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Collisions of False-Vacuum Bubble Walls in a Quantum Spin Chain
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We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of “false vac-
uum” in a quantum spin chain near criticality, where the low-energy physics is described by a relativistic
(1+1)-dimensional quantum field theory. We consider bubbles whose walls are kink and antikink quasipar-
ticle excitations, so that wall collisions are kink-antikink scattering events. To construct these bubbles in
the presence of strong correlations, we extend a recently proposed matrix product state (MPS) ansatz for
quasiparticle wavepackets. We simulate dynamics within a window of about 1000 spins embedded in an
infinite chain at energies of up to about 5 times the mass gap. By choosing the wavepacket width and the
bubble size appropriately, we avoid strong lattice effects and observe relativistic kink-antikink collisions.
We use the MPS quasiparticle ansatz to detect scattering outcomes. (i) In the Ising model, with transverse
and longitudinal fields, we do not observe particle production despite nonintegrability (supporting recent
observations of nonthermalizing states in this model). (ii) Switching on an additional interaction, we see
production of confined and unconfined particle pairs. We characterize the amount of entanglement gener-
ated as a function of energy and time and conclude that our classical simulation methods will ultimately
fail as these increase. We anticipate that kink-antikink scattering in 1+1 dimensions will be an instructive
benchmark problem for future quantum computers and analog quantum simulators.
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It is possible that the known universe is built on top
of a metastable, or “false”-vacuum state. In this scenario,
there is a tiny but nonzero probability of a small bubble
of “true” vacuum forming via tunneling. The bubble inte-
rior has a lower energy density than its surroundings and
so it expands, its walls accelerating, bulldozing everything
in their path. If multiple bubbles of true-vacuum form far
apart, their walls will rush toward each other and even-
tually collide, producing showers of entangled particles.
It is also possible that such events have already occurred,
and are thus relevant for the evolution of the early universe
[1–5].
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Vacuum bubble walls are topological excitations and
can be modeled as domain walls or kinks. Particle produc-
tion is known to be suppressed in some weakly coupled
models of relativistic kink-antikink collision (see, e.g.,
Refs. [6,7]), but much less is known about scattering of
topological excitations under strong interactions, where a
lot of entanglement is typically generated and semiclassi-
cal methods break down. Whether or not these phenomena
are important for simulations of the early universe is an
open question. Simulations that can handle such nonclas-
sical dynamics could provide an important window into
these high-energy, strongly coupled dynamical processes.

However, one does not easily simulate the dynamics of
a strongly interacting quantum field theory (QFT), at least
using classical computers. Quantum Monte Carlo—the
workhorse for simulations of equilibrium phenomena in
lattice systems (such as lattice QCD [8])—is hard to apply
efficiently to real-time dynamics, although recently some
progress has been made (e.g., Ref. [9]). Tensor-network
methods also show promise, and have been used to simu-
late nontrivial dynamical phenomena in (1+1)-dimensional
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systems, such as string breaking in lattice gauge theory
[10–15]. Nevertheless, although the computational cost is
typically linear in spatial volume, it increases exponen-
tially with time in the general case (due to linear scaling
of entanglement entropy), the exponent increasing with the
number of spatial dimensions.

In principle, quantum computers (both analog and dig-
ital) can simulate dynamics of quantum field theories at
long timescales with polynomial costs [16,17], a topic
which has recently attracted great interest, with many dig-
ital [18–32] and analog [33–38] proposals (see Ref. [39]
for a review). However, existing or near-term digital quan-
tum devices are noisy, such that only shallow quantum
circuits can avoid being overwhelmed by errors. Analog
quantum simulators are currently more capable, supporting
longer coherence times, but also have no general mech-
anism for correcting errors. As such, for the time being,
the physical systems that can practically be simulated are
limited to simple models and we expect classical simu-
lations to perform better, with quantum devices catching
up as the hardware improves, ultimately beating classi-
cal computers by an exponential margin with the arrival
of large-scale, fault-tolerant digital quantum computers,
permitting more complex simulations. Thus, dynamical
simulations of phenomena like false-vacuum collapse are
physically motivated applications for quantum computers
and analog quantum simulators, and simple models can
be used as benchmark problems for present and near-term
quantum devices. To understand which problems make
the most suitable quantum benchmarks, it is important to
explore the limits of classical methods.

We address this question by developing a framework for
classically simulating the full quantum dynamics of rela-
tivistic false-vacuum bubble-wall collisions in 1+1 dimen-
sions on the lattice, using matrix product states (MPSs)
[40,41] to represent the evolving state. This is compu-
tationally feasible as long as the state does not become
too entangled. We demonstrate our methods on a sim-
ple lattice model with emergent relativistic, strongly cou-
pled false-vacuum physics, showing that they can work
away from perturbative approximations. By highlighting
the limitations of such classical methods, our work clar-
ifies where quantum advantage might potentially arise in
relatively near-term quantum simulators. In the following
paragraphs, we outline the structure of this paper.

To improve both the interpretability and the computa-
tional efficiency of our simulations, we choose our initial
states to be false-vacuum bubbles whose walls are single
topological particles: a kink and an antikink. We motivate
this choice in Sec. I.

In Sec. II we explain our selection of lattice model:
rather than a lattice-regularized QFT Hamiltonian (see,
e.g., Refs. [10–15,17,42,43] for MPS simulations of these),
which in the case of bosonic fields requires a truncation of
an otherwise infinite Hilbert space for each lattice site, we

consider a quantum spin chain, chosen and tuned so that its
low-energy physics is governed by an emergent relativistic
QFT. This is known to occur in the vicinity of many con-
tinuous phase transitions, where the emergent QFT is often
a (by definition relativistic) conformal field theory (CFT)
(see, e.g., Ref. [44]). To avoid strong lattice effects, we
ensure that the kink and antikink lattice velocities remain
below their maximum values.

The initial state preparation for our dynamical simula-
tions is subtle, because the kink-antikink pair is not an
energy eigenstate. As discussed in Sec. III, we take care to
prepare initial kink and antikink wavepackets (efficiently
represented as MPSs) that are broad compared to the lattice
spacing, and are not contaminated by additional unwanted
excitations.

We successfully simulate inelastic kink-antikink colli-
sions in our spin-chain model, including particle produc-
tion, over about 1000 lattice sites at energies of up to
about 5mμ, where mμ is the mass of the lightest quasi-
particle, as we detail in Sec. IV. We develop tools for
analysis of the outgoing particles produced in inelastic
kink-antikink collisions and use them to show that parti-
cle production is strongly suppressed in the Ising model
with intrinsic Z2 symmetry breaking, even though the
model is nonintegrable in that case. We further show that
copious particle production occurs once a Z2-symmetric
three-site local interaction turns on. We also quantitatively
track the growth of entanglement entropy during repeated
kink-antikink collisions, thus inferring how large a bond
dimension is needed to provide an accurate approximation
to the evolving quantum state.

Section V contains concluding remarks, and further
details of our methods and results are provided in the
appendices.

Before proceeding, we note that although our work is
partially motivated by a potential connection with early
universe cosmology, we would need to reach energies
several orders of magnitude higher than those of our
present simulations, as well as increase the number of
spatial dimensions, in order to study models of direct
relevance to the early universe. Both of these are chal-
lenging and our work can represent, at most, a small step
toward performing such simulations at strong coupling.
On the other hand, we feel that our studies of inelastic
scattering events in a strongly coupled relativistic quan-
tum field theory, and of the entropy generated in such
events, are of intrinsic interest apart from any cosmological
motivation.

I. BUBBLE STRUCTURE

In 1+1 dimensions, a bubble of false vacuum separates
two regions of true vacuum. Such a bubble may also be
viewed as a confined pair of topological excitations—a
kink and an antikink—with the false vacuum playing the
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FIG. 1. Sketch illustrating the relaxation of a false-vacuum
bubble in a spin chain. The magnetization 〈Z〉 is positive in
the true vacuum, but negative in the false vacuum. A bubble-
wall collision is a scattering process, which may be (a) free (no
interaction), (b) elastic (no particle production), or (c) inelastic
(particle production). Note that in free and elastic scattering of
topological particles the left (right) particle always remains a
kink (antikink).

role of a low-energy string that provides the confining
force. The metastability of the false vacuum corresponds
to suppression of string breaking [45]. We simulate the
relaxation of bubbles in which the kink and antikink are
initially single, localized, spatially separated topological
particles of low mass. We henceforth use “kink” and
“antikink” to refer exclusively to such topological parti-
cles, and “bubble” to refer to a false-vacuum bubbles so
composed. Although a general false-vacuum bubble could
have a more complicated wall structure (whose dynam-
ics one could also simulate using MPSs), we restrict our
initial states in this way in order to make the simulation
outcome easier to interpret: if the bubble walls are topo-
logical quasiparticles then no particles will be produced
until the walls collide and the collision can be thought
of as a kink-antikink scattering event with a single input
channel. Such scattering events may be free (no interac-
tion), elastic (interaction, but no particle production), or
inelastic (particle production), as illustrated in Fig. 1. Parti-
cles produced may include nontopological particles, which
we call mesons (following Ref. [46]) because they can
be thought of as bound kink-antikink pairs in our model.
These are particularly easy to observe, since outgoing
mesons are not subject to a confining force and will prop-
agate ballistically, quickly separating from any confined
particles.

Previous work on related phenomena includes MPS
simulations of string breaking in the Schwinger model
[11–15,47], where the initial state is typically prepared
by applying a bare string operator to the vacuum. This
generally creates excitations involving multiple particles
of different energies, highly localized at the string edges,
leading to relatively complex dynamics. Although such
dynamics can still be simulated using standard MPS tech-
niques, the rapid resulting entanglement growth can make
it difficult to reach long times and to treat large systems.
Such strings can be smeared out into wavepackets (as

(a) (b)

FIG. 2. Evolution of the excess energy density e (relative to
vacuum), as a fraction of total excess energy E, in a spin chain
for two initial states: (a) created by applying a spatially smeared
string operator to the vacuum and (b) constructed from MPS ten-
sors to contain kink and antikink quasiparticle wavepackets. In
(a) meson pairs are produced immediately at the string edges,
whereas in (b) there is no particle production until the initial kink
and antikink collide. The dynamics are restricted to a window
of about 1000 sites, leading to boundary effects in (a). For more
details, see Appendix F.

considered, for example, in some recent work on con-
fined excitations in spin chains [35,48]), which focuses the
wavepacket momenta, significantly reducing the energy
and entanglement growth. Nevertheless, the smeared string
will still generally create multiple species of topological
excitation, as shown in Fig. 2.

Recently, techniques have been developed [49] to con-
struct wavepacket states with selective particle content in
generic (1+1)-dimensional systems using MPSs [50]. A
main result of our paper is that we can extend those tech-
niques to build initial bubbles whose walls are kink and
antikink quasiparticle wavepackets. Apart from improv-
ing the interpretability of results, as discussed above, this
further reduces the energy and the rate of entanglement
growth compared to smeared string excitations, which
enables us to treat larger systems and simulate for longer
times.

II. SELECTING A SPIN CHAIN

We seek a spin chain whose infrared (IR) physics is
described by a relativistic emergent field theory support-
ing confined kinks. In principle, there are many suitable
models: an emergent field theory of confined kink-antikink
pairs can be engineered by starting with a spontaneously
broken discrete symmetry, which provides multiple vacua
and topological excitations. We then tune close to a
symmetry-breaking phase transition, typically described
by a CFT, and finally add a weak symmetry-breaking field
to lift the vacuum degeneracy and confine the kinks. We
must take care, however, since emergent field theories
of such spin chains are sometimes integrable [51–54], in
which case scattering, including kink collision, is always
elastic. If we want to observe particle production in the
emergent field theory, we must avoid integrability.
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FIG. 3. Partial phase diagrams of the extended Ising chain
[55,56], both without and with a small longitudinal field h that
breaks the Z2 symmetry. At h = 0, g = 1 there is a continu-
ous (symmetry-breaking) phase transition described by the Ising
CFT for λ � 0.428, and by the tricritical Ising (TCI) CFT at
λ ≈ 0.428. By studying the spin chain near to these transitions
(g → 1, h → 0), we can access emergent, relativistic quantum
field theories with confined kinks [57,58]. Points (i), (ii), and (iii)
correspond to the data shown in the figures below.

We choose an extension [55,56] of the transverse-field
Ising chain

H =
N∑

j =1

[−Zj Zj +1 − gXj − hZj

+ λ(Xj Zj +1Zj +2 + Zj Zj +1Xj +2)], (1)

where X , Z are Pauli matrices. At h = 0, this model has a
Z2 symmetry (Zj → −Zj , Xj → Xj ) that is spontaneously
broken when g < 1 for a large range of λ: see Fig. 3
for a phase diagram. For λ = 0, we have the transverse-
field Ising chain, which already supports confined kinks for
g < 1 and 0 < |h| � 1 [57,59]. However, for small |h|, it
is very close to being integrable [52,57] (both the emergent
field theory and the spin chain itself are noninteracting for
h = 0). Previous work has shown that kink-antikink pair
states in this model can have extremely long lifetimes [60–
64], with recent numerical studies suggesting that these
long-lived states can have energies well above the thresh-
old for inelastic scattering [45,65,66]. This is despite the
lack of any exact conservation law protecting these excited
meson states from decay.

Turning on λ allows us to go beyond this “almost-
integrable” regime, since both the spin chain itself and the
emergent field theory are nonintegrable for λ > 0, g < 1,
even at h = 0 [54,58,67,68]. We present simulations at a
point along the Ising line λ = 0, labeled (i) in Fig. 3, as
well as at two points, labeled (ii) and (iii), closer to the
tricritical Ising (TCI) point at λ → 0.428, g = 1, h = 0.

In the vicinity of the TCI point, Eq. (1) exhibits the
same universal properties [67,68] as the Landau-Ginzburg
theory with action

ALG =
∫

d2x
[ 1

2 (∂μφ)
2 + a2φ

2 + a4φ
4 + φ6], (2)

with the parameters corresponding as g ∼ a2, λ ∼ a4, and
the Z2-breaking field controlled by h mapping to odd
powers of φ.

III. METHODS

We first describe how to construct the states relevant to
our simulations. This includes the bubble states, consist-
ing of a localized kink and antikink pair, which we use
to initialize our simulations. We choose the kink and the
antikink to be topological quasiparticles of our spin chain
model.

For simplicity, we begin with the construction of states
in the bare setting λ = 0, g = 0, where quantum fluc-
tuations vanish, before moving onto the dressed setting,
where we use MPSs to capture, nonperturbatively, the fluc-
tuations that appear. In both cases we first describe the true
and false vacua, then the kink and antikink states, before
explaining how to combine them into a bubble. We work
in the Z basis throughout: Z| ↑〉 = | ↑〉, Z| ↓〉 = −| ↓〉.

