(2d) that

�act(O)mA�act(O)†

=
d∑

b1,...bk=1

εb1,b2,...,bk Oa1,b1Oa2,b2 · · ·Oak ,bk m{b1,...bk}.

(D16)

Proposition 2: (Degrees of polynomials describing proba-
bilities associated to active FLO circuits.) Consider a state
|�〉 ∈. For an arbitrary O ∈ SO(2d) the outcome prob-
ability px[�act(O), �] = | 〈x|�act(O) |�〉 |2 is a degree d
polynomial in the entries of O.
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Proof. Let us consider the expansion of |x〉〈x| and � in terms of Majorana monomials

|x〉〈x| =
∑

A⊂[d]

(aA mA + bA Q mA),

� =
∑

B⊂[d]

(cB mB + dB Q mB). (D17)

Using this and Eqs. (D15) and (D16) can now write the outcome probability as

px[�act(O), �] = tr
[|x〉〈x|�act(O)��act(O)†]

=
∑

A,B⊂[d]

{aAcB tr
[
mA�act(O)mB�act(O)†]+ bAdB tr

[
QmA�act(O)QmB�act(O)†]}

=
d∑

k=0

∑

A,B⊂[d]
|A|=|B|=k

wA,B
d∑

�1,...�k=1

ε�1,�2,...,�kδA,{�1,...,�k} Ob1,�1Ob2,�2 · · ·Obk ,�k , (D18)

where wA,B = (−1)f (|A|)/2d[aAcB + (−1)kbAdB]. Since each term in the sum is a degree d or less polynomial in the
entries of O the theorem is proved. �

Definition 5: (Degree of rational functions). Let P(θ),
Q(θ) be polynomials of degree d1 and d2, respectively. Let
R(θ) = P(θ)/Q(θ) be the corresponding rational function.
Assume that P and Q do not have nonconstant polynomial
divisors. Then, we define the rational degree of R as the
pair deg(R) = (d1, d2)

The following results state that FLO circuit representa-
tions of elements of the appropriate symmetry group G,
when evaluated on Cayley paths, give rise to outcome
probabilities that are rational functions of low degree (in
number of modes d and number of particles n).

Lemma 12: (Degrees of rational functions describing
probabilities associated to interpolation of FLO circuits.)
Let G be equal to U(d) or SO(2d). Let g0, g ∈ G be a fixed
elements of the group G. Consider a rational path in the
group defined by interpolation via Cayley path

gθ = g0Fθ (g), θ ∈ [0, 1]. (D19)

Let now � : G → U(H) be the appropriate representation
of G describing appropriate class of FLO circuits [G =
U(d), � = �pas, H =∧n

(Cd) for passive FLO and G =
SO(2d), � = �act, H = H+

Fock(C
d) for active FLO]. Let

us fix |�〉 ∈ H and a Fock state |x〉 ∈ H. Then the outcome
probability

Rg0,g(θ) = tr[|x〉〈x|�(gθ )ρ�(gθ )
†] (D20)

viewed as a function of parameter θ is a rational function
of degrees.

Passive FLO: deg(Rg0,g) = (2dn, 2dn).

Active FLO: deg(Rg0,g) = (2d2, 2d2). (D21)

Moreover, the denominator of the rational functions are
given by the following.

Passive FLO: Qg(θ) =
d∏

j=1

[1 + θ2 tan2(φj /2)]n.

Active FLO: Qg(θ) =
d∏

j=1

[1 + θ2 tan2(φj /2)]d, (D22)

where φj , j ∈ [d] are phases of generalized eigenvalues of
matrix g belonging to the suitable group G and thus Qg(θ)

can be efficiently computed (see Sec. VII).

Proof. We begin by proving the passive FLO case. Recall
from Eq. (55) that gθ was expressed as a matrix with
entries of degree (d, d) on θ . By virtue of Proposition
1, we know that px[�pas(gθ ), �] = Rg0,g(θ) is a polyno-
mial of degree 2n on the entries of gθ , which immediately
implies the degree on θ is deg(Rg0,g) = (2dn, 2dn). The
denominator of the rational functions in gθ is given by
Eq. (56), from the expression for the amplitude in Propo-
sition 1, we know that the denominator in Rg0,g must
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be of the form
∣∣Qg(θ)n

∣∣2, which gives the result from∏d
j=1[1 + θ2 tan2(φj /2)]n .
For the active case, we obtain from Eq. (60) that gθ is a

matrix with entries that are polynomials of degree (2d, 2d).
Then by Proposition 2, px[�act(gθ ), �] is of degree d on
the entries of gθ implying deg(Rg0,g) = (2d2, 2d2). The
denominator Qg(θ) is obtained by noting that the expres-
sion in Eq. (62) for Qg(θ) appears as the denominator in
each entry of gθ and by Proposition 2 the degree on this
denominator is d, thus proving the result. �

APPENDIX E: DETAILS OF COMPUTATIONS
FOR ANTICONCENTRATION

1. Passive FLO

In this part we give detailed computations related to
establishing upper bound in Eq. (39) for the case of passive
FLO:

tr(Ppas�in ⊗ �in) ≤ Cpas

N
, for Cpas = 5.7. (E1)

The prove of the above inequality is split into three
parts. First, in Lemma 12 we give an explicit form of
Ppas. Second, in Lemma 13 we find an upper bound on
tr(Ppas�in ⊗ �in) via combinatorial expression that can be
efficiently computed for any fixed value of N . Finally, in
Lemma 17 given in Part E 3 of the Appendix we prove an
upper bound to the said combinatorial expression, which
yields Eq. (E1).

Lemma 13: (Projector for passive fermionic linear
optics.) Let

∧n (
C

d
)

be a fermionic n-particle represen-
tation of U(d) (d ≥ n). Let Ppas be the projector onto
a unique irreducible representation H̃f ⊂∧n (

C
d
)⊗∧n (

C
d
)

of U(d) such that |n〉 ⊗ |n〉 ∈ H̃f , where |n〉 is
a n-particle Fock state. Then, for any ρ ∈ D[

∧n
(Cd)] we

have

tr(Ppasρ ⊗ ρ) = 1
n + 1

n∑

k=0

(
n
k

)
tr(ρ2

k ), (E2)

where ρk = trn−k(ρ) is a k-particle reduction of ρ. More-
over, the dimension of H̃f equals

|H̃f | =
(

d
n

)2 d + 1
(d − n + 1)(n + 1)

. (E3)

Proof. We consider
∧n

(Cd) as antisymmetric subspace of
the Hilbert space of n distinguishable particles:

∧n
(Cd) ⊂

(Cd)⊗n with d-dimensional single-particle Hilbert spaces.

Therefore, also
∧n

(Cd) ⊗∧n
(Cd) can be considered as a

subspace of 2n distinguishable particles:

n∧
(Cd) ⊗

n∧
(Cd) ⊂ (Cd)⊗n ⊗ (Cd)⊗n. (E4)

Let us now label particles entering the first factor of the
latter tensor product by 1, . . . , n and by 1′, . . . , n′ particles
entering the second factor. In Ref. [101] it was proven that

Ppas = 2n

n + 1
P

{1,...,n}
asym P

{1′,...,n′}
asym

(
n∏

k=1

P
k,k′
sym

)
P

{1,...,n}
asym P

{1′,...,n′}
asym .

(E5)

In the above P
k,k′
sym = 1

2 (I ⊗ I + S
k,k′) is the projector onto

a subspace of (Cd)⊗n ⊗ (Cd)⊗n, which is symmetric upon
interchange of particles k and k′ (by S

k,k′ we denote the
unitary operator that swaps particles k and k′). Moreover,
P
A
asym denotes the projector onto a subspace, which is anti-

symmetric under exchange of particles in a subset A. Now
for ρ ∈ D [∧n

(Cd)
]

we have

P
{1,...,n}
asym P

{1′,...,n′}
asym ρ ⊗ ρ = ρ ⊗ ρ (E6)

and therefore

tr(Ppasρ ⊗ ρ) = 2n

n + 1
tr

[(
n∏

k=1

P
k,k′
sym

)
ρ ⊗ ρ

]
. (E7)

Using the definition of P
k,k′
sym we get the expansion

n∏

k=1

P
k,k′
sym = 1

2n

∑

X⊂[d]

∏

i∈X
S

i,i′ , (E8)

where the summation is over subsets X of [d] = {1, . . . , d}.
Using a well-known connection between partial swaps and
purities of reduced density matrices (see, for example,
Ref. [115]):

tr

(
∏

i∈X
S

i,i′ρ ⊗ ρ

)
= tr(ρ2

X ), (E9)

where ρX = tr[d]\X (ρ) is the reduction of ρ to particles
in X . From the symmetry of ρ we have tr(ρ2

X ) = tr(ρ2
k ),

where k = |X | (size of the set X ). Inserting this into (E8)
and (E7) we finally obtain

tr(Ppasρ ⊗ ρ) = 1
n + 1

n∑

k=0

(
n
k

)
tr(ρ2

k ). (E10)

The formula for the dimension, Eq. (E3), follows from the
fact that the Hilbert space H̃f is a carrier space of an irre-
ducible representation of U(d) labeled by a Young diagram
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having two columns each of which has n rows. Formu-
las for dimensions of such irreducible representations are
known (see, for example, Ref. [116]) and were used pre-
viously in the context of detection of mixed states that

cannot be decomposed as a convex combination of Slater
determinants [102]. �

Note that for all n-particle pure states we have tr(ρ2
k ) =

tr(ρ2
n−k). This observation gives us the following.

