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Reliable processing of quantum information is a milestone to achieve for the deployment of quantum
technologies. Uncontrolled, out-of-equilibrium sources of decoherence need to be characterized in detail
for designing the control of quantum devices to mitigate the loss of quantum information. However, quan-
tum sensing of such environments is still a challenge due to their nonstationary nature that in general
can generate complex high-order correlations. We introduce a path integral framework to characterize
nonstationary environmental fluctuations by a quantum probe. We find the solution for the decoherence
decay of nonstationary, generalized Gaussian processes that induce pure dephasing. This dephasing when
expressed in a suitable basis, based on the nonstationary noise eigenmodes, is defined by the overlap of a
generalized noise spectral density and a filter function that depends on the control fields. This result thus
extends the validity of the similar general expression for the dephasing of open quantum systems coupled
to stationary noise processes to out-of-equilibrium environments. We show physical insights for a broad
subclass of nonstationary noise processes that are local in time, in the sense that the noise correlation
functions contain memory based on constraints of the derivatives of the fluctuating noise paths. Spec-
tral and non-Markovian properties are discussed together with implementations of the framework to treat
paradigmatic environments that are out of equilibrium, e.g., due to a quench and a pulsed noise. We show
that our results provide tools for probing the spectral and time-correlation properties, and for mitigating
decoherence effects of out-of-equilibrium—nonstationary—environments.
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I. INTRODUCTION

The progress on controlling quantum systems has lead to
the development of quantum technologies [1–4]. In order
to deploy these technologies quantum information needs
to be reliably processed. However, both the storage and
processing of quantum information in quantum devices
suffer from decoherence, the loss of quantum information
as a function of time, that distorts the encoded information
[5–16]. Uncontrolled sources of decoherence are ubiqui-
tously present in the environment of a quantum system, and
methods for mitigating their effects have been extensively
explored [12,17–27]. There is no universal optimal solu-
tion for protecting against decoherence, as detailed control
to the system has to be tailored based on the specific
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noise source [15,27–39]. A key required input for find-
ing the optimal strategies for decoupling the environmental
effects is detailed knowledge of the noise spectral prop-
erties [35,40–44]. Most of the approaches for controlling
and characterizing decoherence effects have been devel-
oped for stationary noise fluctuations [19,20,28,29,32,35,
40,45–48]. Developing methods for controlling and char-
acterizing nonstationary environmental fluctuations is a
prerequisite to exploit the full extent of quantum technolo-
gies at atomic and nanoscales, where the environmental
systems are intrinsically of the many-body type and are out
of equilibrium [13,16,49–64].

Dynamical decoupling noise spectroscopy is a promis-
ing tool for characterizing fluctuating environments
[35,36,40,45,65]. It is based on applying time-dependent
control pulses to probe the noise spectral properties.
Several quantum sensing methods have been designed
to reconstruct the noise spectrum generated by semi-
classical and quantum fluctuating sources [35,37,42,62,
66–71]. However, it remains open how to interpret the
extracted noise spectrum probed by a quantum sensor
when it is coupled to a complex and unknown environment
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[44,61,72,73]. More importantly, there are no universal
methods for determining the properties of the natural, out-
of-equilibrium environments that lead to nonstationary,
non-Markovian noise fluctuation processes [49,51,55,61,
63,64,67,74].

To deal with these outstanding problems, we here imple-
ment a path integral framework to describe the deco-
herence process on a controlled 1/2-spin, quantum-probe
coupled to nonstationary noise sources. We set the path
integral framework for the most general pure dephasing
coupling with fluctuating fields that can be described by
nonstationary, generalized Gaussian processes, and find
the solution for the decoherence decay. Our results general-
ize the universal formula [19,20] for the dephasing decay
that depends only on the overlap of a noise spectral den-
sity and a filter function that depends on the control fields.
Specifically, we demonstrate its extension to the case of
nonstationary Gaussian environments.

This generalization allows us to implement two
important applications for the deployment of quantum
technologies, dynamical decoupling noise spectroscopy
for quantum sensing operations and mitigating by con-
trol methods the decoherence effects of out-of-equilibrium
environments. Moreover, we provide simple interpreta-
tions of nonstationary noise spectrums and time-dependent
correlations for a broad subclass of local-in-time noise pro-
cesses and simple criteria to distinguish Markovian from
non-Markovian noise dynamics. We also show how to
implement our framework with two paradigmatic nonsta-
tionary noise processes, one derived from a quenched envi-
ronment where excitations suddenly start spreading over a
large number of degrees of freedom [13,50,56,64,74] and
the other from noise that acts near a point in time [75–
78]. Overall we introduce a tool to characterize and control
decoherence effects of out-of-equilibrium environments,
providing avenues of quantum information processing for
the deployment of quantum technologies.

Our manuscript is organized as follows. In Sec. II we
describe the quantum-probe interacting with fluctuating
fields. In Sec. III we introduce the path integral frame-
work to determine the qubit-probe dephasing induced by
a general, nonstationary Gaussian noise in the time and
frequency domains. In Sec. IV we define a generalized
noise spectral density and control filter function in a suit-
able nonstationary, noise eigenmode basis, and show that
in this basis the dephasing is given by the overlap between
them. Based on this noise eigenmode basis, we show how
to implement (i) quantum sensing of the generalized noise
spectrum and (ii) optimal dynamical decoupling sequences
to protect the quantum system against decoherence. In Sec.
V we consider a broad subclass of nonstationary Gaus-
sian noise processes that are local in time to provide more
direct physical meanings of parameters that characterize
these nonstationary noise processes within this path inte-
gral framework. In Sec. VI we apply the presented tools to

two paradigmatic out-of-equilibrium environments: noise
acting near a point in time by an analogy to a quantum
harmonic oscillator and a quench on the environment that
suddenly starts an Ornstein-Uhlenbeck diffusion process.
Lastly, in Sec. VII we conclude with some remarks.

II. QUBIT-PROBE INTERACTING WITH
FLUCTUATING FIELDS

We consider a qubit system with spin S = 1/2 as a
quantum probe experiencing pure dephasing due to the
interaction with its environment (bath) [27,79]. In the sys-
tem rotating frame of reference, the Hamiltonian is given
by

H = HSB +HB, HSB = Szg · B, (1)

where HB is the bath Hamiltonian and HSB is a general
pure dephasing system-bath interaction Hamiltonian. The
spin operator Sz in the z axis is the qubit-probe operator, the
bath operators are represented by an n-dimensional vector
B = [B1, . . . , Bn], and g = [g1, . . . , gn] are the system-bath
coupling strengths. Note that index i of components giBi of
the system-bath interaction labels properties of the qubit-
bath coupling network morphology. For example, it can
label different components of a hyperfine interaction ten-
sor [80,81], different spins on the environment [31,34,82],
or spatial directions as in the case of anisotropic molecular
diffusion [83–85]. Figure 1(a) shows a schematic repre-
sentation of this interaction. This type of interaction is
encountered in a wide range of systems, as for example
nuclear spin systems in liquid and solid state NMR [31,34,
35,86,87], dephasing induced by spin bearing molecules
in liquid and gas state NMR [84,88–92], the hyperfine
interaction of electron spins in diamonds [36,80,81,93,94],
electron spins in quantum dots [95–98], donors in sili-
con [99], electron spins in nanoscale nuclear spin baths
[54], superconducting qubits [40], trapped ultracold atoms
[45,100], etc.

By using an interaction representation with respect to
the evolution of the isolated environment, we eliminate
the bath Hamiltonian HB. The system-bath Hamiltonian
becomes

H(B)

SB (t) = Szg · (e−iHBtBeiHBt). (2)

Since HB does not commute with HSB, the effective
system-bath interaction H(B)

SB is time dependent and the
qubit-probe experiences a fluctuating coupling to the bath.
We use the semiclassical field approximation to replace
the quantum environment operator e−i ̂HBtBei ̂HBt with a
classical stochastic function B(t) [Figs. 1(a) and 1(b)].
The corresponding self-correlation function is thus given
by 〈Bi(t)Bj (t′)〉 = 1

2 Tr[ρe{Bi(t), Bj (t′)}], where 〈·〉 is the
stochastic mean value of the semiclassical stochastic fields.
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FIG. 1. Representation of the qubit-probe interaction with fluctuating fields derived from the path integral framework. (a) Schematic
representation of a qubit-probe interacting with the fluctuating fields Bi(t) that generate pure dephasing. The system-bath coupling
strengths gi are dynamically controlled. The index i labels properties of the qubit-bath coupling network morphology. (b) Representa-
tion of the fluctuating field paths Bi(t) that give a generalized Gaussian distribution that is sensed by the quantum probe as a function of
time. The fluctuating fields are described in the time basis |t). (c) Frequency basis |ω) representation of the fluctuating field correlation
functions, which provides a bidimensional, nonstationary noise spectrum S(ω1, ω2) = (ω1|G|ω2). (d) Noise eigenmode �-basis rep-
resentation of the nonstationary, generalized noise spectrum S(�) (red solid line), obtained after diagonalization of the noise spectrum
in the frequency basis. A generalized filter function F(�) in the noise eigenmode � basis is shown with a green solid line. Here, it
mainly probes a single noise eigenmode �0.

The right-hand side of the equation is the quantum corre-
lation function of the bath operators Bi/j , determined by
the trace Tr over the bath degrees of freedom with ρe the
density matrix of the environment and {·} denoting the anti-
commutator. This approximation, typically called the weak
coupling approximation, represents well a time-dependent
quantum correlation of the SB interaction up to second
order [19,20,37,67,79,101,102] that properly describes a
wide range of experimental setups [3,31,35,36,40,42,54,
62,65,67–69].

The evolution operator of a dynamically controlled qubit
probe combined with this fluctuating field interaction is
e−iφ[B,f]Sz , where φ[B, f] is the accumulated phase by the
probe during the evolution from an initial time t0 to a final
time tf , starting from an initial state polarized in the X -Y
plane. Specifically,

φ[B, f] =
∫

dt
n

∑

i=1

fi(t)Bi(t), (3)

where
∫

dt ≡ ∫ +∞
−∞ dt and the vector f(t) = [f1(t), . . . , fn(t)]

is a controlled modulation of each bath interaction term
driven by dynamical control techniques during t ∈ [t0, tf ],
being null outside this time interval [17–20,27,28]. For
example, for a free evolution t ∈ [t0, tf ], fi(t) = gi�(t−
t0)�(tf − t), where � is the Heaviside step function, while
for a dynamical decoupling sequence of π pulses applied
to the qubit, fi(t) switches between ±gi at the position
of every pulse [27,28]. Note that we explicitly write the
dependence on B and f of the qubit-probe phase, to high-
light dependence of the phase on the stochastic fluctuating
field that we then describe with the path integral approach
and the control fields, respectively.

In this article we consider the general pure dephasing
system-bath interaction Hamiltonian of Eq. (1). However,
the path integral framework discussed below to describe
nonstationary, general Gaussian noise that induces dephas-
ing by this interaction can be extended to a dissipation
interaction based on replacing the spin-probe operator Sz
by Sx or Sy . For this dissipation interaction, the phase
of Eq. (3) represents a population phase of a coherence
exchange [19,20,102]. This adaptation describes interac-
tions found, for example, in chemical quantum solva-
tion dynamics with a time-dependent, structurally chang-
ing solvent [55,103,104] and nonequilibrium response
of nanosystems and atomic systems coupled to driven
Caldeira-Leggett baths [51,105,106].

III. PATH INTEGRAL FRAMEWORK FOR THE
QUBIT-PROBE DEPHASING

In this section, we introduce the general path integral
framework for describing the decoherence effects on the
qubit probe, induced by a nonstationary, general Gaussian
noise that describes an out-of-equilibrium environment.
Under this framework, we define the generalized noise
spectrum for nonstationary environments in terms of the
inverse of the kernel operator that determines the probabil-
ity of the noise field paths. We then show the implemen-
tation of this framework to stationary, general Gaussian
noise processes, and recover the known expression for the
induced dephasing.

