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We propose a divide-and-conquer method for the quantum-classical hybrid algorithm to solve larger
problems with small-scale quantum computers. Specifically, we concatenate a variational quantum
eigensolver (VQE) with a reduction in the system dimension, where the interactions between divided
subsystems are taken as an effective Hamiltonian expanded by the reduced basis. Then the effective
Hamiltonian is further solved by the VQE, which we call deep VQE. Deep VQE allows us to apply
quantum-classical hybrid algorithms on small-scale quantum computers to large systems with strong
intrasubsystem interactions and weak intersubsystem interactions, or strongly correlated spin models on
large regular lattices. As proof-of-principle numerical demonstrations, we use the proposed method for
quasi-one-dimensional models, including one-dimensionally coupled 12-qubit Heisenberg antiferromag-
netic models on kagome lattices as well as two-dimensional Heisenberg antiferromagnetic models on
square lattices. The largest problem size of 64 qubits is solved by simulating 20-qubit quantum computers
with a reasonably good accuracy approximately a few %. The proposed scheme enables us to handle the
problems of > 1000 qubits by concatenating VQEs with a few tens of qubits. While it is unclear how
accurate ground-state energy can be obtained for such a large system, our numerical results on a 64-qubit
system suggest that deep VQE provides a good approximation (discrepancy within a few percent) and has
room for further improvement. Therefore, deep VQE provides us a promising pathway to solve practically
important problems on noisy intermediate-scale quantum computers.

DOI: 10.1103/PRXQuantum.3.010346

I. INTRODUCTION

Quantum computers are expected to solve certain prob-
lems, such as prime factorization [1], quantum chemistry
calculations [2,3], and linear algebraic processes (matrix
inversion) [4–6], exponentially faster than classical com-
puters. By virtue of the extensive engineering effort paid
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for the realization of quantum computers, we now have
a quantum computer that is already intractable for clas-
sical computers to simulate, namely quantum-computing
supremacy [7]. However, the size of current quantum
computers is too small to implement fault-tolerant quan-
tum computation, where quantum information is pro-
tected by quantum error correction. Such a transitional
period is called the noisy intermediate-scale quantum
(NISQ) technology era [8]. Since the task of demon-
strating quantum-computing supremacy [7,9,10] is not
useful for practical applications, our next milestone in
the NISQ era is to demonstrate the advantage of using
NISQ devices for those problems that expand our scientific
frontier.
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To this end, a significant amount of NISQ-oriented
algorithms have emerged recently. Among them, the vari-
ational quantum eigensolver (VQE) [11] has attracted
much attention because of its notable feature that directly
exploits quantum states generated on a quantum com-
puter for practical problems such as quantum chemistry
calculations. While the objective of the original method
was to find an approximate ground state of a quantum
system, it has widely been extended since its first appear-
ance. Researchers have proposed various techniques, for
example, to construct approximate excited states [12–16],
investigate nonequilibrium steady states in open quantum
systems [17], and calculate energy derivatives [18–20].

However, there are several serious problems in appli-
cations of real quantum devices: noise is too high to
perform deeper quantum computation, and the number
of qubits is too small to handle practically interesting
problems. Though we can resolve these by further exper-
imental efforts in the future, for the meantime we should
develop algorithmic approaches to relax the hardware lim-
itation. Regarding the noise issue, error-mitigation tech-
niques [21–26], has been investigated actively, and its
experimental validity has already been demonstrated [27].
To relax the hardware size or connectivity limitation, vir-
tual quantum gates have been introduced to decompose a
large quantum circuit into smaller ones with quasiproba-
bility sampling [28–30]. There are several techniques for
reducing the required number of qubits, for example, by
exploiting symmetries of a target system [31,32] or by
so-called active-space approximation [12,33–35].

For quantum chemical calculations that are considered
a promising application of NISQ, various divide-and-
conquer (DC) techniques have been developed. Say, a
density-matrix DC approach or a fragmentation method
is widely used to perform large-scale molecular sim-
ulations [36,37]. These methods are employed with
density-functional theory for weakly correlated systems.
Meanwhile, another set of methods, such as the cluster
mean-field theory [38–40], multilayer multiconfiguration
time-dependent Hartree (ML MCTDH) [41,42], active-
space decomposition (ASD) techniques [43–45], quasi-
complete-active-space (QCAS) [46], the renormalization
exciton model (REM) [47,48], and the n-body Tucker
method [49,50], exist for quantum many-body systems
with strong correlations in each subsystem and weak inter-
actions between subsystems. This is by no means an
exhaustive list, but the diversity and active development
of DC methods reflect their importance in classical com-
puting. NISQ has a severe limit on the number of available
qubits considering the number of orbitals of a molecule.
It is, therefore, highly desirable to develop a DC method
designed in the framework of the quantum-classical hybrid
algorithm.

