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Waveguide QED has emerged as a powerful analog quantum simulator due to the possibility of medi-
ating versatile spin-spin interactions with tunable sign, range, and even dimerization. Yet, despite their
potential, the many-body phases emerging from these systems have only been scarcely explored. Here, we
characterize the many-body phases of a large class of spin models that can be obtained in such waveguide-
QED simulators and uncover, importantly, the existence of symmetry-protected topological phases with
large-period magnetic orderings with no analog in other state-of-art simulators. We explain that these
phases emerge from the unique combination of long-range and dimerized interactions appearing in these
platforms and propose several experimental observables to characterize them. Finally, we also develop an
adiabatic protocol to prepare such states and analyze its performance with the main decoherence source of

these systems.
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I. INTRODUCTION

The importance of quantum spin problems in several
areas of physics and computation is hard to overestimate
[1]. For example, interacting spin systems are believed to
be instrumental for understanding the behavior of high-
T. superconductors [2] or exciton transport [3], they are
paradigmatic models of quantum phase transitions [4],
and, beyond physics, their ground states can codify the
solution of many NP-hard optimization problems [5]. Irre-
spective of the context in which they appear, understanding
their many-body behavior represents an outstanding com-
putational challenge due to the exponential growth of
their Hilbert space with the system size. This difficulty
becomes critical for frustrated spin systems [6], where the
classical algorithms that avoid the exponential growth of
resources required, such as Monte Carlo, do not perform
well. An alternative way to study these problems consists
in building analog quantum simulators—well-controlled
systems that replicate the interactions of the models to
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be understood [7]. In this way, by preparing, manipulat-
ing, and measuring the simulator, one can get information
about the spin model that would be difficult to obtain
otherwise.

Among the different platforms available, atomic systems
in their different incarnations are nowadays the leading
technology for analog simulation of quantum magnetism.
For example, the internal levels of trapped-ion chains can
behave as effective spin systems that interact through their
collective motion [8], with interactions decaying generally
as 1/7* with the distance » between ions [9]. These simu-
lators have been experimentally realized by many groups
already [10—15], who have used them, for example, to
probe the phase diagram of interacting spin chains [13].
Another implementation that can be used to simulate quan-
tum spin models consists of neutral atoms trapped in
optical lattices. To do so, one can define a pseudospin
degree of freedom either by using the occupation difference
between neighboring lattice sites [16—20] or the hyperfine
levels of the atoms [21-28], leading to ZZ or Heisenberg-
type interactions, respectively. Unfortunately, irrespective
of the method chosen, the interaction range is restricted
to nearest neighbors, limiting the frustration that can be
obtained in these systems. To extend this range, one can
excite the atom to a Rydberg state, yielding 1/7° (ZZ) or
1/r* (XX) interactions depending on the parity of the Ryd-
berg state [29—34]. This increase in the interaction range
comes at the price of introducing additional noise into
the system due to the Rydberg-state lifetime, although it
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has still enabled the observation of novel frustrated spin
many-body phases experimentally [32] coming from the
longer-range nature of the interactions.

Despite the unquestionable success of all these plat-
forms, the models they can simulate are limited by the
interactions that appear naturally in these systems, which
generally have a fixed range, sign, or type. Waveguide-
QED setups, where quantum emitters couple to one-
dimensional (1D) propagating fields [35—53], have been
suggested as a powerful alternative paradigm to study
quantum magnetism, circumventing these tunability lim-
itations [54—60]. The key idea is that when the transition
frequencies of the emitters are tuned to a photonic band
gap, the photons localize around them, forming bound
states [61—63] that can mediate coherent spin interac-
tions between the emitters. The sign, range, and even
dimerization of these bound-state-mediated interactions
can be largely tuned by either properly engineering the
waveguide or through a Raman-assisted process [54—59].
Besides, by combining several Raman-assisted processes,
one can further tune the nature of the interactions from the
naturally appearing exchange interactions to the Ising type
[54] and combinations of them [55,56]. These exciting
perspectives have triggered many experimental advances
in the field and nowadays we count with many plat-
forms where natural [36,37,40,42—44] and artificial atoms
[45-47], superconducting qubits [49—52], or even sim-
ulated emitters [53] couple to waveguides with pho-
tonic band gaps. Remarkably, despite their great poten-
tial for quantum simulation, the expected many-body
phases that emerge in these systems have only been
scarcely investigated. One of the first works on this issue
is Ref. [64], which explores the interplay between the
motion and the internal (spin) degrees of freedom of an
ensemble of quantum emitters coupled to an undimer-
ized photonic waveguide. Another interesting possibility
is the simulation of disordered models, where the posi-
tion of the emitters is random, as studied, for example, in
Ref. [65].

In this paper, we cover this gap, providing the first com-
plete analysis of the many-body spin phases that appear
in a large variety of waveguide-QED setups. Based on
previous works [54—59], we consider a generalized XXZ
spin model with interactions that originate in a pho-
tonic Su-Schrieffer-Heeger (SSH) waveguide. This kind
of waveguide can produce long-range dimerized (some-
times referred to as chiral) interactions with staggered
sign and it describes both the trivial and topological-
waveguide cases. Using density-matrix renormalization-
group techniques [66,67] and exact diagonalization, we
find and characterize frustrated many-body phases with
long-range magnetic order emerging from the compe-
tition of all these features and propose observables
to characterize them experimentally. Importantly, we
show that some of these phases are symmetry-protected

topological phases displaying quantized many-body Berry
phases [68—70]. Our results thus demonstrate the poten-
tial of waveguide-QED platforms as an analog quan-
tum simulator of frustrated spin models, including those
considering the interplay between topology and long-
range interactions, which have aroused a lot of interest
recently [71-74].

The paper is structured as follows. In Sec. II, we
describe the model that we consider, explaining the shape
of the waveguide-mediated interactions in different band-
gap configurations. In Sec. III, we study the many-body
phases that emerge in conventional (undimerized) waveg-
uides, where both long-range and/or staggered-sign inter-
actions appear, depending on the type of band gap chosen.
Then, in Sec. IV, we consider the case of topological
waveguides [52,58,59], where, in addition, the dimeriza-
tion of the interactions can be tuned by modifying the
properties of the waveguide. In Sec. V C, we design and
benchmark an adiabatic protocol to prepare the most rel-
evant phases and study its resilience to one of the most
relevant decoherence sources, that is, emitter excitation
loss. Finally, we summarize our findings in Sec. VI and
conclude in Sec. VIIL.

II. GENERALIZED SPIN MODELS IN
WAVEGUIDE QED

The system we study consists of N quantum emit-
ters that interact locally with the photonic analog of the
SSH model [58,59]. This waveguide can be described
as a set of tunnel-coupled cavities with alternating hop-
ping amplitudes J (1 % §), all with the same resonant fre-
quency w, [see Fig. 1(a)]. This model covers both the
cases of conventional waveguides, if § = 0, where a sin-
gle energy band with a simple dispersion appears, w (k) =
w, — 2J cos(k), and the case of dimerized waveguides, if
8 # 0, where the model displays two energy bands [see
Fig 1(b)] and where the waveguide may have a nontriv-
ial topology if § < 0, according to our choice of the unit
cell.

The emitters are coupled to the waveguide through an
electric-dipole transition appearing between a ground and
an optically excited state, which has a relative detuning
A with respect to the mean frequency w, of the pho-
tons in the photonic waveguide. In the simplest scenario,
these two levels define a qubit or spin, the dipole oper-
ator oc 8}, of which couples with the electric field inside
the cavity, o¢ (a + a'); a (a") annihilates (creates) a photon
in the cavity. Within the usual rotating-wave approxima-
tion, the interaction Hamiltonian describing this coupling
is approximately Y, (a'S; + H.c.) [75]. Assuming that
the transition frequencies of the emitters lie in the band
gap and that the bath time scales are much faster than
those for the emitters (Born-Markov conditions) [75], one
can adiabatically eliminate the waveguide photons and
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FIG. 1. Waveguide-mediated interactions. (a) A schematic of

the system under consideration. The blue (red) dots represent
spins in the 4 (B) sublattice and the colored arrows represent
couplings between different spins. (b) The energy bands of the
photonic SSH model for § = 0.5. The shaded blue areas mark
the upper, middle, and lower band gaps, as opposed to the band
ranges (green shaded areas). (c) The interaction constants as
a function of the distance for different values of the emitter
transition frequency A, as indicated by horizontal segments on
the right-hand side of plot (b). Different spin interactions are
colored as in the system diagram (a). Positive (negative) cou-
pling constants are plotted above (below) the gray horizontal
line.

obtain a coherent spin exchange interaction approximately
of the form (S}S,, + H.c.) [54,55] for all emitter pairs.
However, in atomic systems one can also define these
spins with two hyperfine levels of the ground-state man-
ifold and use Raman-assisted processes to couple them
to the waveguide. In this way, one can obtain more gen-
eral light-matter interaction Hamiltonians, e.g., approxi-
mately (alS;‘ + H.c.), (alS; + H.c.), etc., depending on the
Raman configuration chosen [54-56] (Appendix A), which
will result in different spin-interaction processes (S;S},,
S28% ., ...). Thus, for the sake of generality and to compare
with previous works about other systems [76], we study the
emergent many-body phases of the following generalized

XXZ model:
He = Y [ 550 (51810 + 1)
Jj n>0 o,B
+ cos6S; , ;Jrn,ﬂ] MZZ i ©)

written here in terms of spin-1/2 operators S/, and v €

{x,y,z} and ladder operators Si =5,=* zSy The Latin
subscripts label different unit cells wh1le Greek subscripts
label different sublattices «, 8 € {4, B} [for a schematic,
see Fig. 1(a)]. For convenience, we sometimes use a single
subscript to label the spins in the chain; the correspon-
dence between the two labelings is given by S5, = §/ ; and

S5 +1 = S} p- This generalized model includes

(a) A tunable weight between the spin exchange and ZZ
interactions, parametrized by an angle 6, which can
be physically obtained by tuning the weight of dif-
ferent Raman transitions [54—56]. For example, 6 =
7 /2 corresponds to standard exchange interactions
that appear naturally in photon-mediated interac-
tions, while 6 = /4 corresponds to the isotropic
Heisenberg model.

(b) A parameter p that plays the role of an external
magnetic field or chemical potential that fixes the
number of excitations in the ground state. Physi-
cally, this would correspond either to the energy of
the optical transition, if one were to define the spin
with the ground and excited states of the emitter; or
to a tunable energy (through the frequencies of the
Raman lasers) if one were to define the spin using
the hyperfine levels of the emitter.