A. Dephasing induced by nonstationary, general
Gaussian noise

We use path integrals to calculate the decoherence
effects on the qubit probe, induced by the fluctuating field
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B(t). The notation φ[B, f] of the accumulated phase in Eq.
(3) shows the functional dependence of φ with the evolu-
tion path followed by the fluctuating field B(t), where the
qubit probe is driven by the control fields f(t). Since the
evolved phase involves real square-integrable functions
that conform a Hilbert space, we use a bra-ket notation
to simplify the calculations and interpretations. A function
f (t) is associated with the ket |f ), and similarly the multi-
dimensional function f(t) to the ket |f). The inner product
of this space is given by

(f|B) ≡
∫

dt
n

∑

i=1

fi(t)Bi(t). (4)

We also introduce the time basis {|t) : t ∈ R} of the Hilbert
space of scalar functions of time such that (t|f ) = f (t)
is a scalar function over the real numbers R. Therefore,
(t|f) = [f1(t), . . . , fn(t)] is a vector function in Rn. This is
analogous to the position basis {|x) : x ∈ Rn} in quantum
mechanics. Then the qubit-probe phase of Eq. (3) becomes

φ[B, f] = (f|B), (5)

considering that f(t) = (t|f) and B(t) = (t|B).
The qubit dephasing decay is given by the ensemble

average 〈eiφ[B,f]〉 taken over all possible field path fluctu-
ations of B. Figure 1(b) shows a schematic representation
of the paths of the field fluctuations. Based on path integral
theory, this ensemble average is

〈eiφ[B,f]〉 =
∫

DB exp{−A[B]} exp{−i(f|B)}, (6)

where
∫ DB is a functional integral with the probabil-

ity distribution of B given by exp{−A[B]}, and A[B]
is the action, in analogy with quantum path integrals in
imaginary time [107].

We consider the most general nonstationary Gaussian
noise process, for which the action is

A[B] = 1
2
(B|D|B) = 1

2

∫

dt
∫

dt′ B†(t)D(t, t′)B(t′),

(7)

where “†” denotes Hermitian conjugation and D(t, t′) =
(t|D|t′) is a n× n matrix-valued function of t and t′ that
gives the kernel of the operator D in terms of times. The
kernel operator D must be positive definite and real for
the path integral to be well defined, and for the action
to define a probability density exp{−A[B]}. We assume
that D is Hermitian without loss of generality, such that
D(t, t′) = D†(t′, t) (see Appendix A).

The dephasing decay of the qubit probe can be solved
exactly using path integrals for this general nonstationary

Gaussian noise process as [107]

〈eiφ[B,f]〉 = exp
{

− 1
2
(f|G|f)

}

= exp
{

− 1
2

∫

dt
∫

dt′ f†(t)G(t, t′)f(t′)
}

, (8)

where the operator G defines the self-correlation functions
of the stochastic process

(t|G|t′)ij = Gij (t, t′) = 〈Bi(t)Bj (t′)〉. (9)

The operator G is defined by the inverse of the kernel
operator

G = D
−1, (10)

or, equivalently, by the expression

(t1|D G|t2) =
∫

dt D(t1, t)G(t, t2) = Iδ(t1 − t2), (11)

where δ(t) is the Dirac delta and I is an identity matrix of
dimension n× n.

Using the bra-ket notation, one can also solve Eq.
(8) in the frequency basis of scalar functions {|ω) =
∫

(dt/
√

2π)e−iωt|t) : ω ∈ R}, rather than performing the
calculation using the time basis {|t) : t ∈ R}. This fre-
quency basis yields the Fourier representation of the
ensemble average of the qubit-probe signal:

〈eiφ[B,f]〉 = exp
{

− 1
2
(f|G|f)

}

= exp
{

−1
2

∫

dω1

∫

dω2 F†(ω1)S(ω1, ω2)F(ω2)

}

.

(12)

Here S(ω1, ω2) = (ω1|G|ω2) defines a spectral density of
two frequency dimensions equivalent to the double Fourier
transform of the correlation functions G(t, t′) [Fig. 1(c)],
and F(ω) = (ω|f) = [F1(ω), . . . , Fn(ω)] is a filter function
defined by the Fourier transform of

f(t) =
∫

dω√
2π

F(ω)eiωt. (13)

Equations (8) and (12) are the qubit dephasing solu-
tions for general—nonstationary—Gaussian noise pro-
cesses derived from the presented path integral framework.
Using the frequency basis, Eq. (10) becomes

(ω1|D G|ω2) =
∫

dω D(ω1, ω)S(ω, ω2) = Iδ(ω1 − ω2),

(14)

where D(ω, ω′) = (ω|D|ω′). Therefore, this shows that
the noise generated by the nonstationary environment is
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completely determined by the bispectrum S(ω1, ω2) that
is defined by the inverse of the kernel operator D that
describes the probability density of the field paths. Sim-
ilar bispectra, functions of two frequencies, were shown
to be useful tools to characterize stationary, non-Gaussian
noise processes [42,67]. Here, we show that they are also
useful tools to characterize nonstationary, Gaussian noise
processes.

B. Dephasing induced by stationary, general Gaussian
noise

For stationary noise, the kernel D(t, t′) and the corre-
lation functions G(t, t′) are invariant under a time trans-
lation; therefore, they depend only on the time difference
t− t′. We can consider then that D(t, t′) = D(t− t′) and
G(t, t′) = G(t− t′), and that the two-dimensional Fourier
transform of G(t, t′) is then block diagonal in the fre-
quency basis (ω|G|ω′) = S(ω)δ(ω − ω′). Similarly, the
Fourier transform of D(t, t′) is (ω|D|ω′) = D(ω)δ(ω −
ω′). Equation (12) then becomes

〈eiφ[B,f]〉 = exp
[

− 1
2

∫

dω F†(ω)S(ω)F(ω)

]

. (15)

According to Eq. (10), the inverse of the kernel operator
that describes the probability density of Eq. (7) defines the
noise spectrum for stationary noise

S(ω) = D(ω)−1 (16)

when expressed in the frequency basis. Thus, the noise
spectrum of stationary noise processes is further simplified
with respect to Eq. (14) to the multiplicative inverse of the
operator D(ω) in this basis, i.e., it is the inverse for each
frequency mode.

Equation (15) expresses the dephasing decay induced by
a stationary noise in terms of an integral over only one
frequency, in contrast with Eq. (12) that integrates an over-
lap between the filter function and the spectral density of
a nonstationary noise over two different frequencies. As a
result, we here recover the universal formula for the qubit
dephasing under the weak coupling approximation mainly
considered for the n = 1 case, i.e., when the dephasing is
given by 〈eiφ[B,f]〉 = exp[− 1

2

∫

dω S(ω)|F(ω)|2] [19,20,29,
30,32,34,108,109]. This formula for the dephasing is typi-
cally used for designing optimal control [20,28,34] and for
dynamical decoupling noise spectroscopy [35,36,40,41,45,
65,110,111].

IV. NOISE SPECTRAL DENSITY ON THE NOISE
EIGENMODE BASIS

In this section, we first introduce the noise eigenmode
basis that defines the proper basis for nonstationary noise
processes, to generalize the universal formula for the

dephasing of open quantum systems that depends on the
overlap between a noise spectral density and a qubit-
control filter function. We then show how stationary noise
processes are described in this noise eigenmode basis.
Based on the eigenmode representation, we discuss two
important applications of this dephasing generalization
to nonstationary environments: we show how to imple-
ment dynamical decoupling noise spectroscopy for quan-
tum sensing, and optimized control methods to mitigate
decoherence effects.

A. Nonstationary noise modes

The kernel operator D is in general nonstationary, and
therefore the frequency basis does not diagonalize it, lead-
ing to the bispectrum S(ω1, ω2) of Eq. (12). For this reason,
in general the elements of the frequency basis {|ω) : ω ∈
R} are not the eigenfunctions of D for nonstationary noise
processes. As the kernel operator D is Hermitian, we can
introduce the basis {|�) : � ∈ I} that diagonalizes it,

D|�) = D(�)|�), (17)

where I is a set that indexes the elements of the eigenmode
basis and D(�) ∈ R>0 are the corresponding eigenvalues.
This basis is normalized to satisfy the completeness rela-
tion I = ∫

d� |�)(�|, where
∫

d� = ∫

I d� represents an
integral when the spectrum is continuous or a sum when
it is discrete. Note that |�) are vectors in the same space
as |B), and they represent the nonstationary modes of
the noise fluctuations (t|B) = B(t) = ∫

d� b�(t|�), where
(t|�) is a vector-valued time-dependent function and b� =
(�|B) are scalars.

The correlation operator G is then diagonal in this basis
G|�) = [D(�)]−1|�), as I|�) = GD|�) = G|�)D(�)

following Eq. (10) and considering that {|�) : � ∈ I} is
a basis. As a result, we can now define a generalized noise
spectrum for nonstationary Gaussian noise processes as
the eigenvalues of the correlation operator

S(�) = [D(�)]−1, (18)

where G|�) = S(�)|�). The attenuation argument of the
dephasing decay of Eq. (8) is then

(f|G|f) =
∫

d� S(�)|(�|f)|2 (19)

in this noise eigenmode basis. This � basis then provides a
natural way to define a generalized filter function for these
nonstationary noise processes as F(�) = (�|f), to obtain

〈eiφ[B,f]〉 = exp
[

− 1
2

∫

d� S(�)|F(�)|2
]

. (20)
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The generalized noise spectrum S(�) for a nonstationary
Gaussian noise is thus the multiplicative inverse of the
eigenvalues of the kernel operator D, indexed by the noise
eigenmode parameter �.

Note that, as � is a parameter, in general its physical
meaning depends specifically on the nonstationary pro-
cess, and on the parametrization of the functional behavior
S(�), as it is always possible to reparametrize the eigen-
modes by a different parameter. Conversely, the eigen-
values of the operator D and their corresponding noise
eigenspaces are always independent of the parametriza-
tion. By identifying the basis that diagonalizes the kernel
operator D, we map the bidimensional spectral density that
depends on two frequencies [Fig. 1(c)] into a monopara-
metrical spectral density based on the nonstationary noise
eigenmodes [Fig. 1(d)]. This sets one of the main results of
this article, where Eq. (20) is a generalization for the qubit-
probe dephasing for nonstationary Gaussian noise that is
only determined by the overlap between the generalized
spectral density of the environment S(�) and the gener-
alized filter function |F(�)|2 determined by the control
on the qubit probe. This result thus extends the valid-
ity of the universal formula for stationary pure dephasing
noise processes of open quantum systems within the weak
coupling approximation to nonstationary noise processes
[19,20,29,30,32,34,35,108,109].

B. Stationary noise modes

In the stationary noise case, according to Eq. (15), the
frequency dimension is separable from the morphological
dimension of the qubit-bath coupling network represented
by the vector indices i of B and F in Eq. (9), where
we obtain D|ω) = D(ω)|ω). The noise eigenmodes in the
stationary case are defined by the eigenvectors bm(ω) ∈
Rn of D(ω), with m = 1, . . . , n, such that D(ω)bm(ω) =
Dm(ω)bm(ω) with Dm(ω) ∈ R>0. Therefore, the eigen-
modes of the kernel operator are |ω, m) = bm(ω)|ω), and it
acts on them as D|ω, m) = Dm(ω)|ω, m). We consider the
eigenmode basis index as � = (ω, m) and use the notation
D(�) = Dm(ω). The dephasing of Eq. (20) then becomes

〈eiφ[B,f]〉 = exp
[

− 1
2

∑

m

∫

dω Sm(ω)|Fm(ω)|2
]

, (21)

where Sm(ω) = D−1
m (ω) are the eigenspectrums of the bath

fluctuations on the qubit probe. The index m for example
defines the principal axes of anisotropic diffusion tensors
in magnetic resonance imaging [83–85].

While the choice of the frequency ω as the relevant
parameter to describe the noise eigenmodes for the sta-
tionary case seems natural, its selection is also arbitrary
as the choice of � in general. For example, one can keep
the diagonal form of Eq. (21) but use, instead of the angu-
lar frequency ω, the frequency ν = ω/(2π). One can also

use a different reparamerization like λ = ω1/3, or replace
the complex exponentials with trigonometric functions
and describe the noise eigenmodes with two parameters
(E, π), with E = ω2 and π the parity of the trigonometric
functions (see Appendix B).