Corollary 2: Let � ∈ D[
∧2m

(Cd)] be a pure state. Let Ppas be defined as in Lemma 12. We then have

tr(Ppas� ⊗ �) = 1
2m + 1

[
2

m−1∑

k=0

(
2m
k

)
tr(ρ2

k ) +
(

2m
m

)
tr(ρ2

m)

]
. (E11)

We now proceed with some further technical results, which allows us to compute tr(Ppasρin ⊗ ρin).
For a set of indices X = {x1, x2, . . . , xn} ⊂ [d] where xi < xj if i < j , and a subset of it S = {x�1 , x�2 , . . . , x�k } ⊂ X it

is useful to introduce the following sign:

(−1)J (X ,S), where J (X ,S)

= �1 + �2 + . . . + �k + k(k − 1)

2
. (E12)

This notation allows us to express in a compact way the following matrix element: for any two Fock basis states |X 〉 , |Y〉 ∈∧n
C

d belonging to the index sets X ,Y ⊂ [d], we have that

〈X | f †
s1

f †
s2

· · · f †
sk

fqk · · · fq2 fq1 |Y〉=
{

δX\S,Y\Q εs1,...,skεq1,...,qk (−1)J (X ,S)+J (Y ,Q) if S ⊂ X and Q ⊂ Y ,
0 else,

(E13)

where S = {s1, s2 . . . sk} and Q = {q1, q2, . . . qk}.

Proposition 3: Let |X 〉 , |Y〉 ∈∧n
(Cd) be fermionic n-particle Fock states corresponding to n-element subsets X ,Y ⊂

[d] (cf. notation introduced in Sec. II), then for any k = 0, . . . , n we have

trk(|X 〉〈Y|) = 1(n
k

)
∑

S∈(X∩Y
k )

(−1)J (X ,S)+J (Y ,S) |X \ S〉〈Y \ S| . (E14)

Note that the notation used in the above expression implies trk(|X 〉〈Y |) = 0 if |X ∩ Y | < k.

Proof. For any two states |�〉 , |�〉 ∈∧n
C

d ⊂ (Cd)⊗n, the k-fold partial trace (with regards to the tensor product struc-
ture) results in an operator O = trk(|�〉〈�|) ∈ B(

∧�
C

d) ⊂ B[(Cd)⊗�] (with � = n − k) that has the following matrix
elements [117]:

〈v1| ⊗ 〈v2| ⊗ · · · 〈v�| O |w1〉⊗ |w2〉⊗ · · · ⊗ |w�〉= 1(n
k

) 〈�| (f †
1 )v1(f †

2 )v2 · · · (f †
� )v�(f�)w� · · · (f2)w2(f1)w1 |�〉 . (E15)

Inserting in this equation the |�〉 = |X 〉 and |�〉 = |Y〉 and using Eq. (E13), we get that

〈v1| ⊗ 〈v2| ⊗ · · · 〈v�| O |w1〉⊗ |w2〉⊗ · · · ⊗ |w�〉

=
{(n

k

)−1
δY\A,X\B εv1,...,vkεw1,...,wk (−1)J (Y ,A)+J (X ,B) if A ⊂ Y and B ⊂ X ,

0 else,
(E16)

�
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where v = (v1, . . . , v�) and w = (w1, . . . , w�) are the indicator bitstrings of the sets A and B, respectively. Now
considering also the following matrix entries:

〈v1| ⊗ 〈v2| ⊗ · · · 〈v�|
( 1(n

k

)
∑

S∈(X∩Y
k )

(−1)J (X ,S)+J (Y ,S) |X \ S〉〈Y \ S|
)

|w1〉⊗ |w2〉⊗ · · · ⊗ |w�〉

= tr
( 1(n

k

)
∑

S∈(X∩Y
k )

(−1)J (X ,S)+J (Y ,S) |X \ S〉〈Y \ S| (f †
1 )v1 · · · (f †

� )v�(f�)w� · · · (f1)w1
)

= 1(n
k

)
∑

S∈(X∩Y
k )

(−1)J (X ,S)+J (Y ,S) 〈Y \ S| (f †
1 )v1 · · · (f †

� )v�(f�)w� · · · (f1)w1 |X \ S〉

= 1(n
k

)
∑

S∈(X∩Y
k )

(−1)J (X ,S)+J (Y ,S) δY\S,AδX\S,B εv1,...,vkεw1,...,wk

= 1(n
k

)
∑

S∈(X∩Y
k )

(−1)J (X ,S)+J (Y ,S) δY\A,SδY\B,S εv1,...,vkεw1,...,wk

=
{(n

k

)−1
δY\A,X\B εv1,...,vkεw1,...,wk (−1)J (Y ,A)+J (X ,B) if A ⊂ Y and B ⊂ X ,

0, else,
(E17)

where we use that (−1)J (Y ,A)+J (X ,B) = (−1)J (Y ,S)+J (X ,S), which follows from the fact that (−1)J (X ,S) =
(−1)J (X ,X\S)+|X |·|S|. Thus, the matrix elements of Eqs. (E16) and (E17) coincide, which proves the propositions. �

We introduce the convenient notation for |�in〉:

|�in〉= 1√
2N

∑

X∈Cin

|X 〉 , (E18)

where Cin is a collection of subsets of [4N ] that appear in
the decomposition of |�in〉. Note that from the definition
of |�in〉 it follows that subsets are labeled by bitstrings
x = (x1, . . . , xN ), where xi ∈ {0, 1} labels which pair of
the neighboring physical modes are occupied in a given
quadropule of modes. For N = 2 we have four possible
subsets belonging to Cin

X00 = {1, 2, 5, 6}, X01 = {1, 2, 7, 8}, X10 = {3, 4, 5, 6},
X11 = {3, 4, 7, 8}. (E19)

For general N the collection Cin consists of the following
subsets labeled by bitstrings x

Xx = {1 + 2x1, 2 + 2x1, 5 + 2x2, 6 + 2x2, . . . , 4i − 3

+ 2xi, 4i − 2 + 2xi, . . . , 4N − 3

+ 2xN , 4N − 2 + 2xN }. (E20)

The formula from Lemma 3 allows us to obtain bounds for
the purities of reduced density matrices of �in.

Proposition 4: (Bounds on purities of reduced density
matrices of ρin.) Consider the setting of this paper, i.e.,
d = 4N and n = 2N, where N is the number of quadru-
ples used in our quantum advantage proposal. Let �in ∈
D(Hf ) be the input state. Then, for k = 0, . . . , N we have

tr
[
trk(�in)

2] ≤ 1
(2N

k

)2
 k/2!∑

l=0

N !
l!(k − 2l)!(N − k + l)!

.

(E21)

Proof. We use the decomposition of the state vector |�in〉
given in Eq. (E18) and obtain

�in = 1
2N

∑

X ,Y∈Cin

|X 〉〈Y | . (E22)

Employing (E14) and denoting J (X ,S) + J (Y ,S) =
K(X ,Y ,S) we obtain (remember that n = 2N )

trk(�in) = 1

2N
(2N

k

)
∑

X ,Y∈Cin

∑

S∈(X∩Y
k )

(−1)K(X ,Y ,S)

× |X \ S〉〈Y \ S| . (E23)
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By reordering the sum we obtain

trk(�in) = 1

2N
(2N

k

)
∑

X ′,Y ′∈( [4N ]
2N−k)

∣∣X ′〉〈Y ′∣∣

×
∑

S∈([4N ]
k ), X ,Y∈Cin

s.t. X\S=X ′,Y\S=X ′

(−1)K(X ,Y ,S), (E24)

where the second sum is a combinatorial term that gives
a coefficient, and a particular operator

∣∣X ′〉〈Y ′∣∣ appears.

