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Random access codes have provided many examples of quantum advantage in communication, but con-
cern only one kind of information retrieval task. We introduce a related task—the Torpedo Game—and
show that it admits greater quantum advantage than the comparable random access code. Perfect quantum
strategies involving prepare-and-measure protocols with experimentally accessible three-level systems
emerge via analysis in terms of the discrete Wigner function. The example is leveraged to an operational
advantage in a pacifist version of the strategy game Battleship. We pinpoint a characteristic of quantum
systems that enables quantum advantage in any bounded-memory information retrieval task. While prepa-
ration contextuality has previously been linked to advantages in random access coding we focus here on a
different characteristic called sequential contextuality. It is shown not only to be necessary and sufficient
for quantum advantage, but also to quantify the degree of advantage. Our perfect qutrit strategy for the
Torpedo Game entails the strongest type of inconsistency with noncontextual hidden variables, revealing
logical paradoxes with respect to those assumptions.
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I. INTRODUCTION

Random access coding involves the encoding of a ran-
dom input string into a shorter message string. The encod-
ing should be such that any element of the input string
can be retrieved with high probability from the message
string. Such tasks have long been studied as examples in
which the communication of quantum information can pro-
vide advantage, i.e., enhanced performance, over classical
information, e.g., Refs. [1–8].

However, random access coding concerns only one kind
of information retrieval. In this work we introduce another
such task—the Torpedo Game. It is similar to random
access coding, but with additional requirements involving
the retrieval of relative information about elements of the
input string. Taking a geometric perspective it may also
be viewed as a pacifist version of the popular strategy
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game Battleship (see Fig. 1). Quantum strategies can be
implemented in prepare-and-measure scenarios, and out-
perform classical strategies for the Torpedo Games with
bit and trit inputs. In particular, quantum perfect strate-
gies exist in the trit case and provide a greater quantum
advantage than for the comparable random access coding
task [5].

Optimal quantum strategies emerge from an analysis in
terms of the discrete Wigner function. Wigner negativity
is a signature of nonclassicality in quantum systems that
is related to contextuality and that has been widely studied
as a resource for quantum speedup and advantage [9–16].
Knowing which characteristic lies at the source of better-
than-classical performances can both allow for comparison
of quantum systems in terms of their utility, and offer
a heuristic for generating further examples of quantum-
enhanced performance. Our optimal quantum strategies are
indeed Wigner negative, with perfect quantum strategies
derived from maximum Wigner negativity. Yet while neg-
ativity is necessary for advantage in the Torpedo game, it
is not sufficient.

To more precisely pinpoint the source of quantum
advantage we must look further. One candidate would be
preparation contextuality [17], another signature of non-
classicality that has been linked to quantum advantages
(e.g., Ref. [18]) and has also been linked to quantum ran-
dom access codes (QRACs) in numerous studies [3,6,19].
It has been shown to be necessary for advantage in a
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FIG. 1. The Torpedo Game is a pacificist alternative to Battle-
ship where the aim is to avoid sinking Alice’s ship, depicted here
in dimension 3.

restricted class of random access codes subject to an
obliviousness constraint [16,20].

In this work, however, we focus on a different charac-
teristic called sequential contextuality [21]. It indicates the
absence of a hidden variable model respecting the sequen-
tial structure of a given protocol. Subject to an assumption
of bounded memory, we find that this characteristic is
necessary and sufficient for quantum advantage, not just
in random access coding but in any information retrieval
task. Moreover, we show that it quantifies the degree of
advantage that can be achieved.

Contextuality can exhibit itself at the level of probabil-
ity distributions, e.g., quantum violations of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [22]. But in some
cases it can also manifest at the level of the supports of
these distributions. In other words contextuality can be
inferred by a series of logical deductions about which
events are possible or not, e.g., Hardy’s paradox [23,24].
This situation has come to be known as logical contex-
tuality [25]. In the most extreme cases, known as strong
contextuality [25], every possible event triggers such a
paradox [26], e.g., Popescu-Rohrlich box violations of the
CHSH inequality [27] (see also Refs. [28,29]). Note that
empirical data is always expressible as a convex mixture of
classical and strongly contextual data [25,30]. For qutrits
the quantum perfect strategies we introduce display analo-
gous contextuality, and hence paradoxes, of this strongest
form in a prepare-and measure scenario.

Section II gives an overview of information retrieval
tasks including random access coding and the Torpedo
Game. Section III provides background on discrete Wigner
functions. Section IV deals with optimal classical and
quantum strategies for the Torpedo Game; a presen-
tation on how this game can be used for a dimen-
sional witness; and a derivation of the nonlocal version
of the Torpedo Game. Finally, Sec. V establishes the
relationship between sequential contextuality and quan-
tum advantage in bounded-memory information retrieval
tasks.

II. INFORMATION RETRIEVAL TASKS

We begin with a recap of the familiar example of random
access codes before generalizing to the broader notion of
information retrieval tasks.

A. Random access codes

An (n, m)2 random access code (RAC), sometimes
denoted n → m, is a communication task in which one
aims to encode information about a random n-bit input
string into an m-bit message, where m < n, in such a way
that any one of the input bits may be retrieved from the
message with high probability. An (n, m)2 QRAC instead
encodes the input into an m-qubit (quantum) message state.

Such tasks may be considered as two-party cooperative
games in which the first party, Alice, receives a random
input string from a referee. She encodes information about
this in a message that is communicated to the second party,
Bob. The referee then asks Bob to retrieve the value of the
bit at a randomly chosen position in the input string. We
assume that the referee’s choices are made uniformly at
random.

For instance, for the (2, 1)2 RAC game [1] an optimal
classical strategy is for Alice to directly communicate one
of the input bits to Bob. If asked for this bit, Bob can
always return the correct answer, otherwise Bob guesses
and will provide the correct answer with probability 1

2 .
Thus the game has a classical value of

θC
2→1 = 1

2

(
1 + 1

2

)
= 3

4
.

Quantum strategies can outperform this classical bound.
An optimal quantum strategy is for Alice to communi-

cate the qubit state

∣∣ψx1,x2

〉 = 1√
2

(
|0〉 + 1√

2
[(−1)x1 + (−1)x2 i] |1〉

)
, (1)

where (x, z) is the input bit string she has received. Bob
measures in the X basis when asked for x1 and in the Y
basis when asked for x2 (see Fig. 2). If he obtains the +1
eigenvalue he returns the value 1 and if he obtains the −1
eigenvalue he returns 0. This yields a quantum value for
the game of

θ
Q
2→1 = cos2

(π
8

)
≈ 0.85.

B. General information retrieval tasks

One may also consider more general communication
scenarios. In an (n, m)d communication scenario the input
is a random string of n dits and the message is a string of
m (qu)dits, for d ≥ 2. (Q)RAC tasks have previously been
considered in such scenarios, e.g., in Refs. [5,31].
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FIG. 2. The four red dots correspond to the four states
∣∣ψx1,x2

〉
defined in Eq. (1) depicted as points on the equator of the Bloch
sphere.

However, we also wish to accommodate for a
much wider range of information retrieval tasks. An
information retrieval task in an (n, m)d communication
scenario is specified by a tuple 〈Q, {wq}q∈Q〉.

(a) Q is a finite set of questions.
(b) The wq : Z

n
d → Zd are winning relations, which

pick out the good answers to question q given an
input string in Z

n
d. Note that there may be more than

one good answer, or none. It is assumed that inputs
and outputs are endowed with the structure of the
commutative ring Zd.

Standard (n, m)d (Q)RACs are recovered when the ques-
tions ask precisely for the respective input dits. In that
case the winning relations wi reduces simply to projectors
onto the respective dits of the input string. However, other
interesting tasks arise when the questions also concern rel-
ative information about the input string, in the form of
parities or linear combinations modulo d of the input dits.
Similar generalizations for d = 2, using functions rather
than relations, have been independently proposed in Refs.
[32,33].

