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We can encode a qubit in the energy levels of a quantum system. Relaxation and other dissipation
processes lead to decay of the fidelity of this stored information. Is it possible to preserve the quan-
tum information for a longer time by introducing additional drives and dissipation? The existence of
autonomous quantum error correcting codes answers this question in the positive. Nonetheless, discov-
ering these codes for a real physical system, i.e., finding the encoding and the associated driving fields
and bath couplings, remains a challenge that has required intuition and inspiration to overcome. In this
work, we develop and demonstrate a computational approach based on adjoint optimization for discov-
ering autonomous quantum error correcting codes given a Hamiltonian description of a physical system.
We implement an optimizer that searches for a logical subspace and control parameters to better preserve
quantum information. We demonstrate our method on a system of a harmonic oscillator coupled to a lossy
qubit, and find that varying the Hamiltonian distance in Fock space—a proxy for the control hardware com-
plexity—Ileads to discovery of different and new error correcting schemes. We discover what we call the
V/3 code, realizable with a Hamiltonian distance d = 2, and propose a hardware-efficient implementation

based on superconducting circuits.

DOI: 10.1103/PRXQuantum.3.020302

I. INTRODUCTION

Physical qubits always live in noisy environments,
which leads to decoherence and hinders the development
of scalable quantum computers. Quantum error correc-
tion (QEC) solves this problem by encoding logical states
in a way that errors caused by the environment can be
detected and corrected without accessing the encoded
quantum information [1]. The standard implementation of
QEC involves error syndrome measurements followed by
adaptive recovery operations [1], with the drawback of
introducing additional errors caused by imperfect measure-
ments [2—4] and significant hardware overhead associated
with the real-time classical feedback [5,6]. In contrast,
autonomous quantum error correction (AQEC) circum-
vents the necessity of classical adaptive control by embed-
ding the active measurement and feedback processes into
the passive internal dynamics of the system [7—11]. With
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an engineered interaction between the qubit and a lossy
ancilla, accumulated entropy in the qubit due to physical
errors can be coherently transferred to the ancilla in real
time and then evacuated through ancilla decay [7,9,10]. A
fault-tolerant architecture may benefit from elements with
AQEC that are combined together to implement a standard
QEC protocol—AQEC operating in the few-qubit regime
could reduce the overhead for standard QEC.

An experimental platform will feature limited hardware
control and more complex errors, which sometimes devi-
ate from the assumptions underlying many QEC codes.
Designing the optimal platform-specific QEC scheme is
therefore highly nontrivial and will likely require a numer-
ical approach that takes into account the hardware con-
straints. In this direction [12—15], it has been shown that
the encoding and decoding operations can be adapted to a
given error channel via iterative convex optimization [13,
15], assuming arbitrary operations are achievable. More
recently, quantum-gate-based methods were developed to
incorporate certain features at the physical level, includ-
ing the available gate set and qubit connectivity [16,17].
It is important to extend these approaches to take into
account decoherence during the gate operation and mea-
surements, as well as any coherent leakage out of the qubit
computational subspace [18]. AQEC, on the other hand,
requires only Hamiltonian dynamics and ancilla relaxation
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to preserve the quantum information. Therefore, automated
discovery of AQEC schemes naturally incorporates the
native device Hamiltonian and decay channels, bringing
it closer to experimental deployment.

Our paper is organized as follows. In Sec. II, we
develop a numerical framework (AutoQEC) for automat-
ically designing AQEC schemes for a given experimental
platform. AutoQEC aims to discover strategies that pre-
serve the encoded quantum information by optimizing over
the logical states and control parameters. In Sec. III, we
demonstrate AutoQEC on a system consisting of a sin-
gle bosonic mode coupled to a lossy qubit, and find that
the resulting AQEC scheme depends on the constraints on
the system, such as dissipation channels and Hamiltonian
connectivity. In Sec. IV, we propose a circuit implemen-
tation of the discovered AQEC scheme and in Sec. V we
conclude our discussion with potential directions for future
works.

II. AUTOQEC FRAMEWORK

Our method is illustrated in Fig. 1(a) where the phys-
ical system is described by a parametrized Hamilto-
nian H(a) = ij'vzl ajH; and a set of Lindblad dissipa-
tors {D[/BrAwl, k = 1,...,K}, where D[A](p) = ApAT —
%{ATA, p}. Here o = {o;}, B = {PBy} are the control param-

eters while {19]-} and {Qlk} represent the available con-
trol Hamiltonians and decay channels in the system. The
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FIG. 1. Schematic of the average fidelity and the adjoint
method. (a) An arbitrary state |1/fa¢> on the Bloch sphere is
mapped to a density matrix gy by a quantum channel described
by a set of control Hamiltonians and dissipators. Averaging the
single-state fidelity Fy, over the Bloch sphere gives the average
fidelity F'. (b) A loss function L[v(T)] depending on the final state
v(T) of an ODE will implicitly be a function of the initial state
v(0) and the ODE parameter 6. The gradients of L with respect to
v(0) and O can be computed by integrating the adjoint equations
backward in time.

quantum dynamics follows the master equation:

K
A A . T B R A
p = —i[H (), p] + E Bk (AkpAZ 3 {AZAk,pD .
k=1
(1

Learning a logical qubit is equivalent to finding a two-
dimensional subspace that is well-protected under the
dynamics of Eq. (1). More concretely, starting from an
arbitrary point on the Bloch sphere spanned by basis
vectors |Yo) and [i) as the initial state [Fig. 1(a)]

0 . 0
[Wos) = cos - 1Y) + € sin - [n). )

the fidelity Fypy = <1/fg¢ ],69¢|1//9¢> characterizes how much
information is preserved for |w9¢), where g, is the state at
some later time 7 evolved under Eq. (1). By integrating the
single-state fidelity over the Bloch sphere €2, the average
fidelity of the logical subspace is defined as

_ 1
Fa, B, o), 1) = fQ Fopd? ()

Maximizing F under the orthogonality constraints
[ (Yolyr1) | =0 leads to discovery of AQEC schemes.
Notice that by definition F is invariant under arbitrary rota-
tions within the logical subspace, therefore |y) and |v)
are not unique for a given encoding.

We found that using F as the objective function in
AutoQEC is sometimes ill conditioned and leads to an
untenable optimization landscape with high sensitivity to
the parameters. This can be understood by considering
how a small change in the energy levels can cause a
phase to build up over the evolution time and make the
fidelity fluctuate rapidly with the optimization parame-
ters. Our solution was to find the best overlap modulo a
Z rotation in the logical subspace (see Appendix B 1). A
similar but even less constraining approach has been used
previously where the recoverable quantum information is
maximized [16].

Optimization of the average fidelity F is in general a
high-dimensional nonconvex problem, and local gradient
information could potentially accelerate the search of good
solutions. The gradients of F' with respect to the logical
states {|v) , Y1)} and the control parameters {a, 8} can be
calculated with the adjoint method [19,20], a technique for
efficiently backpropagating gradients through an ordinary
differential equation (ODE). Mathematically, considering
a state v obeying the ODE v = f (v, 0) with parameter 6
and a loss function L[v(7)] depending on the final state at
time 7, the key quantity introduced in the adjoint method
is the adjoint state a(f) = dL/dv(f) whose dynamics sat-
isfies @ = —(df /dv)a [Fig. 1(b)]. Therefore, the gradient
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of L with respect to the initial state a(0) = dL/9v(0) can
be computed by starting from a(7) = dL/dv(T) and inte-
grating the adjoint equation backward in time. Similarly,
the gradient with respect to the ODE parameter 6 can
be computed by solving another adjoint equation ay =
—(df /00)a backward in time starting from ay(7) =0
[Fig. 1(b)]. Notice that even though we use scalar nota-
tions here for simplicity, the results above can be easily
generalized to the vector case (see Appendix A).