A. Bare states

Let us first consider λ = 0, g = 0, for which the terms
in Eq. (1) commute and there are no quantum fluctuations
(eigenstates of H can always be chosen to have definite
spin orientations in the Z basis). In this bare case, the
true and false vacua are simply |�bare〉 := | · · · ↑↑↑ · · · 〉
and |�bare〉 := | · · · ↓↓↓ · · · 〉, respectively. A kink is a
domain wall |κbare

j 〉 := | · · · ↑↓j · · · 〉, here located at posi-
tion j , and an antikink is |κbare

k 〉 := | · · · ↓k↑ · · · 〉. These
highly localized excitations have maximal momentum
uncertainty. By smearing them out into wavepackets, e.g.,∑

j fj |κbare
j 〉, we can make them quasilocal in both position

and momentum space. We consider Gaussian packets

fj (x, p) := eipj e−(j −x)2/σ 2
, (3)

centered at position x and momentum p , with spatial width
σ . In the maximally delocalized limit σ → ∞ we obtain
a momentum eigenstate with momentum p . By combining
kink and antikink wavepackets we can construct a false-
vacuum bubble with quasilocalized walls at positions xL
and xR:

|�bare〉 =
∑

j<k

fj (xL, pL)fk(xR, pR)|κκbare
jk 〉. (4)

Here xR − xL determines the size of the bubble, pL and pR
specify the expected momenta of the bubble walls, and we
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define the localized kink-antikink pair states

|κκbare
jk 〉 := | · · · ↑↓j · · · ↓k↑ · · · 〉. (5)

Note that the restriction j < k (the kink must be to the left
of the antikink) means that the Gaussian packets (3) are
truncated. In practice, one can ensure that this truncation is
negligible by choosing xL, xR, and σ so that the coefficients
are very small when j ∼ k.

In addition to kinks and kink-antikink pairs, the bare
“meson” states |μbare

j 〉 := | · · · ↑↓j ↑ · · · 〉 and pairs thereof
|μμbare

jk 〉 := | · · · ↑↓j ↑ · · · ↑↓k↑ · · · 〉 represent classes of
topologically trivial excitations. The dressed counterparts
of these “scalar” particles are among the possible outcomes
of kink-antikink scattering events.

B. Dressed states as matrix product states

While the bare states introduced above illustrate many
relevant properties of the states we wish to construct
for H(g > 0, λ ≥ 0), they are all eigenstates of the bare
Hamiltonian H(g = 0, λ = 0), implying that kinks and
antikinks do not propagate [69]. They are also prod-
uct states, devoid of entanglement. To obtain interesting
dynamics, we need g > 0, for which all the bare states have
counterparts, nonperturbatively dressed by fluctuations,
possessing exponentially decaying correlations and entan-
glement between lattice sites. In addition to this entan-
glement, for g > 0, evolution by H can generate new
entanglement, in contrast to the bare case.

The dressed states and their dynamics under H can
be represented, nonperturbatively, using MPSs [40,41,70–
72], as a variational class of states with the form

|ψ〉 =
∑

{s}
A(s1)

1 A(s2)
2 · · · A(sN )

N |s1s2 · · · sN 〉, (6)

where N is the number of spins (lattice sites), sj = ↑, ↓ for
our model, and each A(s)j is a Dj −1 × Dj matrix, making
Aj a rank-3 tensor. At the ends of the chain we have D0 =
DN = 1. MPSs can also be illustrated using tensor network
diagrams, which we use in the following for convenience.
For example, we can rewrite Eq. (6) as

(7)

where represents a rank-3 tensor.
Computations with MPSs typically scale as O(D3), with

linear scaling in the number of spins involved in the com-
putation. The dimensions Dj , called bond dimensions, limit
the amount of entanglement that can be represented. We

define the cut entropy at location j ,

S(ρ>j ) = −tr[ρ>j log2(ρ>j )], (8)

to be the von Neumann entropy of the subsystem consist-
ing of all sites> j . In an MPS, the cut entropy at j is upper
bounded as S(ρ>j ) ≤ log2 Dj .

With an appropriate choice of bond dimensions Dj , any
state of a quantum spin chain with N spins can be repre-
sented exactly as an MPS [70]. Furthermore, low-energy
eigenstates of locally interacting one-dimensional lattice
systems with a spectral gap, such as our model (1) at
off-critical parameters, can be represented exponentially
accurately in the bond dimensions Dj , independently of the
system size N [73]. We therefore expect an MPS to accu-
rately represent both the initial and evolved states of our
simulations, provided that we use sufficiently large bond
dimensions Dj . If the bond dimensions are too small, this
will introduce errors.

In our constructions, to avoid boundary effects, we work
directly in the thermodynamic limit N → ∞, using infinite
MPSs (see Appendix A), which we illustrate as

(9)

using trailing legs on the left and right to indicate that the
chain of tensors extends from −∞ to ∞. The numbered
sites 1, . . . , Nw indicate a finite window inside the bulk of
the infinite chain. In Fig. 4, we use similar diagrams to
indicate how our dressed states are constructed as infinite
MPSs.

Vacuum and false vacuum.—The MPSs |�〉 and |�〉
are approximations to the dressed true and false vacua.
They are uniform, infinite MPSs built from tensors
and , respectively. We optimize using variational
methods [10,74–77] to minimize the energy of |�〉. To
find the metastable false vacuum |�〉, we first apply a
global spin flip to |�〉, resulting in another uniform MPS,
whose energy we then minimize. For sufficiently small
g � 1, we observe that the energy-minimization proce-
dure does not find a path to the true ground state, resulting
in a metastable false-vacuum state |�〉, with MPS tensor

, that behaves as an energy eigenstate for all practical
purposes (see Appendix B 2).

Kinks and antikinks.—The MPS |κj 〉 approximates a
dressed, localized kink state. It is constructed by intro-
ducing a new tensor that sits at position j , between
two semi-infinite chains, one consisting of on the left
and one of on the right. The tensor parameterizes
the spatial transition between the true- and false-vacuum
regions. Unlike in the bare case, the transition region may
encompass many lattice sites, as illustrated by the 〈Z〉 plots
in Fig. 4. The antikink |κk〉 is similarly constructed by
introducing a tensor between a chain of on the left
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FIG. 4. Diagram illustrating the various
types of states, and their spin profiles, rel-
evant for simulations. For example, our
initial states are wavepackets constructed
from kink-antikink pairs. The product
states listed are eigenstates of H when g =
0, λ = 0. Away from this regime, we use
MPSs to accurately capture fluctuations in
the vacua, as well as the quasilocal nature
of the excited quasiparticle states.

and on the right. We select and using an MPS
Bloch-state approach [41,75,76,78] so that |κj 〉 and |κk〉
states can be thought of as “position bases” for the kink and
antikink quasiparticles of lowest energy. We may use these
states to construct topological quasiparticle wavepackets∑

j fj |κj 〉 and
∑

k fk|κk〉 [49]. If D is the bond dimension
of the vacuum MPS, such wavepackets have MPS repre-
sentations with bond dimension 2D (see Appendix C for
details).

The Bloch-state approach for finding and is con-
ceptually simpler when h = 0, so that there is no confining
force acting on the kinks and antikinks. We consider the
h 
= 0 case further below. For h = 0, we solve an effec-
tive Hamiltonian for and such that the momentum
eigenstates,

∑
j eipj |κj 〉 and

∑
k eipk|κk〉, approximate the

lowest-energy topological eigenstates of H with momen-
tum p [76]. The resulting tensors , (and hence |κj 〉,
|κk〉) generally depend on the momentum p , but we ignore
this dependence when building wavepackets, aside from
choosing the p used to solve for and to match the
expectation value of momentum in the wavepacket state.
This is justified for Gaussian wavepackets with large σ ,
and hence small momentum variance, if the tensors vary
sufficiently slowly with p .

There is also an important physical reason for choos-
ing σ to be large: in the presence of fluctuations, localized
packets can no longer be truly static, since they are not
eigenstates of H even for h = 0. Instead, they will spread
out as time passes, at a rate dependent on σ . Wavepackets
can be made to spread slowly relative to other processes,
such as the collapse of a false-vacuum bubble, by choos-
ing σ � ξ , where ξ is the correlation length in lattice
units. It is desirable for the kink and antikink wavepack-
ets comprising a bubble to spread only minimally prior to
collision, since then the wavepackets of outgoing quasi-
particles also tend to be well localized, which makes them
easier to characterize.

We now explain how to find and in the |h| > 0
case, where the confining force on kinks and antikinks
means that

∑
j eipj |κj 〉 and

∑
k eipk|κk〉 can no longer be

eigenstates of H . In this case, we find and by opti-
mizing modified energy functions that subtract away the
false-vacuum contributions, which in |κj 〉 and |κk〉 depend
on the positions j and k (thus providing an accelerating
force). We explain this for the case of |κj 〉 and , since
the procedure is completely analogous for |κk〉 and . We
first note that it is possible to choose , by exploiting
a redundancy in the representation of momentum eigen-
states, to achieve 〈κj |κk〉 = δjk (see Appendix C). After
making this choice, we minimize

Ẽ =
∑

jk

eip(k−j )〈κj |(H −
Ej1)|κk〉, (10)

where 
Ej := ∑j −1
−∞ etrue + ∑∞

j efalse captures the infinite
bulk contributions to the energy present in |κj 〉, coming
from the true and false vacua (etrue and efalse are the energy
densities of the true and false vacua). Subtracting them
in this position-dependent way makes the contribution of
each |κj 〉 term to Ẽ finite and independent of j . Note that
the
Ej correction does not affect off-diagonal terms j 
= k
in the sum of Eq. (10). The energy minimization procedure
is easily carried out by slightly adapting the methods of
Ref. [75] (see Appendix C for details).

False-vacuum bubbles.—To build dressed bubble states
|�〉 as MPSs, we proceed analogously to the bare case by
combining a kink and an antikink wavepacket

|�〉 =
∑

j<k

fj (xL, pL)fk(xR, pR)|κκ jk〉, (11)

where, in our simulations, we choose the momenta pL =
pR = 0 and set xR − xL � σ so that fj (xL)fk(xR) is small
for small k − j . The kink-antikink pair states |κκ jk〉 are
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constructed by combining the tensors , , , and
(already optimized to represent the vacua, kinks, and

antikinks) without further modification, as illustrated in
Fig. 4 (see Appendix C for further details). With this
scheme, |κκ jk〉 accurately describes a kink-antikink pair at
asymptotically large separations k − j . However, at small
separations, corrections would generally be needed due
to interaction effects [79]. We again rely on xR − xL � σ

here, which ensures that terms with small separation are
strongly suppressed, so that the error incurred by ignoring
interactions is small.

Mesons and meson pairs.— In addition to the topologi-
cal excitations |κj 〉 and |κ j 〉, we can construct MPS repre-
sentations |μj 〉 of topologically trivial “meson” states. The
meson states are built from the vacuum tensor and the
meson tensor as illustrated in Fig. 4, where we optimize

to represent the topologically trivial particle of lowest
energy using the same Bloch-state approach that we use
to find the kink and antikink tensors (except that no spe-
cial accommodation is needed for h 
= 0 as mesons remain
unconfined). As in the kink-antikink case, we can con-
struct meson-pair states |μμjk〉 by combining two instances
of , separated by vacuum tensors (see Fig. 4). As
discussed below, we can use these meson-pair states to
detect the presence of outgoing mesons (even before they
are visible as particle tracks distinct from an outgoing
false-vacuum bubble).

C. Time evolution

To classically evolve an initial MPS |�(t = 0)〉 in
time, we apply the time-dependent variational principle
(TDVP) [74] within a finite window of the infinite chain
surrounding the initial bubble [77]. The TDVP provides
effective equations of motion for the MPS tensors so
that the evolution of the MPS approximates evolution by
the Hamiltonian H . Assuming that these equations are
integrated accurately, any systematic errors come from
restricting the bond dimension D, and hence the entangle-
ment, in the MPS. If D were allowed to grow arbitrarily
large, the evolution of the state could be computed exactly.
In our simulations, we allow D to grow [80,81] up to a
predetermined maximum value in each simulation, run-
ning the evolution several times with different limits on D
in order to detect any systematic errors due to the result-
ing entanglement restriction. Note that we do not restrict
the MPS tensors within the window surrounding the ini-
tial bubble in any other way: during the evolution the state
is not constrained to the forms illustrated in Fig. 4, but is
allowed to be a general MPS.

For the numerical integration of the TDVP equations of
motion, we primarily use the Runge-Kutta 4/5 algorithm,
which we find provides a good balance of speed and
accuracy except at very early times, where we use the

better-conditioned, but more computationally intensive,
“split-step” integrator of Ref. [81]. These methods are
implemented in the evoMPS PYTHON package [82].

As the state evolves, we monitor its spin and energy
expectation values as well as its entanglement proper-
ties. This allows us to draw conclusions about collision
(scattering) outcomes. For instance, elastic and inelastic
scattering are easily distinguished from the trivial case,
as interaction generically results in entanglement between
any outgoing kinks or particles [83], whereas trivial scat-
tering never does. We can also easily distinguish elastic
and inelastic scattering in many cases. For example, if a
collision produces a pair of mesons, their wavepackets will
spread ballistically since two mesons are not subject to a
confining force. Indeed, any sustained ballistic spread of
energy implies particle production. Importantly, the con-
verse does not always hold, since confined topological
particles different from those of the initial state may also
be produced.

D. Particle detection

Aside from constructing the initial state |�〉, we can also
use MPSs such as |κκ jk〉, representing kink-antikink pairs,
as a kind of particle detector, the inner product 〈κκ jk|�(t)〉
corresponding approximately to the amplitude of a kink-
antikink pair with position j , k at time t. Conveniently,
these states can be made to fulfill 〈κκ jk|κκ lm〉 = δjlδkl (see
Appendix C). We can treat the subspace spanned by these
basis states as an approximate kink-antikink pair “sector,”
which we denote κκ . One reason for its approximate nature
should be familiar from the discussion above: the basis
captures a kink-antikink pair most accurately if the kink
and antikink are smeared out into wavepackets that are
sufficiently broad, so that the wavepacket momenta are
focused around the momentum p used to compute and

. Additionally, the kink and antikink must be sufficiently
separated so that interaction effects are insignificant. Fortu-
nately, these two properties can be checked after projecting
the wavefunction into the |κκ jk〉 subspace. The simplest
way to deal with terms in which the kink and antikink
are too close together is to simply exclude them from
the projection subspace. Inaccuracies due to the momen-
tum dependence of and can be mitigated in a few
ways: assuming the momentum dependence is not too
strong, the simplest strategy is to tune and to match
the expected momentum of the projected wavefunction. A
more precise result can be had via a Fourier analysis, in
which the detection subspace is further restricted to a range
of momenta that match and . See Appendix D for a
more detailed, technical discussion.

