
PRX QUANTUM 3, 010345 (2022)

Quantum Error Mitigation as a Universal Error Reduction Technique:
Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras

Yasunari Suzuki,1,2,*,§ Suguru Endo ,1,2,†,§ Keisuke Fujii,3,4,5 and Yuuki Tokunaga1,‡

1
NTT Computer and Data Science Laboratories, NTT Corporation, Musashino 180-8585, Japan

2
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

3
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
4
Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research

Initiatives, Osaka University, Japan
5
Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

 (Received 19 March 2021; revised 15 October 2021; accepted 3 January 2022; published 18 March 2022)

In the early years of fault-tolerant quantum computing (FTQC), it is expected that the available code
distance and the number of magic states will be restricted due to the limited scalability of quantum devices
and the insufficient computational power of classical decoding units. Here, we integrate quantum error
correction and quantum error mitigation into an efficient FTQC architecture that effectively increases the
code distance and T-gate count at the cost of constant sampling overheads in a wide range of quantum
computing regimes. For example, while we need 104 to 1010 logical operations for demonstrating quantum
advantages from optimistic and pessimistic points of view, we show that we can reduce the required
number of physical qubits by 80% and 45% in each regime. From another perspective, when the achievable
code distance is up to about 11, our scheme allows executing 103 times more logical operations. This
scheme will dramatically alleviate the required computational overheads and hasten the arrival of the
FTQC era.
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I. INTRODUCTION

Quantum computers are believed to be capable of imple-
menting several tasks such as factoring and Hamiltonian
simulations, in exponentially smaller computational times
than those of classical computers [1,2]. However, quantum
systems generally interact with their environments, which
leads to physical errors in the system that may destroy
their quantum advantages. Since the physical error rates
of quantum computers are still much higher than those
of classical computers, it is vital to suppress these errors.
As a solution, fault-tolerant quantum computing (FTQC)
using quantum error-correcting codes has been studied
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[3–7]. The long-term FTQC allows executing conven-
tional quantum algorithms such as Hamiltonian simulation
algorithms [8]. According to the current state-of-the-art
resource estimations [9,10], the logical quantum operation
count will be in the order of 1010 to observe clear quan-
tum advantages based on the computational complexity
theory.

Towards the realization of the long-term FTQC, we
experience several intermediate regimes as shown in Fig. 1
because high-level encoding is not allowed due to restric-
tions of quantum resources such as qubit and magic state
count [5,7]. Since quantum error correction (QEC) requires
massive classical computation for repetitive error estima-
tions, the available code distance would also be strongly
limited in the near future [15–17]. As quantum technolo-
gies become mature, computational quantum supremacy
[13] will be achieved in the logical space. We refer to
the intermediate regime from the realization of logical
quantum supremacy to the demonstration of long-term
applications as an early FTQC regime. The number of
physical qubits will go beyond one thousand in this region,
and we anticipate that more than about 104 reliable logi-
cal operations on 102 logical qubits are available. Even at
the beginning of the early FTQC regime, we may observe
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FIG. 1. Schematic picture representing the transitional period from the classically tractable FTQC regime towards the realization of
the long-term FTQC. We are now in the classically tractable FTQC era due to the lack of physical qubits [11,12]. In the figure, the
purple line indicates the hardware requirement for performing classically intractable tasks with a realistic time whereas the blue line
corresponds to the requirement for demonstrating quantum advantages with conventional long-term quantum algorithms. To estimate
these lines, we refer to the quantum supremacy experiments [13] and the existing state-of-the-art resource estimation [9,10,14]. The
early FTQC regime is defined as a region between these lines. In the main text, we assume that the number of error events during FTQC
Ne is required to be smaller than 10−3, which is shown as the dotted black line. Our technique allows for FTQCs with the number
of error events in the order of unity Ne ∼ 1, which is shown as a solid black line, to execute applications that originally require a
much smaller error-event count. For example, at the beginning and the end of the early FTQC regime, our technique allows simulating
applications (white and yellow circles with black rims) with the relaxed hardware requirement (white and yellow circles with red rims).

a quantum speedup with heuristic quantum algorithms,
for example, with the variational quantum eigensolver
[18–20].

In this paper, to realize efficient and high-accuracy quan-
tum computation in the early FTQC era, we propose a
novel framework of FTQC, where QEC and quantum
error mitigation (QEM) are combined on an equal foot-
ing. While QEM has been considered to be an alternative
error-minimization technique for noisy intermediate-scale
quantum (NISQ) devices due to its low hardware over-
head at the expense of the sampling cost, we show that,
by integrating probabilistic error cancellation [21,22] into
the FTQC framework, we can mitigate all the dominant
types of errors in the logical space. We also note that
our scheme can efficiently mitigate Pauli errors by virtu-
ally updating the quantum states with a classical memory
called the Pauli frame [5]. In the conventional QEM for-
malism, the sampling cost of QEM increases exponentially
with the number of physical error events [23,24]. There-
fore, the sampling overheads of QEM become unrealistic
in NISQ computing when the number of physical oper-
ations increases for a fixed error rate per quantum gate;
and the number of error events that QEM can efficiently
suppress is limited to the order of unity. In our frame-
work, the sampling cost of QEM increases exponentially
with the number of logical error events in the encoded
space. Note that we can tune the number of logical error
events by adjusting several parameters such as the code

distance, distillation levels, and precision of approxima-
tions for Solovay-Kitaev decomposition. Thus, it is highly
likely that we can find regions where the QEM techniques
are the most effective, i.e., the number of logical error
events is the order of unity. Accordingly, we can relax the
hardware requirement with constant sampling overheads.
Even after the scalable FTQC is realized, taking QEM into
account, we can optimize quantum computation by allo-
cating computation resources at will to perform even more
efficient quantum computing.

We need to overcome several fundamental difficul-
ties for applying QEM in the logical space because the
costs and restrictions of logical operations and dominant
sources of errors are different from the NISQ formalism.
We resolve them in the affirmative by giving a solution
one by one. For example, solutions to major problems
are as follows. In FTQC, logical Clifford operations and
Pauli measurements can be efficiently applied while non-
Clifford operations are costly because it involves a number
of T-gate injection, distillation, and teleportation proce-
dures [5,7]. These logical operations are affected by three
types of logical errors: logical errors in each elemen-
tary gate operation due to restricted code distances, noise
in non-Clifford logical gates deriving from shortage of
magic state distillation processes, and errors induced in the
Solovay-Kitaev decomposition [25,26]. We call the first
two logical errors decoding errors and the last one approx-
imation errors. We discuss what types of errors are present
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when implementing logical operations, and provide a hier-
archical way to mitigate noisy and costly operations with
clean and less costly ones. To detect and correct phys-
ical errors during computation, we store the estimated
errors in the Pauli frame instead of physically applying
recovery operations [5]. This means that actual physical
states are almost never in the code space. We provide con-
crete procedures for a universal set of logical operations
incorporating QEM, which are compatible with the Pauli
frame. To apply probabilistic error cancellation, we need
a good characterization of the noise model to construct
QEM operations. We show that decoding errors can be
efficiently characterized with gate-set tomography [27,28]
on the code space. Note that the approximation errors of
the Solovay-Kitaev algorithm can be characterized effi-
ciently on classical computers. Finally, while probabilistic
error cancellation is a QEM technique to mitigate errors
in the algorithms for calculating the expectation values,
many FTQC algorithms are sampling algorithms using
the phase estimation [9,10,29]. We show that probabilistic
error cancellation is compatible with the phase estimation
algorithm. See Appendix H for details.

We perform resource estimation of FTQC under real-
istic scenarios with and without QEM, and we show that
our scheme can dramatically alleviate the required com-
putational overheads in FTQC. We assume that the mean
number of logical error events Ne is required to reach Ne =
10−3, and the sampling overhead by QEM is restricted
to a reasonable level, i.e., within 102 times greater sam-
ples for achieving a certain accuracy. We expect at least
104 logical operations are required to demonstrate clas-
sically intractable applications. In this case, the required
number of qubits is reduced to approximately one fifth
with QEM compared to the original qubit count. We also
expect that 1010 logical operations are at least necessary to
perform conventional long-term applications. The required
number of qubits is reduced to 55% in this regime. From
another perspective, our scheme can be used for increas-
ing the number of available logical operations when the
available code distance is strongly restricted. The lifetime
of current superconducting qubits is about up to 1 ms, and
a cycle of error estimations during FTQC must be suffi-
ciently faster than the lifetime, i.e., about 1 μs [15,30]. To
cope with this strong restriction, an efficient implemen-
tation of classical error-decoding architectures has been
studied. According to the recent state-of-the-art propos-
als [15–17], the available code distance would be limited
up to about 11 in the near future even with simplified
decoding algorithms. When the available code distance
is limited up to 11, our scheme enables 103 times more
logical operations with the same hardware requirement.
Thus, our technique can clearly accelerate the realization
of applications in early and long-term FTQC regimes. This
improvement is illustrated by red arrows in Fig. 1. It is also
worth noting that, to the best of our knowledge, these are

the first examples where the performance of useful quan-
tum algorithms with clear quantum advantages is enhanced
via QEM under realistic conditions since QEM has been
investigated for near-term heuristic quantum algorithms
dependent on numerical optimization.

This paper is organized as follows. In Sec. II, we review
probabilistic error cancellation and the architecture of
fault-tolerant quantum computing. In Sec. III, we describe
how to evaluate decoding errors and approximation errors.
Then we show our novel FTQC architecture with an ana-
lytical argument of the cost of QEM and explain the effect
of model estimation errors. In Sec. IV, we numerically ana-
lyze the sampling cost of QEM for decoding errors and
approximation errors and demonstrate that we can effec-
tively increase the code distance and the number of T
gates via QEM even when there are finite estimation errors.
Finally, we conclude our paper with a discussion in Sec. V.

II. PRELIMINARIES

A. Quantum error mitigation and probabilistic error
cancellation

Quantum processors are affected by a number of phys-
ical noise sources, which should be mitigated to obtain
correct results. Here, for simplicity, we assume that the
gate errors are Markovian, i.e., the noise process N for a
gate is totally independent of other gate errors. In this case,
we have

ρout = NNG ◦ UNG ◦ NNG−1 ◦ UNG−1 · · ·N1 ◦ U1(ρin),
(1)

where ρout and ρin are the output and input quantum states,
Uk and Nk denote the ideal and noisy part of the process
of the kth gate, and NG is the number of gates. To ensure
correct computations, it is necessary to mitigate the effect
of Nk, (k = 1, 2, . . . , NG) and obtain

ρ ideal
out = UNG ◦ UNG−1 · · · ◦ U1(ρin). (2)

QEM has been proposed as a method for suppressing errors
without encoding, and it is useful especially for NISQ
devices with a restricted number of qubits [21,22,31].
Generally speaking, QEM methods recover not the ideal
density matrix ρ ideal

out itself, but rather the ideal expectation
value of an observable 〈M̂ 〉ideal = Tr(ρ ideal

out M̂ ) via classical
postprocessing. Note that QEM is not a scalable technique
because it needs exponentially increasing circuit runs with
the number of error events in the quantum circuit [21,22].

Now let us explain the concept of probabilistic error
cancellation with which we can eliminate a bias from the
expectation value of the observables completely given the
complete information on the noise model [21,22]. (Later,
we use this method to suppress errors in FTQC.) First, we
identify the noise map N via either process or gate-set
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tomography [27,28], and calculate the inverse N−1. Then,
by finding a set of processes {Bi} such that N−1 = ∑

i ηiBi
where ηi ∈ R and

∑
i ηi = 1, we have

U = N−1NU

=
∑

i

ηiBiNU . (3)

Note that arbitrary operations can be represented as linear
combinations of tensor products of single-qubit Clifford
operations and Pauli measurements [22]. Here, we can
rewrite Eq. (3) as

U = γQ

∑

i

qi sgn(ηi)BiNU , (4)

where γQ = ∑
i |ηi|, qi = |ηi|/γQ, γQ ≥ 1 and sgn(ηi) is a

parity, which takes ±1, corresponding to the operation Bi.
We refer to γQ as the QEM cost because it is related to the
sampling overhead.

Now let us suppose that we measure an observable M̂
and obtain

〈M̂ 〉U = γQ

∑

i

qi 〈μ̂eff
i 〉 . (5)

Here, μ̂eff
i = sgn(ηi)m̂i, and m̂i is a measurement outcome

for a process BiNU . We generate the process Bi with a
probability qi and multiply the corresponding parity with
the measurement result, which is denoted as μ̂eff. Then,
the expectation value of the random variable μ̂mit = γQμ̂

eff

approximates the error-free expectation value 〈M̂ 〉U . Note
that since Var[μ̂mit] = γ 2

QVar[μ̂eff] and a measurement out-
come without QEM, which we denote μ̂nmit has a sim-
ilar variance, the variance of the error-mitigated value
is approximately amplified as �Q = γ 2

Q. Therefore, we
need to have �Q times more samples to achieve a similar
accuracy before applying QEM.

In practice, we use probabilistic error cancellation for
each gate in quantum circuits. The ideal process for the
entire quantum circuit is described as

∏NG
k=1 Uk. Denoting

Uk = γ
(k)
Q

∑
ik

qik sgn(ηik )BikNkUk, we have

NG∏

k=1

Uk =
NG∏

k=1

γ
(k)
Q

∑

i1i2···iNG

NG∏

k=1

qik

NG∏

k=1

sgn(ηik )

NG∏

k=1

BikNkUk.

(6)

From Eq. (6), we can see that, in each gate, a process Bik is
generated with probability qik , and the product of parities
∏Ng

k=1 sgn(ηik ) is multiplied with the measurement results
to obtain the outcome μ̂eff. This procedure is repeated,
and the product of the mean of the outcomes 〈μ̂eff〉

and γ tot
Q = ∏Ng

k=1 γ
(k)
Q approximates the correct expectation

value. Note that here γ tot
Q is the QEM cost for the entire

quantum circuit. Let us assume the cost for each gate is
uniform and can be approximated as γ (k)Q = γQ = 1 + aε
with a and ε being a positive constant value and the
effective error rate, respectively. Now the QEM cost and
sampling overhead can be approximated as γ tot

Q � eaεNG =
e(γQ−1)NG and �tot

Q = (γ tot
Q )2, which increase exponentially

with the mean number of error events in the quantum
circuit εNG. Note that for εNG = O(1) and ε → 0, since
εkNG = 0 (k ≥ 2), the QEM cost can be exactly described
as γ tot

Q = e(γQ−1)NG .

B. Fault-tolerant quantum computing

1. Stabilizer formalism

In the framework of FTQC, one prepares a redundant
number of physical qubits and performs quantum comput-
ing in a code space defined as a subspace of the whole
Hilbert space. By repetitively performing quantum error
detection and correction, we can protect the logical qubits
defined in the code space against physical errors. The
state of the logical qubits is manipulated in a fault-tolerant
manner with a set of logical operations.

The stabilizer formalism [3,32] is the most standard way
to construct quantum error-correcting codes. Here, sup-
posing that we construct k logical qubits with n physical
qubits, a 2k-dimensional code space C is specified with a
subgroup of n-qubit Pauli operators called the stabilizer
group. Let the n-qubit Pauli group be

Gn = {±1, ±i} × {I , X , Y, Z}⊗n, (7)

where I is the identity operator and X =
(

0 1
1 0

)

, Y =
(

0 −i
i 0

)

, Z =
(

1 0
0 −1

)

are Pauli operators. The set of

Pauli operators S ⊂ Gn is called a stabilizer group if S is
a commutative subgroup, the number of elements in S is
2n−k, and −I �∈ S . We denote the (n − k) generator set of
a stabilizer group as G = (g1, . . . , gn−k). The code space
C is defined as an eigenspace with +1 eigenvalues for all
the operators in the stabilizer group, i.e., C = {|ψ〉 | ∀si ∈
S , si |ψ〉 = |ψ〉}. In the code space, we can introduce a
logical basis as {|0〉L , |1〉L}⊗k and logical Pauli operators
as {IL, XL, YL, ZL}⊗k. The code distance d is defined as the
minimum number of physical qubits on which an arbitrary
logical operator, except the logical identity I⊗k

L , acts.
During a quantum computation, physical errors that

occur in the encoded state are detected by using (n −
k) Pauli measurements Ps = (1/2)[I + (−1)sgi] for s ∈
{0, 1}. These measurements are called stabilizer measure-
ments and their binary outcomes s are called syndrome
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values. The original state is restored by applying appro-
priate feedback operations that are estimated from the
syndrome values. These stabilizer measurements are per-
formed repeatedly during a computation. One repetition
of the stabilizer measurements is called a code cycle of
fault-tolerant quantum computing. If the effective error
probability per physical qubit during a cycle is smaller than
a certain threshold, we can estimate the Pauli operator that
restores the original state with an exponentially small fail-
ure probability with the code distance d. Since the required
number of physical qubits n increases polynomially with
the code distance d in typical quantum error-correcting
codes, we can exponentially decrease the error probability
of logical qubits with a polynomial qubit overhead.