Crucially, operators
∣∣X ′〉〈Y ′∣∣, |X ′| = |Y ′| = 2N − k are

orthonormal with respect to the Hilbert-Schmidt inner
product in B[

∧2N−k
(C4N )]. Therefore, in order to bound

purity of trk(ρin) it suffices to count the number of terms in
the second sum in Eq. (E24):

tr
[
trk(�in)

2] ≤ 1

22N
(2N

k

)2
∑

X ′,Y ′∈( [4N ]
2N−k)

N (X ′,Y ′)2, (E25)

where

N (X ′,Y ′) =
∣∣∣∣

{
(S ,X ,Y) |S ∈

(
[4N ]

k

)
, X ,Y ∈ Cin, X \ S = X ′, Y \ S = X ′

}∣∣∣∣ . (E26)

In what follows, in order to make our considerations
less abstract, we refer to elements of subsets involved as
“particles.” To compute N (X ′,Y ′) we note that X ′,Y ′
for which N (X ′,Y ′) �= 0 must arise from subtracting
from X ∈ Cin particles occupying subset S . Since parti-
cles corresponding to X ∈ Cin occupy only two out of
four possible modes in every quadropule of modes in a
“binary fashion” [see Eq. (E19)], This imposes constraints
on the possible configurations of particles from X ′ in every
quadropole. Specifically, consider the quadropule of phys-
ical modes A = {1, 2, 3, 4}. Let X ′

A = X ′ ∩A. We have
seven possibilities for the set X ′

A:

X ′N1
A = {1, 2}, X ′N2

A = {3, 4}, X ′B
A = ∅, (E27)

X ′F1
A = {1}, X ′F2

A = {2}, X ′F3
A = {3}, X ′F4

A = {4}. (E28)

All other forms of X ∩A yield N (X ′,Y ′) = 0. Under the
condition that X ′ originates from X ∈ Cin these configu-
rations impose conditions on possible arrangement of lost
particles in quadruple A, denoted by SA = S ∩A:

SA(N1) = SA(N2) = ∅, SA(B)

= {1, 2} or SA(B) = {3, 4}, (E29)

SA(F1) = {2}, SA(F2) = {1}, SA(F3)

= {4}, SA(F4) = {3}. (E30)

This motivates us to introduce types of quadruples of X ′
whose names are motivated by types of constraints the

impose on S ∩A:

TA(X ′) =

⎧
⎪⎨

⎪⎩

NULL iff X ′
A = {1, 2}orX ′

A = {3, 4}
BINARY iff X ′

A = ∅
FIXED iff X ′

A ∈ {{1}, {2}, {3}, {4}}.
(E31)

We repeat the same procedure for other quadruples
{5, 6, 7, 8}, {9, 10, 11, 12}, etc. To a given X ′ we then
associate “pattern of types”:

X ′ �−→ L(X ′) = (lN [X ′], lB[X ′], lF [X ′]
)

, (E32)

which lists the number of quadruples of different types in
X ′. This pattern gives us the number of k-element subsets
S ∈ ([4N ]

k

)
contributing to N (X ′,Y ′) [cf. Eq. (E26)]. From

the considerations given previously NS(X ′) = 2lB[X ′],
where different S contribute. Let us chose Y ′ that is com-
patible with the pattern of lost particles in X ′ is the sense
that X ′ ∩ Y ′ = ∅ and Y ′ follows the general constrains of
occupations in each quadruples described previously [like
the ones stated in Eqs. (E27) and (E28)]. Since for fixed
X ′,Y ′ subset S uniquely specifies X ,Y ∈ Cin, we finally
get

N (X ′,Y ′) = 2lB[X ′]. (E33)

It is now easy to see that, for X ′ characterized by particular
L(X ′), there are exactly

Ncomp(X ′) = 2lN [X ′] (E34)

different compatible sets Y ′. In fact, compatible Y ′ nec-
essarily satisfy L(Y ′) = L(X ′). Finally, simple counting
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argument shows that there are

N (L) = 22lF+lN N !
lN !lB!lF !

(E35)

different subsets X ′ that have the “pattern type” L =
(lN , lB, lF). Hence the contribution in from subsets X ′,Y ′
of “pattern type” L = (lN , lB, lF) to the sum in Eq. (E25) is
equal to

N (X ′,Y ′)2Ncomp(X ′)N (L) = 4lN +lB+lF N !
lN !lB!lF !

= 22N N !
lN !lB!lF !

. (E36)

Parameters lN , lB, lF are not independent because of the fol-
lowing identities: N = lN + lB + lF (this one we already
used implicitly) and 2lB + lF = 2N − k. Choosing lB as an
independent parameter applying the above considerations
to Eq. (E25) we finally obtain

tr
[
trk(�in)

2] ≤ 1
(2N

k

)2

 k
2 !∑

lB=0

N !
(N − k + lB)!(k − 2lB)!lB!

,

(E37)

where summation range for lB comes from its definition
as the number of quadropules in X ′ that are left without
particles. �

Combining Corollary 2 and Proposition 4 we obtain
explicitly the upper bound for the expectation value of the
projector Ppas

Lemma 14: Consider the setting of our quantum advan-
tage proposal, i.e., d = 4N and n = 2N. Let �in ∈
D[
∧2N

(C4N )]. Let Ppas be defined as in Lemma 12. We
then have

tr
(
Ppas�in ⊗ �in

) ≤ 1
2N + 1

×
[

2
N−1∑

k=0

(
2N
k

)
tr(ρ2

k ) +
(

2N
N

)
tr(ρ2

N )

]
, (E38)

where

tr(ρ2
k ) = 1

(2N
k

)2
 k/2!∑

l=0

N !
l!(k − 2l)!(N − k + l)!

. (E39)

2. Active FLO

We give here computations related to establishing upper
bound in Eq. (39) for the case of active FLO:

tr(Pact�in ⊗ �in) ≤ Cact√
πN

, for Cact = 16.2. (E40)

Similarly to the case of passive FLO the proof divided
into three parts. First, in Lemma 14 we give an explicit
form of Pact. Second, in Lemma 15 we find an upper
bound on tr(Pact�in ⊗ �in) via combinatorial expression
that can be efficiently computed for any fixed value of N .
Finally, in Lemma 18 given in Part E 3 of the Appendix we
prove an upper bound to the said expression, which yields
Eq. (E40).

Recall that by mi, i = 1, . . . , 2d we denote the standard
Majorana operators in the d-mode fermionic Fock space
HFock(C

d) (cf. Sec. II). The fermionic parity operator is
given by Q = id

∏2d
i=1 mi.

Lemma 15: (Projector for active fermionic linear optics.)
Let Hact = H+

Fock

(
C

d
)

be the positive parity subspace of
Fock space corresponding to d fermionic modes. Let Pact
be the projector onto a unique irreducible representa-
tion H̃act ⊂ Hact ⊗Hact of SO(2d) such that |�〉 ⊗ |�〉 ∈
H̃act, where � are arbitrary pure positive parity Gaussian
states. We then have

Pact = P+⊗P+P0P+⊗P+, (E41)

where P+ = 1
2 (I + Q) is the orthogonal projector onto

H+
Fock(C

d) ⊂ HFock(C
d) and

P0 = 1
22d

d∑

p=0

Cp

∑

X∈([2d]
2p )

∏

i∈X
mi ⊗ mi. (E42)

The numbers Cp satisfy Cp = (−1)dCd−p and for p ≤
 d/2! we have

Cp = (−1)p (2p)!(2d − 2p)!
(d!)2

(
d
p

)
. (E43)

Moreover, the dimension H̃act equals

|H̃act| = 1
2

(
2d
d

)
. (E44)

Proof. The result follows from the characterization of pure
fermionic Gaussian states given in Corollary 1 in Ref. [72],
which states that a pure state � is a pure fermionic Gaus-
sian state if and only if � |�〉 ⊗ |�〉 = 0, where � is
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the operator acting on H+
Fock(C

d) ⊗H+
Fock(C

d) introduced
previously by Bravyi in Ref. [65]

� =
2d∑

i=1

mi ⊗ mi. (E45)

Equivalently, � is the pure fermionic Gaussian state if and
only if P

�
0 |�〉 ⊗ |�〉 = 0, where P

�
0 is the projector onto

zero eigenspace of �. Since we are interested in Gaussian
states having positive parity (Q |�〉 = |�〉), and opera-
tors Q ⊗ I, I ⊗ Q commute with �, we get the following
equivalence:

� is pure positive parity fermionic Gaussian state

⇐⇒ P+⊗P+P
�
0 P+⊗P+ |�〉⊗ |�〉=0. (E46)

We now show that P
�
0 = P0. The operator � from

Eq. (E45) is a sum of 2d commuting hermitian opera-
tors mi ⊗ mi, which satisfy (mi ⊗ mi)

2 = I ⊗ I. A one-
dimensional projector onto a joint eigenspace of Mi cor-
responding to eigenvalues μi, i ∈ [2d] reads is given by

Pμ = 1
22d

2d∏

i=1

(I ⊗ I + μimi ⊗ mi) , (E47)

where μ = (μ1, μ2, . . . , μ2d) ∈ {−1, 1}2d. Any arrange-
ment of eigenvalues μ corresponds to eigenvalue λ =∑2d

i=1 μi. Consequent, projector onto eigenspace zero of �

reads

P
�
0 =

∑

μ∈{−1,1}2d
∑2d

i=1 μi=0

Pμ. (E48)

Expanding each of the projectors Pμ into sum of products
of Majorana monomials gives

Pμ = 1
22d

2d∑

k=0

∑

X∈([2d]
k )

μX ∏

i∈X
mi ⊗ mi, (E49)

where we define μX =∏i∈X μi. Inserting this expression
to Eq. (E48) gives

P
�
0 = 1

22d

2d∑

k=0

∑

X∈([2d]
k )

AX
∏

i∈X
mi ⊗ mi, (E50)

with

AX =
∑

μ∈{−1,1}2d
∑2d

i=1 μi=0

μX . (E51)

Every μ ∈ {−1, 1}2d can be identified with a subset Yμ ⊂
[2d] defined by Yμ = { i |μi = −1}. Under this identifica-
tion μX = (−1)|X∩Yμ|. Consequently we obtain

AX =
∑

Y∈([2d]
d )

(−1)|X∩Y|. (E52)

Let us first observe that because (−1)|X∩Y| = (−1)d

(−1)|X̄∩Y|, for X̄ = [2d] \X and |Y| = d, we have CX =
(−1)dCX̄ . Assuming |X | = k ≤ d we get

AX =
k∑

l=0

(−1)l
∑

Y∈([2d]
d )

|X∩Y|=l

=
k∑

l=0

(−l)l
(

k
l

)(
2d − k
d − l

)
,

(E53)

where to get the second equality we count the number of
sets Y ∈ ([2d]

d

)
satisfying |X ∩ Y | = l, where |X | = k ≤

d. Since we know AX depends only on |X | we use the
notation denoting AX = A|X |. Using simple algebra we
obtain

Ak =
k∑

l=0

(−1)l
(

k
l

)(
2d − k
d − l

)

= k!(2d − k)!
(d!)2

k∑

l=0

(−1)l
(

d
l

)(
d

k − l

)
. (E54)

This can be further simplified using the identity

k∑

l=0

(−1)l
(

d
l

)(
d

k − l

)
=
{

(−1)k/2
( d

k/2

)
if k is even

0 if k is odd.
(E55)

Denoting A2p = Cp and using CX = (−1)dCX̄ we observe
that Cd−k = Ck. Inserting the expression for AX to
Eq. (E50) we finally obtain the desired result:

P
�
0 = 1

22d

d∑

p=0

Cp

∑

X∈([2d]
2p )

∏

i∈X
mi ⊗ mi, (E56)

where Cp satisfy Cp = (−1)dCd−p and for p ≤  d/2!

Cp = (−1)p (2p)!(2d − 2p)!
(d!)2

(
d
p

)
. (E57)

We thus establish Pact = P+ ⊗ P+P0P+ ⊗ P+. The
dimension of the subspace on which Pact projects, |H̃act|,
can now be computed as tr(Ppas) by using standard alge-
braic properties of Majorana operators. �
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In order to prove the following lemma we use explicit
form of Ppas to compute tr(Ppas�in ⊗ �in).

Lemma 16: Consider the setting of our quantum advan-
tage proposal, i.e., d = 4N and n = 2N. Let �in ∈
D [H+

Fock(C
4N )
]
. Let Pact be a projector specified in

Lemma 14. We then have

tr(Pact�in ⊗ �in) = 1
28N

×
⎡

⎣2
N−1∑

q

C2q

 q
2 !∑

l=0

N !
l!(q − 2l)!(N − q + l)!

14q−2l

+ C2N

N∑

l=0

N !
(l!)2(4N − 2l)!

14N−2l

]
. (E58)

where

C2q = (4q)!(8N − 4q)!
[(4N )!]2

(
4N
2q

)
. (E59)

Proof. We start be observing that due to FLO invariance of
Pact we have tr(Pact�in ⊗ �in) = tr(Pact�

′
in ⊗ � ′

in), where
� ′

in = V�inV†, for V ∈ Gact. Note that by applying V =∏N
1=1 m3i−1m4i−i we can transform |�in〉 = |�4〉⊗N [recall

that |�4〉 = 1/
√

2(|0011〉 + |1100〉) into
∣∣� ′

in

〉 = |a8〉⊗N ,
where |a8〉 = 1/

√
2(|0000〉 + |1111〉] is the state that is

used, considered previously by Bravyi in the context of
magic state injection for the model of computation based
on Ising anyons [58] (see also Refs. [72,73]). The state∣∣aB

8 〉〈aB
8

∣∣ on octet of normally ordered Majorana modes
denoted by B ⊂ [2d] can be decomposed using Majorana

monomials

∣∣aB
8 〉〈aB

8

∣∣ = 1
24

(
I + QB + AB

1 + AB
2 + . . . + AB

14

)
, (E60)

where QB =∏i∈B mi and operators AB
i , i = 1, . . . , 14 are

quartic (i.e., fourth other) Majorana monomials supported
on modes belonging to B and satisfying (AB

i )2 = I. We do
not need the explicit form of |a8〉〈a8| but it can be found in
the works cited above. The algebraic framework of Majo-
rana fermion operators allows us to write the equivalent
input state

∣∣� ′
in〉〈� ′

in

∣∣ as a product (in a standard opera-
tor sense) of states |a8〉〈a8| supported on disjoint octets of
modes

∣∣� ′
in〉〈� ′

in

∣∣ =
N∏

i=1

∣∣∣aBi
8 〉〈aBi

8

∣∣∣ , (E61)

where B1 = {1, 2, . . . , 8}, B1 = {1, 2, . . . , 8}, B2 = {9, 10,
. . . , 16}, etc. We proceed similarly as in the proof of Propo-
sition 4 and expand the above expressions into product of
Majorana monomials and obtain

∣∣� ′
in〉〈� ′

in

∣∣ = 1
24N

∑

X∈CA8

(−1)F(X )
∏

i∈X
mi, (E62)

where CA8 is a collection of subsets of 8N Majorana
modes that appear in the product expansion of

∣∣� ′
in〉〈� ′

in

∣∣
and (−1)F(X ) a sign possibly depending on a subset
X . Because

∣∣� ′
in

〉 ∈ H+
Fock(C

d) and the form projector

Pact [cf. Eq. (E41)] we have tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
Pact

)
=

tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
P0

)
, where P0 is given in Eq. (E42).

Combining Eq. (E62) with Eq. (E42) gives

tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
P0

)
= 1

216N

4N∑

p=0

Cp

∑

Z∈([8N ]
2p )

∑

X ,Y∈CA8

(−1)F(X )+F(Y) tr

[
∏

i∈X
mj ⊗

∏

k∈Y
mi

∏

k∈Z
mk ⊗ mk

]
. (E63)

Using

(−1)F(X )+F(Y) tr

[
∏

i∈X
mj ⊗

∏

k∈Y
mi

∏

k∈Z
mk ⊗ mk

]
= 28N δX ,YδZ ,X (E64)

we obtain

tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
P0

)
= 1

28N

4N∑

p=0

Cp

∑

X∈([8N ]
2p )∩CA8

. (E65)
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Recall that from the definition of CA8, this collection of
subsets of [8N ] consists only of subsets that have cardinal-
ity divisible by 4. Therefore, the above can be described
equivalently by

tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
P0

)
= 1

28N

2N∑

q=0

C2q

∑

X∈([8N ]
4q )∩CA8

. (E66)

Moreover, from Q
∣∣� ′

in〉〈� ′
in

∣∣ = ∣∣� ′
in〉〈� ′

in

∣∣we get X̄ ∈ CA8
if and only if X ∈ CA8 and consequently

∑

X∈([8N ]
4q )∩CA8

=
∑

X∈( [8N ]
8N−4q)∩CA8

. (E67)