Here, we introduce a general framework for imple-
menting a DC method on the quantum-classical hybrid

algorithm, which allows us to handle larger problems
by diving them into small pieces so that NISQ devices
can solve practically important large problems. It should
be noted that while the use of DC techniques for the
VQE has been explored in Refs. [51,52], where the
authors proposed to combine existing DC techniques in
the field of quantum chemistry [36,37,53], this work pro-
vides a more general technique applicable to any quantum
system consisting of subsystems with weak intersubsys-
tem interaction but strong intrasubsystem interaction. To
investigate the properties of such a system, we utilize
multiple small-scale quantum computers that are con-
nected via classical computers. We divide the system into
small subsystems, each of which is solved, as the first
step, by using VQE neglecting intersubsystem interac-
tions. The resultant approximated ground state is further
used to generate a basis with reduced degrees of free-
dom to estimate an effective Hamiltonian including the
intersubsystem interactions neglected in the first step.
We concatenate VQE to solve the effective Hamiltonian,
which we call deep VQE. In a sense, this scheme can be
viewed as real-space renormalization using actual quantum
devices.

We perform extensive numerical simulation on Heisen-
berg antiferromagnetic models with frustration as proof-
of-principle demonstrations of deep VQE. A quasi-one-
dimensional system with 48 qubits in total can be tackled
with 12-qubit quantum computers. For a two-dimensional
system, we apply deep VQE for up to 8 × 8 Heisenberg
antiferromagnetic model on the square lattice using 16 or
20 qubit quantum computers. As seen later, we success-
fully obtain a lower ground-state energy than the energy
calculated solely on the subsystems, which approaches the
exact one. Deep VQE will be a powerful approach to solv-
ing practically important problems on a quantum computer
with a limited number of qubits.

II. DEEP VQE

A. Divide-and-conquer method for VQE

Let us consider a Hamiltonian H , which can be decom-
posed into a sum of subsystem Hamiltonian Hi acting only
on the ith subsystem and interaction terms Vij acting on
subsystems i and j [see Fig. 1(a)]:

H =
∑

i

Hi +
∑

ij

Vij . (1)

Suppose we have N subsystems, each of which consists
of n qubits. Let M be the number of qubits required to
describe the full Hamiltonian H , that is, M = nN . The
situation that we expect in this work is as follows: each
subsystem can be described by several tens to hundreds
of qubits being subject to a strong intrasubsystem inter-
action, and these subsystems interact weakly with each
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FIG. 1. (a) The system consists of subsystems of Hamiltonian
Hi, each of which interact with each other by intersubsystem
interaction Vij . (b) To solve the system depicted in (a), we first
construct an approximate ground state |ψ(i)

0 〉 of each Hi with
VQE (the first VQE). Then we form a basis set by applying exci-
tation operators on |ψ(i)

0 〉. Using the basis, we can construct an
effective Hamiltonian, which gives better approximation of the
ground state.

other, forming a larger system including thousands of
qubits in total. There are indeed many such systems at
the molecular level, such as molecular aggregates, molec-
ular crystals, and dendrimers. Among those systems, this
method would be suitable for describing singlet fission sys-
tems for organic light-emitting diodes (OLEDs) [54] and
solar cells [55], or natural light-harvesting systems [56].

Our idea here is to decompose such a problem into
smaller problems. As the first step, each subsystem Hamil-
tonian Hi is solved by the conventional VQE with neglect-
ing the intersubsystem interactions, which we call the first
VQE below. The qubits that are engaged in the intersub-
system interactions are called a boundary of the subsystem.
The first VQE provides us a state close to the ground state
of Hi,

|ψ(i)
0 〉 = Ui(�θ(i),∗)|0n〉, (2)

where Ui(�θ) is a parameterized unitary circuit with param-
eters �θ designed for Hi, and

�θ(i),∗ ≡ arg min
�θ(i)

〈0n|Ui(�θ(i))†HiUi(�θ(i))|0n〉. (3)

Hereafter we refer to |ψ(i)
0 〉 as a local ground state.

As the second step, we generate a K-dimensional local
basis {|ψ(i)

k 〉}K
k=1 from the local ground state by

|ψ(i)
k 〉 ≡ W(i)

k |ψ(i)
0 〉, (4)

where {W(i)
k } is a set of operators on subsystem i, and W(i)

1 is
chosen to be an identity operator. The operator W(i)

k (k �= 1)
should be chosen to be a local excitation on a qubit at the
boundary of the subsystem. Suppose the intersubsystem
Hamiltonian is given by

Vij =
∑

k

vkW(i)
k W(j )

k . (5)

Then the state is spanned by a product of the local basis

∑

k

vk

(
W(i)

k |ψ(i)
0 〉

) (
W(j )

k |ψ(j )
0 〉

)
= Vij |ψ(i)

0 〉|ψ(j )
0 〉, (6)

i.e., an entangled state with respect to the local bases,
contributes at least as a leading-order correction of the
perturbation theory with a weak intersubsystem interac-
tion Vij . When the interaction term has a symmetry like a
Heisenberg interaction, this entangled state recovers such
a symmetry, even if it is broken in each subsystem. A
concrete choice of {W(i)

k }, as an example, is explained later.
The overlap between basis states can be estimated as an

expectation value of W(i)
k

†
W(i)

l :

