
PRX QUANTUM 3, 010335 (2022)

Encoding Qubits in Multimode Grid States

Baptiste Royer ,1,2,* Shraddha Singh ,2,3 and S.M. Girvin1,2

1
Department of Physics, Yale University, New Haven, Connecticut 06511, USA

2
Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA

3
Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA

 (Received 6 October 2021; accepted 3 February 2022; published 7 March 2022)

Encoding logical quantum information in harmonic oscillator modes is a promising and hardware-
efficient approach to the realization of a quantum computer. In this work, we propose to encode logical
qubits in grid states of an ensemble of harmonic oscillator modes. We first discuss general results about
these multimode bosonic codes; how to design them, how to practically implement them in different
experimental platforms, and how lattice symmetries can be leveraged to perform logical non-Clifford
operations. We then introduce in detail two two-mode grid codes based on the hypercubic and D4 lattices,
respectively, showing how to perform a universal set of logical operations. We demonstrate numerically
that multimode grid codes have, compared to their single-mode counterpart, increased robustness against
propagation of errors from ancillas used for error correction. Finally, we highlight some interesting links
between multidimensional lattices and single-mode grid codes concatenated with qubit codes.
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By redundantly encoding logical quantum information,
quantum error correction (QEC) can protect quantum com-
putations against the effects of decoherence, allowing the
realization of quantum algorithms requiring large circuit
depths. One promising approach to QEC is to encode log-
ical qubits in harmonic oscillator modes, a strategy named
bosonic codes from the statistics obeyed by the oscilla-
tor excitations. Amongst the attractive features of bosonic
codes is their large (formally infinite) Hilbert space, which
allows a high degree of redundancy and their relatively
simple error model compared to multiqubit QEC codes.
Moreover, oscillators can exhibit very long lifetimes. For
example, microwave cavities with lifetime up to 2 s have
been demonstrated [1], which is orders of magnitude
longer than state-of-the-art superconducting qubits.

Several important milestones have already been reached
with bosonic codes, demonstrating the appeal of this
approach. For example, using the cat encoding [2], the life-
time of a logical qubit reached the lifetime of an unencoded
qubit [3]. Operation of a cat code and binomial code [4] in
a manner transparent to ancilla errors was demonstrated
[5–8], and an autonomous error-correction scheme was
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realized [9]. In order to further increase the logical life-
time of bosonic qubits, one approach is to increase the size
of the code, i.e., increase the number of excitations in the
code words. For example, binomial codes can be made to
correct multiple errors by increasing the distance between
the Fock states constituting the code words [4]. How-
ever, oscillator error channels such as amplitude damping
or spurious nonlinearities typically scale with the number
of excitations, and increasing the size of bosonic codes
beyond a certain point leads to diminishing return. Prac-
tical implementations of bosonic codes therefore impose
constraints on the number of excitations in code words.

To improve the QEC properties of bosonic codes, an
alternative approach is to consider an ensemble of har-
monic oscillators. The first such multimode code to be
introduced was the dual-rail encoding [10], where the
logical information is encoded in the single-excitation sub-
space of two distinct modes. Since then, several other
multimode constructions have been made based on super-
position of Fock states [11–16], generalization of cat states
[17], and other ideas [14,18–20]. Here, we study the grid-
state codes introduced by Gottesman, Kitaev, and Preskill
(GKP), and more precisely their multimode extension [18].
Clifford operations can be implemented in a fault-tolerant
manner in ideal GKP codes using Gaussian operations
[21], and in principle their single-mode version is very
robust against dominant error channels such as amplitude
damping [15]. As a result, GKP codes have attracted a
lot of interest, but most work has been focused either
on single-mode codes, or the concatenation of multiple
single-mode codes with a qubit QEC code [22–26].
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In this paper, we are instead interested in “genuine” mul-
timode GKP codes, i.e., the codes defined in Ref. [18], and
show that these codes possess properties that cannot be
achieved in their single-mode counterpart. First, we intro-
duce new codes based on lattices with large sphere packing
ratios, which translates into an increased distance between
code words. Interestingly, we find that the allowed code
dimensions are related to number-theoretic results such as
Legendre’s three-square theorem.

We also show that logical operations in multimode
codes can be simpler than single-mode codes. For exam-
ple, we introduce a two-mode code where all single-qubit
Clifford operations can be realized with passive linear
optics, which contrasts with single-mode codes where gen-
eral single-qubit Clifford gates require squeezing. Lever-
aging lattice symmetries, we also introduce non-Clifford
gates based on Kerr-type interactions for GKP codes. In
stark contrast to the non-Clifford cubic phase gate origi-
nally proposed in Ref. [18], these new gates are exact for
finite-energy states. Some of the results we present for mul-
timode codes can be used to improve single-mode codes.
For example, the teleportation-based error-correction cir-
cuit for single-mode codes introduced in Ref. [27] can
also be reframed in the multimode context. More impor-
tantly, the non-Clifford gates we introduce can also be
implemented in the single-mode square GKP code.

Bosonic codes are designed to be robust against oscil-
lator errors, but a recurring limitation to the logical life-
time is the propagation of logical errors from the ancilla
required for quantum control of the modes. To overcome
this issue, we design grid codes where, with high proba-
bility, ancilla errors propagate to the oscillator modes as
correctable errors instead of logical errors. In particular,
the probability of a propagated logical error decreases with
the size of the grid codes. In contrast, in single-mode GKP
codes where a two-level system is used as ancilla [28–30],
the probability that an ancilla error propagates as a logical
error is roughly 50%, a constant independent of the number
of excitations in the GKP code words. General approaches
such as path-independence [31,32] or biased-noised ancil-
las [33] have been suggested to reduce the impact of ancilla
errors in bosonic codes, and these approaches could also be
compatible with multimode GKP codes.

We present practical error-correction methods for multi-
mode codes, showing that they could be implemented in a
variety of experimental platforms, some of which are illus-
trated in Fig. 1. The preparation of grid states was first
demonstrated in the motion of a trapped ion [30,34], and
multimode codes could be implemented by considering
multiple modes of a single ion, as illustrated in Fig. 1(a),
or the collective motion of multiple ions. Quantum con-
trol of multiple modes has already been demonstrated in
other contexts [35]. Multimode GKP codes could also
be implemented in microwave cavities, as illustrated in
Fig. 1(b). This is the first platform where error correction

(a) (b) (c)

FIG. 1. Sketch of the possible platforms for the implemen-
tation of two-mode grid codes. (a) Motional modes (gray) of
a trapped ion (purple), with lasers used for control (blue). (b)
Two single-post microwave cavities (black), coupled to a trans-
mon qubit (purple). Electromagnetic modes (gray) are controlled
through pulses (blue) applied on the cavities and transmon qubit.
(c) Phononic-crystal-defect resonator modes (gray) coupled to a
transmon qubit (purple).

in a GKP code was demonstrated [28], and the prepa-
ration of grid states has been used to benchmark cavity
control methods [36,37]. Quantum control of multiple cav-
ities has also been demonstrated in various contexts, for
example the preparation of two-mode cat states [38] or
the realization of an engineered exchange interaction [39],
and the fabrication of high-quality multicavity systems is
an active research area [40,41]. Another promising plat-
form for GKP codes is phononic-crystal-defect resonators,
which have a smaller physical footprint than microwave
cavities [42,43]. A schematic illustration of this platform
is shown in Fig. 1(c). Finally, we enumerate above exper-
imental platforms where control of oscillator modes is
performed using a nonlinear ancilla, but a natural plat-
form that could host multimode GKP codes is propagating
photonic modes, where the entanglement of thousands of
modes has been demonstrated [44,45]. Given the ability to
prepare single-mode GKP states, one could leverage pre-
cise homodyne measurements to prepare and correct errors
in multimode GKP codes. To the best of our knowledge,
the required preparation of single-mode grid states has not
yet been realized in an optical platform, although several
promising proposals exist [29,46–54].

The rest of the paper is organized as follows. First, in
Sec. I, we set the notation used throughout the rest of the
paper. Then, in Sec. II, we review and extend the the-
ory on multimode GKP codes. These first mathematically
oriented sections are then followed by a presentation of
practical error-correction strategies in Sec. III. We then
study two concrete examples of two-mode codes, namely
the tesseract code in Sec. IV and the D4 code in Sec. V. We
highlight some similarities between concatenated codes
and multimode lattices in Sec. VI and conclude in Sec. VII.

I. PRELIMINARIES AND NOTATION

In this paper, we consider m harmonic oscillator
modes, and we aim to establish correspondences between
translations in a (symplectic) vector space R

2m and the
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quantum Hilbert space of these m modes. We denote
the dimensionless creation and annihilation operators for
the j th mode âj and â†

j , respectively, obeying [âj , â†
k] = δjk.

We work in units of � = 1 and denote the quadrature
coordinates q̂j = (âj + â†

j )/
√

2 and p̂j = −i(âj − â†
j )/

√
2

such that [q̂j , p̂k] = iδjk. We arrange the quadrature coor-
dinates in vectors such that x̂ = (q̂1, p̂1, q̂2, . . . , q̂m, p̂m),
and points in phase space correspond to vectors v ∈ R

2m

arranged in the same order as x̂. We decorate all quantum
operators with a hat and denote vectors in bold fonts.

We define a translation in phase space by v in units of
l = √

2π as

T̂(v) ≡ e−ilx̂T�v

=
m⊗

j=1

D̂j
(
l [Cv]j

)
, (1)

where D̂j (α) = exp{αâ†
j − α∗âj } with α ∈ C is the stan-

dard displacement operator for the j th mode [55] and C
is a m × 2m matrix that maps the real vector v ∈ R

2m to a
complex vector Cv ∈ C

m,

C = 1√
2

⎛

⎝
1 i 0 0 · · ·
0 0 1 i · · ·

· · ·

⎞

⎠ . (2)

We also define the antisymmetric matrix

� =
⊕

m

(
0 1
−1 0

)
, (3)

from which we define the symplectic form

ω(u, v) = uT�v. (4)

This form is alternating, ω(u, v) = −ω(v, u), which
implies that ω(u, u) = 0. The commutation relations of the
quadrature coordinates impose that

T̂(u)T̂(v) = T̂(v)T̂(u)ei2πvT�u = T̂(u + v)eiπvT�u. (5)

By defining translations in units of l = √
2π , the transla-

tion operators associated with two vectors u and v com-
mute if and only if their symplectic form is an integer,
[T̂(u), T̂(v)] = 0 ⇔ uT�v ∈ Z.

Quantum unitaries generated by quadratic Hamiltoni-
ans are represented by 2m × 2m real symplectic matrices
M ∈ Sp(2m, R) respecting M T�M = �. We define the
unitary-valued function Q̂ that takes as input a symplectic
matrix M and outputs the corresponding quantum uni-
tary. Its effect on the quadrature coordinates is given by
Q̂†(M )x̂Q̂(M ) = M x̂, where Q̂ acts by conjugation on

each x̂j individually and M acts by matrix-vector mul-
tiplication on the vector x. Commuting Q̂(M ) through a
translation operator yields

Q̂(M )T̂(v) = T̂(Mv)Q̂(M ), (6)

and the operator-valued function Q̂ is a homomorphism
such that Q̂(M1)Q̂(M2) = Q̂(M1M2). Given a 2m × 2m
real symmetric matrix J such that M = exp{�J }, Q̂ can
be computed using

Q̂(M ) = exp
{−i

2
x̂TJ x̂

}
. (7)

An important subgroup of symplectic matrices are
those that are also orthogonal, O ∈ O(2m, R) ∩ Sp(2m, R)
respecting OTO = I. The quantum unitary associated with
these matrices, Q̂(O), preserves the total excitation num-
ber in all modes, [Q̂(O), n̂] = 0 with n̂ = ∑

j â†
j âj = (x̂ ·

x̂ − m)/2. Geometrically, the fact that Q̂(O) preserves the
photon number is equivalent to the fact that orthogonal
matrices O preserve the Euclidean distance in R

2m.
We define a rotation of the j th mode

R̂j (θ) = e−iθ n̂j , (8)

with n̂j = â†
j âj , and its associated symplectic representa-

tion

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, (9)

with R̂(θ) = Q̂[R(θ)]. Moreover, we also define a beam-
splitter operation between two modes j , k, B̂j→k =
exp{−iπ(q̂j p̂k − p̂j q̂k)/4}, which has a symplectic repre-
sentation

Bj→k = 1√
2

⎛

⎜⎝

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

⎞

⎟⎠ . (10)

The arrow in the graphical representation of the beam-
splitter operation, for example in Fig. 2(c) below, matches
the direction of the j → k arrow.