C. Dynamical decoupling noise spectroscopy of
nonstationary environments

An important application of the presented framework,
which leads to the generalized picture for the qubit-
probe dephasing based on Eqs. (12) and (20), is that it
can be used to probe the noise spectral properties for
nonstationary, general Gaussian noise processes. Several
methods have been designed to probe the noise spec-
trum of stationary noise processes based on Eq. (15),
mainly for the n = 1 case, i.e., when the dephasing is
given by 〈eiφ[B,f]〉 = exp[− 1

2

∫

dω S(ω)|F(ω)|2] [35,36,40,
41,45,65,110,111]. Control sequences generate filter func-
tions that can allow only specific frequency components
of the spectral density to produce dephasing on the qubit-
probe system. The width of these “pass band” filters can be
made arbitrarily narrow. Therefore, the spectral density can
be reconstructed by performing a series of measurements
with different filter functions to scan the noise spectrum.
This procedure, termed dynamical decoupling noise spec-
troscopy [35], can be performed either by using continuous
fields [45,110,111] or sequences of pulses [35,40,65].

The noise eigenmodes |�) that diagonalize the kernel
operator D are thus the natural basis to probe the nonsta-
tionary noise spectrum based on Eq. (20). In the simplest
case of stationary noise, this basis becomes |ω, m), and
therefore, using a modulating function fm(t) = gme−iω0t ∝
(t|ω0) driven by control fields, one can probe the frequency
modes of the noise spectrum for each morphological eigen-
mode m by scanning ω0. For such control modulations,
the filter function |Fm(ω)|2 ∝ δ(ω − ω0) senses single-
frequency modes according to Eq. (21), and leads to the so-
called continuous-wave noise spectroscopy [45,110–114].
However, for nonstationary noise processes, the frequency
basis in general cannot probe selectively the noise eigen-
modes. In this case, the eigenvectors |�) define the proper
basis to probe the single noise eigenmodes according to Eq.
(17). Designing filter functions F(�) such that |F(�)|2 ∝
δ(�−�0) [Fig. 1(d)] based on finding the control modu-
lation functions that satisfy f�0(t) = (t|�0), one can probe
the noise eigenspectrum by scanning it by changing �0
based on Eq. (20) as (f|G|f) ∝ S(�0). Therefore, if the �

basis is known, dynamical decoupling noise spectroscopy
approaches designed to scan the spectral density in the fre-
quency domain for stationary noise processes [35,40,45]
can now be adapted to probe nonstationary noise processes
using the � domain.

Alternatively, if information about the � basis is not
known, dynamical decoupling noise spectroscopy to scan

020321-6



PATH INTEGRAL FRAMEWORK FOR CHARACTERIZING. . . PRX QUANTUM 3, 020321 (2022)

multifrequency spectral densities can be implemented
based on the general form derived in Eq. (12). Again,
qubit noise spectroscopy control methods for estimat-
ing high-order noise spectra (so-called polyspectra) have
been developed for stationary non-Gaussian noise pro-
cesses [42,67]. The method is based on using dynami-
cal control approaches based on frequency comb control
modulations to design multidimensional filter functions
to probe the polyspectra via repetition of suitable pulse
sequences. Based on Eq. (12), this technique can now
be straightforwardly adapted to estimate the nonstationary
bispectrum S(ω1, ω2) that induces the qubit-probe dephas-
ing. Then, once the bispectrum is estimated, it can then
be diagonalized to determine its eigenmode basis |�) and
eigenspectrum S(�).

D. Mitigating decoherence effects of nonstationary
noise processes

The reduction of decoherence effects on a qubit probe
coupled to nonstationary—out-of-equilibrium—noise pro-
cesses is another important application of the presented
framework. The key result for attaining this goal is the
extension of the universal expression for the qubit dephas-
ing induced by nonstationary, general Gaussian noise pro-
cesses based on the overlap between a noise spectral den-
sity and a control filter function as demonstrated with Eq.
(20). This extension allows implementing optimal control
methods that were developed for mitigating decoherence
induced by stationary noise processes on open quantum
systems. These methods are based on finding an optimal
control filter function Fopt(ω) = (ω|fopt) that minimizes
the overlap between the noise spectral density and the
control filter function in Eq. (15), and then implement-
ing it experimentally in the time basis as fopt(t) = (t|fopt)

[12,29,30,32].
These control strategies can now be applied to non-

stationary noise processes by designing an optimal filter
Fopt(�) that, analogously to the stationary case, mini-
mizes the overlap with the nonstationary Gaussian noise
spectrum S(�) in Eq. (20). This is only possible due to
the introduction of the generalized nonstationary Gaussian
noise spectrum based on determining the noise eigenmodes
G|�) = S(�)|�), and is one of the main results of this
paper. As described in Sec. IV C, S(�) can be inferred so
as to determine the proper modulation control |fopt) that
provides the optimal filter (�|fopt) = Fopt(�). This control
can then be expressed in the time basis as fopt(t) = (t|fopt)

for its experimental implementation, as one does to decou-
ple stationary environments. We have therefore shown here
how the presented generalized path integral framework
can be used for implementing dynamical control methods
to mitigate decoherence effects induced by nonstationary,
general Gaussian noise processes.

V. NONSTATIONARY NOISE PROCESSES LOCAL
IN TIME

In this section we consider a broad subclass of
nonstationary Gaussian noise processes that are local in
time, as they allow more direct interpretations of the phys-
ical meaning that provides the path integral approach for
the noise processes. We show that the dephasing for this
type of nonstationary noise processes can be described by
a differential operator based on constraints to the deriva-
tives of the fluctuating field paths. We also show how
these constraints are reflected on the functional behav-
ior of the nonstationary noise spectrums. Therefore, the
qubit-probe dephasing can be obtained by solving ordinary
differential equations rather than integral equations, as is
the case for non-local-in-time noise processes. This pic-
ture allows us to obtain a simpler expression for the noise
spectrum of local-in-time, stationary noise processes as the
inverse of the differential operator. In this case the differen-
tial operator is determined by a matrix polynomial of the
frequency modes. We also show how this description for
nonstationary, local-in-time noise processes provides con-
ditions for differentiating Markovian noise processes from
non-Markovian noise processes. Moreover, we introduce a
generalized Markovian process that includes all the deriva-
tives of B in the stochastic process that fully describes
local-in-time nonstationary processes. The state of B is not
only determined by the probability distribution of B, but
by the joint probability distribution of B and its deriva-
tives. While these local-in-time noise processes can in
general be non-Markovian, in our generalized framework
they appear as a natural extension of Markovian noise pro-
cesses, and maintain many of their properties while being
able to model a greater variety of environments.

A. Local-in-time framework

We here consider a broad subclass of nonstationary
Gaussian noise processes that are local in time. The ker-
nel that defines the probability distribution for the possible
paths that can take a local-in-time fluctuation B(t) satisfies
D(t, t′) = 0 when t 
= t′. The most general kernel opera-
tor satisfying this condition can then be expressed as an
expansion series

D(t, t′) =
∞

∑

k=0

Ck(t)δ(k)(t− t′), (22)

where δ(k) denotes the kth time derivative of the Dirac delta
function and Ck(t) are time dependent matrices. When
the sum is finite, the most general action satisfying these
conditions can be written as

A[B] =
∫

dt
N

∑

k=0

k
∑

l=0

B†(k)(t)Dk,l(t)B(l)(t), (23)
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where B(k)(t) is the kth time derivative of B(t), N is the
highest derivative order that contributes to the action, and
Dk,l(t) are n× n matrices. We call this kind of nonstation-
ary noise process local in time. The fact that these local-
in-time noise processes are described by a kernel operator
D(t, t′) that vanishes for t 
= t′ indicates that long-time cor-
relations of the process do not exist, and therefore the
correlation functions Gij (t, t′) = 〈Bi(t)Bj (t′)〉 decay with
|t′ − t|.

We demonstrate in Appendix C that any local-in-time
process can be described by an action of the form

A[B] = 1
2
(B|D|B)

=
∫

dt
N

∑

k=0

B†(k)(t)DH
k (t)B(k)(t)

+
∫

dt
N

∑

k=1

B†(k)(t)DA
k (t)B(k−1)(t), (24)

where DH
k (t) are n× n real symmetric (Hermitian) matri-

ces and DA
k (t) are real antisymmetric (anti-Hermitian)

matrices. These matrices define constraints on the values
that the fluctuating field B and its derivatives can take. For
example, the larger |DH

k | is, the smaller the derivative B(k)

must be or, equivalently, the slower B(k−1) may change.
The matrix norm |DH

k | thus limits how fast B(k−1) can lose
information of its previous state. In particular, for N > 1,
information can now be stored in the derivatives of B, and
it is this information storage that leads to these processes
being non-Markovian. Based on Eq. (22), to achieve to Eq.
(24) we have introduced the differential operator

D(t) =
N

∑

k=0

←
∂ k

t D
H
k (t) ∂ k

t

+ 1
2

N
∑

k=1

[←
∂ k

t D
A
k (t)∂ k−1

t −
←

∂ k−1
t D

A
k (t)∂ k

t

]

, (25)

which gives the kernel operator for local-in-time noise pro-

cesses, where
←
∂t denotes leftwise differentiation, such that

f (t)
←
∂tg(t) = f ′(t)g(t). Note that if B is a one-dimensional

process, DA
k = 0 for all k, since there are no nonzero real

anti-Hermitian 1× 1 matrices (scalars).
The inverse relation of Eq. (11) for local-in-time pro-

cesses becomes

D(t)G(t, t′) = δ(t− t′)I (26)

under these assumptions. This relation shows that the
time-dependent operator D(t) can be diagonalized by sim-
ply solving a set of ordinary differential equations. This

(a) (b)

FIG. 2. Schematic comparison between a Markovian noise
for N = 1 and a non-Markovian noise with N = 2 for one-
dimensional, local-in-time stationary noise processes with dif-
ferent constraints on the differential operator D. (a) Examples of
single realizations of field fluctuations Bi(t) for both cases. The
differential operator has constraints up to the first derivative for
N = 1, where the field fluctuation is continuous but not differ-
entiable. For N = 2, the field fluctuation and its derivative are
continuous. (b) The corresponding noise spectrums S(ω). For
N = 1, the spectral density is a Lorentzian and, for N = 2, the
inverse of a quartic polynomial, with power-law tails ∝ ω−2 and
∝ ω−4 for large frequencies, respectively.

is in contrast to the case of nonlocal-in-time noise pro-
cesses, where it is necessary to solve integral equations
to obtain the noise eigenmodes. The autocorrelation func-
tions G(t, t′) are the Green functions of the local-in-time
differential operator D(t). Therefore, a local-in-time noise
process can be purely described by the constraints D

H/A
k (t)

on the derivatives of the fluctuating field B(t), as seen in
Eq. (24), providing more simple physical meanings for the
form of the kernel operator given in Eq. (25). A direct
implication of this kernel form is that it describes fluctu-
ating field paths that are differentiable up to order N − 1.
This means that B and its first N − 1 derivatives must
be continuous functions (see Fig. 2 for an example) so
that the action does not diverge and they contribute to the
propagator (see Appendix D for a demonstration). Another
implication of this kernel form is that its characteriza-
tion only requires to estimate the matrices D

H/A
k (t), which

are 2N + 1 functions of R→ Rn×n. Conversely, a general
non-local-in-time process requires estimating the kernel
D(t1, t2), which is a function R2 → Rn×n.

