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Quantum error correction (QEC) is a procedure by which the quantum state of a system is protected
against a known type of noise, by preemptively adding redundancy to that state. Such a procedure is
commonly used in quantum computing when thermal noise is present. Interestingly, thermal noise has also
been known to play a central role in quantum thermodynamics (QTD). This fact hints at the applicability
of certain QTD statements in the QEC of thermal noise, which has been discussed previously in the
context of Maxwell’s demon. In this paper, we view QEC as a quantum heat engine with a feedback
controller (i.e., a demon). We derive an upper bound on the measurement heat dissipated during the error-
identification stage in terms of the Groenewold information gain, thereby also providing the latter with a
physical meaning when it is negative. Further, we derive the second law of thermodynamics in the context
of this QEC engine, operating with general quantum measurements. Finally, we show that, under a set
of physically motivated assumptions, this leads to a fundamental triple-trade-off relation, which implies
a trade-off between the maximum achievable fidelity of QEC and the super-Carnot efficiency that heat
engines with feedback controllers have been known to possess. A similar trade-off relation occurs for the
thermodynamic efficiency of the QEC engine and the efficacy of the quantum measurement used for error
identification.
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I. INTRODUCTION

The link between quantum thermodynamics (QTD) and
information theory has been flourishing over many decades
due to two important factors: the miniaturization of con-
trollable systems, which has raised the importance of
a detailed accounting of dissipated energy in quantum
devices, and fruitful thoughts on an old problem known
as Maxwell’s demon. The latter goes back to 1867, when
Maxwell first suggested a challenge to the second law of
thermodynamics, whereby an intelligent mechanism (i.e.,
a demon) is used to reduce the entropy of a gas without
performing work on the system, seemingly violating the
second law [1–3]. However, it was Szilard in 1929 who
first made the connection between this entity and infor-
mation theory. Assuming the correctness of the second
law, Szilard showed that work extraction from a single
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heat reservoir at temperature T, using Maxwell’s demon,
requires the production of an amount of entropy equal to
kB ln 2 per gas particle. In 1961, Landauer showed that
the origin of this entropy production is due to the reset-
ting of the memory of the demon, which requires dumping
an amount of heat equal to kBT ln 2 into the thermal reser-
voir of temperature T. This has become the celebrated
“Landauer erasure principle,” which has been extended
to various scenarios in quantum information and quantum
computing [4–9].

One interesting area in which Landauer’s principle has
been applied is quantum error correction (QEC). The latter
is of importance in quantum computation [10–12], where
the state of the computational system (usually a collec-
tion of qubits) is corrected by first encoding it into a
larger physical system (by adding redundant parts to the
computational system) and then effectively reversing the
action of the environmental noise using a recovery channel
[13–17]. Hence entropic and thermodynamic analyses
have been conducted [18–20] to ensure that the effective
reverse dynamics in QEC does not violate the second law
of thermodynamics. However, the question of whether the
laws of thermodynamics can add upon the existing QEC
literature has been an open problem.
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One major area where the field of thermodynamics has
been contributing to QEC is in the theory of quantum mea-
surements. In the latter, the “information” derived from
a measurement can be quantified by the average entropy
reduction of the measured system, which is also known
as the Groenewold information gain [21,22]. Therefore,
this quantity can serve as a measure of information gain
during the error-detection stage of QEC. The Groenewold
information gain also has a thermodynamic meaning in
terms of dissipated measurement heat [23,24] but this
has hitherto been contingent on it taking non-negative
values.

A richer and more direct link between QTD and QEC
has been known since the work of Ref. [25], where the
latter can be understood as a heat engine with a feedback
controller [26] (see Fig. 1). This link suggests that the
laws of thermodynamics can be extended to the QEC set-
ting. However, it is known that the second law for engines
with feedback controllers varies slightly from that of typi-
cal Carnot engines. For instance, a critical thermodynamic
feature of the former is that they can accomplish effi-
ciencies higher than the Carnot efficiency [27]. Namely,
Carnot’s formulation of the second law is modified for
such engines, since they have the advantage of measure-
ment and feedback that typical Carnot engines do not. Of
course, such a modified statement about possible super-
Carnot efficiencies has to be stated very carefully in order
to avoid some of the historical inconsistencies mentioned
above; this has been done with some success in previous
literature [26,27]. However, one has to be certain to erase
the memory of Maxwell’s demon (a classical register), as
well as to systematically consider the measurement heat
during the feedback process [6].

In this paper, we expand the link between QTD and
QEC by deriving thermodynamic constraints on the tasks
of information gain from a measurement and QEC. These
results can be summarized as follows:

(1) Measurement heat is bounded from above by Groe-
newold information gain. We show that, if the
measurement apparatus is initialized in a thermal
state (see, e.g., Ref. [28,29]), then the heat dissi-
pated into it (from the measured system) during
a general quantum measurement is bounded from
above by the Groenewold information gain. This
extends the existing thermodynamic interpretation
of the Groenewold information gain to cases in
which it is negative [22]. Previously, only efficient
quantum measurements have been discussed, for
which the Groenewold information gain is always
non-negative and the usual interpretation applies
[23,27,30].

(2) The second law of thermodynamics constrains
quantum error correction. We derive the second-
law inequality in the context of QEC, which is
accomplished in a more general setting than pre-
viously achieved in the literature [26,27]. More
precisely, we allow for an arbitrary initial state
of the system (which need not be a collection of
qubits), arbitrary thermal noise [without an inde-
pendent identically distributed (IID) assumption],
and arbitrary generalized measurements at the error-
detection stage. Achieving such a generalization is
important to capture the full set of limitations that
the laws of thermodynamics impose on QEC in a
general physical setting.
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FIG. 1. A diagrammatic representation of QEC as a heat engine with a feedback controller, with the time flow going from left to
right). From the left, we have the encoding of the system S using the ancillary system A for redundancy. Next, the encoded system SA
interacts with a hot bath of temperature Th (representing the noisy channel), followed by a decoding stage, where the errors in SA are
detected and an attempt to correct them is made via a unitary feedback process. Finally, the ancillary system is returned (recycled) to
its original state with the help of a cold bath of temperature Tc, in preparation for a future use.

020318-2



THERMODYNAMIC CONSTRAINTS ON... PRX QUANTUM 3, 020318 (2022)

(3) Efficiency-fidelity trade-off in QEC engines. We
show that, under a set of physically motivated
assumptions, the above thermodynamic limitations
on QEC can be expressed in terms of a triple-trade-
off relation between the maximum error-correction
fidelity of a QEC engine (described by Fig. 1), the
thermodynamic efficiency, and the efficacy of the
quantum measurement at the error-detection stage
of QEC. This can be broken up into two trade-
off relations that can be summarized as follows: (i)
the larger the thermodynamic efficiency beyond the
Carnot limit, the smaller is the maximum achiev-
able error-correcting fidelity of a QEC engine; and
(ii) the larger the efficacy of the quantum mea-
surement conducted at the error-detection stage,
the smaller is the thermodynamic efficiency below
the Carnot limit. As an additional result, we clar-
ify the conditions under which one can arrive at a
super-Carnot efficiency regime, improving upon the
previous literature [27].

II. PRELIMINARIES

In what follows, we review various information-
theoretic and thermodynamic quantities that are used in the
rest of the paper.

Let H denote a Hilbert space, and let L(H) be the
set of bounded linear operators acting on H. Let L+(H)
denote the set of positive semidefinite operators acting
on H. The state of a physical system is described by a
density matrix ρ ∈ D(H), where D(H) is the subset of
linear operators L(H) that are positive semidefinite and
have unit trace. We denote by H(A)ρ := − Tr[ρA ln ρA]
the von Neumann entropy of the density matrix ρA ∈
D(HA) of a system A. For a bipartite system AB described
by a density matrix σ AB ∈ D(HA ⊗ HB), the quantum
(von Neumann) conditional entropy and mutual informa-
tion are denoted by H(A|B)σ := H(AB)σ − H(B)σ and
I(A :B)σ := H(A)σ − H(A|B)σ , respectively. Given two
operators M , N ∈ L+(H), we denote their quantum rel-
ative entropy by D(M‖N ), which is nonsymmetric and
defined as

D(M‖N ) := Tr [M ln M ] − Tr [M ln N ] , (1)

if supp(M ) ⊆ supp(N ), and +∞ otherwise, where supp(·)
denotes the support (i.e., the orthogonal complement of the
kernel) of an operator.

A linear map from L(HA) to L(HB) is denoted by
N A→B : L(HA) → L(HB). We say that a linear map is
positive if N A→B(M A) ∈ L+(HB) for all M A ∈ L+(HA),
and trace preserving (TP) if Tr[N A→B(M A)] = Tr[M A]
for all M A ∈ L(HA). Similarly, we say that N A→B is
trace nonincreasing (nondecreasing) if Tr[N A→B(M A)] ≤
(≥) Tr[M A] for all M A ∈ L+(HA). A linear map N A→B

is unital if it maps the unit operator in L(HA) to the unit
operator in L(HB), i.e., N A→B(I A) = I B. Similarly, a lin-
ear map N A→B is subunital (superunital) if N A→B(I A) ≤
(≥)I B. We define the adjoint map

(
N A→B

)† of any lin-
ear map N A→B through the relation Tr[MN A→B(N )] =
Tr[(N A→B)†(M )N ] for all N ∈ L(HA) and M ∈ L(HB).
A linear map is unital if and only if the corresponding
adjoint map is TP. Similarly, a linear map is subunital
(superunital) if and only if the corresponding adjoint map
is trace nonincreasing (nondecreasing). A positive linear
map N A→B is called completely positive (CP) if for every
Hilbert space HR, the map IR ⊗ N A→B is positive, where
IR is the identity map acting on L(HR). It is well known
that CP maps have a Kraus decomposition.

For any CP linear map N A→B acting on a density matrix
ρA ∈ D(HA), we define the efficacy E [31–33] of the
linear map N A→B with respect to ρA as

E (N A→B; ρA) := Tr
[
(N A→B)† ◦ N A→B(ρA)

]
, (2)

which is a measure of how “reversible” N A→B is with
respect to ρA: indeed, it can be shown that the efficacy is
related to the entropy change as follows [24,33]:

H(B)N (ρ) − H(A)ρ ≥ D(ρA‖(N A→B)† ◦ N A→B(ρA))

= D(ρA‖ρ̃A)− ln E (N A→B; ρA)

≥ − ln E (N A→B; ρA), (3)

where

ρ̃A := (N A→B)† ◦ N A→B(ρA)

Tr
[
(N A→B)† ◦ N A→B(ρA)

] ∈ D(HA), (4)

is a valid density matrix. It is easy to see that, for efficacy
to be strictly smaller (larger) than one for a fixed ρA, it
is sufficient (but not necessary) for N A→B to be strictly
subunital (superunital). Furthermore, due to Eq. (3), a
subunital N A→B implies a positive entropy change but
a superunital N A→B does not necessarily imply negative
entropy change. See also Ref. [34] for a measure called
diamond distance of nonunitarity, which is similar in spirit
to the efficacy.