Using this and the property C2q = C8N−2q we finally get

tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
P0

)
= 1

28N

N−1∑

q=0

2

⎛

⎜⎝C2q

∑

X∈([8N ]
4q )∩CA8

⎞

⎟⎠

+

⎛

⎜⎝C2N
1

28N

∑

X∈([8N ]
4N )∩CA8

⎞

⎟⎠ . (E68)

Therefore, we reduce the problem of computing
tr
(∣∣� ′

in〉〈� ′
in

∣∣⊗2
P0

)
[equal to tr(|�in〉〈�in|⊗2

P0)] to the
problem of counting different sets of cardinality 4q (q =
0, 1, . . . , N ) one can find in CA8. This problem can be tack-
led using similar technique to the one used in the proof of
Proposition 4, i.e., by introducing the pattern of types of
subsets in CA8. We have 8N Majorana modes in total. In
what follows we refer to “standard octets” as N disjoint
octets on which states

∣∣∣aBi
8

〉
are supported in Eq. (E61). A

subset X ∈ CA8 satisfying |X | = 4q (q ≤ N ) can be char-
acterized, in analogy to Eq. (E32), by the pattern of types,
i.e., a triple

X �−→ L(X ) = (loct[X ], lempty[X ], lquad[X ]
)

, (E69)

where loct[X ] counts the number of standard octets con-
tained in X , lempty[X ] counts how many standard octets
are not populated by elements of X , and finally lquad[X ]
is the number of octets in which X intersects only in four
elements [note that from the construction of CA8 and due
to specific form of the state

∣∣aB
8 〉〈aB

8

∣∣ in Eq. (E60) these
are the only possibilities]. With these concepts counting of
sets X ∈ CA8 of carnality 4q can be done analogously as in
Proposition 4, i.e., by counting how many sets of different
“pattern of types” L(X ) of given carnality there are. The

final results reads
∣∣∣∣

{
X |X ∈

(
[8N ]
4q

)
, X ∈ CA8

}∣∣∣∣

=
 q

2 !∑

l=0

N !
l!(q − 2l)!(N − q + l)!

14q−2l, (E70)

where l labels the number of possible “fully occupied”
standard octets in X of carnality 4q. The term 14q−2l

appears because for the said value of fully occupied
octets there are necessarily q − 2l octets of quartic type,
and every such octet there is exactly 14 possibilities.
We conclude the proof by using the above identity in
Eq. (E68) and employing the explicit formula for C2q from
Eq. (E43). �

3. Computation of the sums

In this part we prove the bounds on the combinato-
rial sums appearing in Lemma 13, Lemma 15. This ulti-
mately proves anticoncentration bounds for passive and
active FLO circuits initialized in magic input states �in in
Theorem 1.

Our general strategy for the analytical part is based on
the following tight inequalities satisfied by binomial and
trinomial coefficients.

Lemma 17: (Bounds for binomial and trinomial coef-
ficients.) Let n, k be a natural numbers such that k ∈
{1, . . . , n − 1}. Let x = k/n. Then we have

c ·
√

n
k(n − k)

exp [n h(x)] ≤
(

n
k

)

≤ C ·
√

n
k(n − k)

exp [n h(x)] , (E71)

where c = 1/2
√

2, C = 1/
√

2π , and h(x) = −x log(x) −
(1 − x) log(1 − x) is the binary entropy.

Moreover, let k, l, m be nonzero natural numbers such
that k + l + m = n. Let x = k/n, y = l/n, z = m/n. Then
we have

a
√

n
k · l · m

exp [n h(x, y, z)]

≤
(

n
k, l, m

)
≤ A

√
n

k · l · m
exp [n h(x, y, z)] , (E72)

where a = 1/8, A = 1/2π and h(x, y, z) = −x log(x) −
y log(y) − z log(z) is the entropy of three-outcome prob-
ability distribution.

The inequality (E71) can be found in Lemma 7 in Chap-
ter 10 of Ref. [118] while Eq. (E72) follows from it due to
identity

( n
k,l,m

) = (nk
)(l+m

m

)
.
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We first consider the case of passive FLO. We observe
that from Eq. (E38) it follows that

tr
(
Ppas�in ⊗ �in

) ≤ 2
2N + 1

N∑

k=0

 k/2!∑

l=0

( N
l,k−2l,N−k+l

)
(2N

k

) .

(E73)

Lemma 18: Consider the setting of our quantum advan-
tage proposal, i.e., d = 4N and n = 2N. Let �in ∈
D[
∧2N

(C4N )]. Let Ppas be defined as in Lemma 12. We
then have

tr
(
Ppas�in ⊗ �in

) ≤ Cpas

N
, for Cpas = 5.7. (E74)

Proof. Let us denote

fN (k, l) :=
( N

l,k−2l,N−k+l

)
(2N

k

) . (E75)

From Eq. (E73) it follows that

tr
(
Ppas�in ⊗ �in

) ≤ 2
2N + 1

N∑

k=0

 k/2!∑

l=0

fN (k, l) ≤ 1
N

× (Ak=0 +Al=0 +Ak=2l +Agen
)

,
(E76)

where

Ak=0 = fN (0, 0) = 1, (E77)

Al=0 =
N∑

k=1

(N
k

)
(2N

k

) , (E78)

Ak=2l =
N∑

k>1
k even

( N
k/2

)
(2N

k

) , (E79)

Agen =
N∑

k=1

l<k/2∑

l=1

fN (k, l). (E80)

We upper bound each term above separately (except for the
trivial case of Ak=0). The following analytical proof for
the bound requires N ≥ 130. In particular, the bound for
Eq. (E85) Al=0 is valid for N ≥ 40, and the bound (E101)
for Agen is valid for N ≥ 130. At the end of the proof, we
show in Fig. 6 that the bound also holds for all smaller
values of N .

Upper bound on Al=0. In this case, we derive a bound
valid for N > 40. The bounds from Lemma 16 give

Al=0 ≤ 1
(2N

N

) + C
c

N−1∑

k=1

√
2N − k

2(N − k)
exp

× [N {h(k/N ) − 2h(k/2N )}] . (E81)

We use now the inequality h(x) − 2h(x/2) ≤ −2/3x, valid
for x ∈ [0, 1] to obtain

Al=0 ≤ 1
(2N

N

) + C
c

N−1∑

k=1

√
2N − k

2(N − k)
exp

(
−2k

3

)
. (E82)

We then apply the bound
(2N

N

) ≥ c22N√2/N and divide the
sum over k into two parts

Al=0 ≤
√

N√
2c

2−2N + C
c

⎡

⎣
k≤1/2N∑

k=1

√
2N − k

2(N − k)
exp

(
−2k

3

)
+

N−1∑

k>1/2N

√
2N − k

2(N − k)
exp

(
−2k

3

)⎤

⎦ . (E83)

For k ≤ N/2 we have
√

2N − k/2(N − k) ≤ √
3/2 and

therefore

Al=0 ≤
√

N√
2c

2−2N + C
c

[√
3
2

1
e2/3 − 1

+ N 3/2

2
exp

(
−N

3

)]
,

(E84)

where we utilize the expression for the sum of geometric
progression and the upper bound

√
2N − k/2(N − k) ≤√

N , valid for k ≤ N − 1 . Using expression (E84) it is

easy to verify that for N > 40 we have

Al=0 ≤ 3
2

. (E85)

Upper bound on Ak=2l. Estimates for binomials from
Lemma 16 yield

Ak=2l ≤ C
√

2
c

N∑

k>1
k even

exp [−Nh(k/2N )] . (E86)
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Concavity of binary entropy h(·) implies that for x ∈ [0, 1]
we have [log(2)/2]x ≤ h(x/2) and consequently

Ak=2l ≤ C
√

2
c

N∑

k>1
k even

exp
(
−k log(2)

2

)
= C

√
2

c

 N/2!∑

p=1

2−p .