〈ψ(i)
k |ψ(i)

l 〉 = 〈0n|Ui(�θ(i),∗)†W(i)
k

†
W(i)

l Ui(�θ(i),∗)|0n〉. (7)

Since W(i)
k is a local excitation, W(i)

k
†
W(i)

l can be decom-
posed into a finite number of Hermitian operators. This
allows us to calculate the overlap without any indirect
measurement. Using the above inner product, we can
also define the orthonormal basis {|ψ̃(i)

k 〉} using a Gram-
Schmidt process:

|ψ̃(i)
k 〉 = 1

Ck,i

(
|ψ(i)

k 〉 −
∑

l<k

〈ψ̃(i)
l |ψ(i)

k 〉|ψ̃(i)
l 〉

)
, (8)

where Ck,i is the normalization factor, which can be calcu-
lated from {〈ψ(i)

k |ψ(i)
l 〉}. In this way, two bases are related
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by a K × K matrix P(i),

|ψ̃(i)
k 〉 =

K∑

k′=1

P(i)kk′ |ψ(i)
k′ 〉, (9)

where the matrix element P(i)kk′ can be obtained from
{〈ψ(i)

k |ψ(i)
l 〉}. Hereafter, we simply call this orthogonal

basis a local basis.
At the third step, the effective Hamiltonian is con-

structed using the local basis. For the subsystem Hamilto-
nian, the matrix representation of the effective Hamiltonian
with respect to the local basis is defined as follows:

(H eff
i )kl = 〈ψ̃(i)

k |Hi|ψ̃(i)
l 〉. (10)

Note that since the state that we can easily generate is
|ψ(i)

k 〉, the effective Hamiltonian is calculated from

(H̄ eff
i )kl = 〈ψ(i)

k |Hi|ψ(i)
l 〉 (11)

in actual calculations. Similarly to the previous case,
(H̄ eff

i )kl can be estimated with direct measurements by
decomposing

W(i)
k

†
HiW

(i)
l (12)

into a linear combination of Hermitian operators, whose
number is proportional to the number of terms in Hi.
(H̄ eff

i )kl and (H eff
i )kl are related by

(H eff
i )kl =

∑

k′l′
P(i)

∗
kk′(H̄ eff

i )k′l′P
(i)
ll′ =

(
P(i)

∗
H̄ eff

i P(i)
T
)

kl
,

(13)

where ∗ and T indicate complex conjugate and transpose,
respectively.

In addition, we take the intersubsystem interactions,
which are neglected in the first step. Their matrix rep-
resentations are defined by using the associated local
bases:

(Veff
ij )kk′ll′ = 〈ψ̃(i)

k |〈ψ̃(j )
k′ |Vij |ψ̃(i)

l 〉|ψ̃(j )
l′ 〉. (14)

Recall that the interaction term Vij defined in Eq. (5) is
written as a sum of tensor product operators. Then it can
be estimated by using an n-qubit quantum computer from

(Veff
ij )kk′ll′ =

∑

ν

vν〈ψ̃(i)
k |W(i)

ν |ψ̃(i)
l 〉〈ψ̃(j )

k′ |W(j )
ν |ψ̃(j )

l′ 〉. (15)

Note that it is enough to calculate the matrix elements inde-
pendently on each subsystem. Similarly to the previous

case, the effective intersubsystem Hamiltonian is calcu-
lated from expectation values obtained by {|ψ(i)

k 〉} applying
the linear transformation P(i). In this way, we now have an
effective Hamiltonian H eff of H ,

H eff =
∑

i

H eff
i +

∑

ij

Veff
ij , (16)

which acts on the KN -dimensional system. For a fixed
accuracy, this takes O[poly(M )K4N ] runs of quantum
computers of n qubits, where poly(M ) is responsible for
counting the number of terms in H . The energy expecta-
tion value with respect to a product state of the local basis,⊗N

i=1 |ψ̃(i)
0 〉, can be written as

H eff
00 :=

∑

i

(H eff
i )00 +

∑

ij

(Veff
ij )0000, (17)

which is the starting point of improving the ground-state
energy in the proposed scheme.

As the fourth step, which is crucial in the proposed
scheme, we use VQE again to find the ground state of
the effective Hamiltonian. Suppose we have an m-qubit
system, where m is chosen to be m = N	log2(K)
. The
number of qubits is reduced from M to m. A parameterized
quantum circuit V( �φ) to generate an approximate ground
state of H eff is constructed appropriately so that V( �φ)
acts on KN -dimensional subspace of the 2m-dimensional
Hilbert space. Then the expectation value of the effective
Hamiltonian can be expressed as

〈0m|V( �φ)†H effV( �φ)|0m〉, (18)

which serves as the cost function of the second VQE.
Note that if the ground-state energy is set to be negative,
a parameterized quantum circuit acting fully on the m-
qubit system finds the ground state in the KN -dimensional
subspace appropriately, simply by minimizing the energy
expectation value.