In our paper, we need a formalism that characterizes
general quantum measurements, which can be thought of
as a linear mapping between the pre- and postmeasurement
states, along with some measurement statistics. For that,
we define a quantum instrument [35–37] as a set

{
N A

x

}
x∈X

of completely positive trace-nonincreasing linear maps
such that N A = ∑

x∈X N A
x is CPTP. Quantum instruments

describe generalized quantum measurements with mea-
surement outcomes x ∈ X . The probability of each mea-
surement outcome x is computed by pX (x) := Tr[N A

x (ρ
A)]
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and the corresponding postmeasurement state by

ρA → θA
x := N A

x (ρ
A)

pX (x)
. (5)

It is convenient to record the measurement outcome in
an auxiliary classical register X that is initially in a pure
state |0〉〈0|X . In this way, we can write the expected
postmeasurement state as a quantum-classical state:

θAX ≡ N A→AX (ρA) =
∑

x∈X
N A

x (ρ
A)⊗ |x〉〈x|X , (6)

where
{|x〉X

}
x∈X is an orthogonal set of “pointer states” of

the classical register.
Another important concept in this work is the notion of

information gain of generalized quantum measurements.
One such attempt in quantifying information gain from a
measurement is given by the Groenewold information gain
[21,22], which is defined as the expected entropy reduction
of the system due to a general measurement described by
the quantum instrument

{
N A

x

}
x∈X :

IG({N A
x }x; ρA) := H(A)ρ −

∑

x∈X
pX (x)H(A)θx (7)

= H(A)ρ − H(A|X )θ . (8)

When no confusion arises, in what follows we use the
shorthand notation IG instead of IG({N A

x }x; ρA). Although
non-negative for projective measurements, the Groe-
newold information gain can, in general, become negative
[22]. For example, this is easy to verify for an instrument
that outputs the maximally mixed state θA

x = I A/dA for
every measurement outcome x ∈ X , independently of the
input state. The negativity of the Groenewold information
gain has arguably hindered its operational interpretation
and, indeed, previous researchers have proposed alterna-
tive measures of information gain that are always non-
negative, possess an operational interpretation, and reduce
to Groenewold information gain for projective measure-
ments. For example, Ref. [30] has defined the “quantum
information gain” as the mutual information between the
premeasurement purifying reference system R of A and the
classical register X . It can be shown [30] that the Groe-
newold information gain IG coincides with the quantum
information gain (hence IG ≥ 0) for efficient measure-
ments [i.e., whenNx(·) = Nx(·)N †

x , which maps pure states
to pure states]. Additionally, the quantum information gain
has a compelling operational interpretation in terms of an
information-processing task called measurement compres-
sion [38] (see also Refs. [39–43]).

As we end up discarding the classical register X after
using the outcome to perform QEC, it is important to con-
sider the entropy reduction due to this procedure, which is

given by

H(AX )θ − H(A)θ = H(X |A)θ ≥ 0, (9)

where the non-negativity follows from the fact that
the quantum conditional entropy H(X |A)θ = H(AX )θ −
H(A)θ ≥ 0 is non-negative for every separable state.
In this case, the state can be written as θAX =∑

x∈X pX (x)θA
x ⊗ |x〉〈x|X and is thus separable. It is known

that the quantity H(X |A) has an information-theoretic
meaning, as the compression rate in the task of classi-
cal data compression with quantum side information [44].
Thermodynamically, it is easy to see that the discarding
process of X from the joint system AX , characterized by
the entropy change H(AX )θ − H(A)θ , is equivalent to the
erasure of the classical register state θX → |0〉〈0|X (or in
other words, erasing the memory of Maxwell’s demon).
For a study of thermodynamic erasure cost in the pres-
ence of a quantum memory, where quantum conditional
entropy has been shown to be the optimal erasure cost, see
Ref. [45].

In this paper, we also need to quantify the success of
the QEC procedure: this can be accomplished by using
a quantity called entanglement fidelity Fe [46,47]. If the
initial state ρA

i of a system A is purified via a reference
system R, i.e., ρA

i → ψRA with TrR[ψRA] = ρA
i , then the

entanglement fidelity is defined as

Fe = 〈ψRA|ρRA
f |ψRA〉, (10)

where ρRA
f = [id ⊗(R ◦ E)](ψRA) is the state of RA after

the application of the noisy channel E and then the correct-
ing channel R. Physically, Fe is equal to the probability
that the state ρRA

f passes a test for being the initial stateψRA

(in particular, the test can be conducted by performing the
measurement

{|ψ〉〈ψ |RA, I RA − |ψ〉〈ψ |RA
}
) [36]. Relevant

properties of entanglement fidelity include being indepen-
dent of the particular purification |ψ〉RA and being a lower
bound on the input-output fidelity F(ρA

f , ρA
i ) [47], where

the latter does not reflect the preservation (or the lack
thereof) of entanglement that might be shared between A
and some other system (e.g., R above).

It is important to note that when talking about QEC, it
is not generally possible to correct for all possible prepa-
rations of the quantum state of A but, rather, for a subset
ρA ∈ C ⊆ D(HA) of such states, where C is known as the
code space. Given a fixed noisy channel E , a necessary and
sufficient condition for the existence of a code space and a
CPTP map R on that space that accomplishes perfect QEC
(Fe = 1) is given by the Knill-Laflamme theorem [48,49].
It is also worth noting that the state of the reference system
does not change as a result of any local CPTP operation
IR ⊗ MA on A. This can be easily seen by checking that
TrA[(IR ⊗ MA)(ψRA)] = TrA[ψRA].
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A major physical concept that plays a fundamental
role in both fields of QTD and QEC is that of the irre-
versibility of the system-environment evolution ρA

i →
ρA

f = TrB[U(ρA
i ⊗ σ B

i )U
†], initiated from a product state.

In QTD, this is typically quantified by�H(B), which is the
net entropy dissipated into the environment B [5]. In QEC,
this quantity has been given the name entropy exchange
[46,47]. Here, the initial state of the environment is taken
to be pure (without loss of generality [50]) and the initial
state of A is purified using a reference system R. Then, the
entropy exchange Se is identified with the final state of RA,
namely Se := H(RA)ρf . It can be shown that this quantity
is independent of the purification and, more importantly,
that it serves as an upper bound via Se ≥ |�H(B)| [47],
where the inequality is saturated for a pure initial state
of B. The latter property assigns a physical meaning to
entropy exchange as the amount of entropy dissipated into
an environment consisting of an initially pure state.

Finally, in order to show what constraints thermodynam-
ics can add to QEC, we have to define the concepts of
thermodynamic work and heat. A more detailed discus-
sion is contained in Appendix A. Given two systems A
and B, we can functionally separate a system of interest
and a heat bath in the following way [51]: (i) we assume
that the heat bath B is always prepared in an initially ther-
mal state τB of temperature T; and (ii) we assume that the
system of interest A is controllable (in contrast to the heat
bath), via an external control (work) parameter λt with pre-
determined trajectory {λt}t≥0. The latter is reflected in the
total Hamiltonian dynamics of AB by the fact that the local
Hamiltonian of A (denoted by H A) depends implicitly on
time via its explicit dependence on the work parameter λt,
i.e., H A

λt
. After making these two important distinctions

between A and B, we define the internal energy U A
t of A at

time t, in the weak-coupling limit, as

U A
t = Tr[ρA

t H A
λt

]. (11)

From here, thermodynamic work and heat can be identi-
fied with two different contributions in the internal energy
change of A [51] via

∂tU
A

t = Tr[(∂tρ
A
t )H

A
λt

] + Tr[ρA
t (∂tH

A
λt
)], (12)

where the time integral of the first term defines heat QA
t

and that of the second defines work WA
t . To validate the

intuition behind these definitions, note that if the system A
is isolated (i.e., B is not present and hence we expect no
heat to be dissipated), then ρA

t satisfies the Liouville–von
Neumann equation and the first term in Eq. (12) becomes
zero due to the cyclicity of trace Tr[CD] = Tr[DC]. On the
other hand, if the external control parameter is not varied
(hence we expect no work to be performed by or on A),
then the second term in Eq. (12) becomes trivially equal to
zero.

III. THERMODYNAMICS OF GENERAL
QUANTUM INSTRUMENTS

It is known [35] that each CP map N A
x of the quan-

tum instrument {N A
x }x∈X can be written in terms of a

common unitary interaction between the system A and
a measurement apparatus (probe) M , followed by a pro-
jective measurement on M (also known as an indirect
measurement of system A [35,37,52]), as follows:

N A
x (ρ

A) = TrM
[
UAM (ρA ⊗ σM )(UAM )†PM

x

]
, (13)

where σM ∈ D(HM ) is the quantum state of the mea-
surement apparatus, HM is the Hilbert space of M , UAM

is a global unitary acting on the joint system AM , and
{PM

x }x∈X is a complete set of projectors. We call the tuple
(σM , UAM , {PM

x }x∈X ) an indirect measurement model [35]
(or implementation) of the quantum instrument

{
N A

x

}
x∈X .

To a given quantum instrument, there is an infinite num-
ber of implementations, all yielding the same measurement
statistics {pX (x)}x∈X and postmeasurement states {θA

x }x∈X
of the system A but involving very different physical
models in principle.

For the purposes of this paper, it is important to note that
the quantum instrument formalism can also be thought of
as a unitary interaction between the system A, a measure-
ment apparatus M , and a classical register X , as

θAMX = UAMX (ρA ⊗ σM ⊗ |0〉〈0|X )(UAMX )†, (14)

with UAMX = VMX UAM , where UAM is the unitary operator
in Eq. (13) and VMX is another unitary operator performing
a controlled transformation on the register system [6]

VMX =
∑

x∈X
PM

x ⊗ VX
x , (15)

where VX
x |0〉X = |x〉X . We can easily check that this uni-

tary yields θAX = TrM [θAMX ], with θAX given by Eq. (6).

