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Quantum entanglement is commonly assumed to be a central resource for quantum computing and
quantum simulation. Nonetheless, the capability to detect it in many-body systems is severely limited
by the absence of sufficiently scalable and flexible certification tools. This issue is particularly critical in
situations where the structure of entanglement is a priori unknown, and where one cannot rely on existing
entanglement witnesses. Here, we implement a scheme in which the knowledge of the mean value of
arbitrary observables can be used to probe multipartite entanglement in a scalable, certified, and systematic
manner. Specifically, we rely on positive semidefinite conditions, independent of partial-transposition-
based criteria, necessarily obeyed if the data can be reproduced by a separable state. The violation of any of
these conditions yields a specific entanglement witness, tailored to the data of interest, revealing the salient
features of the data which are impossible to reproduce without entanglement. We validate this approach
by probing theoretical many-body states of several hundreds of qubits relevant to existing experiments:
a single-particle quench in a one-dimensional XX chain; a many-body quench in a two-dimensional XX
model with 1/r3 interactions; and thermal equilibrium states of Heisenberg and transverse-field Ising
chains. In all cases, these investigations have led us to discover new entanglement witnesses, some of
which could be characterized analytically, generalizing existing results in the literature. In summary, our
paper introduces a flexible data-driven entanglement detection technique for uncharacterized quantum
many-body states, of immediate relevance to experiments in a quantum advantage regime.
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I. INTRODUCTION

Quantum entanglement is a distinguished feature of
composite quantum systems, marking a fundamental
departure from their classical counterparts [1]. Over the
last decade, it has become a commonplace that many-body
entanglement represents an essential resource for quantum
computation [2], quantum simulation [3], and quantum
metrology [4]. While, on the theoretical side, the exact role
of quantum entanglement in offering a quantum advantage
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remains somewhat controversial [5], the ability to manip-
ulate quantum many-body superpositions arguably repre-
sents a major endeavor for many experimental platforms.
As a matter of fact, the controlled preparation of many-
body entangled states is a hallmark of such capability, and
has been achieved in several experimental systems [6–14].
On the other hand, a growing number of experiments oper-
ate in regimes inaccessible to the best available classical
simulations [15–21]—another hallmark pointing towards a
genuine quantum advantage. It is commonly assumed that
the intractability of classical simulations originates in the
large-scale quantum entanglement, which develops across
the experimental system [2]. Nevertheless, a proper quan-
tum computation, performed in a regime inaccessible to the
best classical algorithms, and where the structure of quan-
tum entanglement is also probed, has not yet been reported.
This absence is partly due to the lack of sufficiently flexible
and scalable theoretical tools to analyze the experimental
data produced in such quantum devices. Surely, one can-
not simply rely on the violation of existing entanglement
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witnesses, for the structure of entanglement in the sys-
tem, and therefore the suitable entanglement criterion to
potentially reveal it, are a priori unknown. Furthermore,
one cannot envision to use tomographic information about
the underlying quantum state—for acquiring such infor-
mation would require a number of measurements growing
exponentially with the system size [22,23].

It is precisely the purpose of the present paper to show
the broad applicability of a flexible and scalable tool to
certify entanglement in an unknown multipartite quantum
state. In our setting, we assume that the expectation val-
ues of (a scalable number of) arbitrary observables are
known. Starting from the same insight as in Ref. [24],
namely the connection between the compatibility of data
with (quantum) separable states and the (classical) trun-
cated moment problem, we provide a simple and scalable
method to construct an entanglement witness from the
observed expectation values that is tailored to be robust to
noise. The main insight from Ref. [24] is that if the under-
lying quantum state is separable, then the available data are
obtained as entries of a correlation matrix, which satisfies
certain positive-semidefinite constraints. Such compati-
bility conditions can be efficiently verified via so-called
semidefinite-programming (SDP) techniques [25], allow-
ing the study of systems of hundreds of qubits. The failure
for the data to pass this test serves directly as an entan-
glement detection method, in which case our approach
delivers a specific entanglement witness, violated by the
observed data.

The resulting method is platform agnostic, in the sense
that how such data should be a priori chosen, and how
they should be inferred in an actual experiment is not rel-
evant, and, in fact, is not discussed in this work. As an
illustration, we consider one- and two-body correlations
for N qubits, but our scheme is flexible and can incorpo-
rate the knowledge of any k-point function, or in general of
any many-body observable. By benchmarking the method
on paradigmatic quench experiments, we show its wide
applicability and its ability to extract physically relevant
entanglement witnesses. The expression of the witnesses
themselves provides qualitative insight into the driving
mechanism responsible for entanglement within the sys-
tem. As a matter of fact, for several of the examples we
consider, we could analytically characterize the witnesses
obtained numerically. This led us to extend some known
entanglement criteria of the literature and derive com-
pletely new ones as well. Analagously to the hierarchy
introduced in Ref. [24], the scheme we propose can be gen-
eralized as a complete hierarchy of positive-semidefinite
tests: if no separable state can reproduce the available
data, the data will necessarily fail to pass the test at a
finite level of the hierarchy—in this sense, the hierarchy
is complete.

Comparison to previous works. A large body of liter-
ature has already considered the problem of entanglement

detection from partial information. Some of these results
are recovered as special cases of the approach imple-
mented in this paper; some others lack the scalability
required to apply them to many-body systems; and some
alternative scalable schemes either lack the flexibility of
the present approach, or can be inconclusive. In partic-
ular, the so-called covariance matrix criterion [26] and
the generalized spin-squeezing inequalities [27], which are
based on one- and two-body correlations, are recovered
as a consequence of our approach (as further discussed
in Appendix C)—while our approach is more flexible,
as it can incorporate the knowledge of any correlation
function. Criteria based on higher-order correlations have
also been derived [28–30]. However, the efficiency of
these approaches is unclear if only partial information is
available (for example, if only two-body correlations are
known). Furthermore, these approaches [26–30] provide
only sufficient conditions for entanglement, and there-
fore can be inconclusive even though the available data
cannot be reproduced by a separable state; in contrast,
here we provide a systematic and convergent hierarchy
of criteria. A systematic approach, which can also incor-
porate partial knowledge about the quantum state, was
proposed based on the solution of so-called separabil-
ity eigenvalue equations [31,32]; but this approach has
an exponential cost and cannot be applied already to
a few tens of qubits. Conceptually different approaches,
based on randomized measurements, have also been devel-
oped. Such approaches allow one to test bipartite entan-
glement criteria based on Rényi entropies [13,23], and
partial-transposition- (PT) based criteria [33,34]. How-
ever, in addition to the very high experimental require-
ments underlying these approaches, they require a number
of measurements scaling exponentially with N , severely
limiting their scalability beyond a few tens of qubits.
Recently, intrinsically scalable approaches to the problem
of multipartite entanglement detection from partial infor-
mation have been developed. An entanglement-detection
method from the knowledge of two-body reduced den-
sity matrices was developed in Ref. [35], with a simi-
lar computational cost as the one in the present work;
however, the above approach lacks the flexibility to be
adapted to an arbitrary set of data, especially the aver-
age value of many-body observables. The approach of
the present paper is complementary to Ref. [36], where
the problem is solved through a mapping onto an inverse
problem of classical statistical physics, offering a sys-
tematic and scalable solution; however, this approach
could be inconclusive for particular data sets. In con-
trast, here we solve a relaxation to this problem with
an efficiency that is independent of the structure of the
data, obtaining entanglement witnesses whose violation
is guaranteed by semidefinite-positive constraints. Lastly,
our approach shares some similarities with the method
presented in Ref. [37]. However, in contrast to ours,
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the method in Ref. [37] is device independent, namely,
it exploits no information about the underlying Hilbert
space. This makes the resulting entanglement test sensi-
tive to a careful choice of measurement basis for each
particle.

The first entanglement detection approach based on the
connection to the classical moment problem was intro-
duced in Ref. [24]. What we develop here can be seen as
a complementary separability test, based on the same con-
ceptual premises, but with a different physical motivation.
While Ref. [24] aims at constructing—if it exists—a sepa-
rable state compatible with the data, our focus is instead on
building a scalable and robust criterion for entanglement
based on the available data. Technically, we define the SDP
as a noise robustness problem, and restrict our analysis
to the first level of a hierarchy of conditions in order to
preserve scalability. In contrast, the hierarchy in Ref. [24]
exploits a cost function tailored to identify a so-called “flat
extension,” which is a property that, by definition, can be
assessed only by solving SDPs of increasing levels in the
hierarchy. However, it should be emphasized that increas-
ing by just one level the hierarchy is already extremely
costly in a many-body setting, and it is not doable already
for systems of few tens of particles. Moreover, while an
entanglement witness could potentially be obtained from
the dual of the first level of the hierarchy in Ref. [24],
it has no guarantee to be robust against noise. Lastly, we
notice that the element of randomness in the objective
function in Ref. [24] implies that the witness will be dif-
ferent for every run of the SDP, while our benchmarks
allows one to derive analytical witnesses in many relevant
scenarios.

In summary, we introduced a systematic approach to
multipartite entanglement detection in many-body sys-
tems from the knowledge of the average values of arbi-
trary observables, whose polynomial cost at every level
is guaranteed with no assumptions about the structure
of the data. By benchmarking it on realistic many-
body data, we are able to show that this approach has
a wide range of applicability, and is able to recover
and generalize several entanglement witnesses tailored
to many-body systems of immediate experimental rele-
vance.

In Sec. II, we present our framework for data-driven
entanglement detection. In Sec. III we present an illus-
trative simple example for a Bell pair. In Sec. IV, we
apply our method to theoretical data of realistic many-body
systems, both for quench experiments, and for thermal
equilibrium states. Section V displays our conclusions.
More technical considerations on our method are given
in Appendix A, Appendix B contains the detailed deriva-
tion of a new bipartite entanglement witness discovered
through our approach, while Appendix C derives the
entanglement criteria of Refs. [26,27] within our frame-
work.