The κκ subspace is already sufficient to detect inelas-
tic scattering: if the portion of the wavefunction within
the subspace drops significantly during evolution, particle
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production has likely occurred. Going further, we can con-
struct quasiparticle position bases for other quasiparticle
types, both topological and nontopological. To this end,
we define the MPS |κ(a)j 〉, |κ(a)j 〉, and |μ(a)j 〉, with corre-
sponding tensors (a), (a), and (a), to be approximate
position bases for the ath kink, antikink, and meson quasi-
particles, with a = 0, 1, . . . in ascending order of energy.
We sometimes suppress the superscript (a) when consid-
ering the lowest-energy quasiparticles of each type a = 0.
We compute (a), (a), and (a) by simply solving for
multiple energies in the Bloch-state approach used above
to generate the lowest-energy kink and antikink tensors

, [75,78,84]. This procedure can deliver accurate
quasiparticle states for quasiparticles with energy Ea below
the two-particle threshold [76]. Above that threshold,
these tensors may correspond to unstable excitations. The
procedure also guarantees that 〈κ(a)j |κ(b)k 〉 = 〈κ(a)j |κ(b)k 〉 =
〈μ(a)j |μ(b)k 〉 = δjkδab. The kink, antikink, and meson single-
particle bases are mutually orthogonal by construction, due
to the orthogonality of the true and false vacua in the
thermodynamic limit.

We can construct pair states |κκ(a,b)
jk 〉 and |μμ(a,b)

jk 〉
from this extended set of single-quasiparticle states fol-
lowing Fig. 4. These extended bases are not orthonor-
mal at small separations k − j due to interaction effects.
Nevertheless, we can compute a minimum separation d
for each set of Hamiltonian parameters g,
, h so that
the bases are approximately orthonormal when k − j ≥ d
(see Appendix. C). These restricted bases give us access
to extended kink-antikink κκ(a,b) and meson-pair μμ(a,b)

“sectors,” allowing a much finer analysis of particle con-
tent.

Note that, while it is possible to construct basis states
containing k particles, including k ≥ 3, the cost of com-
puting inner products of these basis states with the evolved
state |�(t)〉 scales as O(N k

w), where Nw is the size of the
lattice window where the state is allowed to differ from
the vacuum. For Nw ∼ 1000, this makes accessing sectors
with k > 2 more challenging. That said, the presence of
outgoing scattering channels can still be inferred indirectly
by looking for a probability deficit after accounting for all
the kinematically allowed k = 2 sectors. We further note
that this limitation does not affect our dynamical simula-
tions, which represent the state as a general MPS rather
than using the quasiparticle basis states, and as such do
not affect the suitability of such simulations as benchmark
problems for quantum dynamical simulations.

E. Sources of error

Vacuum and false vacuum.—The quality of our MPS
approximations, |�〉 and |�〉, to the true and false vacua, is
dependent on the MPS bond dimension D and on the suc-
cess of the optimization procedure used to find the tensors

and . We choose D high enough to ensure that after
optimization, the smallest Schmidt coefficient under a cut
is O(10−6) or smaller [in amplitude—this corresponds to
probabilities O(10−12)]. We optimize the vacua until the
norm of the energy gradient vector is < 10−11, indicat-
ing that we have, to very good approximation, an energy
eigenstate. It is worth noting that, since the vacua are
forced to be translation invariant, in simulations any inac-
curacy leads to spatially uniform (global quench) dynamics
that are easily distinguished from localized quasiparticle
wavepackets.

Kinks, antikinks, and mesons.—The accuracy of our
kink, antikink, and meson Fourier modes is limited by
the vacuum bond dimension. The quality of the localized
wavepackets constructed from the tensors , , which
we use to initialize our simulations, can be evaluated by
projecting the wavepacket states onto the basis of Fourier
modes. We do this for individual kinks in Appendix C,
finding errors of O(10−6). Although we do not directly
check the accuracy of the Fourier modes themselves, the
observation that our kinks and antikinks propagate, to very
good accuracy, in a stable fashion (see the results section
below) until they collide demonstrates that we are success-
fully capturing the targeted topological quasiparticles.

Bubble states.—Beyond any errors in the individual
kink and antikink wavepackets, we ensure that, in our
bubble states, the kink and antikink are sufficiently well
separated such that the initial kink and antikink do not
interact significantly. What can be considered a sufficiently
large separation is evaluated in Appendix D.

Time evolution.—We simulate the full quantum dynam-
ics of our initial states under our spin chain Hamilto-
nian. The only sources of error, aside from the storage
and manipulation of complex numbers using a floating
point representation (we use 128-bit, “double” precision
for complex numbers), are (i) the numerical integration
method used to step through time and (ii) the restriction
of the allowed MPS bond dimensions Dj to a chosen
maximum value (for computational efficiency). In our sim-
ulations, (ii) is by far the dominant source of error (see
Appendix E). For this reason, we carry out our simulations
using several different values for the maximum allowed
bond dimension, in order to probe the sensitivity of each
result to this parameter.

Particle detection.—As for the bubble states, the
particle-pair states we use to detect outgoing particles
are dependent, for accuracy, on the quality of the kink,
antikink, and meson tensors, as well as the validity of
neglecting interaction effects. Again, a minimum separa-
tion between excitation tensors in the pair states is needed
to avoid the latter source of error; see Appendix D. In
some cases, components of the evolving state may not
neatly fall into particle sectors due to lack of separation.
For example, confinement may prevent all terms in an
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outgoing bubble state from being sufficiently well
separated. We note that, even in such cases, our main
result—that we can accurately simulate relativistic kink-
antikink collisions—is not affected by these limitations of
the particle detection scheme.

IV. RESULTS

In the following text and figures, positions are given in
lattice sites (relative to the leftmost point in the simulation
window) and times are scaled so that the maximum kink
velocity, determined from dynamical simulation, is 1 lat-
tice site per unit time. Note that we only scale times in this
way: energies are given, where not specified as ratios, in
unscaled lattice units of Eq. (1). Momenta p are given in
lattice units −π < p ≤ π .

A. Kink dynamics

In the following we consider kinks, but the discussion
applies equally to antikinks. The evolution of a kink-
quasiparticle wavepacket will generically involve propaga-
tion and spreading (delocalization). We wish to construct
wavepackets that are sufficiently broad so that they spread
slowly, relative to propagation. Broader spatial wavepack-
ets lead to slower spread because they have narrower
momentum support; furthermore, spreading is reduced for
wavepackets with higher momentum, because the relevant
part of the kink-quasiparticle dispersion relation Eκ(p)
looks increasingly linear.

For h = 0, we observe that our kink wavepackets indeed
spread slowly as they propagate at their initial set momen-
tum (see Appendix H). In the presence of a confining force

(a) (b) (c)

FIG. 5. Evolution of a single kink in the Z2-broken Ising
model (parameters λ = 0, g = 0.4, h = 0.01). The vacuum bond
dimension D = 6 is allowed to evolve to a maximum D ≤ 32.
The meson mass is mμ ≈ 2.36 and vmax ≈ 0.83, both in unscaled
units of Eq. (1). Spin expectation values 〈Z〉 are shown (a), as
is the position-basis probability (b) |〈κj |ψ(t)〉|2. The momentum
(c) is obtained from the Fourier transform of the position-basis
projection.

FIG. 6. Evolution of the kink velocity, relative to its maximum
value, for the single-kink simulation of Fig. 5, computed from
the projection of the wavefunction into the |κj 〉 position basis in
two different ways: from finite differences of the position expec-
tation value and from the momentum expectation value, via the
numerical dispersion relation E(p). That there is a good match
shows that the kink-quasiparticle ansatz accurately captures the
confined quasiparticles present in the Z2-broken Ising model.

from a symmetry-breaking field h > 0, kinks undergo
acceleration, as expected. A stationary kink is initially
accelerated in the direction of the false vacuum, as the
energy of the false vacuum is converted into kinetic energy
of the kink, as would also be expected in a relativis-
tic QFT, but the long-term behavior is strongly influ-
enced by the lattice. The lattice momentum p is bounded
−π < p ≤ π , and the momentum expectation value of
the kink wavepacket precesses around the unit circle with
ṗ = constant. To understand how the position of the kink
evolves as this happens, we must consider the wavepacket
group velocity v(p) := ∂Eκ(p)/∂p . With an emergent rel-
ativistic QFT governing the IR physics, the dispersion
relation is approximately relativistic [Eκ(p) ∼ √

p2 + m2
κ

for a kink of mass mκ ] for small |p|, becoming almost lin-
ear as p increases. However, due to the bounded nature of
p on the lattice, Eκ(p)must deviate from relativistic behav-
ior as |p| continues to increase. Indeed, assuming that
Eκ(p) is smooth, including at the boundary value Eκ(π) =
Eκ(−π), it is also bounded from above and below. As
such, a wavepacket will typically reach a maximum group
velocity for some p(vmax), after which it will begin to slow
down. Assuming that Eκ(p) = Eκ(−p), it will ultimately
reverse and retrace its path back to its original position
and momentum (with some wavepacket spread), perform-
ing Bloch oscillations. These effects are demonstrated in
the single-kink simulation of Figs. 5 and 6.

B. Bubble dynamics

Instead of Bloch oscillations of individual kinks, we
wish to study the emergent relativistic dynamics of false-
vacuum bubbles comprised of a kink wavepacket and
an antikink wavepacket. In particular, we want to simu-
late kink-antikink collisions at large kinetic energies (to
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increase particle-production amplitudes). Since the kink
and antikink accelerate toward each other under the con-
fining force, we can increase the kinetic energy at the time
of collision by increasing the initial bubble size xR − xL
(and hence the amount of energy stored in the false vac-
uum). However, if we allow the kink and antikink to evolve
for too long prior to collision, their momenta will exceed
|p(vmax)| and they will begin to undergo Bloch oscilla-
tions, deviating from their relativistic behavior. We can
ensure that this does not occur by limiting the initial bubble
size, with the maximum size depending on the Hamil-
tonian parameters g, λ, h. In general, a smaller mass gap
(since h 
= 0, this is the meson mass mμ), measured in lat-
tice units, increases the maximum bubble size, measured in
physical units (multiples of the lattice correlation length ξ ).
Moving closer to criticality thus allows us to reach higher
collision energies relative to the mass gap while keeping
|p| below |p(vmax)|.

We simulated bubble dynamics for the Ising model
(λ = 0) as well as near to the tricritical Ising point of the
extended model (λ > 0) for a range of parameters. We first
focus on the two points marked (i) and (ii) in Fig. 3.

C. The Ising model

In the Ising case (λ = 0) with h = 0, known to be a the-
ory of free kinks, our simulations reproduce the expected
trivial scattering: kinks given an initial nonzero momentum
collide without generating any additional entanglement.
With explicit symmetry breaking 0 < h � 1 we find non-
trivial scattering, as evidenced by entanglement between
the postcollision kink wavepackets. However, even when
the energy is significantly above the meson pair-production
threshold E > 2mμ, there is no obvious ballistic spread to
indicate production of unconfined particles. In Fig. 7, we
show results for g = 0.8, h = 0.007, where we observe the
model to have a mass gap (meson mass) of mμ ≈ 1.04 and
a maximum kink velocity of vmax = 1.6, both in unscaled
units of the lattice Hamiltonian (1). The vacuum correla-
tion length (the length scale of the exponentially decaying
vacuum correlations) is ξ ≈ 1.64 lattice sites.

To confirm that no particle production (even of confined
particles) is occurring, we compute overlaps 〈κκ jk|�(t)〉.
We compute the probability of being in the κκ(0,0) “sector”
by approximating the integral

Pκκ =
∫

dpdp ′|〈κκ(p , p ′)|�(t)〉|2, (12)

where

|κκ(p , p ′)〉 :=
∑

k−j ≥d

ei(pj +p ′k)|κκ jk〉 (13)

and the minimum separation d is chosen to avoid interac-
tion effects between the kink and antikink. See Appendix D

FIG. 7. Spin expectation values and relative energy density
e/E for (i) the Ising model (λ = 0, g = 0.8, h = 0.007, mμ ≈
1.04, vmax = 1.6, ξ ≈ 1.64) and (ii) the generalized Ising model
nearer to the tricritical Ising CFT fixed point (TCI) (λ = 0.41,
g = 0.98, h = 0.001, mμ ≈ 0.43, vmax ≈ 1.58, ξ ≈ 3.63). For
(i), the initial wavepackets have σ = 25 and are 248.5 sites apart
(E/mμ = 3.72). For (ii), σ = 40 with separation 287.4 (E/mμ =
2.62). In the plots, the position is given in lattice sites and the
time units are rescaled such that the maximum kink velocity is 1
lattice site per unit time (as opposed to the unscaled vmax given
above). The MPS bond dimensions are D = 10 and D = 18 for
the vacua of (i) and (ii), respectively. During the simulation the
dimensions are restricted to D ≤ 128 and the integration step size
is δt ≈ 0.08 (0.05 in lattice units of the unscaled Hamiltonian).

for details of the approximation. In this case d = 60 lattice
sites.

We plot the probability 1 − Pκκ of not being in the
κκ(0,0) sector as a function of time for g = 0.8 in Fig. 8.
The results are consistent with purely elastic scattering of
kinks: the probability is estimated to be around O(10−5)

before the first collision, which occurs at t ≈ 140. This
is the same order of magnitude as our numerical esti-
mate of the accuracy of the kink-antikink quasiparticle
basis states, as detailed in Appendix C. After the first
collision, 1 − Pκκ again drops to O(10−5), at a value
slightly higher than the precollision value. The difference
closes as the maximum allowed MPS bond dimension is
increased, leaving little room for any inelastic scattering
process.

During the first collision, components of the state leave
the space of well-separated localized quasiparticles as the
kink and antikink approach each other and begin to inter-
act. We explicitly exclude these interacting states from
the κκ subspace via the minimum separation d = 60 in
Eq. (13); hence, 1 − Pκκ increases significantly until the
kink and antikink wavefronts separate again.

After the second collision, at t ≈ 430, 1 − Pκκ does not
drop as low as O(10−5). However, this should not be
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FIG. 8. Portion of state (by probability) outside of the MPS
kink-antikink subspace κκ(0,0) for simulations (i) and (ii) of
Fig. 7. Here we fully account for momentum dependence of the
basis states |κκ j ,k〉 via a Fourier analysis and count only contribu-
tions with k − j ≥ 60 (see Appendix D). For Ising (i), the small
probability after the first collision of t ≈ 140 indicates elastic
scattering of kinks, in stark contrast with the TCI case (ii), where
the probability remains high after the first collision at t ≈ 250. In
(i), the growth of the postcollision probability with subsequent
collisions is consistent with delocalization of the wavepackets,
since contributions from kink-antikink pairs with k − j < 60 are
not counted. Hence, the larger values for (i) after the second col-
lision at t ≈ 430 should not be taken as evidence of inelastic
scattering.

interpreted as evidence of inelastic scattering. As is
apparent in both Figs. 7 and 8, the kink and antikink
wavepackets broaden significantly with time and succes-
sive collisions. This broadening leads to more terms in the
wavefunction in which the separation of the kink and
antikink remains less than d even between collisions. We
cannot unambiguously count these terms toward the κκ
sector due to interaction effects.