2. Logical operations

We must not only correct physical errors but also update
the logical quantum state for performing quantum com-
putation. To this end, a universal set of logical operations
should be performed in a fault-tolerant manner. According
to the Solovay-Kitaev theorem [25,26], we can approxi-
mate arbitrary one- and two-qubit gates with a finite set
of local operations. For example, the Hadamard gate H =
(1/

√
2)

(
1 1
1 −1

)
, controlled-not (CNOT) gate � = |0〉 〈0| ⊗

I + |1〉 〈1| ⊗ X , and T gate T = exp [i(π/8)Z] form a uni-
versal gate set. Several logical operations can be performed
by transversally operating the same one- or two-qubit oper-
ations on physical qubits. Since transversal operations con-
stantly increase the effective physical error rate per qubit
during a cycle, we can fault tolerantly achieve transver-
sal logical operations. However, it is known that there is
no stabilizer code for which the set of transversal gates
is universal [33]. Thus, we need an additional technique
to achieve fault-tolerant and universal quantum comput-
ing. The most promising solution is to create a quantum
state called a magic state and perform nontransversal
logical operations with gate teleportation [5]. For exam-
ple, |A〉L = TH |0〉L = (1/

√
2)(eiπ/8 |0〉L + e−iπ/8 |1〉L) is

a typical magic state and T-gate operations can be per-
formed by consuming this state. This magic state encoded
in a logical qubit can be constructed with a process called
magic state injection. While the infidelity of a magic state
created by magic state injection is generally larger than the
logical error rate, we can create a high-fidelity magic state
from several noisy magic states by using another quantum
error-correcting code implemented on the logical space,
which is called magic state distillation. Since the appli-
cation of T gates requires a longer time than the other
operations, the number of T gates is the dominant factor
affecting the computation time of FTQC.

Although we can estimate a Pauli operation for recov-
ery from syndrome values, we do not directly apply it
immediately after estimation. Instead, we store the Pauli
operations that should be applied to the physical qubits

FIG. 2. Schematic figure of the Pauli frame. The recovery
operations are not physically applied to quantum computers but
rather are stored in the Pauli frame and efficiently updated after
each Clifford gate operation. The measurement outcomes are
flipped depending on the state of the Pauli frame.

for recovery in a classical memory called the Pauli frame
[5,34]. The stored operations will be taken into account
when the logical measurements are performed; the out-
come of a logical measurement is flipped according to
the Pauli frame. A schematic figure is shown in Fig. 2.
In the above construction of logical operations, the whole
process, except for magic state injection, consists only of
Clifford operations and Pauli channels in the code space.
Since a Pauli operator conjugated by a Clifford operator
is also a Pauli operator, we can always track a recov-
ery operator as a Pauli operator during a computation. In
addition, when we can apply a logical Pauli operator to a
quantum state, we can perform it simply by updating the
Pauli frame, since a logical Pauli operator is a transversal
physical Pauli operation. As far as classical computers are
reliable, this operation is effectively noiseless.

III. QUANTUM ERROR MITIGATION FOR
FAULT-TOLERANT QUANTUM COMPUTING

In this section, we discuss how to integrate QEM into
the FTQC architecture. Here, we consider two types of
errors in FTQC: decoding errors due to failures in the error
estimation and insufficiency of magic state distillation and
approximation errors in the Solovay-Kitaev decomposi-
tion. In Sec. A, we explain how these errors in FTQC can
be modeled. In Sec. B, we discuss how these errors can be
canceled and evaluate their QEM costs. Probabilistic error
cancellation requires the errors to be estimated in advance.
In Sec. C, we also discuss the effect of estimation errors
on probabilistic error cancellation and the characterization
efficiency.
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A. Errors in fault-tolerant quantum computing

1. Decoding error

Here, we describe noise due to the failures of error
estimation in elementary logical operations, i.e., stabilizer
measurements and magic state distillation. The first obsta-
cle to applying probabilistic error cancellation to FTQC is
how to characterize an effective map of noise due to the
failures of error estimation. If we suppose that the physical
errors can be modeled as a stochastic physical Pauli map
and assume that there are no errors on the ancillary qubits
for syndrome measurements, we can define a logical noise
map for decoding errors that is Markovian and a logical
stochastic Pauli map. Yet, these assumptions do not hold in
practice. Nevertheless, here we assume that we can define
an effectively Markovian logical error map for each logical
operation and also assume that this noise map is a stochas-
tic logical Pauli map. It is known that even if noise is
unitary, a noise map in a logical space of surface codes can
be well approximated as stochastic Pauli noise when the
code distance is sufficiently large [35]. Furthermore, the
remaining coherent errors can be canceled by using pulse
optimization techniques. Thus, it is reasonable to suppose
that the decoding errors due to the failure of error estima-
tions in surface codes are almost stochastic Pauli errors.
In addition, we numerically verify that we can regard the
decoding errors as Markovian errors even in the presence
of measurement errors. See Appendix F for details. While
we mainly describe and analyze the decoding errors in the
surface codes, a similar idea can be applied to the decoding
errors due to insufficient magic state distillation. As for the
logical noise map on a prepared magic state due to insuf-
ficient magic state distillation, we can twirl the noise map
by logical Clifford operations, and it can also be assumed
to be a stochastic Pauli noise.

Under the above assumptions, we can describe a noise
map for a l-qubit logical operation Ndec as the following
stochastic Pauli noise:

Ndec(ρ) =
∑

g∈{IL,XL,YL,ZL}⊗l

pggρg†, (8)

where pg ∈ R,
∑

g pg = 1 and pg ≥ 0. The sum of prob-
abilities of nonidentity logical operations is called the
logical error probability pdec, i.e., pdec = ∑

g �=I⊗l pg . It is
known that when the physical error rate p is smaller than
a value called the threshold pth, the effective logical error
probability decreases exponentially with respect to the
code distance d. For the effective logical error probability
per syndrome-measurement cycle of surface codes pcyc, it
decreases as

pcyc � C1

(

C2
p

pth

)(d+1)/2

, (9)

where C1, C2 are constants [36]. While the constant values
depend on the details of the error correction schemes, C1 �
0.13 and C2 � 0.61 are expected in a typical construction
of surface codes and the noise model [36,37]. Suppose that
a logical operation requires m cycles; then, the logical error
probability for the logical operation can be approximated
as pdec as

pdec = 1 − (1 − pcyc)
m � mpcyc. (10)

Note that the number of cycles per logical gate increases at
most linearly with the code distance d.

In order to apply probabilistic error cancellation, we
need to know the logical error probabilities {pg} in
advance. While we can estimate {pg} by using gate-set
tomography in the logical space, the estimations are not
exact. The effect of estimation errors is discussed in Sec. C,
while the efficiency of our proposal, including noise char-
acterization, is discussed in Appendix C.

2. Approximation error

Since we are only allowed to use a limited set of log-
ical operations for achieving fault tolerance, we need to
decompose an arbitrary unitary gate into a sequence of
available gates. Any unitary operator can be decomposed
into a product of CNOT gates and single-qubit gates. Thus,
we need to approximate single-qubit gates with a given
gate set to the desired accuracy. By using the improved
Solovay-Kitaev algorithm [38], given a universal gate set
such as {T, H , S} and the single-qubit gate U to be approx-
imated, we can construct an approximated gate Ũ, which
satisfies ε = ‖Ũ − U‖ to an arbitrary accuracy ε as a
sequence of given gate set with length Õ[log(ε−1)] with
‖ · ‖ being an operator norm. The error of approximated
map is given by

NSK(ρ) = ŨU†ρUŨ†. (11)

Since this decomposition involves only single-qubit oper-
ations, this error channel can be efficiently and exactly
evaluated in advance.

B. Quantum error mitigation for fault-tolerant
quantum computing

1. Overview of our framework

Here, we show that decoding errors and approximation
errors can be mitigated with probabilistic error cancella-
tion. When we insert recovery operations for probabilistic
error cancellation, it is assumed that the noise level of the
recovery operations for QEM is much lower than that of
the error-mitigated gates. In NISQ computing, for exam-
ple, it is reasonable to assume that the error probabilities of
two-qubit gates are much larger than those of single-qubit
gates and measurements; therefore, the errors of two-qubit
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gates can be mitigated by using single-qubit recovery oper-
ations. However, this is not a reasonable assumption in
FTQC, since the operations that are noisy and time con-
suming are different from those of NISQ architecture.
More concretely, even Clifford operations involving only
one logical qubit suffer decoding errors.

Here, we show an architecture of FTQC that imple-
ments QEM with small overheads. The keys are the two
significant properties of FTQC architecture: logical Pauli
operations are error-free and instantaneous due to the Pauli
frame, and the noise map of the decoding errors can be
assumed as stochastic Pauli noise. Thanks to these prop-
erties, we can mitigate errors in all the elementary logical
operations simply by updating the Pauli frame. This means
the error-mitigated Clifford operations and Pauli measure-
ments are available for computation. Because they form
a complete basis for mitigating arbitrary errors [22], we
can mitigate approximation errors due to the Solovay-
Kitaev decomposition. Since the approximation errors can
be exactly known in advance, an unbiased estimator free
from approximation error can be obtained, as explained in
Sec. 3.

To make our QEM procedure work, the accuracy and
efficiency of the decoding error estimation are vital. We
show that the decoding errors can be estimated with gate-
set tomography under an appropriate choice of the gauge,
considering state-preparation and measurement errors. We
also show that the cost of gate-set tomography is accept-
able compared with the main computation of FTQC for
estimating expectation values in Sec. C. In this section, we
further show a refined gate-set tomography suited to our
framework that significantly improves the estimation for
logical Clifford gates.

2. Quantum error mitigation for decoding errors

We can express the inverse channel of the nonuniform
depolarizing channel Eq. (8) as a linear combination of
Pauli operations. Thus, we can express the inverse channel
as

N−1
dec (ρ) =

∑

g∈{IL,XL,YL,ZL}⊗l

ηggρg†

= γdec

∑

g∈{IL,XL,YL,ZL}⊗l

qg sgn(ηg)gρg†. (12)

Refer to Appendix B for a concrete expression of each
coefficient ηg , γdec, and qg . Thus, we can suppress the
errors by applying probabilistic error cancellation only
with Pauli operators after the decoding processes. The
QEM cost for decoding errors in the entire circuit can
be expressed as γ tot

dec = ∏Ndec
k=1 γ

(k)
dec , where Ndec is the num-

ber of logical gates, and γ (k)dec is a QEM cost of the kth
operation.

FIG. 3. Schematic figure for the Pauli frame incorporating
QEM. If a QEM recovery operation is a Pauli operation, it is
not directly applied to the quantum computer but rather the Pauli
frame is updated instead. The parity is also updated in accordance
with the generated recovery operations of QEM. Here, we denote
the parity corresponding to the QEM recovery operation as pa in
the figure. If a QEM recovery operation is not a Pauli operator,
it is performed physically. Then measurement outcomes are then
postprocessed depending on the Pauli frame, parity, and QEM
cost.

Note that probabilistic error cancellation usually applies
the recovery operations of QEM immediately after the
noisy gates [21,22]; however, because we perform only
logical Pauli operations as the recovery operations for
decoding errors, they can be done simply by updating
the Pauli frame instead of directly applying them after
noisy gates. Finally, the measurement result is postpro-
cessed according to the state of the Pauli frame, the parity
corresponding to the applied recovery operations, and the
QEM cost. Thus, unlike in probabilistic error cancellation
for NISQ devices, the logical noise due to decoding errors
can be mitigated without any additional noise due to the
recovery operation. A schematic figure is shown in Fig. 3.
Note that the information on the QEM cost and the parity
is used only when the final measurement result is obtained;
the outcome of a destructive logical Pauli measurement
is flipped depending only on the state of the Pauli frame.
Whether we can mitigate decoding errors of complicated
logical operations such as magic state preparation, gate
teleportation, and adaptive Clifford gates by simply updat-
ing the Pauli frame is not trivial; therefore we provide a
concrete procedure for actual devices and Pauli frames in
Appendix E.

In the case of decoding errors in surface codes, by
approximating the QEM cost to the first order of the logical
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error, we have

γdec � 1 + 2pdec. (13)

Refer to Appendix B for details. Under the assumption
that the logical error rate is the same for all the logical
operations and pdecNdec = O(1) with pdec → +0, the QEM
cost γ tot

dec for the entire quantum circuit can be shown to be
exactly equal to e2pdecNdec on the basis of the argument in
Sec. A. Thus, by using Eqs. (9) and (10), we obtain

γdec − 1 = 2mC1

(

C2
p

pth

)(d+1)/2

, (14)

which results in the total QEM sampling overhead

�tot
L = e2(γdec−1)Ndec = exp

[

4mC1Ndec

(

C2
p

pth

)(d+1)/2
]

.

(15)

Notice that Eq. (15) clearly shows a trade-off relation-
ship between the sampling overhead and the code distance,
i.e., the number of physical qubits.

Finally, although we mainly focus on the surface code
architecture in this paper, our scheme is also available
for typical stabilizer-based error-correcting codes such as
color codes [39] and concatenated Steane or Shor codes
[3,40,41] because we assume only basic properties of sta-
bilizer codes, i.e., Pauli recovery operations are estimated
from syndrome measurements and non-Clifford opera-
tions are applied by generating and consuming magic
states. Therefore, we can choose suitable quantum error-
correcting codes according to the hardware connectivity.

3. Quantum error mitigation for approximation errors

Unlike decoding errors due to the failure of error correc-
tion, we cannot describe errors due to the Solovay-Kitaev
decomposition as stochastic Pauli errors. Nevertheless, we
can still apply probabilistic error cancellation with negli-
gible overheads. Denote NSK(ρ) = ŨUρ(ŨU)†; we invert
this approximation error by

N−1
SK =

∑

i

ηiB(L)i

= γSK

∑

i

qi sgn(ηi)B(L)i , (16)

where {B(L)i } denotes recovery operations in the logical
space. Note that we can represent any map as a linear com-
bination of Clifford operations and Pauli channels [22], and
thus, we do not need T gates for mitigating approxima-
tion errors. Recovery operations are randomly chosen and
applied immediately after each single-qubit logical opera-
tion if they are not Pauli operations. In the case of Pauli

operations, we can again use the Pauli frame, and phys-
ical operations on quantum computers are not required,
in a similar vein to QEM for decoding errors. Since a
single-qubit logical unitary operation consists of several
repetitions of Clifford gates and T-gate teleportation, the
insertion of the recovery operation for probabilistic error
cancellation negligibly increases the length of the quantum
circuit. In the numerical simulations described in the next
section, we verify that the QEM costs can be approximated
with the following equation:

γSK − 1 = β1e−β2NT , (17)

where β1 and β2 are constants dependent on the quantum
gate and NT is the number of available T gates.

The QEM cost due to approximation errors can also be
represented as γ tot

SK = ∏NSK
k=1 γ

(k)
SK , where NSK is the total

number of recovery operations for mitigating approxi-
mation errors in the quantum circuit with the cost γ (k)SK
corresponding to the kth recovery operation. By assum-
ing that the cost does not depend on gates, we have the
following QEM sampling overhead:

�tot
SK � exp

(
2β1NSKe−β2NT

)
. (18)

This shows there is a trade-off relationship between the
sampling overhead and the number of available T gates.