I11. BOSONIC CODE DISCOVERY

We use AutoQEC to study autonomous implementa-
tions of bosonic codes [2,3,9,21—24], motivated by their
advantages of hardware efficiency and simplified error
models over the traditional qubit-based QEC [1,5,25]. The
system consists of a single harmonic oscillator as the
storage mode of quantum information coupled to a lossy
ancilla qubit for entropy evacuation [Fig. 2(a)], and the
dissipators are D[/« a] and D[ \//c_ql;] where a is the annihi-

lation operators for the bosonic mode and b= lg) (e| with
g(e) representing the ancilla qubit in its ground (excited)
state. We choose the basis states of the joint system as
In,g(e)) where n is the index of the Fock state with a
cutoff at 20. During the optimization of F, only the log-
ical states {|vy),|v)} and the Hamiltonian parameters
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FIG. 2. Optimization results for different Hamiltonian dis-
tances. (a) Schematic of a single bosonic mode a coupled to a
lossy ancilla qubit b. (b)«d) Wigner functions of the discovered
codes for all-to-all (b), distance d = 2 (c), and d = 1 (d) Hamil-
tonians. Here i and ii are two of the discovered encodings from
many runs of AutoQEC for each Hamiltonian setting. (e) Aver-
age fidelity for all-to-all (blue), d = 2 (red), and d = 1 (yellow)
results. The gray shaded region indicates fidelities below or equal
to the break-even point.

a are updated while the loss rates are fixed at x /27 =
0.1 MHz and «,/27w = 20 MHz. We choose a total evo-
lution time 7'= 0.5 us, and bound the driving strength of
each Hamiltonian by |o;|/27 < 10 MHz reflecting what
we consider as realistic coupling rates. With such con-
straints, a Fock state cutoff of 20 is more than enough
since physically larger photon-number states decay more
quickly and require stronger driving to protect.

We begin by considering Hamiltonians with all-to-all
coupling in the Hilbert space [Fig. 2(b)] where the con-
trol Hamiltonians {ﬁj} include couplings between any two
basis states {|m,g(e)) (n,g(e)|}. Running the AutoQEC
optimizer on this problem leads repeatably to codes such
as those shown in Fig. 2(b)i and ii. In both cases, we
plot the Wigner function of the maximally mixed state
Poode = 3(1¥0) (ol + [¥1) (¥1]) as a basis-independent
representation of the logical subspace [24]. The two log-
ical subspaces are basically equivalent to each other up
to a random displacement and rotation in phase space.
Moreover, the code in Fig. 2(b)i is almost identical
(F = 2Tr[p1 2] & 99.4%, where p; and p, are the two
codes) with the V17 code [23,24], which is the small-
est code in photon number that allows exact correction
of a single-photon-loss error. The time evolution of the
average fidelity quantifies the AQEC performance. We
plot this for both resulting codes [Fig. 2(e) blue solid
and dashed lines], and see that it exceeds the break-even
fidelity [Fig. 2(e) gray shaded region boundary] defined as
the average fidelity for the trivial |0) and |1) encoding with
H=0:

Rg:é@ﬂ+%ﬂm+g. @)

Exceeding the break-even fidelity indicates that quantum
information encoded in the logical subspace is preserved
longer than the lifetime of any individual physical element.

To avoid the significant experimental challenge of
implementing an all-to-all Hamiltonian for a harmonic
oscillator, we consider a more realizable restricted set of
control Hamiltonians containing only terms {|m, g) (n, e|}
(and the conjugates) where 0 < |m — n| < d and the dis-
tance d = 2 [Fig. 2(c)]. We choose such a restriction since
we expect interaction terms such as a'h and af2b to be
selectively realizable by engineering the drive frequen-
cies given large dispersive couplings (see implementa-
tion details below). We also avoid coupling terms like
{Im,g) (n,g|} and {|m, e) (n, e|} since independently engi-
neering them for a linear system a is difficult as we no
longer have access to the dispersive nonlinearity. Over
many runs of Aut oQEC, we discover two different types of
results that exceed break even. Figure 2(c)i shows the log-
ical subspace of a discovered bosonic code, which exhibits
error correction performance [Fig. 2(e) red solid line]
that approaches the all-to-all coupling results. A second
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encoding shown in Fig. 2(c)ii provides only partial pro-
tection in the logical subspace, where |y) occupies only
low photon-number states and |v;) occupies only high
photon-number states (see Appendix F). In a way that is
reminiscent of recent works on error-biased cat qubits [26],
both |vy) and |y} are preserved by the Hamiltonian with
fidelities above break even, but not some of their superpo-
sitions (see Appendix F). Nevertheless, the average fidelity
of this encoding still exceeds break even [Fig. 2(e) red
dashed line].

We fail to discover any error correcting codes with per-
formance beyond break even with a Hamiltonian distance
d =1 [Fig. 2(d)]. Most AutoQEC searches end with the
|0) and |1) subspace [Fig. 2(d)i], while occasionally we
also obtain states [Fig. 2(d)ii] similar to the d = 2 case
Fig. 2(c)ii, with a fidelity [Fig. 2(e) yellow dashed line]
slightly below break even.

The overall efficiency in discovering codes that exceed
break even from many runs of AutoQEC depends on
the Hamiltonian setting. With all-to-all coupling, the effi-
ciency of finding an encoding like Fig. 2(b)i or ii is about
30% —the remaining 70% of the runs mostly find the trivial
|0) and |1) encoding. In the d = 2 case, the probabil-
ity of finding an encoding like Fig. 2(c)i is about 10%,
while finding a partially protected qubit like Fig. 2(c)ii
is about 20%, with the remaining 70% still converging to
the trivial encoding. In the d = 1 case, the efficiency is 0
since there is probably no error correction code that can
be autonomously protected by a d = 1 Hamiltonian. The
efficiency of AutoQEC also depends on «T for search-
ing bosonic codes. For kT « 1, the system goes through
transient dynamics and does not have enough time to cor-
rect the error after single-photon decay. In this regime,
the trivial |0) and |1) encoding actually performs better
than doing AQEC. Similar short-term dynamics have been
seen in other AQEC approaches [7]. On the other hand,
for kT > 1 any 2D subspace that is not a QEC code will
quickly collapse into a single steady state of the Hamil-
tonian and dissipators, and a maximum average fidelity
of 0.5 is almost everywhere in the search space, leading
to poor efficiency. We therefore choose an intermediate
value of kT~ 0.3 where the dominating error process is
single-photon decay.

We further investigate the d =2 code in Fig. 2(c)i.
Figure 3 shows two orthogonal code words spanning the
logical subspace and the associated Hamiltonian. Inspired
by the numerical results [Figs. 3(a) and 3(b)], we ana-
Iytically derive the logical states as (F =~ 99.9%; see
Appendix C)

Vo) = [1 = —=10) + 2= 13),

(a) (€ e
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FIG. 3. The /3 code. (a) Wigner functions of the two log-
ical basis states from AutoQEC. (b) Photon-number distri-
bution of the analytically derived +/3 code agrees well with
the numerical result, where [v) € span{|0),|3)} and [y) €
span{|1),|4),]6)}. (c) Required Hamiltonian couplings for
autonomously protecting the code.

" _ [26-v3) 3 \/(ﬁ—l)% B
: 349 2(v3+49)
+ 3-V3 6) (5)
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and name it the /3 code, after the average number of
photons in its codewords.

The Hamiltonian found by Aut oQEC uses three types of
couplings [Fig. 3(c)]: type 1 (blue solid line) |n — 1,g) <
|n,e), type 2 (red dashed line) [n+ 1,g) <> |n,e), and
type 3 (yellow dotted line) | + 2,g) <> |n, e). The general
form of this Hamiltonian is

=Y i,

=123

a0 = Zay) In) (n+dj| ® b" + h.c.,
(6)

where H? corresponds to the type I couplings with dis-
tances dy = —1,d, = 1,d; = 2. The effective dissipator
for the a mode after adiabatically eliminating qubit b [27]
is D[|o) (V2| + [¥1) (Y3 + -+ -1, where [y2) o< @)
and |y3) o< a|y) are the error states. The |yo) (V| +
[Yr1) (3] part of the dissipator explains why H can correct
photon-loss error, while the - - - part is crucial for control-
ling the distance of A without affecting the error correction
behavior (see Appendix C). We emphasize that although
both logical states and Hamiltonian parameters can be
derived and understood analytically for the /3 code, the
analytical expressions are not needed for the circuit imple-
mentation below, and we use only parameters directly from
the Aut oQEC optimization.