II. FRAMEWORK

Some of the technical derivations of our entanglement
detection method are similar to the approach presented in
Ref. [24]. For the sake of giving a comprehensive and self-
contained description, we give a complete introduction
here, specializing it to the considered many-body setting.
We focus on a system composed of N qubits (denoted
i ∈ {1, 2, . . . , N } =: [N ]), described by an unknown quan-
tum state ρ̂. We assume that the average values of several
quantum observables Ôr are known. Our ultimate goal is
to prove, only from the knowledge of these average val-
ues, that the quantum state ρ̂ is entangled. This will be
achieved by exhibiting a specific entanglement witness
operator, in the form of a linear combination of the Ôr
operators, which is violated by the data under considera-
tion. These average values are either obtained by directly
measuring the observables in question, or are inferred from
other measurements [23]. Throughout this work, entan-
glement is defined as the impossibility to decompose the
many-body density matrix as a statistical mixture of prod-
uct states over individual qubits. This encompasses the
situation where all qubits are individually addressed, as is
the case in typical quantum computing or quantum simu-
lation applications; but also the situation where the qubits
are two-level subspaces of indistinguishable particles, as
is often the case in atomic ensemble experiments. In this
latter case, where the two levels can be either two spa-
tial modes or two internal states, correlations among the
qubits are only probed via collective measurements (typi-
cally, fluctuations of collective spin observables) [4]. Such
information can be naturally incorporated in our approach
in order to probe entanglement among the particles.

Available quantum data. For simplicity, in what fol-
lows we assume that some one- and two-body correlations
have been obtained (the more general situation, where the
average value of an arbitrary collection of operators is
known, is discussed in Appendix A 3). We introduce the
following notations for these data:

⎧
⎨

⎩

CX
i = Tr[ρ̂X̂i]

CY
i = Tr[ρ̂Ŷi]

CZ
i = Tr[ρ̂Ẑi]

⎧
⎪⎪⎨

⎪⎪⎩

CXX
ij = Tr[ρ̂X̂iX̂j ]

CXY
ij = Tr[ρ̂X̂iŶj ]

...

, (1)

where X̂i, Ŷi, Ẑi denote the qubit Pauli matrices. Notice that
some of these correlators might be unknown. For instance,
cross terms such as CXY

ij or CXZ
ij , whose measurement

require individual addressing of the qubits, are often more
challenging to infer than CXX

ij , CYY
ij , CZZ

ij , which can be mea-
sured via global rotations of all qubits before measuring in
a fixed basis. We therefore allow for an incomplete data
set Dρ̂ = {Cr}R

r=1 composed of only a subset of all pos-
sible correlators [we introduce the generic notation Cr :=
Tr(ρ̂Ôr) to denote either Ca

i or Cab
ij for some 1 ≤ i < j ≤
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N ; and some a, b ∈ {X , Y, Z}]. The method we develop
verifies necessary conditions, which are obeyed by Dρ̂ if
it can be reproduced by a separable state. The violation of
any of these conditions leads our algorithm to produce a
specific entanglement witness, tailored to the data under
investigation, whose violation proves that the state ρ̂ is
entangled (see Fig. 1 for a pictorial representation).

Sufficient conditions for entanglement. By definition,
a state is separable (i.e., not entangled) if it can be decom-
posed as a statistical mixture of product states:

ρ̂sep =
N∏

i=1

∫

|ni|=1
p[{ni}] ⊗N

i=1 ρ̂ni . (2)

Here, we represent the local states ρ̂ni in a Bloch-sphere
picture:

ρ̂ni = |ni〉〈ni| = 1
2
(1 + xiX̂i + yiŶi + ziẐi), (3)

where the local variables ni = (xi, yi, zi) satisfy

∀i ∈ [N ] n2
i = x2

i + y2
i + z2

i = 1. (4)

It follows that p[{ni}] ≥ 0 can be seen as a joint probability

{Cr}sep

{Cr}Γ�0

{Cr}obs

Entanglement
witness

FIG. 1. Geometrical representation of the proposed entangle-
ment detection framework. By arranging the observed data Dρ̂ =
{Cr}R

r=1 as a vector, one can represent them as a point in a R-
dimensional space. Among all valid quantum data (represented
as the dark orange convex set), one can identify the separable set,
namely the convex subset of data, which can be reproduced with
a separable state (yellow set). We consider an efficient way to
characterize a strict superset, corresponding to the data {Cr}�	0
compatible with a positive-semidefinite correlation matrix �

(light orange set). Such a set contains {Cr}sep; hence, if the data
does not pass the � 	 0 test, then Dρ̂ necessarily lies outside
of the separable set, constituting a proof of entanglement. The
method also provides an entanglement witness, i.e., a hyperplane
separating the observed data from the separable set.

distribution over the unit (Bloch-sphere) vectors ni for all
the qubits i = 1, . . . , N . Using that

⎧
⎨

⎩

xi = Tr[ρ̂ni X̂i]
yi = Tr[ρ̂ni Ŷi]
zi = Tr[ρ̂ni Ẑi]

, (5)

one may express the correlators [Eq. (1)] in a separable
state [Eq. (2)] as classical expectation values over the p
distribution:

CA
i =

∫

|ni|=1
pi(ni) ai =: 〈ai〉, (6a)

CAB
ij =

∫

|ni|=1

∫

|nj |=1
pij (ni, nj ) aibj =: 〈aibj 〉 (6b)

for a, b ∈ {x, y, z}. We denoted pi (respectively, pij ) the
marginal distribution over the ith qubit [respectively, the
(i, j ) pair]; and introduced the notation 〈· · · 〉 for expecta-
tion values over the p distribution.

In order to detect entanglement, one has to prove that
the observed correlations {Ca

i , Cab
ij } cannot be reproduced

by the expressions (6) for any choice of joint probability
distribution p[{ni}]. Crucially, one can derive conditions,
which are necessarily satisfied if a distribution p[{ni}]
reproducing the data exists—conditions whose violation is
hence sufficient to conclude that the state ρ̂ is entangled.
In order to do so, one first defines the set of classical vari-
ables m = (1, x1, y1, z1, . . . , xN , yN , zN ), and construct the
correlation matrix �α,β = 〈mαmβ〉 over the p distribution
(more general choices of sets m might be considered, and
are discussed in Appendix A 3).

The correlation matrix � satisfies the following proper-
ties:

(a) It is symmetric, � = �T.
(b) It is positive semidefinite (PSD, i.e., � 	 0) by con-

struction: indeed, for any vector v, we have vT�v =
〈(∑α mαvα)2〉 ≥ 0.

(c) Some of its entries correspond to the observed data
Ca

i and Cab
ij . For instance, for mα′ = xi and mβ ′ = xj ,

then �α′,β ′ = 〈xixj 〉.
(d) Lastly, some remaining entries obey additional lin-

ear constraints, because of the condition (4). In
particular, we have 〈z2

i 〉 = 1 − 〈x2
i 〉 − 〈y2

i 〉 for all i.

As an example, consider the case in which the one-body
terms CX

i , CY
i , CZ

i have been measured, together with two-
body terms CXX

ij , CYY
ij , CZZ

ij . The corresponding � reads
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� = �T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 CX
1 CY

1 CZ
1 CX

2 CY
2 · · · CX

N CY
N CZ

N

· 〈x2
1〉 〈x1y1〉 〈x1z1〉 CXX

12 〈x1y2〉 . . . CXX
1N 〈x1yN 〉 〈x1zN 〉

· · 〈y2
1 〉 〈y1z1〉 〈y1x2〉 CYY

12 . . . 〈y1xN 〉 CYY
1N 〈y1zN 〉

· · · 1 − 〈x2
1〉 − 〈y2

1 〉 〈z1x2〉 〈z1y2〉 . . . 〈z1xN 〉 〈z1yN 〉 CZZ
1N

· · · · 〈x2
2〉 〈x2y2〉 . . . CXX

2N 〈x2yN 〉 〈x2zN 〉
· · · · · 〈y2

2 〉 . . . 〈y2xN 〉 CYY
2N 〈y2zN 〉

· · · · · · . . .
...

...
...

· · · · · · · 〈x2
N 〉 〈xN yN 〉 〈xN zN 〉

· · · · · · · · 〈y2
N 〉 〈yN zN 〉

· · · · · · · · · 1 − 〈x2
N 〉 − 〈y2

N 〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

	 0 (7)

Notice that we mark in blue the entries replaced with
the available data. All the other entries (black terms 〈· · · 〉)
are unknowns, which represent unobserved correlations
over the p distribution. If other correlators were known
(e.g., CXY

12 ), they would simply replace the correspond-
ing free variables in Eq. (7) (namely 〈x1y2〉): reducing
the number of free variables makes it harder to com-
plete the matrix � 	 0, and therefore makes it easier to
detect entanglement. Notice that correlations such as 〈xiyi〉
have no experimental meaning in quantum physics, as they
involve the simultaneous measurement of two incompat-
ible observables, namely X̂i and Ŷi on the same qubit.
However, they represent perfectly well-defined quantities
if the state is separable, as (classical) expectation values
over the p distribution. Therefore, if the state is separa-
ble, it must be possible to complete the � matrix with
such unobserved correlations, such that � 	 0. Crucially,
solving this problem is a so-called semidefinite program
[25], for which efficient convex-optimization algorithms
are available. As we illustrate in Sec. IV, the scalability
of the method allows one to detect entanglement in sys-
tems of hundreds of qubits in a data-agnostic manner—that
is, without a priori knowing the suitable entanglement
criteria.