The effective Hamiltonian H eff, which is described by
K × K and K2 × K2 dense matrices (H eff

i )kl and (Veff
ij )kk′ll′ ,

respectively, can be written as a linear combination of at
most O[poly(M )K4] m-qubit Pauli operators, and hence
can be estimated by O[poly(M )K4] runs of quantum com-
puters of m qubits. By minimizing the cost function, we
obtain a better approximation of the ground state and its
energy. One might think that the accuracy of estimating the
matrix elements of H eff would have a significant impact
on the accuracy of the final energy, but this is not the
case. According to a matrix perturbation theory, even if
each element in a matrix has an additive error ε, the cor-
responding accuracy of the energy eigenvalue is bounded
by poly(M )K2ε. More precisely, suppose the estimated
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Hamiltonian H̃ eff is given by

H̃ eff = H eff + H error, (19)

where the absolute value of each element of H error is
bounded by ε. Then the corresponding energy eigenvalues
Ẽ and E satisfy

|Ẽ − E| ≤ ‖H error‖∞. (20)

Since each term of H error (and also H̃ eff) has a tensor
product structure so as to act on at most K2-dimensional
subsystems. Therefore, we have

|Ẽ − E| ≤ ‖H error‖∞ ≤ poly(M )K2ε. (21)

Therefore, the accuracy can be guaranteed efficiently if ε is
sufficiently small. Let ε̄ be a target accuracy of the energy.
Then, ε should be

ε = ε̄

poly(M )K2 , (22)

and hence the number of measurements should be scaled
1/ε2 = poly(M )K4/ε̄2.

Note that the proposed scheme shares an idea with Ref.
[12] to estimate the effective Hamiltonian from the approx-
imated ground state with local excitations. However, here
we crucially put the step forward; the effective Hamil-
tonian is constructed including the interactions that are
neglected when dividing the system into subsystems, and
the effective Hamiltonian with reduced degrees of freedom
is further solved by VQE at the second stage.

We also comment that instead of generating the local
basis by a local excitation Wk, we can use subspace-search
VQE to find an orthogonal basis of a low-energy sub-
space [13]. However, we find that this low-energy expan-
sion results in worse energy than the above construction
when the same number of dimensions of the local basis is
employed. This might be attributed to the boundary error in
the real-space renormalization as mentioned in Ref. [57].
Hopefully, the local excitations at the boundary can han-
dle this issue, at least in a perturbative way as mentioned
previously.

B. Multiple concatenations of VQE

In the above explanation, we concatenated VQE only
twice. However, the procedure can be executed recursively
to make a hierarchical structure to divide a larger problem
into smaller pieces, where the correlations are taken like
a real-space renormalization as shown in Fig. 2. Suppose
a two-dimensional system is divided into multiple subsys-
tems consisting of l(1) × l(1) qubits at the first level. After
the first VQE, the local basis can be generated by the local

first VQE
second VQE

third VQE
fourth VQE

FIG. 2. Concatenation of VQEs. Red, blue, green squares cor-
respond to the first, second, and third VQEs, respectively. The
red, blue, green, and orange edges indicate the intersubsystem
interactions taken at the first, second, third, and fourth VQEs. At
each level, the local basis is generated by the local excitations on
each qubit at the boundary, that is, the qubits engaged in the inter-
subsystem interactions. At each level, the effective Hamiltonian
is constructed from suitably chosen local basis.

excitations at the boundary. The dimensions of the local
basis scale like O(l(1)). Even if we take local excitations
for all qubits including the bulk, the dimensions of the
local basis are only poly(l(1)). This means that, in the sec-
ond level, the subsystem can be handled by O[log2(l

(1))]
qubits. By using the local basis, the effective Hamiltonian
of the first level H (1)

eff is constructed including the intersub-
system interactions that are neglected in the first stage. In
addition, we obtain the effective expression {W(1)

k,eff} of the
local excitations at the boundary {Wk}, to generate the local
basis in the next level.

In the second level, we consider l(2) × l(2) lattice, each
site of which is the system solved in the first VQE. The sec-
ond VQE requires only O[(l(2))2 log(l(1))] qubits. The local
basis is generated by applying the local excitations {W(1)

k,eff}
at the boundary of each subsystem in the second level.
The dimensions of the local basis, i.e., the number of local
excitations, are proportional to the length O(l(1)l(2)) of the
boundary at the lowest level. By using the second-level
local basis, the effective Hamiltonians and local excitations
are constructed similarly.

By recursively repeating this procedure, at the (k − 1)th
level, the state obtained by the (k − 1)th VQE is used to
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generate a local basis. The length of the boundary at the
lowest level is

lk−1 ≡
k−1∏

j =1

l(j ), (23)

and hence the dimensions of the local basis are poly(lk−1).
By using the local basis, the effective Hamiltonian and
local excitations at the kth level is obtained. At the kth-
level concatenation, l(k) × l(k) lattice, where each site cor-
responds to the system spanned by the local basis in
the (k − 1)th level, is solved by kth VQE. The number
of qubits required in the kth level is O[(l(k))2 log(lk−1)].
Since the number of qubits handled at the lowest level
increases exponentially in the number of concatenation k,
it is enough to choose k as a logarithmic function of the
problem size, i.e., the total number of physical qubits M .
Then the total number of runs of quantum computers is
only a polynomial in the problem size M . The number
of qubits required is only logarithmic, O[(lmax)

2 log(M )],
in the problem size M , where lmax = maxk l(k) is chosen
to be a constant. In principle, this procedure can accom-
modate entanglement entropy scaling like O[log(|∂D|)],
where |∂D| is the length of the boundary of a region D.