The kernel operator of these local-in-time fluctuating
field processes is described in the frequency basis as

D(ω1, ω2) = (ω1|D|ω2)

=
N

∑

k=0

ωk
1ω

k
2D

H
k (ω1 − ω2)

+ 1
2

N
∑

k=1

i(ωk
1ω

k−1
2 + ωk−1

1 ωk
2)D

A
k (ω1 − ω2),

(27)
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where D
H/A
k (ω1 − ω2) =

∫

(dt/2π)D
H/A
k (t)eit(ω1−ω2) are

the Fourier transforms of the corresponding time-
dependent constraints D

H/A
k (t) on the kth derivatives of

the field fluctuations. Then, according to Eq. (14), its
inverse gives the bispectrum S(ω1, ω2). Based on Eq.
(27), this spectrum is similar to a polynomial of ω1 and
ω2, except that in the nonstationary case, the “coeffi-
cients” D

H/A
k (ω1 − ω2) depend on the frequencies, and

are determined by the temporal dependence of the con-
straints on the kth derivatives of the field fluctuations. The
nonstationary evolution of the constraints is manifested
for these local-in-time processes by functions that satisfy
D(ω1, ω2) = D(ω2, ω1)

†, and therefore have reflection-
conjugation symmetry about the diagonal axis ω1 = ω2 in
frequency space. In stationary processes as we see below,
the D

H/A
k (ω1 − ω2) become proportional to a δ(ω1 − ω2)

function; thus, the widths of these functions D
H/A
k (ω1 −

ω2) show the degree of nonstationarity of a process.
An alternative interpretation of the physical properties

of these processes comes from employing a time dis-
cretization of the time evolution (see Appendix E). The
argument for the integral in Eq. (24) depends only on the
local time t, i.e., the kernel only correlates the fluctuating
field values and its derivatives instantaneously. However,
the correlations imposed by the kernel on the field deriva-
tives effectively correlate the field at different times locally.
Replacing the field derivatives in Eq. (24) with finite time
differences, the discrete version of the kernel correlates
the value of the fluctuating field at the nearest 2N + 1
times steps close to the time t, i.e., B(t± k�t) with k =
−N , . . . , N and �t the time discretization step. Thus, this
shows how a kernel operator that is local in time correlates
the fluctuating field values on a limited correlation time
length, therefore introducing memory of the fluctuating
field process B(t) on infinitesimally near times determined
by the constraints on the field derivatives. These processes
are in general non-Markovian, as discussed in Sec. V C,
yet the long-time correlations do not exist.

B. Stationary noise spectrum as the inverse of the
differential operator

For stationary noise processes that are local in time, the
differential operator D is time independent:

D =
N

∑

k=0

(−1)k
D

H
k ∂2k

t +
N

∑

k=1

(−1)k
D

A
k ∂ 2k−1

t , (28)

where we have used
←
∂t = −∂t (see Appendix C). The path

integral framework then allows us to express the noise
spectrum S(ω) in terms of the operators D

H ,A
k that define

the probability density of field paths. Note that the D
H ,A
k

now define constant constraints on the derivatives of the

fluctuating field B(t). Figure 2(a) shows typical field fluc-
tuations with constraints up to the derivative of the field
(N = 1) and up to the second derivative of the field (N =
2). Based on Eq. (16), these constraints then define the
noise spectrum as

S(ω) = [D(ω)]−1 =
[ N

∑

k=0

D
H
k ω2k + i

N
∑

k=1

D
A
k ω 2k−1

]−1

,

(29)

where the matrix polynomial D(ω) is the expression in
the frequency basis of the differential operator D of a
local-in-time stationary process. This equation is obtained
from Eq. (27), where D

H/A
k (ω1 − ω2) ∝ δ(ω1 − ω2) for

stationary processes. The polynomic functional behavior
of the predicted noise spectrum is consistent with several
experimental observations [35,93,98,115]. As examples,
white noise corresponds to N = 0, a Lorentzian spectrum
corresponds to N = 1, representing Ornstein-Uhlenbeck
one-dimensional noise processes, and a spectrum given by
the inverse of a quartic polynomial corresponds to N = 2
with a power-law tail ∝ ω−4 [Fig. 2(b)]. This result thus
provides a simple physical meaning for the power-law
exponents dependence of the noise spectrum based on con-
ditions DH

k and DA
k imposed on the derivatives of B(t) that

the probability density of the possible paths can take.
An important application of Eq. (29) is that it facilitates

the noise spectroscopy characterization, as the noise spec-
trum of local-in-time processes is defined by the 2N +
1 constant n× n matrices D

H/A
k . Therefore, the hypoth-

esis of locality in time allows the implementation of
parametric estimation to determine noise spectra, rather
than using nonparametric estimation as described in Sec.
IV C for more general noise processes. Therefore, noise
spectroscopy methods for local-in-time stationary noise
processes can thus reduce the amount of measurements
required to reconstruct the noise spectrum.

C. Conditions for Markovian and non-Markovian
noise processes

In this subsection, we state the conditions for the ker-
nel operator D to represent a Markovian process. We show
that non-Markovian, local-in-time processes can always be
mapped to a Markovian process, which is described by the
value of the field and its first N − 1 derivatives. We show
that local-in-time processes are a generalization of Marko-
vian processes and that those processes cannot generate
long-time correlations. The probability distribution of B at
a time t′ after a time t is shown to be based only on the
state of the process at time t, if we consider the general-
ized process defined by the state of the joint probability
distribution of B and its first N − 1 derivatives at time
t. Therefore, local-in-time noise processes are generally
non-Markovian and in our generalized framework appear
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as a natural extension of Markovian noise processes, as
they maintain many of their properties while being able to
model a greater variety of environments. They thus provide
a natural model to study non-Markovian environments that
do not contain long-time correlations.

1. Markovian process conditions

A stochastic process B is Markovian if the probability
of the field Bf at time tf starting from a value B0 at t0 is
[79,116–118]

P(Bf , tf |B0, t0) =
∫

dB1P(Bf , tf |B1, t1)P(B1, t1|B0, t0)

(30)

for any tf > t0, where P(Bi, ti|Bj , tj ) are the conditional
probabilities that define the propagator of the process. A
Markovian process is said to be memoryless, as the ran-
dom variable “forgets” its previous state as it evolves
[79,116–118]. Therefore, in general, a stochastic process
determined by the kernel operator D as described in Eq.
(7) is non-Markovian as it correlates the fluctuating field
states at two distant times. Only local-in-time noise pro-
cesses as defined in Sec. V A may be Markovian. We then
only consider this case to evaluate the conditions required
for the nonstationary noise process to be Markovian.

If the action A[B] of Eq. (24) contains derivatives of
order N higher than 1, it implies a differentiability condi-
tion for the field paths so that the action does not diverge
and they contribute to the propagator (see Appendix D).
Therefore, in this case B and its first N − 1 derivatives
must be continuous functions. As Eq. (30) only imposes
that the paths are continuous at t1 to define a finite integral,
if the action imposes more strict conditions on the possible
paths, requiring continuity from their derivatives, the pro-
cess of B will not be Markovian as the propagator requires
information of different previous times. This implies in
particular that the derivative of B is continuous, and there-
fore it contains information about the history of B. Then
Eq. (30) cannot be satisfied as it does not include informa-
tion about B encoded in its derivatives. Therefore, we find
that the stochastic process that describes B is Markovian if
and only if its kernel operator is given by the local-in-time
differential operator of the form

DMark(t) = D
H
0 (t)+

←
∂tD

H
1 (t) ∂t + 1

2 [
←
∂tD

A
1 (t)−D

A
1 (t)∂t],

(31)

where the derivatives of the paths are not continuous (see
Appendix F for a full proof). In the frequency basis, the

kernel becomes

DMark(ω1, ω′2) = (ω1|DMark|ω2)

= D
H
0 (ω1 − ω2)+ ω1 ω2D

H
1 (ω1 − ω2)

+ 1
2 i(ω1 + ω2)D

A
1 (ω1 − ω2), (32)

following Eq. (27). Equations (31) and (32) are definitions
of Markovian Gaussian processes within the presented
framework that are equivalent to the conventional form of
Eq. (30).

In the particular case of stationary noise processes, the
most general n-dimensional Markovian noise spectrum is
therefore

SMark(ω) = [DH
0 + iDA

1ω +D
H
1 ω2]−1, (33)

according to Eq. (29). For the simplest case of one-
dimensional stationary noise processes, this means that the
process that describes them is Markovian if and only if the
noise spectrum is constant, i.e., white noise [N = 0 in Eq.
(29)] or Lorentzian [N = 1 in Eq. (29)]. Figure 2 com-
pares a Markovian field fluctuation for N = 1, where the
field is not differentiable, and a non-Markovian field fluc-
tuation with a continuous derivative for a one-dimensional
stationary noise process.

An important application of the noise spectrum form
derived in Eqs. (27) and (33) is that they allow us to
determine when a noise process is Markovian or non-
Markovian by experimentally measuring its spectrum with
dynamical decoupling noise spectroscopy (Sec. IV C).

2. Generalized Markovian process for local-in-time
nonstationary, non-Markovian noise processes

If the stochastic process is non-Markovian, but local
in time, it can still be described by a generalized Marko-
vian process if all the derivatives of B are included in the
stochastic process. We define a general conditional proba-
bility, or propagator, of the stochastic process based on the
ordered set of all the derivatives of B of order lower than
N ,

{B(k)(t)} ≡ {B(k)(t) : k = 0, . . . , N − 1}
= {B(t), Ḃ(t), . . . , B(N−1)(t)}. (34)

The Markovian condition of Eq. (30) is now satisfied for
the stochastic process of {B(k)(t)}, as the equation imposes
continuity on the first N − 1 derivatives of B. This means
that both the action and the integral over {B(k)

1 (t)} impose
that {B(k)(t)} is continuous, implying that the stochastic
process {B(k)(t)} is Markovian (see the proof details in
Appendix G). Therefore, the family of fluctuating local-in-
time nonstationary noise processes considered here imply
that if B is not Markovian, the state of B is not only
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determined by the probability distribution of B, but by
the joint probability distribution of B and its derivatives.
This means that the information of the initial condition is
encoded in the derivatives of B.

Since local-in-time noise processes can be described by
the generalized Markovian process of {B(k)(t)}, its prop-
agator P({B(k)

f }, tf |{B(k)
0 }, t0) contains all the information

about the stochastic process that describes the field paths
B. Moreover, we find that the path integral framework
allows us to calculate the propagator of {B(k)} without
actually requiring to perform path integrals. Instead, the
propagator can be obtained by solving an ordinary linear
differential equation with different types of boundary con-
ditions. The full propagator expression and its derivation
are given in Appendix H.

In summary, the local-in-time stochastic process of B is
Markovian if and only if the differential operator D(t) does
not contain terms with k higher than 1. All other processes
are non-Markovian. Yet, the generalized local-in-time pro-
cess of {B(k)(t)} is always Markovian, and it follows that
the information of previous states of B is encoded in its
derivatives when they are continuous.

3. The long time limit of local-in-time stationary noise
processes is indistinguishable from a Markovian process

The spectral density S(ω) for local-in-time stationary
noise processes of Eq. (29) is infinitely differentiable,
as it is the inverse of a nonsingular matrix polyno-
mial, and therefore the integral of its derivatives is finite
∫

dω |(d/dω)kSij (ω)| <∞ for all kth derivative orders.
Since the corresponding correlation functions are Gij (t) =
∫

(dω/2π)Sij (ω)e−iωt, one can see that

Gij (t) = (it)−k
∫

dω

2π

(

d
dω

)k

Sij (ω)e−iωt (35)

and that they are bounded by the expression [119]

|Gij (t)| ≤
∫

dω

2π

∣

∣

∣

∣

(

d
dω

)k

Sij (ω)

∣

∣

∣

∣

/

|tk|. (36)

Therefore, we obtain lim|t|→∞G(t)/tk = 0 for all k, imply-
ing that G(t) decays to zero exponentially (or faster) for
long times t→∞. Since S(ω) is the inverse of a matrix
polynomial, we know that it is not entire when analytically
continued to the complex plane of ω for N > 0. Therefore,
for N > 0, the correlation functions G(t) cannot decay
faster than an exponential in the long time limit, so they
must decay exactly as exponentials [120]. Only, for N = 0,
the correlation function decays faster as its correspond-
ing noise is white noise. Therefore, in the long time limit,
every local-in-time stationary noise is indistinguishable by
means of noise spectroscopy from a Markovian noise, as its
self-correlation functions decay exponentially or are zero

for long times, which coincides with the correlation func-
tions derived from what we showed are Markovian noise
processes.

4. Short time limit t → 0 of local-in-time stationary
noise processes

We consider an arbitrary differential operator D for a sta-
tionary local-in-time noise. In general, it is not possible to
find a closed formula for the correlation functions G(t),
since that would imply finding the roots of a polynomial of
an arbitrarily high degree. However, it is possible to get
information about the general behavior of G(t) at short
times, by analyzing its representation in the frequency
basis, i.e., the noise spectrum S(ω).