C. The Torpedo Game

Of particular interest in the present work is an infor-
mation retrieval task for (2, 1)d communication scenarios.
We take the game perspective and refer to the task as
the dimension d Torpedo Game (see Fig. 1 in dimension
3 and Fig. 3). Let x and z be the two input dits. There
are d + 1 questions Q = {∞, 0, 1, . . . , d − 1}. The label-
ing comes from a geometric interpretation to be elaborated
upon shortly. Winning relations for the Torpedo Game are
given by

w∞(x, z) = {a ∈ Zd | a 
= x},
w0(x, z) = {a ∈ Zd | a 
= −z},
w1(x, z) = {a ∈ Zd | a 
= x − z}, (2)

E

x z

D

q ∈ {∞, 0, 1, 2, . . . , d − 1}

c

Alice Bob

j

FIG. 3. Prepare-and-measure protocol for the Torpedo Game:
Alice receives dits x and z and sends a single message
(qu)dit j via the encoding E . Bob is asked a question
q ∈ {∞, 0, . . . , d − 1}, performs decoding D, and outputs c,
which should satisfy the winning conditions given by wq(x, z)
with high probability.

w2(x, z) = {a ∈ Zd | a 
= 2x − z},
...

wd−1(x, z) = {a ∈ Zd | a 
= (d − 1)x − z}.

All arithmetic is modulo d.
For d = 2, the Torpedo Game is equivalent to a (2, 1)2

(Q)RAC, but with an additional question. Bob may be
asked to retrieve either one the individual input dits, or
to retrieve relative information about them in the form of
their parity x ⊕ z. We note that dimension 2 is the only case
where the winning relations are actually functions (there is
only one good answer per question).

The Torpedo Game may be framed as a cooperative,
pacifist alternative to the popular game Battleship, in
which Alice and Bob, finding themselves on opposing
sides in a context of naval warfare, wish to subvert the con-
flict and cooperate to avoid casualities while not directly
disobeying orders.

We take the input dits received by Alice as designating
the coordinates in which she is ordered by her commander
to position her one-cell ship on the affine plane of order d.
We may think of the affine plane as a toric d × d grid, with
x designating the row and z the column. For example, in
Fig. 4 we identify the top edge with the bottom edge and
the left edge with the right edge.

Bob is a naval officer on the opposing side who is
ordered by his commander to shoot a torpedo along a line

FIG. 4. The red arrows depict the directions or slopes
(∞, 0, 1, 2, respectively) along which Bob may be asked to shoot
in the d = 3 Torpedo Game. For each direction, Bob has three
possibilities, depicted by the blue lines. In the affine plane of
order 3, each of these groups of three blue cells forms a line.
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of the grid with slope specified by q ∈ Q. The ∞ ques-
tion requires Bob to shoot along some row, and the 0
question requires Bob to shoot along some column, etc.
However, Bob retains the freedom to choose which row, or
column, or diagonal of given slope, as the case may be.
In other terms, upon receiving q Bob must shoot along
lines qx − z = c (if q 
= ∞) or x = c (if q = ∞) but is free
to choose the constant c.

Alice and Bob wish to coordinate a strategy for avoid-
ing casualities, while still obeying their explicit orders.
Tight security measures on Alice’s side mean that she can
only transmit a single (qu)dit of information. Based on the
(qu)dit received, Bob must choose his c in such a way that
he avoids Alice’s ship.

III. THE DISCRETE WIGNER FUNCTION

It is possible to represent finite-dimensional quantum
states as quasiprobability distributions over a phase space
of discrete points. Wootters [34,35] introduced a method
of constructing discrete Wigner functions (DWFs) based
on finite fields, wherein vectors from a complete set of
mutually unbiased bases in C

d are put in one-to-one
correspondence with the lines of a finite affine plane
of order d. This geometric picture of the DWF is use-
ful for visualizing our Torpedo Game as exemplified in
Fig. 4, where each distinct orthonormal basis corresponds
to a set of d parallel (nonintersecting) lines. Gross [36]
singled out one particularly symmetric definition of the
DWF that obeys the discrete version of Hudson’s theorem.
This theorem says that an odd-dimensional pure state
is non-negatively represented in the DWF if and only
if it is a stabilizer state (defined below). The discrete
Hudson’s theorem has remarkable implications, provid-
ing large classes of quantum circuit with a local hidden
variable model that enables efficient simulation [10,37].
Clearly, negativity in this DWF is a necessary prereq-
uisite for quantum speedup. Howard et al. [11] showed
that this negativity actually corresponds to contextuality
with respect to Pauli measurements, thereby establishing
the operational utility of contextuality for the gate-based
model of quantum computation (particularly in a fault-
tolerant setting). The equivalence of Wigner negativity
and contextuality was established by deriving a noncon-
textuality inequality using the graph-theoretic techniques
of Cabello et al. [38], which extend Kochen-Specker-type
state-independent proofs to the state-dependent realm. This
proof (and a subsequent alternate proof [39]) requires that,
as well as the system displaying Wigner negativity, a sec-
ond ancillary system must be present in order to have a
sufficiently rich set of available measurements. Very recent
work by Schmid et al. [40] reinforces the special nature of
the Gross DWF by identifying it as the unique Spekkens
noncontextual ontological model for the stabilizer subthe-
ory of quantum mechanics, thereby proving the necessity

of Spekkens’ contextuality for quantum computation (the
necessity of Kochen-Specker contextuality having already
been established in Ref. [11]).

A. DWF formalism

The discrete Wigner function is both foundationally
interesting as well as practically relevant for fault-tolerant
quantum computing via its link with so-called “stabilizer
states.” The qudit versions of the X and Z Pauli operators
are

X |k〉 = |k + 1〉,
Z|k〉 = ωk|k〉,

where ω = exp(2π i/d) and arithmetic is modulo d. The
qudit Pauli group has elements that are products of (powers
of) these operators, e.g., X xZz for x, z ∈ Zd. A unitary U
stabilizes a state |ψ〉 if U |ψ〉 = |ψ〉. A stabilizer state is
the unique n-qudit state stabilized by a subgroup of size
dn of the Pauli group. Equivalently, stabilizer states may
be understood as the image of computational basis states
under the Clifford group, which is the set of unitaries that
map the Pauli group to itself under conjugation.

For an arbitrary d × d Hermitian operator Q of unit trace
(typically a density matrix), its Wigner representation will
consist of d2 real quasiprobabilities Wx,z for x, z ∈ Zd. In
particular, the quasiprobability associated with the point
(x, z) ∈ Z

2
d is given by

Wx,z = 1
d

Tr(QAx,z),

where Ax,z are the so-called phase-point operators to
be defined shortly. The unit trace of Q will ensure
that

∑
x,z Wx,z = 1. Taking the magnitude |Wx,z| of each

quasiprobability will lead to
∑

x,z |Wx,z| = 1 if and only
if the quasiprobability distribution is actually a legitimate
(non-negative) discrete probability distribution. In con-
trast, the presence of negative quasiprobabilities entails∑

x,z |Wx,z| > 1, and in fact the departure of
∑

x,z |Wx,z|
from unity is a sensible measure of “how negative” or
“how nonclassical” the DWF of an operator is [10,41].

When working with the DWF, it is convenient to use
the Weyl-Heisenberg notation and phase convention for
the qudit Pauli operators, i.e.,

Dx,z = ω2−1xz
∑

k

ωkz|k + x〉〈k| = ωxz/2X xZz,

where they go by name displacement operators. The phase-
point operator at the origin of phase space A0,0 is given by
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the simple expression

A0,0 =
∑
j ∈Zd

|−j 〉〈j |,

and the remainder are found by conjugation with displace-
ment operators

Ax,z = Dx,zA0,0D†
x,z. (3)

B. DWF and information retrieval

The eigenvectors of phase-point operators are objects of
interest. The maximizing eigenvectors of the phase-point
operators in Eq. (3) (and additional ones from different
choices of DWF) were used in Casaccino et al. [31] as the
encoded messages of a (d + 1, 1)d QRAC. This is natural
given the use of mutually unbiased bases (MUBs) in con-
structing DWFs, and prominence of MUBs in the QRAC
literature. If Alice receives input kkk = (k1, k2, . . . , kd+1) ∈
Z

d+1
d that she encodes in ρkkk and transmits to Bob, then

the average probability of success for the Casaccino et al.
QRAC is

1
(d + 1)dd+1

∑
kkk∈Z

d+1
d

Tr
[
ρkkk(�

k1
1 + · · · +�

kd+1
d+1 )

]
, (4)

where �i
q is the projector corresponding to dit value i in

Bob’s qth measurement setting. Since phase-point opera-
tors are constructed using sums of projectors from MUBs,
i.e., �k1

1 +�
k2
2 + · · · +�

kd+1
d+1 , the use of a maximizing

eigenvector of a phase-point operator for ρkkk is natural to
maximize Eq. (4).