To the best of our knowledge, existing single-mode
bosonic codes [21-24] all require high-distance Hamil-
tonians to protect, which are challenging to engineer
experimentally. Therefore, autonomous implementations
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of these codes [3,9] instead apply an engineered uni-
tary stroboscopically to correct errors accumulated during
some waiting time. The error correction unitary relies on
pulse engineering for the low-distance physical Hamilto-
nians, and effectively realizes the high-distance mapping
from the error subspace to the logical subspace. In con-
trast, the +/3 code requires only a d = 2 Hamiltonian and
therefore can operate in the fully autonomous setting [7]
where the Hamiltonian itself evacuates entropy continu-
ously from the system, eliminating the need for applying
any error correction unitary stroboscopically.

IV. CIRCUIT QED IMPLEMENTATION

Our goal now is to find a physical implementation of
the Hamiltonian, Eq. (6), discovered by AutoQEC. In cir-
cuit QED, a method for selectively driving such transitions
uses off-resonant coupling between a resonator and a non-
linear ancilla qubit circuit to realize a dispersive xatab'h
interaction. In the presence of this nonlinear level struc-
ture, coupling |m,g) and |n,e) together is achieved by
driving the system so that the operator am—npt (if m > n,
otherwise a’@=™p") appears in the Hamiltonian, oscil-
lating at frequency ny in the rotating frame of both a
and b. This approach requires that the driving strength
lotj | is sufficiently weaker than x so that a rotating wave
approximation (RWA) may be made to drop the undesired
couplings. For example, 4 is effectively implemented by
H (1) = iath' +he. with £i(0) = 3, aDex!/ /n.
Similarly 7@ and A® can be realized by including driv-
ing fields that properly modulate the ab' and 425 terms of
the Hamiltonian (see Appendix E).

Before even considering the circuit implementation, we
note that the above approach has a serious shortcoming
related to how the dispersive nonlinearity modifies the dis-
sipative dynamics. The photon emitted by the relaxation
|n,e) — |n,g) at frequency w, is spaced from w,1+| by
x [Fig. 4(a)i], which is much larger than the linewidth
kg ~ la;| of these emission lines due to the RWA require-
ment x > |a;|. Therefore, the emitted photons would leak
information about the photon-number distribution and the
correct dissipator is no longer DI[b] for which the code was
optimized, but an incoherent sum of terms D[|n, g) (n, e|].

We erase the which-way information by including an
additional lossy ancillary system and a number of drives
with frequencies tuned to overlap the spectrum of emit-
ted photons. This extra lossy qubit ¢ does not dispersively
couple to a—in contrast to qubit b, which we also now
make long lived as it mediates interaction between the stor-
age mode a and the lossy ancilla ¢ [Fig. 4(b)]. Let |ey)
and |e;) be the excited states of qubits b and ¢, respec-
tively, the interaction H,. between b and ¢ should quickly
transfer any occupation in |n, e;) caused by a photon-loss
error in a into |n,e;), which then relaxes back to |n,g).

(a)
[ 12¢1) i
wo wh  |2e2)
2
129) lier) |
6'5/ le;( wy _|leg)
|1g>
!
5‘9 [0e1) 'wp _|0e2)
;10g) 2
3 X o
wo w1 Wa wh = Wi = wh
® o
—}z; Hagee + Hap 04D f(OVTE+ f(0)0ET [ —ey)
G —I1) —} <—>
— —lg)
10) 7y —lg) Ty ! 75",1‘*
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0 85 /3 code
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92 /gl t (ws)

FIG. 4. Circuit implementation of the discovered AQEC
scheme. (a) Level diagram and emission spectrum before (i)
and after (ii) erasing the which-way information. (b) Schematic
interactions within the extended system with an additional lossy
qubit ¢. (c) Circuit design that implements the desired interac-
tions by modulating the flux threading the smaller (yellow) and
larger (red) loops. (d) log,, B as a function of g2 /g7 and A,/A,
which is minimized when g?/A; ~ g7/A,. The simulation is
performed with A;/27 =1 GHz and g,/27 = 100 MHz. (e)
Average fidelity of the /3 code from a time-domain simulation
of the full circuit dynamics.

Due to the absence of dispersive coupling, the emitted pho-
ton from ¢ does not reveal information about the a states,
which eliminates the which-way information [Fig. 4(a)ii].
Because the transition frequency between |n,e;) and
In,e2) depends on n, the desired swapping Hamiltonian
Hy = Q >, e "X |n er) (n,ex] + h.c. is time dependent,
which can be implemented as f (t)lAﬂ'Z’ + h.c. with f (1) =
QY e "and x > Q.

Having incorporated the second ancillary qubit, we
propose a superconducting circuit [Fig. 4(c)] that imple-
ments the discovered AQEC scheme. The direct capacitive
coupling between a and b gives rise to a linear interac-
tion g(ath + ab"), which effectively generates a dispersive
coupling xatabth with x = 4g%/A in the large detuning
regime A = |w, — wp| > g [27,28]. The two supercon-
ducting quantum interference devices (SQUIDs) introduce
nonlinear interactions of the form cos quy and sin q@xy where
oy = @G +30) + 0,0 + 31 with () = (@), (b,0).
Different terms from the cos and sin Taylor expansions can
be selected by parametrically driving the flux threading the
circuit loops [7], which realize both the AQEC Hamilto-
nian between & and b and the swapping Hamiltonian Hbc
With proper placement of mode frequencies, the a <> b
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and b < ¢ couplings can be controlled at very different
driving frequencies and only a minimum of two flux lines
are required (see Appendix E).

The interaction g(a'h + ab") of the proposed circuit
implements the needed dispersive coupling at the leading
order. However, its higher-order effects induce a Kerr non-
linearity on the a mode [29] that can be comparable to
Kk, causing real deleterious effects on the coherence of the
system. Due to this Kerr nonlinearity, when the @ mode
decays from |n,g) to |n — 1,g), the emitted photon fre-
quencies {85} are not perfectly identical, but rather have
a finite bandwidth B = max{85} — min{8;}. For realistic
parameters where B > «, the environment learns about
the photon-number distribution of the resonator, inducing
additional dephasing. Aut oQEC’s assumption of a dissipa-
tor D[a] is then no longer correct and an incoherent sum of
D[|n — 1, g)(n,g|] more accurately captures the resonator
damping process, reducing the fidelity.

Properly addressing parasitic Kerr nonlinearities is a
common challenge in bosonic quantum hardware [29]. By
leveraging the |f') level of the qubit b and engineering the
linear coupling between a and b, we find a way to suppress
the emission bandwidth B by a few orders of magnitude.
Consider the Hamiltonian of a harmonic oscillator coupled
to a three-level qubit

Hay = Arle) el + M |f) (F 1 + 1@ g) (el +ale) (g])
+g(@lf) lel +a' le) (f 1). (7)

We find that by judiciously setting the detunings A; and
A such that g7 /A ~ g2/A,, B is eliminated to the lead-
ing order (see Appendix D). This is also verified numeri-
cally in Fig. 4(d) where log,, B3 as a function of g3 /g7 and
A,/A| is minimized along the diagonal.

Finally, we perform a full quantum simulation of the
proposed circuit. Given our choice of g and the detunings,
an experimentally realistic x /2w & 10 MHz is achieved.
To safely satisfy the parameter hierarchy x > |o;| >
k, we rescale all control parameters down to |o;|/2m =
10 kHz with k /2m = 0.1 kHz and «, /27 = 20 kHz, which
has the same AQEC performance but at a different time
scale. A time-domain simulation of the full circuit dynam-
ics (see Appendix E) proves that the average fidelity for the
V/3 code indeed exceeds the break-even point [Fig. 4(e)],
which confirms our circuit design and the AQEC behav-
ior. Notice that the circuit Hamiltonian [Eq. (E6) in
Appendix E] assumed in the simulation incorporates the
storage mode a and both ancilla qubits together with the
time-dependent flux drives in the lab frame, and the control
parameters « obtained from Aut oQEC enter the Hamilto-
nian as amplitudes of the flux drives. Even though x /27 =
0.1 kHz is quite demanding experimentally, we expect
it to be improved with better circuit designs and proper

compensation of level Stark shifts, and eventually realiz-
able with 3D microwave cavity [30] or quantum acoustic
platforms [31,32].