In the large frequency ω limit, the noise spectrum is
S(ω) = D−1(ω) ∼ D

−1
N ω−2N according to Eq. (29). Since

D(ω) is positive definite, the spectral density S(ω) remains
finite for all ω and the integral

∫

dω|ω2N−2Sij (ω)| <∞ is
bounded. This implies that G(t) is continuously differen-
tiable 2N − 2 times, since its derivatives are

G
(k)
ij (t) =

∫

dω

2π
(−iω)k

Sij (ω)e−iωt (37)

and are continuous [119]. This means that, for processes
with N > 1, the correlation functions decay quadratically
or slower around their maxima. Then, as the correlation
functions of each component of B satisfy

Gii(t) = 〈Bi(t)Bi(0)〉 = Cov[Bi(t)Bi(0)] ≤ 〈B2
i (0)〉, (38)

they have a global maximum at t = 0, implying that
if N > 1, they decay at least quadratically for short
times. This agrees well with the expected behavior of
correlation functions predicted by quantum mechanics
[19,20,121–127].

Therefore, every stationary noise process generated by a
quantum mechanical process is not Markovian. Note that
the Markovian noise correlation functions for N ≤ 1 are
Dirac delta functions that describe a white-noise spectrum
(N = 0), and for one-dimensional noise with N = 1, we
obtain a Lorentzian spectrum that describes an Ornstein-
Uhlenbeck process where G(t) = e−|t|/τc/(2D0τc), with
τc =
√

D1/D0. These Markovian noise processes disagree
with what quantum mechanics predicts, that, for short
times, G should decay at least quadratically. This is true
for all Markovian processes, as Eq. (26) demands the first
derivative of G(t, t′) to be discontinuous at t = t′ when
N = 1.

VI. IMPLEMENTATION OF THE FRAMEWORK
ON PARADIGMATIC NONSTATIONARY NOISE

PROCESSES

In this section, we show how to implement the presented
path integral framework to two paradigmatic examples of
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nonstationary noise processes. We consider noise deter-
mined from a quench on the environment and noise that
acts near a point in time. Both examples show some
characteristic features that arise from our framework that
distinguish nonstationary from stationary noise effects on
the qubit-probe dephasing.

A. Quenched diffusion

We here consider a quenched environment described by
a diffusion process of the fluctuating field that began at an
instant in time. This sets a paradigmatic model of typical
environments that can be suddenly quenched to put them
out of equilibrium, where excitations start spreading over
a large number of degrees of freedom [13,50,56,64,74].
The environment dynamics sensed by the qubit probe can
be represented with a generalized diffusion process, and
possible examples can be encountered in spin ensembles
coupled to single nitrogen-vacancy centers in diamond
[94,128,129], macromolecular dynamics [130–133], spin
diffusion on environments that becomes out of equilibrium
[13,35,86,134,135], dynamics of spin and current fluctu-
ations in a material at the nanoscale probed by magnetic
noise sensors [136,137], and molecular diffusion out of
equilibrium [63,138–141].

As a simple model, in particular we consider that the
fluctuating field is zero and at a given time suddenly
starts to fluctuate, driven by a one-dimensional Ornstein-
Uhlenbeck diffusion process [47,48,93,94,129,136]. Con-
sidering that the quench is at time t = 0, the fluctuating
field is therefore confined to a point for t < 0. For t > 0,
the noise process is described by a differential operator
equal to a stationary one that gives a Lorentzian spectrum

S0(ω) = 1
D0 + D1ω2 . (39)

This quenched diffusion noise process is local in time and
is modeled by the differential operator

D(t) = D1∂
2
t + D0(t) (40)

with

D0(t) =
{

D0, t > 0,
+∞, t < 0,

(41)

where we have considered D as a scalar kernel operator.
The action and the differential operator that describe the
possible field paths are equivalent to those derived from
a Schrödinger equation that describes an infinite potential
wall at position 0. Based on this analogy, one can consider
that D1∂

2
t is mapped to −∂2

x /(2m) and D0(t) is mapped to
the energy potential that describes the wall by replacing

t with the position x. Therefore, the eigenmode basis that
diagonalizes the kernel operator D is

|�) =
√

2
π

∫ +∞

0
dt sin(�t)|t), (42)

where (�|�′) = δ(�−�′) and � ≥ 0 ∈ R. Following
Eq. (18), the noise spectrum on the eigenmode basis of the
nonstationary field fluctuations is (Fig. 3)

S(�) = 1
D0 + D1�2 , (43)

and the generalized filter function is defined by

F(�) = (�|f) =
∫ +∞

0
dt

√

2
π

sin(�t)f (t). (44)

Note how the functional form of the nonstationary noise
spectrum of Eq. (43) is equal to that of a stationary case
for ω ≥ 0 [Eq. (39)] replacing � by ω. However, the eigen-
modes are different to those obtained in the stationary case.
In this example, this means that the difference between the
stationary and nonstationary cases is encoded in the filter
function F . For a stationary Ornstein-Uhlenbeck process,
F is obtained by performing the complex Fourier transform
of f (t), but in the nonstationary process F is obtained by a
real Fourier transform based on the sinusoidal component
given by Eq. (44).

1. Manifestation of the quench on the noise correlation
functions

The correlation function is the solution of the local-
in-time differential equation D(t)G(t, t′) = δ(t− t′). The
correlation function satisfies G(t, t′) = G†(t′, t), G(0, t′) =
0 due to the fact that the fluctuating field is 0 at t = 0,
and it also satisfies limt→∞G(t, t′) = 0 for a fixed t′ as
the correlation function of the Ornstein-Uhlenbeck process
decays exponentially to 0. The solution for the differential
equation is thus

G(t, t′) = 1
2D0τc

[e−|t−t′|/τc − e−(t+t′)/τc]�(t)�(t′), (45)

where τc =
√

D1/D0 is the correlation time and �(t) is the
Heaviside function.

For long times after the quench t/τc, t′/τc � 1, we
recover the correlation function for an Ornstein-Uhlenbeck
stationary diffusion process

G(t, t′) � 1
2D0τc

e−|t−t′|/τc . (46)

In this case G(t, t′) is given by the Green function of the
differential kernel operator D1∂

2
t + D0 acting over time-

dependent functions with t ∈ R instead of t > 0 as in the
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(a)

(b)

FIG. 3. Nonstationary noise spectrum of a one-dimensional
quenched diffusion process of the environmental field fluctua-
tions, driven by a one-dimensional Ornstein-Uhlenbeck stochas-
tic process. (a) The absolute value of the corresponding spectral
density S(ω1, ω2) in the frequency basis, the bispectrum given
by Eq. (47), is shown. Only the diagonal ω1 = ω2 contains the
stationary component of the noise spectrum that is dominant
at long times after the quench. As the stationary component is
∝ δ(ω1 − ω2), we plot it by replacing the δ(ω1 − ω2) function
with a nondivergent Gaussian function for presentation purposes.
The inset shows a surface colored map of the bispectrum with
contour lines in white. (b) The corresponding generalized, non-
stationary noise spectrum S(�), given in the noise eigenmode
basis |�) that diagonalizes the noise spectrum.

quenched case. Therefore, for times much longer than τc,
the environment forgets the boundary condition imposed
by the quench. The nonstationary effects induced by the
quench are thus modeled by the second term

−1
2D0τc

e−(t+t′)/τc

of Eq. (45). The quench effects are thus only manifested for
times much lower than τc with respect to the quench time
t = 0, in contrast with the stationary effects that depend on
the time correlation difference |t− t′|.

The corresponding spectral density in the frequency
basis of Eq. (12) is the bispectrum

S(ω1, ω2) = δ(ω1 − ω2)
1

D0

1
1+ ω2

1τ
2
c

− τc

4πD0

1
(1− iω1τc)(1+ iω2τc)

, (47)

where the first term is the stationary noise spectrum of Eq.
(39), and the other term is due to the quench. Figure 3(a)
shows this nonstationary bispectrum, where the stationary

component is only manifested on the diagonal ω1 = ω2.
The noise eigenmodes [Eq. (42)] and the nonstationary
noise eigenspectrum [Eq. (43)] are obtained by diagonalis-
ing this bispectrum. Figure 3(b) shows the corresponding
diagonalized nonstationary spectrum S(�) of Eq. (43).

2. Manifestation of the quench on the qubit-probe
dephasing

The difference in the qubit-probe decay induced by this
quenched diffusion, between the nonstationary effects and
its stationary counterpart, is given by

−1
2D0τc

∫

dt1dt2 f(t)e−(t+t′)/τcf(t′)

= −1
2D0τc

[ ∫

dt f(t)e−t/τc

]2

. (48)

Therefore, the nonstationary effects for this type of
quenched noise always reduce the dephasing induced on
the qubit probe compared with a stationary process. We
consider in particular the control modulation function of
the typical continuous-wave irradiation to show this man-
ifestation of the nonstationary effects on the qubit-probe
dephasing. We start the control at time t0 after the quench

f(t) = g cos[ω(t− t0)]�(t− t0)�(t0 + T − t), (49)

and it acts during a time T. The argument of the dephasing
given in Eq. (8) at time t0 + T is

(f|G|f) = (f|G0|f)− g2τc

2D0

×
{

1+ [ωτc sin(ωT)− cos(ωT)]e−T/τc

1+ ω2τ 2
c

}2

× e−2t0/τc , (50)

where (f|G0|f) is the dephasing obtained for the sta-
tionary case, and the second term is due to the
quench—nonstationary—effects. This second term pro-
vides a dephasing term that oscillates with the control
frequency ω as a function of the duration of the control
modulation T. This oscillation is attenuated with the expo-
nential decay e−T/τc , and thus it disappears at long times
after the quench. Then, if the control modulation duration
is T � τc, we still have an extra term due to the quench
effects

(f|G|f) = (f|G0|f)− g2τc

2D0

e−2t0/τc

(1+ ω2τ 2
c )2 . (51)

Note that this last term provides a constant term in the
dephasing that contains information about the quench if
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t0 � τc as it decays exponentially with time t0 when qubit-
probe control started. This prediction thus gives a tool
to probe the quench effects by monitoring the dephasing
change as a function of t0, and gives a method to probe the
self-correlation times induced by the quench. Moreover, if
one monitors the decay rate of the qubit probe as typically
done in several noise spectroscopy approaches [35,40,45],
one would obtain only the stationary decay rate given by

(f|G0|f) ∝ S0(ω)T. (52)

Therefore, the effects of the quench are not manifested on
the decay rate, but they are evidenced on a shift of the
decaying signal given by the second term of Eq. (51).

B. Noise produced near a point in time

As one of our results is that nonstationary spectrums can
be discrete according to Eq. (18), we exploit an analogy
with the Schrödinger equation to describe a paradigmatic
example that manifests this discrete nature. Noise that con-
tains these discrete features, for example, acts only near an
instant in time, a pulsed noise interaction. This is a paradig-
matic model for a quantum probe that interacts with noise
during a finite duration of time. Examples of this can be
moving charges or particles that pass near a quantum sen-
sor [76,138,139,142–144], forces or interactions detected
by a moving cantilever or a tip that contains the sensor
[77,129,145], and biomedical applications as the detection
of neuronal activity [75,76,78].

All nonstationary noise described by a differential oper-
ator of the form

D(t) = −D1∂
2
t +D0(t), (53)

where D1 is a scalar, can be mapped to a quantum-
mechanical problem with the Hamiltonian

H = − 1
2m

∂2
x + V(x) (54)

by replacing x→ t, m→ 1/(2D1), and V(x)→ D0(t).
Therefore, for every solvable quantum-mechanical Hamil-
tonian with positive eigenvalues, we obtain a solution for
the noise spectrum and its eigenmodes of a Markovian
local-in-time, nonstationary Gaussian noise. The energy
levels of the Hamiltonian must be positive so that the
differential operator D(t) is positive definite, but every
bounded from below Hamiltonian can be transformed into
a positive definite one by adding a large enough constant
C to H→ H+ C.