In this work we instead make use of the minimizing
eigenvectors of phase-point operators. The rationale for
this is twofold: (i) these eigenvectors display remarkable
geometric properties with respect to the measurements
in (their constituent) mutually unbiased bases, and (ii)
negativity (of a state in the DWF) is the hallmark of
nonclassicality, which has already been identified with
contextuality (with the already mentioned caveat that an
additional “spectator” subsystem was required). These will
be seen to lead to a perfect quantum strategy for the
Torpedo Game.

As previously noted in Refs. [36,42], the eigenvec-
tors of phase point operators Eq. (3) are degenerate:
a +1 eigenspace of dimension (d + 1)/2 and a −1
eigenspace of dimension (d − 1)/2. Any state in the
−1 eigenspace has an outcome that is forbidden [42,43]
in each of a complete set of MUBs. For example,
let

∣∣ψ0,0
〉 = (|1〉 − |d − 1〉)/√2 satisfying A0,0

∣∣ψ0,0
〉 =

−∣∣ψ0,0
〉
. This state obeys Tr(�0

q

∣∣ψ0,0
〉〈
ψ0,0

∣∣) = 0, where
�0

q is the projector on the 0th eigenvector in the qth
basis. More specifically, �0

q is the projector correspond-
ing to the ω0 = +1 eigenvector of displacement operator

{
D0,1, D1,0, D1,1, . . . , D1,d−1

}
. These displacement opera-

tors have eigenvectors leading to mutually unbiased mea-
surement bases q ∈ {∞, 0, 1, . . . , d − 1}, respectively. The
related states

∣∣ψx,z
〉 = Dx,z

∣∣ψ0,0
〉
, which are eigenstates

Ax,z
∣∣ψx,z

〉 = −∣∣ψx,z
〉
, obey

Tr
[∣∣ψx,z

〉〈
ψx,z

∣∣ (�x
∞ +�−z

0 +�x−z
1 + · · · +�

(d−1)x−z
d−1

)]

= 0. (5)

Equation (5) implies that the probability of the relevant
outcome (outcome x in the first basis, −z in the second
basis, etc.) in each of the MUBs is zero: cf. Eq. (2). The
general expression for odd power-of-prime d is proven in
Refs. [44,45].

IV. OPTIMAL STRATEGIES FOR THE TORPEDO
GAME

Here we gather the optimal classical, quantum, and (in
one case) postquantum strategies for the Torpedo Game.
We focus only on Torpedo Games with power-of-prime
dimension d as we are able to provide perfect quantum
strategies in these cases (for d ≥ 3) due to the fact that
there exist d + 1 MUBs for those dimensions. The quan-
tum case differs depending on whether we use a qubit
or a qudit of odd prime-power dimension. The classi-
cal optimum can only be established rigorously for small
dimensions, owing to the proliferation of possible hid-
den variable assignments as the dimension increases. We
obtain a quantum advantage for dimension 2 and 3. At
the conclusion of this paper we sketch a modified Tor-
pedo Game that we believe may have a lower classical
value whenever d ≥ 5, thereby re-establishing a quantum
advantage in those dimensions.

A. Optimal quantum and postquantum strategies

1. Quantum perfect strategy for odd power-of-prime
dimension

From Eq. (5) it follows that there is a perfect quantum
strategy for the dimension d Torpedo Game for any odd
power-of-prime d:

(1) Upon receiving dits x and z Alice sends the follow-
ing state to Bob:

∣∣ψx,z
〉 = Dx,z

∣∣ψ0,0
〉 = Dx,z

[√
2

−1
(|1〉 − |−1〉)

]
.

(6)

(2) Bob receives
∣∣ψx,z

〉
and is asked a question q ∈

{∞, 0, . . . , d − 1}. He measures the state in the
MUB corresponding to q and outputs the dit corre-
sponding to the measurement outcome.
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FIG. 5. The perfect quantum strategy can be understood by
plotting the discrete Wigner function of the message state sent
by Alice. In the above qutrit case, Alice is in coordinate (x, z) =
(2, 0), so she sends Bob the state

∣∣ψ2,0
〉

whose Wigner function
is −1/3 at coordinate (2, 0) and 1/6 otherwise. Bob measures
this state along any of the four allowed directions, wherein the
probability of each outcome is given by sum of quasiprobabili-
ties along the corresponding line. Hence, the only outcomes with
nonzero probability of occurring correspond to lines not passing
through (2, 0). Whichever outcome Bob sees, he may fire his tor-
pedo along the corresponding line, safe in the knowledge that it
will not intersect Alice’s ship. In this figure the solid blue lines
correspond to the possible outcomes for the q = 0 direction, but
the same argument holds for all the other directions.

This quantum strategy wins the Torpedo Game determin-
istically, i.e., with probability 1. In Fig. 5 we provide
geometric intuition for why this strategy is perfect.

2. Optimal quantum strategy for qubits

An analogous strategy to the qudit case can be
employed for the qubit Torpedo Game, using mes-
sage states

∣∣ψx,z
〉 = X xZz

∣∣ψ0,0
〉

where X , Y, and Z are
the usual qubit Pauli spin matrices and

∣∣ψ0,0
〉〈
ψ0,0

∣∣ =
1
2

[
I − (X + Y + Z)/

√
3
]
.

For d = 2, while this does not constitute a perfect strat-
egy it still achieves an advantage over classical strategies.
In fact, it turns out to be an optimal strategy: this strat-
egy achieves a winning probability of approximately 0.79
and we show that this is optimal. First we can leverage
the fact that the (3, 1)2 (Q)RAC attributed to Isaac Chuang
is at least as hard to win as the Torpedo Game because
for the last question, instead of asking to retrieve the par-
ity of the input bits, the (3, 1)2 (Q)RAC ask to retrieve
a third independent bit. Thus we get a lower bound of
1
2

(
1 + 1/

√
3
)

≈ 0.79 on the optimal quantum value. To
obtain a matching upper bound, we implement numeri-
cally the Navascués-Pironio-Acín (NPA) hierarchy [46],
which is a hierarchy of semidefinite programs converging
from the exterior to the correlations arising from quantum

systems. Because the message sent from Alice to Bob is
of finite dimension we rely mostly on Ref. [47], which
allows characterization of correlations arising from finite-
dimensional quantum systems. We find a matching upper
bound proving that indeed θQ

d=2 ≈ 0.79.

3. Perfect postquantum strategy for qubits

The average probability of success for the Casac-
cino et al. QRAC, see Eq. (4), can be maximized
by using a postquantum “state” of the form �

k1
1 +

�
k2
2 + · · · +�

kd+1
d+1 − I, where scare quotes reflect the

fact that, although it is Hermitian and has unit trace,
its spectrum is not necessarily non-negative. In fact
the “state” above is a phase-point operator, Akkk, for
one of Wootters’ discrete Wigner functions. Since
phase-point operators obey Tr(AI) = 1 and Tr(AA) = d
then 1/(d + 1)dd+1 ∑

kkk∈Z
d+1
d

Tr [Akkk(Akkk + I)] = 1. In other
words, in the same spirit as Ref. [48], there is a perfect
strategy by using postquantum states. Seen in this way,
phase-point operators in a (d + 1, 1)d QRAC scenario are
similar to Popescu-Rohrlich [27] boxes in the CHSH sce-
nario. As seen above, our Torpedo Game has a perfect
strategy within quantum mechanics for all odd power-of-
prime dimensions, by construction. In contrast, we saw
that the qubit Torpedo Game only has quantum value of
roughly 0.79. To reach a perfect strategy, we must once
again use a phase-point operator as the nonphysical “state”
that Alice sends to Bob, see Fig. 6.