While we cannot entirely rule out inelastic scattering
using our data, the very small value of 1 − Pκκ after the
first collision tells us that any inelastic process would have
to be extremely unlikely to be consistent with these results.
This observation is surprising given that the spin chain
and its emergent field theory are not integrable, but con-
sistent with recent observations of nonthermalizing states
in the Ising model [45,65,66]. We further find that elas-
tic scattering persists even if we allow the kink lattice
momentum to exceed p(vmax), as it does in simulation (i)
of Figs. 7 and 8 (see Appendix G), so that the emergent
relativistic field theory is no longer a good description
of the physics. This is strong evidence that, in the Ising
chain with a weak longitudinal field, bubbles are stable
up to arbitrarily high energies: when a bubble is large
enough, its walls will not meet due to Bloch oscillations,
so no scattering can occur while it remains localized. When
bubbles are small enough for the kinks to collide, our evi-
dence suggests they do so elastically with extremely high
probability.

FIG. 9. Dispersion relations (numerical, using MPSs) of kinks
κ and mesons μ for λ = 0.41, g = 0.98 in lattice units for
Hamiltonian (1). Momentum ranges from −π to π . For mesons,
energies are shown with and without a weak longitudinal field.
Individual kinks do not have a finite energy for h > 0. Thresh-
old energies for pair production are shown (computed assuming
that h = 0 for kinks and h = 0.001 for mesons), as is the energy
(labeled �) of the simulation shown in Fig. 7 for parameter set
(ii). The dispersion relations reach their maximum gradient at
momentum p(vmax) ≈ 0.6.

D. Near the tricritical Ising point

Going to nonzero λ = 0.41, with g = 0.98, h = 0.001,
we find a mass gap of mμ ≈ 0.43 and a maximum kink
velocity vmax ≈ 1.58, both in lattice units of Eq. (1). The
vacuum correlation length is ξ ≈ 3.6 lattice sites. We
choose the initial bubble size so that the energy, shown
in Fig. 9, is well above the pair-production threshold, but
still low enough to keep the kink velocity � vmax at all
times. Here we find clear evidence that unconfined parti-
cles are produced. Most apparently, Fig. 7(ii) clearly shows
ballistic spread of wavepackets emanating from the first
collision event. To further resolve the scattering outcomes,
we project onto meson-pair and kink-antikink-pair quasi-
particle bases, finding four dominant “sectors,” illustrated
in Fig. 10, where we tune the quasiparticle basis MPS to
match the momentum expectation value of the outgoing
quasiparticle wavepackets (as estimated from the Fourier
transform of the projected wavefunctions) and compute
the spin expectation values of the projected wavefunction
for each sector. We also compute the scattering outcome
probabilities (the norms of the projected wavefunctions)
[85]. We find the most likely outgoing configurations to
be: a bubble made of type-0 kinks κκ(0,0) (elastic chan-
nel) with probability P = 62%, then a type-0 meson pair
μμ(0,0) with P = 19%, and finally a bubble made either of
a type-0 kink paired with a type-1 antikink (higher energy)
κκ(0,1), or a type-1 kink paired with a type-0 antikink
κκ(1,0), each with P ≈ 7% (reflection symmetry). These
outcomes are all kinematically allowed, according to the
energetic thresholds shown in Fig. 9.

We note that the (rounded) projection probabilities in
Fig. 10 only add to 95%. This may indicate the pres-
ence of other sectors we have not accounted for, such
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FIG. 10. Spin expectation values, after projecting into selected
quasiparticle subspaces and normalizing, for simulation (ii) of
Fig. 7, bond dimension D ≤ 128, after the first collision (t ≈
426). The amount of wavefunction captured by each (approx-
imately orthogonal) subspace is given as a probability P (see
Appendix D). Included subspaces are μμ(0,0), a pair of mesons
of lowest energy, and κκ(a,b), a bubble made of a kink of type
a and an antikink of type b (where 0 is the lowest-energy kink
quasiparticle, and 1 is the next highest—see Fig. 9).

as a μ(0) paired with a small κκ(0,0) bubble, or a κκ(0,0)

bubble containing one or more quasiparticle excitations
of the false vacuum. Unfortunately, since these “sectors”
each involve at least three quasiparticles, the correspond-
ing position bases have many more terms [O(N 3

w) versus
O(N 2

w) for pairs], making it difficult to compute these pro-
jections [86]. We emphasize, however, that this limitation
only hinders this particular form of analysis of the evolved
state. The dynamical simulation itself is not affected as it
is not restricted to these multiparticle basis states.

It is also possible that various sources of error have
affected results: (i) when excitation tensors in a two-
quasiparticle MPS are close together, so that interactions
are relevant, the state may not accurately represent quasi-
particles, (ii) the MPS representations of the quasiparticle
position states are variational approximations subject to
some error (which also affects the initial state of the simula-
tion), and (iii) although we allow the MPS bond dimension
to increase up to some maximum during simulations (D ≤
128 in this case), errors can still accumulate if that max-
imum is insufficient to capture all entanglement, as well
as due to errors in the numerical integration steps. We do
not explicitly characterize the effects of (ii), but we have
indirect evidence that they are small; see Sec. III E. By
varying the minimum quasiparticle separation used in the
projection, as well as the maximum bond dimension of
the simulation, we are able to characterize effects (i) and
(iii), finding them to amount to changes in the outcome
probabilities of � 0.01, except in the case of κκ(0,1) and

κκ(1,0), in which one of the quasiparticles is heavier than
the other, leading to a smaller separation between the kink
and antikink. In this case, our analysis suggests that the
error here amounts to a change of around ±0.01 in the out-
come probability, possibly more (see Appendix D). This
outcome might be better resolved at higher energies, at
which the kink-antikink separations would increase.

In case of the μμ(0,0) outcome, we cross-check the com-
puted outcome probability by comparing it with the excess
energy (relative to the vacuum) Epkts of the regions con-
taining the ballistic wavepackets, visible in Fig. 7(ii). If
these wavepackets belong to a two-meson “branch” of the
wavefunction, that branch (the portion of the wavefunction
in the μμ(0,0) subspace) must contribute EP to the energy,
where E is the total energy and P is the probability of the
μμ(0,0) scattering outcome. We can therefore estimate P as
Epkts/E. This gives us a P within the range 19% to 20% at
t ≈ 757 (after separation), depending on the precise extent
of the region we sum over (e.g., from site 0 to site 250
for the left packet), compatible with the projected μμ(0,0)

wavefunction.

E. Entropy and computational cost

As evidenced by Fig. 8, the bond dimension of the
MPS representing the evolving state must continue to
grow as time goes on, in order to maintain accuracy.
The cut entropy at location j is a proxy for the required
bond dimension Dj . Figure 11 shows the evolution of the
maximum cut entropy for the simulations of Fig. 7. At
early times, we observe that the maximum cut entropy
jumps dramatically during scattering events, whether elas-
tic or inelastic, remaining almost constant in between.
This is consistent with a model of interacting quasipar-
ticle wavepackets: separated wavepackets undergo stable
propagation until they collide, at which point interactions
generate entanglement corresponding to the different pos-
sible scattering outcomes. At late times, we observe a
temporal broadening of the jumps, consistent with spatial
broadening of the wavepackets involved. Figure 11 also
shows that, although there is cut entropy associated with
the wavepackets themselves, this is quickly surpassed by
the cut entropy in the center of the chain, associated with
entanglement between the left and right outgoing packets.
It is this entanglement between outgoing quasiparticles that
is responsible for the postcollision plateaus visible in the
maximum cut entropy.

The entropy jumps clearly make MPS simulations of
long-time dynamics demanding. However, for the pur-
poses of studying the quasiparticle content of scattering
outcomes, with the incoming quasiparticles chosen via the
initial state, it is enough to accurately simulate a single col-
lision and then wait until the outgoing wavepackets have
separated sufficiently so that interactions between outgo-
ing quasiparticles may be neglected (we assume that the
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FIG. 11. Entanglement entropy (base 2) for cuts (left-right
bipartitions) of the spin chain as a function of time for simula-
tions (i) and (ii) of Fig. 7. Convergence with the bond dimension
D slows as time goes on. For example, in (i) the maximum cut
entropy at D ≤ 128 is very likely not converged after t ≈ 700.

simulation parameters are chosen such that wavepackets
remain localized for sufficiently long times) [87].

We expect the entropy generated in a collision of local-
ized quasiparticle wavepackets to depend on the collision
energy relative to the masses of quasiparticles: the more
scattering outcomes there are, and the greater the probabil-
ity of those outcomes, the larger the postcollision entangle-
ment entropy can be. In Fig. 12, we explore the maximum
cut entropy occurring during the first collision as a func-
tion of energy, controlled via the initial kink separation,
for two sets of Hamiltonian parameters, one (ii) closer
and one (iii) further from criticality. As each datapoint on
this figure requires a full dynamical simulation, we limit
the bond dimension to D ≤ 96 (versus D ≤ 128 of Fig. 7)
to save some computational time. We find that the trend
with increasing bond dimension is nevertheless clearly vis-
ible. We find that the entropy indeed grows with energy,
smoothly increasing even as thresholds are crossed, e.g.,
the 2mμ(1) , 3mμ(0) , and 4mμ(0) thresholds in case (ii) (see
also Fig. 9).

The entropy continues to increase at least until the
energy is sufficient for the kinks to approach the maxi-
mum possible kink velocity prior to collision, at which
point we expect deviations from the emergent relativis-
tic dynamics to become apparent as Bloch oscillations
emerge. In case (iii), Fig. 12 shows that the postcolli-
sion entropy eventually decreases as lattice effects kick
in, coincident with deceleration of the kinks prior to col-
lision. Note that we are able to reach much higher relative
energies with parameters (ii) before encountering obvi-
ous lattice effects. This illustrates the general principle
that more of the emergent relativistic QFT is revealed as
one approaches criticality: the relative energies accessi-
ble by quasiparticles, while avoiding Bloch oscillations
[momenta |p| < p(vmax)], grows as the lattice meson mass
drops.

FIG. 12. Peak maximum cut entropy during the first colli-
sion as a function of energy (ii) close to (λ = 0.41 g = 0.98,
h = 0.001) and (iii) further from the TCI point (λ = 0.3, g = 0.9,
h = 0.0069, mμ ≈ 0.97, vmax ≈ 1.43), with the energy controlled
by the initial kink-antikink separation. The vacuum correlation
length ξ is 3.6 sites for (ii) and 1.8 sites for (iii), indicating that
(ii) is closer to criticality. The initial wavepacket width is σ = 40
for (ii) and σ = 19 for (iii). The kink velocity at the start of the
first entropy jump (see Fig. 11), normalized so that the maximum
is 1, is also shown. Decreasing velocity with energy indicates the
onset of Bloch oscillations. Simulation (ii) of Fig. 7 corresponds
to the leftmost point of the black curves.

We also observe that much more entropy is generated
in the first collision for parameters (ii) than for parame-
ters (iii), even when the relative energy is similar [88].
A significant part of this difference likely comes from a
much higher probability of meson pair production, as well
as the availability of the κκ(0,1) outcomes, in case (ii): the
probability of particle production is < 10% in case (iii) at
energy E/mμ ≈ 2.52, in contrast with approximately 38%
at energy E/mμ ≈ 2.62 in case (ii), according to κκ(0,0)

basis overlaps. This is possible since these two parameter
sets are not chosen to be part of a renormalization group
(RG) trajectory, so that their emergent QFTs need not be
the same.

V. DISCUSSION

Building on recent innovations in the classical sim-
ulation of quasiparticle dynamics using matrix product
states [49], we proposed a framework for simulating and
characterizing the full (nonperturbative) quantum dynam-
ics of false-vacuum bubbles in relativistic QFTs that gov-
ern the IR physics of one-dimensional lattice systems.
While we chose to simulate a quantum spin chain, the
methods we use are general and could also be applied
directly to, for instance, a spatially discretized QFT such
as the Schwinger model or λφ4 theory [10–15,17,42,43].
We also demonstrated that the MPS quasiparticle ansatz,
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with which we initialized our simulations, can be used
to detect quasiparticles that are produced as time evolves.
This allowed us to verify quasiparticle pair production in
the modified Ising model we studied, including production
of different species of confined kink that were not obvious
from examining energy density and spin expectation val-
ues alone. We used the same kind of analysis to confirm a
lack of particle-production in the unmodified Ising model
(with transverse field and small longitudinal field), sup-
porting other recent studies that suggest particle production
is very strongly suppressed [45,65,66].

We were able to significantly improve the efficiency and
interpretability of our simulations by carefully choosing
our initial states in two different ways. Firstly, construct-
ing spatially broad wavepackets allowed us to access the
dynamics of the emergent IR QFT without the spoil-
ing effects of UV, high-momentum components that are
strongly influenced by the lattice. Broad wavepackets also
lead to localization of quasiparticles over long times,
making it easier to characterize scattering outcomes, and
improve the numerical conditioning of the dynamical sim-
ulation (see Appendix F). Secondly, by precisely tuning
the quasiparticle content of the initial wavepackets [49],
we were able to study individual scattering events in isola-
tion, while further reducing the computational demands of
the simulation by lowering entanglement.

Entanglement growth is the most significant barrier to
dynamical simulations with MPSs, as the computational
cost of each time step scales exponentially with the cut
entropy. By choosing broad quasiparticle wavepackets, we
reduce entanglement growth at the expense of growing the
number of lattice sites involved in the simulation. This is a
good trade-off for MPS simulations, as the computational
cost scales only linearly in the number of lattice sites in our
simulation window. Even with this trade-off, we found that
the large jumps in cut entanglement with each collision (of
confined quasiparticles in the system) preclude simulating
more than a handful of successive collisions. Furthermore,
we found clear evidence of entanglement growth with the
collision energy, although the onset of Bloch oscillations
prevented us from drawing strong conclusions about how
this growth continues in the emergent IR QFT. Neverthe-
less, in the absence of lattice effects that obscure the IR
QFT, it seems reasonable to expect the entropy to continue
to grow with energy, which would eventually preclude
accurate simulation using MPSs.

We note that our current simulations are already well
beyond the reach of present digital noisy intermediate-
scale quantum (NISQ) devices, as they would require at
least about 1000 qubits and circuit depths that are larger
still.

A natural next step would be to perform simulations
along RG trajectories in the Hamiltonian parameter space,
so that results can be extrapolated to the continuum. This
is equivalent to finding paths toward criticality of the

lattice model, along which the low-energy spectrum
remains consistent with a particular emergent (IR) QFT.
Moving closer to the continuum would also allow us to
reach higher (relative) collision energies while avoiding
lattice effects, such as Bloch oscillations. In turn, this
would permit a more thorough exploration of the energy
dependence of the entanglement generated in collisions.

As we approach criticality, the bond dimension of the
MPS vacua must grow to maintain accuracy, as must the
size of the simulation window, since the wavepacket width
in lattice units would have to increase with the lattice cor-
relation length in order to maintain localization. Getting
closer to criticality seems feasible: the simulations featured
in the main text, with maximum MPS bond dimension 128,
took between one and two weeks to complete on eight
cores each and this time could likely be reduced signifi-
cantly with further work to optimize the code [89] and the
use of a numerical integrator with an adaptive time-step
size.