Based on this analogy, we describe the paradigmatic
example of pulsed noise with a one-dimensional, nonsta-
tionary noise process that is local in time. We consider
the noise described by a differential operator D that is

mappable to the Hamiltonian of a quantum harmonic
oscillator

H = − 1
2m

∂2
x +

1
2

mω2
0x2 + D0, (55)

where D0 is an additive constant that does not change
the eigenvectors of the Hamiltonian H. The corresponding
differential operator is

D(t) = −D1∂
2
t + D0 + αt2, (56)

where the necessary map is m→ 1/(2D1), ω0 →
√

4αD1,
and x→ t. This stochastic process models noise probed by
the qubit system that appears near a point in time, where
the fluctuating field paths are forced to be 0 for times
|t| → ∞, since D0(|t| → ∞)→∞. Therefore, the fluc-
tuating fields are only allowed to deviate from 0 near the
local instant of time t = 0 (see the blue dashed line in Fig.
4). The noise eigenmodes of D(t) are

|�n) = 1√
2nn!

(√

α

D1π2

)1/4

×
∫ +∞

−∞
dt exp

{

−
√

α

4D1
t2

}

Hn

{(

α

D1

)1/4

t
}

|t),
(57)

where Hn are the Hermite polynomials with n = 0, 1, 2, . . .
in analogy with the eigenfunctions of the quantum har-
monic oscillator [Fig. 4(a)]. The nonstationary noise spec-
trum expressed in its eigenmode basis is then discrete,
given by

S(�n) = 1
�n + D0

, �n =
(

n+ 1
2

)

ω0, (58)

as shown in Fig. 4(a). Since the differential operator D(t)
is positive definite if and only if all its eigenvalues are
positive, the model is well defined only for ω0 > −2D0.

This noise model sets a paradigmatic example of some
of the differences between probing nonstationary and sta-
tionary noise spectra with dynamical decoupling noise
spectroscopy. In this case, the natural control modula-
tion would be fn(t) = (t|�n) for n = 0, 1, 2, . . ., as shown
in Fig. 4(a). Here the dephasing in the long time limit
after applying these modulations will saturate to a constant
value that provides the noise eigenvalues

(�n|G|�n) = 1
�n + D0

. (59)

This is in contrast to the predicted exponential decay with
a constant rate for stationary noise processes typically used
for noise spectroscopy [35]. Figure 4(b) shows a schematic
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(a)

(b)

FIG. 4. Scheme for the characteristic features of a paradig-
matic local-in-time, nonstationary noise that acts only near a
point in time and therefore produces a discrete, generalized noise
spectrum. The variance of one-dimensional noise that appears
near a point in time is shown with a blue dashed line. (a) The
generalized nonstationary noise spectrum S(�n) = 1/(�n + D0)

in the noise eigenmode basis is shown with orange horizon-
tal lines. The corresponding noise eigenmodes |�n) are shown
in the time basis fn(t) = (t|�n) for n = 0, 1, 2, . . . with solid
black lines. They also provide the natural control modulations
to probe the noise eigenmodes. (b) Schematic representation of
the qubit-probe signal decay when it is controlled by the modula-
tion functions fn(t). They feature a signal saturation at long times
given by exp{−(�n|G|�n)} = exp{−S(�n)}.

representation of the qubit-probe signal decay when it is
controlled by the modulation functions fn(t) = (t|�n). This
behavior is universal for all noise processes with a dis-
crete spectrum; therefore, this example shows how noise
spectroscopy must be done for such noise processes.

VII. SUMMARY AND CONCLUSIONS

We introduced a path integral framework for deter-
mining the dephasing on a quantum probe induced by
nonstationary Gaussian noise processes. This type of noise
process models a fluctuating qubit-probe interaction with
a quantum environment that is out of equilibrium under
the so-called weak coupling approximation. We showed
that the noise generated by this nonstationary environment
is completely determined by a bispectrum defined by the
inverse of the kernel operator that describes the probability

density of the field paths. This complements recent results,
where similar bispectra functions characterize stationary
noise processes that are non-Gaussian [42,67].

The presented framework introduced a generalized
noise spectrum for nonstationary environments, defined by
the inverse of the eigenvalues of the kernel operator that
determines the probability of the noise field paths. The
noise eigenmodes define the proper basis to generalize a
filter function derived from the control, whose overlap with
the noise spectrum determines the qubit-probe dephasing.
This results in an extension of the validity of the universal
formula for the dephasing of open quantum systems that
depends on the overlap between a noise spectral density
and a qubit-control filter function. The main result of this
generalization is that it allows us to implement two impor-
tant tools already developed for stationary noise processes
to probe spectral properties and to mitigate decoherence
effects of nonstationary environments.

We then considered a broad subclass of nonstationary
noise processes that we called local in time. We showed
they are described by a differential operator based on con-
straints to the derivatives of the fluctuating field paths.
We also showed how these constraints are reflected on the
functional behavior of the nonstationary noise spectrums.
Such a subclass of the discussed nonstationary noise pro-
cesses is the only one that can be Markovian if the first
derivative of the fluctuating fields is not continuous, e.g.,
white noise processes and stationary noise processes with
Lorentzian noise spectra. Therefore, if the field deriva-
tive is continuous or the noise is not local in time, the
noise process is non-Markovian. Remarkably, we found
that local-in-time, nonstationary Gaussian noise processes
that are non-Markovian can still be described by a gen-
eralized Markovian noise process that includes the field
and a finite number of its derivatives. This approach sim-
plifies the noise description as it is fully determined by a
differential equation with the constraints on its derivatives
thus reducing the dimensionality for the characterization of
the noise spectra. An important application for the derived
forms of the noise spectra is that they allow us to determine
when a noise process is Markovian or non-Markovian
by experimentally measuring its spectrum with dynami-
cal decoupling noise spectroscopy. In the particular case of
stationary noise processes that are local in time, we found
that the differential equation gives noise spectra given by
the inverse of matrix polynomials of the frequency modes.
The polynomial coefficients associated with a power of the
frequency are given by the constraint to the corresponding
order of the fluctuating field derivative. This thus allows
the implementation of parametric estimation methods to
determine the noise spectra, rather than using nonpara-
metric estimation that is much more complex and requires
more available experimental time.

We have shown that in some cases local-in-time, nonsta-
tionary noise processes can be mapped to the Schrödinger
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equation. Thus, every solvable one-dimensional quantum
mechanical Hamiltonian H for a single particle in one
spatial dimension with eigenvalues bounded from below
generates a whole class of solvable noise probability dis-
tributions. We have used this map to apply the presented
path integral framework to two paradigmatic nonstationary
noise processes: noise acting near a point in time—pulsed
noise—by analogy to a quantum harmonic oscillator and
a quench on the environment that suddenly starts an
Ornstein-Uhlenbeck diffusion process. Both of these exam-
ples describe out-of-equilibrium environments. The pulsed
noise is a paradigmatic model for a quantum probe inter-
acting with noise during a finite duration of time that
manifests a discrete nature on the generalized nonstation-
ary noise spectrum. In this case the noise spectrum is
obtained by saturation of the qubit-probe dephasing rather
than on its decay rate. The quenched diffusion noise sets
a paradigmatic model for typical environments that can
be suddenly quenched to put them out of equilibrium,
where excitations start spreading over a large number of
degrees of freedom. In this case we showed some features
on the spin dephasing and noise spectra that manifest the
quench—nonstationary—effects, evidenced by a bispec-
trum and a reduced dephasing compared with stationary
noise. In particular, we showed how the quench correlation
can be probed by monitoring this dephasing.

The results presented here thus set a general frame-
work for a large universal class of nonstationary—out-
of-equilibrium—noise sources of decoherence, allowing
us to probe and interpret noise spectral properties and
time correlations by a quantum probe. Thus, they pro-
vide tools and insights for probing and understanding the
dynamics of quantum information of out-of-equilibrium
complex quantum systems via a quantum sensor [13,49,
50,53,57,61,74,135,137,146]. In particular, they can be
useful for quantum sensing the dynamics of single, but
complex, large molecules as proteins [133,147–149] and
neuronal activity [75,76,78] with potential applications
in biology and medicine. At the same time the gen-
eral framework sets a universal formula to allow finding
optimal control for protecting against decoherence gener-
ated by more realistic environments, that at atomic scales
produces nonstationary—out-of-equilibrium—noise fluc-
tuations. This tool is very important for implementing
quantum technologies that can range from memory storage
to information processing in quantum devices [1–4,144].

ACKNOWLEDGMENTS

We thank useful discussions with C.D. Fosco and M.J.
Sanchez. This work is supported by CNEA, ANPCyT-
FONCyT PICT-2017-3156, PICT-2017-3699, PICT-2018-
04333, PIP-CONICET (11220170100486CO), UNCUYO
SIIP Tipo I 2019-C028, and Instituto Balseiro. M.K.

acknowledges support from Instituto Balseiro (CNEA-
UNCUYO). We acknowledge support from CONICET.

APPENDIX A: PATH INTEGRALS FOR GAUSSIAN
NOISE PROBABILITY DISTRIBUTIONS

Path integrals can be calculated exactly when the inte-
grand is determined by Gaussian probability distributions
as [107]

∫

DB exp
[

− 1
2
(B|D|B)+ (J|B)

]

=
∫

DB exp
[

− 1
2

∫

dt
∫

dt′B†(t)D(t, t′)B(t′)

+
∫

dtJ†(t)B(t)
]

= Det
(

D

2π

)1/2

exp
[

1
2

∫

dt
∫

dt′J†(t)G(t, t
′
)J(t′)

]

,

(A1)

where D is any real Hermitian operator, J is any function
over Rn, and G is the inverse of the kernel operator D. The
inverse relation is determined by

∫

dtD(t1, t) G(t, t2) = δ(t1 − t2), (A2)

where δ is the Dirac delta distribution and the bound-
ary condition lim|t|→∞G(t, t′) = 0 must be satisfied. The
path integral is well defined if and only if D is a posi-
tive definite operator. For these operators, functions such
that lim|t|→∞ B(t) 
= 0 do not contribute to the integral, as
(B|D|B) diverges.

Since, for any real anti-Hermitian operator DA,
(B|DA|B) = 0, one can only consider integrals where D

is a Hermitian operator without loss of generality, as in
Eq. (A1). This can be demonstrated by considering that an
arbitrary D can be decomposed as

D = D
H +D

A (A3)

with DH = (D+D†)/2 and DA = (D−D†)/2 its Hermi-
tian and anti-Hermitian parts, respectively. The value of
the integral thus depends only on DH , and therefore we
can consider DA = 0. In this article, we have considered
J = if and B the noise fluctuating fields; therefore,

〈eiφ[B,f]〉 =
∫

DB exp
[

− 1
2
(B|D|B)+ i(f|B)

]

= exp
[

− 1
2
(f|G|f)

]

. (A4)
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APPENDIX B: PARAMETRIZATION OF THE
NOISE EIGENMODE BASIS

As described in Sec. IV A, � is a parameter whose
physical meaning in general depends specifically on the
nonstationary process, and on the parametrization of the
functional behavior S(�), as it is always possible to
reparametrize the eigenmodes by a different parameter.
Similarly, while the frequency ω seems a natural choice
for stationary environments, different parameters can be
used to also describe the noise eigenmodes in stationary
systems.

Here, we show examples of possible reparametrization
of the noise eigenmodes for stationary noise processes.
Specifically, rather than using � = (ω, m) as discussed in
Sec. IV B, we can chose �′ = (λ, m) = (ω1/3, m). There-
fore, the noise spectrum is S′(�′) = S′m(λ) = Sm(ω = λ3)

and the noise eigenmode |�′) = |λ, m) = √3|λ|bm(ω =
λ3)|ω = λ3), where the prefactors are derived from the
orthonormal relation (λ, m|λ′, m′) = δm,m′δ(λ− λ′), and
F ′m(λ) = (λ, m|f). Applying these the change of variable
ω = λ3 to Eq. (21), one obtains

〈eiφ[B,f]〉 = exp
[

− 1
2

∑

m

∫

dλ S′m(λ)|F ′m(λ)|2
]

,

which is how Eq. (20) is expressed with this new
parametrization.

Another example is analogous to how the free parti-
cle Hamiltonian eigenstates can be indexed either by their
momentum or by their energy and parity. In this case,
the complex exponentials are replaced by trigonometric
functions and the noise eigenmodes are |E, π , m). Here

(t|E, 1, m) =
√

2
π

1
4√E

bm(ω =
√

E) cos(
√

Et)

and

(t|E,−1, m) =
√

2
π

1
4√E

bm(ω =
√

E) sin(
√

Et),

where the prefactors are again obtained from the nor-
malization condition (E, π , m|E′, π ′, m’) = δ(E − E′)δπ ,π ′
δm,m′ .