B. Optimal classical strategies

In what follows, we describe an encoding map E =
{pE(·|x, z)}x,z as specifying a probability distribution over

FIG. 6. The qubit version of the Torpedo Game has a perfect
strategy when allowed access to postquantum “states.” The red
point on the surface of the Bloch sphere represents the optimal
message state

∣∣ψ0,0
〉
, achieving a value of 0.79 for the Torpedo

Game. The black point representing 1
2 [I − (X + Y + Z)] is not

a valid density matrix, but achieves a value of 1 in the Torpedo
Game.
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messages j ∈ Zd for each combination of inputs x, z ∈
Zd. Similarly a decoding map D = {pD(·|j , q)}j ,q spec-
ifies a probability distribution over outputs c ∈ Zd for
each combination of a message and question, j , q ∈ Zd,
respectively.

Combining an encoding E and a decoding D results in
an empirical behavior e = {pe(·|x, z, q)}x,z,q. This is a set of
probability distributions over outputs c ∈ Zd, one for each
combination of the referee variables x, z ∈ Zd, q ∈ Q such
that

pe(c|x, z, q) =
∑
j ∈Zd

pD(c|j , q) pE(j |x, z). (7)

By comparison, quantum-mechanical empirical
behaviors arise via the Born rule: pe(c|x, z, q)
= Tr(ρx,z�

c
q).

Assuming the referee variables to be uniformly dis-
tributed, a strategy has a winning probability given in
terms of its empirical probabilities as

1
d2(d + 1)

∑
x,z,q

pe[wq(x, z) | x, z, q].

The classical value of the Torpedo Game for dimension d
can thus be expressed as

θC
d = max

E ,D

[
1

d2(d + 1)

∑
x,z,q

pe[wq(x, z) | x, z, q]

]
. (8)

For evaluation of this expression note that it suffices
to consider deterministic encodings and decodings. In the
presence of shared randomness, nondeterministic strate-
gies can always be obtained as convex combinations of
deterministic ones and the expression is convex linear [49].
Furthermore, for each encoding there exists a decoding that
is optimal with respect to it. This fact was also observed for
one-way communication tasks with messages of bounded
dimension in Ref. [16]. Thus it is possible to evalu-
ate the classical value by enumerating over deterministic
encodings only.

Proposition 1. The classical value of an information
retrieval task can be expressed as a maximum over encod-
ings as

θC = max
E

⎡
⎢⎢⎣ 1

d2(d + 1)

∑
j ,q

max
c

∑
(x,z) s.t.
c∈wq(x,z)

pE(j |x, z)

⎤
⎥⎥⎦ . (9)

Proof. Starting from Eq. (8),

θC = max
E ,D

[
1

d2(d + 1)

∑
x,z,q

pe(wq(x, z) | x, z, q)

]

= max
E ,D

⎡
⎣ 1

d2(d + 1)

∑
x,z,q

∑
c∈wq(x,z)

pe(c | x, z, q)

⎤
⎦

= max
E ,D

⎡
⎢⎢⎣ 1

d2(d + 1)

∑
q,c

∑
(x,z) s.t.
c∈wq(x,z)

pe(c | x, z, q)

⎤
⎥⎥⎦

= max
E ,D

⎡
⎢⎢⎣ 1

d2(d + 1)

∑
j ,q,c

∑
(x,z) s.t.
c∈wq(x,z)

pD(c|j , q) pE(j | x, z)

⎤
⎥⎥⎦

= max
E

⎡
⎢⎢⎣ 1

d2(d + 1)

∑
j ,q

max
c

∑
(x,z) s.t.
c∈wq(x,z)

pE(j | x, z)

⎤
⎥⎥⎦ ,

where the last line follows by using a deterministic decod-
ing that is optimal with respect to the encoding. �

A useful way of representing any deterministic encoding
is as a coloring of the d × d affine plane using no more than
d colors. Observe that a deterministic encoding can alter-
natively be expressed as a function fE : Zd × Zd → Zd,
where fE(x, z) is the message dit to be sent (with prob-
ability 1) given inputs x, z. Thinking of the inputs as
coordinates in the d × d affine plane a deterministic encod-
ing is equivalent to a partition of the plane into no more
than d equivalence classes, or a coloring using no more
than d colors.

1. Optimal strategies for d = 2 and d = 3

In general there are dd2
partitions of a d × d grid. For

low dimensions the expression in Eq. (9) can be evaluated
by exhaustive search over partitions. For dimension 2 and
3 we find

θC
d=2 = 3

4
and θC

d=3 = 11
12

. (10)

Example of strategies that attains these values are depicted
below in Fig. 7 and in Fig. 8.

2. Optimal strategies for d = 4 and beyond

As d increases it quickly becomes infeasible to perform
an exhaustive search over all partitions. We have, however,
found perfect classical strategies, i.e., strategies that win
with probability 1, for d = 4 (see Fig. 9 for an example in
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FIG. 7. An optimal classical strategy for the d = 2 Torpedo
Game. Alice uses her bit of communication to indicate in
which class of the partition that she finds herself. Classes are
represented here by colors.

dimension 5) up to d = 23. This leads us to conjecture that
there exists a perfect classical strategy for all d > 5.

Conjecture: θC
d≥5 = 1. (11)

C. Comparison of quantum and classical game values

Recall the optimal quantum values established in
Sec. IV A,

θ
Q
d=2 � 0.79 and θ

Q
d≥3 = 1. (12)

Comparing these with the classical bounds from Sec. IV B
we obtain the ratios

θ
Q
d=2

θC
d=2

� 1.053 and
θ

Q
d=3

θC
d=3

� 1.091. (13)

By comparison, it was shown in Ref. [5] that the classi-
cal and quantum values of the (4, 1)3 (Q)RAC are 16

27 and
0.637, respectively, giving a ratio of θQ

d=3/θ
C
d=3 � 1.075.

Accordingly, we note that the d = 3 Torpedo Game admits
a greater quantum-over-classical advantage than the stan-
dard random access coding task whose optimal QRAC
also exploits the four mutually unbiased bases available in
dimension 3.

FIG. 8. An optimal classical strategy for the d = 3 Torpedo
Game. Alice uses her dit of communication to indicate in which
equivalence class (represented by the same colored cells) of the
large grid partition she finds herself. The smaller grids (cf. Fig. 4)
show where Bob chooses to shoot, given a direction and a color.
For the first direction, when asked to shoot horizontally in the
grid, notice that Bob may avoid Alice with certainty if she is in
either of the red or green partitions. Lines that avoid Alice with
certainty are depicted in the corresponding color, whereas black
lines intersect with Alice’s position with probability 1

3 . Overall,
this strategy wins the Torpedo Game with probability 1

4 (
8
9 + 8

9 +
1 + 8

9 ) = 11
12 .

FIG. 9. A perfect classical strategy for the d = 5 Torpedo
Game. As Fig. 8, the same colored cells belong to the same par-
tition. The lines that avoid Alice are depicted below for every
question Bob can be asked.

D. Dimensional witness

The Torpedo Game can be used as a dimension witness
for qubits and qutrits. In the following, we modify slightly
the setting of the game to allow the message to be of arbi-
trary dimension. In particular, we no longer require that
the message between Alice and Bob is of the same dimen-
sion as the inputs. For instance, we allow Alice to send a
(qu)trit while she receives two input bits. We thus specify
the dimension of the inputs as well as the dimension of the
message. Questions are defined as before and are fixed by
the dimension of the inputs: d + 1 questions for inputs of
dimension d.

Following Table I, we can use the Torpedo Game to
discriminate between qubits and qutrits. Moreover these
witnesses can distinguish between classical and quantum
systems of the same dimension.

E. Nonlocal game

In Ref. [51] a connection was drawn between nonlo-
cal games and single-system games (e.g., prepare-and-
measure). That paper concluded by noting the relevance of
sequential contextuality and its link to Landauer’s princi-
ple. In particular, it is very desirable to further understand
how nonlocal games can be turned into single-system

TABLE I. Classical and quantum optimal values of the
Torpedo Game when we allow the message dimension to
differ from that of the inputs. Classical values are com-
puted by exhaustive search. Quantum values are obtained
by a combination of a seesaw algorithm and implementa-
tion of the Navascués-Vértesi (NV) hierarchy [47] through
the interface QDimSum [50]. Note that only the seesaw
algorithm succeeded for the trit-input, qubit-message Tor-
pedo Game as the NV hierarchy does not perform well with
POVMs.