(c) Waveguide-mediated interactions with coupling
constants Jy' p , which determine how spins » unit
cells apart interact. For simplicity, we assume that
both the exchange and the ZZ terms have the same
functional form. Importantly, the functional form
of J2¥ is dictated by the shape of the photonic
component of the bound states, depending on the
particular band gap with which the emitters are in
resonance. For a nonzero dimerization (§ # 0), the
energy spectrum of the SSH photonic bath displays
three band gaps in the single-excitation sector span-
ning the ranges (—oo, —2J), (—2J1§|,2J8]), and
(2J, 00), which we label as the lower (LBG), middle
(MBG), and upper (UBG) band gap, respectively, as
depicted in Fig. 1(b). Each one gives rise to quali-
tatively different coupling constants J," P as shown
in Fig. 1(c). There, we observe how it is possible
to go from long-range antiferromagnetic interac-
tions in the LBG to fully dimerized couplings in
the MBG and staggered-sign long-range hoppings
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in the UBG, which demonstrates the potential of this
platform to simulate a wide variety of spin models.

The exact form of the coupling constants, J," ? has
been calculated in Ref. [58]. Interestingly, they can be
parametrized by just two parameters (see Appendix A): the
interaction length & € [0, 00) and the effective dimeriza-
tion constant:

_ |JAB|_|JBA|

S

For convenience, we also define the ratio between cou-
pling constants connecting spins in the same or a different
sublattice:

nzz"]—AA' [e”'/5(1 = 869]2 €[0,1].  (3)
\JAB| |54 |

In terms of these parameters, the coupling constants read
as follows:

JAB = _J(1 + 85, 4)
JE = —_J(1 = §)e~ "V, (5)
JAABB — T sign(A)ne” "D/, (6)

for |A| > 2J (outer band gaps, UBG and LBG), while

JAB =7 sign(8)(1 + 8)(—=1)"e™"/% (7)
JBA —J sign(8)(1 — 8)(—=1)""te==D/5 = (8)

JHMIBE = T sign(A)p(—1)""em "V ©)
for |A| < 2J18| (MBG); n > 1, except for J&, which is
the only nonzero coupling constant between spins that
belong to the same unit cell. J is the overall coupling
strength, which is specific to each implementation. In
the case of emitters with a single dipolar transition, it
behaves as J ~ g%/ Acdge, Where g denotes the light-
matter coupling strength and Acgee = |A — Wedge| 1s the
distance (in frequency) from the transition frequency of the
emitters to the closest band edge. In some experimental
platforms, such as superconducting circuits, these quan-
tities can be tuned directly, while in others, they depend
on other experimentally accessible parameters. This is the
case, for example, for cold atoms in state-dependent opti-
cal lattices [77,78] or atomic arrays near photonic crystals
[54,79], both of which use Raman lasers (external driv-
ings) to modify the optical properties of the emitters. In
those cases, g and Aqge Will depend on the amplitudes and
frequencies of the Raman lasers.

The values of & and § can be tuned to a great extent by
tuning different system parameters. The interaction length
diverges as & ~ —1/,/Aqqqe as the emitter detuning gets

closer to any band edge, while sign(8) = sign(8), imply-
ing that both the effective spin model and the underlying
bath have a similar dimerization pattern (for a detailed
account of their dependence on the different system param-
eters, see Appendix A). However, each value of the pair
(£,8) is possible only in either the outer band gaps or in
the inner band gap but not both. In the outer band gaps
18] > (1 — e '/8)/(1 4+ e~ 1/%), whereas in the inner band
gap the same inequality is fulfilled, replacing “>" by “<.”
Consequently, in the outer band gaps, interactions con-
necting spins in the same sublattice are weaker than those
connecting spins in different sublattices, n < (1 — 18]); in
the MBG, by contrast, their strength lies in between, (1 —
18]) < n<({1+ 18]), so the system resembles a ladder
more than a simple 1D chain.

In the following sections, we analyze the many-body
phases emerging from this generalized spin Hamiltonian,
starting in Sec. III with the case of a standard waveg-
uide, where § = 0 and only the LBG and UBG exist. Then,
in Sec. IV, we move to the more complex scenario with
8 # 0. But before doing so, we point out to the reader two
important symmetries of the model. The Hamiltonian is
invariant under rotations about the z axis of all the spins
forming the chain; consequently, the total magnetization
m=73_,S;, isconserved and we can reduce the problem
of ﬁndmg the ground state of the system to the calculation
of the ground state within each fixed-magnetization sub-
space. Furthermore, it suffices to do so for u = 0, since the
chemical potential term is proportional to the identity oper-
ator in each fixed-magnetization subspace (the eigenstates
of H are the same for all values of y and the eigenener-
gies depend linearly on p at an m-dependent rate). Another
symmetry of the model is the invariance of the Hamilto-
nian under the simultaneous flip of all spins accompanied
by the change © — —u. Thus, we can limit the study to
the phases that appear for u > 0.

Lastly, we point out that in order to characterize the
different many-body phases, we mostly use correlation
functions of the form (S”aSj" p) or (S]”aS]” ﬂ) (LS}V’Q)(S'JV,ﬁ)
(this last form is usually referred to as “quantum cor-
relations”). Throughout the paper, we use the notation
(O) to denote the expectation value of the operator O in
the ground state. Since the ground states of the models
here studied have a definite number of excitations, the
expectation values <S])'€,a) = (Sjy’a) = 0, so both forms of
the correlation functions coincide for v = x,y. For v =z,
however, the expectation values (S7 ) might differ from
Zero.

III. MANY-BODY PHASES IN
STANDARD-WAVEGUIDE QED

In this section, we analyze the ground states of the gen-
eralized XXZ Hamiltonian in the case where the waveg-
uide mediating the interactions has no dimerization (§ = 0,
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also implying § = 0). In that case, the MBG disappears and
the waveguide-mediated interactions in the LBG and UBG
simplify to

JiB = —Je "%, (10)
JEA = e~V (11)
JHIBE = Jsign(A)e /28 em(mD/E (12)

Alternatively, if we use a single-index labeling of the spins
along the chain, the coupling constant giving the strength
of the interaction between the ith and j th spin is

~ . 1-]i—/|
Jy = —J[—sign(A)]T e iz (13)

In this regime, the main differences of the waveguide-QED
simulator as compared with other analog spin simulators
are the possibility of obtaining longer-range interactions,
since & can be tuned to be very large [54], and the appear-
ance of staggered-sign interactions in the UBG. In the
following, we first analyze what happens in the limit-
ing cases of nearest-neighbor (NN) (in Sec. III A) and
infinite-range interactions (in Sec. III B), which are exactly
solvable and which help us to better understand the phases
that appear for intermediate-range interactions, studied in
Sec. III C. In addition, the case of infinite-range interac-
tions is interesting because it connects with the spin models
that can be obtained in cavity-QED setups [80,81].

A. Nearest-neighbor models

The limit of NN interactions is the same for both the
models in the upper and lower band gaps: J§'# = JP =
—J, while the rest of the couplings are zero. It occurs
when A is far detuned from the energy band of the bath.
This limit corresponds to the well-known XXZ Heisen-
berg model, an integrable model that can be solved by
Bethe ansatz techniques [82]. Its phase diagram is shown
in Fig. 2(a). Three distinct phases can be distinguished:

(1) Ferromagnetic phase. The ground state is the state
in which all spins are aligned in the z > 0 direc-
tion for u > 0, which we can pictorially represent as
M1 ... Ttis a product state and, therefore, it fea-
tures no quantum correlations whatsoever between
any two spins. The elemental excitations correspond
to a single spin flip, 11411 .... If the xx- and yy-
interaction terms are nonzero, these excitations can
hop between neighboring spins, so the eigenstates
of the m = N/2 — 1 subspace are spin waves that
carry spin 1, also known as magnons. Assuming that
u > 0, the single-magnon spectrum is given by

2]

(14)

N N
=sinf cosk+cosf | ——1 —i — =1,
4 J \ 2

(a) 2.5 0.5
LBG and UBG (£ = 0)
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FIG. 2. The nearest-neighbor XXZ model (¢ = 0, § = 0). (a)
The ground-state magnetization, m = (3 , S ,), as a function
of the external magnetic field and the anisotropy angle for the
nearest-neighbor XXZ spin model. The results are obtained using
the density matrix renormalization group algorithm for a chain
with N = 50 spins and open boundary conditions (OBCs). On
top of this, we plot the analytically obtained boundaries (black
and white lines) of the antiferromagnetic (A), ferromagnetic
(F), and planar (P) phases in the thermodynamic limit. (b) The
quantum correlations C,,(r) = (Sy »Sy 24,) — (Sy/2) Sy /24,) N
the ground state with zero magnetization (m = 0) and different
values of the anisotropy angle. In the antiferromagnetic phase
(6 = 0.1), the correlations on the z axis reach a constant value,
while the correlations in the x-y plane decay exponentially. At the
isotropic point (§ = m/4), the correlations in any spin direction
are the same and they decay algebraically. In the planar phase
(60 = 0.4m), correlations also decay algebraically but they are
larger in the x-y plane than on the z axis.

where k£ is the magnon quasimomentum. Com-
puting the minimum of this dispersion relation,
one can readily find the energy gap between the
ground state and the first excited state as AE/J =
—|sinf| — cos O + ,u/] . The critical values of the
model parameters at which there is a phase transi-
tion from the ferromagnetic phase to other phases of
the model are the points where AE = 0 [shown as a
black curve in Fig. 2(a)].

(2) Néel phase (aka antiferromagnetic phase). At the
point & = 0, for positive zz interactions, the classical
ground state is the state in which spins are point-
ing in opposite directions in an alternating fashion,
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M1 ..., also known as antiferromagnetic order.
The lowest-energy excitations in this phase cor-
respond to spinons, fermionic quasiparticles that
carry spin 1/2. They correspond to domain walls
between the two possible antiferromagnetic order-
ings M1 4111 .... The magnetization can only
change in integer steps, so these excitations are cre-
ated in pairs as the magnetization increases. In the
vicinity of the Ising limit, for small, finite xx and yy
interactions, this picture is still valid. The ground
state features long-range antiferromagnetic corre-
lations and the elemental excitations are spinons,
which can now hop along the chain by two sites.
Using perturbation theory [83], one can compute
the energy of two spinons (states that belong to the
subspace with m = 1) as €(k;) + €(k,), where

k 0
ﬁ & (N —2) + sinf cos 2k — %

7 4
(15)

They form a continuum of scattering eigenstates.
Therefore, close to the classical antiferromagnetic
Ising model (9 — 0), the energy gap is AE/J ~
cos@ — 2|sin@| — p1/J, which gives a good approx-
imation of the critical line shown in Fig. 2(a) in
white. The exact energy gap in the thermodynamic
limit can be obtained using the Bethe ansatz [84],
which is the formula we use in Fig. 2(a).