Construction of an entanglement witness. Impor-
tantly, if the matrix � 	 0 cannot be completed, the the-
ory of semidefinite programming allows one to derive an
entanglement witness of the form:

R∑

r=1

wrCr
ρ̂sep≤ 1 − λ, (8)

where the sum runs only over the available data. As dis-
cussed in Appendix A 2, inequality (8) is satisfied by all
separable states, while the data under investigation are

such that

R∑

r=1

wrCr = 1, (9)

ultimately proving that the quantum state generating these
data is entangled. The parameter λ > 0 in Eq. (8) can be
interpreted as the noise robustness of the data. Indeed, if
the quantum state ρ̂ generating the data is mixed with white
noise: ρ̂ → (1 − λ)ρ̂ + λ1/D with D = 2N the dimension
of the Hilbert space, then using the fact that Pauli observ-
ables are traceless, we have {Ca

i , Cab
ij } → {(1 − λ)Ca

i , (1 −
λ)Cab

ij }. The parameter λ thus exactly quantifies the maxi-
mal amount of white noise, which can be tolerated before
entanglement detection becomes impossible with Eq. (7).
Hence, by using a SDP to minimize the noise strength λ

for which the noisy data becomes compatible with a � 	 0,
one obtains the maximally robust witness possible with the
method (see Appendix A 2 for details).

A converging hierarchy of conditions. The presented
approach can be extended to include also higher-order
correlators. As further discussed in Appendix A 3, one
may consider the set of classical variables m′ = {1} ∪
{ai} ∪ {aibj } ∪ {aibj ck} ∪ . . . , where ai, bj , ck are any com-
ponents of the local classical variables {ni}. One then
constructs the (PSD) correlation matrix �′

α,β = 〈m′
αm′

β〉
over the p distribution. Verifying the compatibility of the
data with �′ 	 0 is again a semidefinite program, which
can be solved at a computational (memory) cost scal-
ing at most as O[length(m′)2]. The matrix � [Eq. (7)] is
obtained as a submatrix of �′, and therefore the condition
�′ 	 0 is stronger than � 	 0. Including in m′ all mono-
mials up to degree l = 1, 2, 3, . . . , one defines a systematic
hierarchy of positive-semidefinite conditions, which are
necessarily obeyed if the underlying state ρ̂ is separable.
Crucially, as further discussed in Appendix A 3, if no sep-
arable state can reproduce the data, then there exists a finite
degree l such that the data fail to fulfill the corresponding
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condition �′ 	 0—this property is a consequence of the
variables {ni} being compact: |ni| = 1 for all i. Therefore,
the approach presented here defines, in the limit l → ∞, a
converging hierarchy of outer approximations to the set of
separable states, exhausting the capability of a given data
set to demonstrate multipartite entanglement. The com-
putational cost O[(3N )2l] is strictly polynomial at each
relaxation level. One may regard such a hierarchy as an
instance of Lassere’s relaxation of the moment problem
for the probability distribution p[{ni}] [25,38]. Notice that
in practice, the computational cost of higher-level tests
(l ≥ 2) increases rapidly, especially for hundreds of qubits.
However, we provide in Sec. IV compelling evidence of
the efficiency and tightness of Eq. (7), which represents
the l = 1-level of the hierarchy, to detect entanglement in
many-body systems in a flexible, unbiased, and scalable
manner.

Invariance under partial transposition. It is interest-
ing to notice that our criteria are independent of the PT
criteria [33,34,39,40]: a state ρ̂ is compatible with Eq. (7)
if and only if the state ρ̂PT is compatible with Eq. (7),
where ρ̂PT is obtained by applying partial transposition on
any subset of qubits. Indeed, PT leaves invariant the Pauli
matrices X̂i and Ẑi, while Ŷi is changed into −Ŷi. There-
fore, all correlations involving Ŷi are changed into their
opposite. The corresponding matrix �PT is then obtained
from � [Eq. (7)] by a simple change of basis, in which
(xi, yi, zi) is changed into (xi, −yi, zi) for the qubits where
PT is applied. Therefore, �PT can be completed as a PSD
matrix if and only if � can be completed as a PSD matrix.
As discussed in Sec. A 3, this simple observation can be
extended to the complete hierarchy of criteria derived via
our approach.

III. SIMPLE TWO-QUBIT EXAMPLE

As a first illustration of the method, we consider an
isotropic Werner state [41], namely a statistical mixture of
white noise with a spin singlet:

ρ̂λ = (1 − λ)|�〉〈�| + λ

4
1, (10a)

|�〉 = 1√
2
(| ↑↓〉 − | ↓↑〉), (10b)

where 0 ≤ λ ≤ 1. The state ρ̂λ is separable if and only if
λ ≥ 2/3. Let us show that Eq. (7) is tight for the Werner
state, namely that it detects entanglement whenever λ <

2/3. The Werner state is SU(2) invariant, and one finds
Ca

1 = Ca
2 = 0 (for a ∈ {X , Y, Z}) and Cab

12 = −δab(1 − λ).
However, this detailed property, impossible to exactly
fulfill in an experiment, is not needed to demonstrate
entanglement with our method. It turns out to be suffi-
cient to consider only c := CXX

12 + CYY
12 + CZZ

12 as available
data. As discussed in Appendix A 1, if only c is known

and without making any assumption about the underly-
ing quantum state, one may symmetrize the distribution
p({xi, yi, zi}) aimed at reproducing the data with a separable
state, Eq. (2). This leads us to drastically simplify Eq. (7)
as

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
· 1/3 0 0 c/3 0 0
· · 1/3 0 0 c/3 0
· · · 1/3 0 0 c/3
· · · · 1/3 0 0
· · · · · 1/3 0
· · · · · · 1/3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

	 0.

(11)

Reorganizing the lines and columns, the matrix � is block
diagonal, and is PSD if and only if all blocks are PSD,
that is, if and only if ( 1 c

c 1 ) 	 0, if and only if |c| ≤ 1.
This establishes that entanglement is detected whenever
|CXX

12 + CYY
12 + CZZ

12 | > 1, which is a (tight) entanglement
witness already well known in the literature, and which
is recovered by our approach. The witness is tight, as the
product state | ↑↑〉 is such that CXX

12 + CYY
12 + CZZ

12 = CZZ
12 =

1. In the case of the Werner state, we have c = −3(1 − λ),
from which we recover the known result that the state,
Eq. (10), is entangled for λ < 2/3. Notice that Eq. (7) is
not tight for all two-qubit states: by producing random two-
qubit states, we could find entangled states (as detected
by the concurrence criterion [42]), which are nevertheless
compatible with a PSD correlation matrix as in Eq. (7).

IV. ROBUST DETECTION OF ENTANGLEMENT
IN MANY-BODY SYSTEMS

We then choose to benchmark our entanglement detec-
tion method on paradigmatic lattice quantum spin models.
Motivated by an ultracold atoms’ experiment [43] realized
a few years ago [44], we first focus on the entanglement
generated by a single impurity propagating along a one-
dimensional XX chain (Sec. IV A). As a main result, we
find that the robustness of entanglement detection can
be increased by about one order of magnitude using our
method as compared to existing criteria, using the same
data as collected in the experiment of Ref. [44]. We then
consider a two-dimensional system, where entanglement
is generated by a XX Hamiltonian with 1/r3 interac-
tions, from an initial state with all spin polarized along X
(Sec. IV B). This example of a many-body quench with
power-law interactions is especially motivated by Ryd-
berg arrays [18,20,21,45–49], ultracold magnetic atoms
[50–52], nitrogen-vacancy centers in diamond [53,54],
and trapped-ion systems [11,13,55–60], where related spin
Hamiltonians have been implemented. In this case, our
algorithm leads us to discover a wide family of entan-
glement witnesses based on components of the structure
factor, which extend similar criteria reported previously
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in the literature, and which are especially suited to detect
entanglement in out-of-equilibrium situations. Finally, we
explore the possibility to detect bipartite entanglement
with our method, focusing on thermal-equilibrium states
of the Heisenberg model and of the transverse-field Ising
model in one dimension (Sec. IV C). Overall, these exam-
ples validate our method as a robust, flexible, effective, and
highly scalable approach to detect multipartite entangle-
ment from partial information, as is currently collected in
intermediate-scale quantum simulators and computers.

Importantly, since our main objective is to derive wit-
nesses that can tolerate a realistic amount of noise, we
always solve the entanglement SDP test as a noise robust-
ness problem. That is, we mix the considered quantum
states ρ with white noise, modeled as a completely mixed
state: ρ̂ → (1 − λ)ρ̂ + λ1/2N . The noise robustness λ∗ is
then defined as the value of λ above which entanglement
is not detected any more by the moment matrix criterion.
By doing so, the witness obtained by the dual of the SDP
tolerates, by construction, at least the amount of noise λ∗
(cf. Sec. II and Appendix A 2 for details). To generate the
numerical SDP problems, we use the software Ncpol2sdpa
[61], and we solve the SDPs with Mosek [62]. We release
an open source code [63], which allows one to recover the
results of Sec. IV A, and can be adapted to probe more
general data.

A. Single-spin-flip in a one-dimensional chain

We consider a one-dimensional ferromagnetic XX chain
with nearest-neighbor interactions:

ĤXX = −J
N−1∑

i=0

[X̂iX̂i+1 + ŶiŶi+1], (12)

with J = 1 a global energy scale, and with periodic bound-
ary conditions. As initial state, we consider the ferromag-
netic state |�0〉 = ⊗i| ↑〉. We assume that at time t = 0,
the spin at i = 0 is flipped into | ↓〉 [44,64]. This central
excitation then propagates along the chain under the XX
Hamiltonian. As ĤXX conserves the total magnetization
along Z, the dynamics occurs in the N -dimensional mani-
fold of states generated by {σ̂−

i |�0〉}N−1
i=0 [with σ̂−

i = (X̂i −
iŶi)/2 the lowering operator]. Even though this simple
quench is in essence a single-particle problem, multipar-
tite entanglement is generated across the entire system. In
the experiment of Ref. [44], the propagation of entangle-
ment was observed through a lower bound to the pairwise
concurrence [64], which measures the entanglement of the
two-body reduced state ρ̂ij [42]. Here, our main result
is that using the same information as in the experiment
of Ref. [44] [namely, the transverse correlations C⊥

ij :=
(CXX

ij + CYY
ij )/2, the magnetization CZ

i and the longitudinal
correlations CZZ

ij ], more robust detection of entanglement
is possible thanks to our method.