APPENDIX C: DERIVATION OF THE
LOCAL-IN-TIME DIFFERENTIAL OPERATOR D

The most general action that describes a local-in-time,
nonstationary noise process is of the form

A[B] =
∫

dt
∑

k

∑

l≤k

B†(k)(t)Dk,l(t)B(l)(t), (C1)

as in Eq. (23) of the main text. Since the only
paths that contribute to the dephasing integral satisfy

lim|t|→∞ B(k)(t) = 0 for all k ≤ N , we integrate by parts
each of the action terms and find that

∫

dt B†(k)(t)Dk,l(t)B(l)(t) = −
∫

dt B†(k−1)(t)

× [Dk,l(t)B(l+1)(t)+ Ḋk,l(t)B(l)(t)], (C2)

where Ḋk,l(t) is the derivative of Dk,l(t). Integrating by
parts thus transforms a single term containing the deriva-
tives of orders k and l of B into two terms, one containing
the derivatives of orders k − 1 and l+ 1 and another con-
taining the derivatives of orders k − 1 and l. Since l ≤ k,
this integration by parts reduces the difference between
the orders of the derivatives when applied to terms with
k − l > 1. By repeating this procedure successively, one
can express the action such that it contains only terms with
k = l and k = l+ 1:

A[B] =
∫

dt
N

∑

k=0

B†(k)(t)D̃H
k (t)B(k)(t)

+
N

∑

k=1

B†(k)(t)D̃A
k (t)B(k−1)(t) (C3)

with D̃H
k (t) and D̃A

k (t) real matrices.
Considering the facts that the derivative

d
dt

[B†(k)(t)D̃A
k+1(t)B

(k)(t)]

= B†(k+1)(t)D̃A
k+1(t)B

(k)(t)

+ B†(k)(t)D̃A
k+1(t)B

(k+1)(t)+ B†(k)(t) ˙̃D
A

k+1(t)B
(k)(t),

(C4)

that
∫

dt
d
dt

[B†(k)(t)D̃A
k (t)B(k)(t)] = 0, (C5)

and that

B†(k)(t)D̃A
k+1(t)B

(k+1)(t) = B†(k+1)(t)D̃A†
k+1(t)B

(k)(t),
(C6)

the action can be written as

A[B] =
∫

dt
N

∑

k=0

B†(k)(t)
(

D̃
H
k (t)− 1

2
˙̃
D

A

k+1(t)
)

B(k)(t)

+
N

∑

k=1

1
2

B†(k)(t)[D̃A
k (t)− D̃

A†
k (t)]B(k−1)(t), (C7)

where ˙̃D
A

N+1(t) = 0. The terms [DA
k (t)−D

A†
k (t)] are real

anti-Hermitian matrices and the value of B†(k)(t)[D̃H
k (t)−
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1
2
˙̃
D

A

k+1(t)]B
(k)(t) depends only on the Hermitian part of

D̃H
k (t)− 1

2
˙̃
D

A

k (t). Therefore, defining the real Hermitian
matrices as

D
H
k =

D̃H
k (t)− ˙̃D

A

k+1(t)/2+ D̃
H†
k (t)− ˙̃D

A†

k+1(t)/2
2

(C8)

and the real anti-Hermitian matrices as

D
A
k =

DA
k (t)−D

A†
k (t)

2
, (C9)

the action can be simplified to

A[B] =
∫

dt
N

∑

k=0

B†(k)(t)DH
k (t)B(k)(t)

+
∫

dt
N

∑

k=1

B†(k)(t)DA
k (t)B(k−1)(t). (C10)

Defining then the Hermitian differential operator as

D =
N

∑

k=0

←
∂ k

t D
H
k (t) ∂ k

t

+ 1
2

N
∑

k=1

[←
∂ k

t D
A
k (t)∂ k−1

t −
←

∂ k−1
t D

A
k (t)∂ k

t

]

, (C11)

we thus obtain

A[B] = 1
2 (B|D|B), (C12)

as defined in the main text in Eq. (24).
The operator D acts on the field function B(t) as

(t|D|B) =
N

∑

k=0

(−1)k∂k
t [DH

k (t)∂k
t B(t)]

+ 1
2

N
∑

k=1

(−1)k{∂k
t [DA

k (t)∂k−1
t B(t)]}v

+ 1
2

N
∑

k=1

(−1)k{∂k−1
t [DA

k (t)∂ k
t B(t)]}, (C13)

where
←
∂t = −∂t over the space of functions considered.

Integration by parts, we obtain

(f |
←
∂t|g) =

∫

dt ḟ (t)g(t) = −
∫

f (t)ġ(t) = −(f |∂t|g).

(C14)

This implies that, for a stationary process,

(B|
←
∂k

t D
H
k ∂k

t |B) =
∫

dtB(k)†(t)DH
k B(k)(t)

= (B|(−1)k
D

H
k ∂2k

t |B) (C15)

and

(B|
←
∂k

t D
A
k ∂k−1

t |B) =
∫

dtB(k)†(t)DA
k B(k−1)(t)

= (B|(−1)k
D

H
k ∂2k−1

t |B), (C16)

so that the differential operator is

D =
N

∑

k=0

(−1)k
D

H
k ∂2k

t +
N

∑

k=1

(−1)k
D

A
k ∂ 2k−1

t . (C17)

APPENDIX D: DIFFERENTIABILITY OF THE
FIELD PATHS FOR LOCAL-IN-TIME NOISE

PROCESSES

In this appendix we demonstrate that the field paths and
their first N − 1 derivatives must be continuous for local-
in-time noise processes. We thus study the differentiability
of the paths allowed by the action. Considering a particular
B(t), let us assume that at some time t some of the first
N − 1 derivatives of B(t) are not continuous at t = t. Then,
the N th-order derivative

B(N )(t) = B(N )

0 (t)+
N−1
∑

k=0

�B(k)δ(N−1−k)(t− t), (D1)

where the coefficients

�B(k) = lim
t→t+

B(k)(t)− lim
t→t−

B(k)(t) (D2)

for functions for which these limits exist and B(N )

0 (t) is a
distribution such that B(N )

0 (t) is finite. Then, terms like the
following contribute to the action:

∫

dt B(N )†(t)DH
N (t)B(N )(t)

=
∫

dt B(N )†
0 (t)DH

N (t)B(N )

0 (t)

+
∫

dt2B(N )†
0 (t)DH

N (t)
N−1
∑

k=0

�B(k)δ(N−1−k)(t− t)

+
∫

dt
[ N−1

∑

k=0

�B(k)†δ(N−1−k)(t− t)
]

D
H
N (t)

×
[ N−1

∑

k=0

�B(k)δ(N−1−k)(t− t)
]

. (D3)
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The last term of this integral gives a positively divergent
contribution that depends quadratically on the discontinu-
ity of B(t), given by �B(k), and the first N − 1 derivatives
of the field at t = t. The discontinuities of higher deriva-
tives do not appear in the action. Since the operator D(t)
is definite positive, the total contribution of these discon-
tinuous paths to the action must be infinite. Therefore, the
probability of discontinuous paths and paths with disconti-
nuities in their first N − 1 derivatives is zero, and does not
contribute to the path integral. Thus we have concluded
that the field paths and their first N − 1 derivatives must
be continuous for local-in-time processes.

APPENDIX E: DISCRETIZATION OF
LOCAL-IN-TIME PROCESSES

In this appendix we show an interpretation of the mean-
ing of local-in-time processes by implementing a time
discretization. We replace the continuous-time variable t
by the discrete sequence of times tj = j �t. The action is
thus

A[B] =
∑

j

�t
N

∑

k=0

B†(k)(tj )DH
k (tj )B(k)(tj )

+
∑

j

�t
N

∑

k=1

B†(k)(tj )DA
k (tj )B(k−1)(tj ),

where the field derivatives have been replaced using finite
differences Ḃ(tj ) = [B(tj+1)− B(tj−1)]/2�t with N the
highest derivative order that contributes to the action.
Within this discrete representation, the fluctuating field
B can be defined by a vector Bj = B(tj ) and the ker-
nel operator D can be represented by the matrix Djj ′ =
D(tj , tj ′). Therefore, the kth derivative of the field [B(k)]j =
∑j+k

j ′=j−k(ck/�tk)Bj ′ is a linear combination of the val-
ues that B takes at the 2k + 1 times closest to j , where
the coefficients ck are independent of �t. Thus, a kernel
operator corresponding to a local-in-time process has coef-
ficients that satisfy Djj ′ = 0 for |j − j ′| > N . Within this
discrete picture, local-in-time processes are those whose
kernel operator is N diagonal, i.e., its matrix representa-
tion has nonzero coefficients only in the first N central
diagonals. In this representation only, if N = 0, the kernel
operator is diagonal in the time basis and therefore B(t)
and B(t′) are uncorrelated for t 
= t′. However, for N ≥ 1,
the field at the N th closest times are correlated. Still, local-
in-time processes are such that long-time correlations do
not exist.

APPENDIX F: NON-MARKOVIAN PROOF FOR
N > 1

In this appendix we analyze the conditions for nonsta-
tionary noise to be non-Markovian. As we stated in the

main text, noise processes that are not local in time can-
not be Markovian since the action explicitly relates the
value of the fluctuating field B at different times. A noise
with N = 0 is the so-called white noise, and therefore it is
Markovian. Therefore, in the following demonstration we
only consider local-in-time noise processes with N ≥ 1.
In Appendix G we prove that the generalized noise pro-
cess given by {B(k)(t)} is Markovian. As a particular case,
if N = 1 then {B(k)(t)} ≡ {B(k)(t) : k = 0} = {B(t)}, there-
fore showing that processes with N = 1 are Markovian. In
Appendix D, we prove that the field paths that contribute to
the path integral for local-in-time noise processes are not
only continuous, but are N − 1 times continuously differ-
entiable. This property allows us to demonstrate that noise
processes with N > 1 are not Markovian.

To do this, we consider the values of the field at two
infinitesimally close times t0 and t1 to be B0 and B1, respec-
tively. According to this assumption, the field derivative
Ḃ(t1) = (B1 − B0)/(t1 − t0) must be continuous. If we
now consider the field value at a time tf , infinitesimally
close and after t1, we know again that Ḃ will change con-
tinuously. Therefore, the mean value of the probability dis-
tribution P(Bf , tf |B1, t1; B0, t0) is B1 + Ḃ(t1)(tf − t1) =
B1[1+ (tf − t1)/(t1 − t0)]− B0(tf − t1)/(t1 − t0). This
means that the state of the field at tf depends on the states
B0 and B1 at times t0 and t1, respectively. Therefore, the
probability distribution of the field depends on the state of
the system at least at two previous times; thus,

P(Bf , tf |B1, t1; B0, t0) 
= P(Bf , tf |B1, t1). (F1)

A Markovian process must satisfy Eq. (30); therefore, in
this case we have

P(Bf , tf |B0, t0)

=
∫

dB1P(Bf , tf |B1, t1; B0, t0)P(B1, t1|B0, t0)


=
∫

dB1P(Bf , tf |B1, t1)P(B1, t1|B0, t0), (F2)

and thus the process is not Markovian. This example
evidences the key considerations that show why a local-
in-time noise process is not Markovian if the differential
operator D(t) contains derivatives higher than order N =
1. In this case of N > 1, the state at a given time depends
on the information about previous states that is encoded on
the continuous derivatives of the field.
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APPENDIX G: MARKOVIAN GENERALIZED
STOCHASTIC PROCESS

In this appendix, we find a formula for the propagator of
the generalized noise process

{B(k)(t)} ≡ {B(k)(t) : k = 0, . . . , N − 1}
= {B(t), Ḃ(t), . . . , B(N−1)(t)}, (G1)

introduced in Sec. V of the main text, in terms of path
integrals. We show that it can be separated into three inde-
pendent path integrals with boundary conditions. We use
this integral decomposition to prove that the process that
describes {B(k)(t)} is Markovian.