Planar phase (aka XY phase or Tomonaga-Luttinger
phase). This phase is fundamentally different from
the previous two, as the system is gapless, i.e., exci-
tations over the ground state can be produced at
arbitrary small energies. In these situations, the sys-
tem is said to be in a critical phase. This can be
better understood at the XX limit (8 — 7 /2), where
the spin chain can be mapped to a system of free
fermions hopping on a 1D lattice via the Jordan-
Wigner transformation [85] (see Appendix E).
These fermions have the familiar dispersion relation
e(k) = 27 cos(k) — p and the ground state can be
constructed as the Slater determinant of all single-
particle states with energies € (k) < 0. For || < 27,
the Fermi level lies somewhere in the middle of the
energy band and excitations can be created adding
fermions with energies above the Fermi level (pos-
sibly removing them from energy states below it).
Being a critical phase, correlations decay as a power
law (algebraically), whereas in gapped phases they
decay exponentially with increasing distance [see
Fig. 2(b)]. In contrast to the (anti)ferromagnetic
phases, correlations in this phase occur predomi-
nantly in the x-y plane. Away from the XX limit, the
Jordan-Wigner transformation maps the spin chain
to a model of interacting fermions in 1D, which

is the subject of the so-called Tomonaga-Luttinger
theory [86].

Since the system is bipartite—interactions only involve
spins that belong to different sublattices—the phase dia-
gram is symmetric with respect to the change 6 — —0.
To understand why, note that a transformation with U =
Hj i2§; 4 inverts the sign of the flip-flop terms of the
Hamiltonian (i.e., interactions in the x-y plane), while it
preserves the total magnetization.

B. Infinite-ranged interactions

The addition of couplings beyond nearest neighbors
breaks the sublattice symmetry. The system is no longer
bipartite—spins couple to other spins in the same and the
opposite sublattice—making the phase diagram asymmet-
ric with respect to the change & — —6. This asymmetry
can be clearly appreciated in the limit of infinite-range
interactions, shown in Figs. 3(a) and 3(b). These models
occur in the upper and lower band gaps as the emit-
ter transition frequency gets closer to the band edges
(A — —2J for the LBG and A — 2J for the UBG). We
should remark, however, that the Markovian approxima-
tion becomes worse as the frequency of the emitters gets
closer to the band edges, so this limit would be hard to
achieve in actual experiments. In any case, understanding
the physics of these models allows us to better comprehend
what happens at intermediate-interaction ranges.

In the LBG, the coupling constants of the infinite-
range model are J" P — _J for all n, so the Hamiltonian
can be written in terms of the collective spin operators
S" = aSner vV € {4, —,2}, as

in 6
[ﬂ (STS™ +S7S%) + cosb (SZ)Z} — us,

2
(16)

H =

N

apart from an unimportant constant term. The eigenstates
of this Hamiltonian are the Dicke states |s,m, A), which
are also eigenstates of the collective spin operators S? and
S7 with eigenvalues s(s + 1) and m, respectively [87]. The
energies of these states are given by

E(s,m) = (s,m,\| H |s,m,})

|

{sin@ [s(s + 1) — m*] + cos @ m?*} — pm.
(17)

The phase diagram shown in Fig. 3(a) can be obtained
minimizing £ (s, m):

(a) For 6 < 0, the ground state has maximum total
angular momentum s = N/2. The ground state
is, thus, nondegenerate and invariant under any
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FIG. 3. Undimerized infinite-interaction-range models in the

LBG and UBG. (a),(b) Ground-state-magnetization phase dia-
grams for a chain with N = 50 spins. (c),(d) An enlargement
of the phase diagrams for small values of . In order to dis-
tinguish the different magnetization sectors, the color scale used
(ticks under the color bar) is different from the one used in the
upper panels (ticks above the color bar). (e),(f) Correlations in
the ground state for © — 07; the continuous (dashed) lines in
panel (f) show the correlations between spins that belong to the
same (opposite) sublattice.

permutation of the spins in the chain. Consequently,
the correlations are the same regardless of the dis-
tance separating the spins. For a ground state with
magnetization m, they are given by

(5,5 ) = =N (18)
RETPETAN(N — 1)
N? — 4m?
Sr 5% s s S 19
< o ]ﬁ> ( i, ],3) SN(N—I)’ ( )

forall (i, @) # (7, B).

(b) For 6 > 0, the ground state has minimum total
angular momentum compatible with the ground-
state magnetization, s = m. Thus, the ground state
is degenerate for all values of m, except for m =
N/2 (ferromagnetic phase). This degeneracy is
associated with the permutation quantum number
A [87]. Nevertheless, if we consider a fully mixed

state within the ground-state manifold (a thermal
state p oc e P in the limit B — o0), the correla-
tions become invariant under any permutation of the
spins forming the chain; the zz correlations in this
case are the same as in Eq. (18), while the xx and yy
correlations are given by

2m — N
x g LS = e @
< i,o ],/3> (Sla‘g] ﬂ) 4N(N ) ( 0)

Note that in this model, all spins have the same polariza-
tion, (S7,) = m/N, regardless of the value of 6.

As for the infinite- -range model in the UBG, the cou-
pling constants are J, ABIBA — _ JA4/BB — _F for all n. The
Hamiltonian can be written in this case as

=-3 Z [sm@ (SEsy +S; S+)+cos6(SZ):|

a=A,B
Ty [Sme (SIS5 +S755) + cos@SzSz]
(45, @)

with collective spin operators Sy =) Sy, and v e
{+, —,z}. This Hamiltonian preserves the total angular
momentum in each sublattice s4 and sp and the total mag-
netization m. Its matrix representation in the subspace with
fixed (s4,53,m) can be cast into tridiagonal form (see
Appendix C), so it can be easily diagonalized for a large
number of spins. In Fig. 3(b), we show the phase diagram
obtained for a chain with N = 50 spins. As it happens in
the infinite-interaction-range model in the LBG, for the
infinite-interaction-range model in the UBG the degener-
acy of the ground state also depends on the ration of zz to
flip-flop interactions:

(a) For —m/2 <6 < m, the ground state is unique
and is fully symmetric under permutations of spins
within each sublattice. Thus, correlations do not
depend on the distance separating the spins but are
different for spins within the same or the oppo-
site sublattice. In contrast to the infinite-interaction-
range model in the LBG, they do not have a simple
expression in terms of the magnetization m and
the total number of spins N forming the chain but
they can be easily computed numerically (for further
details, see Appendix C). In some cases, the ground
state can be computed analytically. For example,
at the isotropic (Heisenberg) point 8 = w /4, the
ground state for u = 0 is a singlet of total angu-
lar momentum 8% = (S, + Sp)? and the correlations
are

_N+4

1
SY,SY — (S SY ) = —. 22
( i,A jB> 12N ( o th> 12 ( )
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(b) For —7 <0 < —m/2, the correlations are not
uniquely determined, since the ground state is
degenerate. But if we consider a thermal state in the
zero-temperature limit, they become homogeneous
and can be computed analytically (see Appendix C).

In these infinite-range models, both in the UBG and
LBG, the energy needed to flip a spin becomes an exten-
sive quantity, since each spin interacts equally strongly
with all the other spins. Consequently, the stability region
of each phase with a fixed magnetization shifts to higher
values of the external magnetic field u as we increase the
number N of spins forming the chain. Eventually, as we
approach the thermodynamic limit N — oo, the ground-
state phases for any finite x correspond to those appearing
in the limit & — 0. To better see what phases appear in
that limit, in Figs. 3(c) and 3(d) we show an enlargement
of the phase diagrams for small values of w. The corre-
sponding ground-state correlations in this limit are shown
in Figs. 3(e) and 3(f). As we have mentioned already, they
do not depend on the distance separating the spins in the
chain.

In short, the dimensionality of the model becomes irrel-
evant in the infinite-interaction-range limit. Although this
behavior is very different from that of correlations in the
NN model, some phases are very similar, if not the same:
the ferromagnetic phase, which in the thermodynamic limit
only occurs in the LBG for 7/2 < 0 < 57 /4 [the yellow
region in the phase diagram shown in Fig. 3(c)]; and the
antiferromagnetic phase present in the UBG for —/2 <
0 < 7 /4 [the middle black region in the phase diagram
shown in Fig. 3(d)].

LBG (£ = 0.5) UBG (¢ = 0.5)

(a) (b)

C. Waveguide-mediated interactions: Intermediate
ranges

For intermediate-interaction lengths, we may expect the
phase diagram to interpolate between that of the nearest-
neighbor XXZ Heisenberg model and the ones in the
infinite-range interaction limit. This can be clearly appre-
ciated in Figs. 4(a) and 4(b) [cf. Fig. 2 and Figs. 3(a), 3(b)].
In the light of these results, we can see that increasing the
interaction length in the LBG shrinks the antiferromagnetic
phase, confining it to values of 6 closer to the classical limit
(6 = 0), while in the UBG it enlarges it, making this phase
more stable against quantum fluctuations. This is also con-
firmed by the long-range zz correlations [see Figs. 4(c) and
4(d) (blue dots)].

However, this is not the end of the story, as there are
other phases that appear only when the interaction range
is large but finite. For example, in the LBG, the phase
diagram develops a series of magnetization plateaus [see
the inset of Fig. 4(a)] around the classical regime 6 = 0,
which in the thermodynamic limit have a fractal structure
known as a Devil’s staircase [76,88]. These plateaus cor-
respond to Ising-like phases with periodic zz correlations
with different periods (patterns).