(E87)

The sum of the geometric series in the above expression is
upper bounded by 1 and therefore

Ak=2l ≤ C
√

2
c

≤ 8
5

. (E88)

Upper bound on Agen. In the following proof, we require
that N ≥ 130. For the generic points in the sum (E73)
inequalities from Lemma 16 give

Agen ≤ A√
2c

N∑

k=1

l<k/2∑

l=1

√
k(2N − k)

l(k − 2l)(N − k + l)

exp (N {h [xl, yk − 2xl, 1 − yk + xl] − 2h [yk/2]}) ,
(E89)

where xl = l/N , yk = k/N . Note that k = 1 and k = 2 are
implicitly excluded from the above sum because of the
constraints on l and hence

Agen ≤ A√
2c

N∑

k=3

l<k/2∑

l=1

√
k(2N − k)

l(k − 2l)(N − k + l)

exp (N {h [xl, yk − 2xl, 1 − yk + xl] − 2h [yk/2]}) .
(E90)

In order to upper bound the expression we maximize the
function

F(x, y) = h (x, y − 2x, 1 − y + x) − 2h (y/2) (E91)

over x ∈ [0, y/2], for fixed value of y ∈ [0, 1]. Looking
for critical points reduces the problem to solving quadratic
equation, which gives a unique solution in the interval
[0, y/2]:

xopt(y) = 1
6

(
1 + 3y −

√
1 + 6y − 3y2

)
. (E92)

Crucially, the function Fopt(y) := F(((xopt(y), y))) is a contin-
uous function of parameter y, which is also analytic in the
interior the interval (0, 1). Moreover, Fopt(y) satisfies (see
Fig. 11):

Fopt(y) ≤ −1
2

y for y ∈ [0, 1/3] ,

Fopt(y) ≤ −1
4

y for y ∈ [0, 1] . (E93)

It follows that

N (h [xl, yk − 2xl, 1 − yk + xl] − 2h [yk/2])

≤ −1
2

k for 1 ≤ k ≤ N/3, (E94)

N (h [xl, yk − 2xl, 1 − yk + xl] − 2h [yk/2])

≤ −1
4

k for 1 ≤ k ≤ N . (E95)

Moreover, for integer l satisfying 1 ≤ l < k/2 we have
l(k − 2l) ≥ (k − 2)/2 and consequently for k ≥ 3 we have
k/l(k − 2l) ≤ 2k/k − 2 ≤ 6. As a result we have

l<k/2∑

l=1

√
k(2N − k)

l(k − 2l)(N − k + l)
≤

√
6k
2

√
2N − k

N − k + 1
.

(E96)

Inserting Eqs. (E94) and (E96) into Eq. (E90) gives

Agen ≤
√

3A
2c

⎡

⎣
k≤N/3∑

k=3

√
2N − k

N − k + 1
k exp

(
−k

2

)
+

N∑

k>N/3

√
2N − k

N − k + 1
k exp

(
−k

4

)⎤

⎦ . (E97)

Observing that for k ≤ N/3 we have
√

2N − k/N − k + 1 ≤ √
5/2, while and for general k ≤

N
√

2N − k/N − k + 1 ≤ √
N , we obtain

Agen ≤
√

3A
2c

[√
5
2

k≤N/3∑

k=3

k exp
(
−k

2

)
+ 2N

3
2

3
exp

(
− N

12

)]
. (E98)
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FIG. 11. Function Fopt(y) := F(((xopt(y), y))) where F is defined
in Eq. (E91) and xopt(y) is given in Eq. (E92). The function is
bounded by −y/3 in the interval [0, 1/3] and by −y/4 in the
interval [1/3, 1]. The inset plot shows that the inequality is also
valid near y = 1/3.

We bound the first summand as follows:

k≤N/3∑

k=3

k exp
(
−k

2

)
≤

∞∑

k=3

k exp
(
−k

2

)
= 3

√
e − 2

(
√

e − 1)2e
.

(E99)

This finally gives us

Agen ≤
√

15A

2
√

2c

3
√

e − 2
(
√

e − 1)2e
+ A√

3c
N

3
2 exp

(
− N

12

)
.

(E100)

Using the above expression we get that for N ≥ 130 we
have

Agen ≤ 8
5

. (E101)

Finally, combining bounds (E85), (E88), and (E101)
together with Ak=0 = 1 we see that for N ≥ 130,

Ak=0 +Al=0 +Ak=2l +Agen ≤ 5.7. (E102)

Inserting this into the bound (E76) proves the lemma for
N ≥ 130. For N ≤ 130, the validity of the bound can be
verified numerically as shown in Fig. 6, which completes
the proof.

�
Analogously for the active FLO case, Eq. (E58) implies

that

tr(Pact�in ⊗ �in) ≤
(8N

4N

)

28N−1

N∑

q=0

 q
2 !∑

l=0

(4N
2q

)( N
l,q−2l,N−q+l

)

(8N
4q

) 14q−2l.

(E103)

Lemma 19: Consider the setting of our quantum advan-
tage proposal, i.e., d = 4N and n = 2N. Let �in ∈
D[
∧2N

(C4N )]. Let Pact be defined as in Lemma 14. We
then have

tr (Pact�in ⊗ �in) ≤ Cact√
πN

, for Cact = 16.2. (E104)

Proof. Our proof strategy is analogous to the one used in
the case of passive FLO. Let us denote

gN (q, l) :=
(4N

2q

)( N
l,q−2l,N−q+l

)

(8N
4q

) 14q−2l. (E105)

It follows from Eq. (E103) and the entropic bound for
binomial coefficients in Lemma 16,

(8N
4N

)

28N−1 ≤ 1√
πN

, (E106)

that

tr(Pact�in ⊗ �in) ≤ 1√
πN

N∑

q=0

 q
2 !∑

l=0

gN (q, l)

≤ 1√
πN

(Bq=0 + Bl=0 + Bq=2l + Bgen), (E107)

where

Bq=0 = gN (0, 0) = 1, (E108)

Bl=0 =
N∑

q=1

(4N
2q

)(N
q

)

(8N
4q

) 14q, (E109)

Bq=2l =
N∑

q>1
q even

(4N
2q

)( N
q/2

)

(8N
4q

) , (E110)

Bgen =
N∑

q=1

l<q/2∑

l=1

gN (q, l). (E111)

We upper bound each term above separately (except for
the trivial case of Bq=0). The following analytical proof
for the bound requires N ≥ 7000. In particular, the bound
for Eq. (E85) Bl=0 is valid for N ≥ 1000, and the bound
(E101) for Bgen is valid for N ≥ 7000. At the end of
the proof, we show in Fig. 7 that the bound (E104) also
holds for all smaller values of N ≤ 7000 by numerically
evaluating right-hand side of Eq. (E103).

Upper bound on Bl=0. For this term, we require that
N ≥ 1000. The entropic bound in Lemma 16 implies
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that

Bl=0 ≤
(4N

2N

)
(8N

4N

)14N + C2
√

2
c

N−1∑

q=1

√
N

q(N − q)
exp

× [N {h(q/N ) − 4h(q/2N ) + log(14)q/N }].
(E112)

To upper bound the sum, we split the sum into two sums:
one from q = 1 to q ≤ N/5 and another from q > N/5 to
q = N − 1, and upper bound the function

H(x) := h(x) − 4h(x/2) + x log(14), (E113)

x ∈ [0, 1] in the intervals [0, 1/5] and (1/5, 1] separately.
In particular, we have that (see also Fig. 12)

H(x) ≤ −4
3

x for x ∈ [0, 2/5],

H(x) ≤ − 1
18

x for x ∈ [0, 1]. (E114)

Together with the bound
(4N

2N

)
/
(8N

4N

) ≤ C
√

2/c2−4N and√
N/[q(N − q)] ≤ √

2 valid for N ≥ 2 (this is because√
N/q(N − q) is convex for q ∈ [1, N − 1] and thus the

expression takes the maximum values at the end points),
we obtain

Bl=0 ≤ C
√

2
c

(
14
16

)N

+ 2C2

c

×
⎛

⎝
q≤N/5∑

q=1

exp(−4q/3) +
N−1∑

q>N/5

exp(−q/18)

⎞

⎠

(E115)

≤ C
√

2
c

(
14
16

)N

+ 2C2

c

(
1

e4/3 − 1
+ 4N

5
exp

×
[
− N

18 · 5

])
, (E116)

where we use the sum of the geometric series to arrive at
the final expression. Using the expression (E116), it can be
verified that

Bl=0 ≤ 1
3

(E117)

holds for N ≥ 1000.

Upper bound on Bq=2l. From Lemma 16 we see that

Bq=2l ≤ C2
√

2
c

N∑

q>1
q even

√
N

q
2 (N − q

2 )
exp[−3Nh(q/2N )].

(E118)

Now by concavity of h(x) for x ∈ [0, 1
2 ] we have

log(2)x/2 ≤ h(x/2) for x ∈ [0, 1]. Then

Bq=2l ≤ C2
√

2
c

N∑

q>1
q even

√
N

q
2 (N − q

2 )
exp[−3q log(2)/2]

(E119)

= C2
√

2
c

 N/2!∑

p=1

√
N

p(N − p)
2−3p . (E120)

We can bound
√

N/p(N − p) ≤ √
2 the same way as in

the passive case. Then we obtain

Bq=2l ≤ 2C2

7c
≤ 0.13, (E121)

where we use that the geometric sum of 2−3p is bounded
by 1/7.