Finally, we denote logical operations acting on encoded
qubits with an overhead bar, Ḡ, and denote the corre-
sponding multimode unitary as Û(Ḡ). As is usual for
error-correcting codes, logical gates can have multiple
equivalent representatives, and as a result the mapping
Û(Ḡ) is not unique. The representative referred to with the
mapping Û will be clear from the context.

An example of the different mathematical objects men-
tioned above and the space they act on is summarized in
Table I.
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(a) (b) (c)

FIG. 2. Tesseract code. (a) Phase-space representation of the
stabilizer generators. The left and right graphs represent the pro-
jection onto the (q, p) phase space of the first and second mode,
respectively. (b) Similar representation for the logical operators.
(c) Logical Clifford operations. The S̄ gate can be affected by a
shearing gate in either mode (with only one choice represented).
The H̄ gate is implemented by a beam splitter followed by a
phase shift of π/2 in both modes. The logical CZ̄ gate is imple-
mented by a rescaled SUM gate. We represent this gate as an
operation between the second mode of A and the first mode of
B, but choosing any pair of modes from the codes A and B is
equivalent.

II. MULTIDIMENSIONAL GRID STATES

In this section, we review and extend the theory on mul-
timode GKP codes introduced in Ref. [18]. We refer the
reader to Appendix A and Ref. [56] for more details about
lattice theory.

A. General theory

The aim here is to encode a logical qudit in translation-
invariant grid states. Taking m oscillator modes, a QEC
code is associated with a (classical) lattice� in 2m dimen-
sions, each mode contributing two quadrature coordinates,
q̂ and p̂ . The lattice � is generated by a set of 2m lin-
early independent translations {sj }, which we arrange in
a 2m × 2m matrix S where each row corresponds to one
basis vector sj ,

S =

⎛

⎜⎝

s1
s2
· · ·
s2m

⎞

⎟⎠ . (11)

TABLE I. Example of different representations for a logical
Hadamard gate in the single-mode square GKP code, imple-
mented by a rotation by π/2 in phase space. In general, symplec-
tic matrices act on the real vector space R

2m, quantum unitaries
act on the set of square integrable functions L2(Rm) and logical
operations act on a qubit Hilbert space C

2.

Symplectic
space Oscillator space Logical space

Acts on R
2 Acts on L2(R) Acts on C

2

R(π/2) Q̂[R(π/2)] = R̂(π/2) = Û(H̄) H̄

The lattice points are then given by

� = {
STa | a ∈ Z

2m} . (12)

The QEC grid code is defined by associating each gener-
ator of the lattice with a generator of the stabilizer group,
sj → T̂(sj ). The (infinite) stabilizer group is then given by

S =
{
	2m

j=1T̂(sj )
aj | a ∈ Z

2m
}

, (13)

with each stabilizer associated with a point on the lattice
�. Code words are defined to be in the simultaneous +1
eigenspace of all stabilizers.

The generators of the quantum translation, T̂, associated
with the generators of the stabilizer group are given by

ĝ = −lS�x̂, (14)

such that the j th generator of the stabilizer group is
given by T̂(sj ) = exp{iĝj }. Measuring the stabilizer T̂(sj )

is equivalent to measuring the modular quadrature coordi-
nate ĝj mod 2π [57,58], and in particular eigenstates of
T̂(sj ) are also eigenstates of ĝj .

In contrast to qubit QEC stabilizer codes, the stabilizers
of the GKP code have a continuous spectrum. Restricting
the code space to the +1 eigenspace of the stabilizers thus
imposes an infinite amount of constraints, restricting the
eigenvalues of ĝj to be within the countable set gj = 0
mod 2π within the uncountable eigenstates with eigenval-
ues gj ∈ R. The intersection of the +1 eigenspace of each
stabilizer is a finite dimensional space, with a dimension
d specified below. Quadrature coordinate eigenstates are
equivalent to infinitely squeezed states, which contain an
infinite amount of energy, making the code words of ideal
GKP codes unphysical. We consider the realistic, finite-
energy version of the code words and stabilizer group S
below in Sec. II B.

Another difference between GKP codes and qubit stabi-
lizer codes is the number of stabilizers needed to specify
the code space. Indeed, n − k stabilizers are needed to
specify how to encode k logical qubits into n physical
qubits. In contrast, 2m translation operators are needed
to describe the GKP code space, irrespective of the code
dimension.

The symplectic Gram matrix of the lattice �, set-
ting the pairwise commutation relations of the stabilizer
generators, is given by

A = S�ST, (15)

such that T̂(sj )T̂(sk) = T̂(sk)T̂(sj )e2π iAjk . In order for the
stabilizers to commute with each other, we should there-
fore have� symplectically integral, meaning that A should
contain only integers.
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TABLE II. Expression of different QEC concepts for lattices in
R

2m and grid codes in m modes.

Classical lattice Grid code

Stabilizers � = S ={
STa | a ∈ Z

2m
} {

	2m
j=1T̂(sj )

aj | a ∈ Z
2m
}

Condition on
commutation
of stabilizers

A integral [T̂(sj ), T̂(sk)] = 0

Code
dimension

det A = d2 d logical states

Logical p ∈ �∗ Û(P̄) = T̂(p)
Pauli operators

Associated with the lattice �, we define the symplec-
tic dual lattice �∗ as the ensemble of points that have an
integer symplectic form with the lattice points �,

�∗ = {v | S�v ∈ Z
2m}. (16)

In the rest of this work, we simply refer to �∗ as the
dual lattice instead of the more precise term symplectic
dual lattice. Since the lattice is symplectically integral,
the definition of �∗ implies that � ⊆ �∗. One choice of
generator matrix for the dual lattice �∗ is obtained from
[59]

S∗ = A−1S. (17)

Associating a translation to each point in the dual lat-
tice, Eq. (16) implies that the set of translation operators
{T̂(λλλ∗)|λλλ∗ ∈ �∗} forms (modulo phases) the centralizer of
S in the group of translations, i.e., corresponds to all trans-
lations that commute with all elements of the stabilizer
group. In a QEC code, logical operators correspond to
operators that leave the stabilizer group invariant. Here,
we associate all translations by a dual lattice vector to a
logical Pauli operator. Since translations that differ by a
lattice vector are equivalent in the logical subspace, the
logical information is encoded in the dual quotient group
�∗/� and the number of distinct logical operators is given
by the number of dual lattice points inside the funda-
mental parallelotope of �. Equivalently, the number of
distinct logical operators is given by the ratio of volumes
between the fundamental parallelotope of the base and
dual lattices. Defining the determinant of a lattice to be
det(�) = det(A), the condition to encode a d-level qudit
with d2 logical Pauli operators is that

det(�) = d2. (18)

The links between classical lattices and quantum grid
codes are summarized in Table II.

To investigate multimode codes, we first search for the
different codes that can be obtained by (only) scaling the

lattice size by a constant c ∈ R, starting with a symplecti-
cally integral lattice �. Importantly, the condition that the
translations {T̂(sj )} commute imposes constraints on the
attainable code dimension d. The determinant of the lattice,
which sets the code dimension, scales as

det(c�) = c4mdet(�). (19)

On the other hand, the symplectic Gram matrix, which sets
the commutation relations of the stabilizers, scales as

A(c�) = c2A(�). (20)

In other words, the code dimension scales as a volume,
while the commutation relations between the stabilizers
scale as an area. Note that the single-mode case is special
since area and volume coincide, and scaling a single-
mode lattice by any constant c = √

a with a ∈ Z an integer
results in a valid code. However, multimode (m ≥ 2) GKP
codes are more constrained than their single-mode coun-
terpart since the conditions given by Eqs. (19) and (20) do
not coincide.

We denote �0 the smallest integral lattice that can be
built by scaling �, and we denote the associated sym-
plectic Gram matrix A0 [60]. Under the scaling by c, the
elements of A should remain integers, which imposes the
constraint that c2 = a ∈ Z be an integer. Combining with
Eq. (19), we get that a lattice �0 allows for codes of
dimension

d = am det(S0). (21)

In particular, if det(S0) = 1 such that the lattice encodes
a single logical state, scaling the size of the lattice allows
ensembles of m qudits of dimension a to be encoded. For
a single-mode (two-dimensional lattice), any lattice can be
rescaled such that det(�0) = 1, and since m = 1 all code
dimensions are possible.

While scaling a lattice allows one to build codes out of
known symplectically integral lattices, it is not the only
allowed operation. Consider the basis S′ = SO where O ∈
O(R, 2m)− Sp(R, 2m) is orthogonal but not symplectic.
For example, a two-mode rotation in the quadrature coor-
dinates q̂1, q̂2 that leaves their conjugate coordinates p̂1, p̂2
invariant is orthogonal but not symplectic. With respect to
the Euclidean norm, S and S′ are bases for two equivalent
lattices, SST = S′S′T, but the symplectic Gram matrix asso-
ciated with these bases are not the same, S�ST �= S′�S′T.
This means that for a general basis S where A = S�ST

is not integral, there can be an orthogonal transformation
such that A′ = S′�S′T is integral. In other words, viewing
the symplectic form as a sum of areas, there can be special
“rotations” of the lattice where these areas add up to inte-
gers for each pair of stabilizers. To search for codes that do
not respect Eq. (21), our strategy is to scale a lattice to the
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desired volume, and then search for an orthogonal trans-
formation O such that A′ is integral, see Appendix E. Note
that once a solution is found using this procedure, say for
dimension d′, then all solutions of dimension d′am are also
valid per Eq. (21).

In this work we mainly focus on encoding a qubit
d = 2 in multiple modes. Each vector of the dual lat-
tice �∗ is associated with a logical Pauli operator P̄, P̄ ∈
{X̄ , Ȳ, Z̄}. For each logical Pauli operator P̄, we choose
a base representative p0 such that any translation by p
with T̂(p) = Û(P̄) is expressed as p = p0 + λλλ for some
λλλ ∈ �. We define the set of points P = p0 +�. We define
a 3 × 2m matrix where each row sets one of these base
representatives

L0 =
⎛

⎝
x0
y0
z0

⎞

⎠ , (22)

with x0, y0 and z0 associated with the logical Pauli opera-
tors X̄ , Ȳ, and Z̄, respectively. Without loss of generality,
we choose the representatives of minimum length with
respect to the Euclidean norm for each Pauli operator, such
that T̂(p) = Û(P̄)⇒ |p| ≥ |p0|. The logical identity oper-
ator is omitted from Eq. (22) since it corresponds to the
stabilizers with the trivial base representative 0.

We also make use of GKP codes encoding a single state,
d = 1. We refer to such GKP codes as “qunaught” states
since they carry no quantum information, and we associate
them with a subscript ∅ [26,27]. The single-mode square
qunaught state is sometimes referred to as a sensor state
since it can be used to precisely measure translations in
two conjugate quadrature coordinates simultaneously [61].

Finally, when it is clear from the context, we sometimes
abuse the notation and refer to the vectors sj , p ∈ R

2m as
the quantum translation operators they are associated with.

B. Finite-energy multimode GKP

In the previous section, we consider grid states that
extend infinitely in phase space. In other words, the
eigenstates of translation operators are superpositions of
infinitely squeezed states containing an infinite amount of
energy. Here, we consider the finite-energy GKP states that
are obtained by taking a m-mode envelope of the form

Êβ = exp

⎛

⎝−
m∑

j=1

βj n̂j

⎞

⎠ , (23)

where βj parametrizes the size of the GKP in the j th mode.
One can interpret this envelope as the multiplication of the
grid state by the density matrix of a m-mode thermal state,
motivating the notation choice “β.” Alternatively, Eq. (23)
can be interpreted as a Gaussian envelope in phase space

since n̂j = (q̂2
j + p̂2

j + 1)/2. The finite-energy logical code
words ψ̄ = 0, 1 are then defined as

|ψ̄β〉 = Nψ ,β Êβ |ψ̄0〉, (24)

with Nψ ,β a normalization constant and |ψ̄0〉 the ideal,
infinite-energy code words.