Also, in the LBG, for positive exchange interactions
(0 < 6 < m), there is a phase transition in the sector with
zero total magnetization (small values of @) from a pla-
nar phase to a gapped spontaneously dimerized phase.
This effect of frustration has been extensively studied in
the past in simpler models, such as the antiferromagnetic
zigzag Heisenberg chain [89—93]. A model where this phe-
nomenon can be easily understood is the exactly solvable
Majumdar-Ghosh model [1], the ground state of which is

LBG (£ = 3) UBG (¢ = 3)
é () 0.0 Hd) f ® o 10s]
g 02r H C s 404]
2 |o [StSholl; ol @ T
5} i M :
< 0.0 G — | (.0
o —0.5 0.0 9/7T 0.5 —1 0 9/7T 1
0.4 _(e) - 7T/4 - 0.4 _(f) - —7T/2 ‘
5 /2 —3r/4
02t 02 F
0.0 Er T | 0.0 Ex !
0.0 0.5 1.0 0.0 0.5 1.0
1/ s 1/ s

FIG. 4. Undimerized intermediate-interaction-range models in the LBG and UBG (a),(b) Ground-state-magnetization phase dia-
grams for a chain with N = 50 spins. In (a), the inset shows the magnetization curve for a system close to the classical limit (0 >~ 0,
dashed vertical line). (c),(d) Different order parameters as a function of the anisotropy angle in the ground state with zero magnetiza-
tion, for a chain with N = 120 spins (the legend is the same for both plots; in the LBG, the values of |O4| computed are negligible).
(e),(f) Magnetization curves for a system with the same parameters as in panels (c) and (d), for particular values of 0, as indicated in
the legend. Here, , denotes the saturation field, i.e., the value of & at which the system becomes fully polarized. Note that this i is

a function of 6.
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a product of singlets between adjacent spins. Phases of
this kind are known as valence-bond solid (VBS) phases.
Generally, these phases are gapped phases that do not
feature any long-range order, i.c., the correlations (S;'S/)
decay exponentially with increasing distance |i — j |. How-
ever, fixing the distance, they become periodic as different
spins along the chain are considered. In the spontaneously
dimerized VBS phase appearing in the LBG, the cor-
relations between neighboring spins (bond correlations)
have period p = 2 and (B}) = (S}'S}, ) = B" + (—1Y 8B
[94]. This dimer order in the bond correlations, as well
as other orders with a larger spatial periodicity, can be
detected experimentally by measuring spin correlations
along the chain and computing the following quantity (the
bond-order parameter or structure factor):

no+L—1

> (SiSu)e T (23)

n=n

1
0, =7

In particular, the spontaneous dimerization can be quan-
tified by |0,|. In Figs. 4(c) and 4(d), we plot this order
parameter (orange squares) for the ground state with zero
magnetization (m = 0). Its nonzero value for 0 < 6 < 7/2
in the LBG, and — < 6 < —m/2 in the UBG, proves the
existence of dimer-VBS phases for sufficiently large but
finite interaction length. For higher magnetization, m # 0,
the value of |0,| is negligible.

Curiously, in the UBG we also find a VBS phase
with a doubled period (tetramer order) for values of the
anisotropy angle 6 ~ —3m /4 [see Fig. 4(d) (green trian-
gles)]. Furthermore, in the magnetization curve shown in
Fig. 4(f), we observe that the magnetization changes in
steps of Am = 2 as u increases. This is in contrast to the
other cases studied, in which the magnetization increases
in steps of Am = 1, cf. Fig. 4(e). Considering that in this
case the couplings between spins in opposite sublattices
are ferromagnetic, this suggests that excitations correspond
in this tetramer phase to simultaneous flips of two spins,
one in each sublattice. These gapless phases correspond
to spin-density-wave (SDW) and nematic phases for small
and large magnetization, respectively, already identified
in the zigzag Heisenberg chain with ferromagnetic NN
interactions and antiferromagnetic next-nearest-neighbor
(NNN) interactions [95] (see Appendix D).

IV. MANY-BODY PHASES IN
TOPOLOGICAL-WAVEGUIDE QED

A. Dimerized 1D photonic bath (upper and lower band
gaps)

We now analyze the cases where § # 0. Again, we
start by considering the limit £ — 0, i.e., only NN cou-
plings. As we see, the dimerization produces VBS phases,
even though there is no frustration in the system (the sys-
tem is always bipartite in the NN limit, regardless of the

0.0 0.5 .
w/J |0y

1.0 0.0 0.1 0.2 0.3

FIG. 5. The dimerized NN-XX model (# = 7 /2). (a) Mag-
netization curves for different values of the effective dimeriza-
tion. (b) The dimer VBS order parameter as a function of the
magnetization for several values of |3| [same as in (a)].

value of §). This can be better understood in the XX
models, 6 = +m/2, which can be mapped exactly to a
free fermionic SSH model by a Jordan-Wigner transfor-
mation (see Appendix E). A nonzero dimerization of the
interactions opens a gap in the energy spectrum between
the ground state with zero magnetization (m = 0) and the
ground states of other magnetization sectors (m # 0). This
can be observed in the magnetization curves for those mod-
els as an initial plateau the width of which increases by
increasing |8| [see Fig. 5(a) (indicated by a black arrow)],
meaning that the chemical potential—or external magnetic
field in the spin language—has to be larger than a critical
value in order to polarize the spins in the chain. Correla-
tions become dimerized with a dimerization pattern that
follows that of the underlying photonic SSH bath. In con-
trast to the models discussed in the previous section, the
phases with nonzero magnetization also feature a nonzero
value of |0, | that decreases as the magnetization increases,
as shown in Fig. 5(b).

Since the dimerized NN-XX model can be mapped to
the fermionic SSH model, the topology of the former [96]
can be linked straightforwardly to that of the latter. Thus,
we expect two distinct symmetry-protected topological
(SPT) phases at m = 0: one for § > 0 (trivial SPT phase)
and another for § < 0 (nontrivial SPT phase). These SPT
phases extend to other values of 6 around the XX point and
larger values of &, which we indicate in the phase diagrams
shown in Figs. 6(a) and 9(a) with the label VBS,. Since
these models can be connected adiabatically to the free-
fermion model without closing the gap, they all belong
to the same SPT phases. Importantly, in the fermionic
language, these phases for other values of 6 # 7/2 cor-
respond to models of interacting fermions. Thus, we can
argue that these noninteracting SPT phases are robust
against some amount of interaction. More specifically, they
are robust against correlated fermion hopping, which in the
spin language corresponds to the addition of long-range
spin interactions; and also to certain amount of fermion
density-density interactions, which in the spin language
corresponds to nonzero ZZ interactions.
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(a) Lower band gap
4 0.5
i § =1 0.4
3 §=-02
0.3
2, =
< VBS, 02 E

0.4
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2
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0.1
0.0 ,
0 1 2 0.0 0.2
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FIG. 6. The dimerized intermediate-interaction-range LBG
model. (a) The ground-state magnetization as a function of the
external magnetic field and the anisotropy angle for a system
with N = 50 spins. (b) The magnetization curve for a longer
chain with N = 120 for 0 = /4 and §=40.2. (c) The bond-
order parameters (structure factor) for the model with 6 = 7 /4
and § = 0.2 as a function of the magnetization. In all the figures,
the interaction length is set to £ = 1.

The distinction between the two possible SPT phases
becomes apparent when considering chains with open
boundary conditions (OBCs). In the nontrivial SPT phase
(8 < 0), the ground state is fourfold degenerate in the ther-
modynamic limit if 4 =0 due to the presence of two
uncoupled spin-1/2 degrees of freedom located at the edges
of the chain. This degeneracy and hence the presence of
these edge modes are consequences of symmetry fraction-
alization [97]. Both features are protected by symmetries
(hence the term “symmetry-protected” topological phase),
in this case, time reversal and the group generated by
7 rotations around two orthogonal spin axes. For u # 0,
the model no longer possesses those symmetries. The free
spins at the ends of the chain in the topological phase align
with the external magnetic field, resulting in a difference of
the ground-state magnetization m(§ < 0) —m(§ > 0) =1
for u — 0%, which can be clearly appreciated in the mag-
netization curves shown in Figs. 6(b) and 9(b) (compare
the blue and orange curves, which have a value that differs
by 1 in the initial plateau).

Formally, these different SPT phases can be distin-
guished by the geometric phases accumulated by the
ground state when modulating periodically (“twisting”)
the Hamiltonian in certain specific ways. These many-
body Berry phases may be quantized depending on
the symmetries of the model and on the specific twist
performed [68—70]. For example, for a time-reversal sym-
metric phase, such as the VBS, phase, a modulation of the
interaction term between any two spins m,n € {1,...,N}
of the form

S*S™+Hc. — e SIS+ He. (24)
as ¢ varies through [0,27) will result in a Berry phase
equal to 0 or 7 (mod 27), depending on whether the two
spins are weakly or strongly entangled, respectively [68]
(see Appendix F). The many-body Berry phases computed
between neighboring spins thus reveal the pattern of sin-
glets characteristic of each SPT order. We obtain different
values depending on whether the two spins belong to the
same or adjacent unit cells, Vintra-inter:

for § > 0,
for§ <0,

(7,0),

0.7, mod 2. (25)

(yintra, yinter) = {

Surprisingly, for a finite interaction length, & > 0, the
models in the LBG develop new gapped phases at magne-
tizations m/N =~ 1/4 and m/N =~ 1/3. These phases cor-
respond to the magnetization plateaus shown in Figs. 6(a)
and 6(b) for 6 ~ /4, labeled as VBS,, with g =4,6.
When we compute the bond-order parameter O, for dif-
ferent periodicities ¢, shown in Fig. 6(c), we observe that
in these phases |O,| has a maximum for g # 2, imply-
ing that they are periodic with a period involving more
than one unit cell. We also observe that the first deriva-
tive of the dimer-bond-order parameter |O,| seems to have
a discontinuity at those phases. This increased period can
also be appreciated in some of the plots in Fig. 7, where
we show the individual spin magnetization for chains with
OBCs in the VBS, phase. This suggests the following sim-
plified picture of the ground state in these higher-period
VBS phases: it is formed by “breaking” in a periodic fash-
ion some of the valence bonds present in the VBS; phase,
as shown schematically in Fig. 8. This intuitive picture
also explains the (¢/2)-fold degeneracy of the ground state
in the sector with magnetization m/N = 1/2 — 1/q found
in chains with periodic boundary conditions (PBCs), as
there are ¢g/2 different ways to break the bonds in order
to achieve a phase with that magnetization.

Similarly to the VBS, phase, these VBS, (¢ > 2) phases
are also SPT phases that can either be topologically trivial
(8 > 0) ornot (§ < 0). This is confirmed by computing the
(non-Abelian) many-body Berry phases (see Appendix F),
which are the same as in the ¢ = 2 phase, given in Eq. (25).
However, in contrast to the ¢ = 2 phase, these SPT phases
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FIG. 7. The dimerized intermediate-interaction-range LBG

model. The individual-spin magnetization for chains with N =
24 spins with OBCs at the isotropic point 6 = w /4. The upper
(lower) row corresponds to phases with m = N/4 (m = N /4 +
1), whereas the left (right) column corresponds to phases with a
negative (positive) dimerization constant. The interaction length
is set to £ = 1 in all cases. In all cases considered, the ground
state is unique, except for the case with § > O and m = N /4 + 1,
where it is doubly degenerate. The bulk of the chain in this case
would be the one that resembles most closely the VBS, state in
chains with PBCs.

at higher magnetization are protected solely by space-
inversion symmetry. As it turns out, in this case nontrivial
chains with OBCs do not feature topological edge states
[98,99] and the ground state of trivial chains with OBCs

; 5<0 . L 0>0 ¥
LN R Ry

FIG. 8. A schematic representation of the VBS, phase. The
red ellipses represent valence bonds (singlets) between adjacent
spins (black dots). The split ellipses represent broken valence
bonds in which the two spins are fully polarized along the z axis.
The blue shaded area represents the space-inversion symmetric
“cluster” that repeats along the chain in this VBS phase. For
each distinct SPT phase (corresponding to positive or negative
values of the dimerization constant §), there are two possible pat-
terns of broken bonds and, hence, the ground state of chains with
PBCs is twofold degenerate. If we consider chains with OBCs,
we see that for § < 0, any of the two patterns can be cut open
still respecting inversion symmetry (the leftmost pattern is ener-
getically more favorable for m = N /4, while the other one is
preferred for m = N/4 + 1). For § > 0, by contrast, this is not
possible and there is no preferred pattern of broken bonds for
chains with OBCs (cf. Fig. 7).