V. DISCUSSION

We have proposed and demonstrated a numerical frame-
work for automated discovery of AQEC schemes. In future
works, AutoQEC may be extended into the few logical
qubit regime, e.g., learning multiple protected qubits by
searching for a higher-dimensional logical subspace with
more mutually orthogonal logical basis states, as well as
learning quantum gates. This would require speeding up
the physical simulation, since computational cost is the
main limitation common to any automated approaches
based on simulating the actual physical system. It would
also be important to incorporate more of the physical layer
design, which was done “by hand” in this work, into
the optimization algorithm. Finally, applying the adjoint
method to other physical systems with the goal of improv-
ing quantum simulation, sensing and communications pro-
tocols seems within reach.
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APPENDIX A: INTRODUCTION TO ADJOINT
METHOD

In this section, we provide the general derivation of the
adjoint method [19,20] and apply it to the master equation
governing the dynamics of a dissipative quantum system.

1. Derivation of the adjoint method

Consider an initial value problem

d

—: — 1 (v,0),

7 (A1)

where the state v evolves from =0 to t=7T and 6
are the time-independent parameters for the ODE. Here
we assume that there is a “loss function” L[v(7T)], which
depends only on the final state v(7). This final state implic-
itly depends on both the initial state v(0) and the parame-
ters @ that specify its time evolution through the integration
of the ODE. Our goal is to compute the gradient of L with
respect to both the initial state [0L/dv(0)] and the ODE
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parameters [0L/06]. Obtaining these gradients will enable
optimization via gradient descent.

a. Gradient with respect to the initial state

The adjoint state is defined as a(f) = dL/dv(¢) and a(7)
can be computed directly as long as L is differentiable
while a(0) is the gradient that we want. By the chain rule,

v, (t+¢€)
dv;(7)

oL oL
“h =50 = 2 v, (1 + €)

J

= Zaj (l+ G)B{Uj (t) + 6]; [V(t)ao]}
J

dvi (1)

i [v(), 0]

=at+e)+e) at+e)—"—= (A2
J

dv;(?)

Therefore,
equation:

the adjoint state satisfies the differential

o aitte) —ai) AV, 6]
@i(f) = lim ¢ == a0

(A3)

J

More compactly,

a() = —Cla(r). (A4)

where a is represented as a column vector and
the matrix C = 9df [v(?),0]/0v(¢) is defined as C; =
afilv(9),0]/9v; (¢). In other words, solving the above dif-
ferential equation from ¢ = T to ¢t = 0 allows us to obtain
a(0) = dL/9v(0).

b. Gradient with respect to ODE parameters

To compute the gradient dL/960, we embed the parame-
ters @ into the state vector and consider a new ODE:

d (v _ (f(v.0)
a\e) \ 0 J°
This leads to a composite adjoint satisfying
o v.0] v\ T
4 (a0 __ (G 50 a) (A6)
dr \ag(?) 0 0 ay (1)

Define a matrix D = df [v(?),0]/00 as D;; = ofi[v(?),0]/
06; (1), then we have

(AS)

ag(f) = —DTa(¥). (A7)

Notice that ay(7) = 0 since L does not explicitly depend
on 6.

2. Adjoint method for the master equation

The above derivation works for general ODEs and here
we would like to adapt the results to a specific type of
ODE, the quantum master equation.

a. Gradient with respect to the initial state

It is easier to take derivatives with respect to the ini-
tial density matrix by working with superoperators. Con-
sider the linear transformation i) {(j| — |i) ® |j) that maps
a density matrix p =) p; |i) (j| to a state vector p =
> pij li) ® |j). By definition it is straightforward to check
the following relation for left and right multiplication of an
operator:

ApB — (A ® BN)p. (A8)

Therefore, the master equation, Eq. (1), is equivalent to

K
p=—iHRI-TIRH S+ B (Ak®AZ
k=1
1 T 1 f T -
- EAkAk ®1I— §I® (AkAk) 1Y

= Mp. (A9)

To derive the adjoint equation in the presence of complex
numbers, we could simply separate the real part (label x)
and imaginary part (label y). The master equation can be
written as

4 (") = (M, + iMy) (B + ipy)

dt \ oy
- (en ) = (e ) ()
M py + M, px M, M, Py

Px
=M{"). A10
(py> (A10)
Now we could calculate the C matrix by
IMp(®]; 9D, Mupi(t
;= Mp@]i _ 33, Mixpr(1) — My, (ALD)
op; (1) 0

which gives C = M. Therefore, the adjoint equation is
given by

a (i (M ) 1
-\ )=—\_gr o)) (Al12)
dt (m —M, M)\
This could be simplified by introducing the complex
adjoint

_ 8L+‘8L Z 0@ ) 8L+_8L
a = — l— = aii |1 . a;i = o x l—
apx apy y ) apl] 8,01)]}
(A13)
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such that

L oL
s Py

= —M] —iM]) ( ) =-M'a. (Al4)

More explicitly,
K
i=-Ma=—iHol-18HNa-Y p (4] @4]
k=1

Ui 1 4T 7
_EAkAk‘X’I_ §I® (4,45 ) a (A15)
Now we inverse the mapping and define the adjoint matrix

a=7) a;l) @) >a=7) ayli){l

and the adjoint equation has a similar form as the original
master equation:

K
-S> B <A}:aAk _ % {AZAk,a}) . (A17)
k=1

Starting from a(7) and solving the adjoint equation back-
ward in time to ¢ = 0 gives a(0), which is the gradient with
respect to the initial density matrix.

(A16)

b. Gradient with respect to system parameters

Going back to the superoperator representation,
Eq. (A10), and taking derivative with respect to some ODE
parameter 0:

/5 T soL aL

. X 00x 9px

a@(t)=—|:39M(_)i| (3’;) (px,py)aeMT< ")
py m aﬂy

_ _(—T —T) angT aGMT ali
- px’py a MT 7

— M
oL
_ - 0px
= — (P 96M, — P} 0pMy, p 9M, + 06 M) ( f )
3,0\

L L
[(39MP) + (9 M p) —} : (A18)

X a - y
Define

Ag=0Mp= Ayli)® i) — Ay

=" Ayl (|

(A19)

then the gradient could be simplified as
ap(t) = =Y _(Ajaj;
j

+ & a)) = —ReTr[Agal (9)].

(A20)

From the master equation, it is not hard to see that

A(Xj = _l[l_]] 5 Io(t)],

p o1
Ap, = Ao (4] = {alai. o}, (A21)

Therefore, after solving for p () from Eq. (1) and a(¢) from
Eq. (A17), we could solve ay(¢) by integrating Eq. (A20)
backward in time starting from ay(7) = 0.

APPENDIX B: AVERAGE FIDELITY

We could evaluate the integration over Bloch sphere in
the definition of average fidelity [main text Eq. (3)], which
leads to a simpler expression to work with

_ 1 1
F@) =Tr |:<§/300 + 6,511) ﬁoo(f)i|
T 1. 1., 5 (f
+ Tr (E'OOO + 5,011) o11()
1
+Re {Tf |:§,501/310(l)]} .

Other fidelity definitions are also applicable as long as the
gradients are computable. For example, we could learn
AQEC with the entanglement fidelity [24]

(B1)

- 1 . A . A
F@)= ZTY [500P00(2) + f1111 () + Po1 pro(®) + Propor (1)].
(B2)

From our experience, we did not observe any substan-
tial differences in terms of training speed and optimization
results when using entanglement fidelity compared to the
average fidelity.

1. Modified average fidelity

In practice, we find out that there is a simple modifica-
tion of the average fidelity that helps avoiding certain local
minima during the training. Instead of learning an identity
map on the Bloch sphere, we could aim at preserving the
Bloch sphere up to an arbitrary rotation in the logical sub-
space. This modification extends the set of Hamiltonians
that protects a given QEC code, which could potentially
accelerate the Aut oQEC searching.