C. Effect of estimation errors of the noise map

1. Effect of estimation errors on expectation values

While approximation errors can be exactly determined
in advance, decoding errors have to be characterized. Since
the decoding error probabilities are small, it is unavoid-
able that the characterization will contain finite and non-
negligible estimation errors. Thus, we need to care about
QEM with estimation errors and the efficiency of the
characterization of decoding errors.

Let us discuss how estimation errors affect the per-
formance of QEM. Given a perfect characterization of
the noise model Nk for the kth gate, we can realize the
inverse operation N−1

k with probabilistic error cancellation
to achieve N−1

k Nk = I . If we obtain an incorrect estima-
tion for the error processN ′

k �= Nk, it leads to an estimation
error �Nk ≡ N ′−1

k Nk �= I .
Now, denoting the ideal process of the kth gate as Uk, the

difference of the error-mitigated process and the error-free
process for the entire quantum circuit can be described by
the diamond norm:

∥
∥
∥
∥

NG∏

k=1

�NkUk −
NG∏

k=1

Uk

∥
∥
∥
∥

�
≤ �εNG, (19)

where we use the fact that the diamond norm is subad-
ditive and we denote �ε = maxk ‖�Nk − I‖�. Similarly,
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the discrepancy of the noisy and ideal process can be upper
bounded as ‖∏NG

k=1 NkUk − ∏NG
k=1 Uk‖� ≤ εNG, where ε =

maxk ‖Nk − I‖�. Because the deviation of the expectation
values of an observable M for two processes E1 and E2 with
the input state ρ can be described as δM = Tr{M [E1(ρ)−
E2(ρ)]} ≤ ‖M‖‖E1 − E2‖� [42], where ‖ · ‖ is an oper-
ator norm, we have δMQEM ≤ ‖M‖�εNG and δMnoise ≤
‖M‖εNG. Here, δMQEM and δMnoise are the deviation of
the observable with and without error mitigation.

Thus, we can see that QEM is beneficial when we can
achieve r < 1 for

�ε = rε. (20)

Note that this discussion does not include sampling errors;
i.e., δM is the error of the expectation value given infinite
samples.

2. Efficiency of characterization of decoding errors

As a cause of model estimation errors, when we use
gate-set tomography to characterize the noise model for
decoding errors, we need to consider state preparation and
measurement (SPAM) errors and the finite statistical error
arising from an insufficient number of samples. It has been
shown that the effect of SPAM errors can be eliminated in
the case of probabilistic error cancellation based on gate-
set tomography [22]. While the general choice of the gauge
is not compatible with the Pauli frame, we can modify
the scheme of gate-set tomography so that this method
is compatible with QEM with the Pauli frame. Refer to
Appendix C for details.

To achieve an accuracy r given in Eq. (20), we need to
perform NGST = O[(rε)−2] samplings for gate-set tomog-
raphy [28,43]. Here, we show this efficiency is accept-
able compared with the main part of FTQC, i.e., the
time required for gate-set tomography corresponds to
O(r−2nqNG) runs of the whole quantum logical circuits
to obtain expectation values, where nq is the number of
logical qubits. Let the time for a single run of the log-
ical circuit of FTQC be τ . The depth of logical quan-
tum circuit is estimated as O(NGn−1

q ), and the time per
gate can be roughly approximated as τgate = O(τnqN−1

G ).
Then, the time for gate-set tomography can be estimated
as τGST = O(τgateNGST) = O[τN−1

G nq(rε)−2]. In a situation
where QEM is useful, we have εNG = O(1) [44]. Thus, we
can conclude that to use QEM to decrease the logical error
rate pdec to rpdec by QEM, we need gate-set tomography as
a precomputation that takes τGST = O(τNGnqr−2), which
is τGST/τ = O(NGnqr−2) times longer than a single circuit
run of FTQC. The numbers of logical gates NG and logi-
cal qubits nq are expected to grow polynomially with the
problem size, and FTQC circuits will be repeated on the
order of O(r−2) to make the statistical fluctuation of expec-
tation values smaller than the reduced bias. Accordingly,

while the estimation costs of the noise map cause another
overhead to FTQC depending on the required accuracy, it
is performed with a time that grows polynomially with
the problem size and without requiring additional phys-
ical qubits. We remark that when we assume the noise
properties of the quantum devices are uniform, we can per-
form the sampling for gate-set tomography in parallel. If
we use all the logical qubits for characterization, the time
for gate-set tomography is reduced to τGST = O(τNGr−2).
Note that, in the scenario that we can fully parallelize the
sampling procedure, i.e., when we have O[(rε)−2] distinct
uniform quantum gates, we have τGST = O(τN−1

G ).
To further make the characterization of noise more effi-

cient, we propose an improved gate-set tomography for
decoding errors of the Clifford process that is fast and
compatible with the Pauli frame. See Appendix C for the
details of this scheme. The number of measurements NGST
is reduced to NGST = O(r−2ε−1), which makes the costs
of precomputation O(nqr−2). Thus, as long as r is not
too small, the time for characterization is expected to be
relatively short. While our efficient gate-set tomography
cannot be applied to the characterization of the T-gate
preparation, several ways to reduce the costs for estimat-
ing errors of T gates can be considered. Since the error
of logical T gate depends on physical T gate and the pro-
cess of injection and distillation is constructed by a few
T-gate circuit, there may be an efficient way to numerically
estimate the noise of logical T gate from the characteriza-
tion of physical T gate and efficient simulation for quantum
circuits dominated by Clifford gates [45]. There may be a
way to mitigate T-gate errors by temporally expanding the
code distance or increasing the distillation depth for T gate.
The cost of gate-set tomography might be also reduced by
utilizing long-sequence GST [43], i.e., repeating several T
gates to amplify a small error rate to a large value. Refer-
ence [46] shows that if decoding errors of logical Clifford
gates are negligible, one can reliably twirl the noise of T
gate and perform efficient process tomography on that by
repeating T gates. Nevertheless, it is still an open problem
whether there exists a more efficient gate-set tomogra-
phy on the logical space with imperfect logical Clifford
gates.

3. Effective increase in code distance by quantum error
mitigation under estimation errors

We can regard that QEM effectively increases the code
distance. Suppose that we can effectively achieve an r
times smaller logical error rate peff = rpdec via QEM. Since
the logical error rate is roughly approximated with the
code distance as pdec(d) = p(p/pth)

(d−1)/2, QEM effec-
tively achieves a larger code distance d′ where peff =
pdec(d′) without increasing the number of physical qubits.
The effective increase in the code distance via QEM can be
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derived as

d′ − d = 2
ln r

ln
(
p/pth

) . (21)

Therefore, by setting r = (p/pth)
x, we can effectively

increase the code distance by 2x. Note that, as discussed
in the previous sections, we need exp[O(Ndecpdec)] =
exp[O(1)] times more repetitions to achieve the same pre-
cision as the error-free case. It is worth noting that we can
increase the number of available logical qubits via QEM.
If we are allowed to use a fixed number of physical qubits,
the decrease in the code distance indicates that we can allo-
cate more logical qubits; therefore, we can convert the code
distance into the number of logical qubits.

IV. NUMERICAL ANALYSIS

We numerically evaluate how well error mitigation sup-
presses the qubit overhead in FTQC. (See Appendix G for
the detailed settings and the definitions of the terms used
in the numerical analysis.)

A. Quantum error mitigation for decoding errors

1. Cost analysis

We evaluate the performance of QEM on decoding
errors occurring during logical operations, where we
assume FTQC with surface codes and lattice surgery. (See
Appendix D for details about surface codes.) For simplic-
ity, we assume a single-qubit depolarizing noise model
for each data and measurement qubit at the beginning
of each cycle, which corresponds to a phenomenological
noise model [47,48]. To determine the failure probabil-
ity of decoding with faulty syndrome-measurement cycles,
we further assume perfect syndrome measurements in the
0th and dth cycles. Then, we check whether any logical
Pauli errors occur during d cycles. The recovery opera-
tions are estimated from the syndrome values by using
the minimum-weight perfect-matching decoder [49,50].
We evaluate the logical error probabilities of Pauli X , Y, Z
and compute the QEM cost for d cycles according to
Eq. (B5). Despite our assumption of perfect syndrome
measurements of the 0th and dth cycle, we expect that
the numerical results are asymptotically equivalent to those
without the assumption when d is sufficiently large.

The logical error probabilities of Pauli X , Y, Z of a single
logical qubit for several code distances are calculated. The
sum of their probabilities are plotted according to physical
error rates in Fig. 4(a). The logical error probability expo-
nentially decreases according to the code distance when
the physical error probability p is smaller than a thresh-
old value. Figure 4(b) plots the logical error probabilities
around the threshold value, which is around pth = 0.044.

We compute the QEM costs for decoding errors γdec cor-
responding to d cycles and different code distances and

(a)

(b)

(c)

FIG. 4. Logical error probability and QEM cost for d-cycle
syndrome measurements plotted against the physical error rates
at several code distances. (a) Logical error probability as a func-
tion of physical error rate. (b) The same figure enlarged around
the threshold value. (c) QEM costs for d-cycle idling operations.
The first-order approximations from Eq. (13) are shown as solid
lines.

compare them with the first-order approximation shown in
Eq. (13). The numerical results are plotted in Fig. 4(c). In
this figure, the solid lines correspond to the approximation
of the QEM cost in Eq. (13). We can see that the QEM
costs decay exponentially depending on the code distances
and show a threshold behavior like the logical error proba-
bilities. They coincide well when the physical error rate is
sufficiently small.

2. Performance analysis

Next, we examine the performance of QEM on decod-
ing errors in large-scale quantum circuits with a 100-qubit
logical random Clifford circuit with 100 layers. We remark
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that since a linear combination of Clifford operations can
represent arbitrary quantum operations, it is sufficient to
demonstrate the performance of QEM for Clifford opera-
tions [51]. We simultaneously apply randomly generated
single-qubit Clifford gates to each layer, and then we apply
50 CNOT gates to two randomly chosen qubits. We can
simulate these protocols efficiently by using an efficient
algorithm for stabilizer circuits [32,52]. As an observable,
we choose a Pauli operator whose measurement outcome
is always unity for the final state vector if there are no
physical errors; in other words, the final state is a +1
eigenstate of the chosen observable. We assume a nonuni-
form single-qubit depolarizing logical error in the form
of Eq. (8) for each layer. The logical error probabilities
of depolarizing channels are determined according to the
numerical results of the last section. We choose p = 0.01
and obtain the logical error probabilities by extrapolation.
The estimated logical error probabilities are summarized
in Table I. Without QEM, the final state converges to
a highly mixed state due to physical errors. Thus, it is
expected that expectation values decay to zero. By employ-
ing QEM, they are taken back to unity, sacrificing statisti-
cal accuracy and requiring a greater number of experiments
accordingly.

TABLE I. Estimated logical error probability for code dis-
tances with p = 0.01 and pth ∼ 0.044.

Code distance d pXL , pZL pYL

5 1.80 × 10−4 1.96 × 10−6

7 1.39 × 10−5 4.11 × 10−8

9 1.08 × 10−6 8.64 × 10−10

11 8.35 × 10−8 1.81 × 10−11

Note that while the required number of cycles for Clif-
ford operations scales linearly with the code distance, the
actual number of cycles and logical error probability per
logical gate are dependent on the Clifford operations. In
particular, logical CNOT gates with lattice surgery may
induce correlated logical Pauli errors on multiple logical
qubits. Nevertheless, we use a simplified error model, since
we expect this evaluation captures the basic properties of
QEM performance.

We numerically perform a series of 104 experiments,
each of which computes an expectation value from
104 single-shot measurements. The results are shown in
Fig. 5(a), while data around the ideal expectation value are
shown in Fig. 5(b). Figure 5(c) shows the mean value of

(a)

(b) (c)

FIG. 5. (a) Histogram of expectation values for 100-qubit random Clifford circuits. (b) Histogram of expectation values with QEM
for 100-qubit random Clifford circuits. (c) Sample averages and standard deviation of 100-qubit random Clifford circuits are plotted as
a function of code distances.
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(a)

(b)

(c)

No. of T = 30
No. of T = 60
No. of T = 90
No. of T = 120
No. of T = 150
No. of T = 180

No. of T = 30
No. of T = 60
No. of T = 90
No. of T = 120

No. of T-gate

No. of T = 150
No. of T = 180

FIG. 6. Approximation error and QEM cost of improved
Solovay-Kitaev method calculated for Haar-random unitary
operations. Each color corresponds to the maximum count of T
gates. (a) Histogram of approximation errors due to the Solovay-
Kitaev decomposition. (b) Histogram of QEM costs. (c) His-
togram of QEM costs for approximation errors as a function of
the number of allowed T gates.

104 samples for each logical error probability together with
its standard deviation (the error bar). We can see that there
is a large bias in the expectation value without QEM, but
no bias when the QEM technique is employed, while its
standard deviation is amplified. The standard deviation of
the expectation value for d = 5 is 14.2, and thus, it is not
visible in the histogram because it is too large. The mean
number of Pauli errors in the whole quantum circuit is 3.6
for d = 5 and 0.28 for d = 7. Thus, as explained in Sec.
A, QEM is useful when the number of Pauli errors in the
circuit is less than unity. These results show that the QEM

FIG. 7. Schematic figure of simulated seven-qubit SWAP test
circuit. We calculate the overlap of randomly generated states
and the approximation of the generated state by using the
Solovay-Kitaev algorithm. The random circuit is composed of
three layers, each of which consists of random single-qubit
rotation gates and CNOT gates acts on two randomly chosen
qubits.

technique is effective for large-scale quantum computing
and it enables us to increase the effective code distance.

B. Quantum error mitigation for approximation errors

1. Cost analysis

Next, we study the performance of QEM when
the Solovay-Kitaev decomposition is used. Since the
actual QEM cost γSK depends on the target unitary
operator, we draw a sample of unitary operations U
from a Haar-measure random distribution μH . Then,
we decompose a unitary gate in the form of U =
RZ(θ1)

√
X RZ(θ2)

√
X RZ(θ3), where

√
X = HSH is a Clif-

ford operation. We use the improved Solovay-Kitaev
algorithm from Ref. [38]. This algorithm enables us
to approximate an arbitrary Pauli-Z rotation RZ(θ) =
exp[i(θ/2)Z] with an operator Ũ, which is described as
a sequence of Clifford operations and T gates. We set
the maximum count of T gates for each decomposition
for three Pauli-Z rotations to check the trade-off relation
between the T-gate count and the approximation accu-
racy. Figure 6(a) shows the histogram of errors evaluated
with operator norm ||U − Ũ||. As expected, there is an
exponential decrease in the approximation errors.

Next, we calculate the QEM cost by using Eq. (16).
Figure 6(b) shows the histogram of QEM costs γSK, and
Fig. 6(c) plots the QEM cost versus the number of allowed
T gates. We can see that γSK − 1 exponentially decreases
according to the number of T gates, and its variance also
decreases exponentially. We fit the QEM cost γSK with
Eq. (17), and obtain β1 = 3.9(5) and β2 = 0.072(1).
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(a)

(b) (c)

clean
with QEM no. of T = 24
with QEM no. of T = 36
with QEM no. of T = 48
with QEM no. of T = 60

clean
with QEM no. of T = 24
with QEM no. of T = 36
with QEM no. of T = 48
with QEM no. of T = 60

without QEM no. of T = 24
without QEM no. of T = 36
without QEM no. of T = 48
without QEM no. of T = 60

No. of T gate

FIG. 8. Histogram of expectation values of SWAP test with approximation errors. (a) Histogram of expectation values. (b) The same
figure enlarged around the ideal expectation value. (c) Sample averages and standard deviation as a function of the allowed number of
T gates.