Generalizing the approach from Ref. [29], we define
finite-energy stabilizers from the similarity transformation
induced by the envelope,

T̂j ,β = Êβ T̂(sj )Ê−1
β ,

= exp{iÊβ ĝj Ê−1
β }. (25)

Finite-energy code words are exact +1 eigenstates of these
operators, T̂j ,β |ψ̄β〉 = |ψ̄β〉. From Eq. (14), the generators
of translations of the stabilizer group transform to

Êβ ĝÊ−1
β = −lS� {cosh [Diag(βββ)] + i sinh [Diag(βββ)]�} x̂,

(26)

where we define the 2m-dimensional vector βββ = (β1, β2,
. . . βm)⊗ (1, 1) and Diag corresponds to the operation of
building a diagonal matrix from a vector. In the limit β →
0, we recover the translation operators, T̂j ,0 = T̂(sj ).

We consider a homogeneous envelope size βj = β for
all j in the rest of the paper, such that Êβ = exp(−βn̂),
with n̂ = ∑

j n̂j the total excitation number. For this
choice, operations that commute with n̂ also commute with
the envelope, and we refer to such operations as envelope
preserving. Gaussian operations in that category, Q̂(O)
with O ∈ Sp(2m, R) ∩ O(2m, R), can be implemented by a
combination of beam splitters and phase shifters, i.e., pas-
sive linear optics. Envelope-preserving gates also include
nonlinear gates such as the unitaries generated by Kerr and
cross-Kerr interactions. Importantly, envelope-preserving
operations are exact for finite-energy GKP codes.

Taking the logarithm of the stabilizers T̂j ,β , and in anal-
ogy with continuous-variable cluster states [62,63], we
define the finite-energy nullifiers of the code

d̂j =
([

sT
j �x̂ mod l/ coshβ

]
/

√
2|sj | tanh(β)

− i
√

tanh(β)/2|sj |sT
j · x̂

)
. (27)

The finite-energy code words are then also defined by
d̂j |ψ̄β〉 ≈ 0 ∀ j [64]. Without the modular part of the first
term, d̂j corresponds to the nullifier of a finitely squeezed
state.

C. Gauge choices

As demonstrated by Eqs. (12) and (13), the points
of the lattice � are in one-to-one correspondence with
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the elements of the stabilizer group S . However, we
remark that λλλ ∈ � does not imply that T̂(λλλ) ∈ S , and the
correspondence between elements of � and S requires
an additional phase. For example, take two stabilizers
T̂(s1) and T̂(s2) “only” commuting by 2π , i.e., such that
sT

1�s2 = 1. Following Eq. (5), we have T̂(s1 + s2)|ψ〉 =
−T̂(s1)T̂(s2)|ψ〉 = −|ψ〉, for all logical code words |ψ〉.
Within the lattice points �, we thus distinguish between
two subsets �± ⊆ � such that, for states |ψ〉 in the code
space,

�ν =
{
λλλ ∈ � | T̂(λλλ)|ψ〉 = ν|ψ〉

}
, (28)

with ν = ±. For example, for the single-mode square
qunaught state with generator matrix S∅ = I2, we have the
generator vectors s1, s2 ∈ �+, while their sum s1 + s2 =
(1; 1) ∈ �−. For a qubit encoded in a single mode, all lat-
tice vectors associated with the stabilizer group necessarily
belong to �+ since there are only two generators and the
dimension condition imposes that |sT

1�s2| = 2.
As will become clear below, it is useful to allow differ-

ent gauge choices μμμ ∈ Z
2m
2 such that for the generators of

the stabilizer group T̂(sj )|ψ〉 = (−1)μj |ψ〉 for states |ψ〉
in the code space. The stabilizer group is correspondingly
updated to

Sμμμ =
{
	2m

j=1[(−1)μj T̂(sj )]aj | a ∈ Z
2m
}

, (29)

Different choices for S or μμμ can lead to different subsets
�± for the same base lattice � [65].

Defining A as the lower triangular part of the symplectic
Gram matrix A given by Eq. (15), we classify the lattice
vectors, λλλ ∈ �, according to the gauge μμμ

νμμμ(λλλ) = exp
{
iπλλλTS−1 [A(S−1)Tλλλ+μμμ]} . (30)

Since � is symplectically integral, we have that νμμμ(λλλ) ∈
{±1}. Moreover, if λλλ ∈ �ν , then its inverse is also in the
same set, −λλλ ∈ �ν .

In a similar fashion to the stabilizer gauge μμμ, we define
a gauge for the logical Pauli operators υυυ ∈ Z

3
2, which is

equivalent to a so-called Pauli frame [66]. Accordingly, we
define the eigenstate of the logical Pauli operator P̄ such
that (−1)υp T̂(p0)|ψ+P〉 = |ψ+P〉. We note that one of the
three elements of υυυ is redundant, as the gauge is fully set
byυυυx andυυυz. Here we choose to keep all three elements for
convenience. In a similar manner to the lattice vector sub-
sets �±, we define the subsets P± for each Pauli operator
P ∈ {X , Y, Z} as

Pν =
{

p ∈ P | T̂(p)|ψ+P〉 = ν|ψ+P〉
}

, (31)

which depends on the stabilizer gauge μμμ, the Pauli frame
gauge υυυ, and the base representatives {p0}. The sign asso-
ciated with a particular vector p ∈ P is computed using

νP
μμμ,υυυ(p) = eiπ[pT

0�p+υp]νμμμ(p − p0), (32)

and logical Pauli operators are given by

Û(P̄) = νP
μμμμμμμμμ,υυυ(p)T̂(p), (33)

for all p ∈ P = p0 +�.
In order for the Pauli eigenstates |ψ±P〉 to have eigen-

value ±1, we note that we should have νμμμ(2p0) = 1, where
2p0 ∈ � by construction. Indeed, the eigenvalues of trans-
lations by T̂(p0) are constrained to be

√
νμμμ(2p0), such that

νμμμ(2p0) = −1 implies that T̂(p0)|ψ〉 = ±i|ψ〉. To con-
strain the eigenvalues of the Pauli operators to be real, we
add the condition that

2A−1μμμ mod 2 = 0. (34)

This condition is obviously always respected in the triv-
ial gauge μμμ = 0, and in the special case of a single-mode
GKP qubit, this is the only gauge respecting this condition.
However, for multimode lattices, there are multiple gauges
allowed.

1. Gauge updates

It is useful to consider the effect of different operations
on the gauge μμμ. For example, consider a displacement by
half a lattice vector T̂(τττ/2) with τττ ∈ �, an operation use-
ful for QEC purposes; see Sec. III. While code words are
not (generally) eigenstates of T̂(τττ/2), the displaced state
|ψ ′〉 = T̂(τττ/2)|ψ〉 is still an eigenstate of all stabilizers. As
a result, |ψ ′〉 can still be considered inside the code space
after updating the gauges to

μμμ′ = (μμμ+ S�τττ) mod 2, (35a)

υυυ ′ = (υυυ + L0�τττ) mod 2. (35b)

The above equation also means that given a state in a gauge
μμμ, we can set the gauge to the desired value μμμtarget by
applying a translation T̂(τττ/2) to the state, with

τττ = −�S−1[(μμμtarget +μμμ) mod 2]. (36)

It was already pointed out that single-mode GKP code
words are similar to the Landau levels of an electron in
a two-dimensional plane with a uniform magnetic field.
Correspondingly, translations in phase space are similar to
magnetic translation operators [18,67]. Carrying this com-
parison further, the gauge μμμ we defined in this section
plays a role similar to the electromagnetic gauge fields,
which should be taken into account when considering
physical symmetries of the electronic system [68].
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D. Logical Pauli and Clifford gates

In GKP codes, logical Pauli operations can be real-
ized in a fault-tolerant manner by applying translations
T̂(p). However, one potential issue with performing gates
this way is that the energy contained in the GKP state
increases. Equivalently, translation operators are not enve-
lope preserving, [T̂(p), Êβ] �= 0. This issue can be partly
mitigated through various strategies such as choosing ran-
dom representatives of a given Pauli, symmetrizing the
direction of the displacements [53]. One can also use the
error-correction circuits introduced below in Sec. III to
correct the “envelope errors” caused by these translations.
A more attractive option is to perform logical Pauli oper-
ations in software by updating υυυ. For single-mode codes,
this approach can be generalized to the whole single-qubit
Clifford group by performing computations in the so-called
Clifford frame [69–71], adapting logical two-qubit gates
depending on the frame.

Next, consider a symplectic operation M mapping lat-
tice vectors to other lattice vectors, M� = �, by which
we mean that Mλλλ ∈ � for all λλλ ∈ �. In other words, M
is a lattice symmetry that preserves the commutation rela-
tions of the modes. Since M leaves the lattice invariant,
it maps dual lattice vectors to other dual lattice vec-
tors. Equivalently, its associated quantum representation,
Q̂(M ), corresponds to a logical Clifford operation in the
code space, mapping logical Pauli operators to other log-
ical Pauli operators. Importantly, this operation does not
necessarily preserve the lattice subsets �± and, in gen-
eral, we have M�ν �= �ν . However, this can be taken into
account by properly updating the gauges, see Appendix B
for details.

We remark that, for a given lattice symmetry M , there
can be special gauges where M�ν = �ν . Such gauges
affect the symmetries of the code words, and are espe-
cially useful for non-Clifford operations. For example, one
could perform a controlled-M gate by coupling the modes
to an ancilla qubit. Without the condition that M�ν =
�ν , applying a superposition of identity and Q̂(M ) leaves
the state in a superposition of ±1 eigenstates for some
stabilizers, which is outside of the code space.

E. Envelope-preserving non-Clifford gates

In this section, we investigate how the symmetries of
a lattice can allow easier implementation of non-Clifford
gates. More precisely, we show how the symmetries of
the lattice � are reflected in the code words, and how
these properties can be used to design non-Clifford gates.
We focus, in particular, on lattice symmetries, which are
isometries, i.e., operations M where M� = � and M ∈
O(2m, R) ∩ Sp(2m, R). We remark that for M to corre-
spond to a nontrivial logical operation, dual lattice vectors
corresponding to distinct logical operators must have the
same length. For example, an envelope-preserving logical

Hadamard gate can only be implemented in a code where
|x0| = |z0|.

Below, we assume that the gauge is set such that no
gauge update is required after applying Q̂(M ), i.e., we set
μμμ such that M�ν = �ν . This condition ensures that apply-
ing superpositions of different powers of M leaves the state
inside the code space.

Since distances are preserved by M and the number
of lattice points of a given length is finite, M has finite
order and there is an integer p such that M p = I . More-
over, there is an operator F̂ with integer spectrum such
that Q̂(M ) = exp{i(2π/p)F̂}. Indeed, the identity opera-
tor can be expressed as Î = Q̂(I) = Q̂(M p) = Q̂(M )p =
exp{i2π F̂}, which forces the eigenvalues of F̂ to be inte-
gers. We label the eigenstates of F̂ by their eigenvalue
j ∈ Z and a degeneracy index k, F̂|j , k〉F = j |j , k〉F . For
single-mode codes, the only possible isometries are rota-
tions by an angle 2π/p , with generator operator F̂ = n̂. In
this case, the F basis reduces to the standard Fock basis
and due to the crystallographic theorem p is restricted to
p ∈ {1, 2, 3, 4, 6}.

Knowing that M acts as a Clifford gate Ḡ in the logi-
cal subspace, the operation Q̂(M ) = Û(Ḡ) has finite order
g within the code space. Since Q̂(M p) = Û(Ḡ)p = Î , we
have that g divides p , i.e., p = bg for some integer b.
In the (possibly non-Pauli) basis where Ḡ is diagonal,
{|Ḡ〉, |ei(2π/g)Ḡ〉}, the code words have a special structure
with respect to the F basis,

|Ḡ〉 =
∑

j

∑

k

c0jk|pj , k〉F , (37a)

|ei 2π
g Ḡ〉 =

∑

j

∑

k

c1jk|pj + b, k〉F , (37b)

and we compute that

Q̂(M )|ei 2πa
g Ḡ〉 = ei 2π

p F̂ |ei 2πa
g Ḡ〉,

= ei 2πa
g |ei 2πa

g Ḡ〉,
= Û(Ḡ)|ei 2πa

g Ḡ〉, (38)

with a ∈ {0, 1}. The value of the coefficients cajk depend on
the envelope size β, and do not affect the properties derived
in this section.