In order to theoretically compute the spin-spin correla-
tions, we assume periodic boundary conditions on a chain
of N = 64 spins (these choices have no visible effect on
the results if the time is not long enough for the excitation
to travel across the whole chain). This leads to

ϕr(t) = N−1
N−1∑

k=0

exp
[

2iπkr
N

+ it cos
(

2πk
N

)]

, (13a)

CZ
i = 1 − 2|ϕi|2, (13b)

C⊥
ij = 2Re(ϕ∗

i ϕj ), (13c)

CZZ
ij = 1 − 2(|ϕi|2 + |ϕj |2). (13d)

As discussed in Appendix A 1, in order to implement
our algorithm, we may use the symmetries of the prob-
lem to drastically reduce the number of nonzero variables
in Eq. (7), greatly improving the scalability. The result-
ing witness at each time, reconstructed via the algorithm
described in Appendix A 2, is then tailored to the struc-
ture of correlations at that particular time, and follows the
propagation of the excitation along the chain. The witness
operator is of the form Ŵ = ∑

i wZ
i Ẑi +∑

i�=j [wZZ
ij ẐiẐj +

w⊥
ij (X̂iX̂j + ŶiŶj )/2].
In Fig. 2, we plot for time tJ = 10 the correlations used

as input to the SDP algorithm (upper row), and the coef-
ficients of the corresponding entanglement witness (lower
row). Both our witness and the concurrence lower bound
maximized over all pairs use the exact same data to detect
entanglement. In order to compare their respective strength
in a meaningful way, we choose to compute the noise
robustness of the concurrence lower-bound as well. In
Fig. 2(g), we plot the evolution as a function of time
of the noise robustness for both our witness, and for the
concurrence lower bound [64], as measured in the exper-
iment of Ref. [44]. The SDP witness is about one order
of magnitude more robust against white noise than the
concurrence lower bound. Clearly, beyond the quantitative
information provided by the noise robustness, the structure
of the witness also provides qualitative insight into the dis-
tribution of multipartite entanglement across the system.
In particular, as is apparent in the transverse coefficients
w⊥

ij [Fig. 2(e)], the qubits whose contribution to the wit-
ness is the largest are located close to i = −j = ±vt (with
v = 1 the group velocity of the excitation). This feature
is also captured by the two-body concurrence, which is
maximal for this pair of qubits. However, the precise con-
tribution of other correlations is crucial to obtain a robust
entanglement witness, as established by our data-agnostic
approach. Finally, we notice that the separable bound as
obtained from the SDP is tight, as we could always saturate
this bound by a variational search over product states.

The single-particle nature of this problem is reflected
in the fact that multipartite entanglement is progressively
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FIG. 2. Single spin flip in a XX chain with N = 64 spins (cf. experiment of Ref. [44]). (a)–(c) One- and two-body correlations at time
tJ = 10, used as input to our SDP algorithm [for the sake of readability, on (c) we plot the connected correlations CZZ

ij − CZ
i CZ

j ]. (d)–(f)
Corresponding coefficients in the optimal entanglement witness. (g) On a semilogarithmic scale, noise robustness of the violation of the
witness as a function of time (blue dots); and theoretical prediction for the noise robustness of the concurrence lower-bound measured
in Ref. [44] (solid orange line).

diluted throughout the system while the excitation, initially
localized at i = 0, spreads across the whole chain. As a
consequence, at long times, the robustness of the violation
decreases to zero for large systems [Fig. 2(g)]. In the fol-
lowing example, we consider instead a genuine many-body
problem where the entanglement generated by the unitary
dynamics is robust at all times.

B. Many-body quench dynamics in a two-dimensional
power-law XX model

We now consider a two-dimensional XX model with
1/r3 interactions:

ĤXX = J
∑

1≤i<j ≤N

X̂iX̂j + ŶiŶj

r3
ij

+ h
N∑

i=1

X̂i , (14)

where rij denotes the distance between spins i and j ,
arranged over a N = L × L square lattice. We consider
both open- and periodic boundary conditions with N =
400 spins. We set J = 1; and the transverse field h = 0.5
is introduced for technical reasons (see below). This model
is of direct relevance both to Rydberg arrays [49], and
to trapped ions [60]. As initial state, we consider a fer-
romagnetic state along X : |�0〉 = ⊗i|+〉i with |+〉 = (| ↑
〉 + | ↓〉)/√2. For this particular initial state, the dynam-
ics is invariant under the change ĤXX → −ĤXX ; and

|�0〉 represents the mean-field ground state of −ĤXX [65].
The dynamics is then well approximated by a semiclassi-
cal spin-wave approach [66], involving bosonic Gaussian
states, whose stability is further enhanced by introducing
the symmetry-breaking term h

∑
i X̂i. We would like to

emphasize that simulating the exact dynamics of a quan-
tum many-body system is a central issue for all numer-
ical approaches, and we select this particular example,
amenable to a semiclassical treatment, for the sake of
illustrating the suitability of our entanglement-detection
method to large-scale systems with no translation invari-
ance, as investigated in existing experimental platforms.
Ultimately, our method unveils the (in)compatibility of a
given set of correlations with a separable state, and the way
in which these correlations were obtained (through exact
computation, using some approximations as we achieve
here through a spin-wave approach, or experimentally) is
totally irrelevant to the method itself. As input data, we
use the one-body terms CX

i (for all qubits i) and the two-
body terms Caa

ij (for a = X , Y, Z and all pairs i < j ). Once
again, we use symmetries to reduce the number of free
variables in the SDP algorithm (see Appendices A 1, and
A 2 for details on the algorithm used to reconstruct an
entanglement witness from the data). We first consider sys-
tems with periodic boundary conditions, such that the data
are translationally invariant (TI). In this case, we can ana-
lyze analytically the witnesses found by our algorithm, and
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generalize them to a whole family of entanglement wit-
nesses in its own right. We then consider systems with
open boundary conditions, illustrating the scalability of
our approach to detect entanglement in generic (non-TI)
systems with hundreds of qubits in a data-agnostic manner.

A family of entanglement witnesses. Investigating
TI systems, and generalizing the entanglement witnesses
reconstructed by our algorithm, we find the following
family of witnesses:

∑

a∈{X ,Y,Z}

∑

j �=j ′
ei[φa(j ′)−φa(j )]Caa

jj ′ ≥ −N , (15)

where φa(j ) are arbitrary local phases, potentially depend-
ing on the spin direction a. The proof of the sep-
arable bound is straightforward: assuming that the
state is separable, we may introduce the local vari-
ables xi, yi, zi parametrizing the local quantum states
(Sec. II). Using that N = ∑

i(x
2
i + y2

i + z2
i ), we then

have
∑

a∈{X ,Y,Z}
∑

j �=j ′ ei[φa(j ′)−φa(j )]Caa
jj ′ + N

sep= ∑
a∈{X ,Y,Z}

〈|∑j e−iφa(j )aj |2〉 ≥ 0.
The witness of Eq. (15) turns out to be very similar to

existing results in the literature [67–69]. There are how-
ever two important differences: on the technical side, the
witness of Eq. (15) involves local phases φa(j ), which may
depend on the spin direction a (this possibility was not
pointed out in the mentioned Refs. [67–69]); and on the
conceptual side, it was inferred from our algorithm in a
completely data-agnostic way, as the optimal witness for
TI data at the first relaxation level of our hierarchy. In
this case, the local phases are of the form φa(j ) = ka · rj
with rj the position of the j th subsystem. This leads to
the structure factor Sa

k = N−1∑
j ,j ′ eik·(rj ′−rj )Caa

jj ′ (notice
that we include the j = j ′ term in the summation, corre-
sponding to a term Caa

jj = 1). Although we discover these
witnesses focusing on two-dimensional systems, they can
be naturally extended to arbitrary geometries. In terms
of components of the structure factors, the entanglement
witness of Eq. (15) reads

SX
kX

+ SY
kY

+ SZ
kZ

≥ 2. (16)

Notice that we define the structure factors in terms of qubit
observables, which are twice the spin observables typically
used in condensed-matter physics; this leads to a factor 4 in
the definition of the structure factors. Crucially, the wave
vector k may be different for the X , Y, and Z components of
the spins. Obviously, in order to detect entanglement, it is
optimal to choose, for each spin component a, the direction
ka where the structure factor is minimal, leading to

Wopt = min
k

SX
k + min

k
SY

k + min
k

SZ
k ≥ 2. (17)

It is in this form that the witnesses have been discovered
via our algorithm, investigating the correlations generated

by the dynamics in the power-law XX model. We then gen-
eralize this result to Eq. (15). The witness Eq. (17) is then
violated if the fluctuations at these optimal wave vectors
are suppressed below the separable bound 2. Physically,
these witnesses detect a generalized form of spin squeez-
ing, especially suited to the many-body systems where
different components of the structure factor can be mea-
sured. In several quantum simulators, the structure factors
are reconstructed by Fourier transform of the real-space
correlations. In condensed-matter systems, correlations are
typically measured directly in momentum space via neu-
tron scattering. During the out-of-equilibrium dynamics,
these optimal wave vectors may vary over time in dif-
ferent ways for different spin components; and therefore
the witnesses of Eqs. (15)–(16)–(17) offer a large flexi-
bility to detect entanglement, independently of the spe-
cific SDP algorithm we use to discover them. Finally, we
notice that the witness of Eq. (17) can be extended to
spin-s systems. We define in general the structure factor
as Sa

k = N−1∑
j ,j ′ eik·(rj ′−rj )Tr[ρ̂Ŝa

j Ŝa
j ′] with Ŝa

j the spin-
s observable in direction a for subsystem j . Using that
Ns2 ≥ ∑N

i=1
∑

a∈{X ,Y,Z} |Tr[ρ̂Ŝa
j ]|2, one easily shows that

SX
kX

+ SY
kY

+ SZ
kZ

≥ Ns for all separable states. This gener-
alizes a result of Ref. [70] to arbitrary components of the
structure factors.