A. Measurement heat

Heat is one of the central quantities of thermodynam-
ics [51], though its rigorous definition (along with the
definition of internal energy) becomes problematic in cer-
tain regimes, such as in the presence of strong coupling
[53,54] (see Appendix A). However, in the weak-coupling
regime, where contributions to the internal energy due to
the interaction Hamiltonian can be neglected, the follow-
ing definition is accepted: for a system S of interest coupled
with a thermal bath B, the heat QB→S

t absorbed by S from
B or, equivalently, the heat QS→B

t dissipated from S into B
is given by

−QB→S
t ≡ QS→B

t = �〈H B〉 := 〈H B〉t − 〈H B〉0, (16)

where 〈H B〉0 = Tr[τBH B] and 〈H B〉t = Tr[ρB
t H B]

denote the expectation of the bath Hamiltonian H B at
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the initial and final times, respectively. In Appendix A,
we review the definitions of work and heat in more
detail. There, we recall that under a set of three assump-
tions—(i) the interaction between S and B is unitary; (ii)
B is initialized in a thermal state τB of inverse temper-
ature β = 1/kBT; and (iii) systems S and B are initially
uncorrelated—one has [55]

βQS→B
t = −�H(S)+ I(S : B)+ D(ρB

t ‖τB). (17)

There have been various efforts to characterize the heat
absorbed or dissipated during a quantum measurement
process (see, e.g., Refs. [5,6,23]). Here, we propose a
definition of measurement heat of a quantum instrument
{N A

x }x∈X in the special case where the measurement sys-
tem (probe) M is initially prepared in a thermal state,
which is the natural choice when one is interested in
the thermodynamics of quantum measurements (see, e.g.,
Refs. [28,29]). For that, recall that the quantum instru-
ment formalism of a general quantum measurement can
be described as a fully unitary interaction model between
the system A being measured, the measurement apparatus
M , and a classical memory X , as described in Eq. (14).
Therefore, if the measurement apparatus M is initially in a
thermal state of temperature Tm, then the assumptions lead-
ing to Eq. (17) apply, where the joint system AX plays the
role of S, while M plays the role of the bath B. Accordingly,
we have

βQmeas := βQM→AX

= �H(AX )− I(AX : M )θ − D(θM‖τM )

= H(AX )θ − H(A)ρ − I(AX : M )θ − D(θM‖τM )

= H(X )θ − IG − I(AX : M )θ − D(θM‖τM ),
(18)

where IG ≡ IG(
{
N A

x

}
x∈X ; ρA) is the Groenewold informa-

tion gain computed for the premeasurement state ρA. From
the above, we immediately see that a positive Groenewold
information gain reduces the heat absorbed by AX from the
measurement apparatus, whereas a negative Groenewold
information gain increases that heat.

A tighter characterization can be given if θM = τM , that
is, if the final reduced state of the measurement appara-
tus remains thermal. This is a plausible assumption for a
macroscopic measurement apparatus, the internal state of
which is not affected by the interaction with the system and
the memory. In such a case, D(θM‖τM ) = 0. We can then
write

βQmeas = �H(AX )− I(AX : M )θ (19)

=: βQX
meas + βQA|X

meas, (20)

where we use the chain rule of quantum mutual informa-
tion [39] and the definitions

βQX
meas := �H(X )− I(X : M )θ = H(X |M )θ , (21)

βQA|X
meas := �H(A|X )− I(A : M |X )θ , (22)

where �H(X ) = H(X )θ because the classical memory X
is initialized from the pure state |0〉〈0|X . A less restrictive
assumption is when the separation of D(θM‖τM ) into two
parts is possible, corresponding to the two stages of evo-
lution of M in Eq. (14), namely τM → ωM and ωM → θM

where ωM = TrA[UAM (ρA ⊗ τM )(UAM )†]. Then, under the
assumption that Tr[(θM − ωM )(lnωM − ln τM )] = 0, the
Pythagorean theorem for relative entropy holds [56], i.e.,
D(θM‖τM ) = D(θM‖ωM )+ D(ωM ‖τM ). The first and the
second terms can be included in the definitions of QA|X

meas
and QX

meas, respectively. The above assumption, including
τM , ωM , and θM , need not be regarded as very restrictive
for a macroscopic apparatus M , since the “errors” (θM −
ωM ) and (lnωM − ln τM ) get multiplied (for an exact state-
ment, see Appendix B). Although we use θM = τM in what
follows, the alternative definitions of measurement heat
contributions that include the relative entropy terms still
preserve the results of this paper.

Note that, on the one hand, the quantity QX
meas is the

amount of heat absorbed by the classical register X in
a general quantum measurement (involving A, X , and
M ), which provides an alternative physical meaning to
the conditional quantum entropy H(X |M )θ described after
Eq. (9), for the special case of a quantum measurement.
On the other hand, since H(A|X )ρ = H(A)ρ , we can also
write QA|X

meas as

βQA|X
meas = −IG − I(A : M |X )θ ≤ −IG, (23)

where the latter does not depend on M . We summarize the
above discussion as follows.

Theorem 1. Suppose that a quantum system A undergoes
a general quantum measurement described by the quantum
instrument {N A

x }x∈X . Further, suppose that the measure-
ment is physically implemented according to an indirect
measurement (σM , UAM , {PM

x }x∈X ), where σM (the inter-
nal state of the measurement apparatus) is thermal at
temperature Tm. Suppose, moreover, that the reduced
state of the measurement apparatus, after the measure-
ment interaction, remains unchanged (it can, however,
become correlated with the other systems). Then, the heat
absorbed by the system A from the measurement apparatus
M for each outcome x ∈ X , averaged over all outcomes,
is bounded from above by the negative of the Groenewold
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information gain:

QA|X
meas ≤ −kBTmIG. (24)

Equivalently, the heat dissipated from the system into the
measurement apparatus is bounded from below by the
Groenewold information gain.

To our knowledge, this is the first attempt to provide
a physical meaning to the Groenewold information gain
even in the case when it is negative, which represents the
vast majority (if not the totality) of all practically achiev-
able quantum measurements. In fact, the Groenewold
information gain is always non-negative only if the quan-
tum measurement is quasicomplete [22], that is, when the
postmeasurement states N A

x (ρ
A) are all pure whenever ρA

is pure: a condition that is arguably highly idealized.

IV. THERMODYNAMICS OF QEC ENGINES

In this section, we introduce the QEC engine and ana-
lyze its various stages of operation. The ultimate goal in
this section is to derive a second law of thermodynamics
for QEC engines that holds for an arbitrary initialization of
the system, general (non-IID) thermal noise, and arbitrary
quantum measurements, thereby generalizing results such
as Ref. [27].

A. Engine components

We consider an arbitrary thermal operation T as the
noisy channel that we would like to correct, namely

T (ρ) = TrB
[
U(ρ ⊗ τB)U†] , (25)

where τB is a thermal state of the bath and U is a unitary
operator that commutes with the total Hamiltonian [57].
We refer to the environment in this representation as the
“hot” bath Bh with temperature Th (inverse temperature
βh). We denote the system of interest and the purifying ref-
erence system by S and R, respectively. We also denote by
A the ancillary system that is used to encode the state of
the system.

In order to make a connection between QEC and heat
engines with feedback, we need to introduce a cold bath
Bc with temperature Tc (inverse temperature βc). The pur-
pose of the cold bath is to recycle the ancillary system
after the QEC procedure, in preparation for future use.
This raises the question of what the initial preparation of
A should be for this construction to work. In the litera-
ture, the ancillary system is usually prepared in an initially
pure state (often uncorrelated qubits) but this might not be
possible for practical systems subject to thermal noise. Fur-
thermore, resetting A back to a pure state [26] might imply
that the cold bath has to operate at zero temperature Tc = 0,

which is not only unphysical but also detracts from the gen-
erality of possible thermodynamic statements that can be
made for arbitrary Tc. Hence, to maintain full generality
for arbitrary ancillary systems A and arbitrary tempera-
tures Tc of the cold bath, we assume that A is prepared
in an initially thermal state of the same temperature Tc. By
denoting the energy basis of A by

{|εx〉A
}

x, the initial state
of the ancillary system is therefore given by

τA
c =

∑

x

pX (x)|εx〉〈εx|A, (26)

with

pX (x) := e−βcεx/Z where Z =
∑

x

e−βcεx . (27)

In our paper, we accomplish the recycling back to the ther-
mal state τA

c by conducting a SWAP operation between A
and one of the uncorrelated subsystems of Bc that possesses
the same dimensions and local Hamiltonian as A.

After initializing A in τA
c , we project it onto one of its

energy eigenstates, in preparation for encoding. The out-
come of the measurement is recorded using a classical
register X , for the purpose of using it in the encoding
and decoding stages of QEC. The last component in the
QEC engine is the classical register Y that records the
result of the error-syndrome measurement (conducted by
a measurement apparatus M ) and feeds it into the decod-
ing channel, hence playing the same role as a feedback
controller in a heat engine. For brevity, we use E for the
combined engine components R, S, A, Bh, and Bc. To sum-
marize, the QEC engine is comprised of the systems E, X ,
and Y, all of which are depicted in Fig. 2.

B. Cycle description

We now describe in detail the operation of the QEC
engine presented in Fig. 2.

1. Initialization

The initial state of the engine is assumed to have a
product form:

σ EXY
i := ψRS ⊗ τA

c ⊗ τ
Bh
h ⊗ τBc

c ⊗ |0〉〈0|X ⊗ |0〉〈0|Y,
(28)

where ψRS = |ψ〉〈ψ |RS is a purification of the arbitrary
initial system state σ S

i , |0〉〈0|X and |0〉〈0|Y are the initial
states of the classical registers X and Y, respectively, and
τA

c , τBh
h , and τBc

c are thermal states of A, Bh, and Bc with
temperatures Tc, Th, and Tc, respectively.

2. Initial-measurement stage

Here, we prepare A for the encoding stage by making
a projective measurement

{
PA

x

}
x∈X onto its energy basis
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FIG. 2. The circuit description of the QEC engine. Lines locally disconnected from channels imply that the global channel (at that
time step) has the effect of a local identity operation on the corresponding systems. We emphasize that the internal Hamiltonian of the
reference system is assumed to be trivially zero at the initial and final times, namely H R

i = H R
f ≡ 0. All other (local and interaction)

Hamiltonians are assumed to be cyclic, i.e., Hi = Hf . The only nonunitary steps in our engine are the error-syndrome measurement
(characterized by the quantum instrument {N SA

y|x }y for a given x) and the discarding (memory erasure) of the classical registers X and Y.