Consider the example of a single-mode square GKP
code encoding a qubit. That code is based on the square
lattice, which is invariant under a quarter-turn rota-
tion M = R(π/2). This isometry has order p = 4, and
within the code space Q̂(M ) = R̂(π/2) acts as a logical
Hadamard gate with order g = 2. Rotations in phase space
are generated by the photon-number operator R̂(π/2)
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= exp{i(2π/4)n̂} and, following Eq. (37), the eigenstates
of the Hadamard gate can be expressed in the Fock basis
as

|H̄�〉 =
∑

j

c0j |4j 〉, (39a)

|−H̄�〉 =
∑

j

c1j |4j + 2〉. (39b)

From the properties above, we now show how to perform
a non-Clifford gate

√
Ḡ when Ḡ has even order g ∈ 2Z.

This non-Clifford gate is based on a quartic interaction F̂2.
Indeed, leveraging the special support of the states Eq. (37)
in the F basis, we have

Û
(√

Ḡ
)
= e

i gπ
p2 F̂2

. (40)

Applying this gate in the diagonal basis of Ḡ, we obtain

Û
(√

Ḡ
)
|ei 2πa

g Ḡ〉 = e
i gπ

p2 F̂2

|ei 2πa
g Ḡ〉,

=
∑

j

∑

k

cajke
i gπ

p2 p2(j+ a
g )

2

|pj + ba, k〉,

= ei πa
g |ei 2πa

g Ḡ〉, (41)

as desired and with a ∈ {0, 1}.
Returning to the example of the Hadamard gate in the

single-mode square code where F̂ = n̂, p = 4, and g = 2,
we can implement a square root of Hadamard gate through
a Kerr unitary

Û�
(√

H̄
)
= ei π8 n̂2

. (42)

Although the special Fock state support of the Hadamard
eigenstates was originally mentioned in Ref. [18], the fact
that a Kerr gate can implement a

√
H̄ gate has, to the best

of our knowledge, not been pointed out before.
Using the same properties as above, we also derive

entangling non-Clifford gates between two qubits A and B,

Û(C(Ḡ)Ḡ) = e
i 2πg

p2 F̂AF̂B , (43)

which can be understood as effecting Ḡ on qubit B con-
ditioned on qubit A being in the state |ei(2π/g)Ḡ〉. For
two single-mode square code, we obtain a Hadamard-
controlled Hadamard gate based on a cross-Kerr interac-
tion [72],

Û�(C(H̄)H̄) = ei π8 n̂An̂B . (44)

A crucial property of the gates derived above is that they
are exact for finite-energy GKP codes. Indeed, since by

construction the unitaries exp{iθ F̂} preserve the excitation
number n̂ for any angle θ , the generator of that unitary
commutes with the excitation number, [F̂ , n̂] = 0, which
then implies that [exp{iθ F̂2}, Êβ] = 0. As a result, the
gates defined by Eqs. (40) and (43) preserve the code space
irrespective of the size of the envelope. This property is in
stark contrast to the cubic phase gate [18], whose fidelity
is intrinsically limited in finite-energy GKP states [73].

In order for the code words to exhibit the F-basis struc-
ture shown in Eq. (37), the gauge should be set such that
M�ν = �ν . This enforces that applying a superposition of
M and identity leaves the state inside the code space. How-
ever, there are generally two inequivalent gauges where
this is respected, where the code words are ±1 eigenstates
of the modified stabilizers. Importantly, the logical Clifford
operation implemented by the same unitary can differ in the
two gauges, impacting the order of the gate g. Assuming
that the gates Eqs. (40) and (43) are implemented by evolv-
ing the system under a Hamiltonian Ĥ ∝ F̂2, it is desirable
to choose the gauge where g is minimal in order to reduce
the interaction time.

For example, in the single-mode square code, the rota-
tion R̂(π/2) leaves the gaugesμμμ = 0 andμμμ = (1, 1) intact.
In the former gauge, this rotation corresponds to a logical
Hadamard gate with order g = 2, while in the latter gauge
it corresponds to a logical

√
Ȳ gate with order g = 4.

The properties above are reminiscent of rotation-
symmetric codes [72], a class of bosonic codes designed
such that code words have support on specific Fock states.
However, as defined in Ref. [72], a rotation R̂ in these
codes implements a logical Pauli operation, and a Kerr
(cross-Kerr) interaction corresponds to a Clifford S̄ (CZ̄)
gate. In contrast, for the square GKP code, a rotation
R̂(π/2) corresponds to a Clifford gate, and a Kerr (cross-
Kerr) interaction corresponds to a non-Clifford gate. These
properties are summarized in Table III, where we see that
for a given Hamiltonian order, GKP codes allow gates
deeper in the Clifford hierarchy compared to rotation-
symmetric codes [74]. In this table we focus on the com-
parison between the square GKP code and the four-legged
cat code [72,75] since they have the same order of rotation
symmetry R̂(π/2). In principle, a non-Clifford gate can be
realized in rotation-symmetric codes by going to higher-
order interactions, for example, by implementing an octic
Hamiltonian Ĥ ∝ n̂4, and gates based on higher powers of
F̂ can also be derived for GKP codes. However, any non-
Clifford gate is sufficient to perform universal quantum
computation. Moreover, the propagation of errors worsens
with higher-order gates, and they are also more difficult to
engineer, so that going to higher order is not likely to be
the optimal route to universality.

Since the gates introduced above are not Gaussian, they
generally propagate errors in an unfavorable way. For
example, an excitation loss before the Kerr gate Eq. (93)
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TABLE III. Comparison of gates in the GKP square code and
the four-legged cat state. The gate C(Ȳ)

√
Ȳ = exp{i(π/8)[3(ȲA +

ȲB)+ 5(Ī + ȲAȲB)]} corresponds to the equivalent of a
controlled-phase gate in the Ȳ basis, and the gate C(H̄)H̄ =
exp{i(π/4)(3 + H̄ A + H̄ B + 3H̄ AH̄ B)} corresponds to the equiv-
alent of a controlled-Z gate in the Hadamard basis.

Square GKP code

Hamiltonian Unitary μμμ = (0; 0) μμμ = (1; 1) Cat code

Quadratic R̂(π/2) H̄
√

Ȳ Z̄
Quartic ei(π/4)n̂2

H̄ 4√Ȳ Z̄
ei(π/8)n̂2 √

H̄ - S̄ =
√

Z̄
ei(π/2)n̂An̂B Ī C(Ȳ)

√
Ȳ Ī

ei(π/4)n̂An̂B C(H̄)H̄ - CZ̄
Octic ei(π/64)n̂4 4√H̄ - T̄ = 4√Z̄

leads to a large rotation error, eiπ n̂2/8â = âeiπ(n̂−1)2/8 ∝
âeiπ n̂/4Û(

√
H̄). These nonlinear gates rely on precise

“refocusing” of the lattice peaks at the end of the gate,
or equivalently refocusing of the F-state phases, a process
which can be impeded by errors. As a result, general errors
during the nonlinear gates leave the states far from the code
space. This propagation of error could be mitigated by,
for example, using these gates for magic state preparation
and postselecting only states where no errors are detected.
Also, the fact that the nonlinear gates commute with the
total excitation number is beneficial to limit the propaga-
tion of errors. For instance, it implies that they commute
with the “no-jump” part of the amplitude damping chan-
nel evolution, see K̂0 in Eq. (82) below. The propagation
of amplitude damping errors during cross-Kerr gates is
investigated more thoroughly in Ref. [72] in the context
of rotation-symmetric codes.

F. Codes and lattice packings

A standard problem in lattice theory is to search for the
densest possible lattice packings, and designing QEC grid
codes based on these lattices generally leads to good error-
correction properties. Placing a sphere at each lattice point
and increasing their radius until the spheres touch, the lat-
tice packing ratio � is defined as the fraction of space
covered by the spheres. This ratio is maximized when the
sphere radius is maximized.

Consider a Gaussian translation error model, where a
translation error T̂(e) is applied with a probability density
P(e) = exp{−|e|2/(2σ 2)}/(2πσ 2)m. In some contexts, this
error model can be a good approximation to more phys-
ically relevant error channels such as amplitude damping
[15,24,25,76–78]. Each dual lattice vector is associated
with a logical Pauli operator, such that maximizing the dis-
tance between dual lattice points minimizes the probability
that a translation error causes a logical error. Maximizing
the lattice packing ratio of the dual lattice therefore means

that errors with larger norm can be corrected, and we can
(in principle) correct all translation errors where

|e| ≤ 2
(
�

dV2m

) 1
2m

, (45)

where we define V2m as the volume of a unit radius sphere
in R

2m. An error larger than the bound above can enter the
sphere of a point associated to a different logical operator,
leading to a logical error. We can get a simple estimate for
the probability that an error occurs by computing the prob-
ability that the norm of the error is larger than the radius of
the spheres in the sphere-packing problem,

P(error) ≈ erfc

[
1

σ
√

m

(
�

dV2m

) 1
2m
]

. (46)

Considering lattices with denser lattice packing (larger �)
leads to smaller error probabilities. Increasing the dimen-
sion of the code d leads to larger error probabilities since
the dual lattice points are closer together.

Although designing codes based on dense lattice pack-
ings intuitively leads to good error-correcting codes, we
note that the simple model above ignores several important
design considerations, amongst which we mention three.
First, some translation errors outside of the considered
spheres can be corrected, and a more precise estimate for
the error probability is obtained by considering the Voronoï
cell of the dual lattice. Secondly, the model above assumes
an ideal error-correction procedure. In practice, the stabi-
lizer measurements required for error correction are them-
selves noisy, which can affect different lattices in different
ways. Thirdly, the geometry of the lattice is important
in the sense that some neigboring dual lattice points can
be logically equivalent. This second consideration is only
relevant when m ≥ 2, since for two-dimensional lattices
neighboring dual lattice points are always associated to
distinct logical operators.

There is extensive literature on integral lattices with
good lattice-packing ratios [56], defined such that the
(standard) Gram matrix G = SST contains only integers.
Although one might hope to use them as a starting point
to build interesting QEC codes, integral lattices are not
generally symplectically integral, and vice versa. The map-
ping from a classically integral lattice to a QEC code
is further complicated by the fact that it is not unique.
Indeed, as mentioned above in Sec. II A, one can rotate
the lattice around different axes, which can change the
symplectic form of generator vectors. Applying these
rotations on the quadrature coordinates, the commutation
relations are not preserved, and these rotations do not cor-
respond to physical operations. More precisely, G = SST

stays invariant under orthogonal transformations S′ = SO
with O ∈ O(R, 2m), while A = S�ST does not when O /∈
Sp(R, 2m).
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TABLE IV. Examples of qubit codes based on common lat-
tices.

Lattice name No. of modes min(|sj |) min(|p|)
Square 1

√
2 ≈ 1.41 1/

√
2 ≈ 0.71

Hexagonal 1 2/ 4√3 ≈ 1.52 1/ 4√3 ≈ 0.76
Tesseract 2 4√2 ≈ 1.19 1/ 4√2 ≈ 0.84
D4 2

√
2 ≈ 1.41 1

One family of interesting codes are given by symplec-
tic lattices, i.e., lattices that admit a generator matrix that
is also a symplectic matrix (S�ST = �). These lattices
encode a single state, d = 1, and by extension can also
encode ensembles of m qudits, Eq. (19) [79,80].

G. Lattice examples

We review below a few common lattices with good
sphere-packing properties [56], and the QEC codes they
allow. In Table IV, we summarize the main lattices stud-
ied in this work to encode qubits. In Sec. VI, we provide
an explicit construction of symplectically integral lattices
starting from qubit stabilizer codes, and show how the
lattices of the current section relate to this construction.