Input dimension Message dimension θC θQ

2 2 0.75 0.789
2 3 0.833 0.875
3 2 0.833 >0.867
3 3 0.917 1
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Alice

x z

a

Bob

q ∈ {∞, 0, 1, 2, . . . , d − 1}

b

FIG. 10. Schematic of the nonlocal Torpedo Game: Alice and
Bob are spacelike separated. Alice receives dits x and z. Bob
is asked a question q ∈ {∞, 0, . . . , d − 1} and outputs c, which
should satisfy the winning conditions given by wq(x, z)with high
probability. In the quantum version, they may share a maximally
entangled state composed of a d-dimensional quantum state for
each party.

games and vice versa. To better analyze this connection,
we focus on a nonlocal version of the (qu)trit Torpedo
Game that was independently proposed in Refs. [52,53]
where nonlocality, steering, and quantum state tomogra-
phy is carried out in a single experiment. Interestingly, the
nonlocal game developed there is exactly the nonlocal ver-
sion of the dimension 3 Torpedo Game (see Fig. 10). This
further provides evidence that this is an interesting route to
pursue.

We briefly review Ref. [52] in our language. In this non-
local version of the dimension-3 Torpedo Game, Alice is
no longer allowed to send a (classical or quantum) state to
Bob. Because they are spacelike separated, the best clas-
sical strategy for Bob is a random strategy. For any inputs
x, z ∈ Z3 sent to Alice and any question q ∈ {∞, 0, 1, 2}
asked to Bob, he will avoid the wrong answer [and thus
satisfy the winning conditions in Eq. (2)] 2

3 of the time.
However, they are allowed to share a maximally entan-
gled state quantumly and they might use this resource
to outperform the classical bound. The quantum strategy
is the nonlocal version of the optimal strategy for the
dimension-3 Torpedo Game.

(a) They share the maximally entangled state

∣∣ψ+〉 = 1√
3
(|00〉 + |11〉 + |22〉) . (14)

(b) Upon receiving trits x and z, Alice measures her
part of

∣∣ψ+〉with the phase-point operator AT
x,z. With

probability 1
3 , she successfully obtains the −1 eigen-

state of AT
x,z and consequently steers Bob’s state to

the −1 eigenstate of Ax,z [called
∣∣ψx,z

〉
in Eq. (5)].

Otherwise, with probability 2
3 she obtains the +1

outcome and steers Bob’s state into a +1 eigenstate
of Ax,z.

(c) Upon receiving question q ∈ {∞, 0, 1, 2}, Bob mea-
sures his steered state in the corresponding qth

MUB. If his state was steered into a −1 eigenstate
of Ax,z then he will always avoid the wrong answer;
if his state was steered into a +1 eigenstate of Ax,z,
then it will avoid the wrong answer only half of the
time. The overall probability of winning the game is
1
3 (1)+ 2

3

( 1
2

) = 2
3 .

The quantum strategy detailed above only wins 2
3 of

the time—the same as the classical strategy—due to the
possible projection onto +1 eigenstates of Ax,z operators.
However, if one were to postselect on the −1 outcome
of Alice there would be a local description. [(repetition)
and we saw that if one takes the failed outcome of Alice
into account the observed correlations are not better than a
random strategy.] To circumvent this issue, the following
witness of observed correlations is introduced in Ref. [52]:

B =
∑

b,x,z,q

cb,x,z,qp(a = −1, b|x, z, q)

− 2
∑
x,z

p(a = −1|x, z), (15)

where cb,x,z,q = (−1)[b
∈wq(x,z)] and [·] is the Iverson bracket
(for a statement S, [S] = 1 if S is true and [S]=0 other-
wise). The second term is a penalty on Alice’s marginal,
which penalizes her outputting the successful outcome −1.
This gives her incentive not to always output the successful
outcome in a hidden-variable description. The magnitude
of the second term (the coefficient −2) was fine-tuned so
that the best-trade-off in a hidden-variable description is
for Alice to output −1 only 1

3 of the time matching exactly
the quantum strategy. The crucial inequality obtained in
Ref. [52] is the following:

B
LHV≤ 4

Quantum≤ 6. (16)

Local strategies can only reach a value of 4 for B while
sharing a maximally entangled state allows a value of 6 to
be reached. Note that the quantum strategy detailed above
reaches the bound of 6. Remarkably, the Bell inequality so
obtained is a facet of the local hidden-variable polytope, or
“tight” as it is often called.

V. CHARACTERIZING AND QUANTIFYING
CONTEXTUALITY IN INFORMATION

RETRIEVAL TASKS

When quantum advantage is observed in a bounded-
memory information retrieval task like a (Q)RAC task or
the Torpedo Game, it highlights a difference between the
information carrying capacities of qudits compared to dits
for a fixed dimension. It can be remarked that such a dif-
ference is a consequence of the different geometries of the
respective state spaces. In this section, however, we seek a
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sharper, quantified analysis of the source of the advantage
in terms of contextuality.

We use the notion of sequential contextuality that was
introduced in Ref. [21] to extend structural treatments
of Bell-Kochen-Specker contextuality [25] to sequential
operational scenarios. As such, it is a behavioral charac-
teristic that can arise in experiments involving sequences
of operations. While Ref. [21] was concerned specifi-
cally with sequences of transformations, here we take a
broader view that also includes the operations of prepa-
ration and measurement. In the special case of prepare-
and-measure scenarios, sequential contextuality recovers a
natural notion of classicality in terms of realizability by
hidden variables. For instance, in the bounded-memory
regime we are interested in whether sequential contextual-
ity also matches the characteristic introduced by Żukowski
in Ref. [54].

We note that sequential contextuality is distinct from the
notion of contextuality due to Spekkens [17], as discussed
in Ref. [21]. It is also separate from the analyses of Refs.
[55–58], which sought to close potential loopholes created
by sequentiality of measurements in experimental tests of
the more traditional Bell-Kochen-Specker form of contex-
tuality. That said, it may be possible to view the latter
analyses as providing a plausible mechanism for sequen-
tial contextuality, though it is not a perspective we pursue
here.

The study of contextuality arose in quantum founda-
tions, where a major theme is the attempt to understand
empirical behaviors that may appear nonintuitive from
a classical perspective, e.g., the Einstein-Podolsky-Rosen
paradox [59]. The typical approach is to look for a descrip-
tion of physical systems at a deeper level than the quantum
one at which more classically intuitive properties may be
restored. Such a description is usually formalized as a
hidden-variable model for the behavior (sometimes also
referred to as an ontological model [17]). The great sig-
nificance of the celebrated no-go theorems of quantum
foundations, like Bell’s theorem [60] and the Bell-Kochen-
Specker theorem [61,62], was to prove that certain “non-
classical” features of the empirical behaviors of quantum
systems are necessarily inherited by any underlying model.

Nonclassical features of quantum systems like contex-
tuality are also increasingly investigated for their practical
utility. For instance, in previous work involving the present
authors, contextuality of the Bell-Kochen-Specker kind
was shown to be a prerequisite for quantum speedup [11]
and to quantify quantum-over-classical advantage in a
variety of informational tasks [30].

Bell-Kochen-Specker contextuality essentially concerns
the statistics that arise under varied measurements on
a physical system. In contrast, our notion of contextu-
ality concerns the statistics that arise from sequences
of operations—preparations, transformations, and mea-
surements—all of which can vary. As a behavioral

feature sequential contextuality signifies the absence of
any hidden-variable model that would preserve a compo-
sitional description of operations performed in sequence.
In other words, sequential noncontextuality requires a
hidden-variable model in which each operation has an
independent, modular description (as a transformation
on hidden variables) such that to describe a sequence
of operations one simply composes their hidden-variable
descriptions. We provide a more rigorous mathematical
description in the following subsections.

Rather than focusing on characteristics that must be
inherited by all hidden-variable models, as is common in
foundational works, we also take a practical perspective
and shift focus to characteristics that must be inherited by
bounded-memory models—a constraint that matches the
informational problem at hand. In this respect, the signifi-
cance of sequential contextuality in what follows can also
be viewed through a practical rather than a foundational
lens, as a characteristic that quantifies quantum advantage.