2. Performance analysis

Next, we evaluate the performance of QEM for approx-
imation errors due to the Solovay-Kitaev decomposition
in a simulation of a SWAP test circuit with seven qubits.
A SWAP test circuit evaluates the overlap of two input states
ρ and σ as Tr[ρσ ] by measuring ancilla qubits [53]. We
set one of the input states to the ideal state and the other
to the state affected by approximation errors. A schematic
diagram is shown in Fig. 7.

The ideal state is generated by using random quantum
circuits composed of three layers. In each layer, random
single-qubit unitary operations are simultaneously applied;
then a CNOT gate acts on two randomly chosen qubits. The
same random quantum circuit is applied to the approxi-
mate state by applying the Solovay-Kitaev decomposition
to each single-qubit rotation. In this case, if there are no
approximation errors, we necessarily obtain +1 as mea-
surement outcomes since the input states are the same;
hence the expectation value is also +1 for the Pauli-Z oper-
ator of the ancilla qubit. On the other hand, the expectation
value becomes smaller than unity when the inner product
is reduced by approximation errors. Since approximation
errors cannot be treated in the framework of stabilizer

simulation, we simulate the quantum circuits by directly
updating the state vector after each gate.

We numerically perform a series of 104 experiments
and compute the expectation values from 104 single-
shot measurements. The number of allowed T gates in
each Solovay-Kitaev decomposition for single-qubit uni-
tary operations is varied from 24 to 60. Figure 8(a) shows
the results, while Fig. 8(b) shows the data around the ideal
expectation value. Moreover, Fig. 8(c) shows the mean
value of 104 samples for each logical error probability
together with its standard deviation (the error bar). Note
that standard deviation with 21 T gates is 4.65. We can see
that our QEM technique successfully remove bias from the
expectation value in the noisy cases. Compared with the
QEM cost for decoding errors, we obtain a larger QEM
cost in this case. This is consistent with the results reported
in Ref. [22] that indicates the QEM cost for unitary errors
tends to be larger than that for stochastic errors.

This problem may be alleviated by performing sev-
eral Solovay-Kitaev decompositions with the same accu-
racy, constructing randomizing approximation errors, and
removing the coherent component of the noise. Note that
with a sufficiently large sample size, our QEM technique
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(a)

(b)

FIG. 9. Histogram of expectation values with estimation errors. (a) Histogram of expectation values. (b) Sample averages and
standard deviation as a function of estimation accuracy.

enables the effective number of T gates to be increased by
inserting additional Clifford gates and Pauli channels and
conducting repeated sampling, with negligible additional
hardware requirements.

C. Quantum error mitigation with estimation errors

Probabilistic error cancellation assumes that the noise
maps to be canceled are known in advance. While we can
determine the approximation error of the Solovay-Kitaev
decomposition within the numerical precision, it is hard to
exactly characterize the noise maps of the decoding errors
because GST is affected by finite sampling, as discussed
in Sec. C. In this section, we numerically evaluate the

performance of our framework in the case of finite esti-
mation errors.

For the benchmarks, we choose the same quantum cir-
cuit, noise model, and observable as in Sec. 2. We evaluate
the expectation value for a 100-qubit noisy Clifford circuit
that is unity if there is no noise. A nonuniform depolariz-
ing channel where Pauli X , Y, Z occurs with probabilities
(px, py , pz) is inserted after each gate. We use the probabili-
ties obtained from the simulation of surface codes shown in
Table I. The point of difference from the previous simula-
tions is that these probabilities are over- or underestimated
as [(1 + r)px, (1 + r)py , (1 + r)pz] (r > −1) in probabilis-
tic error cancellation. Here, r = 0 corresponds to an exact
characterization and perfect error mitigation, while r = −1
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corresponds to FTQC without error mitigation. As in the
discussion in Sec. C, we expect the distribution is such
that its mean value is the same as in the simulation of
the mitigated noise model (|r|px, |r|py , |r|pz) and its vari-
ance is approximately �, which is the overhead of QEM
determined by the estimated noise model [(1 + r)px, (1 +
r)py , (1 + r)pz]. The histogram in the case of finite esti-
mation errors parametrized by r for d = 7 and d = 9 are
plotted in Fig. 9(a), and the mean values and standard
deviations are plotted as a function of r in Fig. 9(b). We
can see that the residual bias increases exponentially with
|r|. With infinite samples, QEM is beneficial when r is
sufficiently smaller than unity. Comparing the cases of
under-estimation r < 0 and overestimation r > 0 with the
same absolute value |r|, we find that overestimation (r > 0)
has a larger variance than that of underestimation (r < 0),
while there is similar amount of bias in the expectation
values. Since QEM prefers underestimation to overesti-
mation, we conclude that characterization methods with
a weighted penalty may lead to a further improvement in
QEM.

D. Practical utility of quantum error mitigation for
FTQC

While we have shown our method effectively decreases
the hardware requirement of FTQC with the examples of
random Clifford and swap-test circuits, the practical avail-
ability of QEM in the region where FTQC is used for
useful applications with a quantum advantage is also vital.
In this section, we discuss the enhancement of computation
accuracy in this regime with our protocol.

We estimate how many quantum logical Clifford oper-
ations NG are required in the practical region from the
existing resource estimation. Note that there are other noise
sources, such as imperfect T-gate preparation, that can be
counted as the overhead of logical operations in distillation
processes, and thus we count the effects of them as decod-
ing errors. We consider two scenarios for evaluation; an
optimistic one and a realistic one. An optimistic scenario
is the case of lightweight applications mainly for showing a
quantum advantage, i.e., an application with the minimum
possible NG that cannot be simulated with the existing clas-
sical computers. We refer to the analysis of Refs. [13,54]
to estimate the maximum problem size tractable with the
existing classical computers. According to them, we expect
that quantum circuits with depth 100 and 100 logical qubits
are sufficient to go beyond the limitation of classical sim-
ulation and that we can achieve this with NG ∼ 104. The
other scenario is the ground-energy estimation of spin
models and chemical molecules since the quantum sim-
ulation is expected as one of the most resource-efficient
applications whose quantum advantage is well studied.
We pick an expected number of gates from recent the

state-of-the-art resource estimation in Refs. [9,10] that dis-
cuss the cost for calculating ground-state energy. These
papers utilize quantum simulation with Trotterization [55]
and qubitization [56] as a subroutine, respectively. Trot-
terization is a method to simulate quantum systems by
approximating Hamiltonian dynamics with Trotter decom-
position [55], and qubitization is a recently proposed
method that constructs the state after time evolution
by repetitive applications of Grover-like iterations [56].
According to Tables 1 and 2 in Ref. [9] and Table IV
in Ref. [10], approximately 108 T gates are required to
simulate a Hubbard model that is hard to simulate with
classical computers. Note that while these algorithms use
phase-estimation sampling to obtain the ground energy as
binary digits and are not a procedure to estimate expecta-
tion values, we can still apply QEM to these algorithms
with small overheads. This is because these problems
can be translated into a series of decision problems. See
Appendix H for a detailed explanation. Considering there
is an overhead of executing magic state distillation and so
on, we expect that NG = 1010 is required as a pessimistic
estimation.

Next, we consider how QEM can reduce the effect of
decoding errors of logical operations during FTQC. With-
out QEM, a logical error probability pL must be much
smaller than the inverse of the number of logical opera-
tions NG. In other words, the mean number of logical errors
NGpL must satisfy NGpL = O(1). Suppose the allowed
mean number of errors without QEM for satisfying the
required accuracy as Ne, which becomes small as required
accuracy becomes strict. On the other hand, with QEM,
the bias of expectation values caused by logical errors
whose mean number is below unity can be mitigated with
eO(1), i.e., about e4 ∼ 55, sampling overheads according to
Eq. (15). Thus, the required logical error rates are relaxed
from pL ∼ Ne/NG to pL ∼ 1/NG. The effective error rates
of elementary logical operations such as logical Clifford
gates decrease exponentially with the code distance. When
we focus on the advantage of QEM in the logical space,
we can estimate the relations between the problem size NG
and code distances d in terms of the required mean num-
ber of errors without QEM Ne as shown in Fig. 10(a). In
this figure, the required code distance for reliable accu-
racy is plotted as a function of the number of logical gates
required for executing an algorithm for several cases of
Ne. For the calculation, we use Eq. (9) with p/pth = 0.1.
The number of physical qubits per logical qubit scales as
O(d2) in the case of two-dimensional topological codes.
We plot how the number of physical qubits are reduced
with QEM d2

mit/d
2
nmit in Fig. 10(b), where dmit and dnmit

are the required code distance with and without QEM,
respectively. While the improvement of the code distance
d is constant, the impact of resource reduction depends on
the expected technologies and the size of the problems of
interest.
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(a) (b)

FIG. 10. (a) The relation between the required number of gates for executing algorithm NG and the required code distance for
encoding the information of qubit d. The relation is plotted for several numbers of allowed logical error counts during FTQC Ne.
(b) The ratio between the number of required physical qubits per logical qubit with and without QEM.

When we consider applications in the early FTQC era
with NG ∼ 104, according to Fig. 10(a), the required code
distance is reduced from about 9 to 4 if Ne = 10−3 and
the required number of qubits is reduced to 21%. This
advantage becomes large when the required accuracy Ne
becomes strict. Even when we take the cost for distillation
and lattice surgery into account, FTQC with 100 logical
qubits with the code distance 4 is estimated to require about
104 physical qubits with QEM, which can be the promis-
ing milestone to show the computational supremacy on the
logical space. While this advantage becomes comparably
small when we see promising long-term applications in
NG ∼ 1010, the code distance is still reduced from 19 to 14,
which suppresses the number of physical qubits to 55%.
Thus, we can conclude that in both cases, our proposal is
expected to drastically alleviate the hardware requirement
in practice.

It should be noted that the reduction of the code dis-
tance is vital not only for the reduction of the number of
physical qubits but also for relaxing the requirement of
error decoding architectures. To estimate occurred Pauli
errors on physical qubits during FTQC, we need classi-
cal peripherals for decoding with sufficiently small latency
for stabilizer measurement cycles. However, recent results
show the tractable size of realistic implementation can
decode up to about code distance 11 [15–17]. While this
value may be improved in the future, it is obvious that
the performance of decoding units is another restriction of
FTQC. When we assume tractable code distance is limited
to 11, we can use at most 105 logical gates with Ne = 10−3,
which is just around the limitation of the classical simu-
lation. On the other hand, the use of QEM can increase
the available logical gates to 108. Thus, our proposal can
be the key to push the performance of FTQC from a
classically simulatable region to the quantum supremacy
regime.

Although we discuss only the reduction of code dis-
tance, we can similarly reduce the effective required num-
ber of T gates. While the effective increase of the resource
is also constant as in the case of code distance, this can be
used not only for reducing the total number of generated T
gates but also for mitigating the bias of generation through-
put of magic states during the FTQC protocol. Since magic
state generation succeeds probabilistically, the number of
available magic states per time unit statistically fluctuates
and cannot be estimated in advance. We expect our method
can exempt these kinds of difficult runtime schedulings
and make long-time execution of FTQC reliable. Further-
more, in the case of distributed FTQC, logical CNOT gates
between distant nodes require entanglement distribution
and distillation, which also typically succeed probabilis-
tically. Thus, QEM can be used for reducing a wide range
of difficulties in FTQC.

V. DISCUSSION

We have described a method to effectively decrease
errors in FTQC by performing QEM in the logical space.
In the case of decoding errors due to insufficient code dis-
tances and magic state distillation, we can perform QEM
with small modification on quantum circuits. In partic-
ular, owing to the Pauli frame, we can perform QEM
without implementing any physical operations if decod-
ing errors are stochastic Pauli maps, while QEM opera-
tions may induce additional errors when we implement it
physically on general quantum circuits. In regard to the
approximation errors due to the Solovay-Kitaev decom-
position, we cannot always use the Pauli frame because
QEM employs not only Pauli operations but also Clifford
operations. Since Clifford operations can be efficiently per-
formed in FTQC and the number of decoding processes
for error correction is much larger than the gate count in
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Solovay-Kitaev algorithms, this overhead is negligible.
We have verified the trade-off between sampling costs
of QEM and the code distance and the number of T
gates. Furthermore, we have estimated the sampling cost
of gate-set tomography to obtain the decoding noise map
to the required accuracy, and clarified that our approach
enables quantum computing corresponding to more than
the achievable code distance. We have numerically com-
pared the computation with and without QEM on FTQC
with the same sampling number and have shown the
advantage of QEM even under the existence of finite
estimation errors. We also have estimated the required
resources with and without QEM in the early FTQC era,
and have shown that the required number of physical
qubits can be suppressed up to tens of percent.

It should be noted that this is the first result to clearly
show QEM can dramatically improve the computation
accuracy for useful applications under realistic assump-
tions as we have shown by using the example of quantum
simulation on FTQC. This is because the computational
advantage of typical NISQ algorithms such as variational
algorithms are empirically assumed and the required run-
time of the algorithm has not been revealed; yet the
accuracy of FTQC algorithms can be estimated reliably
depending on the complexity of the problem. Accordingly,
the usefulness of quantum error mitigation can be clearly
discussed in the FTQC scenario.

Another important aspect of providing the theory and
implementation of QEM for FTQC rather than NISQ com-
puting is as follows. While it is known that QEM is the
most effective when the mean number of errors during
computation is in the order of unity [22], this criterion is
not necessarily satisfied in the NISQ regime depending
on the problem size. On the other hand, because we are
allowed to tune code distances, magic state distillation lev-
els, and the number of T gates per Solovay-Kitaev decom-
position in FTQC, it is highly likely that we can satisfy
this criterion. Thus, the main drawback of QEM, the expo-
nential growth of the sampling overheads, can be circum-
vented; therefore we can find the highly practical regimes
where QEM can help enhance the computation accuracy.
Accordingly, we can conclude that the theory of QEM on
FTQC is more versatile than that for NISQ computing.

As mentioned in the main text, promising applications of
our method are quantum phase estimation algorithms and
Hamiltonian simulation algorithms for investigating quan-
tum many-body dynamics. There are algorithmic errors
in the Trotter decomposition [8] and recently proposed
methods such as Taylor series [57] and quantum signal
processing [56,58]. In Refs. [59,60], it is shown that such
algorithmic errors can be mitigated by employing extrap-
olation. Since algorithmic errors can be controlled by
changing the simulation accuracy, this technique can also
be naturally incorporated in an FTQC scenario. Thus, the
dominant errors in FTQC can be compensated via QEM.

The first generation of FTQC may not be sufficiently
large for naively solving large and useful problems. While
the architecture of distributed quantum computing is the
most straightforward approach to increase the total num-
ber of qubits, it requires interconnections between quantum
nodes, which induces additional overheads for entangle-
ment distillation. Thus, we sometimes cannot use the suf-
ficient number of distilled entanglements for distributed
FTQC. In this context, techniques developed in the NISQ
era [61,62] for solving larger problems with small NISQ
computers may also be useful in the middle-term FTQC.
Our work is the first proposal that makes the best of
a technique tailored for NISQ devices in the context of
FTQC.

Finally, we should discuss the difference between our
scheme and a similar work that combines QEM with the
quantum error correction proposed by Ref. [63]. Their
method considers implementing quantum error correction
for NISQ devices via classical postprocessing in the case
that experimentalists cannot implement stabilizer measure-
ments because of the limited connectivity and large error
rates of NISQ devices. Although their method enables
the state to be projected to the code space via quantum
subspace expansion [64], logical errors cannot be fully
eliminated. On the other hand, our scheme assumes FTQC
can be performed but the number of qubits and T gates
cannot be increased infinitely. The remarkable advantage
of our method is that we can fully eliminate the decoding
errors and approximation errors by using a greater number
of measurements at negligible hardware overhead, given
the good characterization of the noise model.
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Note added.—Recently, three relevant works appeared
that have a similar concept that quantum error mitiga-
tion is incorporated in fault-tolerant quantum computing
to relax the hardware requirement at the cost of sampling
overheads [46,65,66]. Reference [65] shows quantum error
mitigation for encoded qubits but they focus on concate-
nated codes rather than topological codes. Reference [46]
uses quantum error mitigation for implementing T gate
without magic state distillation and shows efficient char-
acterization methods for the errors of T gate under the
assumption that logical Clifford operations are perfect.
Reference [46] also discusses how to relax the costs for
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implementing T gates by using the concepts of robustness
of magic.