Analytically deriving the modified average fidelity turns
out to be challenging for general rotations on the Bloch
sphere. We therefore restrict the allowed rotations to only
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along the Z axis:

Ulvo) = 1¥o)

Uly) = €% |y) . (B3)

The modified average fidelity becomes
_ ~ (1. 1. .
F@) =maxTr | U| 3000 + =011 ) U' poo(2)
3 3 6
~ (1. 1., .
+Tr|U 6,000+§,011 U'p11(9)
1A ns
+R6{Tr[§UP01U'010(1):|}
1. 1. R
=maxTr || =000 + — 011 | Poo(?)
@ 3 6
+T L; +1A 011 (1)
r — p—
6/000 3/011 P11
| P
+Re{Tr [ge ‘”pomlo(t)“
T ¥ +1A 000 (1)
= T _ _
3,000 6/011 £00
+T 15 +1A 011 (1)
.- Z
6,000 3,011 P11
1, .
Tr 31001,010(1)

+ , (B4)

where the only change compared to Eq. (B1) is to replace
the real part of Tr [,601 ,510(1)] with its absolute value.
Throughout this paper, we use this modified average
fidelity [Eq. (B4)] as the objective function for AutoQEC.

APPENDIX C: DERIVATION OF THE /3 CODE

With d = 2 Hamiltonian, Aut oQEC discovered an error
correcting code, which we were not able to find in the lit-
erature. This simple “+/3” code warrants further investiga-
tion, and here we derive it analytically based on the Hamil-
tonian distance constraints and QEC properties. Notice that
the AQEC Hamiltonian for a given code is not unique—we
therefore make some assumptions about the Hamiltonian
structure to simplify the derivation.

1. General results

Consider the problem of correcting a single-photon-loss
error with a bosonic mode. The logical states are |y) and
[¥1). For simplicity, we assume the error states [v,)
alvo) and |¥3) o< alyy) are also mutually orthogonal
to both logical states. Therefore, {|v), |V1), |¥2), [¥3)}
forms the basis for a four-dimensional subspace H;. We
choose the Hilbert space cutoff |NV) as the highest Fock

level that has a nonzero overlap with either [vo) or [i)
(total Hilbert-space dimension N + 1). Now the Hilbert
space is decomposed into H; and its orthogonal comple-
ment H, (H = H; ® H,) where a set of orthogonal basis
for Ha is {|a) ..., [¥w)}.

To correct the single-photon-loss error autonomously,
the Hamiltonian should include the following terms:

H = (Iyo) (Yol + 1Y) (¥3]) ® le) (gl +hec,,  (C1)
which basically maps the error states to the correct log-
ical states and excited the qubit: [y, g) <> |0, e), and
|3, 2) < |1, e). After relaxation of the ancilla qubit, the
error states |y;) and |y3) are mapped back to the logical
states |v) and |vr;) while maintaining the relative phase
between them due to the identical Rabi rate in the Hamil-
tonian. Adiabatically eliminating the ancilla qubit results
in an effective dissipator D[|vo) (¥2| + |¥1) (¥3]], which
provides an alternative way of understanding the reduced
dynamics for the bosonic mode.

The Hamiltonian, Eq. (C1), is conceptually simple, but
may be difficult to generate in experiment since it can
be highly nonlocal in the Fock basis. In the case of
the smallest binomial code |vo) = 1/ﬁ(|0) + |4)) and
|¥1) = |2), realizing Eq. (C1) would require a coupling
term |3,g) (0, ¢e|, which does not occur naturally [3,9].
Going to a higher-order binomial code is even worse since
it requires even more nonlocal interaction between Fock
states.

This is where states in the orthogonal subspace H; could
contribute. The basic idea is that those states would not
change the QEC behavior, but their proper combinations
could cancel certain nonlocal interactions in Eq. (C1) and
make the total Hamiltonian easier to implement. For this
purpose, the general form of the QEC Hamiltonian is (we
ignore all |g) (g| and |e) (e| terms since those would not
solve the locality problem anyway)

H=H"®le) (gl + H®g) (el,

N
H = |yn) (Yol + [¥3) (W1l + Y By 1¥) (] . (C2)

i

We impose a number of constraints on the coefficients
Bij such that the summation part of H does not modify
the error correction dynamics. In particular, we require
that 8; = 0 for i <4 and j < 2. The requirement j < 2
removes overlap with the states |y, e)—we want only
the first part of A to perform this correction function.
Similarly, removing i < 4 prevents overlap with states
[Y0~3, &), which is important for preventing the summation
part of the Hamiltonian from causing states to transition
into the code and error subspaces.

Having set these conditions on H, we now quan-
tify the notion of locality for the Hamiltonian. We
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define the distance of a Hamiltonian H to be d
if Hyy = (m|H|n) = 0,¥|m — n| > d,0 < m,n < N.From
our numerical search (Fig. 2), we found that d = 1 Hamil-
tonians generate only trivial error correcting codes. There-
fore, we consider the d = 2 case, which seems to be the
minimal distance required for QEC exceeding break even.
More explicitly, a d = 2 Hamiltonian satisfies

0 Hy; 15104 e IEION
Hy 0 Hy e Hy
H40 H41 0 e HZN =0. (C3)
~: ) 3 Hy sy
Hyo Hpyi Hyyn_s3 0

The goal here is to find A, in other words, we solve for the
coefficients B;; as well as the logical states while satisfying
these locality constraints.

2. Example of the /3 code

We demonstrate how to solve this problem with a con-
crete example. Numerically the /3 code we found with the
d = 2 Hamiltonian had logical states of the form

[Yo) = ao|0) +a3(3),

Y1) = a1 [1) + aq |4) + ac 16) . (C4)
Since the two logical states do not share any Fock basis,
we can always make all coefficients o, as, ai, as, de real
by doing the basis transformation |n) — e |n). The error
states are

[Y2) = 12) o< a ),
¥3) = Ni(ar [0) + 2a413) + v/6aq 5)) ocalyn) . (C5)

Notice that if Eq. (C3) does have a solution, the solution
always exists no matter how we choose the basis for the
orthogonal subspace H,. In other words, we could always
represent the new basis as linear combinations of the old
basis and that together with the old solution ; gives the
new solution B;;. Therefore, here we have complete free-
dom to select the basis {|4), [¥s), |We)} for H, and for
convenience of further analysis we make the following
choice [notation v;(rn) = (n|y;)]:

[Va) = Ya(1) [1) + ¥4(4) |4) + ¥4(6) |6)
[¥s) = ¥s(D 1) + ¥s(4) [4) + ¥s5(6) [6)

[V6) = ¥6(0) 10) + ¥6(3) I3) + ¥6(5) [5) . (Co)

We can make all v;(n) to be real here, which leads to all
B also being real. With this basis choice, many constraints

in Eq. (C3) can be easily satisfied either automatically or
by setting certain ; = 0. More specifically, for any |m —

n| > 2 such that (m|(|y2) (Yol + [¥3) (Y¥11)|n) = 0, there
are two different cases:

L. (m|(1¥:) (; D |n) = 0,Vi,j: in this case H,, =0 is
already satisfied;

2. there exists i,;j such that (m\(lx/fi) (xﬁj\)|n> #0: in
this case we just set 8; = 0.