(i.e., PA
x = |εx〉〈εx|A) and hence the nonselective postmea-

surement state is as follows:

σ EXY
0 :=

∑

x

pX (x)
PA

x σ
E
i PA

x

pX (x)
⊗ |x〉〈x|X ⊗ |0〉〈0|Y, (29)

where

PA
x σ

E
i PA

x

pX (x)
= |ψ〉〈ψ |RS ⊗ |εx〉〈εx|A ⊗ τ

Bh
h ⊗ τBc

c . (30)

3. Adaptive-encoding stage

Using the measurement outcome x ∈ X , we encode the
system RS using the ancillary system A and a unitary USA

enc,x
as follows:

σ RSA
enc,x := USA

enc,x(|ψ〉〈ψ |RS ⊗ |εx〉〈εx|A)(USA
enc,x)

†, (31)

and the total state σ EXY
enc becomes

∑

x

pX (x)σ RSA
enc,x ⊗ τ

Bh
h ⊗ τBc

c ⊗ |x〉〈x|X ⊗ |0〉〈0|Y. (32)

4. Thermal-operation stage

The encoded system RSA interacts with the hot bath via
the unitary USABh and leads to the following state:

σ
RSABh
1,x := USABh(σ RSA

enc,x ⊗ τ
Bh
h )(USABh)†. (33)

Hence σ EXY
1 at this stage is given by

∑

x

pX (x)σ
RSABh
1,x ⊗ τBc

c ⊗ |x〉〈x|X ⊗ |0〉〈0|Y. (34)

It is important to note that, in general, the noisy channel
does not act on S and A independently. This relaxes one of
the assumptions often made in the QEC literature, namely
that of independent noisy channels acting on individual
subsystems (specifically qubits).

5. Error-syndrome-measurement stage

After the thermal-operation stage, we need a decoding
process to recover the initial state of the system S. This
process can be divided into two stages: error-syndrome
measurement and error correction, characterized by the
(x-value-dependent) quantum instrument {N SA

y|x}y and uni-
tary operators {USA

dec,xy}x,y , respectively, where y ∈ Yx is
the measurement outcome of the former stage (we write
Yx because the set of possible outcomes is generally a
function of the initial-measurement outcome x). Therefore,
the former is picked depending on the initial-measurement
outcome x ∈ X and the latter can generally depend on
both measurement outcomes (x, y) ∈ (X ,Yx). The state
of the engine after the error-syndrome-measurement step
is described by the quantum-classical state [using the
definition in Eq. (6)]

σ EXY
2 :=

∑

x,y

pXY(x, y)σ E
2,xy ⊗ |x, y〉〈x, y|XY, (35)

where pXY(x, y) = pX (x)pY|X (y|x) and

σ E
2,xy := N SA

y|x(σ
RSABh
1,x )

pY|X (y|x) ⊗ τBc
c . (36)
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It is important to note that the system Y is the classi-
cal register used to record the measurement outcome, not
the measurement apparatus itself. The latter is implicit in
the quantum instrument {N SA

y|x}y [25,37], which makes this
stage nonunitary in general. Let us use the notation

N SA→SAY
|x (·) :=

∑

y∈Yx

N SA
y|x(·)⊗ |y〉〈y|Y, (37)

to indicate the joint action of the instrument on the system
and the memory.

6. Error-correction stage

The decoding is completed by selectively applying
USA

dec,xy based on the measurement outcomes (x, y) as

σ EXY
3 =

∑

x,y

pXY(x, y)σ E
3,xy ⊗ |x, y〉〈x, y|XY, (38)

where

σ E
3,xy = USA

dec,xyσ
E
2,xy(U

SA
dec,xy)

†. (39)

7. Resetting of the ancillary system

To prepare the ancillary system for a future cycle, we
let A interact with the cold bath to return it to its initial
thermal state. In order to disentangle A from the rest of the
engine, we pick the thermal operation at this stage to be a
fully thermalizing channel, which simply replaces the final
state of A with a newly prepared copy of τA

c . The unitary
that realizes this process evolves the state via

σ EXY
f = UABcσ EXY

3 (UABc)†. (40)

We note that this can be realized by taking σ Bc
3 = τBc

c =
⊗n

i=1τ
B(i)c
c (for some integer n describing the size of

the bath) and applying a SWAP operation (defined by
Uswap|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 for any two states |ψ〉 and

|φ〉) between σ A
3 and τB(1)c

c , leading to σ A
f = τA

c and σ Bc
f =

σ A
3 ⊗n

i=2 τ
B(i)c
c .

8. Discarding the classical registers

At the final stage, we discard the classical registers
X and Y. As we discuss after Eq. (9), this discarding
process is equivalent to an erasure of the memory of
Maxwell’s demon, which is important for completing the
thermodynamic cycle.

C. Information-theoretic analysis

In this subsection, we compute the entropy change at
each stage of operation, with the purpose of arriving at

a formula for the net entropy change of the engine after
discarding the classical registers X and Y. All information-
theoretic quantities are computed for the sequence of states
with subscripts

i → 0 → enc → 1 → 2 → 3 → f .

We start by noting that H(EXY)σ0 = H(EXY)σi because
σ0 arises from σi by means of a controlled unitary, where
A is the control system and X is the target system. The
controlled unitary is given by its action

|εx〉A ⊗ |0〉X −→ |εx〉A ⊗ |x〉X , (41)

via VX
x |0〉X = |x〉X , and thus it can be written as

∑

x

|εx〉〈εx|A ⊗ VX
x . (42)

The entropy at the encoding stage [defined by Eq. (32)]
also does not change, i.e., H(EXY)σenc = H(EXY)σ0 ,
because this stage is also described by a controlled uni-
tary, where X is the control system and RSA is the target
system. Moreover, it is clear from Eqs. (32) and (34) that
H(EXY)σ1 = H(EXY)σenc due to the unitary interaction
between RSA and Bh.

The first nonunitary step is the error-syndrome-
measurement stage. The entropy after the measurement is
computed as follows:

H(EXY)σ2 = H(X )+ H(EY|X )σ2 (43)

= H(X )+
∑

x

pX (x)H(EY)σ2,x , (44)

where we use the notation H(EY|X = x)σ2 ≡ H(EY)σ2,x .
Note that it is convenient to isolate the contributions due
to X because X is the system conditioned on which the
measurement on the engine is chosen. We continue writing
H(EY)σ2,x in the form

H(EY)σ2,x = H(E)σ1,x − [
H(E)σ1,x − H(EY)σ2,x

]

= H(E)σ1,x −
[
H(E)σ1,x −H(Y)σ2,x −H(E|Y)σ2,x

]

= H(E)σ1,x + H(Y)σ2,x − IG({N SA
y|x}y ; σ E

1,x),
(45)

where in the last line we use the definition of the Groe-
newold information gain in Eq. (8). From now on, we
denote the Groenewold information gain IG({N SA

y|x}y ; σ E
1,x)

by IG,x for brevity. Substitution of this result back into
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Eq. (44) yields

H(X )+
∑

x

pX (x)
[
H(E)σ1,x + H(Y)σ2,x − IG,x

]

= H(X )+ H(E|X )σ1 + H(Y|X )σ2 −
∑

x

pX (x)IG,x

= H(EXY)σ1 + H(Y|X )σ2 −
∑

x

pX (x)IG,x, (46)

where in the last equality we use the fact that H(EXY)σ1 =
H(EX )σ1 . Thus, the entropy change in the error-syndrome-
measurement stage becomes

H(EXY)σ2 − H(EXY)σ1 = H(Y|X )σ2 −
∑

x

pX (x)IG,x.

(47)

Regarding the error-correction stage, we can easily see
that H(EXY)σ3 = H(EXY)σ2 because this stage is also
described by a controlled unitary. Finally, we obviously
have H(EXY)σf = H(EXY)σ3 for the recycling stage of the
ancillary system due to the unitarity of the SWAP operation
between A and an identical subsystem from Bc.

The final step of the QEC cycle is the second and last
nonunitary step after the error-syndrome measurement:
here, we discard the classical registers X and Y. The
entropy change due to the discarding process is simply
given by H(E)σf − H(EXY)σf = −H(XY|E)σf . Namely,
discarding the classical registers only changes the entropy
of the engine if the information encoded in them cannot
be perfectly recovered from the final reduced state of the
engine E.

From the above analysis, we can easily compute the total
entropy change of E by using Eqs. (28) and (47) and we
summarize it in the following.

Theorem 2. The entropy change of the quantum error-
correcting engine described in Fig. 2 after discarding the
classical registers X and Y can be written in terms of
information-theoretic quantities as

H(E)σf − H(E)σi

= H(Y|X )σ2 −
∑

x

pX (x)IG,x − H(XY|E)σf . (48)

D. Thermodynamic analysis

Here, we derive a formula for the entropy change
H(E)σf − H(E)σi in terms of the heat dissipated into the
two baths (which can be measured as described in, e.g.,
Ref. [32]). If we denote by H Bh(c) the Hamiltonian of
the hot (cold) bath and QBh(c) = 〈H Bh(c)〉i − 〈H Bh(c)〉f the
total heat absorbed by SA from the hot (cold) bath over
the whole QEC cycle (where 〈· · · 〉i and 〈· · · 〉f denote

expectations over the initial and final states of the baths,
respectively), then we can formulate the following theorem
to describe the entropy change in terms of the dissipated
heat.

Theorem 3. The entropy change of the quantum error-
correcting engine described in Fig. 2 after discarding the
classical registers X and Y can be written in terms of the
heat dissipated into the hot and cold baths as

H(E)σf − H(E)σi = Se − Qh

kBTh
− Qc

kBTc

− I(RS : BhBc)σf − �(BhBc)σf ,
(49)

where

�(BhBc)σf := I(Bh : Bc)σf + D(σ Bh
f ‖τBh

h )

+ D(σ Bc
f ‖τBc

c ) ≥ 0, (50)

depends only on the final states of the thermal baths and
Se = H(RS)σf is the entropy exchange.