Increasing the number of spatial dimensions presents
a significantly greater challenge for classical algorithms:
while the computational cost of MPS simulations scales
with the bond dimension D as O(D3), the scaling for ten-
sor networks capable of handling large (2+1)-dimensional
systems, such as Projected Entangled Pair State (PEPS)
[90], is much worse (albeit still polynomial) [91]. As
an intermediate step, one could consider systems with a
small, compactified second dimension of space, which are
often within reach of MPS methods. By performing a
Fourier transform of the Hamiltonian in the compactified
direction only [92], one could study scattering of quasi-
particles that are spatially localized in one direction, while
being momentum eigenstates of the other. Compared to
the purely (1+1)-dimensional case, the additional “Kaluza-
Klein” excitations associated with the Fourier modes of
the compactified dimension would already open up a much
greater range of scattering outcomes.

Compared to the simulations we performed, increas-
ing the variety of scattering outcomes, whether by raising
the relative energy in a given model, choosing a lattice
model with a richer set of low-energy excitations (e.g.,
near a phase transition described by a CFT with larger
central charge), or adding spatial dimensions, seems neces-
sary in order to find problems that exhaust tensor-network
methods due to the additional entanglement generated.
Such problems appear more amenable to simulation on
quantum hardware, which is not a priori limited in the
amount of entanglement it can deal with. However, rais-
ing the energy may be problematic for near-term quan-
tum devices, which are limited both in their size and
coherence times, since avoiding lattice effects (such as
Bloch oscillations) at higher relative energies requires
moving closer to criticality while increasing system sizes
and evolution times. Instead, increasing the richness of
low-energy excitations by changing the model or adding
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(compactified) dimensions, while avoiding coming too
close to criticality, may be a more promising route toward
quantum advantage using near-term devices.
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APPENDIX A: INFINITE MPS

In the main text, we define a matrix product state on a
finite number of sites with open boundary conditions. To
represent the true and false vacua of a spin chain, we use
an infinite MPS (IMPS), in which the number of sites tends
to ∞,

|ψ〉 =
∑

{s}
v

†
L · · · A(s−1)

−1 A(s0)
0 A(s1)

1 · · · vR | · · · s−1s0s1 · · · 〉,

(A1)

where A(s)j is a Dj −1 × Dj matrix assigned to site j in basis
state s and vL and vR are appropriately sized boundary vec-
tors. In a uniform (translation invariant) IMPS, we use the
same tensor A everywhere: A(s)j = A(s) for all j ∈ Z. Such
a state has a well-defined norm for generic choices of vL
and vR if the D2 × D2 “transfer matrix”

(A2)

where the asterisk indicates the complex conjugate, has
a nondegenerate eigenvalue of largest magnitude, with A
normalized so that this eigenvalue is equal to 1 [40]. This
condition implies exponential decay of correlations with
distance. By additionally normalizing vL and vR appropri-
ately, we can achieve 〈ψ |ψ〉 = 1. The precise choice of
boundary vectors does not affect bulk expectation values
due to the aforementioned exponential decay of correla-
tors.

1. Nonuniform windows

To build the bubble states of the main text, and to
simulate their evolution in time, we allow the tensors of
an otherwise uniform IMPS to vary within a “window,”
consisting of Nw contiguous sites. These states have the
form

|ψ〉 =
∑

{s}
| · · · s1 · · · sN · · · 〉

× v
†
L

( 0∏

i=−∞
A(si)

L

)
A(s1)

1 · · · A(sNw )
Nw

( ∞∏

j =Nw+1

A
(sj )
R

)
vR,

(A3)

where AL and AR parameterize the semi-infinite left and
right bulk parts of the chain and A1 · · · ANw parameterize
the nonuniform window. The above transfer-matrix condi-
tions for a well-defined uniform IMPS must be satisfied
for both the AL and AR tensors. The norm of the state
is then determined by the content of the window tensors
A1 · · · ANw . For the bubble states, we let AL = AR = ,
where is the tensor optimized for the uniform ground
state (true vacuum) of the spin chain. We then choose
A1 · · · ANw to represent a false-vacuum bubble, as described
below in Appendix C. For example, a fully localized bub-
ble state (the kink-antikink state of Fig. 4) has A1 =
(representing a kink), A2 · · · ANw−1 = (representing the
false vacuum), and ANw = (representing the antikink).

APPENDIX B: FINDING THE TRUE AND FALSE
VACUA

1. Finding the true vacuum

The tensor A defining a uniform IMPS (A1) can be opti-
mized to represent low-energy, translation-invariant states
of gapped quantum spin chains using various algorithms.
We use the nonlinear conjugate-gradient method described
in Ref. [10] and implemented in the evoMPS package [82]
to find a uniform IMPS that approximately describe the
ground states of gapped quantum spin chains. We denote
the optimized IMPS tensor .
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2. Finding the false vacuum

We explain how we obtain an IMPS representation of
the false vacuum in practice in Appendix B 3 below. In this
section, we consider the nature of the false vacuum more
generally.

For the broken Z2 symmetry of the Ising-like chain in
the main text, the false vacuum |�〉 is a state that has oppo-
site spin orientation to the true vacuum |�〉. It should also
be like a vacuum, in that it should be a spatially uniform,
approximately static state near a local energetic minimum
with respect to some constraint, such as locality.

A candidate state is the “flipped” vacuum
( ∏

j

Xj

)
|�〉. (B1)

It is spatially uniform and typically close to an energetic
minimum in the following sense: if we apply a finite string∏L

j =1 Xj of length L, the change in energy will be posi-
tive for small values of L, becoming negative only after
the O(2hL) energy lost by replacing the false vacuum with
the true vacuum on L sites is larger than the O(1) energy
penalty of spin antialignment at the boundaries. However,
the flipped vacuum is generally not close to being an eigen-
state in the case of a nonzero symmetry-breaking field
parameter h and is therefore not suitably static. Neverthe-
less, one might begin with the flipped vacuum and attempt
to bring it closer to a false-vacuum eigenstate by lowering
the energy, for example via imaginary-time evolution:

|�〉 = e−τH
( ∏

j

Xj

)
|�〉. (B2)

A problem with this approach is that, since we are not in
a true energetic minimum, imaginary-time evolution will
ultimately take us back to the true vacuum |�〉. At finite
system sizes, this corresponds to a nonzero inner prod-
uct between the flipped vacuum and the vacuum. Let us
consider the Z2-broken Ising Hamiltonian (λ = 0, h > 0)
at finite system size N . Although in our simulations we
work directly in the thermodynamic limit N → ∞ using
an IMPS, finite N is more convenient for the following
calculation. We will see that the key result is independent
of N . If we perturb around the bare theory of g = 0, we
find that

〈�|
(∏

j

Xj

)
|�〉 = 0 + O(gN ), (B3)

where g � 1. Overlaps 〈Ei|(
∏

j Xj )|�〉 with energy eigen-
states |Ei〉 that are close to the true vacuum (e.g., low-
energy excitations) are also exponentially suppressed.

A simplified model allows us to estimate the timescale
for “decay” to the true vacuum under imaginary-
time evolution. Take |ψ〉 := ψ�|�〉 + ∑

i ψi|Ei〉, where

〈ψ |ψ〉 = 1 and |Ei〉 represents an eigenstate in the false-
vacuum “sector,” i.e., with a flipped spin orientation ver-
sus |�〉. This will be our model for the flipped vacuum
(
∏

j Xj )|�〉. From our perturbative calculation, we take
|ψ�| ≈ gN , so that

∑
i |ψi|2 ≈ 1 − g2N . Imaginary-time

evolution gives us

e−τH |ψ〉 = e−τE�ψ�|�〉 +
∑

i

e−τEiψi|Ei〉. (B4)

Now we take Ei − E� ∼ 2Nh, since the |Ei〉 are flipped
states that suffer an extensive energy penalty compared to
|�〉. The relative contribution of the vacuum after a time τ
is then

gN eτ2Nh, (B5)

which goes to 1 at τ�, independently of N :

τ� = − 1
2h

log g. (B6)

Hence, for small h, one must evolve for a “long” time
to see a significant vacuum contribution. For sufficiently
large τ still satisfying τ � τ�, assuming initial occupancy
and energetic separation of the |E0〉 state, we end up with

e−τH |ψ〉 ≈ e−τE�ψ�|�〉 + e−τE0ψ0|E0〉, (B7)

where |E0〉 is a hypothetical lowest-energy contribution
from the false-vacuum “sector.” This picture is supported
by numerical observations in which performing some
imaginary-time evolution on (

∏
j Xj )|�〉 quickly results in

something that is (numerically) approximately an eigen-
state.

3. Finding an IMPS for the false vacuum

To find an IMPS for the false vacuum, we begin with an
IMPS approximation of the flipped vacuum (B1), obtained
from the IMPS approximation of the true vacuum. Instead
of using imaginary-time evolution to reduce the energy of
this state, as considered in the previous section, we use the
same conjugate-gradient optimization method used to find
the true vacuum [82]. Like imaginary-time evolution, such
variational methods should eventually take the flipped state
to the true-vacuum state. In practice, however, we observe
that, for small symmetry-breaking fields |h| � 1, this does
not happen. Instead, the state converges to a false-vacuum
IMPS (parameterized by a tensor we denote ) that is
numerically indistinguishable from an energy eigenstate.
This may be because of the limited available numerical
precision [93], which could preclude accurate representa-
tion of the gradient components that would lead to the true
vacuum.
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APPENDIX C: MPS QUASIPARTICLE STATES

We use a Bloch-state approach to represent low-energy
excitations [41,75,76]. A localized quasiparticle state is
constructed from vacuum tensors AL and AR, which remain
constant, together with an “excitation tensor” B that can be
chosen to represent different excitations:

|φj (AL, B, AR)〉 :=
∑

�s
v

†
L

( j −1∏

i=−∞
Asi

L

)
Bsj

( ∞∏

k=j +1

Ask
R

)
vR|�s〉.

(C1)

This ansatz can represent topological excitations, in the
case AL and AR refer to different vacua, as well as non-
topological excitations, in the case AL and AR represent
the same vacuum state. We use the symbol φ to denote
a generic excitation, and κ , κ , or μ to refer to kinks,
antikinks, or mesons specifically. For example, the kink
states |κj 〉 of the main text have AL = , B = , and
AR = , while the meson states |μj 〉 have AL = , B =

, and AR = . For tensor-network diagrams showing
the parts of the tensor networks surrounding B (for |κj 〉
and |μj 〉), see Fig. 4. Because of exponential decay of cor-
relations in the vacua represented by AL and AR, the tensor
B represents a quasilocal excitation and may affect expec-
tation values across many lattice sites. In the following, we
assume for simplicity that the MPS |φj 〉 have uniform bond
dimension D.

Momentum eigenstates can be constructed as Fourier
modes of the spatially localized excitations:

|φ(AL, B, AR, p)〉 :=
∑

j

eipj |φj (AL, B, AR)〉. (C2)

These momentum eigenstates enjoy a “gauge” freedom
(parameter redundancy): the B tensor may be transformed
as

Bs → Bs + As
Lx − e−ipxAs

R, (C3)

where x is a D × D matrix, without affecting the Fourier
mode |φ(AL, B, AR, p)〉. This freedom can be fixed in many
ways. For example, the “left orthogonality” [94] conditions
[75,95] are

(C4)

where 〈lL| is the dominant left eigenvector of the MPS
transfer matrix of the left uniform bulk:

〈lL|
(∑

s

A(s)L ⊗ A(s)L
∗
)

= 〈lL|. (C5)

Similarly, the “right orthogonality” conditions are

(C6)

where |rR〉 is the dominant right eigenvector of the MPS
transfer matrix of the right uniform bulk:

( ∑

s

A(s)R ⊗ A(s)R
∗
)

|rR〉 = |rR〉. (C7)

These conditions can be achieved for any initial tensor
B by transforming it with an appropriate choice of x in
Eq. (C3). Imposing either the left or right conditions,
Eq. (C4) or (C6), implies orthogonality of the position
states: 〈φj (AL, B, AR)|φk(AL, B, AR)〉 = δjk. This is particu-
larly convenient for working with the momentum eigen-
states, as it greatly simplifies the computation of their inner
products and expectation values [75].

1. Optimizing the excitation tensor B

To find a tensor B that accurately represents a particular
quasiparticle excitation, we use the methods of Ref. [75]
with some modifications for dealing with the case in which
one of AL and AR represents a false vacuum (with a dif-
ferent energy density compared to the true vacuum). The
basic idea is to project the Hamiltonian onto the ansatz
space of momentum eigenstates |φ(AL, B, AR, p)〉, result-
ing in an effective Hamiltonian for the tensor B that can be
solved using a standard sparse eigenvalue solver.

Note that, since 〈φ(AL, B, AR, p)|φ(AL, B, AR, p ′)〉 =
δ(p − p ′), it is natural to do this for a particular, chosen
value of p . By solving for multiple eigenvalue-eigenvector
pairs, a set of orthogonal tensors B(a) (the eigenvectors)
can be found that accurately approximate several differ-
ent low-energy excitations (labeled by the index a), as
long as they are all below the two-particle threshold [76].
The eigenvalues are the energies of these excitations. By
computing them for a range of p , one can obtain an approx-
imate dispersion relation E(p) for the quasiparticles in the
system.

Importantly, not only the energies, but also the opti-
mized tensors B(a)(p), and hence the position states
|φj (B)〉, generally depend nontrivially on the value of
p . This is illustrated in Fig. 13, which shows the error
made in using a tensor B(0)(p = 0) optimized for p = 0,
to represent the lowest-lying excitations at other momenta.

a. Broken symmetry and kinks

In the presence of explicit symmetry breaking (h 
= 0),
topological excitations such as kinks and antikinks involve
the false vacuum. The energy of a localized kink (or
antikink) depends on its position, since different positions
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FIG. 13. Error made [1 − 〈φj (B)|φj {B(p)}〉] in ignoring the
momentum dependence of the tensor B used to construct MPS
quasiparticle states, for both kink and meson excitations, for the
Hamiltonian parameters used in simulations (i) and (ii) of the
main text. The momentum-eigenstate freedom on B(p) is fixed
so that 〈φj (B)|φk(B′)〉 = δjk.

lead to different extensive contributions from the false
vacuum [96]. As such, there are no energy-momentum
eigenstates (of the Hamiltonian and momentum opera-
tors) corresponding to these excitations and we cannot find
them by solving the effective Hamiltonian for the B ten-
sors considered above. Nevertheless, we expect there to be
excitations that behave as quasiparticles subject to a con-
fining force (which makes them accelerate). If one could
somehow cancel the confining force, as if by accelerating
at the same rate as the quasiparticle, the latter would appear
to propagate freely.