1. Single-mode lattices

First, we review some of the single-mode codes based
on two-dimensional lattices. We refer to the single-mode
square lattice encoding a single state, d = 1, as the square
qunaught state with generator matrix S∅ = I2. We further
define the rectangular qunaught state with generator matrix

S∅η =
(
η 0
0 1/η

)
, (47)

with η ∈ R
+. The associated (single) code word is given

in the position basis as

|∅η〉 ∝
∑

j∈Z

|j ηl〉x. (48)

The square GKP code encoding a qubit has a basis gen-
erator matrix S� = √

2I2. We also make use of a rotated
square qubit code, with generator matrix

S� =
(

1 1
1 −1

)
. (49)

Although formally equivalent to the square code, we refer
to it as the diamond qubit code.

It is interesting to note that the individual code words of
the square qubit code are given by rectangular qunaught
states |+Z�〉 = |∅√

2〉 and |+X�〉 = |∅1/
√

2〉. The −1
code words can be obtained by setting the gaugeμμμ = (0, 1)

andμμμ = (1, 0), respectively. The ±Ȳ Pauli eigenstates are,
up to a π/4 rotation of phase space, given by the square
qunaught state with η = 1, but choosing the mixed gauge
μμμ = (0/1, 1/0). Equivalently, the ±Ȳ Pauli eigenstates of
the diamond qubit code are related to the square qunaught
state η = 1 through a gauge choice.

Finally, we also refer to the hexagonal qubit code with
generator matrix

S� = 2
4√3

(
1 0

−1/2
√

3/2

)
. (50)

2. Hypercubic lattice

The simplest multimode lattice is the hypercubic lat-
tice � = Z

2m, with generator matrix S = I2m for which
det(�0) = 1. According to Eq. (21), valid encodings can
be obtained by scaling the hypercubic lattice are of dimen-
sion am, which is equivalent to encoding m qudits of
dimension a. In this situation, the generators become S =√

a I2m, with the dual lattice given by S∗ = −�/√a, see
Eq. (17).

One approach to quantum computing based on GKP
states is to concatenate the hypercubic lattice code encod-
ing m qubits with another qubit code [23,25,81–83]. In
this approach, the information is discretized at the single-
mode level, and the upper level code is mostly treated as a
standard qubit code, potentially incorporating the continu-
ous nature of the single-mode error syndromes to improve
the decoding procedure [22,23,25,26,84–86]. We explore
further the link between concatenated GKP codes and
“genuine” multimode lattices in Sec. VI.

However, we note that in this concatenated construction,
the logical qubit is not defined by a hypercubic lattice. In
two modes, it is possible to encode a single hypercubic
qubit using the basis

Stess = 4√2

⎛

⎜⎜⎜⎜⎝

1 0 0 0
0 1√

2
0 1√

2

0 0 1 0
0 1√

2
0 − 1√

2

⎞

⎟⎟⎟⎟⎠
, (51)

which is related to I4 by a scaling factor 4√2 and a rotation
by π/4 in the p1, p2 plane, a nonsymplectic transformation.
We refer to that qubit code as the tesseract code, which has
logical operators of length 4√2 times larger than than the
single-mode square code. From the intuition of the Gaus-
sian translation error model, this code is therefore more
robust than the square code against errors. We explore
the tesseract code further in Sec. IV, and its stabilizer
generators are illustrated in Fig. 2(a).

Beyond the encoding of a qubit, d = 2, we find that all
code dimensions that can be expressed as the sum of three
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squares

d = a2 + b2 + c2, (52)

for a, b, c ∈ Z, can be implemented as a two-mode hyper-
cubic code, see Appendix E. Legendre’s three-square
theorem specifies which numbers cannot be written as a
sum of three squares. Applied to Eq. (52), we have that
there exists codes of all dimensions that cannot be writ-
ten as d = 4f (8g + 7) for f , g non-negative integers. All
hypercubic codes of size d ≤ 20 are therefore possible
except for d = 7, 15.

3. D-type lattices

The D2m root lattices are obtained by starting with the
hypercubic lattice Z

2m, coloring points in two colors in a
checkerboard pattern, and then removing all points of one
color. Equivalently, the D2m lattice is generated by taking
all points whose sum of coordinates in Z

2m is even. The
determinant of D2m lattices in the standard integral basis is
given by det(�0) = 4 for all m ≥ 2 [56], which means that
one can encode a single qubit in m modes using this lattice.
A standard choice for the generator matrix is given by

SD2m =

⎛

⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1
0 0 0 · · · 1 1

⎞

⎟⎟⎟⎟⎟⎠
, (53)

which reduces to the diamond code in two dimensions (sin-
gle mode). As we show in Sec. VI, the D2m lattices are
closely related to the concatenation of diamond GKP codes
with a repetition code, and we explore the two-mode lat-
tice D4 in more detail in Sec. V. In particular, D4 gives the
densest lattice packing in four dimensions, and the dual of
the D4 lattice is also a D4 lattice.

For the D4 code, there exists an orthogonal transforma-
tion that allows for a d = 1 code [80],

SD4,∅ = 21/4

⎛

⎜⎜⎜⎝

1 0 0 0
−1
2

−1√
2

1
2 0

0 1√
2

0 1√
2

0 1√
2

0 −1√
2

⎞

⎟⎟⎟⎠ . (54)

More generally, we found codes based on the D4 lat-
tice for all code dimensions d ≤ 20 except d = 14, see
Appendix E.

4. A-type lattices

Another common lattice are the A-type root lattices,
with determinants that depend on the dimension in the
standard integral basis, det(�0) = 2m + 1. The A2 lattice

corresponds to the hexagonal lattice, which allows for the
densest sphere packing in two dimensions.

5. E-type lattices

In six and eight dimensions (m = 3, 4), the densest lat-
tice packings are obtained by using E-type lattices [87].
However, for E6, we have det(�0) = 3, which is not a per-
fect square. As a consequence, this lattice cannot be used
to construct quantum codes. On the other hand, the eight-
dimensional lattice E8 has det(�0) = 1, and can be used to
encode four qudits of dimension a. One choice of lattice
generators is

SE8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(55)

For an ensemble of qubits, a = 2 leading to d = 24,
the logical operators have minimum length min(|p|) = 1,
which improves over the hypercubic lattice encoding four
qubits where min(|p|) = 1/

√
2.

6. Leech lattice

The Leech lattice has been shown to be the optimal
lattice packing in 24 dimensions (12 modes) [88], with
a determinant det(�0) = 1. This lattice can be used to
encode an ensemble of 12 qubits, with logical operators of
minimum length min(|p|) = √

2, which is twice as large
as the square code.

H. Code switching

Consider a situation where we want to switch back and
forth between a lattice �C defined on mC modes and two
separable lattices �A and �B with disjoint support on
mA and mB modes, respectively, with mA + mB = mC. In
particular, we are interested in the situation where �∗

C ⊆
�∗

A ⊕�∗
B, such that any logical state of the code defined on

�C corresponds to a logical state of the split code defined
on �A ⊕�B. In other words, we are interested in situa-
tions where the logical space of the C code is a subspace
of the logical space of the AB code. For example, one class
of lattices that can be combined together are the D2m fam-
ily of lattices, where D∗

2mC
⊂ D∗

2mA
⊕ D∗

2mB
. In particular,

two diamond GKP codes (D2) can be combined together
to form the D4 code. Since for integral lattices the stabi-
lizer lattice forms a subset of the dual lattice, � ⊆ �∗, we
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have the hierarchy

�A ⊕�B ⊆ �C ⊆ �∗
C ⊆ �∗

A ⊕�∗
B. (56)

We refer to the operation�C → �A ⊕�B as splitting, and
refer to the converse operation �A ⊕�B → �C as merg-
ing. We outline below how to perform these operations,
and leave the details of the gauge updates to Appendix C.

1. Lattice splitting

While we give the operation of splitting a specific name,
no physical operation is actually performed, and in prac-
tice splitting two lattices consists only in software updates.
The only caveat to the previous statement is that if one
requires that the eigenvalues of the logical Pauli operators
remain real after the splitting [the condition in Eq. (34)] a
translation set by Eq. (36) might be required.

2. Lattice merging

The next operation we consider is lattice merging, where
we combine two lattices into one, �A ⊕�B → �C. We
focus in particular on the case where all lattices A, B, C
encode a qubit, such that the merging operation projects
a two-qubit subspace into the single-qubit subspace of the
C lattice. To perform the merging operation, we choose a
vector λλλm ∈ �C in the C lattice stabilizers that is not in the
AB lattice, λλλm /∈ �A ⊕�B. Due to the hierarchy Eq. (56),
we have λλλm ∈ �∗

A ⊕�∗
B, i.e., the vector λλλm corresponds to

a (nonidentity) logical Pauli operator of the AB code. If
the condition Eq. (34) is respected, then in the premerging
state T̂(2λλλm)|ψ〉 = |ψ〉, and the eigenvalues of T̂(λλλm) are
constrained to be ±1. To merge the two lattices, we mea-
sure the eigenvalue of T̂(λλλm) nondeterministically, setting
it to a definite value νm = ±1 and projecting the two-qubit
subspace (d = 4) of the AB code onto the single-qubit sub-
space (d = 2) of the C code. This measurement can be
done with circuits similar to those required for error cor-
rection, and we delay the discussion on its implementation
to Sec. III.

I. Mappings between lattices

Given a state encoded in a lattice S, there always exists
a Gaussian transformation that allows to encode the state
in a different lattice S′ provided that both codes are of the
same prime dimension, det(S) = det(S′), and d = det(S)
is prime as we show below. When these conditions are
respected, the statement above translates to the fact that
we can relate two lattice generator matrices through

S′ = RSM , (57)

where M ∈ Sp(2m, R) is a symplectic matrix and R ∈
GL(2m, Z) is an unimodular matrix, i.e., an invert-
ible integer matrix with det(R) = ±1. Essentially, M

represents lattice deformations and rotations, while R rep-
resents changes of basis for identical lattices. Under such a
transformation, the symplectic Gram matrix transforms to

A′ = RART. (58)

Given two generator matrices S and S′ such that there
exists R where the equation above is respected, then S
and S′ are related through the symplectic transformation
M = S−1R−1S′. As shown in Ref. [18], there always exists
a unimodular transformation such that

A′ = RART =
(

0m×m D
−D 0m×m

)
, (59)

where D is a m × m diagonal matrix. The code dimen-
sion is set by d = det(D) = 	j Djj , where each element
is a nonzero integer, and we can always choose the ele-
ments of D to be positive and in a nonincreasing order.
As a result, for codes of prime dimension d, the form
Eq. (59) is unique, which then implies that all symplectic
Gram matrices are related by some unimodular matrix R. In
other words, for codes of prime dimension d, there always
exist a symplectic operation, which can be implemented
by a Gaussian circuit such that S = S′M . In particular,
this implies that we can always encode a multimode qubit
through a Gaussian circuit and starting from the separable
lattice with a qubit encoded in the first mode and qunaught
states in the other modes, S� ⊕ S⊕m−1

∅
.

For code sizes that are not prime, the form of D in
Eq. (59) is not unique, and therefore not all symplec-
tic Gram matrices are equivalent, which then implies that
not all lattices are related through a Gaussian transfor-
mation. For example, the four-dimensional code given by
S = (2S∅)⊕ S∅ cannot be mapped to the two-qubit code
S′ = (

√
2S∅)⊕ (

√
2S∅), although both codes are of the

same dimension, det S = det S′ = 4.

III. ERROR CORRECTION

There are two strategies to correct errors in single-mode
GKP codes, and in this section we generalize both of
these approaches to multimode codes. In continuous vari-
able systems, a non-Gaussian resource is required in order
to perform error correction, and the two strategies differ
in the resource used. The first one leverages the intrinsic
nonlinearity of an ancilla qubit coupled to the oscillator
modes. The second approach rather relies on ancilla GKP
codes and homodyne measurements, leveraging the non-
Gaussianity of a fresh ancilla GKP state to correct errors.
Note that the latter strategy requires a method to reli-
ably prepare ancilla GKP states and when discussing this
second strategy, we assume that we have access to a deter-
ministic source of fresh ancilla single-mode GKP states.
We refer the reader to Refs. [26,46–52,54,89] for proposals
on how to prepare them.
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A. Error correction with ancilla qubits

First, we describe the error-correction strategy based on
ancilla qubits coupled to the harmonic oscillators contain-
ing the logical information. The protocols we propose gen-
eralize the single-mode protocols from Refs. [28–30] to the
multimode case. The generalized small-big-small (SBS)
and big-small-big (BSB) protocols [29,30] are shown in
Figs. 3(a) and 3(b), respectively, and the generalized logi-
cal measurement circuit [29,90] is shown in Fig. 3(c).