A. Empirical behaviors and hidden-variable models

Recall from Sec. IV B that any strategy for an informa-
tion retrieval task gives rise to an empirical behavior e =
{pe(·|i, q)}i,q. In other words, for each combination of input
string i ∈ Z

n
d and question q ∈ Q there is a resulting prob-

ability distribution over outputs. This is true regardless of
whether the strategy is classical, quantum, postquantum,
or other. The combination of input string and question
fully specifies the precise operations that are performed
in the sequence. This is what we refer to as the context,
just as a context in a (Bell-Kochen-Specker) measurement
scenario specifies a set compatible measurements to be
performed jointly. We have also chosen a formal descrip-
tion of empirical behavior that echoes the formalism of
empirical models for measurement scenarios in Ref. [25].

Given an empirical behavior, one can ask whether it
can be simulated by a bounded-memory hidden-variable
model. In particular, we are interested in models that
respect the sequential structure of the strategy, bearing in
mind that the inputs and questions specify a sequence of
operations: either preparations, transformations, or mea-
surements. Our main focus is on prepare-and-measure
scenarios, in which sequences arise from a combination
of a preparation and a measurement. To match the con-
straints of information retrieval tasks, memory is bounded
by the dimension of the message string. This is further
motivated by the Holevo bound [63], according to which
one can faithfully retrieve no more than n dits of classical
information from n qudits.

In a bounded-memory model, the hidden variable is
restricted to take values in Zd with d fixed by the commu-
nication scenario. A state preparation P is modeled by a
probability distribution pπ(· | P) over the hidden-variable
space Zd. Similarly, a measurement M is modeled by
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E

x z

D

q ∈ {∞, 0, 1, 2, . . . , d − 1}

c

Alice Bob

j

E
x z

Tx Tz

D
q ∈ {∞, 0, 1, 2, . . . , d − 1}

cTq

j

FIG. 11. The Torpedo Game in a prepare-and-measure (top)
versus transformational scenario (bottom). The empirical models
ex,z,q in either scenario are the same both quantumly and clas-
sically. Hence classical and quantum strategies for any (2, 1)d
information retrieval task can be equivalently expressed in
prepare-and-measure or transformational form.

a family of probability distributions {pμ(· | λ, M )}λ over
the outcome space, which to match the communication
scenario is also Zd. A hidden-variable model, e.g., for a
prepare-and-measure sequence of operations Mq ◦ Px,z as
in Fig. 11, simulates an empirical behavior as

pe(·|x, z, q) =
∑
λ

pμ(·|λ, Mq) · pπ(λ | Px,z). (17)

Each operation is thus modeled in sequence as an operation
on the hidden-variable space.

With Eq. (17) in mind, the bounded-memory classical
strategies of Sec. IV can also be interpreted as bounded-
memory hidden-variable models themselves. To see this,
note that in Eq. (7) encoding corresponds to hidden-
variable preparation and decoding to hidden-variable mea-
surement.

While the above description makes contact with the
strategies and empirical behaviors of Sec. IV, it will be
convenient for the remainder of this section to use a sim-
plified notation. For all preparations Px,z, the probability
distribution pπ(· | Px,z) will be more concisely denoted
as a probability vector λλλx,z in R

d. For measurements, we
express {pμ(· | λ, Mq)}λ more concisely as a set

{
vvvc

q

}
c∈Zd

of non-negative real vectors, one for each outcome c ∈ Zd.
To ensure that the total probability distributed over out-
comes sums to 1, the vectors must satisfy the property that
for all q,

∑
c∈Zd

vvvc
q = 111 where 111 = (1, 1, . . . , 1)T. If we also

denote by ex,z,q := pe(· | x, z, q) the empirical probability
vector over outcomes Zd, then Eq. (17) can be rewritten
for each outcome c ∈ Zd in simplified notation as the dot

product

ex,z,q(c) = vvvc
q · λx,z. (18)

Here our focus is on prepare-and-measure scenarios, but
we note that transformations can similarly be represented
as left-stochastic matrices. For more on transformations
and how measurements may be viewed as a kind of
transformation see Sec. A 1.

For our main example of an information retrieval task
we have also focused on the prepare-and-measure ver-
sion of the Torpedo Game. Note, however, that it can be
equivalently expressed in a sequential scenario with fixed
preparation and measurement (see Fig. 11). In Appendix A
we provide the explicit quantum and classical strategies for
this purely transformational version of the Torpedo Game
as well as the equivalence between prepare-and-measure
and sequential protocols.

B. Sequential contextuality in information retrieval
tasks

An empirical behavior is sequential noncontextual [21]
if it admits a hidden-variable model that (i) preserves
a modular sequential description of operations, and (ii)
the hidden-variable representation of operations is context
independent.

These assumptions have been implicitly built into the
above definition of hidden-variable models. For (i), note
that each operation has an individual description at the
hidden-variable level. For example, to obtain predictions
for a prepare-and-measure experiment we compose the
individual hidden-variable descriptions of the preparation
and of the measurement, as in Eq. (18). And for (ii), note
for example that regardless of which context the prepara-
tion Px,z appears in it should be modeled by the same vector
λx,z. One could relax these assumptions, in which case
it would become trivial to find a hidden-variable model
for any behavior, but it would also entail giving up the
intuitive sense of what the model means.

If an empirical behavior does not admit a sequential non-
contextual hidden-variable model it is said to be sequen-
tial contextual. In this paper we consider only sequential
contextuality with respect to bounded-memory models,
though the definition may be applied more generally. For a
description in terms of transformations see Sec. A 1.

A useful intuition for sequential contextuality is that,
within the memory constraints, for any faithful model of
the behavior the whole (the description of the context)
is more than the composition of its parts (the description
of the individual operations). A contextual model would
always involve additional memory and communication to
track the context, which would be outside of the constraints
of the task—involving, e.g., a contextuality demon analo-
gous to Maxwell’s demon in thermodynamics. Indeed it
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was shown in Ref. [51] that a related characteristic incurs
a simulation cost as measured by Landauer erasure.

C. Quantifying contextuality via the contextual
fraction

For any fixed (n, m)d communication scenario empirical
behaviors are closed under contextwise convex combina-
tions—a property that is inherited from probability distri-
butions. In operational terms, if shared randomness is used
to choose between several strategies the result is still an
empirical behavior.

For any empirical behavior e, we can consider convex
decompositions of the form

e = ωeNC + (1 − ω)e′, (19)

where eNC and e′ are empirical behaviors for the same task
and eNC is noncontextual. The maximum of ω over all such
decompositions is referred to as the noncontextual fraction
of e, written NCF(e). Similarly, the contextual fraction of
e is CF(e) := 1 − NCF(e).

This provides a measure of contextuality in the interval
[0, 1], where CF(e) = 0 indicates that e is noncontextual,
CF(e) > 0 indicates that e is contextual, and CF(e) = 1
indicates that e is maximally contextual (also referred to
as strong contextuality).

The contextual fraction was used as a measure for
sequential contextuality in Ref. [21]. It extends a natu-
ral measure for Bell-Kochen-Specker contextuality [25],
which itself generalizes measures based on Bell-inequality
violations [30].

D. Quantified contextual advantage in information
retrieval tasks

The following proposition can be understood as a no-go
theorem stating that winning the Torpedo Game deter-
ministically for d = 2 and d = 3 is incompatible with the
assumptions of sequential noncontexutality and bounded
memory. If such a performance is observed then one is
forced to abandon at least one of the assumptions, and we
note that the Holevo bound gives an argument that perhaps
the noncontextuality assumption is the weaker of these.

Proposition 2. For d = 2 and d = 3, strong sequential
contextuality with respect to bounded memory is necessary
and sufficient to win the Torpedo Game deterministically.

Proof. Suppose a bounded-memory hidden-variable model
realizes an empirical model that wins the Torpedo Game
deterministically. Input-question combinations (x, z, q)
label the contexts. Recall that the wining relation is
ωq(x, z), and the winning condition for the Torpedo

Game is

pe(c 
∈ ωq(x, z) | x, z, q) = 0. (20)

Using notations introduced in Sec. V A, the hidden-
variable model must specify probability vectors

{
λx,z

}
x,z∈Zd

and non-negative vectors
{

vvvc
q

}
c∈Zd ,q∈Q

such that
∑

c∈Zd
vvvc

q

= 111 for each q ∈ Q, and

vvvc
q · λx,z = 0, (21)

for all x, z ∈ Zd, ∀q ∈ Q and c 
∈ ωq(x, z).
As mentioned in Sec. IV B, it suffices to consider deter-

ministic strategies. Equation (21) reduces to a set of binary
linear equations (36 equations for d = 3) that any sequen-
tially noncontextual realization must jointly satisfy.