Numerical results. In Fig. 3(a), we plot the structure
factor at time tJ = 1, for wave vectors k = (k, k), in a
20 × 20 square lattice with open boundary conditions. The
minimal value of the structure factor for each spin compo-
nent (marked by a circle on the figure) then enters the TI
witness of Eq. (17). In Fig. 3(b), we plot the noise robust-
ness of the (non-TI) witness found by our algorithm as a
function of time. As we consider open boundary condi-
tions, the correlations have no translation invariance, and
as a consequence the resulting witness loses this symme-
try too. For comparison, we also plot the noise robustness
of the TI witness of Eq. (17), evaluated at the (time-
dependent) optimal wave vectors (kX , kY, kZ). While the
TI witness reaches a noise robustness of about 0.5, the
(non-TI) optimal witness tailored to the (non-TI) correla-
tions reaches more than 0.8 noise robustness. However, we
cannot find an analytical expression for these non-TI data-
driven witnesses. By a variational search over separable
states, we can, however, verify that the separable bound
obtained by our SDP algorithm is always tight.

C. Bipartite witnesses

Finally, we show that the very same SDP algorithm
outlined in Sec II can be adapted with no additional com-
putation cost to detect bipartite entanglement along any
splitting of the system in two parts. We therefore con-
sider a partition of the N qubits into two halves A and
B, and as input data, we consider single-qubit terms Ca

i
and only inter-AB correlations Cab

ij where i ∈ A and j ∈ B.
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FIG. 3. Quench in the two-dimensional XX model on a 20 ×
20 square lattice with open boundary conditions [Eq.(14)]. (a)
Structure factor at time t = 1/J . The circles mark the wave vec-
tors at which the structure factor for the X , Y, and Z components
is minimal. This leads to the TI witness of Eq. (17). (b) Blue
dots: noise robustness of the optimal witness found by our SDP
algorithm using as input the magnetization CX

i and two-body cor-
relations CXX

ij , CYY
ij , and CZZ

ij , with an initial state polarized along
x. Orange line: noise robustness of the best TI witness of Eq. (17),
whose reconstruction is illustrated on (a) for time t = 1/J .

It is straightforward to notice that if non-full-separability
can be proved from this knowledge, then the state must
be bipartite entangled. Indeed, if the AB state is bipar-
tite separable: ρ̂

bisep
AB = ∑

k pkρ̂
(k)
A ⊗ ρ̂

(k)
B , then we may

define ρ̂
fullsep
AB = ∑

k pk ⊗N
i=1 ρ̂

(k)
i with ρ̂

(k)
i = Trj �=i[ρ̂

(k)
A ⊗

ρ̂
(k)
B ]. One can verify that if ρ̂

bisep
AB reproduces the data,

so does ρ̂
fullsep
AB ; conversely, proving non-full-separability

from these data implies bipartite entanglement.
Heisenberg model and transverse-field Ising models.

We use the above idea to investigate bipartite entanglement
in the transverse-field Ising and Heisenberg chain at finite
temperature, for N = 64 spins. The Heisenberg chain is
described by the Hamiltonian:

ĤHeis = (J/4)

N∑

i=1

[X̂iX̂i+1 + ŶiŶi+1 + ẐiẐi+1], (18)

and transverse-field Ising chain by

ĤIsing = −(J/4)

N∑

i=1

[ẐiẐi+1 + gX̂i]. (19)

In Eqs. (18) and (19), we assume periodic boundary
conditions. The parameter J is an overall energy scale
(set to J = 1 in our computations), and g in Eq. (19)
is the transverse-field amplitude. We consider thermal
states ρ̂ = Z−1 exp[−Ĥ/T] with T the temperature and
Z = Tr(exp[−Ĥ/T]) the partition function. As input to

our algorithm, we use all one- and two-body correlations,
which are invariant under translations. These data were
computed with quantum Monte Carlo. The Heisenberg
model being SU(2) invariant, one-body terms vanish, and
two body-terms are of the form Cab

ij = C|i−j |δab (with a, b ∈
{X , Y, Z}). For the Ising model the symmetries imply
CY

i = CZ
i = 0, and Cab

ij = Ca
|i−j |δab (namely, off-diagonal

correlations a �= b vanish).
A family of bipartite entanglement witnesses. Having

first considered a partition of the form AAA . . . AA|BBB . . .

BB (namely, A = {0, 1, 2, . . . , N/2 − 1} and B = {N/2,
. . . , N − 1}), we notice that entanglement is detected if
and only if the nearest-neighbor two-body reduced den-
sity matrix ρN/2−1,N/2 is itself entangled (as detected
by the concurrence [42]). While illustrating the rela-
tively short-range nature of entanglement in these ther-
mal states, we cannot go beyond the mere witnessing
of entanglement among nearest neighbors. We therefore
consider a partitioning maximizing the AB interface, that
is A|B|A|B|A|B| . . . (namely, A = {0, 2, 4, . . . , N − 2} and
B = {1, 3, 5, . . . , N − 1}). This leads us to discover new
bipartite entanglement witnesses. Similarly to the case of
TI multipartite entanglement witnesses [see Eq. (15)], we
can analytically characterize them, and extend them to a
full family of witnesses. We define

Wa =
∑

i∈A

∑

j ∈B

Kj −iCaa
ij cos[φa(i) − φa(j )], (20)

where φa(j ) are arbitrary local phases, and with coeffi-
cients given by

Kr = 2
N

N
4 −1
∑

k=− N
4 +1

exp
(

2iπ
N

kr
)

(21)

= 2
N

[
sin(πr/2)

tan(πr/N )
− cos

(πr
2

)]

(22)

N�r∼ 2
πr

sin
(πr

2

)
. (23)

Notice that for i ∈ A and j ∈ B, r = j − i is an odd inte-
ger, in which case we have the simplified expression
Kr = 2(−1)(r−1)/2/N tan(πr/N ). The violated witnesses
are then of the form

W = WX + WY + WZ ≥ −N
2

. (24)

The proof of the witness inequality (24) is given in
Appendix B. For the Heisenberg chain, the optimal choice
of the phases is φa(i) = 0. For the Ising chain, it is
φa(i) = 0 for i ∈ A, and φX (j ) = φZ(j ) = π for j ∈ B, and
φY(j ) = 0.

As illustrated in Fig. 4, the bipartite entanglement wit-
nesses of Eq. (24) allow one to detect entanglement in
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FIG. 4. Entanglement in (a) the Heisenberg chain [Eq. (18)]
and (b) the quantum Ising chain at g = 1 [Eq. (19)], for N =
64 spins. The bipartition is of the form A|B|A|B|A|B . . . . Solid
orange line: (minus) the concurrence [42] between nearest neigh-
bors. Blue dots: bipartite witness 1 + (2W/N ) with W given in
Eq. (24). Dashed-dotted green line: multipartite witness SX

kX
+

SY
kY

+ SZ
kZ

− 2 at the optimal wave vectors ka [see text and
Eq. (17)] (for all witnesses, entanglement is detected for negative
values).

regimes where all two-body reduced density matrices are
separable (as measured by the concurrence [42]).

Comparison with the structure factor witnesses. For
the sake of completeness, we also evaluate the multipar-
tite entanglement witness based on the structure factor
[Eq. (17)] discussed in Sec. IV B. As this witness involves
also intra-A and intra-B correlations, and is based on the
same SDP criterion, it detects entanglement at strictly
higher temperatures than the bipartite witness of Eq. (24).

The optimal wave vectors kX , kY, and kZ are found
from the following observations. The Heisenberg model
develops antiferromagnetic correlations at low tempera-
ture, leading to a peak at k = π in the structure factor.
Concomitantly, fluctuations of the uniform magnetization
(at k = 0) are suppressed, reaching a spin-singlet state in
the ground state (Sa

0 = 0). At all temperatures, the struc-
ture factor is always minimal at kX = kY = kZ = 0, and
in this case the optimal witness is simply

∑
a Sa

0 ≥ 2. As
previously reported in Ref. [36], it is violated up to a tem-
perature T/J ≈ 1.4 [Fig. 4(a)]. In contrast, at low temper-
ature and around the quantum critical point g = 1 [71], the
Ising model develops ferromagnetic correlations for the Z
component of the spin, and the structure factor is minimal
at kY = π . The uniform magnetization along Y is slightly
squeezed below the standard quantum limit [72], and the
structure factor is minimal at kY = 0. Finally, correlations
in the X direction (the direction of the transverse field) are
strongly ferromagnetic, and are suppressed at kX = π . We
find that these choices are optimal throughout the phase
diagram. As illustrated in Fig. 4(b), above the quantum
critical point g = 1 the optimal witness SX

π + SY
0 + SZ

π ≥ 2

is violated for temperatures T/J � 0.38. In contrast a cri-
terion based on the quantum Fisher information (based on
the dynamical structure factor for ZZ correlations [73],
and which is considerably more challenging to estimate,
both in theory and in experiments [74,75]) is violated for
T/J � 0.11; and a witness based on the same data as used
in the present work [36], and optimized for T/J = 0.28,
is violated for T/J � 0.31. The entanglement witness of
Eq. (17) discovered in the present work offers therefore
both a simpler and more robust criterion for the detec-
tion of multipartite entanglement in many-body systems,
as compared to existing criteria proposed so far in the
literature.

V. CONCLUSION

We have implemented a systematic, scalable, and flexi-
ble approach to detect multipartite entanglement in many-
body systems. Assuming that the knowledge of some
average values of many-body observables are known, one
can build a correlation matrix whose entries reproduce
these data. Under the assumption that the state is separa-
ble, positive semidefinite constraints must be obeyed by
the correlation matrix. Verifying these constraints is effi-
ciently achieved via semidefinite programming techniques,
yielding a data-tailored entanglement witness violated by
the data under consideration. We have illustrated the scal-
ability of this approach in some paradigmatic examples
of many-body systems, demonstrating for instance how
our approach can easily deal with systems of hundreds of
qubits when two-body correlations are used as input data.