Proof. We start from the final entropy of the engine

H(E)σf ≡ H(RSABhBc)σf (51)

= H(RSBhBc)σf + H(A)σf , (52)

where we use the fact that the recycling of the ancil-
lary system disentangles it from the rest of the engine,
so that I(RSABhBc : A)σf = 0 [58]. Furthermore, using the
definition of quantum mutual information, we can simplify
H(RSBhBc)σf further, to

H(RSBhBc)σf = H(RS)σf + H(Bh)σf + H(Bc)σf

− I(Bh : Bc)σf − I(RS : BhBc)σf . (53)

Hence, for the entropy difference, we have

H(E)σf − H(E)σi = H(RS)σf +�H(Bh)σf

+�H(Bc)σf − I(RS : BhBc)σf

− I(Bh : Bc)σf , (54)

where we use Eq. (28) and the fact that �H(RS) =
H(RS)σf because σ RS

i = |ψ〉〈ψ |RS is pure. Finally, we can
use the Reeb-Wolf formula given in Eq. (17) for the

020318-10



THERMODYNAMIC CONSTRAINTS ON... PRX QUANTUM 3, 020318 (2022)

entropy changes of the two baths, yielding

H(E)σf − H(E)σi = H(RS)σf − Qh

kBTh
− Qc

kBTc

− D(σ Bh
f ‖τBh

h )− D(σ Bc
f ‖τBc

c )

− I(RS : BhBc)σf − I(Bh : Bc)σf ,
(55)

which proves the theorem. �
The entropy exchange Se, introduced in Refs. [46,47],

quantifies the purity of the final (error-corrected) system
state σ RS

f . Note that having Se = 0 is only necessary, but
not sufficient, is necessary for perfect QEC. More pre-
cisely, the entropy exchange is related to the entanglement
fidelity given in Eq. (10) via the quantum Fano inequality,
that is [47],

H(Fe)+ (1 − Fe) ln(d2 − 1) ≥ Se, (56)

where H(x) := −x log x − (1 − x) log(1 − x) denotes the
binary entropy and d = dim(HS ⊗ HR). We can clearly
see that Fe = 1 ⇒ Se = 0 but the converse statement does
not necessarily hold.

E. Second-law inequality

Using the two forms of the entropy change of E from
Eqs. (48) and (49), we arrive at the total entropic balance
equation for the QEC engine:

Qh

kBTh
+ Qc

kBTc
= Se +

∑

x

pX (x)IG,x

− H(Y|X )σ2 + H(XY|E)σf

− �(BhBc)σf − I(RS : BhBc)σf . (57)

The corresponding second-law inequality follows from
I(RS : BhBc)σf ≥ 0 and �(BhBc)σf ≥ 0 and is stated as
follows.

Corollary 1. Given a general quantum error-correcting
engine described in Fig. 2, the Clausius formulation of the
second law takes the form

Qh

kBTh
+ Qc

kBTc
≤ Se +

∑

x

pX (x)IG,x

− H(Y|X )σ2 + H(XY|E)σf , (58)

where the bound is achieved when I(RS : BhBc)σf =
�(BhBc)σf = 0 (see the statement of Theorem 3).

Here, we remind the reader that a physical interpretation
of each of the terms appearing in the second-law inequality

is provided above. This inequality adds upon the previous
literature [26,27] in various ways. We elaborate further on
this point in Sec. VI.

F. Applicability to multiple cycles

Finally, we comment in passing on extending this proce-
dure to multiple rounds of QEC. This is natural to consider
since, by taking into account the resetting of the classical
memories and the ancillary system, we are preparing the
QEC engine for a future cycle. A similar analysis can then
be conducted for the follow-up cycle, provided that two
conditions apply: (1) the remnant correlations between S
and the heat baths are negligible; and (2) the change in the
thermality of the baths can be ignored. Except for these
considerations, we also need to recycle the reference sys-
tem R in order to use it for purification in the new cycle.
This costs no energy because we assume that R has a triv-
ial Hamiltonian. Note that the measurement apparatus need
not be reset under the assumption that its state remains
approximately unchanged postmeasurement. Under these
conditions, multiple-round QEC becomes possible. Some
additional “resetting” time might be permitted in order for
the baths Bh and Bc and the apparatus M to reach local
equilibrium again.

V. EFFICIENCY-FIDELITY TRADE-OFF

In this section, we choose to focus on the thermody-
namic efficiency of the QEC engine in Fig. 2. This is
motivated by the following observation: a heat engine
operating cyclically (with respect to both the state and
the Hamiltonian of the working fluid) between two heat
baths can possess a thermodynamic efficiency η that is no
larger than the Carnot efficiency ηC (in the absence of a
feedback controller). However, the state-cyclicity condi-
tion in heat-engine thermodynamics can be reinterpreted
as a perfect QEC condition of the working fluid. In other
words, maximum work extraction in thermodynamics can
be viewed as the optimization of the efficiency η → η� ≡
max η of the engine (where η� ≡ ηc with no feedback),
given the cyclicity constraint Fe = 1 in terms of the error-
correction fidelity. Therefore, a natural extension to this
observation is to ask whether the task of QEC can be
framed in a similar way, namely as an optimization of
the error-correction fidelity Fe → F�

e ≡ max Fe, given any
fixed value of the thermodynamic efficiency η within its
allowable range. Additionally, recall that the QEC engine
in Fig. 2 is a heat engine with a feedback controller and,
therefore, the thermodynamic efficiency η can generally
become larger than the Carnot efficiency ηC [27]. This
means that the optimization of F�

e for a thermodynamically
desirable efficiency η ≥ ηC is of interest.

In this section, we derive a direct trade-off relation
between F�

e and η for a QEC engine operating in the super-
Carnot regime (η ≥ ηC). The (F�

e , η) trade-off relation is a
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special case of a triple-trade-off relation between the maxi-
mum achievable entanglement fidelity F�

e , the thermody-
namic efficiency η of the QEC engine, and the efficacy
of the error-syndrome measurement. The triple-trade-off
relation is derived under a set of physically motivated
assumptions, the validity of which is further demonstrated
in Sec. V F. As a consequence, a second trade-off relation
exists between the efficiency and the efficacy [defined in
Eq. (2)] whenever the state-cyclicity condition Fe = 1 (i.e.,
perfect QEC) is satisfied.

A. Origins of the trade-off: Quantum Fano inequality

In Sec. IV D, we discuss the quantum Fano inequality.
This inequality can be rearranged in the form

H(Fe) ≥ ln(d2 − 1)(Fe − 1)+ Se, (59)

where the binary entropy on the left-hand side is a concave
function in the region Fe ∈ [0, 1], taking values between
0 (for Fe ∈ {0, 1}) and 1 (for Fe = 0.5) and the right-hand
side is a linear function of Fe with a positive slope. A sim-
ple pictorial interpretation of the above inequality shows
that for varying values of entropy exchange Se ≥ 0, there
exists a direct trade-off relation between the exact value
of Se and the upper value F�

e of the entanglement fidelity
Fe ∈ [0, F�

e ] satisfying the quantum Fano inequality for
a fixed Se. This observation constitutes the basis of the
trade-off theorem that we derive in this section.

B. Definition of thermodynamic efficiency of a QEC
engine

Here, we define what we mean by the thermodynamic
efficiency of the QEC engine, noting that this requires a
careful accounting of the input heat from the measurement
apparatus, which we consider in Sec. III A. Such a problem
can also be related to the problem of determining the ther-
modynamic efficiency of a heat engine operating between
multiple heat baths (here, the measurement apparatus plays
the role of the third bath).

We define the thermodynamic efficiency of our QEC
engine in Fig. 2 as η := −Wtot/Qinput, where Wtot is the
total work output of the engine and Qinput is the net pos-
itive heat that is absorbed by the “working fluid” SA. In
what follows, we find an explicit form of Qinput. To do so,
we start by noting that the net change in the internal energy
of the working fluid SA is given by

�U SA = �U RSA = �U RSAY, (60)

where the first equality follows from the fact that σ R
f =

σ R
i (see the note after Fig. 2), whereas the second equality

follows from the fact that the memory of Y is erased after
the QEC operation. Note that although it is not obvious
how to compute the work and heat contributions of �U SA

of the working fluid SA alone [5,6,23,54,59,60], �U RSAY

does not suffer from the same problem. In fact, based on
the stages described in Sec. IV B, we have

U RSAY
0 − U RSAY

i = 0, (61)

U RSAY
enc − U RSAY

0 = Wenc, (62)

U RSAY
1 − U RSAY

enc = Qh, (63)

where we use the definitions of heat and work resulting
from Eq. (12). For the error-syndrome-measurement stage,
we have

U RSAY
2 − U RSAY

1 = Tr
[
(σ RSAY

2 − σ RSAY
1 )H RSAY] , (64)

where H RSAY = H RSAY
t1 = H RSAY

t2 is the total Hamilto-
nian of RSAY at the beginning and end of the error-
syndrome-measurement stage (at times t1 and t2, respec-
tively). Recalling the definition of heat in Eq. (16), we
arrive at U RSAY

2 − U RSAY
1 = Wmeas + Qmeas, with Qmeas =

〈H M 〉1 − 〈H M 〉2, where H M is the Hamiltonian of the
measurement apparatus. Finally, for the last three stages of
operation of the QEC engine, we have

U RSAY
3 − U RSAY

2 = Wdec, (65)

U RSAY
f − U RSAY

3 = Qc, (66)

U RSAY
erase − U RSAY

f = 〈H Y〉i − 〈H Y〉f ≡ QY
erase, (67)

where H Y is the Hamiltonian of the classical regis-
ter Y and 〈· · · 〉f denotes the expectation with respect
to the final reduced state of Y, i.e., σ Y

f = TrEX [σ EXY
f ] =

∑
x pX (x)σ Y

f ,x, with σ Y
f ,x = ∑

y∈Yx
pY|X (y|x)|y〉〈y|Y. Conse-

quently, the above discussion yields

�U RSAY = Wtot + Qtot, (68)

where

Wtot ≡ Wenc + Wmeas + Wdec, (69)

Qtot ≡ Qh + Qmeas + Qc + QY
erase (70)

are the total work and heat separations of the internal
energy of RSAY. Note that although the total dissipated
heat during the erasure of both memory systems X and Y
is given by Qerase = QX

erase + QY
erase, the term QX

erase is irrel-
evant for the above thermodynamic analysis of �U RSAY.

To identify Qinput, we further decompose Qmeas =
QY

meas + QRSA|Y
meas − kBTmD(σM

2 ‖τM
m ) based on our discus-

sion in Sec. III A, where σM
2 is the postmeasurement state

of the measurement apparatus M , and τM
m is its initial
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thermal state, with temperature Tm. By definition, we have

QY
meas

kBTm
= �H(Y|X )− I(Y : M |X )σ2 (71)

= H(Y|XM )σ2 ≥ 0, (72)

whereas QRSA|Y
meas ≤ 0 is typically satisfied for any meaning-

ful QEC engine. This is because a measurement process is
supposed to transfer entropy (and hence information) from
the measured system to the measurement apparatus. This,
combined with Qh ≥ 0, Qc ≤ 0 (since we are interested in
the heat-engine regime of operation) and QY

erase ≤ 0 (which
follows from the fact that the memory Y is initialized
from, and erased back to, its ground state) leads to the
decomposition of Qtot into positive Qh + QY

meas and neg-
ative QRSA|Y

meas + Qc + QY
erase parts. Therefore, by definition,

we have Qinput := Qh + QY
meas.