Compared to these works, we emphasize that our frame-
work considers a different scenario where logical Clifford
operations are imperfect, and thus FTQC suffers from
decoding errors of logical Clifford procedure, logical noise
on prepared magic states, and insufficient magic state sup-
ply. This difference makes our framework versatile in the
early FTQC era. While we provided consistent analysis
of gate-set tomography with noisy logical Clifford gates,
we have refined the treatment of the noise of magic state
preparation in gate-set tomography, motivated by Refs.
[46,66].

APPENDIX A: PAULI TRANSFER MATRIX

Any quantum map can be represented as a matrix called
a Pauli transfer matrix (PTM). Suppose we perform a
quantum process E on n qubits that maps an n-qubit density
matrix to another density matrix. We denote the set of n-
qubit Pauli operators as P (n) = {I , X , Y, Z}⊗n. The set of n-
qubit Pauli operators forms a basis of 4n × 4n matrices and
the elements are mutually orthonormal, (1/d)Tr[PiPj ] =
δij , for d = 2n. The PTM representation of process E is
defined with the Pauli basis as follows:

M(E)ij = 1
d

Tr[Pj E(Pi)], (A1)

where Pi is the ith element of P (n). Note that since any
physical process maps a self-adjoint operator to another
self-adjoint operator, all the elements of the Pauli trans-
fer matrix are real values. The density matrix can also be
represented as a column vector with the Pauli basis:

|ρ〉〉i = Tr[Piρ]. (A2)

Note that an element of the vector corresponding to Pi = I
is the trace of ρ. A measurement of an observable O can
be mapped to a row vector,

〈〈O|j = 1
d

Tr[OPj ]. (A3)

Note that the PTM representation satisfies

Tr[OE(ρ)] = 〈〈O|M(E) |ρ〉〉. (A4)

There are several important properties of the Pauli
transfer matrix representation. Given a composite map
E = EA ◦ EB, the PTM representation is M(EB ◦ EA) =
M(EB)M(EA). Due to the linearity of the PTM rep-
resentation, for the map E ′ : ρ �→ ∑

k qkEk(ρ), we have
M(E ′) = ∑

k qkM(Ek). When no confusion is possible,
we simply represent the Pauli transfer matrix M(E) as E .

APPENDIX B: COEFFICIENTS FOR
QUASIPROBABILITY DECOMPOSITION

To perform probabilistic error cancellation on an arbi-
trary l-qubit noise map N , we need to decompose the
inverse of the noise map N−1 into a linear combination of
physical quantum processes. According to Ref. [22], any
TPCP map can be represented as a linear combination of
Clifford operations and Pauli channels. This is because the
set of Pauli transfer matrices of l-qubit Clifford operations
and Pauli channels forms a basis of l-qubit Pauli transfer
matrices. Here, we introduce the following 16 operators:

B =
{

I , σj ,
I + iσj√

2
,

I + σj

2
,
σj + σj +1√

2
,
σj + iσj +1

2

}

,

(B1)

where j ∈ {1, 2, 3}, (σ1, σ2, σ3) = (X , Y, Z), and σ4 = σ1.
The Pauli transfer matrices of B⊗l comprise a complete
basis of l-qubit Pauli transfer matrices; in other words,
any quantum map can be represented as a linear com-
bination of Clifford operations and Pauli channels. Since
the application of non-Clifford operations requires compli-
cated processes such as magic state injection, distillation,
and teleportation, this property is vital to performing prob-
abilistic error cancellation on an arbitrary noise map in
FTQC.

Specifically, when the noise can be modeled as stochas-
tic Pauli errors, we can cancel it only with Pauli operations.
This is because the set of Pauli transfer matrices of Pauli
operations forms a basis of diagonal l-qubit Pauli trans-
fer matrices. In FTQC, since we can perform logical Pauli
operations only by updating the Pauli frame, which is
stored in a classical memory, we can cancel stochastic
logical Pauli noise without acting on the actual quantum
device. Suppose that the noise model is described by a
Pauli transfer matrix acting on l qubits:

NPauli = (1 − perr)I +
∑

g �=I⊗l

pgPg , (B2)

where I is the identity map, Pg is the Pauli transfer matrix
of Pauli operator g, pg (g ∈ {I , X , Y, Z}⊗l) is the probabil-
ity at which the Pauli error g occurs, and perr = ∑

g �=I⊗l pg .
This noise can be canceled with the following map:

N−1
Pauli =

∑

g

ηgPg , (B3)

where

ηg = 4−l
∑

g′

c(g, g′)
∑

g′′ pg′′c(g′, g′′)
. (B4)

Note that c(g, g′) is a function of two Pauli operators such
that c(g, g′) = 1 if gg′ = g′g and c(g, g′) = −1 otherwise.
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In the case of single-qubit Pauli noise, the coefficients and QEM cost γQ can be explicitly expressed as follows:

ηI = 1
4

(

1 + 1
1 − 2(pY + pZ)

+ 1
1 − 2(pZ + pX )

+ 1
1 − 2(pX + pY)

)

,

ηX = 1
4

(

1 + 1
1 − 2(pY + pZ)

− 1
1 − 2(pZ + pX )

− 1
1 − 2(pX + pY)

)

,

ηY = 1
4

(

1 − 1
1 − 2(pY + pZ)

+ 1
1 − 2(pZ + pX )

− 1
1 − 2(pX + pY)

)

,

ηZ = 1
4

(

1 − 1
1 − 2(pY + pZ)

− 1
1 − 2(pZ + pX )

+ 1
1 − 2(pX + pY)

)

,

γQ =
∑

g∈{I ,X ,Y,Z}
|ηg| = 1

2

(

−1 + 1
1 − 2(pY + pZ)

+ 1
1 − 2(pZ + pX )

+ 1
1 − 2(pX + pY)

)

.

(B5)

Next, we show that the first-order approximation of the
QEM cost for stochastic Pauli noise is Eq. (13). Consider
an unphysical map,

N ′
Pauli ≡ (1 + perr)I −

∑

g �=I⊗l

pgPg . (B6)

We can easily show

‖N ′
PauliNPauli − I‖ ≤ 4p2

err, (B7)

where ‖ · ‖ denotes the operator norm for the Pauli transfer
matrix. Here, we can see that N ′

Pauli is an approximation
of the inverse map N−1

Pauli up to first order, and we have
N ′

Pauli = N−1
Pauli + O(p2

err). Accordingly, the QEM cost can
be approximated as

γQ ≈ perr +
∑

g

pg = 1 + 2perr, (B8)

when perr � 1.

APPENDIX C: PROBABILISTIC ERROR
CANCELLATION WITH GATE-SET

TOMOGRAPHY

In this section, we explain how probabilistic error can-
cellation can be implemented using the result of gate-set
tomography. Furthermore, we also show this method is
compatible with the Pauli frame.

1. Gate-set tomography

Suppose that our goal is to characterize the gate set
{G1,G2, . . . ,GNs}, which involves at most N qubits. To

implement gate-set tomography, we measure

G̃ij = 〈〈Oi|G|ρj 〉〉, (C1)

where G is one of the gates in the gate set and
〈〈Oi| and |ρj 〉〉 are linearly independent 4N observ-
ables and states. Note that the measurement results are
generally noisy because of SPAM errors. Let O0

i and
ρ
(0)
j be error-free observables and states. Here, we set

O(0)
i ∈ {I , X , Y, Z}⊗N and ρ

(0)
j ∈ {|0〉 , |1〉 , |+〉 , |+y〉}⊗N

with |+〉 = (1/
√

2)(|0〉 + |1〉) and |+y〉 = (1/
√

2)(|0〉 +
i |1〉). Note that 〈〈I | corresponds to a trivial measurement
whose outcome is always unity. By inserting the identity
operator I = ∑

k |O(0)
k 〉〉〈〈O(0)

k |, we obtain

G̃ij =
∑

kk′
A(out)

ik Gkk′A(in)k′j , (C2)

where A(out)
ik = 〈〈Oi|O(0)

k 〉〉, A(in)k′j = 〈〈O(0)
k′ |ρj 〉〉, and Gkk′ =

〈〈O(0)
k |G|O(0)

k′ 〉〉. Thus, we have

G̃ = A(out)GA(in). (C3)

Note that A(out) and A(in) are affected by SPAM errors,
which cannot be experimentally measured because they
cannot be separated from each other.

In addition, we replace G with the identity operation to
obtain

g = A(out)A(in). (C4)

In a typical scenario of gate-set tomography, the estimation
of the process is represented as

Gest = Bg−1G̃B−1

= BA(in)−1GA(in)B−1, (C5)
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with B being an arbitrarily chosen invertible matrix. Denot-
ing the error-free A(in) matrix as A(in)(0), a feasible choice
is to set B = A(in)(0) when the initialization error is small.
We estimate the initial state and measurement as follows:

|ρest
j 〉〉 = B•,j = BA(in)−1|ρj 〉〉,

〈〈Oest
i | = (gB−1)i,• = 〈〈Oi|A(in)B−1,

(C6)

which can be computed from the B and g matrices.
Now, by implementing the same procedure for Gk(k =
1, 2, . . .Ns) and assuming identical SPAM errors for each
experiment, we can estimate Gest

k = BA(in)−1GA(in)B−1.
Although the estimated gate set, initial states, and measure-
ments may differ from the true ones {|ρj 〉〉, 〈〈Oi|,Gk} due to
SPAM errors, they give the correct expectation value for
the gate-set sequence as follows:

〈〈Oest
i |

∏

k

Gest
k |ρest

j 〉〉 = 〈〈Oi|
∏

k

Gk|ρj 〉〉. (C7)

Throughout this paper, we refer to the transformation due
to SPAM errors and the B matrix as the gauge and denote
Ga. In the aforementioned case, Ga = BA(in)−1.

Note that the choice of the gauge is crucial because it
affects the set of required QEM operations; on the other
hand, the QEM operations are restricted to Pauli operations
because of the use of the Pauli frame. Therefore, we need
to carefully choose the gauge so that only Pauli operations
are used for QEM. We propose to estimate the gate set,
initial states, and measurements as follows:

Gest
k = G̃g−1 = A(out)GA(out)−1,

|ρest
j 〉〉 = g•,j = A(out)|ρj 〉〉,

〈〈Oest
i | = 〈〈O(0)

i | = 〈〈Oi|A(out)−1.

(C8)

The above formalism corresponds to the case with gauge
Ga = A(out). Later, we see that this choice of gauge is com-
patible with QEM with the Pauli frame in the presence of
stochastic Pauli errors.

2. Probabilistic error cancellation

Here, we discuss how to derive quasiprobabilities in
order to implement probabilistic error cancellation based
on the results of gate-set tomography. In addition, we show
that this method is compatible with the Pauli frame. Let us
assume that we obtain the estimations of the gate set, initial
states, and measurements as follows:

Gest
k = GaGkG−1

a ,

|ρest
j 〉〉 = Ga|ρj 〉〉,

〈〈Oest
i | = 〈〈Oi|G−1

a .

(C9)

Let us also assume that gate-set tomography is applied to
the basis operations for QEM and estimates are obtained

as Best
l = GaBlG−1

a . Here, we denote the ideal operation as
Uk. We attempt to invert the estimated noise process, i.e.,
N est−1

k = UkGest−1
k = ∑

l qlBest
l . In reality, what we imple-

ment via probabilistic error cancellation corresponds to
Nmit−1

k = ∑
l qlBl = G−1

a UkGaG−1
k . Therefore, the error-

mitigated gate can be expressed as Gmit
k = Nmit−1

k Gk =
G−1

a UkGa. Similarly, we try to construct the ideal initial
states and measurements, i.e., |ρ(0)j 〉〉 = ∑

l′ ql′Best
l′ |ρest

j 〉〉
and 〈〈O(0)

i | = ∑
l′′ ql′′ 〈〈Oest

i |Best
l′′ , which actually corre-

spond to |ρmit
j 〉〉 = Ga|ρ(0)〉〉 and 〈〈Omit

i | = 〈〈O(0)
i |G−1

a ,
respectively. Accordingly, we obtain the error-mitigated
expectation value for the sequence of quantum gates,

〈〈Omit
i |

∏

k

Gmit
k |ρmit

j 〉〉 = 〈〈O(0)
i |

∏

k

Uk|ρ(0)j 〉〉. (C10)

Now, let us discuss the compatibility of this method with
the Pauli frame. When using the Pauli frame for QEM,
only Pauli operations are allowed. This indicates that the
solution of

N est−1
k =

∑

l

qlBest
l , (C11)

contains only Pauli operators. Here, we choose the gauge
Ga = A(out). Note that in the presence of stochastic Pauli
measurement errors, A(out) can also be described by a
diagonal matrix corresponding to a stochastic Pauli error.
We can easily check that the Pauli operations are invari-
ant under this gauge and that N est−1

k is also described
by stochastic Pauli noise when the gates suffer stochas-
tic Pauli errors. Thus, only Pauli operators are required
for QEM. Similarly, we can also show only Pauli opera-
tions are required to realize |ρ(0)j 〉〉 = ∑

l′ ql′Best
l′ |ρest

j 〉〉 and
〈〈O(0)

i | = ∑
l′′ ql′′ 〈〈Oest

i |Best
l′′ for the state preparation in the

presence of stochastic Pauli errors. Therefore, this method
is fully compatible with the Pauli frame.

3. Efficiency of gate-set tomography for decoding
errors

In this section, we discuss the efficiency of gate-
set tomography. Here, we assume that the noise of
elementary logical operations is modeled as stochastic
Pauli noise. Then, the noise map is of the form N =∑

g∈{I ,X ,Y,Z}⊗l pggρg, where pg = O(pL). We evaluate the
number of required samplings to estimate pg within a
precision of (1 ± r)pg .

When we estimate each element of G̃ and g with the
standard error δ, it is enough to perform NGST = O(δ−2)

samplings. Suppose we have obtained G̃ and g with a small
statistical fluctuation, as G̃ +�G̃ and g +�g, respec-
tively, where each element of �G̃ and �g is in the
order of O(δ). We can show that the gate-set tomogra-
phy estimation in Eq. (C8) can be performed with small

010345-20



QUANTUM ERROR MITIGATION AS A UNIVERSAL. . . PRX QUANTUM 3, 010345 (2022)

standard errors. |ρest
j 〉〉 can be directly obtained from g,

and 〈〈Oest
i |) can be obtained without any statistical errors.

Then, we obtain Gest as Gest = (G̃ +�G̃)(g +�g)−1 ∼
G̃g−1 +�G̃g−1 − G̃g−1�gg−1. Thus, the elements of Gest

have the same order of standard error. The noise map of
Gest can be obtained as N = Gest(G(0))−1, where G(0) is
an error-free gate. Thus, the logical error probabilities can
be also estimated with the standard error O(δ). Let pest

g

for g ∈ {I , X , Y, Z}⊗N be the estimated logical error. Then,
to achieve an estimation accuracy of the form pest

g = (1 +
r)pg , its standard error must be smaller than rpg . Thus, the
number of samples required to achieve an accuracy factor
r in the above form is given by NGST = O[(rpL)

−2]. Note
that when we evaluate the noise map of magic state prepa-
ration, we perform state tomography for the magic state
twirled with Clifford gates, which also requires O[(rpL)

−2]
samplings for the same accuracy.