Upper bound on Bgen. Following bounds from Lemma
16 and defining xl = l/N and yq = q/N we obtain

Bgen ≤
√

2CA
c

N∑

q=1

l<q/2∑

l=1

√
N

l(q − 2l)(N − q + l)
exp

× [NG(xl, yq)], (E122)

where, following the analogous construction in Lemma 17,
we introduce

G(x, y) := −4h(y/2) + h(x, y − 2x, 1 − y + x)

+ (y − 2x) log(14). (E123)

As in the case of passive FLO, our strategy is to upper
bound G(x, y) by a function that allows for analytical
treatment. To this end, we first optimize G(x, y) over x ∈
[0, y/2] for fixed y ∈ [0, 1]. Solving for the critical points
gives the following optimal solution xopt ∈ [0, y/2] [at the
extremal points of this interval function G(x, y), treated as
a function of x for fixed y, takes smaller values]

xopt(y) = 1
96

(
−49 + 48y + 7

√
40 − 96y + 48y2

)
.

(E124)

The maximum of G(x, y) over x ∈ [0, y/2], Gopt(y) :=
G(((xopt(y), y))) is a continuous function of y ∈ [0, 1] and
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FIG. 12. Function H(x) defined in
Eq. (E114). The function is bounded above
by −4x/3 in the interval [0, 1/5] and by
−x/18 in the interval [0, 1]. The inset plot
shows the validity of the upper bound in
each interval.

also analytic for y ∈ (0, 1). We can bound Gopt(y) in the
following way (see Fig. 13):

Gopt(y) ≤ −y/3 for y ∈ [0, 1/2] ,

Gopt(y) ≤ −y/100 for y ∈ [1/5, 0.925] ,

Gopt(y) ≤ −(1 − y)2 for y ∈ [0.925, 1] . (E125)

We need much more refined information about G(x, y) than
in the case of analogous considerations for passive FLO.

Namely, we need to control how fast G(x, y) decays as a
function of x − xopt(y), for fixed y. To this end we compute
for x ∈ (0, y/2), y ∈ (0, 1)

∂2
x G(x, y) = −

(
1
x
+ 1

1 − y + x
+ 4

y − 2x

)
. (E126)

From the above expression we get [119]

∂2
x G(x, y) ≤ −16 for x ∈ (0, y/2) and ∂2

x G(x, y) ≤ − 2
3xopt(y)

for x ∈
[

xopt(y)

2
,

3xopt(y)

2

]
. (E127)

Using the analyticity of G(x, y) as a function of x inside the interval (0, y/2), we can Taylor expand it around xopt(y) (for
fixed value of y):

G(x, y) = Gopt(y) + [∂xG(((xopt(y), y)))][x − xopt(y)] +
∫ x

xopt(y)

dτ∂τ G(τ , y). (E128)

Using the fact that xopt(y) is a critical point and bounds, identity

∂τ G(τ , y) =
∫ τ

xopt(y)

dx∂2
x G(x, y) (E129)

and bounds from Eq. (E127) we get finally get

G(x, y) ≤ Gopt(y) − 8[x − xopt(y)]2 for x ∈ [0, y/2], y ∈ [0, 1], (E130)

G(x, y) ≤ Gopt(y) − 1
3xopt(y)

[x − xopt(y)]2 for x ∈
[

xopt(y)

2
,

3xopt(y)

2

]
, y ∈ [0, 1] . (E131)

Coming back to the bound on Bgen from Eq. (E122), similarly to the case of passive FLO, due to constrains on l, the sum
appearing in Eq. (E122) effectively starts from q = 3. Moreover, we also note that l(q − 2l) ≥ (q − 2)/2 and therefore

√
N

l(q − 2l)(N − q + l)
≤
√

2N
(q − 2)(N − q + l)

≤
√

2N
N − 2

, (E132)
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where in the second inequality we use the fact that q ∈ [3, N ] and l ≥ 1. Using the above and expanding the expression
in Eq. (E122) in the different intervals defined in Eq. (E125) we obtain

Bgen ≤ 2CA
c

√
N

N − 2

⎛

⎝
q≤N/2∑

q=3

l<q/2∑

l=1

exp[−q/2] +
q<0.925N∑

q>N/2

l<q/2∑

l=1

exp[−q/100]

⎞

⎠ (E133)

+
√

2CA
c

N∑

q>0.925N

l<q/2∑

l=1

√
N

l(q − 2l)(N − q + l)
exp[NG(xl, yq)] . (E134)

Two sums from Eq. (E133) can be handled analogously as in the case of passive FLO:

2CA
c

√
N

N − 2

⎛

⎝
q≤N/5∑

q=3

l<q/2∑

l=1

exp[−q/3] +
q<0.925N∑

q>N/2

l<q/2∑

l=1

exp[−q/100]

⎞

⎠ (E135)

≤ 2CA
c

√
N

N − 2

⎛

⎝
∞∑

q=3

(q/2)exp(−q/3) + +(N 3/2/2)exp
[
− N

200

]⎞

⎠ . (E136)

= 2CA
c

√
N

N − 2

(
3e1/3 − 2

2e2/3(e1/3 − 1)
+ (N 3/2/4)exp

[
− N

200

])
≤ 2 , (E137)

where the last inequality is valid for N ≥ 1800. The sum in Eq. (E134) is analyzed using inequalities (E130) and (E131).
For fixed yq (which corresponds to q = yqN ) we set lopt(yq) = xopt(yq)N and divide the range of summation over l in
Eq. (E134) into two parts that corresponds to intervals in bounds (E130) and (E131), respectively,

Lmax
q =

{
l
∣∣∣∣

1
2

lopt(yq) ≤ l ≤ 3
2

lopt(yq)

}
, (E138)

Lgen
q =

{
l
∣∣∣∣ 1 ≤ l <

1
2

lopt(yq) or
3
2

lopt(yq) < l < q/2
}

. (E139)

It is now straightforward to verify that
√

N
l(q − 2l)(N − q + l)

≤
√

4N
lopt(q − 3lopt)lop

for l ∈ Lmax
q , (E140)

where for clarity we surpass the dependence of lopt on q. Moreover, from Eqs. (E130) and (E131) we get

NG(xl, yq) ≤ NGopt(yq) − (l − lopt)
2

3lopt
for l ∈ Lmax

q , (E141)

NG(xl, yq) ≤ NGopt(yq) − 2x2
optN for l ∈ Lgen

q . (E142)

Finally, we arrive at the following bound:

√
2CA
c

N∑

q>0.925N

l<q/2∑

l=1

√
N

l(q − 2l)(N − q + l)
exp[NG(xl, yq)] (E143)

≤
√

2CA
c

N∑

q>0.925N

exp[NGopt(yq)]

√
4N

lopt(q − 3lopt)lopt

∑

l∈Lmax
q

exp
(
− (l − lopt)

2

3lopt

)
(E144)

+
√

N
N − 2

CA
c

N∑

q>0.925N

qexp[NGopt(yq)]exp
(
−2x2

optN
)

, (E145)
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where we use Eq. (E132) to get Eq. (E145). We first analyze the second sum. By using Eq. (E125) we obtain

N∑

q>0.925N

qexp[NGopt(yq)] ≤ N
N∑

q>0.925N

exp
[
(N − q)2

N

]
≤ N

(
1 +

√
πN
2

)
≤ N

3
2 , (E146)

where we use

∞∑

x=0

exp
(
−x2

a

)
≤ 1 +

∫ ∞

0
dxexp

(
−x2

a

)
= 1 +

√
πa
2

, (E147)

valid for all a > 0, and N ≥ 100. Importantly, for q > 0.925N (which corresponds to y ≥ 0.925), we have xopt ≥ 0.03.
Using this and assuming N ≥ 7000, we finally obtain

√
N

N − 2
CA
c

N∑

q>0.925N

qexp[NGopt(yq)]exp
(
−2x2

optN
)
≤
√

N
N − 2

CA
c

N
3
2 exp

(
− 9

5000
N
)

≤ 1. (E148)

We use similar methods to bound (E144). First, we upper bound the exponential sum

∑

l∈Lmax
q

exp
(
− (l − lopt)

2

3lopt

)
≤ 1 +√π3lopt ≤ 10

3

√
lopt, (E149)

which allows estimate
√

4N
lopt(q − 3lopt)lopt

∑

l∈Lmax
q

exp
(
− (l − lopt)