In Fig. 2, we show the case with l(k) = 2, where concate-
nation is performed up to k = 4 with a periodic boundary
condition. Suppose three types of local excitations, for
example, corresponding to the Pauli operators, are intro-
duced on each qubit at the boundary. The dimensions of
the local bases are K = 13, 37, and 85 at the second, third,
and fourth level, respectively, which means that we should
use 4, 6, and 7 qubits to represent each subsystem. In this
case, 4, 16, 24, and 28 qubits in total are employed in each
of first, second, third, and fourth VQEs, respectively. The

total number of physical qubits is 256. If we add one more
concatenation, a square lattice of length 32, i.e., 1024-qubit
systems can be handled with 32-qubit quantum computers.

III. NUMERICAL SIMULATION

A. Quasi-one-dimensional systems

To make the proposed scheme more concrete, we
demonstrate a series of numerical simulations. Numerical
simulations are done by using Qulacs, an open-source fast
quantum computer simulator on classical computers [58].
First, we consider the case where each local subsystem
is governed by a four-qubit Heisenberg antiferromagnetic
model:

Hi =
∑

(μ,ν)∈E

(X (i)
μ X (i)

ν + Y(i)μ Y(i)ν + Z(i)μ Z(i)ν ), (24)

where the Pauli operator A(i)μ with A ∈ {X , Y, Z} indicates
the Pauli operator acting on the μth qubit in subsys-
tem i, and E = {(0, 1), (1, 2), (2, 3), (3, 0), (0, 2)} is a set
of edges. The whole system consists of N such sub-
systems that are coupled in a one-dimensional way via
a Heisenberg antiferromagnetic interaction as shown in
Fig. 3(a):

Vij = X (i)
0 X (j )

2 + Y(i)0 Y(j )2 + Z(i)0 Z(j )2 , (25)

where the 0th qubit in the ith subsystem and the second
qubit in the j th subsystem are engaged in the interaction.

The parameterized quantum circuit is constructed as fol-
lows. For each cycle, we apply an arbitrary single-qubit
gate on each qubit followed by a two-qubit gate generated

0
1

2
3

(a)

(b)

(c)

E
ne

rg
y

no. of iterations

2 3 4 5

8 9 1011

0 1

6 7

–22

–20

–18

–16

–14

–12

–10

100 1000 10 000 100 000

d = 1
d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

d = 10
Exact

FIG. 3. (a) The system used for the numerical demonstration. It consists of four-qubit subsystems of Hamiltonian Hi, each of which
interacts with each other by intersubsystem interaction Vij . (b) A unit cell of Heisenberg antiferromagnetic model on a 12-qubit kagome
lattice. The 12-qubit systems interact with each other in a nearest-neighbor way. (c) The energy obtained by the first VQE for the 12-
qubit Heisenberg antiferromagnetic model. d indicates the depth, i.e., the number of cycles, of the parameterized quantum circuits. See
Table I for the converged energies with increasing the ansatz depth.
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TABLE I. Convergence of the energy for 12-qubit kagome lattice with increasing ansatz depth.

Depth d 1 2 3 4 5 6 7 8 9 10

energy −12.86 −19.53 −20.96 −21.21 −21.43 −21.38 −21.48 −21.53 −21.65 −21.72

by the Heisenberg interaction

XμXν + YμYν + ZμZν ,

on each edge in E in a certain order. The cycle is
repeated several times. The rotational angles with respect
to the Pauli operators and the Heisenberg interactions
are treated as the parameters of single-qubit and two-
qubit gates, respectively. The parameters are optimized
by using Broyden-Fletcher-Goldfarb-Shanno (BFGS) by
using numerical differentiation. In an actual experiment,
the gradient of the parameters should be obtained by
using the parameter shift rule [59]. The exact ground-state
energy of Hi is −7.0. The VQE with two cycles provides
us an exact ground state |ψ(i)

0 〉 with the energy of −7.0 with
the fidelity 1.0. This allows us to separate the performance
analysis of the proposed scheme below from the imperfec-
tion of VQE at the first stage. Then, in addition to |ψ(i)

0 〉,
we generate a local basis by the Pauli operators engaged in
the intersubsystem interactions:

{|ψ(i)
0 〉, A(i)0 |ψ(i)

0 〉, A(i)2 |ψ(i)
0 〉}. (26)

In this case, the dimension of the local basis is K = 7,
which can be treated with three qubits. While the dimen-
sional reduction is not so large in this case, we regard this
task as a validation of the proposed scheme. We calculate
the effective Hamiltonian H eff and solve it again with the
VQE. In the second VQE, we use a parameterized quantum
circuit, which is constructed of a single-subsystem unitary
gate generated by the effective subsystem Hamiltonian H eff

i
and two-subsystem unitary gate generated by Veff

ij with their
rotational angles are taken as the following parameters:

U( �φ) ≡
∏

l

Wl( �φ(l)), (27)

Wl( �φ(l)) ≡
∏

i

e−iφ(l)i Heff
i

∏

〈jk〉
e−iφ(l)jk Veff

jk , (28)

where the product
∏

〈jk〉 runs over subsystems interact-
ing with inter-subsystem interactions. Note that these

gates, e−iφ(l)i Heff
i and e−iφ(l)jk Veff

jk , are the 	log(K)
-qubit and
	log2(K

2)
-qubit gate, respectively. Such unitary gates can
be compiled from elementary single-qubit gates and two-
qubit gates by Solovay-Kitaev algorithm or variational
quantum gate optimization [60]. These work efficiently,
since K is chosen to be at most polynomially large in the
problem size n.

The results are summarized in Table II, where the energy
expectation value calculated from the product state of the
local ground state |ψ0〉⊗N , the exact ground energy for
H eff, and the exact ground-state energy of H estimated by
the Lanczos method on Qulacs or QS3 are also shown as a
comparison. In the case of N = 2, the proposed method
provides the almost exact ground state. In the case of
3 ≤ N ≤ 8, the obtained energies are 0.1%–0.4% higher
than the exact energy obtained by the Lanczos method.
This is attributed to the fact that the local basis employed
to expand H eff is not enough to achieve an exact ground-
state energy, since VQE at the second stage successfully
provides the ground state of H eff. In all cases, we can see
that the proposed scheme provides a better approximation
of the ground-state energy smaller than those obtained by
local ground states, i.e., H eff

00 . This implies that an entan-
gled state of local basis states is generated to reduce the
total energy.

In the above example, the effect of dimensional reduc-
tion is small. Next, we consider a tougher example,
where each local subsystem is a Heisenberg antiferromag-
netic model with a 12-qubit kagome lattice, as shown
in Fig. 3(b). The parameterized quantum circuit is con-
structed in the same way as the previous case. The first
VQE with depth 10 for the 12-qubit subsystem results in
a good approximation −21.72 of the exact ground-state
energy −21.78, which corresponds to fidelity 0.977 as
shown in Fig. 3(c) and Table I. The intersubsystem interac-
tions are introduced so that the 12-qubit subsystems inter-
act in a one-dimensional way. Specifically, zeroth and sixth
qubits, each of which belongs to neighboring subsystems,
interact with the Heisenberg antiferromagnetic interaction.

TABLE II. Numerical results for 4 × N Heisenberg antiferro-
magnetic systems shown in Fig. 3(a). “Deep VQE” indicates the
results obtained by the proposed scheme. “Local” indicates the
energy calculated from a product state of the local ground state
|ψ0〉, i.e., H eff

00 . “Effective” means the exact ground-state energy
of H eff. “Exact” is a ground-state energy calculated by Lanczos
method on a simulator; the exact energy for the 4 × 8 system is
computed by use of a quantum spin solver QS3 [61].

System Deep VQE Local Effective Exact

4 × 2 −14.46 −14.00 −14.46 −14.46
4 × 3 −21.89 −21.00 −21.89 −21.92
4 × 4 −29.31 −28.00 −29.32 −29.39
4 × 5 −36.70 −35.00 −36.75 −36.85
4 × 6 −44.13 −42.00 NA −44.31
4 × 8 −59.02 −56.00 NA −59.23
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(a) (c) (d)

(b)

second VQE

second VQE

second VQEsecond VQE

third VQE

third VQE

first VQE

first VQE
first VQE

first VQE

FIG. 4. The protocol of concatenating of VQEs employed in the numerical demonstration of 2D systems. Qubits marked by white
symbols are located at the boundary of subsystems for the first VQE. Hexagons (both blue and white) indicate the boundary sites of
subsystems for the second VQE, which are used for constructing the local basis following Eq. (31). (a) 32 sites with the concatenation
up to the second VQE. (b) 32 sites with the concatenation up to the third VQE. (c) 64 sites with the concatenation up to the second
VQE. (d) 64 sites with the concatenation up to the third VQE.

The local basis is generated in the same way as the previ-
ous example. This means that we approximate the 12-qubit
system as a seven-dimensional system, i.e., three qubits,
and hence the dimensional reduction enabled by the pro-
posed method is apparent. The ansatz for the second VQE
is again constructed in the same way as the previous case.

In the case of N = 2 and 4, i.e., two and four subsys-
tems, respectively, the proposed method results in energy
−43.8 and −87.9, both of which achieve the exact ground-
state energy of the effective Hamiltonians. In the case of
N = 2, the Lanczos method provides −44.055 and the
deep VQE works well while reducing the total number of
qubits. While in the case of N = 4 we cannot compare
the result with the exact energy obtained by the Lanczos
method , at least we can say that the energy obtained is
smaller than the energy expectation value H eff

00 = −43.4
and H eff

00 = −86.9 estimated by a product state of the local
ground state |ψ0〉. In this case, the problem of the 48-qubit
system is solved using VQEs with 12 qubits, which are fea-
sible within the current technology. The accuracy would
be improved by appending more states to the local basis.
Even if the dimensions of the local basis are doubled, it
only results in adding one more qubit to each site in the
second VQE.