Inspired by the fact that the code space is a zero
eigenspace of the code-space nullifiers, {d̂j } from Eq. (27),
we aim to engineer an ensemble of 2m dissipators,

ρ̇ =
2m∑

j=1

D[d̂j ]ρ, (60)

where D[ô]• = ô • ô† − {ô†ô, •}/2 is the standard dissipa-
tion superoperator and ρ is the multimode state encoding
the logical quantum information. This strategy relies on the
fact that the steady state of the master equation above is
given by d̂j |ψ〉 = 0 for all j , which precisely corresponds
to the code space.

Instead of implementing directly the continuous
dissipators of Eq. (60), we discretize the oscillator-bath
interaction and replace the baths by a single qubit, which is
frequently reset [29,91–94]. This can be achieved through

(a)

(b)

(c)

(d)

...

=

=

FIG. 3. Autonomous QEC circuits based on a qubit ancilla.
The first three wires represent the ensemble of m modes, and
the last wire corresponds to the two-level ancilla. (a) General-
ized small-big-small protocol, which we represent at the logical
level as applying an operation D(sj ). (b) Generalized big-small-
big protocol. In both protocols, the sign of the “correction”
controlled translations depends on the gauge, νj = (−1)μj . (c)
Finite-energy Pauli operator measurement. (d) The full code
space can be stabilized by cycling through the dissipation rounds
for all generators {sj }.

repeated oscillator-bath interactions of the form

Û(j )
stab = e−i

√
�j (d̂j σ−+d̂†

j σ+), (61)

where �j is an effective (dimensionless) cooling rate.
Resetting the ancilla qubit to its ground state and repeat-
ing this interaction, the entropy from the oscillators is
removed in such a way as to cool the system towards the +1
eigenspace of the exact T̂j ,β stabilizer of the finite-energy
GKP code. We refer to one interaction and reset cycle as a
dissipation round, and the full code space is stabilized by
alternating dissipation rounds for each of the 2m stabilizer
generator T̂j ,β .

In practice, implementing the unitary Eq. (61) is chal-
lenging due to the fact that the nullifiers d̂j contain a
modular multimode quadrature. To simplify this unitary,
we trotterize the interaction and leverage the intrinsic mod-
ularity of the ancilla qubit, leading to the circuits illustrated
in Fig. 3. In these circuits, the size of the GKP code
envelope is set by

ε = sinhβ
2

, (62)

and the effective dissipation rate is given by �j ≈
|sj |πε/

√
2. Since this rate is proportional to ε, errors are

corrected at a slower rate for larger GKP codes (smaller
β). However, larger GKP codes offer better protection
against larger errors, such that there is an optimal GKP
size that balances between faster correction and larger error
protection for a given error channel.

Since an m-mode code has 2m stabilizer generators,
one must apply a combination of at least 2m dissipa-
tion circuits. However, we note that one could choose
to apply more than 2m dissipation circuits, especially for
lattices that have more than 2m lattice vectors of min-
imum length (counting once a vector and its inverse).
For example, in the single-mode hexagonal code, one can
choose to cycle among the three stabilizers of the same
length s1 = r�(1; 0), s2 = r�[−1/2;

√
3/2] and s1 + s2 =

r�[1/2;
√

3/2], with r� = 2/ 4√3 [28].
We note that the lattice generators {sj } do not necessar-

ily have support on all modes. As a result, it is possible to
perform the error-correction circuits using multiple qubit
ancillas, each being coupled to a subset of oscillators.
Dissipation circuits for generators with disjoint mode sup-
port could also be performed in parallel. We illustrate
in Fig. 3(d) the dissipation circuit sequence used in this
work, where we choose to simply cycle through dissipa-
tion rounds of all stabilizers. We leave the full optimization
of the general “dissipation schedule” for future work,
anticipating that it will depend on the error model, the
particular code under study, and the available couplings
between ancilla and oscillator modes given the physical
architecture.
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The main building block of the circuits in Fig. 3 is a
symmetrized controlled multimode translation,

CT̂(v) = ei σ̂z
2 lx̂T�v, (63)

which effects a translation by ±v/2 if the ancilla is in |g〉
or |e〉, respectively. This type of operation was demon-
strated in a single microwave cavity in Ref. [28] and its
multimode generalization can be realized by using a qubit
coupled dispersively to multiple modes. We consider a
qubit-oscillators Hamiltonian

Ĥ =
m∑

j=1

[χj

2
â†

j âj σ̂z + Ej (t)â
†
j + E∗

j (t)âj

]
, (64)

with χj the dispersive interaction between the j th mode
and the ancilla, and Ej (t) is the classical drive applied to
the j th mode. In short, the classical drives {Ej } displace
the state of the different oscillators, which then rotate in
different directions depending on the state of the ancilla.
With suitable echo pulses, this strategy can be used to gen-
erate any controlled translation, see Appendix D for more
details. Interestingly, the controlled displacement rate in
each mode depends on the drive amplitude and the dis-
persive shift, χj Ej , such that this type of interaction can be
implemented in systems with small dispersive coupling by
considering strong drives. Moreover, the drive amplitude
in each mode can be independently adjusted, and the dis-
persive shifts of the ancilla qubit to each mode need not
be matched. Finally, there is no specific restriction on the
oscillator-mode frequencies.

Multimode controlled translations can also be imple-
mented in other platforms such as in the motional modes
of trapped ions. In this architecture, controlled translations
are generated by a laser, which activates a state-dependent
force [34,95]. Multiple state-dependent forces in different
modes can then be activated using multiple lasers, a type of
interaction, which has already been realized in the context
of (ion-ion) multiqubit gates [96].

A sketch of possible physical implementations for two-
mode grid codes is represented in Fig. 1, where (a) a single
ion is coupled to two motional modes and (b),(c) a single
transmon qubit in the Y-mon geometry is coupled to (b)
two microwave single-post cavities [39] or (c) phononic-
crystal-defect resonators [43].

In principle, a multimode controlled translation could
be obtained through sequential pairwise interactions, per-
forming single-mode controlled translations in series.
While the final operation is equivalent, we note that the
effect of an ancilla decay event during the controlled
translations will be different. We now study the effect
of ancilla decay errors when controlled translations are
generated from a dispersive interaction, Eq. (64). As we
show in Appendix D, an ancilla qubit decay error during

a controlled translation results in an effective rotation and
translation

CT̂err = σ̂ierrT̂[e]	j R̂j (ϕj ), (65)

where the rotation in each mode is upper bounded by
|ϕj | ≤ |χj T| with T the interaction time and ierr = ±. The
translation error T̂(e) occurs on a line parametrized by the
time of the error, terr ∈ [0, T]. In the limit where the disper-
sive coupling is small, χj → 0, and where the controlled
translation is generated in a straight line, the rotation error
disappears and the translation error is colinear with the
desired translation, e = ηsj with a ratio η ∈ [0, 1/2]. The
rotation error can also be reduced by considering more than
one echo pulse during the controlled translation. To sim-
plify the analysis below, we assume that ancilla errors are
given by bit flips rather than qubit decay, propagating as
errors of the form e = ηsj with η ∈ [0, 1].

For the small-big-small protocol, the middle large con-
trolled translation leaves the state effectively displaced by
±sj /2. For a single-mode GKP, this effectively applies a
logical Pauli operation, but in general it leaves the state
outside of the code space. One solution to recover the
original subspace is to apply the dissipation circuit twice,
effectively displacing the state by 0 or ±sj . More effi-
ciently, this can also be taken care of in software by
updating the gauge, using the translation update rule Eq.
(35). The sign in front of the effective translation does
not impact the gauge change, such that a superposition of
translations, T̂(+sj /2)± T̂(−sj /2), has the same effect as
T̂(sj /2)with respect to the gauge. To account for the gauge
change, we modify the error-correction circuits such that
the state is steered towards the −1 eigenspace of the corre-
sponding stabilizer. As shown in Fig. 3, this is achieved by
changing the sign of the last small controlled translation.
Alternatively, the sign of the ancilla π/2 rotation can be
inverted.

We have described the multimode generalization of the
higher-order SBS and BSB protocols, but a similar analysis
could be applied to the sharpen-trim protocol of Ref. [28].

1. Classical dissipation model

In order to better understand the effect of the qubit-based
error-correction procedure described above, we build a
simple classical model, which is much faster to simulate
than the full multimode quantum model. More precisely,
we consider the effect of the dissipation rounds on points
in a classical phase space x ∈ R

2m. We define the mod-
ular vector qm = lS�x mod 2π , which projects the point
x on each generator of translation, gj , associated with a
stabilizer sj . From the potential

� = 1
2

qm · qm, (66)
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we approximate the quantum dissipative map generated by
the gadgets in Fig. 3 by setting the evolution of a classical
point x as

ẋ = −∇�. (67)

This equation is motivated by the fact that each dissipation
circuit can be understood as approximately measuring a
generator of translation ĝj and applying a correction pulse
towards ĝj mod 2π = 0. We choose Eq. (67) to be linear
for simplicity, a choice that does not affect the position
of the fixed points, which are the main objects of inter-
est. Moreover, for simplicity, Eq. (67) does not model the
random shot noise of the measurements.

To obtain an estimate of the effect of a single trans-
lation error e, we apply the evolution map after setting
x(t = 0) = e. From the position at long times x(t → ∞) =
M (e), we infer the logical operation applied by checking to
which set of points in the dual lattice M (e) ∈ �∗ belongs,
with a successful correction when the logical identity is
applied, M (e) ∈ �. Since finite-energy states have a finite
width, we approximate the probability that the translation
error e is converted into a logical error as

P(error|e) = 1 −
∫

drIM (r)∈�G(e, σ), (68)

where IM (e)∈� is an indicator function that equals 1 if
M (e) ∈ � and 0 otherwise, and G(e, σ) is a Gaussian
distribution with mean e and standard deviation σ approx-
imately given by

σ =
√

tanh
(

arcsinh(2ε)
2

)
≈ √

ε. (69)

In two dimensions the integral in Eq. (68) can be per-
formed analytically, otherwise we use Monte Carlo inte-
gration methods.

In Fig. 4(a), we show the final logical operation applied
in the single-mode code space of the square code as a
function of an initial translation error e = (q, p). As we
show, translation errors around the stabilizers 0, s1, s2 are
fully corrected (light blue regions). On the other hand,
translation errors around the logical Pauli operators, x =
s1/2, y = (s1 + s2)/2, and z = s2/2, are uncorrectable by
design.

When applying the dissipation circuits of Fig. 3 and in
the limit that χ → 0, decay errors on the qubit propagate as
translation errors e = ηsj with η ∈ [0, 1]. In Fig. 4(b), we
show the logical error probability as a function of η for the
first stabilizer s1. We find good agreement between the full
quantum model (full dots) and the classical model (dashed
lines) without any fit parameters. We also compare differ-
ent GKP sizes, and show that the transitions are sharper
at the edges for larger GKP sizes due to their smaller

Error length (|s1|)
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(a) (b)

(c)

FIG. 4. Effect of translation errors in the square code. (a) Final
Pauli error (colors) for different initial translation error e = (q, p)
according to the classical model. (b) Logical error probability for
translation errors of the form e = ηs1. We compare the classical
model Eq. (68) (dashed lines) and the full quantum model (dots),
computed using the circuit in (c). We also compare different GKP
size (colors), and in the infinite size limit ε → 0 we expect a
sharp transition from correctable to uncorrectable error at e =
s1/4 and e = 3s1/4 (red dashed line).

quadrature fluctuations. In the limit of infinite GKP size,
ε → 0, we expect a sharp transition between correctable
and uncorrectable errors.