This cannot be possible since it would provide a per-
fect classical strategy for the d = 2 and d = 3 Torpedo
Games, violating the optimal bounds Eq. (10) that were
obtained by exhaustive search. On the other hand, it is
always possible to obtain a contextual realization, by tak-
ing contextwise solutions to Eq. (21): for example, where
the choice of λλλx,z is not only a function of x and z, but also
of q.

It can further be observed that if any fraction of an
empirical model e can be described noncontextually, i.e.,
NCF(e) = p > 0, then with an average probability at least
p the empirical model e fails in the Torpedo Game. There-
fore, to win the Torpedo Game deterministically requires
strong contextuality. �

An explicit noncontextual memory-bounded hidden-
variable model that fails to fully realize the empirical
predictions but that satisfies the maximum of 33 out of
36 constraints from Eq. (21) for d = 3 is the following.
Measurement and state vectors are given in terms of the
computational basis vectors, where fffk denotes the kth com-
putational basis vector (zero indexed) in the vector space
Z

d
2 over R. The measurement vectors are

vvvc
q =

⎧⎪⎨
⎪⎩

fff2c⊕2, q = ∞
fffc⊕2, q = 0, 1
fff2c⊕1, q = 2

.

The state vectors are

λ0,0 = λ0,1 = λ1,1 = fff0,

λ1,0 = λ0,2 = λ2,2 = fff1,

λ2,0 = λ2,1 = λ1,2 = fff2.

This corresponds to the strategy depicted in Fig. 8.
We also obtain the following more general result, of

which Proposition 2 is a special case.
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Theorem 3. Given any information retrieval task and
strategy with empirical behavior e,

ε ≥ NCF(e) ν,

where ε is the probability of failure, averaged over inputs
and questions, NCF(e) is the bounded-memory noncontex-
tual fraction of e with memory size d fixed by the scenario,
and ν := 1 − θC measures the hardness of the task, θC

being the classical value.

Proof. The empirical behavior can be decomposed as

e = NCF(e)eNC + CF(e)e′,

where e′ is necessarily strongly contextual. From this
convex decomposition, we obtain that the probability of
success using the empirical model e reads

pS,e = NCF(e)pS,eNC + CF(e)pS,e′ ,

where pS,eNC and pS,e′ are the average probabilities asso-
ciated with empirical models eNC and e′, respectively.
At best, e′ wins with probability 1 and thus

pS,e ≤ NCF(e)pS,eNC + CF(e),

ε ≥ NCF(e)εeNC,

where εeNC = 1 − pS,eNC is the average probability of fail-
ure associated with eNC. Since the latter is noncontextual,
we know that the minimum probability of failure is ν =
1 − θC, where θC is the classical value of the game. Then
εeNC ≥ ν, from which we obtain the desired inequality:

ε ≥ NCF(e)ν.

�
This provides a quantifiable relationship between quan-

tum advantage and sequential contextuality. Inequalities of
this form are also known to arise for a variety of other
informational tasks that admit quantum advantage, with
hardness measures and notions of nonclassicality adapted
to the particular task [21,30,64].

VI. DISCUSSION

We have formalized a class of information retrieval tasks
in communication scenarios, of which the much-studied
problem of (quantum) random access coding is a special
case. We showed that quantum-over-classical advantage is
explained by quantum contextuality. We have identified a
distinct information retrieval task that we have presented
as the Torpedo Game, which admits a greater quantum-
over-classical advantage than the comparable QRAC for

qutrits by exploiting Wigner negativity. Remarkably, the
qutrit torpedo strategy is maximally contextual, meaning
that no fraction of it can be explained by an underly-
ing noncontextual model. By choosing measurements that
are associated with a particular discrete Wigner function,
Wigner negativity is necessary for a quantum strategy to
perform better than a classical one. However, postquantum
strategies (e.g., using phase-point operators) might be opti-
mal while remaining Wigner positive. A more thorough
investigation of the precise relationship between negativity
and advantage will be a topic for future work.

To obtain quantum perfect strategies for the Torpedo
Game we have derived a prepare-and-measure scenario for
which quantum mechanics exhibits logically paradoxical
behavior (with respect to noncontextual hidden-variable
assumptions). More generally, we have identified this as
a characteristic that quantifies quantum advantage for any
bounded-memory information retrieval task.

In the specific case of random access coding, some
works have imposed obliviousness constraints as part of
the task as opposed to bounded memory. These restrict
what information the receiver can be allowed to infer
about the input string. Whereas preparation contextuality
is known to be necessary and sufficient for quantum advan-
tage in oblivious tasks [16,20], we have shown sequential
contextuality to be necessary and sufficient characteristic
for bounded-memory tasks.

We briefly comment on possible generalizations of the
Torpedo Game. In Eq. (11) we conjectured, based on an
explicit proof in 5 ≤ d ≤ 23, that there is a perfect clas-
sical strategy in all d ≥ 5 for the Torpedo Game with
standard winning conditions as in Eq. (2). In order to rein-
state a quantum-over-classical advantage, as we had in
dimensions 2 and 3, we may modify the Torpedo Game
to make it harder to win classically. Note that the fol-
lowing modifications have no effect on the quantum val-
ues, which remain θQ

d≥3 = 1. Because the −1 subspace of
Gross’ phase-point operator A has dimension (d − 1)/2 it
is possible to enlarge Alice’s input from d2 to d2(d − 1)/2.
Formally, let 0 ≤ � < (d − 1)/2, so Alice sends Bob∣∣ψx,z,�

〉 = X xZz [|�+ 1〉 + |−(�+ 1)〉] /√2, instead of just∣∣ψx,z,�=0
〉

:= ∣∣ψx,z
〉

as before. The modification changes a
single relation from w∞(x, z) = {a ∈ Zd | a 
= x} to

w∞(x, z, �) = {a ∈ Zd|a ∈ (x + �+ 1, x − �− 1)},
whereas the remaining conditions persist, i.e, wq(x, z, �) =
wq(x, z) in Eq. (2) for q ∈ {0, 1, . . . , d − 1}. It seems rea-
sonable that such a game, with more restrictive winning
conditions, should be harder to win. Indeed, we were
unable to find any perfect classical strategy by sampling,
although we cannot rule out its existence since we were
unable to exhaustively check all classical strategies. More
generally, we have motivated how our perfect quantum
strategies for this information retrieval task arise from a
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remarkable geometric feature of maximally negative states
[cf. Eq. (5)], and we expect that this insight can be further
mined for quantum advantage in future work.
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APPENDIX A: THE TRANSFORMATIONAL
VERSION OF THE TORPEDO GAME

1. Transformations in hidden-variable models

The focus in the main text is on prepare-and-measure
scenarios, but it can also be useful to have hidden-variable
representations of transformations (see Fig. 12). A trans-
formation T is represented by a family of probability
distributions {pτ (· | λ, T)}λ over the hidden-variable space,
one for each “initial” hidden variable λ ∈ Zd. In sim-
plified vector-space notation a transformation is simply
represented by a left-stochastic matrix TT.

a. Measurements and preparations as transformations

We can also view measurements and preparations as
special kinds of transformations. Referring back to Sec.
V A, the vectors

{
vvvc

q

}
c∈Zd

describing a measurement Mq

Z

x z q
k

|ψ0,0〉 Xx Zz Uq

FIG. 12. A perfect strategy in sequential operational form
for the dimension d Torpedo Game for odd power-of-prime d.
The classically controlled gates are appropriately defined Pauli
operators or Clifford gates as in Eq. (A4).

can be gathered into a matrix Tq with these vectors as
rows. By the requirement that

∑
c∈Zd

vvvc
q = 111 for all c ∈ Zd,

the columns of Tq each sum to 1, as for a left-stochastic
matrix, although this measurement matrix is not required to
be square. Similarly, the hidden-variable probability vector
λx,z corresponding to a preparation (x, z) can be viewed as
a matrix whose one column sums to 1. Applying Tq to a
hidden-variable probability vector λx,z then results in the
outcome probability vector ex,z,q,

ex,z,q = Tq λx,z,

cf. Eq. (18).

b. Sequential noncontextuality in terms of
transformations

The structural assumption underlying sequential non-
contextuality, that sequential composition of operations
must be preserved in the hidden-variable description, is
expressible in an appealingly straightforward way in terms
of transformations. For example,

TT3◦T2◦T1 = TT3 TT2 TT1 ,

or even

TMq◦T3◦T2◦T1◦Px,z = Tq TT3 TT2 TT1 λx,z,

where now the matrix TMq◦T3◦T2◦T1◦Px,z is an outcome
probability vector.