Next, we make a physical simplification in the
error-correction setting by introducing the following
assumption.

Assumption 1. We consider the regime of error correction
with “sufficiently high fidelity,” such that |�U RSAY| �
Qinput.

By “sufficiently high fidelity,” we mean that the QEC
fidelity Fe ≥ 1 − ε, with ε � (Qinput/2‖H S‖∞)2 with
‖ · ‖∞ denoting the infinity norm of an operator. This is
justified by noting that �U RSAY = �U RS along with

|�U RS| = |Tr
[
(σ RS

f − σ RS
i )H RS

]
| (73)

≤ ‖σ RS
f − σ RS

i ‖1 · ‖H RS‖∞ (74)

≤ 2‖H S‖∞
√
ε, (75)

where the first inequality is a special case of Hölder’s
inequality and the second follows from the inequality
1/2‖ρ − σ‖1 ≤ √

1 − F(ρ, σ), holding for every two den-
sity matrices.

Consequently, the thermodynamic efficiency of the
QEC engine has the form η := −Wtot/Qinput ≈ Qtot/Qinput,
which follows from dividing both sides of Eq. (68) by
Qinput and then using Assumption 1. Also, η ≤ 1 follows
from the definition of Qinput as the positive part of Qtot,
appearing in Eq. (68).

C. Useful thermodynamic and information-theoretic
statements

With the above definition of thermodynamic efficiency,
let us now compute the important thermodynamic quan-
tity Qh/kBTh + Qc/kBTc appearing in Theorem 3. From

η = Qtot/Qinput, it follows that

|Qc| = (1 − η)(Qh + QY
meas)− |QRSA|Y

meas | − |QY
erase|, (76)

and therefore

Qh

kBTh
+ Qc

kBTc
= Qh

kBTh

(
η − ηC

1 − ηC

)

+ |QRSA|Y
meas | + |QY

erase| − (1 − η)QY
meas

kBTc
,

(77)

where ηC = 1 − Tc/Th is the Carnot efficiency.
One more relation that we need is the upper bound on

the Groenewold information gain derived in Ref. [24].
This is given (for a specific realization x ∈ X of the
initial-measurement stage) by

IG,x ≤ H(Y|X = x)σ2 − D(σ E
1,x‖N †

|x ◦ N|x(σ E
1,x)), (78)

where we use the notation N|x ≡ N SA→SAY
|x from Eq. (37).

The relative-entropy term is not necessarily positive
because the input N †

|x ◦ N|x(σ E
1,x) is not a density matrix.

This can be seen by normalizing the positive semidefinite
operator N †

|x ◦ N|x(σ E
1,x) by dividing by its trace, leading

to [33]

D(σ E
1,x‖N †

|x ◦ N|x(σ E
1,x)) = D(σ E

1,x‖σ̃ E
1,x)

− ln Tr
[
N †

|x ◦ N|x(σ E
1,x)

]
,

(79)

where the first term is now non-negative (because σ̃ E
1,x is

a density matrix) and the second term is the negative log
efficacy E (N|x; σ E

1,x) of the quantum instrument N|x with
respect to the density matrix σ E

1,x, as defined in Eq. (2).
Using these relations, we arrive at

H(Y|X )σ2 −
∑

x∈X
pX (x)IG,x

≥
∑

x∈X
pX (x)

[− ln E (N|x; σ E
1,x)

]
. (80)

D. Lower bound on entropy exchange

Due to the importance of entropy exchange Se in arriv-
ing at a trade-off relation (as emphasized in Sec. V A), we
express this quantity as a function of the thermodynamic
efficiency η, defined above. To start, we make the follow-
ing remark that is justified in an experimental setting, since
access to cooling resources is typically limited.

Remark 1. We treat the cold bath Bc as a shared cooling
resource among various subsystems in the QEC setting.
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That is, Bc is not only used to recycle the ancillary system A
but it can also be used to erase the memory of the classical
registers X and Y.

This constitutes the basis for the following assumption.

Assumption 2. Preerasure, the entropy of the memory
X is negligible with respect to the entropy of Y, namely
H(X |E)σf � H(Y|EX )σf .

Here, we offer the following physical justification. Due
to Remark 1, we expect the shared cold bath (amongst sys-
tems A, X , and Y) to be sufficiently cold to accomplish
the erasure task of the classical memories. Therefore, we
expect the entropy of X (which depends on the statistics
of the initial-measurement stage) to be negligible relative
to that of Y, which is determined by the statistics of the
error-syndrome measurement, the latter being rich in most
realistic conditions.

From the above two assumptions, it follows that in
Theorem 2, we have the approximation

H(XY|E)σf = H(X |E)σf + H(Y|EX )σf (81)

≈ H(Y|EX )σf . (82)

Moreover, we can further simplify H(Y|EX )σf as

H(Y|EX )σf = H(Y|RSABhBcX )σf (83)

= H(Y|RSBcX )σf (84)

= H(Y|RSAX )σ3 (85)

= H(Y|X )σ2 − I(Y : RSA|X )σ3 . (86)

Given that we can achieve QEC with sufficiently high
fidelity (Assumption 1), σ RSA

3,x should be approximately
back to the postencoded state σ RSA

enc,x. It follows that
I(Y : RSA|X )σ3 � H(Y|X )σ2 and hence H(Y|EX )σf ≈
H(Y|X )σ2 . Finally, recall that the latter term also appears
in Landauer’s bound (see, e.g., Eq. (17), for a given real-
ization x), which puts a lower bound on the erasure heat
of the memory Y, as |QY

erase| ≥ kBTcH(Y|X )σ2 . This holds
because the erasure process of Y, for a given value x of
the initial-measurement stage, can be carried out unitarily.
Averaging Eq. (17) over the realizations x ∈ X , we arrive
at the desired inequality. Therefore, we make the following
assumption.

Assumption 3. The Landauer bound is reachable approx-
imately in experiments, namely |QY

erase| ≈ kBTcH(Y|X )σ2 .

From this, it follows that H(XY|E)σf ≈ H(Y|X )σ2 ≈
|QY

erase|/kBTc. Substituting this into Theorem 2, we obtain

�H(E)σf ≈ H(Y|X )σ2 − ∑
x∈X pX (x)IG,x − |QY

erase|/kBTc.
This, along with Theorem 3 and Eq. (77), gives us

Se ≥ Qh

kBTh

(
η − ηC

1 − ηC

)
+ |QRSA|Y

meas | − (1 − η)QY
meas

kBTc

+
[

H(Y|X )σ2 −
∑

x∈X
pX (x)IG,x

]

. (87)

A simple manipulation via (1 − η)QY
meas = (1 − ηC)

QY
meas − (η − ηC)QY

meas yields

Se ≥ Qinput

kBTh

(
η − ηC

1 − ηC

)
+ |QRSA|Y

meas | − (1 − ηC)QY
meas

kBTc

+
[

H(Y|X )σ2 −
∑

x∈X
pX (x)IG,x

]

. (88)

The middle term on the right-hand side of the above
equality becomes positive when |QRSA|Y

meas | ≥ Tc
Th

QY
meas, which

implies that the measurement process leads to a “suf-
ficient” dissipation of heat from the encoded system to
the measurement apparatus. Therefore, the last assumption
that we make is given as follows.

Assumption 4. The thermodynamic constraint |QRSA|Y
meas | ≥

Tc
Th

QY
meas applies to the measurement process. The

equivalent information-theoretic constraint is given by
I(RSA : M |XY)σ2 + ∑

x pX (x)IG,x ≥ Tc
Th

H(Y|X )σ2 .

This assumption, along with Eq. (80), yields the final
inequality:

Se ≥ Qinput

kBTh

(
η − ηC

1 − ηC

)
+

∑

x∈X
pX (x)

[− ln E (N|x; σ E
1,x)

]
.

(89)

Therefore, we summarize the main result of this section as
follows.

Theorem 4. Given a quantum error-correcting engine
shown in Fig. 2 and the set of physical Assumptions 1–4
provided above, the entropy exchange is bounded from
below by the thermodynamic efficiency of the engine and
the average negative log efficacy of the general quantum
measurement implemented, namely

Se ≥ Qinput

kBTh

(
η − ηC

1 − ηC

)
+

∑

x∈X
pX (x)

[− ln E (N|x; σ E
1,x)

]
.

(90)
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E. Derivation of a triple-trade-off relation

Finally, trade-off relations between entanglement fidelity,
thermodynamic efficiency, and efficacy now appear as a
direct consequence of the quantum Fano inequality discus-
sion in Sec. V A and Theorem 4. We formulate this as the
following triple-trade-off relation.

Corollary 2. Given a quantum error-correcting engine
shown in Fig. 2 and the set of physical Assumptions 1–4
provided above, there exists a triple trade-off between
the maximum achievable error-correcting fidelity F�

e , the
super-Carnot efficiency η of this error-correcting engine,
and the average negative log efficacy of the general quan-
tum measurement, namely

H(Fe)+ (1 − Fe) ln(d2 − 1) ≥ Qinput

kBTh

(
η − ηC

1 − ηC

)

+
∑

x∈X
pX (x)

[− ln E (N|x; σ E
1,x)

]
. (91)

From here, two corollaries follow.

Corollary 3. Given a quantum error-correcting engine
shown in Fig. 2 and the set of physical Assumptions 1–4
provided above, along with the assumption that the quan-
tum instrument used has efficacy larger than one, there
exists a direct trade-off between the maximum achiev-
able error-correcting fidelity F�

e and the super-Carnot
efficiency η of this error-correcting engine, namely

η > ηC ⇒ F�
e < 1 or, equivalently, F�

e = 1 ⇒ η ≤ ηC.
(92)

Corollary 4. Given a quantum error-correcting engine
shown in Fig. 2 and the set of physical Assumptions 1–4
provided above, along with the assumption that the entan-
glement fidelity of the engine is equal to one, there exists
a direct trade-off between the super-Carnot efficiency η of
the error-correcting engine, and the average negative log
efficacy of the general quantum measurement, namely

Qinput

kBTh

(
η − ηC

1 − ηC

)
+

∑

x∈X
pX (x)

[− ln E (N|x; σ E
1,x)

] ≤ 0.

(93)

The latter implies that for all subunital quantum instru-
ments N|x (which includes efficient measurements), we
must have η ≤ ηC. This is in contrast with Ref. [27]. In
fact, operation in the super-Carnot efficiency regime is still
physically possible; however, it necessarily requires the
use of superunital quantum instruments. Further compar-
ison with Ref. [27] is made in Sec. VI.