B. Two-dimensional systems

We also demonstrate the performance of deep VQE and
the further concatenated VQE for two-dimensional (2D)
systems, which give rise to larger reduction of qubits. We
consider a Heisenberg antiferromagnetic model on a 2D
(Lx × Ly)-site square lattice, whose Hamiltonian is

H =
∑

{μ,ν}∈E

(XμXν + YμYν + ZμZν). (29)

The set of edges E is composed of pairs of neighboring
sites under the open boundary condition. Assuming that
both Lx and Ly are finite and even, this model has a unique
ground state respecting the SU(2) symmetry.

We examine our protocol up to the second VQE on
a 16-qubit system with Lx = 4, Ly = 4. We choose each
subsystem for the 1st VQE by a (2 × 2)-site lattice (see
Fig. 2). The first VQE is performed by a hardware-efficient
ansatz with depth 10, reproducing the exact ground-state
energy of each subsystem, −8.00. The local basis is cho-
sen by {|ψ(i)

0 〉 , A(i)μ |ψ(i)
0 〉} , where we take a site μ from the

boundary of the ith subsystem. With the local dimension
K = 10, the second VQE requires 16 qubits. Although the
number of required qubits does not decreases here, note
that the information of the whole Hilbert space is aban-
doned at the rate of 0.85. We calculate the exact energy
of H eff instead of performing the second VQE due to the
computational cost. The resulting ground-state energy is
−36.43, which well reproduces the Lanczos result −36.76
compared to the energy expectation value H eff

00 = −32.00.
Let us discuss the concatenation up to the third VQE for

larger 2D systems, which are difficult to classically sim-
ulate. We pick up 32-qubit (Lx = 8, Ly = 4) or 64-qubit
(Lx Ly = 8) systems described by the Heisenberg Hamil-
tonian Eq. (29). We show the subsystems at each step in
Figs. 4(b) and 4(d). For the 32-qubit system, we consider
two different choices of the local basis. After the first VQE
on each four-qubit subsystem, the local excitation opera-
tors {W(i)

k }K
k=1 are chosen from the identity and the Pauli

operators at the boundary connected to other subsystems
(K = 7), leading to the second VQE on the six effective
qubits. Next, we introduce two local operator sets:

(A): {I , X (i)
μeff , Y(i)

μeff , Z(i)
μeff}, (30)
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TABLE III. Numerical results for 2D Heisenberg antiferromagnetic systems. “Deep VQE” indicates the results obtained by the
proposed scheme. “Wsecond” designates the set of local excitations from Eqs. (30) and (31) when we iterate up to the third VQE.
“Local” is given by H eff

00 where H eff is the effective Hamiltonian used for the last VQE in the protocol. “Effective” means the deep VQE
results of the ground-state energy under the assumption that VQEs are accurate enough, calculated by replacing the VQEs by the exact
diagonalization.“Exact” means a ground-state energy obtained by the Lanczos method on the quantum spin simulator QS3[61] except
for 64 sites, where –158.47* is obtained by the looper quantum Monte Carlo codes in ALPS [62,63]. “Qubits” indicates the number of
qubits required through the protocol.

System Order Wsecond Local Effective Exact Qubits

16 sites Second — −32.00 −36.43 −36.76 16

32 sites
Second — −68.69 −74.60 16

(8 × 4) Third
(A) −68.55 −69.57 −76.30 20
(B) −68.55 −71.49 16

64 sites Second — −147.03 −153.11 −158.47∗ 20
(8 × 8) Third (B) −149.61 −151.39 16

where μeff runs over the six effective qubits (K = 19), or

(B): {I , X (i)
μ,eff, Y(i)μ,eff, Z(i)μ,eff}, (31)

where μ runs over the original boundary qubits con-
nected to other subsystems (K = 16). Note that Aν,eff (A =
X , Y, Z) physically represents the Pauli operator Aν in the
original system, but we should compute its matrix elements
in the new basis for the effective model after the first VQE.
Considering the result for the 32-qubit system discussed
later, we construct the local basis by Eq. (31) after the
second VQE for the 64-qubit system (K = 25).

Table III shows the numerical results for the 2D systems.
To evaluate the performance of the concatenated VQE with
reducing the computational cost, we replace the VQEs by
the exact diagonalization. We confirm that, for the 32-qubit
system, the first and the second VQEs with hardware-
efficient ansatz can reproduce the exact ground states of the
corresponding subsystems with fidelity 1.000 and 0.998,
respectively, indicating the validity of this replacement for
assessing the deep VQE results. We also simulate the con-
catenation up to the second VQE in the way of Figs. 4(a)
and 4(c) to compare the results. For the 32-qubit system,
while the third VQE results are worse than that of the
second VQE due to repeated coarse-graining, they give
approximate ground-state energy −69.57 [for the local
basis with (A)] and −71.49 [for the one with (B)], repro-
ducing the exact result −76.30 better than the local result
−68.55.