2

3lopt

)
≤ 10

3

√
4N

lopt(q − 3lopt)
≤ 10

3

√
4

(0.03)(0.7N )
= 20

3

√
1000
21N

, (E150)

where in the second inequality we use that for q ≥ 0.925N we have lopt(yq) ≥ 0.03N and q − 3lopt(yq) ≥ 0.7N . Inserting
thin inequality to Eq. (E144) and again using Eq. (E146) gives that for N ≥ 7000

√
2CA
c

N∑

q>0.925N

l<q/2∑

l=1

√
N

l(q − 2l)(N − q + l)
exp[NG(xl, yq)] ≤ 1 +

√
2CA
c

√
1000
21

≤ 12.7. (E151)

Combining this estimate with the bound (E137) and
using Eq. (E133), we finally obtain that for N ≥ 7000

Bgen ≤ 14.7. (E152)

Finally, combining bounds (E117), (E121), and (E152)
together with Bk=0 = 1 in inequality (E107) we see that
for N ≥ 7000,

tr(Pact�in ⊗ �in) ≤ 1√
πN

(Bq=0 + Bl=0 + Bq=2l + Bgen)

≤ 16.2√
πN

. (E153)

For N ≤ 7000, the validity of the bound can be verified
numerically as shown in Fig. 7, which completes the proof.

�

APPENDIX F: EFFICIENT TOMOGRAPHY OF
FLO UNITARIES

Here we prove Lemma 6, which establishes a bound
concerning the stability of the active FLO representation,
which is needed in the efficient tomographic scheme of
Sec. IX.

Lemma 20: (Stability of active FLO representation.)
Consider two elements of the orthogonal group, O, O′ ∈
SO(2d), and let V and V′ be the corresponding active
FLO unitaries, i.e., V = �act(O) and V′ = �act(O′). Let
�V and �V′ be the unitary channels defined by V and V′,
respectively. Then, the following inequality is satisfied:

‖�V − �V′‖♦ ≤ 2d‖O − O′‖. (F1)
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FIG. 13. Function Gopt(y) = G(((xopt(y), y))) where G is defined in Eq. (E123) and xopt(y) is defined in Eq. (E124). The function is
presented alongside simple analitical lower bounds are valid in specific intervals formulated in Eq. (E125).

Proof. The proof will rely on representation theoretic
methods, however, as we have noted, �act is a projective
representation of SO(2d) and not a proper representation.
Instead, we use �act ⊗ �act, which is already a proper rep-
resentation of SO(2d). Thus, we bound the diamond norm
difference between the unitary channels φV⊗V and φV′⊗V′
corresponding to the unitaries V ⊗ V = �act ⊗ �act(O)

and V′ ⊗ V′ = �act ⊗ �act(O′), respectively, and then use
the inequalities

‖�V − �V′‖♦ ≤ ‖�V⊗V − �V′⊗V′‖♦

≤ 2‖V ⊗ V − V′ ⊗ V′‖. (F2)

Here the first inequality follows directly from the definition
of the diamond norm, while the second is a standard
inequality relating the diamond norm distance of unitary
channels to the operator norm distance of unitaries (see,
e.g., Ref. [120]).

Thus, our proof strategy is to upper bound ‖V ⊗ V −
V′ ⊗ V′‖ = ‖�act ⊗ �act(O) − �act ⊗ �act(O′)‖. For this
we use the decomposition of the �act ⊗ �act into subrep-
resentations in the following way [121]:

�act ⊗ �act ∼=
d−1⊕

s=0

(
s∧

�

)⊕2

⊕
d∧

�, (F3)

where � denotes the defining representation of SO(2d) and
its �th antisymmetric tensor power

∧�
� is given by

�∧
� : SO(2d) −→ U

( �∧
(C2d)

)
, (F4)

O �−→ O⊗n
∣∣∧�(Cd)

. (F5)

This decomposition immediately implies that

‖V ⊗ V − V′ ⊗ V′‖ = ‖�act ⊗ �act(O) − �act ⊗ �act(O′)‖

≤ max
�∈[d]

‖
�∧

�(O) −
�∧

�(O′)‖ ≤ max
�∈[d]

‖O⊗� − O′⊗�‖.

(F6)

Inserting the above inequality into Eq. (F2) and using that
‖O⊗� − O′�‖ ≤ �‖O − O′‖ (and � ≤ d), we obtain

‖�V − �V′‖♦ ≤ 2d‖O − O′‖. (F7)

�

APPENDIX G: #P-HARDNESS OF
PROBABILITIES IN SHALLOW-DEPTH ACTIVE

FLO CIRCUITS

We argued in Sec. VI that amplitudes of active FLO cir-
cuits are #P-hard to compute. Here we show that similarly
strong simulation (i.e., computing output probabilities) of
constant-depth active FLO circuits is hard. It has been
proven in previous work [11] that under certain conditions,
nonuniversal circuit families of shallow depth are hard to
simulate under plausible conjectures, which in addition
implies that the output probabilities are #P-hard. Specif-
ically, it is required that the postselected version of the
circuit family is universal for quantum computation. This
method is not robust as it shows only that exactly comput-
ing the output probabilities are hard, nonetheless it may be
of interest that such hardness results can be obtained for
constant-depth active FLO circuits. The required theorem
is as follows.

Theorem 9: Let F be a restricted family of quantum
circuits. If circuits from F with the added power of post-
selection can simulate the output probability distributions
of universal quantum circuits with postselection (i.e., F
is universal with postselection) then computing the out-
put probabilities (strong simulation) of circuits in F is
#P-hard.

Proof. Similar results have been proven in Refs. [10,11]
and later in other works related to active FLO [77]. Let C
be some circuit with gates from a universal gate set and
let PC(y) be the output probability of result y. By hypothe-
sis, with the power of postselection we can use a circuit F
from F to simulate C and thus PC(y) = PF(y∗|00 · · · 0) =
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PF(y∗00 · · · 0)/PF(00 · · · 0), where y∗ is potentially a bit-
string encoding y (which will be our case below). This
directly implies that if we could compute the output proba-
bilities of F then this would allow for computing the output
probabilities of C. Since universal circuits are known to
include #P-hard instances, the result follows. �

In what follows, we always assume that the active FLO
circuits are supplied with auxiliary states |�4〉. Through-
out this section we consider the encoding |0L〉 = |00〉 and
|1L〉 = |11〉. To prove that computing the probabilities of
shallow-depth active FLO circuits is #P-hard, we prove
now Lemma 19.

Lemma 21: Constant-depth active FLO circuits supplied
with auxiliary states |�4〉 with the added power of postse-
lection are universal.

To prove this, we follow Ref. [51], which showed sim-
ilar results in the context of boson sampling. The starting
point is the brickwork graph state, which allows for uni-
versal computation on the measurement-based quantum
computation (MBQC) scheme. We can write the prepara-
tion of the brickwork graph state plus measurements on
the state as a single circuit with adaptive measurements. If
we are given the power to postselect measurements, then
the preparation of the graph state requires a constant depth
circuit with single-qubit gates and CZ gates. If we can sim-
ulate these gates with constant-depth active FLO circuits
and postselection, then this would imply Lemma 19. Using
the encoding defined above, we show Theorem 10, which
directly implies Lemma 19.

Theorem 10: Active FLO acting on an initial state con-
sisting of tensor products of |�4〉 with the added power
of postselection can simulate single-qubit gates and CZ
with constant-depth circuits. These simulations are at the
logical level using the encoding above.

Proof. As explained before, the circuit induced by the
brickwork state with postselection is universal and of con-
stant depth, consisting of single qubit gates and CZ gates.
Using the encoding above we can simulate single-qubit
gates and CZ gates in constant depth, then we can simulate
the whole universal constant-depth circuit with a circuit
from Cact and postselection.

That single-qubit gates at the logical level can be imple-
mented with this encoding is already known [55]. Imple-
menting CZ at the logical level will require the use of
postselection and the auxiliary states |�4〉. First, we note
that the state |�4〉 can be transformed into the state |a8〉 =
1/

√
2(|0000〉 + |1111〉) using only active FLO operations.

This was shown previously in the proof of Lemma 15. Sec-
ond, in Lemma 1 of Ref. [58] it is shown that using a
single copy of |a8〉 and particle-number measurements it is

possible to implement a CZ at the logical level using the
same encoding we use here. This two facts together imply
that CZ can be implemented with active FLO circuits sup-
plied by |�4〉 states and postselection. The auxiliary states
can be swapped to the desired position when implement-
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for entanglement detection, Phys. Rev. A 88, 052328
(2013).
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