By choosing to perform the proposed entanglement test
as a noise robustness problem, we were able to show
that the corresponding entanglement witnesses can toler-
ate realistic amount of noise in many physically relevant
many-body scenarios. We have also shown that the spe-
cific entanglement witnesses discovered via our approach
can sometimes be analyzed analytically, leading to explicit
entanglement witness of independent relevance [see, e.g.,
Eqs. (15), (17), or (24)].

Within our framework, one can probe the (in) compati-
bility of a given set of average values with a separable state
for any fixed partitioning of the system. Here, we focused
mostly on a partitioning into N individual qubits, or a
bipartition into two halves of N/2 qubits. Our approach
can be used to detect entanglement among individually
addressed qubits, as extensively demonstrated through-
out the paper. It can also be used to detect entanglement
among indistinguishable particles, probed, e.g., via collec-
tive spin observables; as a matter of fact, all generalized
spin-squeezing inequalities [27] typically used to detect
entanglement in this framework are recovered as a special
case by our method. It is a priori unclear if our approach
can be extended to encompass also statistical mixtures of
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different partitionings, as required to quantify the so-called
entanglement depth, or width [76].

Several research directions are now open to future
works. First, the considered approach can be extended to
qudit systems in a straightforward manner, which provides
a scalable technique for the investigation of multipartite
entanglement in large ensembles of qudits. Then, although
we have illustrated the method by assuming that one-
and two-body correlations are known, one could naturally
include the knowledge of any k-point function. Including
such higher-order correlations would certainly enhance the
capability to detect entanglement in the examples we have
presented. Studying topological phases [77], where entan-
glement could be revealed by string-order-parameters,
via specific entanglement witnesses inferred by our data-
driven method, represents also an exciting avenue for
future works. Finally, implementing our algorithm using
experimental data as input would probably reveal unfore-
seen features of many-body entanglement. This last pos-
sibility is especially relevant in the context of quantum
computation and quantum simulation, operating beyond
the capabilities of classical computers [15–21], and where
entanglement is commonly assumed to be an essential
resource [2].
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APPENDIX A: TECHNICAL CONSIDERATIONS

1. Symmetrizing the unknown p distribution

In this section, we explain how the number of free vari-
ables in the SDP algorithm solving Eq. (7) can be drasti-
cally reduced by symmetrizing the underlying p({xi, yi, zi})
distribution. This symmetrization relies only on the nature
of the data themselves, and does not assume that the
quantum state has specific symmetries.

(1) First, let us assume that the available data consist of
{CZ

i , CXX
ij , CYY

ij , CZZ
ij }, namely the magnetization along the

direction Z for all qubits, and pair correlations along the

same direction. The data we used in analyzing the quench
in the two-dimensional XX model with 1/r3 interactions,
and thermal states of the quantum Ising model, have this
structure (exchanging the role of the Z and X direc-
tion). Let us assume that a distribution p0 exists, which
reproduces the data. One may then consider the distribu-
tions p1 = p0({−xi, yi, zi}), p2 = p0({xi, −yi, zi}), and p3 =
p0({−xi, −yi, zi}). Clearly, one has that 〈zi〉p0 = 〈zi〉pk for
k ∈ {1, 2, 3}, and similarly for two-body terms: 〈aiaj 〉p0 =
〈aiaj 〉pk for a ∈ {x, y, z} and k ∈ {1, 2, 3}. In other words,
p0 reproduces the data if and only if pk reproduces the
data for k ∈ {1, 2, 3}. One may then consider the distri-
bution p4 = (p0 + p1 + p2 + p3)/4, which also reproduces
the data. Importantly, p4 is such that 〈xi〉p4 = 0 (since under
p4, xi has the same probability as −xi). Similarly, 〈yi〉p4 =
0, and two-body terms are such that 〈xiyj 〉p4 = 〈xiyj 〉p4 =
〈yizj 〉p4 = 0. Therefore, without loss of generality, one may
impose in the SDP algorithm that 〈xi〉 = 〈yi〉 = 〈xiyj 〉 =
〈xizj 〉 = 〈yizj 〉 = 0 for all i, j . One thus reduces the num-
ber of free variables in Eq. (7) from order O(N 2) to 2N (for
instance, all 〈x2

i 〉 and 〈y2
i 〉 for i ∈ [N ]).

(2) Let us then consider a situation where the data con-
sist of {CZ

i , CXX
ij + CYY

ij , CZZ
ij }, as was the case in the study

of the quench in the one-dimensional XX chain. Let us
assume that a probability distribution p({xi, yi, zi}) repro-
duces the data. We consider then the distribution p ′ =
p({yi, xi, zi}). As 〈xixj + yiyj 〉p = 〈xixj + yiyj 〉p ′ , this dis-
tribution also reproduces the data. Hence, we may as well
consider q = (p + p ′)/2, which also reproduces the data.
As q is such that 〈xixj 〉q = 〈yiyj 〉q for all pairs (i, j ), we
may assume CXX

ij = CYY
ij in the SDP algorithm without loss

of generality, and without assuming that this symmetry is
actually present in the experiment. Following similar argu-
ments, the distribution p ′′ = p({−xi, yi, zi}) reproduces the
data, since 〈xixj 〉p = 〈xixj 〉p ′′ . Considering (p + p ′′)/2, we
may impose 〈xi〉 = 0, and also 〈xiyj 〉 = 〈xizj 〉 = 0 for all
pairs (i, j ). The same reasoning apply interchanging the
role of x and y, leading to 〈yi〉 = 〈yizj 〉 = 0. In conclusion,
we may solve the SDP in the form of Eq. (7) imposing that
all terms are zero, except the data CZ

i , CXX
ij = CYY

ij [obtained
as (CXX

ij + CYY
ij )/2], and CZZ

ij ; and except the diagonal terms
with 〈x2

i 〉 = 〈y2
i 〉. This reduces the number of free variables

from order O(N 2) to N (for instance, all 〈z2
i 〉 for i ∈ [N ]),

greatly improving the scalability.
(3) Finally, if one only knows cij := CXX

ij + CYY
ij + CZZ

ij ,
by a similar reasoning one may consider a distribution
p({xi, yi, zi}), which is invariant under all rotations, satis-
fying 〈xi〉 = 〈yi〉 = 〈zi〉 = 0, 〈xiyj 〉 = 〈xizj 〉 = 〈yizj 〉 = 0,
and 〈xixj 〉 = 〈yiyi〉 = 〈zizj 〉. In this case, there is no free
variable at all in Eq. (7) (all two-body diagonal terms are
1/3, and the only nonzero off-diagonal entries are CXX

ij =
CYY

ij = CZZ
ij , obtained as cij /3). As was illustrated in the

case of the Werner state, testing entanglement via Eq. (7)
simply consists of checking positive semidefiniteness of
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the matrix M , defined by Mij = cij if i �= j , and Mii =
1. We emphasize that this does not assume any spatial
symmetry, and applies in particular to data with no trans-
lation invariance.

2. Robust entanglement witness from one- and
two-body correlations on N qubits

Here we provide details on the way to extract an entan-
glemenent witness in the form of Eq. (8), via semidefinite
programming. Specifically, we show how to find the noise
robustness of the entanglement contained in the data, and
derive an entanglement witness via semidefinite program-
ming. We start considering a situation where N qubits are
measured, and some of the one-body terms Ca

i and two-
body terms Cab

ij are measured. We denote generically these
data as {Cα}R

α=1 := {Ca
i , Cab

ij }, where α labels both the sites
and measurements. We assume that in total the dataset
contains R single- and two-body correlations. We define
the noise robustness as the minimal value of λ such that
{(1 − λ)Cα} is compatible with a PSD correlation matrix,
as explained in the main text [Sec. II and, in particular,
Eq. (7)]. That is, we aim at solving the problem:

min
λ≥0

λ such that,

(PSD) � 	 0, (A1a)

(data) �(n,m)(α) = (1 − λ)Cα (α ∈ [R]), (A1b)

(Pauli)
3∑

a=1

�3(i−1)+a,3(i−1)+a = 1 (i ∈ [N ]). (A1c)

The (symmetric) matrix � = (�n,m)0≤n,m≤3N is the correla-
tion matrix for the variables {1} ∪ {xi, yi, zi}N

i=1 parametriz-
ing separable states of N qubits (Sec. II), and is therefore
PSD [Eq. (A1a)]. In Eq. (A1b), we constrain the rele-
vant entries of the � matrix to reproduce the data (with
a 1 − λ noise prefactor); we introduce (n, m)(α) to denote
the pair of indices (n, m) containing the data Cα . Specifi-
cally [see Eq. (7)], Ca

i is contained in �0,3(i−1)+a, and Cab
ij

in �3(i−1)+a,3(j −1)+b. Finally, Eq. (A1c) enforces x2
i + y2

i +
z2

i = 1 in the � matrix; as this condition descends from
properties of the Pauli matrices (Sec. II), we call it the Pauli
constraint.

Standard primal form. We now rewrite in its so-called
standard primal form [25] the SDP defined in Eq. (A1):

min
X 	0

〈M , X 〉 such that,

(data) 〈Adata
α , X 〉 = Cα (α ∈ [R]),

(Pauli) 〈APauli
i , X 〉 = 1 (i ∈ [N ]). (A2)

We introduce the matrix scalar product 〈X , Y〉 = Tr(X TY)

= ∑
ij Xij Yij . The involved matrices have the following

block-diagonal form:

M =
(

1 0
0 0

)

, X =
(

λ 0
0 �

)

, (A3a)

Adata
α =

(
Cα 0
0 data

α

)

, APauli
i =

(
0 0
0 Pauli

i

)

,

(A3b)

where the  matrices are given by

(
data

α

)

n,m =
{

1 if (n, m) = (n, m)(α)

0 otherwise , (A4a)

(
Pauli

i

)

n,m =
3∑

a=1

δn,mδm,3(i−1)+a. (A4b)

The SDP, Eq. (A2), is equivalent to the problem, Eq. (A1),
of finding the minimal noise λ for which the � matrix in
Eq. (7) becomes positive semidefinite, for a set of noisy
data {(1 − λ)Ca

i , (1 − λ)Cab
ij }. Therefore, an optimal solu-

tion λ∗ > 0 implies that the given data are not compatible
with a separable state, hence resulting in entanglement
detection.