Next, we show that the required number of samplings
can be improved to NGST = O(r−2p−1

L ) when the target
gate of gate-set tomography is a logical Clifford gate.
When there is no noise, every element of G̃ and g is
obtained as the results of Pauli measurements for a stabi-
lizer state. Each element of G̃ and g is zero if the measured
state is not an eigenstate of an observable, and ±1 other-
wise. Since the noise is modeled as stochastic Pauli noise,
these elements are zero even in the presence of noise. Thus,
we do not need to perform sampling for such elements.
When the elements are ±1 without noise, the elements
with noise become ±(1 − 2μ), which is obtained as the
mean value of a random variable m̂ such that m̂ = ±1
with probability 1 − μ and m̂ = ∓1 with probability μ,
where μ = O(pL). Supposing that NGST samplings are per-
formed on this distribution, ±(1 − 2μ) can be estimated

with the standard error O
(√

pLN−1
GST

)

. Therefore, to esti-

mate each element of G̃ and g with the standard error δ,
it is enough to perform NGST = O(δ−2pL) samplings. This
means when we need to estimate logical error probabili-
ties with the accuracy δ = rpg , we need to only perform
NGST = O(r−2p−1

L ) samplings.

APPENDIX D: SURFACE CODE AND LATTICE
SURGERY

While the scope of our proposal is not limited to a
specific architecture of FTQC, as an example, let us con-
sider FTQC with surface codes and lattice surgery. Surface
code [49,67] is one of the most promising quantum error-
correcting codes for integrated devices such as supercon-
ducting qubits. This is because surface code has a large
threshold value, its stabilizer measurements can be done in
a short and constant depth, and it requires physical qubits
that are allocated in a two-dimensional grid and interact

FIG. 11. Schematic diagram of nine logical qubits for d = 5
surface code. The vertices of the blue and red squares correspond
to physical qubits. Each boldly colored patch consisting of blue
and red squares represents a single logical qubit. In each logical
qubit, the bold red (blue) squares represent a Pauli-Z (Pauli-X )
stabilizer operator acting on their vertices.

only with the nearest-neighboring ones. An array of log-
ical qubits is shown in Fig. 11. There are nine boldly
colored patches in the figure, each of which corresponds
to a logical qubit. The data qubits are allocated on the
vertices of the boldly colored red and blue squares. The
red (blue) squares in each patch correspond to a stabilizer
operator, which acts on their vertices as a Pauli-Z (Pauli-
X ) operator. The width of each boldly colored patch d is
equivalent to the code distance. Thus, we use O(d2) phys-
ical qubits per logical qubit for surface codes with code
distance d. Note that while we can reduce the number of
physical qubits by using rotated surface codes [6], we use
the surface codes shown in Fig. 11 for the sake of a simple
numerical simulation.

Meanwhile, lattice surgery [6,7] is a method to increase
the number of logical qubits and perform logical two-
qubit gates with physical qubits in a planer topology.
When we prepare logical qubits as patches, we can per-
form a Hadamard gate transversally. Although a logical
CNOT gate is also a transversal in surface codes, we can-
not perform it fault tolerantly in planer topology. Instead,
we implement multiqubit Pauli measurements by merg-
ing and splitting patches corresponding to logical qubits.
By using multiqubit Pauli measurements and feed-forward
operations, we can indirectly perform logical two-qubit
Clifford gates fault tolerantly. For nontransversal opera-
tions, we can perform them by injecting, distilling, and
performing gate teleportation with magic states, |A〉 and
|Y〉 = SH |0〉 where S = exp [i(π/4)Z]. Using these magic
states and the technique of gate teleportation, we can indi-
rectly apply nontransversal operations such as S gate and
T gate. While we can perform an S gate using |Y〉 without
consuming it, a magic state |A〉 is consumed whenever a T
gate is performed. Therefore, the number of required magic
states for T gate is a dominant factor in the execution time.
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Although the above-mentioned strategy of FTQC was
used in the main text, there are several other possi-
ble strategies choosing codes and logical operations that
improve efficiency and feasibility. For instance, we can
also construct logical qubits as defect pairs in a single
large patch and perform two-qubit Clifford gates with
braiding [5]. We can also use concatenated Steane codes
or color codes if we can perform CNOT operations more
flexibly. An S gate can be achieved with code deformation
[68] instead of magic state injection and distillation. We
can choose CCZ gate as a magic state instead of a T gate
[69]. We can estimate the recovery operations by using
algorithms that achieve small latencies through the use of
threshold degradation [15,48]. In any case, our method is
general, and we expect that it is practical.

APPENDIX E: CONCRETE PROCESS FOR
LOGICAL OPERATIONS

In this section, we explicitly show how our frame-
work works by updating the quantum state of experimen-
tal devices and the Pauli frame, i.e., a classical memory
for storing and updating Pauli operators for obtaining
error-corrected results via postprocessing of measurement
outcomes. Note that there is latency in collecting suffi-
cient information to correct quantum states since there are
errors in syndrome measurements and we cannot instanta-
neously perform feedback operations for error correction;
the required recovery Pauli operations need to be con-
tinuously updated in the Pauli frame classically because
unitary Clifford operators are performed for computation
while storing the outcomes of the syndrome measure-
ments. Finally, we obtain the error-corrected results from
the outcomes of postprocessed measurements based on the
state of the Pauli frame.

First, we describe a typical construction of FTQC with-
out QEM as studied in Refs. [7,37]. We reformulate it
with the superoperator representation so that we can intro-
duce notations that will simplify the description of our
framework. Then, we explain the FTQC framework incor-
porating both QEC and QEM. In this framework, the
decoding errors are assumed to be not negligible but can be
mitigated by probabilistic error cancellation in the logical
space.

In FTQC, the process of making syndrome measure-
ments on all the logical qubits is called a code cycle.
For reliable decoding, we need to wait for several cycles
depending on the code distance before processing the next
logical operation. Here, we call the unit of latency for the
slowest logical operation (i.e., the maximum number of
cycles that are required before being ready for the next
logical operation) a step and assume that in each logical
operation, every logical qubit waits until all the logical
qubits become ready for the next logical operation. This
leads to a simple definition of the states of the quantum

devices and the classical memory at a certain step. We
should emphasize that this unit is introduced only for the
sake of illustration and that our scheme can be applied to
asynchronous processing of logical operations.

1. FTQC architecture without QEM

At the tth step of FTQC without QEM, we have to
update two components: a quantum device of which the
state is |ρ(t)dev〉〉 and the Pauli frame P (t)

PF. Let us denote the
Pauli transfer matrix of an actual quantum process that suf-
fers noise until the tth step as U (t)

dev and an ideal initial state
as |ρ0〉〉. Then, the state at the tth step can be represented
as |ρ(t)dev〉〉 = U (t)

dev |ρ0〉〉. Note that U (t)
dev is the superoper-

ator of a trace-preserving and completely positive map,
but it is not a unitary process, since the actual process
requires several intermediate measurements. Denote the
ideal operations until the tth step as Ũ (t). Here, we aim to
have

P (t)
PFU

(t)
dev = Ũ (t), (E1)

for an arbitrary step t. Note that since several successive
syndrome values are required to calculate P (t)

PF, the Pauli
frame at the tth step turns out with a latency in cycles that
is at least proportional to the code distance [37].

We focus on a simplified universal set of logical oper-
ations, including preparation of logical |0L〉〉 and |AL〉〉,
logical Clifford operations including logical Pauli opera-
tions, logical single-qubit Pauli-Z measurements, and log-
ical gate teleportation for performing a logical T gate.
While these logical operations can be divided into more
basic logical operations such as merge-and-split operations
in lattice surgery [6], we use this set for simplicity. In the
following, we illustrate how the physical states and the
Pauli frame are updated in each case.

a. Preparation of logical states

There are two types of initialization in FTQC: prepa-
ration of a logical |0L〉〉 state and a logical magic state
|AL〉〉 implemented in the surface code. Here, we describe
an operation to add a clean logical qubit:

Q0 |ρ〉〉 := |ρ〉〉 ⊗ |0L〉〉,
QA |ρ〉〉 := |ρ〉〉 ⊗ |AL〉〉.

(E2)

Let us first explain the procedure for preparing |0L〉. We
join n physical qubits to a system, where n is the num-
ber of qubits used to construct a logical qubit. The initial
state of the joined data qubits can be any random state. We
measure all the joined data qubits in the Pauli-Z basis. If
there is no error in this measurement, we obtain a com-
putational basis |x〉, where x ∈ {0, 1}n is n-bit outcomes.
We suppose a Pauli operator Px = ⊗

i X xi ; then we find
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Px |x〉 = |0〉⊗n. The state |0〉⊗n is the +1 eigenstate of all
the Z-stabilizer operators and the logical Pauli-Z opera-
tor, but not an eigenstate of any X -stabilizer operator. We
perform X -stabilizer measurements to project |0〉⊗n to the
code space. If the state is projected to the +1 eigenspace
for all the X -stabilizer operators, the state becomes the
+1 eigenstate of all the stabilizer operators and the logi-
cal Pauli-Z operator, which is the definition of |0L〉. If any
of them is −1, we can find a Pauli-Z operator Pz, which
anticommutes with all the X -stabilizer operators with −1
outcome and commutes with the other stabilizer opera-
tors. Accordingly, we have that PzPx |ψ〉, where |ψ〉 is
the state after X -stabilizer measurements on |x〉, is equal
to |0〉L. The procedure to add |0L〉 is as follows: suppose
that U (t+1)

dev is a sequence to join n qubits; measure all of
them in the Pauli-Z basis, and perform X -stabilizer mea-
surements. The Pauli frame P (t+1)

PF is the tensor product of
P (t)

PF and the superoperator of PzPx. In practice, Pauli errors
may occur during the above measurements. Since the error
rates are expected to be below the threshold value, they can
be reliably detected in the succeeding stabilizer measure-
ments and corrected by updating PzPx. See Sec. c for the
update of the Pauli frame with latency.

The other initialization is the preparation of the log-
ical magic state |AL〉, which is, as detailed later, used
for performing non-Clifford gates fault tolerantly via gate
teleportation. In order to use magic states for gate tele-
portation, the infidelity of the logical magic state must be
comparable to or smaller than the required logical error
rate. On the other hand, since |AL〉 is not an eigenstate
of the logical Pauli-Z operator or logical Pauli-X opera-
tor, we cannot use the same method we used above for
preparing |0L〉. Instead, a logical magic state |AL〉 with suf-
ficient fidelity for gate teleportation can be constructed as
follows: (I) create a noisy magic state |AL〉 whose code
distance is a small constant ds, (II) expand the code dis-
tance from ds to d fault tolerantly, and (III) create a clean
magic state from several noisy magic states with magic
state distillation. If the fidelity of noisy magic states is
sufficiently large and a magic state is sufficiently dis-
tilled, we can obtain a clean magic state together with
its Pauli frame. See Refs. [7,37,70] for details on these
procedures.

Thus, we can perform an update Ũ (t+1) = QŨ (t), where
Q ∈ {Q0,QA}, by updating U (t)

dev and P (t)
PF as

U (t+1)
dev = (I ⊗ P (Q)

PF )QU (t)
dev,

P (t+1)
PF = P (t)

PF ⊗ P (Q)
PF ,

(E3)

where P (Q)
PF turns out with a latency because of noisy

syndrome measurements.

b. Logical Pauli operation

Logical Pauli operations are special cases of logical
Clifford operations and can be performed much more eas-
ily than general Clifford operations because of the Pauli
frame. When we perform a logical Pauli operation P (t) at
the tth step, we need to construct P (t+1)

PF and U (t+1)
dev such

that P (t+1)
PF U (t+1)

dev = Ũ (t+1) = P (t)Ũ (t). Since a logical Pauli
operation is a product of physical Pauli operations, there
are two ways to achieve this. One is to update only the
Pauli frame as follows:

P (t+1)
PF = P (t)P (t)

PF,

U (t+1)
dev = U (t)

dev.
(E4)

Note that this is an instantaneous and noiseless operation
because it is processed only on the classical computer.
We refer to this scheme as a Pauli operation by software
update.

The other is to update the physical device instead of the
Pauli frame.

P (t+1)
PF = P (t)

PF, (E5)

U (t+1)
dev = P (t)U (t)

dev. (E6)

Compared with the software update, this operation requires
operation of the physical quantum devices, and hence,
it may involve an error. We call this scheme a hard-
ware update. Note that this procedure is a transversal
single-qubit Pauli operation, so we expect that it neg-
ligibly increases the physical error rate per code cycle.
Although the hardware update seems to have no advantage
in a typical architecture of FTQC, logical Pauli operations
by hardware update are required in the Pauli twirling of
logical errors in FTQC, as described in Appendix F.

c. Logical Clifford operation

Unlike logical Pauli operations, Clifford operations
require physical operations to be performed on quantum
devices. Here, we denote the Pauli transfer matrix of phys-
ical errors at the tth step as P (t)

rec. Note that since quantum
states are projected to the code space with syndrome mea-
surements, we expect that P (t)

rec can be approximated as a
Pauli error. For the case that we cannot assume P (t)

rec to be a
Pauli error, we can twirl it with stochastic Pauli operations
by hardware update and project it to the stochastic Pauli
errors. See Appendix F for details.

Pauli errors are detected via syndrome measurements.
Furthermore, the recovery Pauli operation P (t)

rec can be esti-
mated with a high success probability and the Pauli frame
can be updated in the same way as Eq. (E4). If there
are no measurement errors, the recovery operation for a
certain cycle can be estimated only from the syndrome
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values during the same cycle. However, when the syn-
drome measurements suffer physical errors, we need to idle
the logical qubits for d cycles to collect sufficient syndrome
measurement outcomes before starting the next Clifford
operation to guarantee exponential decay of the logical
error rate [37]. Therefore, the recovery operations turn out
with a latency of at least d cycles. In practice, the latency
is larger than d cycles since we also need postprocessing
for signal discrimination and of the decoding algorithms
on classical peripherals.

Suppose that we perform a logical Clifford operation
C(t) and that physical Pauli errors P (t)

rec happen during the
Clifford operation, which appear after the decoding. Here,
we can ignore recovery failures when the code distance is
sufficiently large. We aim to obtain P (t+1)

PF and U (t+1)
dev that

satisfy P (t+1)
PF U (t+1)

dev = Ũ (t+1) = C(t)Ũ (t). A logical Clifford
operation updates the state of the quantum devices as
follows:

U (t+1)
dev = P (t)

recC(t)U
(t)
dev. (E7)

In addition, the Pauli frame is updated as follows:

P (t+1)
PF = C(t)P (t)

PF(C(t))−1P (t)
rec. (E8)

Since a logical Clifford operation is also a Clifford oper-
ation on physical qubits in the case of stabilizer codes,
P (t+1)

PF is a Pauli operator.
In practice, P (t)

rec is expected to have a large latency
since it requires postprocessing to estimate the recovery
operation. Thus, another Pauli error might happen dur-
ing the idling operations performed while waiting for the
estimation of P (t)

rec. Nevertheless, the next logical Clifford
operation or logical Pauli measurement can be performed
before P (t)

rec is estimated. As an example, consider the case
in which C(t+1) is processed before the last Pauli frame is
updated. The Pauli frame of the next step is represented as

P (t+2)
PF = P (t+1)

rec C(t+1)P (t+1)
PF (C(t+1))−1

= [C(t+1)C(t)P (t)
PF(C(t))−1(C(t+1))−1]

× [C(t+1)P (t)
rec(C(t+1))−1]P (t+1)

rec . (E9)

Since Pauli actions commute, we can update the part
C(t+1)P (t)

rec(C(t+1))−1 even in the next step. We can use a
similar technique when the next operation is a logical
Pauli measurement, which is explained in the next section.
Therefore, as long as all the successive operations are Clif-
ford operations or Pauli measurements, we can postpone
the application of the recovery operators and updates of
the Pauli frame. This technique is essential not only for
improving the throughput of logical operations in FTQC
but also for avoiding exponential growth in latency [15].