>

-

presents a twofold degeneracy only in the case with § > 0
and m = N /4 + 1, which is not attributed to the presence
of edge modes but, rather, to a special kind of frustration
related to the lack of inversion symmetry of the two pos-
sible patterns of broken bonds, as explained intuitively by
the schematics shown in Fig. 8.

We remark that the appearance of these higher-period
VBS phases requires the conjunction of long-range
exchange and ZZ interactions and a nonzero dimerization.
In the fermionic language, we can say that they appear due
to the presence of interactions between fermions, both of
the density-density and of the correlated-hopping kind.

As for the dimerized UBG model with a finite inter-
action length, a similar analysis follows for the VBS,
phase located around 6 ~ —m/2: it is topologically triv-
ial (nontrivial) if § > 0 (§ < 0). Curiously, we observe
that the dimerization affects the SDW phase appearing at
0 ~ —37 /4 in low external magnetic fields. As shown in
Fig. 9(b), for § < 0, the magnetization changes in steps of
Am = 1, instead of Am = 2, which is the case for § > 0.
This difference suggests the presence of “persistent edge
modes,” that is, almost free spin-1/2 degrees of freedom
at the edges of the chain that align in the direction of
the external magnetic field. This is further confirmed in
Fig. 9(c), where we show the individual spin magnetization
for chains with OBCs in the SDW phase. These topologi-
cal edge states, which are present even though the system
remains in a gapless phase, could be explained in terms of
symmetry-enriched conformal-field theories, which have
recently attracted a lot of attention [100,101].

B. Middle band gap

For § # 0, a new gap (the MBG) appears in the energy
spectrum of the bath. In this gap, all spin coupling con-
stants J* alternate sign as a function of distance n. Due to
its peculiar properties and physical significance, we study
separately the case where the emitters are spectrally tuned
to the middle of the MBG (A = 0) and the case with
A #0.

C.Casewith A =0

In this case, the system is fully dimerized, § = sign($);
i.e., the only nonzero coupling constants are either J4%
or JB4 depending on the dimerization pattern of the
underlying SSH photonic bath. This implies that the
system is always bipartite, even for a finite interaction
length (¢ > 0). As a consequence, the phase diagram is
always symmetric with respect to the change 6 — —6 [see
Figs. 10(a)-10(c)]. In chains with OBCs, a negative value
of the dimerization constant implies the presence of two
uncoupled spins at the edges, regardless of the value of the
rest of the parameters. In other words, all phases for 6 < 0
feature edge states—even when the bulk is in a gapless
phase.
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FIG. 9. The dimerized intermediate-interaction-range UBG
model. (a) The ground-state magnetization as a function of the
external magnetic field and the anisotropy angle for a system with
N = 50 spins. (b) The magnetization curve for a longer chain
with N = 120 for § = —37/4 and § = £0.2. The right-hand
plot is just an enlargement of the lower magnetization range. (c)
The individual-spin magnetization for a chain with N = 24 spins
and OBCs, at § = —0.657. The values correspond to the ground
states of the sectors with total magnetization 0 < m < 5. Even
though for § > 0 there is a considerable effect of the edges, in the
case with § < 0 the difference with respect to the bulk is starker,
with the ending spins being fully polarized regardless of the value
of the total magnetization. In all the panels, the interaction length
issetto & = 1.

As we do in the other regimes, let us consider first the
NN model. In the limit § — +1, keeping A = 0, the model
corresponds to a set of disconnected dimers, so its phase
diagram is trivial to obtain, as one only has to consider
the Hilbert space of two spins. There are just two phases:

(d)
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FIG. 10. The fully dimerized (A = 0, § = +1) MBG model.
(a)Hc) Ground-state-magnetization phase diagrams for chains
with N = 60 spins and OBCs, for different interaction lengths.
The stability region of different phases is indicated with letters:
F, ferromagnetic; A, antiferromagnetic; P, planar; VBS, valence-
bond solid. (d) Correlations in the phase with zero magnetization
m = 0 for a chain with N = 120 at & = 0.1x (antiferromagnetic
phase) and at 6 = /2 (The same data are shown in both plots,
simply changing the scale of the axes; the legend refers to both
of them.

a phase with zero magnetization where the ground state
is a product of singlets, and a ferromagnetic phase [see
Fig. 10(a)]. Note that a product of singlets is nothing but
a valence-bond solid phase. As we increase the interaction
length, we still observe VBS phases for small values of
the chemical potential and values of the anisotropy angle
0 ~ £ /2. In addition, new planar and antiferromagnetic
phases appear in the phase diagram [see Fig. 10(b)]. These
phases are similar to those found in the NN-XXZ Heisen-
berg model, but with a doubled period, which is a con-
sequence of the alternating sign of the interactions. This
doubled period can be appreciated in Fig. 10(d), where
we show the correlations in the ground state for the phase
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with m = 0 and two different anisotropy angles, 0 = 0.1
and 0 = /2. When we increase the range of interactions,
the VBS phase becomes less stable and eventually disap-
pears, leading to a gapless phase featuring a double Néel
order similar to that of the antiferromagnetic phases but
this time in the x-y plane, as shown in Fig. 10(d) (case with
& = 5). The limit of infinite interactions can be approached
as § — +07", keeping A = 0. This infinite-range model
cannot be studied using collective spin operators, since
spins in one sublattice only interact with spins in the other
sublattice to their right or left [as shown in the schematic
depiction of the system at the top of Fig. 10(c)]. Nonethe-
less, we can get an idea of its phase diagram by looking at
systems with large but finite £, such as the one shown in
Fig. 10(c). As we can observe in that figure (and the plot of
the correlations below), in the limit @ — 0 the ground state
always has m = 0 and there are only two distinct phases
featuring constant correlations (independent of distance)
either in the z axis (antiferromagnetic phase) or in the x-y
plane (infinite-range planar phase).

D. Case with A # 0

For systems in the MBG with A # 0, the model is no
longer bipartite—there are nonzero couplings connecting
spins within the same sublattice—which makes the phase
diagram asymmetric with respect to the change 8 — —6;
for an example of a phase diagram in this regime, see
Fig. 11(a).

In this case, there is no model with NN interactions,
i.e., it is not possible to reach & — 0 keeping A # 0 in
the MBG. However, there are two possible infinite-range
models that occur for A — +2|§|J (inner band edges), if
8 # 0. The coupling constants in these models are J4& =
sign(8)(—1)"J, JB4 = —sign(8)(—1)""'J and J;"/** =
sign(A)(— 1)"=1J. As it turns out, the Hamiltonian can be
written using collective spin operators and it is the same (or
the same with opposite sign) as the one shown in Eq. (21)
for A — 2|5|J (A — —2|§|J). Consequently, the phase
diagram is exactly the same as the one shown in Fig. 3(b)
(or the same, shifting & — 6 4 7). The definition of the
collective operators is either S = >, (S5, 4t S;n’B) and

SE = Zn (S‘2)n+l,A + S5n+l,B) or SZ = Zn (S;n,A + Sgn—o—l,B)
and Sy=), (S§n+l,A + S;n,B), depending on sign(d),
which reflects the facts that the period of the ground state
is doubled due to the alternating sign of the interactions
and that changing the sign of the dimerization parameter is
equivalent to a redefinition of the unit cell of the model.
For intermediate-interaction ranges, we find phases sim-
ilar to those appearing for A = 0; apart from the asym-
metry, the phase diagram shown in Fig. 11(a) is similar
to the one shown in Fig. 10(c). Surprisingly, for some
anisotropy angles, the edge states of the gapless phases still
survive when the ending spins are coupled to the rest of

(a) Middle band gap
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FIG. 11. The partially dimerized (A #0, |8 <1)
intermediate-interaction-range  MBG model. (a) Ground-

state-magnetization phase diagrams for a system with N = 60
spins and OBCs. (b) Magnetization curves for a longer chain
with N = 120 spins and the same parameters.

the chain, as is suggested by the difference in the magne-
tization curves for § 2 0 shown in Fig. 11(b) (case with
0 = m/4).

V. EXPERIMENTAL CONSIDERATIONS

In this section, we discuss several aspects related to the
experimental realization of the physics described through-
out this paper. First, in Sec. V A, we briefly review different
waveguide-QED platforms, commenting on their poten-
tial to observe the different models explored throughout
this paper. Then, in Sec. V B, we explicitly show how in
the most accessible model in experiments (6 = 7/2), even
for finite systems, one will be able to observe signatures
of a topological phase transition just by controlling the
frequency of the emitters. Finally, in Sec. V C, we show
how adiabatic protocols can be used to access the different
many-body phases discussed in this work.

A. Potential waveguide-QED simulators

Nowadays, there is a plethora of systems where
waveguide-QED physics can be engineered to certain
extent. Some of the most relevant ones are as follows:
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1. Cold atoms trapped near nanophotonic structures
[57]. This is the system where the original pro-
posal of a waveguide-QED simulator for spin mod-
els appeared [54,79]. Compared to other platforms,
their potential is that all emitters are equal and
have a complex level structure, with multiple opti-
cal transitions, which can be harnessed to engineer
XXZ models, e.g., by stroboscopic means [56] (see
Appendix B). The first experiments have already
appeared [36,37,39,40], although the main chal-
lenge remains still to place the atoms in a controlled
way near the surface. However, current advances in
novel trapping techniques [102—106] foresee near-
future control of this setup.

2. Solid-state emitters in nanophotonic structures.
Solid-state emitters, like quantum dots [46] or
vacancy centers [47], facilitate the integration at the
nanophotonic structure. However, this comes at the
price of interacting with the phononic environment
and, importantly, the inhomogeneous broadening of
emitters. However, the latter can be compensated
with clever driving techniques [107] or the use of
electro-optic modulators [108]. The most accessible
models with these systems are the XX limits (6 =
1 /2), although the advances in controlling Raman-
assisted processes in these systems [109,110] might
enable the exploration of more general spin models
[56].