Dual form. If that is the case, one can derive an entan-
glement witness by considering the so-called dual problem
[25] corresponding to Eq. (A2):

max
�w,�wPauli

R∑

α=1

wαCα +
N∑

i=1

wPauli
i such that,

R∑

α=1

wαAdata
α +

N∑

i=1

wPauli
i APauli

i � M . (A5)

Using the expressions of the matrices M and A’s [Eqs. (A3)
and (A4)], we rewrite Eq. (A5) as

max
�w,�wPauli

�w · �C +
N∑

i=1

wPauli
i such that,

�w · �C ≤ 1
R∑

α=1

wαdata
α +

N∑

i=1

wPauli
i Pauli

i � 0. (A6)

We denote {�w∗, (�wPauli)∗} the optimal solution to this dual
problem.

Strong duality. As for all semidefinite programs [25],
any primal feasible X [that is, a PSD matrix X 	 0 sat-
isfying the constraints in Eq. (A2)] yields an upper bound
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to any dual feasible [that is, any {wα , wPauli
i } satisfying the

constraints in Eq. (A5)]. Indeed, for any such feasible X
and �w, we have 〈M , X 〉 −∑

α wαCα −∑
i wPauli

i = 〈(M −∑
α wαAdata

α −∑
i wPauli

i APauli
i ), X 〉, where we used the con-

straints in Eq. (A2). Using then the constraint in Eq. (A5),
we notice that (M −∑

α wαAdata
α −∑

i wPauli
i APauli

i ) 	 0.
As X 	 0, and using the fact that 〈Y, X 〉 ≥ 0 for any
two PSD matrices Y and X , we conclude that 〈M , X 〉 −∑

α wαCα −∑
i wPauli

i ≥ 0. In particular, the primal opti-
mum upper bounds the dual optimum: λ∗ ≥ �w∗ · �C +∑

i(w
Pauli
i )∗, a property known as weak duality [25]. In our

case, the primal and dual optima are actually equal, as a
consequence of strong duality, which holds for our prob-
lem. A sufficient condition for strong duality to hold [25]
is that both primal and dual problems are strictly feasible.
The primal problem is strictly feasible if one can find a
positive definite matrix X � 0 satisfying the constraints
in Eq. (A2): such strictly feasible X is readily obtained
by choosing λ = 1 and � = 1/3 in Eq. (A3) [or, equiva-
lently, in Eq. (A1)]. The dual problem is strictly feasible if
one can exhibit some {wα , wPauli

i } satisfying the constraints
in Eq. (A6) as strict inequalities: such strictly feasible
w’s are readily obtained as wα = 0 and wPauli

i = −1 (such
that

∑
i wPauli

i Pauli
i = −1). Two important properties fol-

low from strong duality: (1) λ∗ = �w∗ · �C +∑
i(w

Pauli
i )∗;

(2) as a consequence, we also have 〈[M −∑
α w∗

αAdata
α −∑

i(w
Pauli
i )∗APauli

i ], X ∗〉 = 0. Using the expression of M
and the A’s matrices [Eq. (A3)], this implies, in par-
ticular, (1 − �w∗ · �C)λ∗ = 0. Whenever entanglement is
detected (λ∗ > 0), we have therefore �w∗ · �C = 1, so that
−∑i(w

Pauli
i )∗ = 1 − λ∗.

Entanglement witness. The coefficients w∗
α define an

entanglement witness whose separable bound is given by
1 − λ∗:

∑

α

w∗
αCsep

α ≤ 1 − λ∗, (A7)

which holds for all separable data {Csep
α } (namely, data

compatible with a separable state), and which is violated
by the data under consideration (

∑
α w∗

αCα = 1). In order
to prove this fact, we first observe that �w∗ · �Csep ≤ 1 for
all separable data �Csep (indeed �w∗ · �0 = 0 for the sepa-
rable data �0, while �w∗ · �C = 1 for the nonseparable data
�C; we conclude using the convexity of the set of sep-
arable data). Therefore, {�w∗, (wPauli

i )∗} represent a dual
feasible [Eq. (A6)] for any separable data �Csep. As a conse-
quence of duality, this provides a lower bound to the primal
optimum, which is (λ∗)sep = 0 for separable data. Hence,∑

α w∗
αCsep

α +∑
i(w

Pauli
i )∗ ≤ 0, namely Eq. (A7).

3. General formulation of the hierarchy

Building the correlation matrix. The core of our
approach is to build a suitable correlation matrix � for

the local classical variables {ni} with ni = (xi, yi, zi), akin
to Eq. (7). The following conditions are necessarily ful-
filled for all separable data (that is, data compatible with
a separable state): (1) semidefinite positivity of �; (2)
compatibility of � with the available data {Cα}; and (3)
compatibility of the local variables {ni} with local qubit
states (i.e., x2

i + y2
i + z2

i = 1). Crucially, verifying condi-
tions (1)–(3) can be cast in the form of a semidefinite
program. Generically, the � matrix is built as

� = 〈vTv〉, (A8a)

v = [f1({ni}), . . . , fM ({ni})], (A8b)

where the fi are arbitrary polynomial functions of the local
variables ni. In practice, the choice of these functions influ-
ences both the tightness and the computational cost of the
approach, and considerable flexibility is offered to find the
best trade-off between them—with the constraint that the
data {Cα} can be expressed as linear combinations of the
entries of the � matrix. Throughout this work we consid-
ered the following simple choice dictated by the nature of
the data we aimed at reproducing:

v(1) = {1} ∪ {n(i)
a ; 1 ≤ i ≤ N ; a ∈ [x, y, z]}. (A9)

As we discuss below, this defines the first level of a
(convergent) hierarchy.

Expression of the semidefinite program. For any choice
of polynomial functions fi in Eq. (A8), one may parallel
the procedure described in details for qubits in Sec. A 2,
leading a semidefinite program of the form:

min
X 	0

〈M , X 〉 such that, (A10a)

(data) 〈Adata
α , X 〉 = Cα (α ∈ [ndata]), (A10b)

(Pauli) 〈APauli
i , X 〉 = bi (i ∈ [nPauli]), (A10c)

where the matrices X , M , A’s are as in Eq. (A3). The
expression of the matrices data

α , Pauli
i , and of the param-

eters bi, depend on the specific choice of the monomials
vi. Condition (A10b) ensures that certain linear combina-
tions of entries of the correlation matrix � reproduce the
(noisy) data (1 − λ)Cα (it is possible that several indepen-
dent linear combinations reproduce the same data; hence,
the number ndata of such constraints may be larger than the
total number R of data Cα). Conditions (A10c) enforce the
compatibility of the local variables {ni} with local qubit
states.

Dual problem and entanglement witness. Exactly as for
the case discussed in Sec. A 2, if the (primal) problem,
Eq. (A10), is unfeasible, an optimal λ∗ > 0 is obtained.
One may then derive an entanglement witness by solving

010342-14



UNVEILING QUANTUM ENTANGLEMENT. . . PRX QUANTUM 3, 010342 (2022)

the (dual) problem:

max
�w,�wPauli

�w · �C +
∑

i

biwPauli
i such that,

�w · �C ≤ 1
∑

α

wαdata
α +

∑

i

wPauli
i Pauli

i � 0. (A11)

If strong duality holds (see Sec. A 2), the optimal coef-
ficients �w∗ allow one to build an entanglement witness
as in Eq. (A7). The violation of this witness by the data
under consideration ultimately certifies the presence of
entanglement in the system.

Convergence of the hierarchy. Each choice of polyno-
mial functions fi in Eq. (A8) defines a different relaxation
to the set of separable data. One may actually formulate a
systematic hierarchy of such choices, converging towards
the exact separable set. The lth relaxation level is defined
as

v(0) = {1},

u(l) =
{

l∏

r=1

n(ir)
ar

; ar ∈ {x, y, z}; 1 ≤ i1 ≤ · · · ≤ il ≤ N

}

,

v(l) = v(l−1) ∪ u(l). (A12)

Throughout this work, we considered only the first relax-
ation level defined by Eq. (A9). Crucially, the correspond-
ing hierarchy converges, in the limit l → ∞, towards the
separable set. A way to see that is to interpret the hierarchy
as Lassere’s series of relaxation for the moment problem
associated to the variables {(xi, yi, zi)}. Since the variables
satisfy the quadratic constraint (4), the relaxation meets the
Archimedean condition, which is enough to guarantee con-
vergence of the hierarchy [38]. It follows that the set of
correlations that can be recovered as moments of an overall
distribution p({ni}), i.e., the set of separable correlations,
is obtained as the asymptotic limit of the hierarchy defined
above. Therefore, if the data are incompatible with a sep-
arable state, they will be detected as entangled at a finite
level of the hierarchy—although the computation cost of
high-level tests quickly increases with l, as one needs
to manipulate a correlation matrix of size approximately
(4N )l in the semidefinite program.

Lastly, notice that one can straightforwardly define some
hybrid levels of the hierarchy, where the entries of the vec-
tor v(l) are complemented by monomials of order higher
than l. Such hybrid conditions have the flexibility of
including the knowledge of a finite amount of higher-
order correlations, while retaining the scalability of the
computational cost given by the fixed level l.