F. Examples

1. Bit-flip channel

Here, we consider the simplest QEC code: the three-
qubit code corresponding to the bit-flip noise channel
T (·) = (1 − p)(·)+ pX (·)X , where 0 ≤ p ≤ 1 is the bit-
flip probability [11]. This can model the so-called flip-flop
interactions between spins. First, note that the bit-flip chan-
nel can be written as a thermal operation [see Eq. (25)].
This can be accomplished by having the energy spectrum
of the hot bath to be comprised of two energies ε0 and ε1
(where the excited state can be highly degenerate), with
projectors P0 and P1, respectively. Hence we choose the
thermal state of the bath to be τBh

h = (1 − p)P0 + pP1 and
the unitary U = I ⊗ P0 + X ⊗ P1.

The system of interest S is a single qubit prepared
in an arbitrary pure state |ψ〉S = a|0〉S + b|1〉S (hence
there is no need for a purifying system R) and the ancil-
lary system is two noninteracting qubits, each prepared
in the thermal state τ

A1
c = π1|0〉〈0|A1 + (1 − π1)|1〉〈1|A1

and τA2
c = π2|0〉〈0|A2 + (1 − π2)|1〉〈1|A2 , with Gibbs dis-

tributions {π1, (1 − π1)} and {π2, (1 − π2)} respectively,
having the same temperatures Tc but slightly differ-
ent energy separations (to avoid degeneracies in the
combined ancillary system A1A2). The initial projec-
tive measurement of the ancillary system A can have
four different outcomes {00, 01, 10, 11} with probabilities
{π1π2,π1(1 − π2), (1 − π1)π2, (1 − π1)(1 − π2)}, respec-
tively. Therefore, the encoding stage starts by applying
the unitaries {I1 ⊗ I2, I1 ⊗ X2, X1 ⊗ I2, X1 ⊗ X2} based on
the corresponding measurement outcomes, so that we can
arrive at the same postmeasurement state |00〉〈00|A. After
this step, we complete the unitary encoding by applying
two controlled-NOT (CNOT) gates (one on each ancillary
qubit), leading to

(a|0〉S + b|1〉S)⊗ |0〉A1 ⊗ |0〉A2

→ a|000〉SA + b|111〉SA ≡ |�〉SA, (94)

which is independent of x. Next, we subject the encoded
system to the bit-flip channel, acting independently on each
qubit, namely T ⊗3(|�〉〈�|SA). We follow this step by con-
ducting the error-syndrome measurement, described by the
four projectors

{
�SA

y=0 = |000〉〈000|SA + |111〉〈111|SA,
decoded by USA

dec,y=0 = I SA,
{
�SA

y=1 = |100〉〈100|SA + |011〉〈011|SA,
decoded by USA

dec,y=1 = X S ⊗ I A1 ⊗ I A2 ,
{
�SA

y=2 = |010〉〈010|SA + |101〉〈101|SA,
decoded by USA

dec,y=2 = I S ⊗ X A1 ⊗ I A2 ,
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{
�SA

y=3 = |001〉〈001|SA + |110〉〈110|SA,
decoded by USA

dec,y=3 = I S ⊗ I A1 ⊗ X A2 ,

corresponding to no bit-flip error and a single bit-flip error
in each qubit. Hence the measurement statistics are given
by pY|X (y|x) = pY(y) = Tr

[
T ⊗3(|�〉〈�|SA)�SA

y

]
for y =

{0, 1, 2, 3}. Therefore, we require a memory system Y with
at least four orthonormal basis vectors {|y〉}3

y=0 (e.g., a
system of two qubits).

In order to check the validity of the assumptions used to
derive Theorem 2, we need only check Assumptions 2 and
4, since Assumption 1 depends on the strength of the noise
present, Assumption 3 has been validated experimentally
[61], and the efficacy of the quantum instrument is equal to
zero because the error-syndrome measurement is projec-
tive (and hence N|x is unital). To check Assumption 2, we
note that

H(X |E)σf = H(X )σf − I(X : E)σf (95)

= H(X )σf , (96)

H(Y|EX )σf = H(Y|E)σf . (97)

Furthermore, we have

H(X )σf = H(A)τc , (98)

H(Y|E)σf = H(Y)σf − I(Y : SABhBc)σf (99)

= H(Y)σ2 − I(Y : SBc)σf (100)

= H(Y)σ2 − I(Y : SA)σ3 , (101)

which gives us an easy way to check Assumption 2,
as H(A)τc � H(Y)σ2 − I(Y : SA)σ3 . For experimental con-
venience (controllability, ease of initialization, etc.), we
assume that the qubit energies used are in the optical
range, i.e., �ω ∼ 2 − 3 eV, and we assume the worst-
case scenario that the cold bath is at room tempera-
ture; hence kBTc ≈ 1/40 eV. Consequently, we have for
�ω/kBTc ∼ 100. This makes H(A)τc ∼ 10−42 (which is a
function of the ratio �ω/kBTc), which we verify to be
much smaller than H(Y)σ2 − I(Y : SA)σ3 = H(SAY)σ3 −
H(SA)σ3 ≈ 0.166 for a bit-flip error probability of p =
0.01, when a = b = 1/

√
2. Furthermore, Assumption 4

is easily verified by checking that IG = H(Y|X )σ2 =
H(Y)σ2 ≈ 0.166; hence |QRSA|Y

meas | ≥ Tc
Th

QY
meas is true for any

reasonable ratio Tc/Th of the QEC engine.

2. Phase-damping channel

We would like to supplement the above example, which
has a classical analog, with the phase-damping noise,

described by a single parameter λ as

σ =
(|a|2 ab�

a�b |b|2
)

→
( |a|2 ab�e−λ

a�be−λ |b|2
)

. (102)

Phase damping is a purely quantum-mechanical noise
that appears in various implementations of qubits, e.g.,
nitrogen-vacancy centers, where there is a large mismatch
between transition energies of the qubit and that of the bath
spins [62,63] (hence flip-flop interactions are suppressed).
One possible way to arrive at this noise via a thermal oper-
ation [see Eq. (25)] is to consider two systems, where the
action of one on the other can be ignored (e.g., when one
of the systems is macroscopic). Therefore, the larger sys-
tem will be in local equilibrium, i.e., in the thermal state
τ . Furthermore, the joint Hamiltonian of the two systems
can be written as Heff(t)+ H B, where Heff is an effec-
tive stochastic Hamiltonian of the system. Averaging over
all realizations of the stochastic noise, one can arrive at
Eq. (102), where λ is generally a function of time.

It is known in the literature (see, e.g., Ref. [11]) that a
phase-damping channel is equivalent to a phase-flip chan-
nel T (·) = (1 − p)(·)+ pZ(·)Z, where 0 ≤ p ≤ 1 is the
phase-flip probability. This equivalence follows from the
unitary freedom in the choice of the Kraus operators of
the phase-damping channel, as

{(
1 0
0

√
1 − λ

)
,
(

0 0
0

√
λ

)}

→
{√

μ

(
1 0
0 1

)
,
√

1 − μ

(
1 0
0 −1

)}
, (103)

where μ = (1 − √
1 − λ)/2. Consequently, we need only

correct the phase-flip channel. This can be done by encod-
ing S using two ancillary qubits A = A1A2 in the exact
same way as for a bit-flip noise, with the difference that
we include an additional step of applying a Hadamard gate
to each of the three qubits [11], leading to the encoding

(a|0〉S + b|1〉S)⊗ |0〉A1 ⊗ |0〉A2

→ a| + ++〉SA + b| − −−〉SA ≡ |�〉SA, (104)

where |±〉 = (|0〉 ± |1〉)/√2. Therefore, we can continue
in the exact same way as for the bit-flip case, but in the |±〉
basis, to arrive at the exact same results.

VI. COMPARISON WITH PREVIOUS RESULTS

Our main results can be summarized by Eqs. (24), (58),
and (91). At this stage, we would like to show that Eq. (58)
generalizes a result of Sagawa and Ueda [27]. First, note
that the authors do not make the distinction between the
main system S and the ancilla system A in their letter. As a
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consequence, there is no implementation of an initial pro-
jective measurement to prepare the ancillary system and
hence the classical register X is not present. More impor-
tantly, the authors do not discard the classical registers,
which is equivalent to refraining from the erasure of the
memory of Maxwell’s demon (a practice that has histor-
ically led to many contradictions in thermodynamics, as
we discuss in Sec. I). This leads to the absence of the
important H(XY|E)σf term in the entropic balance lead-
ing to Eq. (58). Making these changes in the derivation,
we arrive at

Qh

kBTh
+ Qc

kBTc
≤ Se + IG, (105)

which is the main result of Ref. [27], but with two impor-
tant generalizations. (i) The initial state of the system
is arbitrary in our setup (rather than thermal). (ii) The
quantum measurement stage is completely general and
the information gain from the measurement is quantified
by the Groenewold information gain: this is in contrast
with the special case of efficient measurements made in
Ref. [27], where the information gain is quantified by the
“quantum-classical mutual information,” which is a spe-
cial case of the Groenewold information gain for efficient
measurements.

A important attempt to derive the second law of QTD in
the context of QEC has been made in Ref. [26]. There, the
authors arrive at a formula for the total entropy production
of a QEC engine. However, we consider this derivation
to be too restrictive, for the following reasons. First, the
authors consider a system of qubits acted upon indepen-
dently by generalized amplitude damping noise (which is a
special type of thermal noise). Second, the dissipated heat,
work, and entropy production during the error-syndrome-
measurement stage is neglected, whereas we show that it
deserves careful consideration. Third, the ancillary system
(also a collection of qubits) is initialized and recycled back
to its ground state, implying the presence of a cold bath
of temperature Tc = 0. The latter implication is not only
unphysical but it also does not allow for the derivation of
other forms of the second law that include arbitrary values
of the cold-bath temperature, e.g., the Clausius formula-
tion as Eq. (58) in our paper. Incidentally, it is exactly
this issue that is circumvented by initializing the ancil-
lary system from a thermal state rather than its ground
state, including the classical register X , and conducting
the initial-measurement stage before proceeding with the
encoding, as seen in Fig. 2. Finally, it is worth mention-
ing that, similar to Ref. [27], the authors do not consider
the entropic cost of erasing the memory of the classical
registers in their final entropic balance.