3. Circuit QED. As shown in recent experiments
[49-52], it is possible to emulate waveguide-QED
physics by coupling superconducting qubits to
coupled microwave resonator arrays. This system
enables single-qubit addressing and readout, as well
as time-dependent control of their couplings. How-
ever, since superconducting qubits generally do not
feature an internal level strucutre, this platform is
mostly restricted to XX-type models.

4. Cold atoms in state-dependent optical lattices.
Another potential platform to obtain waveguide-
QED physics consists in replacing the role of the
photons by matter waves. This has originally been
proposed in Ref. [77] and has recently been imple-
mented with rubidium atoms in Ref. [53]. Although
coupling is not completely local, it allows for a very
versatile control of light-matter interactions, which
can be controlled through Raman-assisted transi-
tions. By construction, the available models will be
of the XX type.

B. Exploring a topological phase transition in a small
experimental system

As mentioned above, the easier model to access within
waveguide-QED simulators would be of the XX type
(i.e., ® = m/2). This appears when emitters interact via

(a) (b)
2r (S4Sn:1)
w g ;_J 0.0
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FIG. 12. (a) The dependence of the interaction range and the
effective dimerization constant on the emitter detuning, for a
system with § = —0.2. (b) Ground-state nearest-neighbor bond
correlations for a chain with N = 16 emitters and OBCs, in the
m = 0 sector of the LBG-XX model (¢ = /2), for two different
values of the emitter detuning (marked with a blue dot and an
orange square in the other panels). Large (negative) values cor-
respond to neighboring spins that are approximately forming a
singlet. (c) The dimer bond-order parameter for the same system
as in (b), as a function of the effective dimerization constant.

a single-dipole transition with the waveguide modes, as
can occur in all implementations. In this section, we show
that by tuning the frequency of the emitters, one can tune
the effective parameters of the model, as demonstrated in
Fig. 12(a). In this manner, it is possible to observe the
smoking gun of a topological phase transition occurring
in the system, that is, a change of the dimerization pattern
of the array, as shown in Fig. 12(b), for a small chain with
OBCs.

Strictly speaking, topological invariants are bulk quan-
tities, so they are not well defined for small systems.
Furthermore, there are no proper phase transitions for
small systems, since, typically, the ground state remains
always gapped when tuning the parameters of the Hamil-
tonian. Still, one can define sharp transitions between
different phases in finite systems according to the value
of some observable that characterizes the different phases.
For example, for noninteracting systems, one can define
a sharp topological phase transition according to the pres-
ence or absence of single-particle edge states. The critical
values of the parameters where these edge states appear
are different (but close) to the critical values where phase
transitions occur in the thermodynamic limit [111]. In our
model in the LBG, there is a topological phase transition
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in the m = 0 sector between two phases with opposite
dimerization [two VBS phases with a different pattern of
singlets; see the inset of Fig. 12(c)] that in the thermody-
namic limit occurs at § = § = 0. The different dimerization
pattern of the ground state is captured by a change in
sign of the dimer bond-order parameter O,, defined in Eq.
(23). For small chains, the change in sign of O, does not
occur at 8. = 0 but for §. < 0, as shown in Fig. 12(c).
Furthermore, we observe that the value of O, changes
more abruptly across the transition point as the interac-
tion length increases (compare the orange curve with the
blue one). Interestingly, the effective dimerization constant
of the spin model, 8, also changes as the detuning A is
varied, although its sign is determined by the sign of the
dimerization constant of the bath §. In principle, one would
not expect a phase transition to occur if the sign does not
change; however, since in finite systems the critical point
occurs for a different value &, # 0, it is still possible to
observe a phase transition only by varying the detuning of
the emitters.

C. Adiabatic preparation

Another important aspect of analog quantum simulators
is how to reach the different many-body phases that can
be explored within the simulators. A standard approach
is to use adiabatic protocols [112], in which one initially
prepares the simulator in an easy-to-prepare state with the
interactions switched off and then turns on the interactions
such that the ground state of the systems evolves adia-
batically until the desired state. In this section, we show
precisely how one could employ an adiabatic protocol to
prepare one of the phases of interest of our model. For that,
we assume a setup where interactions in the x-y plane and
along the z axis can be tuned independently, i.e., one can
simulate Hamiltonians of the form H = J(aH. + bH,,),
with —1 < a,b < 1. Here,

1
_ af Qz z
Ho= 5 D IiSuS np. 26)
j,n>0 a,B
1 I o
Hy==3 3% (S7Smns +He) @)
j,n>0 a,B

are adimensional Hamiltonians and J denotes the largest
coupling constant that can be produced in the experiment.
Additionally, we assume that we can prepare any product
state of up-down spins easily.

For the sake of concreteness, we focus on preparing the
ground state of the VBS, phase in a system of N = 8 emit-
ters (spins). Note that in such small systems, there are no
proper phase transitions and we may only observe some of
the features of the phases in which we are interested. For
example, in the case of the VBS, phase, we would like to
observe the formation of enlarged unit cells consisting of
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FIG. 13. The infidelity of the final state |y (7)) with respect
to the target ground state |¢o) as a function of the preparation
time T for different paths in parameter space and different sched-
ule functions. The inset shows the evolution of the individual
spin magnetization at different stages of the protocol (from blue
in the beginning to red toward the end). The parameters of the
model are N = 8, Ny =6, 6 = —0.2, and & = 2.0; the emitters
are tuned to the lower band gap.

four spins, with the two middle spins forming a singlet and
the two outer spins polarized “up” (see the inset in Fig. 13).

Since any product state of up-down spins is an eigen-
state of H,, our starting Hamiltonian is H(0) o H,. Our
target Hamiltonian is 4 (T) o H; + H,, [the Hamiltonian
given in Eq. (1) in the Heisenberg limit, 6 = 7 /4]. To
compare different protocols and simplify the discussion,
we reparametrize the time-dependent Hamiltonian in terms
of a (bijective) “schedule function” s:[0,7] — [0, 1],
H(t) = H(s(?)). Ideally, we would like to employ an opti-
mal modulation [a(s), b(s)] that transforms the initial state
into the target state within a given fidelity in the shortest
amount of time. One possibility to design the protocol is to
employ the geometrical approach developed in Ref. [113].
There, it has been shown that for a schedule function sat-
isfying 9,5 oc A%(s)/||0:H |lus = fus(s), where A(s) is the
energy gap between the ground and first excited states of
H (s) and ||-||gs denotes the Hilbert-Schmidt norm, finding
the optimal path in parameter space is equivalent to find-
ing a shortest-distance geodesic in a Riemannian manifold,
a problem that can be solved numerically using standard
techniques [114,115]. In practice, for the problem at hand,
we find that a simple path of the form a(s) = 1, b(s) = s
is very close to the actual geodesic and yields very similar
fidelities (see Fig. 13). Interestingly, we can improve the
preparation time if we consider instead a schedule func-
tion satisfying d;s oc min,-o A2(s)/|($a(s)| OH |o(s))| =
f (s), where A,(s) denotes the energy gap between the
instantaneous ground state |¢o(s)) and the nth instanta-
neous excited state |¢,(s)).
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So far, we have considered the fidelity of the target state
only considering the imperfections introduced by the adi-
abatic protocols, in which the slower the process is made,
the better is the fidelity obtained (see Fig. 13). In real-life
experiments, however, there are other decoherence sources
affecting the fidelity of the final state. For concreteness,
we consider one of the simplest but also more relevant
error sources that can occur in waveguide-QED setups, that
is, the possibility of losing emitter excitations at rates y.
The evolution in the presence of this kind of loss can be
modeled through a Markovian master equation of the form

dp = —i[H®),pl+v Y _Djlpl, (28)
J

where D;[p] = ‘S’j_,onJr - {SJTLSJ._, p}/2 and p is the
reduced density matrix of the emitters. For these dynam-
ics, it can be shown that the fidelity with respect to the
target ground state is F,, = e~ "Nex” 7 where F would be
the fidelity if there were no losses and N is the num-
ber of excitations in the target state. For example, for the
simple-path protocol with 9,5 o f (s), we see that values
of the decay rate y < 10~*J allow us to produce the target
state with an 80% fidelity or more.

We remark that the preparation time is limited essen-
tially by the minimum gap of H (s) throughout the protocol,
which in the case analyzed occurs at the beginning, when
H(s) ~ H,. The times shown in Fig. 13 could be improved
if one could enlarge the gap between the initial state and
the rest of the states. This can be done, for example,
by implementing local magnetic fields ) ; 1 S;, indepen-
dently for each emitter with the appropriate pattern, and
then turning them off toward the end of the protocol.

VI. SUMMARY OF THE RESULTS

Due to the wealth of different regimes and phases we
cover throughout the paper, in this section we find it useful
for the reader to summarize the main results in each situa-
tion. For the undimerized (standard-) waveguide simulator,
there are two possible band-gap regions:

(a) For the LBG, the spin interactions are long range
and with the same sign. This leads to physics that
is qualitatively very similar to that found in other
analog simulators with power-law interactions, e.g.,
trapped ions [76] [see Fig. 4(a)]. In particular, we
observe a shrinking of the antiferromagnetic phase
of the NN model, a Devil’s staircase of phases with
different magnetizations around the classical limit
(6 ~ 0), and a spontaneously dimerized phase at
zero magnetization for 6 ~ m /4.

(b) For the UBG, the combination of the staggered sign
of the interactions with their long-range nature leads
to a qualitatively different diagram [see Fig. 4(b)]. In

particular, we find that the antiferromagnetic phase
extends over a larger area of the phase diagram and
new gapless phases develop for & ~ —37/4, such as
the spin-density-wave and nematic phases that also
appear in zigzag Heisenberg chains [95].

For the topological (dimerized) waveguide, all the spin
interactions inherit the dimerization of the underlying pho-
tonic bath. However, one can still find very different phases
depending on which of the three different band gaps the
emitters are in resonance with:

(a) In the LBG, the main effect of the dimerization is
the appearance of new gapped phases, which are
absent in the NN model, at certain nonzero mag-
netization values [see Figs. 6(a) and 6(b)]. They
display large magnetic orderings, as corroborated by
the calculation of the bond-order parameter O, [see
Fig. 6(c)]. We further understand these phases by
connecting them to the equivalent fermionic model
and studying the quantization of their many-body
Berry phases [68—70], which enables us to further
distinguish different SPT phases in them, depending
on the sign of the dimerization constant. These new
SPT phases are due to the unique dimerized long-
range nature of the interactions appearing in such
topological-waveguide setups.