When a qubit decay event occurs, we take the probabil-
ity that it propagates as a logical error as

P(error|qubitdecay) =
∫ 1

0
dηP(error|ηsj )P(η), (70)

and we assume that the probability of a qubit decay is small
such that P(η) is approximately given by a uniform dis-
tribution. In the case of the square code, the probability
of a logical error is constant P(error|qubit decay) ≈ 1/2
and does not depend on the GKP size, an estimate that
agrees well with numerical simulations of the full quantum
model [29]. For single-mode GKP codes, the lifetime of
the logical information is therefore limited by the lifetime
of the ancilla, a situation that is not improved by increas-
ing the GKP size. We show below that multimode codes,
on the other hand, have increased robustness against the
propagation of ancilla errors.

Note that in the classical model presented above, the
effective dissipation rate depends (in general) on the posi-
tion of the initial point x, not just its length |x|. Indeed,
inside a unit cell Eq. (67) can be rewritten as ẋ =
−l2�STS�x, which leads to x(t) = exp{−l2�STS�t}x(0).
As a result, the effective dissipation rates are proportional
to the eigenvalues {λj } of the Hessian matrix H(�) =
−l2�STS�. Intuitively, the break-even point is related to
the ratio between the smallest dissipation rate and the oscil-
lator physical error rate, min({λj })/κδt, which explains
why the square code can perform better than the hexagonal
code in qubit-based error correction [29,30]. Moreover, it
also explains why the tesseract code performs better than
the D4 code, see Fig. 5 and the sections below.
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FIG. 5. Logical channel infidelity in the presence of amplitude
damping. (a) Logical circuit used to extract lifetimes. The dissi-
pation circuits are applied in series to project the modes into the
code space, a logical measurement is performed to prepare a spe-
cific Pauli eigenstate, and the dissipation circuits are applied in
series to stabilize the code space. (b) Average excitation number
in the first mode as a function of time, reported as the number of
dissipation rounds. (c) Expectation value of the stabilizer T̂(s1)

as a function of time. (c) Expectation value of the logical Pauli
operator X̄ as a function of time. For reference, we show the
decay of the X̄ logical operator in the Fock encoding (purple),
which decays at a rate κ/2. Panels (b)–(d) are computed using
an amplitude damping rate of κδt = 4.6 × 10−3. (e) Infidelity as
a function of the amplitude damping rate κδt for different codes.
Dots are computed from simulations and dashed lines correspond
to an exponential fit.

B. Homodyne error correction

The second approach to QEC for GKP codes is to use
fresh ancilla modes prepared in generalized GKP qunaught
states. Measuring the stabilizers of the ideal GKP code is
equivalent to measuring the modular quadratures {ĝj }, and
to simplify the analysis we choose an envelope-preserving
unitary ÛB such that

q̂2m = Û†
B

ĝj

|gj | ÛB, (71)

where gj = l�sj . The task of measuring the j th stabilizer
then reduces to the task of measuring q̂2m mod 2π/|gj |,
for which single-mode GKP circuits have already been
developed. In particular, we make use of the SUM gate

SUMj→k = e−iq̂j p̂k , (72)

which maps the quadrature coordinates q̂j → q̂j , p̂j →
p̂j − p̂k, q̂k → q̂k + q̂j , and p̂k → p̂k. This gate also acts as
a logical CNOT gate between two single-mode square GKP
codes.

Applying the SUM gate between a mode in the state |ψ〉
and an ancilla in the ideal qunaught state |∅η〉, we obtain

e−iq̂1p̂2

∫
dq ψ(q)|q〉 ⊗ |∅η〉

=
∑

j

∫
dq ψ(q)|q〉 ⊗ |j ηl + q〉, (73)

where we write the state in the position basis and use the
expression for the qunaught state Eq. (48). Measuring the
ancilla in the position basis, q̂, then yields a measurement
result q + j ηl for some random j ∈ Z, which is equivalent
to measuring q̂ mod ηl. In order to measure q̂ mod 2π/|gj |,
one should therefore set η = 1/|sj |. In the case of error cor-
rection for the square GKP code, the procedure described
above is equivalent to the approach originally developed in
Ref. [18]. Indeed, for the square code we have |sj | =

√
2,

and we have shown in Sec. II G that |∅1/
√

2〉 = |+X�〉.
The SUM gate Eq. (72) combined with the ÛB allows

measurement of the quadratures {ĝj } by propagating trans-
lation errors from the data modes to the ancilla. In a similar
fashion, translation errors in the ancilla mode propagate
to the data modes. More precisely, noise in the ancilla p̂
quadrature propagates as errors T̂(σ sj ) in the data mode,
with σ a random variable taken from a normal distribution
with standard deviation set by the level of squeezing of
the ancilla. We remark that in both homodyne and qubit-
based error correction, noise in the ancilla propagates as
translation errors colinear with sj , such that minimizing the
effect of these errors is desirable for both error-correction
methods.

The protocol laid out above is not unique, as it is pos-
sible to choose different ancilla lattice constants η → cη
if the measurement results and the SUM gate are properly
rescaled, e−iq̂j p̂k → e−iq̂j p̂k/c. Moreover, while we choose
here to map the multimode quadrature q̂j to a single
mode, one could instead perform the combined unitary
Û†

Be−iq̂2mp̂aÛB as a series of (rescaled) SUM gates.
Consider a translation error T̂(e) affecting a logical state.

After measuring each stabilizer generator, for example
with the circuits of Fig. 6, we get a syndrome ξξξ related
to the error through

ξξξ = −l2S�e mod 2π , (74)

with the modulo part applied elementwise. To correct the
error, one simple decoding choice is to take a correction
translation δδδ = �S−1ξξξ/l2. After the correction, the initial
state has been translated by T̂(δδδ)T̂(e) = eiθ T̂(em), with an
irrelevant global phase θ and a remaining (uncorrectable)
translation by em = l�S−1a for some a ∈ Z

2m. Express-
ing the remaining displacement in the basis of the stabi-
lizer lattice, we obtain b = A−1a, a logical error occurs if
b /∈ Z

2m. For a single-mode square code, this decoder is
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... ...
(a) (b)

FIG. 6. Steane-type error-correction circuits based on ancilla
GKP states. (a) The desired quadrature is mapped to a single-
mode on which a modular quadrature measurement is performed.
(b) A modular quadrature measurement can be performed by
preparing a single-mode qunaught state with ηj = 1/|sj | and
applying a SUM gate between the mode to be measured and
the ancilla. Alternatively, a rescaled SUM gate could be applied
between the ancilla and each mode over which sj has support.

equivalent to the standard memoryless decoder, which cor-
rects all translation errors smaller than |e| < 1/

√
8 in the

ideal code limit. Figure 7 shows the error probability after
a full round of error correction with GKP ancilla states and
the decoding strategy laid out above. We consider a Gaus-
sian translation error channel where modes are translated
by a random amount taken from a multivariate normal dis-
tribution with standard deviation σ , e ∼ N (σ ), which we
express in decibels

σ (dB) = 10 log10

(
1/2
σ 2

)
. (75)

This measure of noise does not distinguish between a mix-
ture of random translations and the quantum fluctuations
due to a finitely squeezed state. Moreover, we remark that
the variance of the total translation error scales linearly
with the number of modes, E[|e|2] = mσ 2.
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FIG. 7. Logical error probability for different GKP codes
against the Gaussian translation error channel, with a translation
noise standard deviation expressed in decibels. Full lines corre-
spond to measurement performed with ideal ancilla GKP states,
and dashed lines correspond to noisy ancillas.

Full lines correspond to error correction with ideal ancil-
las, i.e., only data modes are affected by the error channel.
Dashed lines, on the other hand, correspond to the more
realistic situation of finite-energy ancillas, and we choose
the ancilla noise to be identical to the data noise. We com-
pare the performance of different GKP codes (colors), and
discuss the features of the tesseract and D4 code below in
Secs. IV and V, respectively.

In this work, we mostly focus on qubit-based error-
correction methods, and we leave the optimization of
decoders for GKP-ancilla-based QEC for future work. For
example, Ref. [23] discusses a general decoder that could
be applied to multimode lattices. Moreover, the method
presented above does not preserve the envelope since the
ideal stabilizers are measured, not the finite-energy sta-
bilizers of Eq. (25). As a result, each QEC round adds
energy to the modes of the system. It would be interesting
to develop general teleportation-based error-correction cir-
cuits similar to those that were developed for single-mode
GKP codes [97].

IV. TESSERACT CODE

In this section, we study in detail the two-mode tesser-
act code with generator vectors given by Eq. (51) and
illustrated in Fig. 2(a).

A. Code words

The tesseract code is based on a four-dimensional hyper-
cubic lattice, such that the stabilizer generators are all
of equal length, |sj | = 4√2 for all j , and are all orthogo-
nal to each other, sj · sk = 0 for j �= k. As illustrated in
Fig. 2(b), we choose the base representative of the logical
Pauli operators for the tesseract code

L0,tess =
⎛

⎝
x0
y0
z0

⎞

⎠ = 4√2

⎛

⎝
1/2 0 1/2 0
1/2 1/

√
2 1/2 0

0 1/
√

2 0 0

⎞

⎠ . (76)

Similar to the square code, the Ȳ operator of the tesseract
code has a length

√
2 larger than the X̄ , Z̄ operators. How-

ever, compared to the square code, the tesseract code has
longer logical operators by a factor 4√2 ≈ 1.19, while the
stabilizers are smaller by a factor 4√2. Another important
distinction between the tesseract code and all single-mode
GKP codes is that logical operators of the tesseract code
are not colinear with a stabilizer vector. More precisely, we
have x0 = (s1 + s3)/2, z0 = (s2 + s4)/2 and y0 = (s1 +
s2 + s3 + s4)/2, as illustrated in Figs. 2 and 8(a). We con-
trast this with single-mode codes where we can always
choose x0 = s1/2, z0 = s2/2, and y0 = (s1 + s2)/2.

With the choice of Pauli operators given by Eq. (76), the
logical +Z̄ eigenstate is given by the separable state

|+Z̄〉 = |∅ 4√2〉⊗2. (77)

010335-18



ENCODING QUBITS IN MULTIMODE GRID STATES PRX QUANTUM 3, 010335 (2022)

Error length (|s1|)

E
rr

or
 p

ro
ba

bi
lit

y P
(e

rr
or

) 
(%

)

(a) (b)

FIG. 8. Effect of translation errors in the tesseract code. (a)
Logical operation applied (colors) as a function of the initial
translation error in the planes given by span(sj , sk). (b) Logical
error probability as a function of the length of a translation error
along s1. We compare the full quantum model (blue dots) and the
classical model (dashed line). Inset: integrated logical error prob-
ability given that an error ηs1 occurred, with η sampled uniformly
in the interval [0, 1].

The logical −Z̄ eigenstate is given by the same tensor
product of qunaught states, but choosing a mixed gauge
μμμ = (0, 1) for both modes. While we choose in Eq. (76)
the base Z̄ representative to have support only on the first
mode, an equivalent representative has support only in the
second mode, z′ = 4√2(0, 0, 0, 1/

√
2). In particular, a mea-

surement in the Z̄ basis can be performed by accessing a
single one of either mode comprising the tesseract code.
Alternatively, we can measure both representatives and
implement a two-bit repetition code to mitigate the effect
of different faults such as oscillator errors, measurement
errors, or ancilla decay during the measurements. Since
z0 and z′ have support on different modes, faults in one
measurement do not affect the other. The circuit shown in
Fig. 3(c) is also quantum nondemolition (QND), such that
multiple measurements could be realized to mitigate the
effect of measurement errors.

B. Gates

In the following, we outline how to perform any oper-
ation in the Clifford group generated by 〈S̄, H̄ , CZ̄〉, with
results summarized in Fig. 2(c). Since the tesseract code is
the four-dimensional generalization of the square code, we
show that the logical gates in both codes are qualitatively
similar.

1. Hadamard gate

The X̄ and Z̄ operators have the same length, |x0| =
|z0|, and there is an envelope-preserving operation that
exchanges them, corresponding to the effect of a Hadamard
gate in the code space. The Hadamard logical gate is imple-
mented from a beam splitter followed by a π/2 phase shift

of both modes,

Ûtess(H̄) = R̂(π/2)⊗2B̂. (78)

In the square code, a Hadamard gate is obtain by a phase
shift Û�(H̄) = R̂(π/2).