With this picture in mind, we define a modified energy
function

Ẽ =
∑

jk

eip(k−j )〈φj |(H −
Ej 1)|φk〉, (C8)

where 
Ej := ∑j
−∞ eL + ∑∞

j +1 eR and eL, eR are the
energy densities of the vacua parameterized by AL and

AR, respectively. Here, it is assumed that the momentum-
eigenstate gauge-freedom on B, Eq. (C3), has been fixed
so that 〈φj |φk〉 = δjk. With orthogonality of the posi-
tion states, the identity term simply shifts the energy of
the excitation in a position-dependent way, canceling the
position-dependent contribution due to the differing bulk
energy densities. One can also write down a modified
Hamiltonian

H̃ = H −
∑

j

Pj
Ej , (C9)

where Pj is a projector onto the space of states spanned by
|φj (B)〉 for all B satisfying the chosen orthogonality con-
ditions: for such B, we thus have Pj |φk(B)〉 = δjk|φk(B)〉.
We can then rewrite Ẽ as

Ẽ = 〈φ(AL, B, AR, p)|H̃ |φ(AL, B, AR, p)〉. (C10)

We can thus optimize B by computing eigenvalue-
eigenvector pairs of H̃ , after pushing it into the ansatz
space, analogously to the symmetric case above.

In this formulation it is manifest that the optimiza-
tion procedure depends on the conditions used to achieve
position-state orthogonality, since different conditions will
lead to different Pj in Eq. (C9). In practice, we find that
the difference this makes to the resulting optimized states
|φ(AL, B, AR, p)〉 is small: we consider the infidelity per site

1 − |Z|−1|〈φ(BLF , p)|φ(BRF , p)〉|
= 1 − ||〈φj (BLF)|φ(BRF , p)〉|, (C11)

where BLF and BRF are optimized for the same quasipar-
ticle (and momentum p) using the left and right orthog-
onality conditions, Eqs. (C4) and (C6), respectively, and
|Z| is the cardinality of the integers (accounting for the
infinite norm of the momentum eigenstates). We empiri-
cally find that the infidelity scales as h2, where h � 1 is
the symmetry-breaking parameter of the Hamiltonian, for
the lowest-energy kink states and the Hamiltonian parame-
ters considered in this paper. This dependence is shown in
Fig. 14.

It may be possible to design improved optimization
techniques that avoid this ambiguity. A prerequisite would
be a cost function other than 〈H̃ 〉, presumably related to
the stability of the quasiparticle wavepackets, that distin-
guishes usefully between the different choices that can be
made in parameterizing B.

Another important observation is that, in Eq. (C9), we
assume that the location j of the B tensor reliably indi-
cates the position of the kink (or antikink). In fact, since
the excitation described by B is quasilocal, the location
of the kink (defined as the point in space at which the
spin expectation value crosses zero) may differ from j .
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longitudinal field

FIG. 14. Estimated error (1 − infidelity per site) on momen-
tum eigenstates |φ(B, p)〉 for kink quasiparticles, due to the
choice of orthogonality conditions on B used to achieve
〈φj (B)|φk(B)〉 = δjk. Here we compare the left and right orthog-
onality conditions, Eqs. (C4) and (C6).

Indeed, as shown below in Fig. 15, there may be a rela-
tive shift of several lattice sites, depending on the choice
of left or right orthogonality conditions on B. The shift will
generally also depend on the momentum p , such that a dis-
persion relation E(p) computed from the eigenvalues of H̃
should really be interpreted as a function of the B-tensor
momentum, derived from the position j of B, considered
distinct from the kink momentum, derived from the kink
position.

The momentum-dependent energy shift due to these
position shifts can be calculated by first computing the
actual kink positions, relative to j , for each |φj (p)〉, as
a function of p . These shifts can then be multiplied by
the false-vacuum excess energy density to compute the
energy shift, which can in turn be used to “correct”
the dispersion relation. This provides a more intuitive
definition of the kink dispersion in the symmetry-broken
setting. Note also, however, that since kink quasiparti-
cles do not have a well-defined energy gap with respect
to the vacuum state, these dispersion relations still can-
not be used to compute particle-production thresholds.
They could, however, be used to estimate the kink veloc-
ity dE(p)/dp , this being independent of energy shifts
E(p) → E(p)+ c.

2. Wavepackets

Analogously to the momentum eigenstates of Eq. (C2),
we can construct wavepackets from the localized quasipar-
ticle states as

|φ(AL, B, AR, f )〉 :=
∑

i

fi|φi(AL, B, AR)〉, (C12)

where in our simulations we choose fi to be a Gaussian
centered at position x with width σ . Importantly for our
purposes, it is straightforward to turn such a wavepacket

FIG. 15. Spin expectation values of a kink position MPS |κj 〉
for (i) the Ising model and (ii) close to the TCI point. The bond
dimension is D = 8 for the Ising data, and D = 18 for the TCI
data. We plot the spins for various ways of fixing the momentum-
eigenstate freedom: the left and right orthogonal conditions,
Eq. (C4) or (C6), and the reflection-symmetric conditions (C17),
beginning from a B tensor optimized using either the left or right
conditions (since this makes a small physical difference to the
result—see Appendix C 1).

state into a single MPS:

|φ(AL, B, AR, f )〉 =
∑

�s
w†

L

( ∞∏

i=−∞
Asi

i

)
wR|�s〉. (C13)

Here

As
i :=

(
As

L fiBs

0 As
R

)
(C14)

is a 2D × 2D matrix, given that As
L, As

R, and Bs are all D ×
D matrices. We set the boundary conditions to be

w†
L := (v

†
L, 0), (C15)

wR :=
(

0
vR

)
, (C16)

for some generic choice of vL and vR. If |fi| falls below
some numerical threshold for all i less than some iL and
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FIG. 16. Portion of a single-kink wavepacket state outside of
the single-kink subspace κ(0) as a function of the wavepacket
width σ for the Z2-broken Ising model g = 0.8, λ = 0, h =
0.007. We plot the error for two different ways of fixing the
momentum-eigenstate freedom on the B tensors used to con-
struct the wavepacket: the left orthogonal choice 〈κj |κk〉 = δjk
and the reflection-symmetrized choice (with B optimized using
the left orthogonal conditions). In both cases the MPS tensors
used to construct the state are tuned to the wavepacket momen-
tum, which is p = 0. The projection into the κ(0) subspace uses B
tensors optimized using the left orthogonal conditions and fully
accounts for momentum dependence via a Fourier analysis.

for all i greater than some iR > iL, we can truncate it to
zero and reduce the bond dimension to D in those regions
without introducing significant errors. This allows us to
represent a truncated wavepacket in the thermodynamic
limit using the nonuniform window ansatz (A3).

As discussed in the main text, this wavepacket construc-
tion ignores any momentum dependence of the tensor B.
While this introduces errors in the form of contributions
from other excitations, as shown in Fig. 13, these become
small for large σ , as indicated in Fig. 16 below.

3. Localized states and Bloch-state parameter
redundancy

The parameter redundancy, or “gauge freedom,” on the
B tensors of the momentum eigenstates (C2) does not leave
the localized states |φj (B)〉 of Eq. (C1) unchanged. These
states, as well as the wavepacket states (C12) built from
them, depend on how these degrees of freedom are fixed.
However, the procedure we use for choosing optimal B ten-
sors is based on momentum eigenstates and does not tell us
how to optimally fix the remaining freedom.

That said, the impact of this choice on Gaussian
wavepacket states must vanish in the limit σ → ∞, where
packets become momentum eigenstates. Hence we can
reasonably expect the impact on wavepackets with finite
width to become small as σ increases. Since we already
have a physical reason to choose broad wavepackets in our
simulations (for slow wavepacket spread), this issue is not
as severe as it may at first appear.

Nevertheless, we choose to use the reflection-symmetric
conditions of Ref. [49], slightly adapted for the topologi-
cally nontrivial setting, to fix the remaining freedom on the
B tensors used to construct our initial bubble states. To be
precise, we fix B by choosing x in Eq. (C3) as

x = arg min
x′

(∣∣∣∣
∑

s

B(x′)(s) ⊗ A(s)L
∗
∣∣∣∣
2

+
∣∣∣∣
∑

s

B(x′)(s) ⊗ A(s)R
∗
∣∣∣∣
2)

. (C17)

In terms of tensor networks, we can rewrite this as

(C18)

Unlike the left and right orthogonality conditions, Eqs.
(C4) and (C6), these conditions are manifestly symmetric
under spatial reflections. The reflection-symmetric con-
ditions can be formulated as an overdetermined linear-
least-squares optimization problem and then solved using
standard techniques.

See Fig. 15 for a comparison of the reflection-symmetric
conditions to the left and right orthogonality conditions, in
terms of the spin expectation values of localized topologi-
cal states. We plot these results for AL and AR representing
the two vacua of the Ising chain (λ = 0, g = 0.8) for both
zero and nonzero longitudinal field strengths h. The tensor
B is variationally optimized, as described above, so that
the momentum eigenstate |φ(AL, B, AR, p = 0)〉 approx-
imates the lowest-lying topological excitation. We note
that, although the symmetrized states exhibit “smoother”
spin expectation values in both cases, they are not per-
fectly symmetric in the case h > 0. The spatial asymmetry
in the spin likely reflects the energetic asymmetry of
topological states in this case. In both cases, there is cer-
tainly an aesthetic improvement to be had by imposing
the symmetrization conditions, but it remains to be seen
whether the symmetrized states are better representations
of localized quasiparticles. To see that they are, we con-
sider how well wavepackets built from them fit into the
corresponding quasiparticle subspace.

In Fig. 16, we plot the portion of a kink wavepacket state
(by probability) outside of the targeted kink-quasiparticle
subspace for both the orthogonal and reflection-symmetric
conditions. We explain how to carry out this kind of pro-
jection in Appendix D. We observe that the symmetrized
states result in a much more accurate wavepacket than
the orthonormal states, by almost 2 orders of magnitude,
confirming that the symmetrized choices are more than
just aesthetically pleasing. In the symmetric Ising model
(h = 0), we can also compare the energy of wavepackets.
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FIG. 17. Single-kink wavepacket energy as a function of the
width σ for the Z2-symmetric Ising model g = 0.8, λ = 0, h =
0 (in the spontaneous symmetry breaking phase). We plot the
energy (relative to the energy of the kink-quasiparticle momen-
tum eigenstate) for two different ways of fixing the momentum-
eigenstate freedom on the B tensors used to construct the
wavepacket state: an orthogonal choice 〈κj |κk〉 = δjk (left and
right conditions are equivalent when h = 0) and the reflection-
symmetrized choice (C17). In both cases the MPS tensors used
to construct the state are tuned to the wavepacket momentum
p = 0.

In Fig. 17, we see that the kink wavepackets created with
the symmetrized states have consistently lower energy,
which indicates improved accuracy, since we are targeting
the lowest-lying kink quasiparticle.

4. Two-particle states

To create false-vacuum bubbles, we need to combine
two quasiparticles, namely a kink and an antikink. Two-
particle states have the form

|φφjk(AL, BL, AC, BR, AR)〉

:=
∑

�s
|�s〉 v†

L

( j −1∏

i=−∞
Asi

L

)
B

sj
L

( k−1∏

l=i+1

Asl
C

)

× Bsk
R

( ∞∏

m=l+1

Asm
R

)
vR, (C19)

where, compared to Eq. (C1), we now have a central (false)
vacuum tensor AC, as well as two excitation tensors, BL and
BR, instead of one. Analogously to the one-particle states,
we use φφ to denote a generic pair of quasiparticles, spec-
ifying κκ or μμ when we are discussing a kink-antikink
pair or a meson pair specifically. Such states are illustrated
in Fig. 4. We assume that the quasiparticles are sufficiently
well separated, so that interactions may be neglected and
BL and BR can be held constant irrespective of the sep-
aration d := k − j . A sufficient condition for this to be
justified is that the reduced state for sites i in between the
two excitations j < i < k reverts to that of the central vac-
uum MPS parameterized by AC for some range of i. If this

happens for the reduced state on at least r contiguous sites,
where r is the range of interactions in the Hamiltonian
(for our model, r = 2 when λ = 0 and r = 3 otherwise),
this implies that the energy of the two-particle state, as a
function of the separation d, is not affected by interaction
between the particles at that location (only by differences
in the “vacuum” energies). This means that there can be no
interaction energy.

This condition can be made more precise: we define the
strength of interaction effects at location i (with j < i < k)
as the deviation of the left and right environment tensors of
the two-particle state from the corresponding environment
tensors of the central (false) vacuum MPS parameterized
by AC. Here, the environment at site i is the tensor net-
work for the reduced state on site i, excluding the tensors
assigned to site i itself. It naturally splits into left and right
components, consisting of the tensors to the left and to the
right of i, respectively. We compute the deviation for the
left and right parts separately, as the norm of the difference
between the central (false) vacuum environment and the
two-particle-state environments. For the left environment,
we define

(C20)

where the ellipsis indicates that the center transfer matrix
should be repeated as many times as is necessary to reach
site i from the position of BL. Similarly, for the right
environment, we define

(C21)

We define the magnitude of interaction effects at separation
d to be

ε(d) := min
j<i<k

[εL(i)+ εR(i)]. (C22)

This value is plotted, for the Hamiltonian parameters (ii)
of the main text, in Fig. 19 below for a selection of low-
energy quasiparticles.

Wavepackets can be constructed from the two-particle
position states (C19) analogously to the single-particle
case (C12):

|φφ(AL, BL, AC, BR, AR, f , g)〉
:=

∑

j<k

fj gk|φφjk(AL, BL, AC, BR, AR)〉, (C23)

where, for our simulations, we choose the packet func-
tions fj and gk to be Gaussians centered at xL and xR, with
momenta p and −p , respectively. As in the single-particle
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case (C13), these wavepackets can be rewritten as a single
MPS with bond dimension 2D, where D is the bond dimen-
sion of the vacua AL, AC, AR. Note that, because position
states are not defined for k ≥ j , the wavepacket functions
f and g are effectively truncated, leaving only the terms
j < k, in this ansatz. Of course, if the wavepacket func-
tions have negligible overlap, the effects of this truncation
can themselves be neglected.

APPENDIX D: PARTICLE DETECTION VIA
QUASIPARTICLE BASIS STATES

As discussed in the main text, it is possible to use the
optimized quasiparticle states and their two-particle com-
binations to estimate the particle content of a wavefunction
|ψ(t)〉 as it evolves during simulation. For example, the
inner product 〈κκ(a,b)

jk |ψ(t)〉 is sensitive to the presence of
a pair consisting of a type-a kink quasiparticle at position
j and a type-b antikink quasiparticle at position k.

The single-particle quasiparticle position states |φj 〉 of
Eq. (C1) can be made orthogonal by imposing either the
left or right orthogonality conditions, Eq. (C4) or (C6). For
the two-particle states |φφ(a,b)

jk 〉 of Eq. (C19) (where φφ is
generic notation for either a kink-antikink pair or a meson
pair), we can achieve orthogonality by enforcing the left
orthogonality conditions on the left excitation tensor, BL,
and the right orthogonality conditions on right excitation
tensor, BR. With these conditions, the two-particle states
are orthogonal for one pair of species a, b:

〈φφ(a,b)
jk |φφ(a,b)

lm 〉 = δjlδkm. (D1)

Furthermore, by limiting the subspace to states with sepa-
ration d := k − j large enough so that interaction effects
are negligible (see Appendix C 4), we can achieve an
approximately orthonormal basis across species as well as
positions:

〈φφ(a,b)
jk |φφ(c,d)

lm 〉 ≈ δjlδkmδacδbd for all k � j , m � l.
(D2)

If the left and right bulk vacuum tensors, AL and AR of
the evolved state |ψ(t)〉, which in our simulations have the
form (A3), match the left and right bulk tensors AL and AR
in the two-particle states (C19), it is then straightforward to
(approximately) project |ψ(t)〉 into the subspace spanned
by these states.