Note that in the lattice surgery scheme, logical CNOTs
are performed by preparing a logical |0L〉〉 state, making

logical Pauli measurements, and adaptive Pauli operations
[7]. While none of them is a Clifford operation, we can
consider them on the whole to constitute a unitary process.
Adaptive Pauli operations can be postponed for the same
reason as the updates of the Pauli frame.

d. Single-qubit logical Pauli measurement

We can perform a destructive single-qubit logical Pauli-
Z measurement by making physical Pauli-Z measurements
on all the data qubits of the target logical qubit. Note
that logical Pauli measurements with another Pauli basis
can be performed by swapping Z and X or combining
the logical Pauli-Z measurement with single-qubit logical
Clifford operations. The outcome of a logical measurement
is calculated as the parity of the measurement outcomes
of the data qubits. In other words, let n be the number of
data qubits of the target logical qubit, and �x = ∏

i[I +
(−1)xiZi]/2n for x ∈ {0, 1}n be an operator that projects all
the data qubits in a physical computational basis |x〉. A
single-bit outcome of a single-qubit logical measurement is
calculated as a parity of the outcomes of physical measure-
ments x. We denote this function as f : {0, 1}n → {0, 1}.
Therefore, we aim to estimate x and obtain f (x) fault
tolerantly.

When we perform physical Pauli-Z measurements,
physical Pauli errors P (t)

rec occur on the data qubits. Also, as
explained in the section on logical Clifford operations, the
Pauli frame P (t)

PF does not have the same timing as the logi-
cal measurement. Even in this case, the recovery operation
can be applied after the physical Pauli-Z measurements
have been performed on the data qubits, since

〈〈�x|P (t)
recU

(t)
dev = 〈〈�x⊕y|P (t)

PFU
(t)
dev

= 〈〈�x⊕y| Ũ (t), (E10)

where ⊕ represents an elementwise XOR, and y ∈ {0, 1}n is
a binary vector such that yi = 1 if P (t)

PFP (t)
rec acts on the ith

data qubits as a Pauli-X or Y operator and yi = 0 otherwise.
We denote this function as y = mask(P (t)

PFP (t)
rec).

Therefore, we obtain x as an outcome of the measure-
ment on the uncorrected state |ρ(t)dev〉〉. Notice that y appears
when the decoding process catches up with the code cycle
of the logical measurements, and we can retrieve the error-
corrected logical outcome as f [x ⊕ mask(P (t)

PFP (t)
rec)]. The

update rules can be written as

U (t+1)
dev = 1

px
〈〈�x|P (t)

recU
(t)
dev, (E11)

P (t+1)
PF = DisM [P (t)

PF], (E12)

where px is the probability with which we obtain x and
DisM [·] is an operation to discard the Pauli frame cor-
responding to the measured logical qubits. In contrast
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to the logical initialization, the update for the logical
measurement will reduce the space of the target logical
qubit.

Several things should be noted in regard to the decoding
algorithm at the measurement timing. The Pauli frame can
be represented in the form (

⊗
i X xiZzi) for xi, zi ∈ {0, 1}.

We call {xi} and {zi} as the X part and Z part of the Pauli
frame, respectively. Since all the data qubits are directly
measured in this logical operation, syndrome measure-
ments are not performed in this code cycle. Instead, we
calculate the values of the Z-stabilizer syndrome measure-
ments without measurement errors as parities of x because
we directly measure the data qubits without resorting to
ancilla qubits. Since there is no effective measurement
error in the Z-stabilizer syndrome measurements at the
cycle of the logical measurement, an estimation of the X
part of P (t)

PFP (t)
rec can be converted into an instance of a

graph problem called minimum-weight perfect matching
[37]. On the other hand, the information required to con-
struct a perfect-matching problem for estimating the Z part
of the Pauli frame is lost by making direct Z-basis measure-
ments. Nevertheless, this does not affect the computation
since only the X part of the Pauli frame is relevant to
determining y = mask(P (t)

PFP (t)
rec).

e. Gate teleportation with magic state

For a universal FTQC, we need to perform non-Clifford
operations on logical qubits encoded in surface code. To
this end, in a typical scenario, we create a logical qubit
prepared in |AL〉〉 and perform T gate on the target system
by consuming the magic state |AL〉〉.

First, we describe gate teleportation without noise. Let
|ρ〉〉 ⊗ |A〉〉 be the tensor product of the target system and

a magic state. It is known that the following equation holds
for an arbitrary ρ [37,71]:

(S f (x) ⊗ 〈〈�x|)�QA |ρ〉〉
= (S f (x) ⊗ 〈〈�x|)�(|ρ〉〉 ⊗ |AL〉〉)
= T |ρ〉〉〈〈�x|+L〉〉, (E13)

where � is the Pauli transfer matrix of a logical CNOT gate
acting on |ρ〉〉 as a control and |AL〉〉 as a target, T is the
Pauli transfer matrix of the T gate, and S f (x) is the Pauli
transfer matrix of the adaptive S gate that is applied to the
state if f (x) = 1 (see the last section for the definition of
the function f ).

Using the above fact, we can construct the following
update rules for the target system:

U (t+1)
dev = 1

px
(S f (x⊕y) ⊗ 〈〈�x|)P (t)

rec�(I ⊗ P (Q)
PF )QAU (t)

dev

(E14)
P (t+1)

PF = S f (x⊕y)DisQ[�(P (t)
PF ⊗ P (Q)

PF )�
−1P (t)

rec]S−f (x⊕y),
(E15)

where P (t)
rec represents physical detectable errors,

px = 〈〈�x⊕y|+L〉〉, (E16)

y = mask{Disρ[�(P (t)
PF ⊗ P (Q)

PF )�
−1P (t)

PF]}, (E17)

and DisQ[·] (Disρ[·]) is an operation to discard the Pauli
frame of the magic state (target state). Then, we can verify
that the above update rule obeys Eq. (E4), as follows:

P (t+1)
PF U (t+1)

dev = 1
px
S f (x⊕y)DisQ[�(P (t)

PF ⊗ P (Q)
PF )�

−1P (t)
rec]S−f (x⊕y)

× (S f (x⊕y) ⊗ 〈〈�x|)P (t)
rec�(I ⊗ P (Q)

PF )QAU (t)
dev

= 1
px
(S f (x⊕y) ⊗ 〈〈�x|)DisQ[�(P (t)

PF ⊗ P (Q)
PF )�

−1P (t)
rec]P (t)

rec�(I ⊗ P (Q)
PF )QAU (t)

dev

= 1
px
(S f (x⊕y) ⊗ 〈〈�x⊕y|)[�(P (t)

PF ⊗ P (Q)
PF )�

−1P (t)
rec]P (t)

rec�(I ⊗ P (Q)
PF )QAU (t)

dev

= 1
px
(S f (x⊕y) ⊗ 〈〈�x⊕y|)�QAP (t)

PFU
(t)
dev

= T Ũ (t) = Ũ (t+1). (E18)

Note that we use the following property of the discard
operation for an arbitrary Pauli operation P :

〈〈�x| = 〈〈�x⊕mask(P)|P (E19)

P = DisQ[P]Disρ[P]. (E20)

Note as well that y has latency due to the decoding
process and the (S f (x) and 〈〈�x|) operations cannot be
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performed simultaneously. Thus, there is an additional
delay in determining f (x ⊕ y), which is required for deter-
mining whether we perform S or not.

2. FTQC architecture with QEM

The failure probability of decoding and residual errors
on the prepared magic states are not negligible when the
code distance of quantum error correction is not enough
and when we cannot perform sufficient magic state distil-
lation. Here, let us consider the case that a decoding error
N happens after each elementary logical operation. We
assume that N is a stochastic logical Pauli channel that is
characterized in advance. While these assumptions do not
strictly hold in practice, we nonetheless expect that they
hold with negligible errors in typical quantum devices. See
Appendix F for a justification of this assumption. Note that
even if there is a finite discrepancy because of this approx-
imation, our scheme can decrease bias in the expectation
values as long as the discrepancy is small. In this section,
we show that probabilistic error cancellation can be inte-
grated into the FTQC architecture. More concretely, we
show that each logical operation in the previous section
can be modified so that probabilistic error cancellation can
remove the residual noise of QEC only with additional
logical Pauli operations by software update.

Unlike in the NISQ scenario, FTQC operations are prob-
abilistic, since intermediate measurements are involved in
the gate teleportation of the magic states, and subsequent
operations are adaptatively chosen corresponding to the
measurement outcomes. We need to determine QEM oper-
ations accordingly because decoding of the noise processes
may change depending on the measurement outcomes.
Here, let us denote the set of outcomes of intermediate
measurements and QEM operations up to the tth step as
h(t), with the corresponding Pauli frame and the state of
the hardware denoted as P [h(t)]

PF and U [h(t)]
dev . Note that we do

not independently define the measurement outcomes and
QEM operations since they affect each other. The proba-
bility that h(t) can be expressed as ph(t)qh(t), where ph(t)
is the probability with which a certain measurement out-
come of intermediate measurements is observed and qh(t)
is the probability with which a certain QEM operation is
performed. Note that, these probabilities are functions of
h(t). Furthermore, we denote the parity of the QEM oper-
ation (the product of the parities of the generated QEM
operations) and the QEM cost at the tth step as s[h(t)] and
γ

[h(t)]
Q .
In our framework, we can construct a consistent FTQC

architecture incorporating QEM by satisfying the follow-
ing equation:

∑

h(t)

qh(t)ph(t)γ
[h(t)]
Q s[h(t)]P [h(t)]

PF U [h(t)]
dev = Ũ (t). (E21)

Here, we explain why satisfying the above equation is suf-
ficient. If we can construct U [h(t)]

dev as a product of physical
processes, we can sample the density matrix |ρ[h(t)]〉〉 =
P [h(t)]

PF U [h(t)]
dev |ρ0〉〉 with probability qh(t)ph(t). Suppose the

spectral decomposition of a given observable O is O =∑
i Oi�i (Oi ∈ R). Sampling from the final state with posi-

tive operator-valued measure (POVM) elements {�i} with
weight γ [h(t)]

Q s[h(t)]Oi gives

∑

h(t),i

qh(t)ph(t)γ
[h(t)]
Q s[h(t)]Oi〈〈�i|ρ[h(t)]〉〉

= 〈〈O|
∑

h(t)

qh(t)ph(t)γ
[h(t)]
Q s[h(t)]P [h(t)]

PF U [h(t)]
dev |ρ0〉〉

= 〈〈O|Ũ (t)|ρ0〉〉, (E22)

which shows that QEM can recover an unbiased expecta-
tion value of the observables when Eq. (E21) holds.

a. Logical Pauli operation

Since logical Pauli operations by software update are
instantaneous and noiseless, we do not need to perform
error mitigation on them.

b. Logical Clifford operation

Suppose that we want to apply a Clifford operation C at
the (t + 1)th step; here, C is followed by not only detected
physical Pauli errors P (t+1)

rec but also logical Pauli noise N
reflecting a decoding failure with a non-negligible prob-
ability; in other words, the quantum device is updated
as

U [h(t+1)]
dev = P (t)

recNCU [h(t)]
dev . (E23)

While P (t)
rec is revealed with latency and canceled by

updating the Pauli frame, N is not canceled and affects
the expectation values without QEM. Here, we show
that we can cancel N by applying QEM with a prob-
abilistic update of the Pauli frame. Our goal is to
find a set of update rules (γ [h(t)]

Q , s[h(t)],P [h(t)]
PF ,U [h(t)]

dev ) �→
(γ

[h(t+1)]
Q , s[h(t+1)],P [h(t+1)]

PF ,U [h(t+1)]
dev ), which satisfies Eq.

(E21) for

Ũ (t+1) = CŨ (t). (E24)

Since we know the stochastic logical Pauli noise N in
advance, we can calculate the inverse of the noise map
N−1 = ∑

i ηiPi. Next, we decompose the nonzero coef-
ficients ηi into ηi = γQ sgn(ηi)qi, where γQ = ∑

i |ηi| and
qi = |ηi|/γQ. We randomly choose i with probability qi,
and the index i is appended to give h(t + 1). We find that
qh(t+1) = qiqh(t) and ph(t+1) = ph(t). Then, we update the
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state of the Pauli frame and the classical coefficients with
the following update rules:

P [h(t+1)]
PF = CP [h(t)]

PF C−1PiP (t)
rec, (E25)

s[h(t+1)] = sgn(ηi)s[h(t)], (E26)

γ
[h(t+1)]
Q = γQγ

[h(t)]
Q . (E27)

Now, we can verify that Eq. (E21) is satisfied in the (t +
1)th step if it is satisfied in the tth step.

∑

h(t+1)

qh(t+1)ph(t+1)γ
[h(t+1)]
Q s[h(t+1)]P [h(t+1)]

PF U [h(t+1)]
dev

=
∑

h(t)

qh(t)ph(t)γ
[h(t)]
Q s[h(t)]CP [h(t)]

PF C−1

(
∑

i

ηiPi

)

× NCU [h(t)]
dev

= C
∑

h(t)

qh(t)ph(t)γ
[h(h)]
Q s[h(t)]P [h(t)]

PF U [h(t)]
dev

= CŨ (t) = Ũ (t+1). (E28)

As we see later, we can construct a similar update rule
for probabilistic error cancellation for a single-qubit logi-
cal Pauli measurement; therefore, we can inductively show
that a decomposition specified with the update rule satisfies
Eq. (E21).

c. Logical initialization and single-qubit logical Pauli
measurement

When code distances and magic state distillation pro-
cesses are insufficient, errors in the logical state prepara-
tion are not negligible. The noise maps for logical |0〉 state
preparation can be assumed to be stochastic logical Pauli
noise. While the noise map on magic state preparation due
to insufficient distillation may not be approximated as a
stochastic Pauli noise, it can be twirled by error-mitigated
logical Clifford operations. Thus, these errors are assumed
to be inserted stochastic logical Pauli noise maps just after
initialization. We can consider that these preparations are
ideal, and instead, there exists a virtual noisy idling oper-
ation just after initialization. We can mitigate these errors
with the same update rules as in the case of logical Clif-
ford operations by treating these errors as decoding errors.
Similarly, the errors of single-qubit logical Pauli measure-
ment can be considered to be a probabilistic logical bit flip
just before the logical measurement; as such, they can be
processed in the same manner.

d. Gate teleportation with magic state

To perform gate teleportation on the T gate, we can try
the following process:

(I ⊗ 〈〈�x|)�QA, (E29)

and then perform S f (x) depending on the measurement out-
comes to indirectly perform T on the target system. How-
ever, in practice, what is performed until the measurement
is made is

(I ⊗ 〈〈�x|)NP (t)
rec�(I ⊗ P (Q)

PF )QA, (E30)

where P (t)
rec means the physical errors caused by the log-

ical magic state preparation, logical CNOT, and logical
measurements. Compared with the case without QEM Eq.
(E14), there is additional logical Pauli noise N that is
caused by the failure of the decoding to estimate P (t)

rec.
Since this procedure involves an intermediate measure-

ment, we obtain the outcome x randomly. The procedure
for the inverse decomposition is the same as that of a
logical Clifford operation: we calculate the inverse of the
noise map N−1 = ∑

i ηiPi and decompose each nonzero
coefficient ηi into ηi = γQ sgn(ηi)qi, where γQ = ∑

i |ηi|
and qi = |ηi|/γQ. Note that the measurement result x is
added to h(t) together with the choice of QEM opera-
tion i to obtain h(t + 1). Next, qh(t) is updated to qh(t+1) =
qiqh(t) and ph(t) is updated to ph(t+1) = pxph(t), where px
is the probability that the measurement outcome is x.
Accordingly, we can update the relevant elements with the
following rules:

U [h(t+1)]
dev = 1

px
(S f (x⊕y) ⊗ 〈〈�x|)NP (t)

rec�

× (I ⊗ P (Q)
PF )QAU [h(t)]

dev , (E31)

P [h(t+1)]
PF = S f (x⊕y)DisA[R[h(t)]]S−f (x⊕y), (E32)

s[h(t+1)] = sgn(ηi)s[h(t)], (E33)

γ
[h(t+1)]
Q = γQγ

[h(t)]
Q , (E34)

where

R[h(t)] = �(P [h(t)]
PF ⊗ P (Q)

PF )�
−1PiP (t)

rec, (E35)

y = mask(Disρ[R[h(t)]]). (E36)

Note that an additional decoding error that depends on
whether we perform S or not would occur after the delayed
application of S f (x⊕y). While this map is omitted for sim-
plicity, we can perform probabilistic error cancellation on
it in the same way.