(b) In the UBG regime, the dimerization affects the
VBS phase around 6§ = —37/4 at zero magnetiza-
tion, giving rise to different SPT phases depending
on the sign of 8. It also affects the spin-density wave
regime, as the system shows different magnetiza-
tion steps as ju increases for § < 0, which can be
attributed to the appearance of persistent edge states.

(c) In the MBG regime for exactly A =0, the spin
interactions are fully dimerized. This has two con-
sequences: (i) it leads to the presence of uncoupled
spins at the edges for the phases with § < 0, regard-
less of the value of the rest of the parameters—even
in the gapless phases; and (ii) the model displays
VBS, planar, and antiferromagnetic phases reminis-
cent of the NN model but with a double periodicity
(see Fig. 10). When A # 0, the interactions are not
fully dimerized but we find qualitatively similar
phases as in the A = 0 case, including the appear-
ance of edge states in the gapless phases (persistent
edge modes).

VII. CONCLUSIONS

To sum up, we characterize the emergent many-body
phases of a general class of spin models that can be
simulated using quantum emitters subject to waveguide-
mediated interactions. First, we study the effect of the
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tunable, long-range, and possibly alternating-sign interac-
tions that appear in standard waveguides. The interplay of
all these features gives rise to phases different from those of
the typical nearest-neighbor models, due to the larger frus-
tration of the system. In addition, we consider the impact of
the dimerized interactions appearing in topological waveg-
uides. The latter lead to the appearance of symmetry-
protected topological phases and, if they are also long
range, give rise to symmetry-protected topological phases
with large magnetic orderings (larger than the period of
the Hamiltonian). In all cases, we explain the experi-
mental observables that can be measured to distinguish
these phases based on either single-spin measurements
(individual-spin magnetization) or two-spin correlations
(bond-order parameter). Finally, we also show how the
most interesting phases can be reached through adiabatic
protocols and analyze their fidelity in terms of the most
typical error source. Overall, we believe that our work
uncovers the potential of waveguide-QED setups as ana-
log quantum spin simulators and can become the basis for
future experiments on the subject. An interesting outlook
would be to study the modification of these phase diagrams
when the topological waveguides have larger winding
numbers, since the shape of the resulting waveguide-
mediated interactions can differ significantly [116].
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APPENDIX A: COUPLING CONSTANTS

In this appendix, we review how the basic dipole-dipole
interactions can be obtained in systems of two-level emit-
ters coupled to a bosonic bath and we examine some of
the methods that can be employed to produce more exotic
effective spin interactions.

1. Dipole-dipole (exchange) interactions

We start by considering the case of emitters with a
single-dipole transition coupled to a 1D SSH photonic bath

within the rotating-wave approximation. The total Hamil-
tonian, describing both the emitters and the bath, reads
H = HS +HB +H[, with

Hs =AY S5 ,Syo (A1)

Hy==J 3" [(1+8)alb; + (1 = 8l by +He,
J
(A2)

Hy=g) (Sf,on+Hc). (A3)

The operators S, are the same as the ones introduced in

the main text, while aj,aj (bj,b;) are the bosonic cre-
ation and annihilation operators for the 4 (B) mode in
the jth unit cell of the bath. The spectrum of the bath
is shown in Fig. 1(b). It consists of two bands spanning
the ranges [w;,w;] and [w3,w4], Where the band-edge
frequencies are w; = —2J, wy = —2J 18|, w3 = 2J|5| and
w4 = 2J. In the Markovian regime, i.e., when g < Acgge
(Acgge = min; |A — w;|), one can trace out the bath degrees
of freedom, obtaining an effective description of the emit-
ters in terms of a master equation, p = —i[Hesr, p] + D[ p]
[75,117]. Here, p denotes the reduced density matrix of the
emitters. It contains a coherent part, dictated by an effective
Hamiltonian

Hag=Hs+ Y > JBS! S,y (A4)
m,n a,fB
and a dissipative part, given by
o
Dlp) = Y 3 =2 2540850 — (SiuSupe0)| - (A5)

m,n a,f

For time-reversal-symmetric baths such as the one consid-
ered in this work, the effective interactions and collective
decay rates are given by the real and imaginary parts of the
collective self-energies, T24(A +i07) =JE —ir% 2.
For values of A in the band gaps, the decay rates vanish,
%% = 0, such that the emitter dynamics are governed by
an XX-type spin Hamiltonian, given in Eq. (A4).

The collective self-energies have been obtained analyt-
ically in a recent work [58]. For convenience, we rewrite
them here. First, we define the following functions of the

complex variable z: r(z) = _/ ]_[j (z — w;) and

22 —2J%(1 4+ 8%) £ r(2)
2J2(1 — 82)

yi(@) = (A6)

Being a translationally invariant bath, the collective self-
energies only depend on the distance between the emitters
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(but may differ depending on the sublattice to which they

are coupled). Thus, we define s = Ef,;’i, +m» Which are
given by
44 gzys"
L @=7F ; (AT)
r(2)
27+ 8y + (1 — 8y "+
2B (z) = +2 [+ 3 ( )( LS RV
rz

where the upper (lower) sign has to be chosen if |[Re(z)| <
2J18| (|Re(z)| > 2J). Furthermore, =58 (z) = £44(z), and
254(z) = £48(z) for n > 1. From these expressions, one
can readily compute J,‘,xﬂ = Re[Ef‘,ﬁ(A +i07)]. We can
rewrite the coupling constants in a more transparent form
[see Egs. (4)+9)], defining an interaction length as & =
—1/log|y+|; an effective dimerization constant

P = A
\JAB| + |54, |
[ {5—1, if|A| < 2718,

(o213}

- ¢ A9
T+e 15 s, if|A] > 2, (A9)

which corresponds to the dimerization of the waveguide-
mediated spin interactions; and the ratio

2141
Rl

|Ale~1/% {|5|—1, if |A] < 2715,

n=

- Al0
Ta+e® 11 if|als2. A0

Note that § and § both have the same sign, so the dimer-
ization pattern of the effective spin model follows that of
the underlying bath. Also, from Eq. (A9), we can see that
the pairs (&, 8) such that |§| < (1 — e~ &) /(1 + e~ /%) are
possible only in the outer band gaps, while the pairs sat-
isfying 8] > (1 —e~'/%)/(1 4 e~/¥) are possible only in
the middle band gap. Figure 14 summarizes at a glance the
possible values of the parameters for the different models.

The global strength of the spin interactions can be
computed as

gI+e ) ),
r(8) L

if|A| < 2J15],
if|A] > 2J.

J = (A11)

From this expression, we obtain the scaling J ~
g%/ / Acdge, Which is valid in the Markovian regime.
APPENDIX B: XXZ INTERACTIONS

Different strategies have been devised to produce other
kinds of spin interactions. One straightforward approach

FIG. 14. The allowed values for the parameters (£,3,1) that
determine the form of the interactions J, P The black lines
delimit the parameter regions that are valid for the upper and
lower band gaps (UBG and LBG) and the middle band gap
(MBG).

that can be employed whenever fast single-qubit rotations
are available is to Trotterize the Hamiltonian [56,118].
Thus, time evolution with a Hamiltonian of the form H =
J(aH. + bH,,), as defined in Egs. (26), (27), for a short
time period ¢ can be approximated by

. . a . (2b—a)
elHt ~ RxelHEff‘TtRIRyelHeﬁ 7

R, = l_[exp[—inS,‘j’a/2], v e {x,y,z}

i a
tR;elHeff4t ,

(B1)
(B2)

Note that the term Hs in Heg can be neglected if the evo-
lution is applied to a state with a well-defined number of
excitations (it simply produces a phase factor). The smaller
the time period ¢ is, the more accurate this approximation
will be [119].

Another possibility is to use emitters with a A level
structure, with two metastable states |g;), j = 1,2, an
excited state |e), and two lasers driving the e—g; and
e—g, transitions, as originally proposed in Ref. [79] (see
Fig. 15). In the weak driving regime, when Q; < A; [we
define the detunings A; = w, — (a)gj + wg;)], the excited
state and the ground-state subspaces can be effectively
decoupled. Assuming that only the e—g; transition couples
to the waveguide modes, we obtain, to lowest order in per-
turbation theory, the following effective Hamiltonians for
the ground-state subspace:

(a) If Ay # Ag,

S-21 g n,
Hegr=)_ |: <Z_A1> oo’

m,n

(B3)
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FIG. 15. A schematic depiction of the A level structure and
drivings used in the proposal of Ref. [79]. The e—g; transition
couples to the photons in the bath with coupling strength g (indi-
cated by a wiggly red line). The transitions e—g;, forj = 1,2, are
driven off resonantly with two independent lasers with ampli-
tudes €2; and frequencies w;, . The two lowest-energy levels can
be used to define a spin for each emitter.

where the coupling constants are given by

(o = Re[E (@, — wg = A 1071, (B4)
(V)2 = Re[£2 (0, — wg — Ay +i0T)], (BS)
and we use the notation o = |g;),, , (g |-
(b) If Ay = Ay,
o o™ 95} m,a
eﬂ_Z‘]ﬂ( o1 +2A 021)
Ql n,o 92 n,o
X (Ean + Z_Azgzz ) (B6)

H|s4,my; sp,mp) =

sinf
_J{ > [s4(s4+ 1) — my +s(sp+ 1) — mp] +

cosf

In this case, the coupling constants are

W =Re S (o, +i01)].

mn mn (B7)
Importantly, for these expressions to be valid, we assume
the frequency of the g;—e transition to be resonant with
some of the band modes. Otherwise, it will produce coher-
ent interactions much stronger than those included in Egs.
(B3) and (B6).

If we define spin operators S, = 03, S, , = 05", and
S: o = (07" — 055%)/2, we can readﬂy see that the effec-

tive Hamiltonian given in Eq. (B3) is of the XXZ type,
albeit the coupling constants in the x-y plane and along
the z axis must have a different spatial dependence [cf.
Egs. (B4) and (B5)]. The extent to which a different decay
length of the interactions in the z axis versus the x-y plane
can affect the many-body phases described in this paper,
or whether new phases can arise in this situation, remains
an open question. On the other hand, the effective Hamil-
tonian given in Eq. (B6) contains, besides the interactions
of the XXZ model, terms of the type S, S, 5> te and
does not conserve the number of excitations in the emit-
ter subspace. These other spin models remain also largely
unexplored.