However, we must take care when interpreting the over-
laps of a wavefunction |ψ(t)〉 with quasiparticle position
states such as |φj (B)〉, as should be clear from the dis-
cussion of excitation tensors and quasiparticle position
states above. In particular, the momentum dependence of
the B tensors optimized to represent each quasiparticle,
as well as the ambiguity in fixing the degrees of freedom
(C3) in B that are not fixed by the optimization procedure

(see Appendix C 1), make the interpretation of the overlap
unclear unless the quasiparticle content of |ψ(t)〉 consists
of broad spatial wavepackets, whose momentum support
is focused around the momentum p used to optimize the
B tensor. We next discuss two methods for avoiding these
issues.

1. Checking consistency in the projected wavefunction

As described in the main text, one way to avoid issues
with momentum dependence and wavepacket breadth is
to choose some momentum p , optimize a tensor B(p) at
that momentum for the quasiparticle being targeted, then
examine the overlaps ψj := 〈φj [B(p)]|ψ(t)〉 [or ψjk :=
〈φφjk[B(p), B′(p ′)]|ψ(t)〉 for a two-particle basis]. If the
wavepacket width of the projected wavefunction ψj is
sufficiently large, and the momentum support (computed
via Fourier transformation) sufficiently close to the cho-
sen value of p , we know that the error made is small
and can trust that the projection is accurately telling us
about the quasiparticle content. We can quantify how broad
the wavepacket must be, and how close the wavepacket
momenta should be to p , via analyses such as those of
Figs. 13 and 16.

If the distribution of momenta in the wavepacket indi-
cates a large error due to the choice of p made while
constructing the basis, it may be possible to iteratively tune
p to achieve a better match. This procedure fails, of course,
if the wavepackets in |ψ(t)〉 are too narrow in position
space (and hence too broad in momentum space) for the
error to be kept small.

We use this procedure to compute the spin expecta-
tion values within each particle “sector” in Fig. 10, tun-
ing the basis momenta pL and pR for two-particle bases
|φφjk(BL(pL), BR(pR)〉 to match the observed momenta.

2. Fourier analysis

To fully account for the momentum dependence of the
quasiparticle states, and to eliminate any issues due to the
momentum-eigenstate “gauge-freedom” (C3) on B tensors,
we can simply take overlaps with momentum eigenstates
instead of with the position states. These states are exactly
invariant under Eq. (C3), and the B tensors used to con-
struct them can be optimized for the momentum of the
eigenstate to avoid momentum mismatch.

For example, to project onto a single-particle subspace
at momentum p , one can compute 〈φ(p)|ψ(t)〉, with
|φ(p)〉 from Eq. (C2). We can expand this overlap in terms
of position states:

〈φ[B(p), p]|ψ(t)〉 =
∑

j

e−ipj 〈φj [B(p)]|ψ(t)〉 (D3)

with B(p) an excitation tensor optimized to represent the
quasiparticle φ at momentum p . This overlap can be com-
puted in practice, despite the infinite sum over j , because
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the position of excitations in |ψ(t)〉 is limited to the
nonuniform window of Eq. (A3) in which the initial quasi-
particles (comprising the bubble) are placed, so that there
are only about Nw nonzero position terms in this overlap.

To compute the projection onto the entire quasiparticle
subspace, we must evaluate the integral

∫ π

−π
dp 〈φ(p)|ψ(t)〉. (D4)

This can be done approximately by sampling, for exam-
ple using a numerical integration scheme. In practice, we
use the FFT algorithm to transform the spatial components
〈φj [B(p)]|ψ(t)〉 into a fixed sampling of momentum com-
ponents at a resolution determined by the number of lattice
sites Nw summed over in Eq. (D3).

We use this method to compute the projected single-kink
wavefunction described in Fig. 16, to compute the kink-
antikink scattering outcome probability in Fig. 8 of the
main text, and to compute the various scattering outcome
probabilities reported in Fig. 10.

a. Efficient computation of the quasiparticle Fourier
analysis

The projection of a wavefunction |ψ(t)〉 onto many
momentum modes is relatively computationally intensive,
since, for each momentum mode, we must first compute a
tuned excitation tensor B(p), followed by a full set of posi-
tion overlaps 〈φj [B(p)]|ψ(t)〉. In the case of single-particle
states, the cost is O(NwM ), where M is the number of
momentum samples and Nw is the nonuniform window size
of |ψ(t)〉. For two-particle states, since we must consider
cases in which the two particles have different momenta
and positions, making the cost O(M 2N 2

w). If M ∼ Nw, and
Nw ∼ 1000, this may be prohibitive.

To reduce the cost, we can use the observation that the
optimized excitation tensor B(p), for a given quasiparticle,
usually varies only slowly with the quasiparticle momen-
tum p by introducing a small momentum mismatch in a
controlled way: we project the excitation tensors B(p),
optimized for each mode of momentum p that we wish to
sum over, onto a small basis of excitation tensors that cap-
ture the momentum dependence accurately across a wide
range of p , i.e.,

B(p) ≈
∑

α

bα(p)Bα (D5)

for appropriately chosen coefficients bα(p) and suitably
chosen basis tensors Bα . A suitable basis can be built by
orthonormalizing (via a Gram-Schmidt procedure) a set
of B(pα) obtained at a selection of momenta (say, p =
−2, −1, 0, 1, 2). We find that < 10 basis tensors is suffi-
cient, for our chosen Hamiltonian parameters, to achieve
an accuracy of about 10−8 in Eq. (D5). Given such a basis,

we then compute position-state overlaps only for the basis
tensors, from which we can compute the projection of the
wavefunction onto an arbitrary momentum mode while
making only a small error.

For example, in the case of a two-particle basis, we first
compute ψjk;αβ := 〈φφjk(BL,α , BR,β)|ψ(t)〉. Then, using the
coefficients of Eq. (D5), we approximate the overlap with
the momentum-tuned position states as

〈φφjk[BL(p), BR(p ′)]|ψ(t)〉 ≈ b∗
L,α(p)b

∗
R,β(p

′)ψjk;αβ .
(D6)

From here, the momentum-mode overlaps are but a FFT
away.

3. Other sources of error

Even for the Fourier analysis, there are at least two
sources of inaccuracy beyond the choice of IMPS bond
dimensions in the vacua and the quality of the optimiza-
tion procedures used to find the vacua and the excita-
tions tensors B. First, there is the further ambiguity (see
Appendix C 1 a) in the case of topological excitations in
the symmetry-broken setting (h > 0) owing to the depen-
dence of the B-tensor optimization on an arbitrary choice
of orthogonality conditions made during optimization. We
do not currently know of a way to avoid this source of
error. Fortunately, as illustrated in Fig. 14, we have good
evidence that it is small.

The other source of error comes from interaction effects,
which are not captured properly by the two-particle states.
As discussed above, one can choose the minimum sepa-
ration of the two particles to avoid interaction, by throw-
ing out position states where the “interaction strength”
ε, defined in Eq. (C22), rises above some threshold. In
choosing the threshold, there is a trade-off between cap-
turing (potentially large) components of the wavefunction
that have smaller separation, but likely incur some (pos-
sibly small) error due to interaction, and the magnitude
of ε, which is a conservative estimate of that error and
is exponential in the separation. How to make this trade-
off optimal depends on the target wavefunction and the
required precision of the projected wavefunction.

For our computations, we examine the dependence of
the norm of the projected wavefunctions on the minimum
separation dmin allowed in the two-particle basis states.
Exemplary results are shown in Figs. 18 and 19, which
also show the dependence of the norms on the simula-
tion bond-dimension limit. In Fig. 18, we observe that,
for the largest bond dimension, the norm of the projected
wavefunction is essentially constant for d < 70, despite
the rising magnitude of interaction effects. This suggests
that the wavefunction has negligible support at small sep-
arations (which we confirm via a Fourier analysis). We
also observe that a minimum separation of dmin = 60 is

020316-23



ASHLEY MILSTED et al. PRX QUANTUM 3, 020316 (2022)

FIG. 18. Portion of the evolved bubble wavefunction outside
of the kink-antikink “sector” for simulation (i) of Fig. 7 (λ =
0, g = 0.8, h = 0.007) at time t = 240, as a function of the
minimum separation dmin := min(k − j ) permitted in the two-
quasiparticle basis states |κκ(0,0)

j ,k 〉. Probabilities are computed via
a Fourier analysis, taking into account the momentum depen-
dence of the basis states. The basis error due to interaction effects
is estimated using Eq. (C22).

sufficient to keep ε < 10−6. Noting that the interaction
strength is a property of the quasiparticle basis, and hence
independent of time, we make the choice dmin = 60 to
avoid interaction effects when computing the data shown
in Fig. 8 of the main text.

Figure 19 shows similar data for three quasiparticle-pair
“sectors” for the Hamiltonian parameters (ii) of the main
text. These data are used to estimate the scattering outcome
probabilities shown in Fig. 10 of the main text. We see that,
for this target wavefunction |ψ(t)〉, interaction effects are
not important for the κκ(0,0) and μμ(0,0) “sectors.” How-
ever, they may influence the result at the level of about
0.01, possibly more, for κκ(0,1) (and, by reflection sym-
metry of the initial bubble state, κκ(1,0)). The κκ(0,1) and
κκ(1,0) results are likely to be more sensitive to interac-
tion than the κκ(0,0) result because the former two “sectors”
describe bubble states in which one of the walls (the kink
or the antikink) is heavier than in the κκ(0,0) case. These
“lopsided” bubbles will be smaller than a κκ(0,0) bubble at
the same energy, leading to larger components of the wave-
function at small separations, where interaction effects are
stronger.

APPENDIX E: EVOLVING THROUGH TIME

To evolve an initial bubble IMPS in time, we define
a window of Nw lattice sites surrounding the bubble and
allow the MPS tensors belonging to those sites to vary
during the evolution, while keeping the rest of the MPS
tensors fixed. In other words, we use the nonuniform
window ansatz (A3) with fixed bulk tensors AL, AR. To
compute the evolved state, we use methods based on the
TDVP, which is set out for this class of states in Ref. [77]
and implemented in the evoMPS package [82].

(a)

(b)

(c)

FIG. 19. Quasiparticle “sector” projection probabilities for
simulation (ii) of Fig. 7 (λ = 0.41, g = 0.98, h = 0.001) at
time t ≈ 426, as a function of the minimum separation dmin :=
min(k − j ) permitted in the two-quasiparticle basis states | · ·j ,k〉.
Probabilities are computed via a Fourier analysis, taking into
account the momentum dependence of the basis states. The basis
error due to interaction effects is estimated using Eq. (C22).

The TDVP provides flow equations that describe the
evolution of the MPS tensors needed to optimally approx-
imate the evolution of the state by the Hamiltonian, given
the constraint that the MPS bond dimension must remain
fixed. Various schemes can be used to integrate the flow
equations: we use the popular Runge-Kutta 4/5 (RK4)
numerical integrator (to directly integrate the global flow
equations) as well as the “projector-splitting” (PS) integra-
tor of Ref. [81]. Since we want the MPS bond dimension
to grow as needed (up to some maximum) as the entangle-
ment of the state increases, we combine TDVP flow with
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techniques for increasing the bond dimension. In particu-
lar, we use the “dynamical expansion” scheme described
in Ref. [74] together with the RK4 integrator, as well as
the two-site projector-splitting method of Ref. [81].

The PS method and the RK4 integrator (with dynamical
expansion), despite having similar theoretical error rates
for a given time-step size, behave differently in important
ways. For a given step size, the PS method has a larger
computational overhead per step, but has better numerical
stability and precision since, unlike the “traditional” TDVP
scheme of Ref. [74], it does not require the inversion of
matrices with small eigenvalues.

We find that the RK4 scheme with dynamical expansion
is too unstable to use reliably during the initial time steps
of our simulations, which begin with a MPS of relatively
small bond dimension (at most twice the vacuum bond
dimension). However, we find RK4 can be used success-
fully after performing a small number of initial steps using
the two-site PS scheme. During these initial PS steps, the
bond dimension increases significantly. Later in the evo-
lution, once the bond dimension has stabilized, we find
the much faster RK4 scheme is able to take over with-
out significant impact on the results. During the evolution,
we do allow the MPS bond dimension to grow beyond a
predefined maximum value.

To better understand the effects of the integration
scheme on our simulations, as well as the impact of the
bond-dimension limit, we compute two quantities indica-
tive of numerical error: the energy drift and the truncation
error. Although the exact evolution of the quantum state
conserves the energy, the imperfect integration of the
TDVP flow equations, combined with the limited bond
dimension, leads to a small energy drift. This drift is an
indicator of error incurred more generally during the evo-
lution. We estimate the truncation error—the portion of
the state by norm that is lost due to the bond dimen-
sion limit—as the maximum value, taken over position, of
the minimum Schmidt coefficient (the Dth largest) for the
left-right bipartition at that position. Since there are rarely
large jumps in the Schmidt spectrum, this value provides a
good estimate of the magnitude of the terms that cannot be
represented due to the bond-dimension limit.

As shown for simulation (ii) of the main text in Fig. 20,
the energy drift is particularly sensitive to the integra-
tion scheme and step size, whereas the truncation error
is, unsurprisingly, most sensitive to the bond-dimension
limit. We note that the truncation error jumps at the time
of the first kink-antikink collision (t ≈ 250), consistent
with the entanglement jump observed in Fig. 11 of the
main text. Figure 21 provides a more detailed picture of
the entanglement structure, showing the full entanglement
(Schmidt) spectrum (up to truncation) before and after
the first collision at the cut with the largest entanglement
entropy.

FIG. 20. Evolution of the energy expectation value and MPS
truncation error for simulation (ii) of the main text. We com-
pare different maximum bond dimensions D as well as different
RK4 time-step sizes δt (shown here in unscaled lattice Hamil-
tonian units, for D ≤ 64), observing that the effects of the time
step are most noticeable in the energy drift, whereas the bond
dimension most obviously affects the truncation error at around
the time of the first collision (t ≈ 240). The D ≤ 128 simulation
is initialized from D ≤ 64, δt = 0.05 at t ≈ 142. The uptick in the
energy drift at t ≈ 750 is due to unconfined wavepackets hitting
the boundaries of the simulation window.

The computational cost of simulating up to some fixed
time t scales as O(D3/δt). We are therefore eventually
forced to trade accuracy for computational cost. For this
particular simulation, we judge D ≤ 128 and δt = 0.05 to
provide sufficient accuracy, while keeping the computa-
tional requirements manageable, to enable us to study the
outcomes of at least the first kink-antikink collision event
in detail.