We consider how the probability distribution of the gen-
eralized field fluctuations {B(k)(t)} evolves with time. To
demonstrate the Markovian condition of Eq. (30) of the
main text, we need to calculate the probability of the state
{B(k)

f } at time tf given that at time t0 the field and its
derivatives are {B(k)

0 }. This conditional probability is given
by

P({B(k)
f }, tf |{B(k)

0 }t0)

= 1

P({B(k)
0 }, t0)

∫

{B|{B(k)(t0,f )}={B(k)
0,f }}

DB exp

×
[

− 1
2
(B|D|B)

]

, (G2)

where the path integral runs over all the paths B(t) such
that {B(k)(t0)} = {B(k)

0 } and {B(k)(tf )} = {B(k)
f }, denoted by

{B|{B(k)(t0,f )} = {B(k)
0,f }} in the integral.

We first determine the probability of the state

{B(k)
0 } ≡ {B0, . . . , B(N−1)

0 } (G3)

at time t0, which is given by

P({B(k)
0 }, t0) =

∫

{B|{B(k)(t0)}={B(k)
0 }}

DB exp
[

− 1
2
(B|D|B)

]

,

(G4)

where the integral runs over all paths that pass through
{B(k)

0 } at time t = t0. The continuity conditions of {B(k)}
demonstrated in Appendix D imply that integrating over
all paths such that {B(k)(t0)} = {B(k)

0 } is the same as inte-
grating over all paths that end at t0 with {B(k)(t0)} = {B(k)

0 },
and over all paths that start at t0 with {B(k)(t0)} = {B(k)

0 },
and then multiplying these two integrals. Therefore, the

probability

P({B(k)
0 }, t0) = I({B(k)

0 },t0)

(0,−∞) × I(0,+∞)

({B(k)
0 },t0)

, (G5)

where we have introduced the integrals with boundary
conditions for the paths

I(0,+∞)

({B(k)
0 },t0)

≡
∫ (0,+∞)

({B(k)
0 },t0)

DB exp

×
[

− 1
2

∫ +∞

t0
dtB†(t)D(t)B(t)

]

, (G6)

where the integral runs over all paths that start at
time t0 with value {B(k)

0 } and go to t→+∞ with
limt→∞{B(k)(t)} = 0, and

I({B(k)
0 },t0)

(0,−∞) ≡
∫ ({B(k)

0 },t0)

(0,−∞)

DB exp
[

−1
2

∫ t0

−∞
dtB†(t)D(t)B(t)

]

,

(G7)

where the integral runs over all paths that come from t→
−∞ with limt→−∞{B(k)(t)} = 0, and end at time t0 with
value {B(k)

0 }.
We then calculate the integral on the numerator of Eq.

(G2), which gives

∫

{B|{B(k)(t0,f )}={B(k)
0,f }}

DB exp
[

− 1
2
(B|D|B)

]

= I({B(k)
0 },t0)

(0,−∞) × I({B(k)
f },tf )

({B(k)
0 },t0)

× I(0,+∞)

({B(k)
f },tf )

, (G8)

where we have introduced the integral with boundary
conditions

I({B(k)
f },tf )

({B(k)
0 },t0)

≡
∫ ({B(k)

0 },t0)

({B(k)
0 },t0)

DB exp
[

− 1
2

∫ tf

t0
dtB†(t)D(t)B(t)

]

,

(G9)

where the integral runs over all the paths that start at time
t0 with value {B(k)

0 } and end at time tf with value {B(k)
f }.

Again, we have considered the continuity conditions on the
field paths {B(k)} demonstrated in Appendix D. The inte-

grals I(0,+∞)

({B(k)
f },tf )

and I({B(k)
0 },t0)

(0,−∞) are defined in Eqs. (G6) and

(G7), respectively.
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Now, using Eqs. (G5) and (G8), we obtain the conditional probability of the noise process

P({B(k)
f }, tf |{B(k)

0 }|t0) =
I({B(k)

f },tf )

({B(k)
0 },t0)

× I(0,+∞)

({B(k)
f },tf )

I(0,+∞)

({B(k)
0 },t0)

. (G10)

In order to prove that this process is Markovian, we introduce an intermediate time t1 and calculate the integral

∫

d{B(k)
1 }P({B(k)

f }, tf |{B(k)
1 }, t1)P({B(k)

1 }, t1|{B(k)
0 }, t0) =

∫

d{B(k)
1 }

I({B(k)
1 },t1)

({B(k)
0 },t0)

× I(0,+∞)

({B(k)
1 },t1)

I(0,+∞)

({B(k)
0 },t0)

I({B(k)
f },tf )

({B(k)
1 },t1)

× I(0,+∞)

({B(k)
f },tf )

I(0,+∞)

({B(k)
1 },t1)

=
I(0,+∞)

({B(k)
f },tf )

I(0,+∞)

({B(k)
0 },t0)

∫

d{B(k)
1 }I

({B(k)
1 },t1)

({B(k)
0 },t0)

× I({B(k)
f },tf )

({B(k)
1 },t1)

, (G11)

which appears in the Markovian condition of Eq. (30),
where d{B(k)

1 } ≡ dB1dḂ1 · · · dB(N−1).
The continuity conditions for {B(k)} at t1 imply that

B(k)(t−1 ) = B(k)(t+1 ) for 0 ≤ k ≤ N − 1. Then these conti-
nuity conditions imply that the integral

∫

d{B(k)
1 }I

({B(k)
1 },t1)

({B(k)
0 },t0)

× I({B(k)
f },tf )

({B(k)
1 },t1)

= I({B(k)
f },tf )

({B(k)
0 },t0)

, (G12)

and, thus,

∫

d{B(k)
1 }P({B(k)

f }, tf |{B(k)
1 }, t1)P({B(k)

1 }, t1|{B(k)
0 }, t0)

=
I(0,+∞)

({B(k)
f },tf )

I(0,+∞)

({B(k)
0 },t0)

I({B(k)
f },tf )

({B(k)
0 },t0)

= P({B(k)
f }, tf |{B(k)

0 }, t0), (G13)

demonstrating that the generalized noise process is Marko-
vian.

APPENDIX H: MARKOVIAN PROPAGATOR FOR
THE GENERALIZED STOCHASTIC PROCESS

Since local-in-time noise processes can be described by
the generalized Markovian process of {B(k)(t)}, its prop-
agator P({B(k)

f }, tf |{B(k)
0 }, t0) contains all the information

about the stochastic process that describes the field paths
B. The path integral framework allows us to calculate
the propagator of {B(k)} without actually requiring to per-
form path integrals. Instead, it can be obtained by solving
an ordinary linear differential equation with three differ-
ent types of boundary condition. The propagator can be

expressed as

P({B(k)
f }, tf |{B(k)

0 }|t0) =
I({B(k)

f },tf )

({B(k)
0 },t0)

× I(0,+∞)

({B(k)
f },tf )

I(0,+∞)

({B(k)
0 },t0)

, (H1)

according to Eq. (G10).
In order to obtain the explicit formula for the propa-

gator for local-in-time nonstationary noise processes, we

only need to calculate the integrals I({B(k)
f },tf )

({B(k)
0 },t0)

, I(0,+∞)

({B(k)
0 },t0)

,

and I(0,+∞)

({B(k)
f },tf )

. To do this, we introduce the classical field

Bcl, which is defined as the path that minimizes the action
with fixed boundary conditions. Using variational analy-
sis, one can find that Bcl is the solution of the differential
equation

N
∑

k=0

(−1)k∂k
t [DH

k (t)∂k
t Bcl(t)]

+ 1
2

N
∑

k=1

(−1)k{∂k
t [DA

k (t)∂k−1
t Bcl(t)]}

+ 1
2

N
∑

k=1

(−1)k{∂k−1
t [DA

k (t)∂ k
t Bcl(t)]} = 0 (H2)

with the corresponding boundary conditions for each of the
integrals. They are

{B(k)
cl (t0)} = {B(k)

0 }, (H3)

{B(k)
cl (tf )} = {B(k)

f } (H4)
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for I({B(k)
f },tf )

({B(k)
0 },t0)

,

{B(k)
cl (t0)} = {B(k)

0 }, (H5)

lim
t→+∞{B

(k)
cl (t)} = 0 (H6)

for I(0,+∞)

({B(k)
0 },t0)

, and

{B(k)
cl (tf )} = {B(k)

f }, (H7)

lim
t→+∞{B

(k)
cl (t)} = 0 (H8)

for I(0,+∞)

({B(k)
f },tf )

. Note that Eq. (H2) is a linear differential

equation of degree 2N , and the boundary constraints pro-
vide the necessary conditions for the solution to be unique.

For the I({B(k)
f },tf )

({B(k)
0 },t0)

case, the classical field Bcl(t) is the path

that minimizes the action A[B] of all paths between t0
and tf with fixed endpoints at the bounds of the integral.
The classical field encodes the dependency of the integral
on the boundary conditions ({B(k)

0 }, t0) and ({B(k)
f }, tf ). For

I(0,+∞)

({B(k)
f },tf )

and I(0,+∞)

({B(k)
0 },t0)

, the classical field is the path that

minimizes the action over the corresponding time inter-
vals, and encodes the dependency on the corresponding
boundary conditions.

By performing the change of variables B(t) = �B(t)+
Bcl(t), we can write the integral as

I({B(k)
f },tf )

({B(k)
0 },t0)

=
∫ ({�B(k)}=0,tf )

({�B(k)}=0,t0)

D�B e−A[�B+Bcl], (H9)

where the integral runs over all paths that start at t0 and
end at tf with value {�B(k)} = 0 and we have considered
that the path integral is invariant under shifts. Note that the
limits of the path integral do not depend on the value of the
fields at t0 and tf . Similar expressions are obtained for the
other two integrals.

The action can thus be written as

A[Bcl +�B] = A[Bcl]+A[�B]

+ 2
∫ tf

t0
�B(t)D(t)Bcl(t). (H10)

Equation (H2) holds if and only if
∫ tf

t0
�B(t)D(t)Bcl(t) = 0

for any �B(t) with {�B(k)(tf )} = {�B(k)(t0)} = 0. There-
fore, the last term in Eq. (H10) vanishes and we obtain

A[Bcl +�B] = A[Bcl]+A[�B], (H11)

and the integral becomes

I({B(k)
f },tf )

({B(k)
0 },t0)

=
∫ ({�B(k)}=0,tf )

({�B(k)}=0,t0)

D�B e−(A[�B]+A[Bcl]). (H12)

We are thus able to separate the original path integral into
two parts: a path integral with no dependence on the initial
and final fields

M
tf
t0 =

∫ ({�B(k)}=0,tf )

({�B(k)}=0,t0)

D�B e−A[�B], (H13)

and a term without path integrals that does depend on the
initial and final fields

e−A[Bcl]. (H14)

The path integral M
tf
t0 is just a constant that depends

on the initial and final times but not on the initial and
final fields. Since M

tf
t0 does not depend on the values

of {B(k)
0 } and {B(k)

f }, its effect on the propagator is that
of a renormalization constant that can be calculated by
demanding the normalization of the conditional probabil-
ity

∫

d{Bf }P({Bf }, tf |{B0}, t0) = 1. Then, if we define the
classical action

Acl({B(k)
f }, tf ; {B(k)

0 }, t0) ≡ A[Bcl], (H15)

the integral

I({B(k)
f },tf )

({B(k)
0 },t0)

= M
tf
t0 e−Acl({Bf },tf ;{B0},t0) (H16)

is just a normal integral based on the solution of the
classical field for the ordinary differential equation. Anal-
ogous results hold for I(0,+∞)

({B(k)
0 },t0)

and I(0,+∞)

({B(k)
f },tf )

, where one

must solve the same differential equation, but change the
boundary conditions.

We have therefore shown here that the problem of cal-
culating the Markovian propagator reduces to solving an
ordinary differential equation with three different boundary
conditions up to a normalization constant. Its solution is
thus given by

P({B(k)
f }, tf |{B(k)

0 }|t0) =
M

tf
t0 ×M∞tf

M∞t0
× exp (−[Acl({Bf }, tf ; {B0}, t0)+Acl(0,+∞; {Bf }, tf )

−Acl(0,+∞; {B0}, t0)]),

where (M
tf
t0 ×M∞tf )/M∞t0 is a normalization constant.
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