APPENDIX C: INFINITE-RANGE HAMILTONIAN
IN THE UBG AND LBG

The action of the Hamiltonian in Eq (21) on the states
|s4, myq; s, mp), which are eigenstates of Si and S, with
eigenvalues s, (s, + 1) and m,, respectively (¢ = 4, B), is

m
(my — mp)* + 7(711/1 + mB)} |S4,m4; SB, Mmp)

+J—JsA<sA + 1) — my(my + Dy/sp(sg + 1) — mp(mp — 1) |4, my + 15558, mp — 1)

~Sl

Thus, the Hamiltonian can be represented by a tridiag-
onal matrix when acting on the subspace of states with
fixed (s4,sp,m = my + mp), if a properly sorted basis is
chosen. We neglect the permutation quantum numbers,
since they do not play any role, but the degeneracy of the
ground-state manifold is directly related to them. Numer-
ically, looking for the ground state(s) within each sector
with definite total magnetization m > 0, we find that for
—m < 6 < —m /2, there is a ground state with total angular

Jsm + 1) — my(my — 1)/sg(sp + 1) — mp(mp + 1) |54, my —

1;sg,mpg+ 1) . (C1)

(

momenta s, = sg = [m/2] ([x] denotes the closest integer
or half-integer larger than x, depending on whether N /2 is
even or odd). For —m/2 < 6 < 0, there is a ground state
such thats, = N /4 andsg = |m — N /4|, or vice versa. For
0 < 6 < m, the ground state has maximum total angular
momenta s, = sg = N /4. As can be seen in Fig. 3(b), for
—m/2 < 6 < 0, the ground state either has zero total mag-
netization or is the fully polarized state. So, for —m/2 <
0 < m, the ground state is unique and is fully symmetric
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under permutations of spins within each sublattice. This
symmetry entails homogeneous correlations, which do not
depend on distance but are different for spins within the
same or the opposite sublattice. They can be computed
easily once we obtain the ground state, as

Sy = & (S4SH), if o # B, )
Laj.Bl — v v .
Yo (SuSh) — sy, ifa =B,

where the S}, denote the collective spin operators already
employed to rewrite the Hamiltonian [Eq. (21)], which
have again a simple, at most tridiagonal, matrix represen-
tation in the relevant subspace.

For —m <6 < —n/2, the ground-state magnetiza-
tion takes the values m € {0,N/2} (m € {0,1,N/2}) if
N/2 is even (odd) [see Fig. 3(d)]. In these cases,
the relevant subspaces have a very small dimension,
such that the ground states can be found analyti-
cally and with them also the correlations. If N/2 is
even, the correlations in the phase with m =0 are
(870 ) = —1/2N = 4), (5], 5) = 0. If N/2 is odd,

Lo o

then for m = 0, (S7,57,) = —(1/2N), (§2,§% ;) = —1/N?
and (S7,S75) = 1/N*; whereas for m=1 (S},S/,) =

—(1/2N), (87,87 g) = 1/N? and (S}, ST 5) = 0.

APPENDIX D: NEMATIC AND
SPIN-DENSITY-WAVE PHASES

Our model in the upper band gap with § =0 and 6 =
—3m /4 resembles the zigzag Heisenberg model with fer-
romagnetic NN and antiferromagnetic NNN interactions
studied in Ref. [95]. However, our model has longer-
range interactions as well and we cannot increase the ratio
of NNN to NN interactions without increasing them too.
Among all the phases appearing in the zigzag Heisenberg
model, the nematic phase and a spin-density wave (SDW,)
phase also appear in our model. This is demonstrated in
Fig. 16, where we show several correlation functions that
characterize the different phases:

Co(r) = (S, 1S S Srin) 5 (DI)
C3(r) = (S, S, 1S, St rSutri1Sntri2) (D2)
Ce(r) = (Knknsr) 5 (D3)

where k, = (S, X Sp1)° =S58, — SﬁSﬁH.

n~n+1

|Cav ()]

0 |C; a(r)] ¢

v |Coav(r)] A |Cpav(r)]
‘03,8»‘/ ()]

Nematic (m/N = 1/3) SDW (m/N =1/12)

.
1072 o
107 -
107° N
107" -
10—1(] 1 1l

10° 10° 10! 102

FIG. 16. Different correlation functions for the undimerized
model (§ = 0) with & =3 and § = —37/4, in the upper band
gap. The correlations are computed for a chain of length N =
120, taking the average over the pairs of spins that are closest to
the middle of the chain.

APPENDIX E: DIMERIZED XX MODEL

We would like to solve for the ground state of the
following Hamiltonian:

H=7 > [1 T (—1)73] <SJ'+57+1 + Sij++1)

(ET)

As in the main text, we go back and forth between
the single-index and two-indices labeling of the different
spins. Following Ref. [85], we proceed by applying the
Jordan-Wigner transformation:

S;=¢ ] —2cen). S =cle; —1)2. (E2)

n<j

The Hamiltonian becomes
H= fz 14+ (=1Y38 c]ch +H.c.
2 J
¥ 1
—MZ GG =5 (E3)
J

which corresponds to a model of free fermions in a 1D
lattice. Actually, it is exactly the standard SSH model
with a Fermi level set by wu. Calling a; =c (b =
¢2j+1), we can diagonalize it by Fourier transforming a; =
(N/2)7V23 eV ay [b; = (N/2)7V2 Y, €% by] (remem-
ber that N denotes the number of emitters, which is twice
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the number of unit cells). Its energy spectrum consists of
two bands,

H=Y" <€;;u,tuk n e,iz,izk) , (E4)
k

with dispersion relations and single-particle eigenstates
given by

J

w/ly = (:i:ak + ei(bkbk) /\/E, (E6)
with ¢ = arg ((1 +8) + (1 — 8)e™™). The many-body
eigenstate with the lowest energy is the one in which all
single-particle levels with negative energies are occupied.
For p > 0, this implies that excitations over the ground
state are created by the following fermionic creation oper-
ators:

'
i u, |kl < ko,
77;1=lk,§k'={ k

E7
Uy , |k|>ko. ( )

Here, ky denotes the quasimomentum of the Fermi points,
i.e., ko > 0 such that e};o = 0. This equation has solution
only when J18] < u < J. Outside of this range, we also
define kq as follows for convenience:

7, 0<p<Jl,
ko = arccos(%), JISl<u<J, (E8)
0, J <

The ground state |GS) satisfies & |GS) = 1, |GS) = 0. In
the reminder of this appendix, all expectation values are
taken with respect to this ground state. The ground-state
magnetization is

JT—k()

1
m= Z(aja_/ +bjbj -1 = (E9)
j

We can compute correlations between any two spins in
the chain as follows:

1
($:87) = 1 (4:B:4; B;), (E10)

1
<$$:Zw«[1am>m, (E11)
n=i+1
with
Adi=c +¢, Bi=c —c (E12)

This is valid for any 1D spin chain. In our case, we define
AS/BI = Ay/By=a £a; and AY/B = Ay /Bais

= b;r £ b;. The contractions of these operators are

(A2A7) = 84585,  (BIBP) = —84p8;,  (BYAY) = Giy,
(B{A?) = F;_j, and (B}4¢) = F; _;, with
1 (" 1 —k =0
G, =— / dk cos(kr) = sm(,g{)”’ "= (E13)
T ko Ty r ;é 09
1 [k
F.= ——/ dk cos(kr + ¢p). (E14)
T Jo

Using Wick’s theorem, we can now compute

(Bid;)(BjA;) — (BiA;){B; 4;)

(SZ.ZSJ?) = 2 , (E15)
e det M
(5;87) = 7 (E16)
with
(Bidiy1) (Bidiy2) (Bid;)
(Biy1div1)  (Biv14iv2) (Bin14;)
M= . )

(Bi_14iy1)  (Bj—14i32) (Bj_14;)

(E17)

The dimer order parameter, Eq. (23) particularized for p =
2, can be computed as

<Sn,B Sn+l,A ) - <Sn,A Sn,B)
2
_ F}—F} 4 2(F — Fy)
g .

0, =

(E18)

APPENDIX F: NON-ABELIAN MANY-BODY
BERRY PHASES

As discussed in Refs. [68,70,120], the many-body Berry
phases obtained for certain specific twists of the Hamil-
tonian can be interpreted as topological invariants charac-
terizing different SPT orders. For this, one has to choose
an appropriate modulation of the Hamiltonian, such that
the associated Berry phases are quantized due to the
symmetries of the phase we want to characterize.

Let us apply this theory to the VBS, phases discussed
in the main text. As we show, a suitable twist to character-
ize these phases consist in the modulation of the complex
phase of the exchange coupling constant between two
spins in different sublattices: ¢S, S, » +H.c.. If the
ground state is unique and it is symmetric about the mid-
dle of the link connecting these two spins, then the Berry
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phase,

2
y = —/0 d¢ (GS(9)]idy |GS(9)) , (F1)

obtained for the ground state |GS(¢)) of the modulated
Hamiltonian H(¢), must be quantized. To prove this, let
us also consider the complementary path in which ¢ goes
from 27 to 0 and the associated Berry phase y’. Since
the concatenation of both paths yields the trivial path, we
have that y + Y’ = 0 (mod 27). On the other hand, for
chains with PBCs, H(—¢) = U,H(gb)U;, where Uy is the
(nonlocal) unitary associated to the space-inversion trans-
formation about the middle of the link connecting the two
spins. If, for all values of ¢, the system remains gaped and
the ground state is unique, the ground states along each
path are related to each other through a gauge transforma-
tion, |GS(—¢)) = U; |GS(¢)) = € |GS(¢)), which, in
turn, implies that y = y’ (mod 27). Combined, these two
conditions restrict the possible values of y to 0 or =«
(mod 27).

A similar derivation can be obtained for non-Abelian
Berry phases in the case of a degenerate ground state
[121]. This is the one we use to characterize the ground
state in the VBS, phases, for g > 2. Numerically, it
can be computed by discretizing the path, choosing a
set of points {¢,},=1, .~ such that 0 < ¢, < ¢,y < 2m,
and computing the matrix of overlaps ®,,, the compo-
nents of which are (®,) ., = (GS, (¢,)|GS, (¢nt1)), where
{IGS,.(¢n))}u=1,..q/2 denotes the ground-state multiplet at
each point along the path [we identify |GS,(¢y+1)) =
|GS,.(¢1))]. Then, the non-Abelian Berry phase can be
computed as y = — ) arg(det ®,). Even though a sin-
gle many-body ground state may be periodic with a period
larger than the period of the Hamiltonian, when we com-
pute these non-Abelian Berry phases, we recover the
original periodicity of the Hamiltonian, so that there are
just two inequivalent many-body Berry phases between
nearest-neighbor spins in chains with PBCs: Yiter and Yintra-
Furthermore, since changing the sign of the dimerization
parameter is equivalent to a redefinition of the unit cell, it
is clear that upon changing § — —3, the two Berry phases
interchange: Vinter <> Yintra-
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