Therefore, the only nontrivial constraints from Eq. (C3)
are those with (m|(I%2) (Yol + [13) (¥1)In) # 0, which
are Ho4, Hos, H36, Hs. It is easy to see that the only
terms in Eq. (C2) that will contribute to these matrix ele-
ments are |g) (¥4] and |Yg) (¥s|. With these analyses, the
ansatz Hamiltonian, Eq. (C2), can greatly simplify to the
following:

H = 1) (Yol + 1¥3) (1] + Bu W) (Yl + B2 [¥6) (W51,
(C7)

where the two free parameters 8; and §, satisfy a set of
linear equations

Hys = y3(0)¥1(4) + Bis(0)s(4) + Baps(0)rs(4) = 0,
(C8a)

Hos = ¥3(0)¥1(6) + B16(0)¥4(6) + B2vre(0)¥rs(6) = 0,
(C8b)

Hys = ¥33)¥1(6) + Bivre(3)¥a(6) + Bars(3)Yrs(6) = 0,
(CSc)

Hsi = y3(5)¥1 (1) + Bivrs(5)va(l) + Bare(S)¥s(1) = 0.
(C8d)

The crucial observation here is that the number of equa-
tions, four, is larger than the number of parameters, two,
which means the coefficients must be linearly dependent.
Since these coefficients are essentially functions of |v)
and |y), this eventually provides the extra constraints
for determining the logical states. Here there should be
4 — 2 = 2 constraints in total.

Below we show in details how to obtain the two con-
straints and eventually the two logical states. Comparing
Egs. (C8b) and (CS8c), it is easy to see that the first
constraint is

Y30 _ ¥6(0)
(3 Ye(3)
To get the second constraint, let us multiply Eq. (C8a) with

Y1 (4), multiply Eq. (C8b) with i1(6), and then add them
together:

(C9)

U3 O {[Y1 (DT + [Y1(6)]*)
+ B1vs(O)[Ya (D1 (4) + ¥4(6) Y1 (6)]

+ B2 (O [Ys(DH Y1 (4) + ¥s(6)¥1(6)] = 0. (C10)
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Using the fact that |i) is normalized and orthogonal to
both |y4) and |¢/5), we have

Y3 (0){1 = [¥1 (D} + Bivs O [=va (¥ (D]
+ B2 (O [—=¥s(D Y1 (1)] =0

L= [y (DP
V(1)

+ 26 (0)¥s(1) = 0.

= —v3(0) + B1¥6(0) Y (1)

(C11)

Compare this with Eq. (C8d), we immediately obtain the
second constraint:

=[P _ 935 )
Y1 (16 (0) ¥6(5)
= Y30y (5){1 — [Y1 (DY)

—¥3(0)

+ Y3 O)YsOY1 (DT = 0. (C12)
Let us explicitly list all the relevant states here
[¥o) = a0 10) + a3 (3),
Y1) = ai|1) + as |4) + a6 [6)
1¥3) = Ni(ar 10) + 2a413) + /6as |5)),
[Ws) = Na(ay [0) 4 2a4 |3) + B15)), (C13)

where we apply Eq. (C9) for |¢) and 8 is another param-
eter. Combining the QEC criteria and Eq. (C12), we
have

ai+a3 =1,
ad4a;+d=1,

apa; + 2azay = 0,

3a§ = af + 4aﬁ + 6a§,
a; +4d; + v/6Bas = 0,

B(1 —a?) + V6asa® = 0. (C14)

We have six equations and six parameters in total, and
the solution is (there is some freedom to choose the signs,
which again is just a trivial basis transformation)

doe e Lgo Lo [26=VY
0 = \/§33_\4/§sl_ \/§+9s

\/(ﬁ—l)@—ﬁ) 3-43
aqg = — a

= |—— . (C15
23+ 9) “Vasre

Therefore, the logical states of the /3 code are

1 1
= [1——]0 — 3
o) = | 510+ =13,
[266 — V3) \/(ﬁ_l)(é—ﬁ)
= [Ny - 4
) Sizo U RO
3-43
2(W/3+9)

16) . (C16)

Notice that the average number of photons in the code-
words is 3|as|? = /3.

Now we could complete all basis states and the Hamil-
tonian, Eq. (C7). The basis of H,,

2 4 2
[We) = Na(ap [0) +2a413) + B15), B= _anga:4’
[V4) = N3(as 1) — ay [4)),
2, 2
[Ws) = Na(ay |1) +aq |4) + B'16), B = 4 ;04
(C17)

and the Hamiltonian parameters,

Niag _ Niay(1 —as/B)

=3 npg P NN

(C18)

There are some extra complexities in constructing the
AQEC Hamiltonian and we actually need to keep more
terms from the summation in Eq. (C2) rather than just
the B, and B, terms in Eq. (C7). To understand why this
is required, let us study a simpler problem of stabiliz-
ing [¢) = 1/+/2(|0) + |2)) under photon-loss error. Even
though the Hamiltonian A = (|0,¢) + |2,¢)) (1,g| + h.c.
corrects the error after a single-photon loss, it does not
actually lead to state stabilization. The reason is that
when no photon loss happens, the state evolves within
the subspace {|0),|2)} under the non-Hermitian Hamilto-
nian A’ = —ixa'a/2 and eventually becomes |0). This is
because nondetection of a photon still provides us infor-
mation about the state causing us to update it in a way
that skews towards a lower number of photons. State sta-
bilization must undo this effect. We protect |ir) against
H’ by engineering a large detuning for |v/) within the
subspace {|0),|2)}. For example, adding extra terms such
as Q) (Y| or Q]0) (2| + h.c. to H will stabilize [r).
This new interaction can be seen as rapidly repopulating
the |2) component of the wavevector as it decays through
nondetection of photons.

Similarly, Eq. (C7) protects only the logical states
against single-photon-loss error, but not the nonunitary
dynamics under A’. Fortunately, keeping a few extra terms
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from the summation in Eq. (C2) is sufficient to gener-
ate the large detuning without changing the Hamiltonian
distance as well as the above derivation. The choices are
not unique and one option is to add |y4) (Y| as well as
(ag 14) — a4 16)) (5| in H, which produces similar results
compared to the discovered code in Fig. 2(c)i. On the
other hand, all these complications in constructing a proper
AQEC Hamiltonian are automatically taken care of by
AutoQEC through numerical optimization of the average
fidelity.

APPENDIX D: MINIMIZING THE EMISSION
BANDWIDTH B

Here we prove the claim in the main text that for a
harmonic oscillator coupled to a three-level qubit with
Hamiltonian H,; in Eq. (7), the emission bandwidth B is
minimized when g?/A; ~ g3 /As.

Proof. The Hamiltonian can be written in the subspace of
{ln+2,2),In+ L,e),|n,f )} as a matrix

0 vn+2g 0
Vn+2g A Vn+1g
0 vn+1g Ar

(DI)

and the eigenvalues satisfy

2= (A + AR+ [A1A, — (n+2)gl — (n+ Dgl] x
+ (n+2)gi Ay = 0. (D2)

In the dispersive regime Aj; > g1, the eigenvalues can
be expanded perturbatively as

3
)\:)VO+)\'1+)\2+O(%)g,

2
=0 (%) g =0 (%) s (D3)

e~

For dressed eigenstates ‘n + 2,g>, Ao = 0 and

[A1A; — (n+2)g] — (n+ Dg3 ] A + (n+2)gi A, =0

_(n+2g

= A=
1 AL

(D4)

which agrees with the dispersive coupling Hamiltonian and
no level nonlinearity shows up at this order. To the next

order,

[A1A; — (n+2)g] — (n+ Dg3] (A1 + 12)

— (A F AN H (n+2)gi Ay =0, (D5)
which gives
(n+2)g? g? g
Ay = — 7oL el D2|. (D6
2 A2 (n+ )Al (n+ )Az (D6)

Notice that in general A, will induce nonlinearity for the
dressed states |7,g) since it depends on n?. However,
when g7 /A = g2/ A, the dependence on n? is completely
removed, which means the nonlinearity and therefore also
the emission bandwidth B is eliminated at this order. W

1. Qubit choice for b

The relevant dispersive coupling to the e levels is

2 2 2

L o)
Ay Ay — A
and at the minimal nonlinearity point, we have
2

gir—2
== , D8
¢ = A1 (D8)

where 7 = g3 /g? = A,/A,. Ideally, . should be as large
as possible at this minimal nonlinearity point, such that we
can selectively drive certain level transitions without intro-
ducing large B. For a transmon qubit » ~ 2 = x, =~ 0 and
therefore cannot be used as qubit b, Fortunately, other qubit
designs could provide much more flexibility in engineer-
ing the coupling ratio » and » ~ 1 is favorable in terms of
larger x,.