An important approach for including the work costs of
measurement and erasure processes in a heat engine with
feedback control has been discussed in Ref. [64]. Indeed,

this prior contribution can be seen as complementary to our
approach in Sec. III when the measurement on the system
is conducted adiabatically, i.e., when no measurement heat
is dissipated. A similar discussion can be found in Ref. [65]
in the context of entanglement-driven quantum engines.

Finally, we would like to note that further insights into
integrating the Groenewold information gain (when it is
positive) and thermodynamics under a more unifying con-
text of work extraction can be found in past literature (see,
e.g., Refs. [23,65,66]).

VII. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we take a thermodynamic point of view
with respect to general quantum measurements (described
in the quantum instrument formalism) and quantum error
correction. The former allows us to arrive at an important
bound on the measurement heat in terms of the Groe-
newold information gain. This bound grants a physical
interpretation of negative values of the Groenewold infor-
mation gain as the directionality of the dissipated heat that
is physically allowed in a measurement process.

Moreover, we consider the thermodynamic approach to
quantum error correction, regarding it as a heat engine with
a feedback controller. This approach allows us to derive the
second-law inequality for a QEC engine under very gen-
eral conditions. As a manifestation of the second law in this
setting, we show that a trade-off relation exists between the
maximum achievable fidelity of the error-correction pro-
cess and the attainability of super-Carnot efficiencies of a
QEC engine.

An open question here is that of time, namely: how long
does the QEC process take to be completed? Is there any
similar trade-off relation between the time that it takes and
the entanglement fidelity? This is directly related to the
distinction between operating at maximum efficiency and
maximum power for a heat engine. Extensions to multiple
rounds of QEC will also be of practical interest in future
works. Another interesting question is the manifestation
of the second law in the strong coupling regime between
the system and the hot bath. It is well known that, in
this regime, there is no agreed-upon definition of heat and
internal energy [53,54] and so a consideration of various
definitions and their outcomes can be insightful.

We would finally like to mention that our efficiency-
fidelity trade-off shares some similarities with thermo-
dynamic uncertainty relations (TURs) [67–70]. This can
serve as a second point of contact between thermodynam-
ics and error correction.
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APPENDIX A: WORK AND HEAT

In this appendix, we define the thermodynamic quanti-
ties of work, internal energy, and heat in a general setting
(both weak and strong coupling limits).

Consider two systems, A and B, and suppose that the
collective system AB evolves unitarily in the time inter-
val [0, t] via the joint unitary VAB

t . From the conservation
of the total von Neumann entropy under unitary evolution
H(A, B)σt = H(A, B)σ0 , we find the following for the sum
of the local entropy changes:

�H(A)+�H(B) = �I(A : B) ≥ 0, (A1)

where we use the definition of conditional entropy. We
postpone the standard assumption of I(A : B)σ0 = 0 to
arrive at more general results [52,72,73], since in practice
one might not be able to initialize AB in a product form.
Next, we relate the entropy change of B with D(σ B

t ‖σ B
0 ).

This can be achieved as follows:

�H(B) = −TrB
[
σ B

t ln σ B
t

] + TrB
[
σ B

0 ln σ B
0

]
(A2)

= −TrB
[
σ B

t ln σ B
t

] + TrB
[
σ B

t ln σ B
0

]

− TrB
[
σ B

t ln σ B
0

] + TrB
[
σ B

0 ln σ B
0

]
(A3)

= TrB
[
(σ B

0 − σ B
t ) ln σ B

0

] − D(σ B
t ‖σ B

0 ). (A4)

The operator ln σ B
0 can be interpreted as an effective unit-

less Hamiltonian of the system B (i.e., βH B
eff where β

plays the role of inverse temperature); as a consequence,
β−1D(σ B

t ‖σ B
0 ) can be interpreted as the change in the

free energy from the Gibbs state of B with the effective
Hamiltonian. Combining Eqs. (A1) and (A4), we arrive at

TrB
[
(σ B

0 − σ B
t ) ln σ B

0

] = −�H(A)+�I(A : B)

+ D(σ B
t ‖σ B

0 ). (A5)

Now, we make an assumption about controllability,
thereby operationally distinguishing system A from B.
Namely, we assume that system A can be controlled by an
external parameter with predetermined dynamics {λt}t≥0;
this is in contrast with system B, which is assumed to be
uncontrollable [51]. The assumption of controllability is

further extended to the interaction between A and B, since
one might want to describe a measurement process or a
thermalization process that has a coupling phase (with a
measurement apparatus or a heat bath, respectively) and
a decoupling phase. This can be written using the interac-
tion Hamiltonian V AB, which depends on a second external
control parameter {νt}t≥0 with predetermined dynamics.
The controllability assumptions are reflected in the total
(time-dependent) Hamiltonian as

H AB
t = H A

λt
+ H B + V AB

νt
, (A6)

with the interaction unitary given by

VAB
t = T exp

{
− i

�

∫ t

0
dτH AB

τ

}
, (A7)

where T denotes time ordering. Due to the fact that the
collective system AB is isolated, the change in the total
energy of the system is (by definition) equated to the work
done on AB through the control parameters λt and νt as

WAB
t =

∫ t

0
dτTr

[
σ AB
τ (∂τH

A
τ + ∂τV

AB
τ )

]
(A8)

= Tr
[
σ AB

t H AB
t

] − Tr
[
σ AB

0 H AB
0

]
. (A9)

In the weak-coupling limit, this definition reduces to the
local definition WA

t = Tr
[
σ A

t H A
λt

] − Tr
[
σ A

0 H A
λ0

]
[51],

which we use in this paper.
In order to define what we mean by heat, we need to

specify what we mean by the internal energy U A
t of the

system A, at time t. To this end, there have been vari-
ous approaches in the literature. The first is that internal
energy has to be a local quantity; i.e., it has to be repre-
sented in terms of the reduced density matrix of the system
under consideration [54]. The second approach is that the
definition of internal energy need not be a local quantity
and the heat dissipated from A should (by definition) be
equal to the heat absorbed by B [53], i.e., QA

t = −QB
t at

all times. Both of these approaches can be used to derive
the laws of thermodynamics and they become identical in
the weak-coupling limit. In this paper, we adopt the sec-
ond approach by using the same definition as in Ref. [53],
in the form

U A
t = Tr

[
σ AB

t (H A
λt

+ H AB
νt
)
]

, (A10)

which is clearly nonlocal in A and reduces to the well-
known (local) definition TrA

[
σ A

t H A
λt

]
in the weak-coupling

limit. The definition in Eq. (A10) is motivated by the intu-
ition that the concept of an internal energy local to system
A is unclear if its interaction with a second system B is not
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negligible. From Eq. (A10), we easily obtain the first law
of thermodynamics:

�U A = WAB
t + 〈H B〉0 − 〈H B〉t, (A11)

where QA
t = −QB

t := 〈H B〉0 − 〈H B〉t is interpreted as
the heat absorbed by A whenever B is a heat bath.

We consider the important case when system B is a heat
bath. This is the most standard case in the literature, where
we assume that system B is initially in a thermal state σ B

0 =
τB = exp(−βH B)/ZB. Then, Eq. (A5) gives

β�〈H B〉 = −�H(A)+�I(A : B)+ D(σ B
t ‖τB),

(A12)

which, combined with the assumption of an initial prod-
uct state σ AB

0 = σ A
0 ⊗ τB, leads to the well-known Lan-

dauer bound βQB
t ≥ −�H(A) [32,55,74]. System A in this

context is usually identified with the memory system of
Maxwell’s demon (not to be confused with Maxwell’s
demon itself, which typically represents the measurement
apparatus). Using Eqs. (A12) and (A11), we arrive at

�U A = WAB
t + kBT�H(A)

− kBT
[
�I(A : B)+ D(σ B

t ‖τB)
]

. (A13)

When the initial state of AB is of product form, we
immediately obtain the familiar first law inequality of
nonequilibrium thermodynamics [51]:

�U A ≤ WAB
t + kBT�H(A), (A14)

where the equality is reached for a thermodynamically
“reversible” process described by the conditions I(A :
B)σt = 0 and D(σ B

t ‖τB) = 0. Furthermore, Thompson’s
formulation of the second law [75] follows almost imme-
diately from the definition of free energy of A, as [53]

FA
t := U A

t − kBTH(A)σt , (A15)

which, combined with Eq. (A14), yields

WAB
t ≥ �FA. (A16)

These rederivations of well-known thermodynamical rela-
tions further justify the definitions of internal energy
U A and thermodynamic work WAB for arbitrary coupling
strengths between systems A and B as used in Ref. [53].

APPENDIX B: APPROXIMATE PYTHAGOREAN
THEOREM OF RELATIVE ENTROPY

Consider three density matrices, τ , ω, and θ , that are
selected from D(H) (they need not have a temporal order

with respect to some dynamics). The Pythagorean theorem
of relative entropy states that, whenever the condition

Tr[(θ − ω)(lnω − ln τ)] = 0 (B1)

is satisfied, it is possible to write the relative entropy
between any pair of the three density matrices [e.g.,
D(θ‖τ)] as the sum of the relative entropies of the other
two pairs [56], namely that

D(θ‖τ) = D(θ‖ω)+ D(ω‖τ). (B2)

This is seen by a simple algebraic manipulation of the left-
hand side, which generally leads to

D(θ‖τ) = D(θ‖ω)+ D(ω‖τ)
+ Tr[(θ − ω)(lnω − ln τ)]. (B3)

However, when the condition in Eq. (B1) is not satisfied,
we can still quantify the satisfiability of the Pythagorean
theorem by using the trace norm as

|Tr[(θ − ω)(lnω − ln τ)]| ≤ ‖(θ − ω)(lnω − ln τ)‖1 ,
(B4)

which leads to the bound

|D(θ‖τ)− [D(θ‖ω)+ D(ω‖τ)]|
≤ ‖(θ − ω)(lnω − ln τ)‖1 . (B5)

Note that the right-hand side is still equal to zero when
(θ − ω) and (lnω − ln τ ) satisfy the condition in Eq. (B1).
Otherwise, using Hölder’s inequality, we can bound the
right-hand side as

‖(θ − ω)(lnω − ln τ)‖1 ≤ ‖θ − ω‖1 ‖lnω − ln τ‖∞ .
(B6)

Therefore, we conclude our analysis by stating an approx-
imate version of the Pythagorean theorem of relative
entropy: if ‖θ − ω‖1 ≤ ε and ‖lnω − ln τ‖∞ ≤ δ, then the
Pythagorean theorem of relative entropy is satisfied with an
error of at most εδ, namely

|D(θ‖τ)− [D(θ‖ω)+ D(ω‖τ)]| ≤ εδ. (B7)
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