With the above update rules, we can verify that Eq.
(E21) is obeyed at the (t + 1)th step. The product of
U [h(t+1)]

dev and P [h(t+1)]
PF is evaluated as follows:
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P [h(t+1)]
PF U [h(t+1)]

dev = 1
px
S f (x⊕y)DisA[R[h(t)]]S−f (x⊕y)(S f (x⊕y) ⊗ 〈〈�x|)NP (t)

rec�(I ⊗ P (Q)
PF )QAU [h(t)]

dev

= 1
px
(S f (x⊕y) ⊗ 〈〈�x|)DisA[R[h(t)]]NP (t)

rec�(I ⊗ P (Q)
PF )QAU [h(t)]

dev

= 1
px
(S f (x⊕y) ⊗ 〈〈�x⊕y|)R[h(t)]NP (t)

rec�(I ⊗ P (Q)
PF )QAU [h(t)]

dev

= 1
px
(S f (x⊕y) ⊗ 〈〈�x⊕y|)PiN�QAP [h(t)]

PF U [h(t)]
dev . (E37)

Therefore, the expectation value is evaluated as follows:

∑

h(t+1)

qh(t+1)ph(t+1)γ
[h(t+1)]
Q s[h(t+1)]P [h(t+1)]

PF U [h(t+1)]
dev

=
∑

h(t)

∑

x

qh(t)ph(t)γ
[h(t)]
Q s[h(t)](S f (x⊕y) ⊗ 〈〈�x⊕y|)(

∑

i

ηiPi)N�QAP [h(t)]
PF U [h(t)]

dev

=
∑

h(t)

∑

x

qh(t)ph(t)γ
[h(t)]
Q s[h(t)](S f (x⊕y) ⊗ 〈〈�x⊕y|)�QAP [h(t)]

PF U [h(t)]
dev

= T (
∑

x

〈〈�x⊕y|+L〉〉)
∑

h(t)

pxqh(t)ph(t)γ
[h(t)]
Q s[h(t)]P [h(t)]

PF U [h(t)]
dev

= T Ũ (t) = Ũ (t+1). (E38)

Therefore, we have verified that all the logical opera-
tions obey Eq. (E21).

APPENDIX F: ON THE NOISE MODEL OF THE
DECODING ERRORS

In the main text, we assume that the decoding errors for
elementary logical operations can be modeled as Marko-
vian and stochastic Pauli noise obeying Eq. (8). Here, we
justify this assumption. First, we determine whether an
actual noise model of syndrome-measurement cycles of
surface codes can be treated as Markovian or not. When the
syndrome measurements may output an incorrect value, we
need d consecutive syndrome values for reliably estimat-
ing the recovery operations. Since the quantum states are in
the logical code space only after the recovery operations,
the actual quantum states are not in the code space during
FTQC. This makes it hard to evaluate the logical noise map
for several cycles during FTQC, because the map does not
take a logical state to another logical state, while we need
to evaluate the logical noise map in advance in order to per-
form QEM on the code space. To avoid this problem, we
assume that the following noise model can well approxi-
mate the actual noise model: suppose that we can perform
perfect syndrome measurements in the Ldth cycle, where
L = 1, 2, . . ., and that we can perform recovery operations
just after that. Then, the quantum state is in the logical code

space at the Ldth cycle. In this case, we can define a logi-
cal error map Mdec from the (L − 1)dth cycle to the Ldth
cycle. Here, we assume that if we have a logical operation
U requiring χd cycles, the logical map including effective
decoding errors can be approximated with Mχ

decU when
the code distance d is sufficiently large. If this assumption
holds, we can cancel the noise map Mχ

dec by performing
QEM on each logical operation. Although the actual χ
depends on the logical operations, we assume that χ = 1
for simplicity.

The following numerical analysis shows that this
assumption holds at least when the physical errors are
stochastic Pauli noise. Let Mdec,c be a noise map for c-
cycle idling of a single logical qubit with code distance d,
and let �(c) be the Pauli transfer matrix of Mdec,c. Here,
Mdec,c is a stochastic noise map since a stochastic Pauli
error can only cause logical Pauli errors; thus, �(c) is a
diagonal matrix. Our assumption can be rephrased as fol-
lows: there is an effective Pauli transfer matrix �eff such
that �(c) = �c

eff for sufficiently large c. Equivalently, we
assume that each diagonal element decays exponentially
to the number of cycles c. Since �00 is always unity for
stochastic Pauli errors, we are interested in the other diago-
nal elements. Figure 12 plots the diagonal elements, except
�00, according to the number of cycles. We utilize the
same settings as in Sec. 2, i.e., a depolarizing noise map
with p = 0.01. Note that �33 and �11 are equal, since the
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behavior of surface codes is symmetric for Pauli-X and Z
errors. In the figure, the circles are the numerical results,
and the dashed lines are fitting results with an exponen-
tially decaying function. We use data points with c > 20
for the fitting. The results agree well with our assumption,
except for the region where the cycle count c is around 1.
Thus, we can conclude that if a physical error is stochastic
Pauli noise, we can define an effective logical noise map
for each logical operation.

Next, we discuss the case in which the physical noise
cannot be modeled as stochastic Pauli noise. In practice,
the noise of calibrated quantum operations is expected to
be almost stochastic Pauli, since the unitary component of
the physical errors can be canceled by echoing. In addi-
tion, it is expected that the noise map per code cycle in
the code space of surface codes is well approximated as
stochastic Pauli noise at a large code distance [35]. While
the logical noise map on a prepared magic state also suffers
the noise from magic state injection and distillation, this
noise can be twirled to stochastic Pauli noise with error-
mitigated logical Clifford operations. Nevertheless, there
may be non-negligible coherence in quantum noise of log-
ical Clifford gates. In this case, we can twirl the noise map
per code cycle and remove the unitary component of the
noise via logical Pauli operations with hardware update
(see Appendix E for the definition of hardware update).
Below, we show that we can perform twirling on logi-
cal noise caused by logical Clifford operations if logical
Pauli operations with physical operations, i.e., logical Pauli
operations without updating Pauli frame, can be performed
with negligible error rates. Note that the logical error rates
for logical Pauli operations are expected to be sufficiently
smaller than those for logical Clifford operations. This is
because logical Pauli operations can be performed with
transversal single-qubit operations that are completed in
a single cycle, and the errors caused by these operations
are negligible compared with those caused by two-qubit
operations for stabilizer measurements. Suppose that we
perform a logical Clifford operation C and a logical noise
map Mχ

dec follows it. Further suppose that we perform
twirling noise Mχ

dec with a set of Pauli operators S. The
twirling process can be described as follows:

(
1
|S|

∑

P∈S

PMχ

decP
)

C = 1
|S|

∑

P∈S

PMχ

decC(C†PC),

(F1)

where P is the superoperator of the logical Pauli oper-
ations. Since C†PC is a logical Pauli operation, Mχ

dec
can be twirled simply with logical Pauli operations. The
same arguments hold for Pauli measurements and feed-
back operations dependent on their outcomes. Since all the
elemental logical operations except for magic state injec-
tion are Clifford operations or Pauli channels, we can apply

Pauli twirling to most of the quantum operations in FTQC.
Note that while logical Pauli operations for computation
can be done by updating the Pauli frame, the logical Pauli
operations for twirling require a physical implementation
on quantum devices. This is because when we attempt to
perform logical Pauli operations via the Pauli frame for
twirling, we need to update the Pauli frame according to
the actual logical operation Mχ

decC (see Appendix E for the
formalism of the Pauli frame in superoperator representa-
tion). However, since Mχ

dec is not a stochastic Pauli noise,
we cannot keep the Pauli frame as a Pauli operator; thus,
we cannot continue tracking the frame as a Pauli operator.
Thus, the Pauli twirling must be done physically.

APPENDIX G: DETAILS OF THE NUMERICAL
ANALYSIS

In the numerical simulations for evaluating the decod-
ing errors, we use a uniform depolarizing noise model, in
which noise occurs on each physical qubit independently
and acts as follows:

E(ρ) = (1 − p)ρ + p
3
(X ρX + YρY + ZρZ). (G1)

This error acts on data qubits at the beginning of each cycle
and on ancillary qubits just before the measurement. As
indicated in the main text, we assume perfect syndrome
measurements at the 0th and dth cycles, which guarantees
that the quantum states at these cycles are in logical space
with recovery operations regardless of whether the decod-
ing is successful or not. Then, we evaluate the logical error
probabilities during these cycles. To estimate the recov-
ery operation, we use a minimum-weight perfect-matching
decoder [49]. This decoder reduces the decoding problem
to an instance of the minimum-weight perfect-matching
problem. While this problem is NP hard when there are
Pauli-Y errors, we can approximately solve it by using
Edmonds’ blossom algorithm [50]. It is known that surface
codes show threshold behavior even with this approxima-
tion. We use the implementation in Ref. [72] for solving
this problem. To estimate the logical error rate, we eval-
uate 105 samples for each data point in Fig. 4(b) and 106

samples for the other figures.
In the performance evaluation of error mitigation for

decoding errors, we assume that the error channel for each
logical gate is a nonuniform logical depolarizing channel
obtained in the benchmark of the logical error probabili-
ties in surface codes. Since there is no perfect syndrome
measurement in practice, this assumption does not hold
exactly. Nevertheless, this approximation is asymptotically
correct, and thus, we use it to evaluate the performance of
QEM in the case of logical errors.

For the simulation of the Clifford circuits, we use a
stabilizer circuit simulator of which the memory alloca-
tions are optimized so that the updates for the actions
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Cycle count Cycle count

FIG. 12. Diagonal elements of Pauli transfer matrix for a noise map of a single logical qubit during c syndrome-measurement cycles
plotted versus the number of code cycles. Each color corresponds to the code distance of a logical qubit. The circles are numerical
results, and the dashed lines are fitting results with an exponentially decaying function.

of the Clifford operations become sequential. With this
technique, the simulation of the stabilizer circuits that
are dominated by Clifford operations rather than by Pauli
measurements becomes hundreds of times faster than the
existing stabilizer simulators [52].

For the Solovay-Kitaev algorithm, we use the method
and implementation proposed in Ref. [38]. While we need
to limit the allowed number of T gates, this method out-
puts a sequence of Clifford and T gates according to the
allowed error rate ε. Thus, we search for the minimum
error rate ε∗ with which the algorithm outputs a sequence
wherein the number of T gates is smaller than the allowed
number of T gates. This search involves using a simple
bisection method, and it is repeated until the accuracy
reached 10−14. For the simulation of the SWAP test circuits,
we use Qulacs [73], which is a simulator for general noisy
quantum circuits and is fast especially when a huge num-
ber of simulations have to be performed on small quantum
circuits.

APPENDIX H: QUANTUM ERROR MITIGATION
FOR DECISION PROBLEMS

Several important algorithms in FTQC, such as prime
factoring and calculation of the ground-state energy, are
a procedure to obtain the computational results via phase
estimation sampling [9,30] and are not a procedure to
calculate expectation values of observables. Since typical
QEM techniques are designed to reduce the bias in the
expectation value caused by noise, it is not clear whether
QEM can be applied to such sampling algorithms. In this
section, we show that QEM can be utilized for mitigating
errors in a wider range of problems than calculating expec-
tation values. In particular, we show that several promising
long-term algorithms, such as ground-state energy estima-
tion via phase estimation sampling and Shor’s factoring
algorithm, can be decomposed into a series of decision

problems, and show that QEM can be applied to each
algorithm to solve the decision problem. To the best of our
knowledge, this has not been mentioned in the context of
QEM, while a similar concept has been known in the con-
text of quasiprobability sampling for classically simulating
quantum circuits [74,75].

First, we show that ground-energy estimation with phase
estimation sampling [9,10] can be decomposed into a
series of decision problems with a bisection method. In
a quantum phase estimation routine, we prepare an ini-
tial state, and perform phase estimation based on quan-
tum simulation. Then, we obtain a quantum state |ψ〉 =∑

i αi |Ẽi〉 |ψi〉, where |Ẽi〉 is the energy of the ith eigen-
state or its relevant value in binary representation, |ψi〉 is an
eigenstate of the given Hamiltonian, and αi corresponds to
the overlap between the ith eigenstate and the initial state.
The Pauli-Z basis measurement is performed on the first
register of |ψ〉, and Ei is sampled with the probability |αi|2.

Now, we apply a bisection method to estimate the
ground-state energy. The subroutine outputs 1 if the sam-
pled energy is smaller than a given parameter K and
outputs 0 otherwise. Suppose that the prepared initial state
has an overlap with the ground state larger than 1/poly(n).
If the ground energy is smaller than K , the subroutine out-
puts 1 with probability more than 1/poly(n). Otherwise,
the subroutine always outputs 0. We denote the process
before the Pauli-Z measurements as P , and the classical
postprocessing after the measurements to determine 0 or
1 as f . Then, we can conclude that the procedure as the
sampling of a bit-string x with the probability 〈〈�x|P|0〉〉,
where �x is the POVM element on the first register, and
outputs a single bit f (x) with the classical postprocess-
ing. When the quantum process P suffers from errors,
we can apply QEM to P to mitigate errors. While there
may exist a complicated classical postprocessing using a
sampled bit string after the quantum process P , the combi-
nation of sampling �x and classical postprocessing f can
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FIG. 13. The diagram of circuit conversion from the origi-
nal decision problem to the fully quantum picture. Here, ρ is
an n-qubit initial state, E is a noisy process, D is a perfect
dephasing noise map, f is a classical binary function on an n-
bit string x, and Uf is a quantum circuit that simulates f as
U |0〉 |x〉 = |f (x)〉 |x〉. See the main text for details.

be interpreted as a quantum process with strong dephas-
ing noise. The evaluation of a decision bit f (x) can also
be interpreted as the evaluation of the Pauli-Z operator.
Therefore, we can interpret the whole subroutine as a fully
quantum process for calculating the expectation value, and
we can apply QEM to the subroutine. The process of circuit
conversion is shown in Fig. 13.

With this subroutine, we can solve the original ground-
energy estimation with a bisection method. We assume
the minimum and maximum possible energy Emin and
Emax as variables, respectively. Then, the subroutine is
called several times to check whether the ground energy is
smaller than Emid = (Emax + Emin)/2. If the ground energy
is smaller than (Emax + Emin)/2, the polynomial number of
calls is enough to determine the inequality with high confi-
dence. According to the output, we reduce a possible range
of the ground energy [Emin, Emax] by updating Emax or Emin
with Emid. Since the range is halved in each iteration, we
need O(log ε−1) iterations to achieve Emax − Emin < ε.

When the number of logical errors in each iteration is
O(1) on average, the sampling overhead due to the appli-
cation of QEM is also constant. While this conversion
enables the application of QEM, this requires O(log ε−1)

times more iterations for binary search compared with the
original algorithm. Nevertheless, since these iterations are
independent computational tasks and the total number of
logical operations and hardware requirements per single
execution do not change. Therefore, we can conclude that
QEM can be applied not only for the evaluation of the
expectation values but also for long-term applications.

For a fair comparison, the following fact should also be
noted. In the case of prime factoring, we can apply the
same decomposition to the algorithm by finding the mini-
mum nontrivial factor of a given integer. However, when
the noise model is stochastic and the sampling overhead of
QEM is constant, i.e., the mean number of logical errors
during FTQC is O(1), we can obtain a correct answer

for prime factoring with a small overhead without using
QEM. Since prime factoring is in the NP class, we can
efficiently check whether the submitted answer is correct
or not. When the mean number of errors in FTQC is O(1),
i.e., the overhead of QEM is constant, a noiseless sam-
pling occurs with a constant probability. This means we
can obtain a correct nontrivial factor with constant sam-
pling overheads even without QEM. Thus QEM is not
effective for problems in the intersection of the BQP and
NP class such as prime factoring. In other words, QEM
is useful for problems satisfying the following two con-
ditions: (1) problems are in the BQP class but not in the
NP class, and (2) problems can be reduced to a series of
decision problems. Useful algorithms for long-term appli-
cations, such as quantum simulation and the estimation of
ground energy of spin models and molecules, satisfy these
conditions.
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