In this work, we choose a fluxonium type of Hamilto-
nian

. . . 1.
H=%m%wmmw—%@+fmz (D9)

for qubit b. With realistic parameters ¢exy = 0, E¢c/2m =
0.95 GHz, E;/2n = 4.75 GHz, and E; /27 = 0.65 GHz,
the coupling ratio is r = g3 /g} = | {f |ﬁ|é) 12/l {e|n|g) I ~
1.2 with wg. /27 ~ 5.43 GHz and w.s /27 ~ 3.87 GHz.

APPENDIX E: FULL CIRCUIT DESIGN

In this section, we provide details for the full circuit sim-
ulation in Fig. 4(e). The AQEC Hamiltonian Eq. (6) can be
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implemented with a more physical Hamiltonian

H = Ay + [fi(0a" +0Oa+f0] b+ (b e +he,

(E1)
where
(1) ,—i(Epe—Ep_1g)t
aleEn 2
fiy=) A————,
" <n,e &TbT‘n — 1,g>
(2) _i(En,e_En+1,g)t
a'Pe
L) =) A,
7 <n,e ab'|\n + 1,g>
a® = iEne—Eni2g)t
L) =) A,
B <n, e &2bT)n + 2,g>
e*i(En,e*En,g)t
S =) (E2)
B <n, e|bt n,g)
and |n, g(e)> are the dressed eigenstates of H,, with ener-

gies En,g(e): i.e., ﬁab = Zn En,g |fla\é> (fl:\g| +En,e |n'-,ve>
(n,e| (we ignore |n,f ) here for notation simplicity). Now
the dressed states |n,g) replace the bare Fock states |n, g)
in our definition of the logical basis in Eq. (C16) since
the logical subspace should be preserved (up to a triv-
ial phase accumulation) under the static Hamiltonian
without any drivings and dissipation. The required AQEC
Hamiltonian, Eq. (6), should also translate accordingly into
the dressed version to protect the logical subspace. For
example, the type 1 coupling now becomes

AD =" n) (n—1|®b' +h.c.

= AV =Y e (n—Tg[+he.  (E3)

Since H,, is in the dispersive regime, the dressed eigen-
states are close to the bare Fock states and matrix elements
such as <n’,v e‘&*lﬁ‘n -1, g> will be close but not equal to
Jn.

To prove the equivalence between Egs. (E1) and (6), we
could derive the type 1 Hamiltonian step by step from the
¥ (natht term in Eq. (E1), and the type 2 and 3 Hamilto-
nians follow similar derivations. The operator a'b' can be
expanded explicitly in the dressed basis as

atpt = Z <r71\,/s’&"an‘m’,s’> |7, 5) <m’,s’
m,m’
5,8

., (B4

where m,m’ = 0,1,2,... are the Fock indices and s,s" =
g,e,... are states of the qubit . Now f;(H)a'h" in the

rotating frame of H,, is given by

fia'bt

o (De_i(En,e_En—l,g)’
n

e <n’,ve &Tb’f‘n — 1,g>
X Z(ﬂf,”s‘&TbT m’,s’> |m, s) (m’,s’ o Ems =Ly )1,
/

m,m
5,8

(E5)

There are many terms in the summation and when
(m,s) = (n,e) and (m',s’) = (n—1,g) the term is time
independent. The sum of all these static terms gives
>, el jie) <n -1, g’, which is exactly the desired type
1 coupling Hamiltonian. All other terms in the summa-
tion are time dependent and the minimal rotation rate of
those terms is roughly the dispersive coupling strength
X ~ g/A| between & and b. Since we are operating in
the regime of x > ||, the time-dependent terms can be
dropped by the rotating wave approximation.

The relevant dissipators are {D[\/kal, D[,/k,c]}, but
to be more realistic we also include an extra dissipa-
tor D[\/EZA)] in the simulation. The coupling strength €2
between b and ¢ is chosen such that the effective decay
rate for b after adiabatically eliminating ¢ [27] is still
4Q? [k, = 21 x 20 kHz, the same as the value used in
the numerical optimization. We set the decay rate of ¢ as
kq/2m = 100 kHz.

The Hamiltonian, Eq. (E1), can be furthermore imple-
mented with a circuit model

H= wa&f& + Wge le) (e] + (wge + wef) If )1+ wcéTa
+g1@"1g) (el +ale) (gh) +g@lf) (el +a' le) ()
+ &1 (t) [g;};) Cos éab + gl(;l) Cos (ﬁbc]
+e2(0) [ sin s + 52 sin | (E6)

where quy =R +3N + 0,0+ 1) and the drivings are
given by

1 )
e1(f) = —2Re { —5 [e 2 f1(t) + /(1))
(pd(pbgab
1 i(we—wg)t
+ (l)e o j;‘-(t)
(pb(ngbc
2
Sz(t) = —2Re ﬁe’w“ﬁ(t) , (E7)
(pa(pbgab

which are generated by the two independent flux pump
through the larger and smaller loops [7] in Fig. 4(c).
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To derive Eq. (E1) from Eq. (E6), we could go into the
rotating frame of w,(a‘a + bTh) + w.61¢ where the static
part of Eq. (E6) becomes exactly I:Iab with A| = wg, — w,
and Ay = Ay + wgr — @y, and the flux driving part of
Eq. (E6) becomes

1(0) [} 005 Gun (1) + g2 005 Bue(t) |

+ 6200 883 sindus () + 17 sindne 0], (ED)

where

bap(1) = pal@e™™!  af ety 4 gy (he™ ™ 4 b elat),

Boe(t) = (e by 4 po(2e™ ! + &),
(E9)

Superconducting circuits usually satisfy ¢,, @5, 9. < 1 and
therefore we could Taylor expand the cos and sin interac-
tion and keep only the lower-order terms. As an exam-
ple, we derive the f3(£)a2b" term [33] in Eq. (E1) from
& (1) gﬁ) Sin ¢ (1). Keeping up to the third order

62,0

£2(0)g%) sin Pup (1) ~ £2(1)g") [@bm -

] (E10)

Now we would like to calculate the frequency for each
term in the expansion and drop the fast rotating ones.
From the expression of I:Ial7 we can estimate that f;(¢) ~
e ™11 j=1,2,3,4 in the dispersive regime, and in the
rotating frame of A, we have b~ e 21", Therefore,
the 4,4, b,b" terms in sz(t)gﬁ)éab(t) are oscillating at
frequencies —A,2w, — A1, —2A 1, 2w,, respectively, and
can all be dropped with proper frequency placement. For
all terms in the expansion of qgsb(t), it is straightforward to
see that there is only one slow term

1 AT —iw,
sz(t)gﬁ) <_6> <3gof,<pba2bfe "’)

— 2Re {ﬁ(t)aziﬁ} — @bt +he,  (E1N)
which is what we want to engineer, and all other fast
oscillating terms can be dropped. Similarly, by expand-
ing cosp ~ 1 — @2 /2 and checking the frequencies for all
the terms in —¢ (1)g\}) #2,(1)/2 and —&, (Dg\Y B2.(1) /2, we
could show that the slow oscillating terms from Eq. (E6)
exactly reduces to Eq. (E1).

To ensure the validity of rotating wave approxima-
tion, we place the frequencies at w,/27w = 3.5 GHz and
w./2m = 2.5 GHz with qubit b frequencies from the pre-
vious section. We also choose ¢, = ¢, = ¢. = 0.1 such
that higher-order terms in the cos and sin expansions can

be safely dropped. All AQEC Hamiltonian parameters as
well as the logical basis states are directly imported from
the Aut oQEC optimization result instead of using the ana-
lytical results in Appendix C. We use QuTiP [34,35] for
the full circuit simulation.