FIG. 21. Schmidt spectra for the maximum-entropy cut before
and after the first collision in simulation (ii) of the main text. The
bond dimension is 128.
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APPENDIX F: COMPARISON WITH QUENCH
APPROACHES

We construct our initial false-vacuum bubble from indi-
vidual kink and antikink quasiparticles, separated by a
region of metastable false vacuum. Similar states can be
constructed via a simpler approach: act on the uniform true
vacuum |�〉 with a suitable string operator that, in the case
of the Ising-type model we study, flips all the spins over a
range of sites:

|Sjk〉 := Xj Xj +1 · · · Xk−1Xk|�〉. (F1)

For small longitudinal field h, we know that flipping all
the spins gets us from the vacuum to a state close to the
false vacuum (see Appendix B 2), so if d := k − j is suf-
ficiently large, the reduced state will be close to that of
the false vacuum in the middle of the flipped region and
topological excitations will be created at the edges of the
string. In general, these excitations will be a combina-
tion of many topological quasiparticles of varying energy;
hence, the walls of a bubble created in this way will be
unstable to interactions between these quasiparticles. The
walls are also highly localized in position and hence have
large momentum uncertainty.

By smearing the edges of the string in space, their
momenta can be focused. This results in states of the form

|�〉 =
∑

j<k

fj (xL, pL)fk(xR, pR)|Sjk〉, (F2)

where fj and fk are wavepacket functions for the left and
right edges, respectively. If we choose these to be Gaus-
sian, as for the wavepackets in the main text, we get a
bubble state similar to those used in the main text, except
that the walls have undetermined quasiparticle content.

In Fig. 22, we compare the dynamics of three differ-
ent initial states for the Hamiltonian parameters (ii) of
the main text: (a) the fully localized string of Eq. (F1),
(b) the smeared string of Eq. (F2), and (c) the tuned quasi-
particle kink-antikink wavepackets used in the main text.
We choose the same kink-antikink separation in all cases,
and the same wavepacket widths in the latter two. The
TDVP step size and the maximum bond dimension are
also the same in all three cases. Simulations (a) and (b)
both exhibit clear ballistic spread of energy from the initial
bubble edges, indicating their instability, whereas simula-
tion (c) only shows ballistic spread after the initial bubble
walls have collided, consistent with the walls consisting of
individual quasiparticles.

It is noteworthy that the evolution of state (a) encoun-
ters catastrophic numerical errors at around t = 240, unlike
simulations (b) and (c), suggesting that scenario (a) is
much harder to simulate accurately [97]. In Fig. 23 we
show the energy drift and estimated truncation error

(a) (b) (c)

FIG. 22. Evolution of spin and energy density expectation
values and the cut entropy for parameter set (ii) of the main
text (λ = 0.41, g = 0.98, h = 0.001), with three different initial
states. State (a) is prepared by acting on the vacuum with a string
operator

∏xR−1
j =xL

Xj , which flips the spins to form a bubblelike
state with energy E/mμ = 8.69. State (b) is similar to (a), but
with the ends of the string smeared out using Gaussian packets
of width σ = 40, reducing the energy to E/mμ = 4.02. State (c)
is the initial state discussed in the main text with E/mμ = 2.62,
using quasiparticle wavepackets for the kinks and the false vac-
uum for the middle region. The evolution parameters are the
same in all cases: the maximum bond dimension is 64 and the
RK4 step size is approximately 0.08 (0.05 in unscaled lattice
Hamiltonian units). In (a), dramatic errors in the simulation occur
at t ≈ 240, indicating the difficulty of simulating these dynam-
ics versus (b) and (c). In both (a) and (b), ballistic energy spread
emanating from the initial kinks indicates that they have complex
quasiparticle content, resulting in immediate inelastic scattering.
In contrast, the tuned quasiparticle kinks of (c) do not produce
appreciable ballistic spread until the bubble walls have collided.

(smallest retained Schmidt coefficient for the most entan-
gled cut) for the same three simulations. These data clearly
indicate that simulation (c) is easiest to simulate, since both
the energy drift and the truncation error remain smaller
with the same evolution parameters. The large truncation
error at early times in cases (a) and (b) is consistent with
a large amount of entanglement being generated early on,
coming from the multiple excitations created at the ends of
the string operator.

APPENDIX G: VELOCITY AND BLOCH
OSCILLATIONS

1. Single-kink evolution

In the case of explicit symmetry breaking (h > 0), an
isolated kink wavepacket, with a true vacuum on one side
and a false vacuum on the other, will accelerate toward
the false vacuum, absorbing the excess energy density of
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FIG. 23. Evolution of the energy expectation value and MPS
truncation error for the simulations of Fig. 22. Energy drift
[|1 − E(t)/E(0)|] indicates deviation from unitary evolution and
results from restriction to a maximum bond dimension of 64
as well as from numerical integration errors (RK4 step size of
approximately 0.08). Truncation error (estimated as the maxi-
mum over cuts of the smallest Schmidt coefficient) results from
the limited bond dimension and increases as entanglement is
produced.

the latter. On the lattice, however, the kinetic energy can-
not increase indefinitely. Instead, as discussed in the main
text, the kink begins to undergo Bloch oscillations, even-
tually decelerating and reversing its direction of travel, as
shown in Fig. 5 for Ising model parameters. By projecting
into the κ basis of single kinks (see Appendix D), we can
easily compute the kink position and momentum for such
a simulation. As shown in Fig. 5, the momentum increases
linearly with time, making it easy to understand the evo-
lution of the wavepacket position via the group velocity,
which is given by dE(p)/dp , where E(p) is the quasipar-
ticle dispersion relation. In Fig. 6 we show the velocity
derived from the position compared to the velocity derived
from the momentum (via the dispersion relation).

2. Bubble evolution

In the case of a bubble state, the initial kink and antikink
behave as their isolated counterparts, accelerating into the
false vacuum until they near each other and interact. Their
momenta increase linearly until the collision, as shown in
lattice units (−π < p ≤ π ) for the Ising model [parameter
set (i) of the main text] in Fig. 24. It is interesting to note
that the momentum variance is significantly larger after
the collision than it is before, indicative of an (in this case
elastic) interaction.

The velocity of the kink and antikink, defined here as the
velocity of the point in space at which the (interpolated)
spin expectation value crosses zero, evolve as shown in

FIG. 24. Momentum of the kink in simulation (i) of the main
text (Ising), computed from the projected wavefunction in the
κκ(0,0) basis. The bond dimension is 128. Since the κκ(0,0) basis
does not accurately capture the state when the kink is very close
to the antikink, these data are not complete during the collision
(t ≈ 140). The error bars indicate the standard deviation of the
momentum distribution.

Fig. 25, in accordance with the dispersion relation of the
kink quasiparticle excitation. In this simulation, the kink
achieves its maximum velocity well before the collision,
and begins to decelerate as part of a Bloch oscillation. The
precollision velocity can be kept from reaching its maxi-
mum by reducing the kink-antikink separation in the initial
bubble state, as we have confirmed with other simulations.

In Fig. 26, we show the kink and antikink velocity evo-
lution for simulation (ii) of the main text. In this case,
we have set the initial kink-antikink separation so that
the velocity does not reach a maximum prior to collision
(indicating that Bloch oscillations have not yet begun).

FIG. 25. Kink and antikink wavepacket velocity for the Ising
model, simulation (i) of the main text, computed as the finite dif-
ference of the interpolated position of the 0-intercept of 〈Zj 〉. The
bond dimension is 128. Note that the data are only likely to be
accurate up to t ≈ 800, as suggested by Fig. 11. The onset of the
first collision is indicated by the dotted line, which is the time at
which the maximum cut entropy begins to grow rapidly.
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FIG. 26. Kink and antikink wavepacket velocity for simula-
tion (ii), computed as the finite difference of the interpolated
position of the 0-intercept of 〈Zj 〉. The bond dimension is 128.
The interpretation of the 0-intercept as the position breaks down
both during and, to some extent, after the collision: during the
collision, the zero intercept disappears altogether as the kink and
antikink merge and all spin expectation values are > 0. After the
collision, there are in this case (see Fig. 10) at least two different
bubble “branches” of the wavefunction, both contributing to the
spin expectation values. The onset of the first collision is indi-
cated by the dotted line, which is the time at which the maximum
cut entropy begins to grow rapidly.

APPENDIX H: ZERO LONGITUDINAL FIELD

Here we examine the behavior of “bubbles” (kink-
antikink pairs) when we set the longitudinal field h =
0. Our model with λ 
= 0 is not integrable, even if we
turn off the longitudinal magnetic field h. Generically, we
should therefore expect to observe inelastic kink-antikink
collisions.

We prepare bubble states, for the Hamiltonian param-
eters g = 0.9, λ = 0.3, h = 0, in which the kink and
antikink have initial momentum p and −p , respectively.
By varying p , we can choose the total energy to be either
above or below the threshold for quasiparticle pair pro-
duction, which we numerically estimate to be 2mμ = 1.88
(relative to the vacuum energy).

In Fig. 27, we show the cut entropy as a function of
space and time and, separately for clarity, the time depen-
dence of the cut entropy at the midpoint between the
quasiparticle wavepackets. We choose three different ini-
tial momenta: p = 4π/32, p = 5π/32, and p = 6π/32,
corresponding to bubble energies of E = 1.65, E = 1.92,
and E = 2.20, respectively. We observe that the postcolli-
sion midchain entropy returns to its vacuum value for p =
4π/32, suggesting a trivial scattering event (see Appendix
I). For p = 5π/32 and p = 6π/32, we observe a residual
entropy surplus after the collision, suggesting nontrivial
scattering. Since the onset of this extra entropy contri-
bution coincides with the energy crossing the two-meson
threshold 2mμ, it is likely due to an increasing probability
of meson pair production.

p = 4p/32

p = 4p/32

p = 5p/32

p = 5p/32

p = 6p/32

p = 6p/32

FIG. 27. Cut entropy for kink-antikink collisions, in the
absence of a longitudinal field, with initial kink momentum p
and antikink momentum −p , for three different values of p .
The Hamiltonian parameters are g = 0.9, λ = 0.3, h = 0, and
the wavepacket width is σ = 19.0. The vacuum bond dimen-
sion is D = 14, with a limit D ≤ 64 imposed during evolution.
The integration time-step size is δt = 0.05 in unscaled lattice
Hamiltonian units.

It is interesting to note that, if we set h > 0 while keep-
ing the other Hamiltonian parameters the same, we observe
nontrivial, albeit elastic, scattering of kink-antikink pairs
when the energy is below the two-meson threshold. Turn-
ing off the longitudinal field appears to turn off this nontriv-
ial elastic contribution, so that kinks and antikinks scatter
trivially.

APPENDIX I: ENTANGLEMENT GENERATED BY
AN ELASTIC COLLISION

Here we consider how two single-particle wavepack-
ets become entangled when they scatter elastically in
one spatial dimension. The entanglement arises from the
momentum dependence of the scattering phase shift.

For this analysis, we ignore lattice effects and consider
two distinguishable particles A and B propagating in the
continuum. A pure state expanded in the momentum basis
has the form

|ψ〉 =
∫

dp dqψ(p , q)|p〉A|q〉B, (I1)
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with the normalization
∫

dp dq|ψ(p , q)|2 = 1. (I2)

We assume that the initial state factorizes as the
product ψ(p , q) = ψA(p)ψB(q) of two widely separated
wavepackets, but after elastic scattering, the wavepackets
become correlated due to the momentum-dependent phase
shift φ(p , q):

ψ(p , q) = ψA(p)ψB(q)eiφ(p ,q). (I3)

Tracing out particle B, we obtain the reduced density
matrix for particle A:

ρA =
∫

dp1 dp2|p1〉ρA(p1, p2)〈p2|,

ρA(p1, p2) =
∫

dqψ(p1, q)ψ∗(p2, q).
(I4)

Here the asterisk denotes complex conjugation.
To quantify the entanglement of particles A and B, we

compute the Rényi entropies of ρA,

Sn = 1
1 − n

log2 ρ
n
A, (I5)

where

trρn
A =

∫
dp1dp2 · · · dpndq1dq2 · · · dqn|ψA(p1)|2

× |ψA(p2)|2 · · · |ψA(pn)|2|ψB(q1)|2|ψB(q2)|2 · · ·
× |ψB(qn)|2 exp{i[φ(p1, q1)

− φ(p2, q1)+ φ(p2, q2)− φ(p3, q2)+ · · ·
+ φ(pn, qn)− φ(p1, qn)]}. (I6)

Now suppose that the wavepackets for particles A and B
are Gaussian:

|ψA(p)|2 = 1√
2π
A

e−(p−p̄)2/2
2
A ,

|ψB(q)|2 = 1√
2π
B

e−(q−q̄)2/2
2
B .

(I7)

If the phase shift were slowly varying over the range in p
and q where the wavepackets have significant support, we
could approximate trρn

A by expanding φ(p , q) to quadratic
order about (p̄ , q̄). But in that case the scattered wavepack-
ets are only slightly entangled. In order to do an analytic
computation, we assume that φ(p , q) is exactly quadratic

even if the phase shift varies rapidly. Then the only term
that matters is the cross term

φ(p , q) = φ2pq + · · · , (I8)

because the exponential of the other terms factorizes into
a function of p times a function of q, which does not
contribute to the entanglement of particles A and B.

By evaluating a Gaussian integral, we find that

trρn
A =

{n−1∏

k=1

[
1 + 4α2sin2

(
kπ
n

)]}−1/2

,

Sn = 1
2(n − 1)

n−1∑

k=1

log2

[
1 + 4α2sin2

(
kπ
n

)]
,

(I9)

where

α = φ2
A
B. (I10)

As we anticipated, for |α| � 1, the phase shift is rapidly
varying and the entanglement is substantial. Using the
formula

n−1∏

k=1

4 sin2
(

kπ
n

)
= n2, (I11)

we find that

trρn
A = 1

n|α|n−1 [1 + O(α−2)]. (I12)

We can extract the large-α behavior of the von Neumann
entropy by taking the limit

S1 = tr ρA log2 ρA

= lim
n→1

1
1 − n

log2 trρn
A

≈ lim
n→1

(n − 1) log2 |α| + log2 n
n − 1

= log2(e|α|). (I13)

The entanglement entropy of particles A and B, after
the elastic scattering event, scales like log |α|; therefore
we expect to need a bond dimension scaling like |α| to
simulate the scattering process accurately using a MPS
approximation.

In fact, by invoking properties of Chebyshev polyno-
mials, the product over k in Eq. (I9) can be evaluated
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explicitly, yielding [98]

Sn = 1
2(n − 1)

{1 + 2nlog2|α| + log2[cosh(bn)− 1]},
(I14)

where

b ≡ arccosh
(

1 + 1
2|α|2

)
. (I15)

In the limit n → 1 we find that

S1 = log2|α| + b
2
(1 + 4|α|2)1/2 log2 e; (I16)

taking the large-α limit using arccosh(1 + x) = √
2x[1 +

O(x)], we recover Eq. (I13).
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