Let us discuss why the local basis choice (B) gives a
better result than (A) to identify the better choice of the
local basis when considering larger systems or further con-
catenation of VQEs. For the third VQE, we employ the
effective Hamiltonian after the second VQE as a Hamilto-
nian of each subsystem. Since the effective Hamiltonian
is generally nonlocal within each subsystem, it is diffi-
cult to describe excitations within each subsystem by a
set of local operators. In our simulation for the 32-qubit

system, the choice (A) captures local excitations in each
subsystem while the choice (B) captures excitations that
are local in the original system but nonlocal in each sub-
system after the second VQE. The better result of the
choice (B) implies that the picture of linear excitations at
the boundaries is maintained through the coarse graining,
and hence choosing the local excitation operators at the
boundaries based on the original lattice is suitable also for
further-concatenated VQEs or for larger systems. Based on
this, we also simulate the 64-qubit system with the local
basis choice by (B). We obtain the second VQE result
153.11 and the third VQE result −151.39, and both of
them well reproduce the approximate value −158.47 com-
puted by the looper quantum Monte Carlo codes in ALPS
[62,63]. While the concatenation up to the third VQE gives
a slightly worse upper bound for the ground-state energy
than the second VQE result, we can efficiently complete
the simulation with further decreasing the size of quantum
devices by four qubits.

A better upper bound of the ground-state energy or
equivalently a more accurate value will be achieved if
we consider local excitations near the boundaries of sub-
systems or higher-order excitations when constructing the
local basis also in two-dimensional systems, keeping the
merit of decrease in qubits. Since low-entangled states in
higher-dimensional systems are difficult to classically sim-
ulate by matrix-product-state-based methods such as the
density-matrix renormalization group [57], the concatena-
tion of VQEs will significantly benefit us in simulating
classically intractable higher-dimensional systems.

IV. CONCLUSION AND DISCUSSION

We have proposed a DC method for the quantum-
classical hybrid algorithm to solve a larger system with
a small size of quantum computers. Specifically, VQE is
performed recursively to reduce the physical dimensions,
while taking the interactions via the effective Hamiltonian.
Though we have considered only quasi-one-dimensional
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and two-dimensional Heisenberg anti-ferromagnetic mod-
els in the numerical simulations, the proposed scheme is
applicable to more complicated systems such as complex
molecules such as molecular aggregates, molecular crys-
tals, and dendrimers. If the subsystem is a strongly corre-
lated system, which inevitably requires a highly entangled
state available only by quantum computers, the proposed
scheme allows us to use quantum computers of relatively
small size for large enough problems.

As a future direction, the proposed scheme can be
hybridized with the classical tensor network approaches so
that the effective Hamiltonian obtained from the first VQE
can be solved by using tensor-network methods as reported
in Refs. [64,65]. More precisely, in Ref. [65], the authors
have proposed various types of quantum-classical hybrid
tensor network models. For example, if we employ a MPS
ansatz classically after the first VQE in our proposal, then
it can be seen as a connection of classical and quantum
tensor networks mentioned in Ref. [65]. Furthermore, the
deep VQE, i.e., concatenation of VQEs at multiple stages
is similar to the quantum-quantum tensor network in Ref.
[65]. Specifically, if we employ the subspace search VQE
to span a low-energy subspace, we have the same structure
of tree type as that in Ref. [65]. However, the local exci-
tations and Schmidt process to span local bases cannot be
regarded as a simple connection between two quantum ten-
sor networks via classical tensor. Therefore it is useful for
a quantum-classical hybrid tensor network to enhance its
performance further by introducing a nontrivial classical
processing on a classical part connecting different quantum
tensors.

Note that, one of the reasons why the deep VQE
works well for the ground-state analysis of the d(= 1, 2)-
dimensional antiferromagnetic Heisenberg model, despite
introducing a dramatic reduction of degrees of freedom,
is that the degrees of freedom K for a local cluster auto-
matically increases proportionally to the surface area of
the cluster O(�d−1) where � is the length of one side
of the cluster. We should emphasize that such area law
of space expansion employed in the deep VQE partially
incorporates the property of entropic area law [66] for a d-
dimensional quantum many-body system consisting only
of short-range interactions that the entanglement entropy
is proportional to the surface area O(ld−1) of the subsys-
tem. One guiding principle for deepening the deep VQE
based of the entropic area law is to develop a procedure
that controls the number of local degrees of freedom of
the cluster to be increased by an arbitrary order of integer
power with respect to its surface area, so that as a extreme
case of the procedure the local degrees of freedom can be
increased by O[exp(ld−1)] satisfying the entropic area law.
For example, taking into account an effect of a n(> 1)th-
order perturbation, it would be a naive extension of the
deep VQE to prepare a local degree of freedom propor-
tional to the nth power of the surface area by letting the n

bodies Pauli products act on the qubits near the interface
with respect to the ground state of the cluster. The validity
of such an extension originating from this work is one of
the future issues.
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