Invariance of the hierarchy under partial transposition.
In Sec. II of the main text, we already noticed that the

level-1 relaxation is left invariant by the partial transposi-
tion of any subsystem. The key observation was that partial
transposition simply amounts to a change of basis for the �

matrix—hence, positivity of � is left unchanged under PT.
The same observation carries over to arbitrary relaxation
levels [Eq. (A12)]. Indeed, the Pauli matrices are either
symmetric or antisymmetric; therefore, under PT they are
either left invariant, or transformed into their opposite. In
terms of the correlations of the ni variables [cf. Eq. (7)],
or in terms of the choice of monomials at a given relax-
ation level [cf. Eq. (A12)], it simply amounts to change the
corresponding variables into their opposite, which is again
achieved by a change of basis. Our approach therefore rep-
resents a hierarchy of conditions, which are completely
independent of the PPT-based criteria [33,34,39,40].

APPENDIX B: PROOF OF THE BIPARTITE
ENTANGLEMENT WITNESS

Here we prove the validity of Eq. (24) as a witness
of bipartite entanglement according to an even-odd parti-
tioning of the system. For the sake of completeness, we
first revise the setting and the witness expression. We
consider the bipartition A = {0, 2, 4, . . . , N − 2} and B =
{1, 3, 5, . . . , N − 1}. We introduce local phases φa(i) for
a ∈ {X , Y, Z} and i ∈ [N ], and define

2Wa =
∑

j ∈A

∑

j ′∈B

Kj −j ′Caa
jj ′ei[φa(j )−φa(j ′)] + c.c. (B1)

The coefficients Kr are given by

Kr = K−r = 2
N

N
4 −1
∑

k=− N
4 +1

exp
(

2iπ
N

kr
)

(B2)

= 2
N

[
sin(πr/2)

tan(πr/N )
− cos

(πr
2

)]

. (B3)

The violated witnesses are then of the form

WX + WY + WZ ≥ −N
2

. (B4)

Proof. The proof of this inequality is as follows. Assuming
that the state is fully separable, we have

2Wa =
N−1∑

j ,j ′=0

Kj −j ′ 〈aj aj ′ 〉ei[φa(j )−φa(j ′)]

−
∑

j ,j ′∈A

Kj −j ′ 〈aj aj ′ 〉ei[φa(j )−φa(j ′)]

−
∑

j ,j ′∈B

Kj −j ′ 〈aj aj ′ 〉ei[φa(j )−φa(j ′)]. (B5)
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We use then

N−1∑

j ,j ′=0

Kj −j ′aj aj ′ei[φa(j )−φa(j ′)]

= 2
N

N
4 −1
∑

k=− N
4 +1

∣
∣
∣
∣
∣

N−1∑

r=0

are2iπkr/N+iφa(r)

∣
∣
∣
∣
∣

2

≥ 0. (B6)

We then observe that for j , j ′ ∈ A, j − j ′ is an even integer,
and therefore, from Eq. (B3), Kj −j ′ = 1 − 2/N if j = j ′

and Kj −j ′ = −(2/N )(−1)(j −j ′)/2 if j �= j ′. Therefore, we
have

∑

j ,j ′∈A

Kj −j ′aj aj ′ei[φa(j )−φa(j ′)]

=
∑

r∈A

a2
r − 2

N

∣
∣
∣
∣
∣

∑

r∈A

(−1)r/2areiφa(r)

∣
∣
∣
∣
∣

2

≤
∑

r∈A

a2
r . (B7)

By the same argument, observing the j − j ′ is an even
integer for j , j ′ ∈ B, we have

∑

j ,j ′∈B

Kj −j ′aj aj ′ei[φa(j )−φa(j ′)] ≤
∑

r∈B

a2
r . (B8)

We therefore have

2Wa ≥ −
N−1∑

r=0

〈a2
r 〉. (B9)

Combining these inequalities for a ∈ {X , Y, Z}, we con-
clude that

2(WX + WY + WZ) ≥ −
N−1∑

r=0

〈x2
r + y2

r + z2
r 〉 ≥ −N ,

(B10)

where in the last step we use that the constraint (4) is
obeyed by fully separable states. This achieves the proof
that Eq. (B4) is an entanglement witness. Combining with
the observation made at the beginning of Sec. IV C, we
conclude that a violation of such a witness directly implies
bipartite entanglement, since its expression involves only
cross correlations between A and B subsystems. �

APPENDIX C: RELATION TO PREVIOUS
ENTANGLEMENT CRITERIA

Here we show how one can recover some previously
known entanglement criteria as a consequence of the PSD
condition introduced in Sec. II.

1. Recovering the covariance matrix criterion

In this subsection, we show how the so-called covari-
ance matrix criterion (CMC) [26] for detecting entan-
glement in a multiqubit state is a consequence of our
approach. In order to state the CMC within the nota-
tions of this paper, we consider three qubits (the N -qubit
case requires a trivial generalization). Applying the CMC
requires the knowledge of all one-body and two-body cor-
relations for all pairs, and all Pauli matrices. We denote
Ci the vector (CX

i , CY
i , CZ

i ), and Cij the 3 × 3 matrix with
entries Cab

ij [see Eq. (1) for the definition of Ca
i and Cab

ij ].
The CMC states that if the three-qubit state is fully sepa-
rable, then there exist three real symmetric 3 × 3 matrices
ρi 	 0, with Tr(ρi) = 1, such that

⎛

⎝
ρ1 C12 C13
C21 ρ2 C23
C31 C32 ρ3

⎞

⎠ 	

⎛

⎜
⎝

CT
1

CT
2

CT
3

⎞

⎟
⎠
(
C1 C2 C3

)
. (C1)

On the other hand, the first level of our hierarchy [see
Eq. (7)] implies that

� =

⎛

⎜
⎜
⎜
⎝

1 C1 C2 C3

CT
1 σ1 C12 C13

CT
2 C21 σ2 C23

CT
3 C31 C32 σ3

⎞

⎟
⎟
⎟
⎠

	 0, (C2)

with σi =
⎛

⎝
〈x2

i 〉 〈xiyi〉 〈xizi〉
〈xiyi〉 〈y2

i 〉 〈yizi〉
〈xizi〉 〈yizi〉 1 − 〈x2

i 〉 − 〈y2
i 〉

⎞

⎠, where 〈. . . 〉

denotes an average over the (classical) p distribution defin-
ing a separable state (Sec. II). Clearly, σi 	 0 is a sym-
metric matrix of unit trace. Furthermore, positivity of �

implies Eq. (C1). Notice that our approach is more general
than the approach underlying the CMC, for at least three
reasons: (1) we can naturally deal with missing entries
in the correlation matrix (and actually leverage on it to
strongly reduce the computational cost, see Appendix A 1);
(2) the criterion of Eq. (7), which implies the CMC is only
the first level of a systematic hierarchy converging towards
the separable set; (3) we provide a systematic approach
to incorporate the knowledge of any correlation function,
beyond one- and two-body considered in the CMC.

2. Recovering the generalized spin-squeezing
inequalities

Here, we show how the generalized spin-squeezing
inequalities derived in Ref. [27] can be recovered within
our approach. These inequalities are entanglement wit-
nesses invariant under all permutations of the qubits, and
may be defined in terms of first and second moments aver-
aged over all permuatations: {ma, Caa; a ∈ [x, y, z]} with
ma = N−1∑N

i=1 Ca
i and Caa = [N (N − 1)]−1∑

i�=j Caa
ij .
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They consist of the following eight inequalities, valid for
all fully separable states [Eq. (50) of Ref. [27] ]:

Cxx + Cyy + Czz ≤ 1,

Cxx + Cyy + Nm2
z − (N − 1)Czz ≤ 1,

Cyy + Czz + Nm2
x − (N − 1)Cxx ≤ 1,

Czz + Cxx + Nm2
y − (N − 1)Cyy ≤ 1,

Cxx + N (m2
y + m2

z ) − (N − 1)(Cyy + Czz) ≤ 1,

Cyy + N (m2
z + m2

y) − (N − 1)(Czz + Cxx) ≤ 1,

Czz + N (m2
x + m2

y) − (N − 1)(Cxx + Cyy) ≤ 1,

N (m2
x + m2

y + m2
z ) − (N − 1)(Cxx + Cyy + Czz) ≤ 1.

In order to prove these inequalities within our approach,
we assume that there exists a probability distribution
p[{xi, yi, zi}] reproducing the data. Following the sym-
metrization procedure described in Appendix A 1, without
loss of generality we may choose the p distribution invari-
ant under all permutations. We then consider as monomials
u = (1, x1,

∑N
i=1 xi), and build the corresponding correla-

tion matrix �x = 〈uTu〉, where the average is over the p
distribution. Using the invariance of p under permutations
of the qubits, we obtain

�x =
⎛

⎝

1 mx Nmx
· 〈x2

1〉 〈x2
1〉 + (N − 1)Cxx

· · N 〈x2
1〉 + N (N − 1)Cxx

⎞

⎠ 	 0. (C3)

Positivity of �x implies that

det
(

1 Nmx

Nmx N 〈x2
1〉 + N (N − 1)Cxx

)

≥ 0

and

det

(
〈x2

1〉 〈x2
1〉 + (N − 1)Cxx

〈x2
1〉 + (N − 1)Cxx N 〈x2

1〉 + N (N − 1)Cxx

)

≥ 0.

From these inequalities, we obtain the conditions

Cxx ≤ 〈x2
1〉, (C4)

Nm2
x − (N − 1)Cxx ≤ 〈x2

1〉. (C5)

For the same reason, we also have

Cyy ≤ 〈y2
1 〉, (C6)

Nm2
y − (N − 1)Cyy ≤ 〈y2

1 〉, (C7)

Czz ≤ 〈z2
1〉, (C8)

Nm2
z − (N − 1)Czz ≤ 〈z2

1〉. (C9)

Combining these inequalities, and using the property 〈x2
1 +

y2
1 + z2

1〉 ≤ 1, we recover the eight inequalities of Ref.
[27]. The approach presented in this paper is, however,
much more general. Notice also that a straightforward
extension to qudits allows one to recover the results of
Ref. [70].
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