2. Equivalence between prepare-and-measure and
transformational versions

Any prepare-and-measure strategy for a (2, 1)d infor-
mation retrieval task (e.g., the Torpedo Game) can equiv-
alently be re-expressed in a scenario with fixed-state
preparation and measurement, and with the classical
inputs labeling transformations only. This is depicted in
Fig. 11. The equivalence may be useful for experimen-
tal implementations, and also makes connections with
other transformation-based protocols considered in Refs.
[21,51,54,65,66].

Proposition 4. Classical and quantum strategies for any
(2, 1)d information retrieval task can be equivalently
expressed in prepare-and-measure or transformational
form.

Proof. Since the initial preparation is fixed in the sequen-
tial version, it is trivial that the encoding step can always
be re-expressed as a stochastic map E : Zd × Zd → Zd
(or quantumly E : Zd × Zd → C

d) as in the prepare-and-
measure version. Conversely, in the classical case a strat-
egy for the prepare-and-measure version can be expressed
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as a strategy for the transformational version by setting Tx
to always output x and taking for Tz the encoding map
pE(·|·, z) from the classical prepare-and-measure version.
In the quantum case Tx outputs |x〉, and Tz is simply taken
to be a Z measurement subsequently composed with the
encoding map E . In the hidden-variable description we can
fix an arbitrary basis vector, say δ0, and in the quantum
case an arbitrary preparation, say |0〉.

Similarly, for the decoding step it is trivial that the
transformational version can always be expressed as a
map in the form of the prepare-and-measure version. For
the converse, in the classical case it suffices to take for
Tq the stochastic decoding map pD(·|·, q) from the clas-
sical prepare-and-measure version, with fixed measure-
ment given by the identity map (or in the hidden-variable
description with measurement simply specified by the
basis vectors). In the quantum case, the converse follows
from the observation that any projection-valued measure-
ment can be expressed as a unitary transformation followed
by a fixed measurement in the Z basis. �

3. Optimal classical strategy for the transformational
version

Note that the following analysis will hold if we consider
a global transformation Tx,z instead of two transformations
Tx and Tz for Alice. A perfect strategy for the Torpedo
Game requires that for all x, z ∈ Zd, q ∈ Q and c 
∈ ωq(x, z)
that

TqTzTx fff0 · fffc = 0. (A1)

For d = 2 it was possible to perform a brute-force search
over all possible deterministic left-stochastic transforma-
tions in order to check how many of the linear equations
in Eq. (A1) can be jointly satisfied. As expected, at most
9 out of 12 equations in Eq. (A1) may be jointly satisfied,
matching the classical bound of Eq. (10).

For d = 3, we were unable to perform the brute-force
calculation due to the size of the search space. However,
the classical bound of Eq. (10) found by means of our grid
partitioning method implies that at most 33 out of 36 equa-
tions in Eq. (A1) may be jointly satisfied. A solution that
attains the classical value of 11

12 , i.e., that satisfies jointly 33
of the 36 equations from Eq. (A1), using reversible gates
only, is the following:

Tx=0 = I Tx=1 = I Tx=2 = ⊕1
Tz=0 = I Tz=1 = ⊕2 Tz=2 = ⊕1
Tq=∞ = I Tq=0 = ⊕1 Tq=1 = ⊕2 Tq=2 = ⊕1.

(A2)

Reversibility ensures that the strategy does not incur a
simulation cost in terms of Landauer erasure, of the kind
considered in Ref. [51]. This strategy can also be imple-
mented by states, transformations, and measurements that

are non-negatively represented in the discrete Wigner func-
tion, taking the stabilizer state |0〉 as the initial state and
representing the above permutation transformations in the
obvious way. Thus the classical bound is saturated by a
non-negative quantum strategy.

4. Perfect quantum strategy for the Torpedo Game

To explicitly establish a perfect quantum strategy in
transformational form for the Torpedo Game, we re-
establish the key fact Eq. (5) in the transformational set-
ting. Our proof uses the matrix elements of Ax,z combined
with the Clifford gates that map the computational basis
to each of the additional measurement bases. For this we
use the symplectic representation of the Clifford group.
The expressions below hold for odd prime d (in the odd
prime-power case d = pn one should replace Zd with Fd).
Clifford group elements are written as C = Dx,zUF [67]
where

F =
(
α β

γ ε

)

is an element of the symplectic group SL(2, Zd) (entries of
F are in Zd and det F = 1mod d), and

UF =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
d

d−1∑
j ,k=0

ω
2−1β−1

(
αk2−2jk+εj 2

)
|j 〉〈k| β 
= 0

d−1∑
k=0

ω2−1αγ k2 |αk〉〈k| β = 0.

The matrix representation [35] of a phase-point operator is
(
Ax,z

)
j ,k = δ2x,j +kω

z(j −k) (A3)

and so 〈k|Ax,z|k〉 = δk,x is the likelihood of getting out-
come k in a computational basis measurement of Ax,z. The
Clifford unitaries {U∞, U0, . . . , Ud−1} that map Z = D0,1 to{
D0,1, D1,0, . . . , D1,d−1

}
are

{U∞, U0, . . . , Ud−1}
= {I, HS0, . . . , HSd−1}

=
{

U(
1 0
0 1

), U(
0 −1
1 0

), . . . , U(
d−1 −1

1 0

)
}

, (A4)

where H and S are the qudit versions of the Hadamard
and phase gate, respectively. Using Eq. (A3), and the fact
that UFAx,zU

†
F = Ax′,z′ where

(
x′
z′
) = F ( x

z ) [34,36], it is
straightforward to verify that

〈k|U∞Ax,zU
†
∞|k〉 = δk,x

〈k|U0Ax,zU
†
0|k〉 = δk,−z
...

〈k|Ud−1Ax,zU
†
d−1|k〉 = δk,(d−1)x−z.
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For odd prime power d ≥ 3, the −1 eigenspace of Ax,z has
rank (d − 1)/2. We can abuse notation slightly by refer-
ring to the normalized projector onto this eigenspace as

∣∣ψx,z
〉〈
ψx,z

∣∣. The final step is to realize that
∣∣ψx,z

〉〈
ψx,z

∣∣ =
1/(d − 1)

(
I − Ax,z

)
so that by linearity, and in agreement

with Eq. (5) earlier,

Tr
(∣∣ψx,z

〉〈
ψx,z

∣∣�k
∞
) = 〈k|U∞

1
d − 1

(
I − Ax,z

)
U†

∞|k〉 = 1
d − 1

(1 − δk,x),

Tr
(∣∣ψx,z

〉〈
ψx,z

∣∣�k
0

) = 〈k|U0
1

d − 1
(
I − Ax,z

)
U†

0|k〉 = 1
d − 1

(1 − δk,−z),

...

Tr
(∣∣ψx,z

〉〈
ψx,z

∣∣�k
d−1

) = 〈k|Ud−1
1

d − 1
(
I − Ax,z

)
U†

d−1|k〉 = 1
d − 1

(1 − δk,(d−1)x−z).

Any state in the −1 eigenspace of Ax,z wins the Torpedo
Game with unit probability, but for concreteness we choose
the state Eq. (6).

a. Circuit version of the optimal quantum strategy

As observed in Proposition 4, any quantum strategy
for the prepare-and-measure version of the Torpedo Game
admits an equivalent strategy for the transformational ver-
sion. An optimal quantum strategy in sequential opera-
tional form takes as fixed preparation

∣∣ψ0,0
〉

and as fixed
measurement Z. The transformations controlled by x, z,
and q are X x, Zz, and Uq, respectively, where the unitaries
Uq are those defined in Eq. (A4).
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