APPENDIX F: ADDITIONAL COMMENTS ON
THE OPTIMIZATION RESULTS

1. Exceed break even with partial protection

We further investigate the result in Fig. 2(c)ii, which
represents a class of optimization results that perform
better than break-even fidelity but worse than full QEC
codes. Figure 5(a) shows the Wigner functions for the
code subspace as well as both logical states, and Fig. 5(b)
shows the photon-number distribution for the logical states

(a)
ﬁcode |wl)> W)l) 0.2
0.1
0 ) ) o l) 0.0
3l -0.1
L L L -0.2
-3 0 3 -3 0 3 -3 0 3
(b)
0.5 —e— [¢o)
0.4 [41)
g
&0'3

. 0.8
0 ) 7 37/2 27
¢
d) 0.7
0.6
< /24
0.5
0 ‘ ' :
0 /2 g 3m/2 27

FIG. 5. (a),(b) Wigner functions and photon-number distribu-
tions for the discovered encoding in Fig. 2(c)ii. (c) Single-state
fidelity Fyg at £ = 10 us for the whole Bloch sphere. The white
dashed line indicates the break-even fidelity. (d) Fyg on the Bloch
sphere for the /3 code. For all Wigner function plots throughout
this paper, the horizontal axis label is x = (@ + a') /+/2 and the

vertical axis label is p = i(Efr — &) /2.
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where [vo) € {|1),]2),]|3)} occupies only low photon-
number states and |y;) € {|5),|6),|7)} occupies only high
photon-number states.

To understand how the logical subspace is preserved
under the AQEC Hamiltonian, we plot the single-state
fidelity Fy over the Bloch sphere [Fig. 5(c)] at ¢ = 10 us.
The logical state |1) is strongly stabilized by the AQEC
Hamiltonian with a fidelity 0.985 and |y) is preserved
with a lower fidelity 0.598. Some of their superposition
states (0, ¢ in-between the white dashed line) have fideli-
ties below break even, but the average fidelity over the
whole Bloch sphere still exceeds break even [Fig. 2(e) red
dashed line] due to the partial protection in the logical sub-
space. In comparison, we also plot the single-state fidelity
for the +/3 code [Fig. 2(c)i] in Fig. 5(d), which shows a
relatively uniform protection for any logical states.

We could study a simplified example to demonstrate
that a partially protected logical subspace exceeds break
even. Stabilizing Fock states |0) and |2) under photon-loss
error can be implemented with a distance 1 Hamiltonian
H=12¢) (1,gl +11,g) (2,¢e|. At long time, both logical
states are stabilized with single-state fidelities Fy—_o () ~
Fy—, () = 1 but any coherent superposition state becomes
a complete mixture of {|0) (0], |2) (2|}. This leads to an
average fidelity of 2/3, which is better than the break-even
fidelity % Intuitively, stabilizing both [v) and [y|) pre-
serves strictly more information compared to collapsing
the whole Bloch sphere to [) = |0).

2. A different +/3 code

Besides the +/3 code explained in the main text,
AUtOQEC also discovered another variant of the /3 code
[Fig. 6(a)] protected by a distance 2 Hamiltonian. The
main difference is that |yy) € {|1),|4),|7)} instead of
{I1),14),]6)} [Fig. 6(b)]. Following the same procedures
as in Appendix C, this new code can also be analytically
derived as [F = 99.8% compared to the numerical results

(a) 3 pcode WJO> ‘7771> 0.2
. . - 0.1
0 *» .‘ ‘. W7 0.0
— -0.1
=3t L L L 02
-3 0 3 -3 0 3 -3 0 3
(b)
0.8

—e— [tho)

. 0.6 [1h1)
0.4 \

0.2 \
0.0

FIG. 6. (a),(b) Wigner functions and photon-number distribu-
tions for another variant of the +/3 code discovered with d = 2
Hamiltonian.

in Fig. 6(a)]

1 1
= [1——10)+ —3
o) = 1= —=10) + 5=13),
) /4(7—¢§>|1>_\/(ﬁ—1)(7—ﬁ)
CV0+ V)
|7) .
)

4
3(7++/3) 4
| 3-V3
— " 7 Fl
+ W ) (F1)

3. Discovering the three-qubit bit-flip code

AutoQEC can also be applied to qubit-based systems
and here we show a test example of discovering the three-
qubit bit-flip code. More concretely, we choose three data
qubits with dissipators {ﬁ)?,»,i = 1,2, 3}, and two ancilla
qubits with dissipators {,/k; |g:) (el ,i = 4,5}, since gen-
erally qubit-based systems have more errors and require
more lossy ancilla states to evacuate the entropy from the
system The loss rates are fixed at /27 = 0.1 MHz and
kq/2mw =20 MHz, and the total evolution time is 7' =
0.2 us. We consider the all-to-all coupling Hamiltonian
Apgec = Y iy i o ([i) (71 + |7) (il) where N = 32 is
the total number of basis states {|i),i=1,...,N} for a
five-qubit system. The control parameters c; (bounded by
ot | /2 < 100 MHz) as well as the amplitudes of the logi-
cal states (i|v) and (i|v) are all forced to be real numbers
in the optimization.

In Fig. 7(a), we show the wave functions of the dis-
covered codes from four different runs, which all give
average fidelity around 96.4% with a small standard devi-
ation about 0.02%. The first code [Fig. 7(a)i] is similar to
the usual repetition code while the remaining three codes
looks quite different from the repetition code. Notice that
there are an infinite number of three qubit bit-flip codes and
any one of them could lead to a valid AQEC Hamiltonian
due to the all-to-all assumption.

To verify that all discovered encodings are indeed
approximate QEC codes for the bit-flip channel, we plot
the QEC matrix for each encoding in Fig. 7(b), which
shows small deviations from the perfect quantum error
correction criteria. Here the QEC matrix £ is defined as

82m+i,2n+j

PN 1
—Tr [E;E,, (|¢f,») il = 58 (1 (il + ) (v I))}
(F2)

where i,j € {0,1},m,n € {0, 1,2,3} and the operators are
{E}’l} = {]’leXZ’X?)}'
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FIG. 7. (a) Discovered three qubit bit-flip codes from four dif-
ferent runs. (b) QEC matrix for each of the discovered encoding,
representing deviations from the perfect QEC criteria.

APPENDIX G: TRAINING DETAILS

We use Adam optimizer [36] for the gradient-based
learning with a learning rate about 0.001. Usually after a
few hundred iterations, we can tell whether the training is
stuck at a bad local minimum below break even or not and
make a decision on early stops. The training often achieves
good convergence after a few thousand iterations and we
could lower the learning rate to about 0.0003 for the final
learning stage.

Each AutoQEC run starts with randomly initializing
both state vectors and the Hamiltonian parameters, and
typically we have around 30 runs (including the early
stopped ones) for each Hamiltonian setting in order to
have enough results that exceed break even and to explore
more of the solution space. With a Fock state cutoff at
20, the Hilbert-space dimension is 40 and the number
of free parameters for the logical basis states |i) and
[1) i1s 40 x 4 = 160. The total number of free parameters
for the Hamiltonian depends on the Hamiltonian connec-
tivity: 1600 for all-to-all coupling and 148 in the d = 2
case.

During the optimization, in general |v) and |i)
would not be perfectly orthogonal to each other after an
Adam update step and therefore we choose to maintain

() P
0.8
I, 0.6
0.4
0.2

0 1000 2000 3000 4000 5000 6000 7000

Training steps

(b) 100 300 500 1000 7000 0.2

3 ‘ - 0.1

Or ) s -.. -,. 0.0

3t -0.1

=303 3038 303 303 303 I02

FIG. 8. (a) Learning curve for results in Fig. 6. (b) Wigner

functions of pcoqge at different iterations during training, which
shows a relatively good convergence after a few thousand
iterations.

their orthogonality by manually setting |;) — [¢) —
(Yolyr1) /(Wolibo) | W) after each iteration. The constraints
on the driving strength || < oyax are ensured by optimiz-
ing over the angle variables 6; defined as oj = amax c0S 6;
instead of o; directly.

Figure 8 shows the learning curve for results in Fig. 6
discovered with d =2 Hamiltonian. Similar learning
curves occur frequently through many runs of AutoQEC.
Regarding computational cost, each iteration takes about
12 s on three CPUs (Intel Xeon CPU E5-2609 v4 @
1.70GHz) for training with distance two Hamiltonians.
AutoQEC runs on three CPUs because 0o (1), p11(2), p10(%)
in the definition of F () can be evaluated in parallel with
three independent master equation time evolutions.
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