2. Phase gate

The phase gate can equivalently be understood as a diag-
onal gate in the Z̄ basis, S̄ = Diag[1; i], or as mapping
the Pauli operators X̄ → Ȳ, Ȳ → −X̄ and Z̄ → Z̄. Tak-
ing the later view shows that S̄ cannot be implemented by
an envelope-preserving operation since |x0| �= |y0|, see Eq.
(76). However, taking the former view shows that the S̄
gate can be realized through a single-mode unitary since
logical Z̄ operators have single-mode support. More pre-
cisely, the logical S̄ gate can be implemented by a shearing
gate in either mode,

Ûtess(S̄) = e
−i√

2
q̂2 ⊗ Î or Î ⊗ e

−i√
2

q̂2
. (79)

Note that any gate that is diagonal in Z̄ basis can, in prin-
ciple, be obtained through a single-mode unitary in the
tesseract code. In the square code, the phase gate is also
implemented via a shearing gate, Û�(S̄) = exp{−iq̂2/2},
which does not preserve the envelope.

3. Controlled-Z̄ gate

We now present a logical two-qubit CZ̄ gate realized
between two tesseract codes A and B, each comprised of
two modes (four modes in total). This CZ̄ gate is realized
through a two-mode rescaled SUM gate

Ûtess(CZ̄) = e−i
√

2q̂Aq̂B , (80)

where q̂A/B is the q̂ quadrature of either mode compris-
ing the A/B tesseract code. This gate does not preserve the
envelope.

4. Non-Clifford gates

One potential approach to universality originally devel-
oped in Ref. [18] for single-mode codes is to perform
a cubic gate of the form V̂ = exp{iγ q̂3} for some spe-
cially tuned γ , which allows a logical T̄ = Diag[1; eiπ/4]
to be performed when combined with Gaussian operations.
Since the T̄ gate is diagonal in the Z̄ basis, this approach
can also be deployed in the tesseract code by applying V̂
to a single-mode and choosing γ = 1/(2l 4√2). However,
we note that the cubic gate is designed for ideal GKP
codes and does not commute with the envelope operator,
[V̂, Êβ] �= 0. As a result, applying the cubic gate to realistic
GKP states does not map code words to other code words,
and it was shown that the fidelity of this gate is intrin-
sically limited for finite-energy square GKP codes [73].
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We expect that these limitations also apply to the tesseract
code.

To solve this issue, we propose an exact square-root-
Hadamard gate following the approach laid out in Sec. II E.
Starting with the logical Hadamard gate (order g = 2), we
compute that the gate Eq. (78) has order p = 8. As a result,
we can implement an envelope-preserving non-Clifford
gate in the tesseract code,

Ûtess

(√
H̄
)
= ei π32 F̂2

, (81)

with F̂ = q̂2
1 + p̂2

1 + q̂2
2 + p̂2

2 − 2 + q̂1p̂2 − p̂1q̂2. Although
we do not have a concrete proposal to realize this gate, we
point out that tunable quartic Hamiltonians can be realized
in microwave cavities [5,98,99].

An alternative option to universal quantum computing
that does not require any non-Clifford gate is through
magic state injection [100], which reduces the challenge
of realizing non-Clifford gates to preparing magic states.
In particular, Ref. [101] introduced a method to probabilis-
tically prepare magic states through the homodyne error-
correction procedure presented in Sec. III. This approach
could be deployed for the tesseract code by first prepar-
ing single-mode magic states, then using code-switching
techniques to prepare the two-mode magic state. This
approach is better suited to optical implementations of
GKP codes, where precise homodyne measurements are
readily available.

In the microwave domain, an option for magic state
preparation is to first prepare a magic state in the ancilla
used for control of the oscillator mode and then teleport
the ancilla state to the bosonic code, as was realized in Ref.
[28]. Another option to realize a direct non-Clifford gate
would be to realize a controlled version of the Hadamard
gate, with the control qubit being the ancilla. A similar type
of controlled beam splitter has already been demonstrated
between two microwave cavities [39]. One downside of
these two approaches is that they are limited by the life-
time of the qubit ancilla. When using a transmon-type
qubit as the ancilla, this issue could be partly mitigated
by making use of the third level of the ancilla through
path-independent gates [31].

C. Error correction

Having presented the tesseract code and how to per-
form logical operations, we now study the robustness of
this code against different types of errors.

1. Amplitude damping

First, we investigate its robustness against resonator
amplitude damping when correcting errors using the qubit-
based method. For now, we assume that no errors occur
on the ancilla qubit. As shown in Fig. 5(a), we extract the

lifetime of the code words by preparing the state inside
the code space, projecting the state onto a Pauli eigenstate
using the circuit in Fig. 3(c) and analyzing the subsequent
decay of the Pauli expectation value. Between each dis-
sipation circuit D(sj ), we apply an amplitude damping
channel {K̂k} with decay rate κ for a time δt through its
Kraus representation,

K̂k =
(

γ

1 − γ

)k/2 âk

√
k!
(1 − γ )n̂/2, (82)

with k ≥ 0 and γ = 1 − e−κδt.
Figure 5 shows an example of the time evolution of the

expectation value for (b) the excitation number in the first
mode, (c) the stabilizer 〈T̂(s1)〉 and (d) logical operator 〈X̄ 〉
as a function of the round number for κδt = 4.6 × 10−3.
With respect to (c), the other stabilizers exhibit very similar
behavior, and the fact that the average value is lower than
one is partly due to the finite-energy nature of the state, and
partly due to the finite ratio between the rate of error cor-
rection and the rate at which errors occur. The evolution of
the expectation values for the other logical Pauli operators
(when the logical qubit is projected onto the corresponding
eigenstate) follows a behavior very similar to (d).

Figure 5(e) compares the resulting channel infidelity for
different GKP codes as a function of the unitless amplitude
damping rate, κδt. The channel fidelity is computed from

Ft =
1 +∑

α∈{x,y,z} e−γα t

4
, (83)

where the rates γα , α ∈ {x, y, z}, are the decay rates for
each Pauli eigenstate. Theses rates are obtained by fitting
an exponential decay to the time evolution of the associ-
ated logical Pauli operator after the projection measure-
ment. Each logical damping rate is obtained by averaging
over 200 trajectories with different realizations of the noise
and ancilla states at the end of the dissipation circuits.
Figure 5(e) shows the fidelity of the logical channel for a
time δt that corresponds to the time between each dissipa-
tion circuit. Dots correspond to full numerical simulations
extracted using the circuit in (a) with full lines being guides
for the eye, and dashed lines correspond to an exponen-
tial fit iF = 1 −F = (κδt/α)δ , with fitting parameters α
and δ.

We interpret δ as a measure of the distance of the code,
in analogy to qubit QEC codes where the logical error
probability scales as iF ∼ (p/p∗)(d+1)/2 for some physical
error probability p , threshold value p∗, and distance d. For
qubit codes, the distance is given by the smallest support
of the logical operators, which directly sets the support of
the smallest uncorrectable error. In the present context, the
distance is linked to the length of the smallest translation
error that cannot be corrected.
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We define the break-even point of error correction as the
crossing point between the infidelity of the Fock encod-
ing (purple) and the GKP code. Intuitively, the break-even
point sets the physical error rate below which the error-
correction code is useful, i.e., when the correction proper-
ties overcome the additional errors due to the increase in
excitation number.

We remark that both parameters α and δ depend on the
code size. Increasing the envelope size (smaller β) causes δ
to increase and α to decrease. This latter fact implies that α
is not a threshold, and errors cannot be arbitrarily reduced
by considering larger envelopes since α → 0 as β → 0.
Indeed, increasing the envelope implies that there are more
excitations in the GKP code, and thus more excitation
loss errors for a fixed κ . Moreover, the correction rate
decreases for larger GKP sizes. In contrast, for qubit codes,
the error increase caused by adding qubits is counterbal-
anced by the additional measurements that are performed
in parallel, such that p∗ does not depend on the number of
qubits.

Here, we choose the size of the GKP codes, set by ε
in the dissipation circuits, such that the average photon
number per mode is 〈n̂j 〉 ≈ 5.5. For reference, we show
in purple the infidelity of the Fock (single rail) encoding,
which is the best code in the absence of error correction for
this error model.

Figure 5(e) shows that the tesseract code (orange) has
a larger distance than the square code (blue), δtess = 4.0 >
δ� = 3.3, which we attribute to the fact that the Pauli oper-
ators of the tesseract code are longer by a factor 4√2 ≈
1.2 ≈ δtess/δ�.

However, the break-even point of the tesseract code
is lower than the square code. We mainly attribute this
decrease to the fact that we analyzed the “minimal work-
ing example” of the two-mode code, i.e., a single ancilla
qubit coupled to both modes. In this implementation, only
a single bit of information is extracted at each step, and
the dissipation circuits are performed in series. As a result,
after a full round of dissipation circuits, the noise acted for
four steps (4δt) in the tesseract code, against two steps (2δt)
for the square code. By coupling more ancilla qubits to the
modes, one could perform the dissipation circuits in paral-
lel, which would correspondingly increase the break-even
point and the fidelity. We also attribute part of the decrease
in the break-even point to the added excitation number of
the two-mode tesseract code. Indeed, by fixing the average
excitation number per mode, we obtain a total excitation
number 〈n̂〉tess ≈ 2〈n̂〉�, which leads to a larger probability
of error at each time step.

Due to the large tail in Fock basis of the GKP states,
a large Hilbert space for each mode is required to per-
form the simulations. As a result, we were not able to
accurately compute the robustness of codes with a num-
ber of excitations per mode much larger than 〈n̂j 〉 ≈ 5.5.
Here, we choose to perform the simulations in the Fock

basis, truncating the Hilbert space at 65 excitations for both
modes.

2. Ancilla errors

Next, we investigate how ancilla decay errors propagate
to the logical subspace, when correcting errors using an
ancilla qubit. Before discussing full numerical simulations
where we extract the logical lifetime, we first use the clas-
sical model presented in Sec. III to gain more intuition into
the effect of these ancilla decay events. As shown in Sec.
III, different translation errors propagate as different logi-
cal errors after error correction. In Fig. 8, we illustrate the
effect of these translation errors in the tesseract code. Since
four-dimensional spaces are difficult to visualize directly,
we illustrate the effect of translation errors in different two-
dimensional cuts of the full four-dimensional space. More
precisely, we illustrate the effect of translation errors in
the two-dimensional spaces spanned by each pair of lattice
generators {sj }. Crucially, we show in (a) that the identity
regions (light blue) around each stabilizer lattice point are
directly connected through an “isthmus.” As a result, for
an ideal GKP state, one can correct any translation error of
the form e = ηsj for η ∈ [0, 1], which are the errors caused
by an ancilla decay event. The only exception is a transla-
tion error of exactly e = sj /2, an error set of measure 0,
which (taking s1 for example) would correct randomly to Ī
or X̄ . This is in stark contrast to single-mode GKP codes,
for which a translation error in the range η ∈ [1/4, 3/4] is
uncorrectable as illustrated in Fig. 4.

In practice, each peak of the GKP state has a finite width,
such that a translation error near the isthmus leaves finite-
energy states with a partial overlap inside the uncorrectable
region. In Fig. 8(b), we compute the probability of a logical
error given that a translation error e = ηsj occurred. We
compare the results of the classical model (dashed lines)
and of the full quantum model (dots) computed using the
circuit in (a), and find excellent agreement between the two
without any fit parameter. We show in this figure that errors
around e ≈ sj /2 lead to a finite probability of logical error,
with a maximum of a 50% probability of error at η = 1/2.
Crucially, the probability that an ancilla decay error prop-
agates as a logical error in the tesseract code is reduced
compared to the square GKP code and, for ε = 0.044, we
estimate that P(error|qubit decay) ≈ 11%.

Moreover, the state overlap inside the uncorrectable
region can be reduced by decreasing the quadrature fluc-
tuations of each individual peak of the GKP state. In
other words, logical errors due to ancilla decay can be
reduced by increasing the GKP size, which is in stark
contrast to single-mode codes that feature a constant
P(error|qubitdecay) ≈ 50%, see Fig. 4. In the inset of
Fig. 8(b), computed using the classical model, we show
the probability that an ancilla error propagates as a log-
ical error as a function of the GKP size, set by the
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parameter ε in the dissipation circuits in Fig. 3. The width
of the quadrature coordinates fluctuations for each peak
of the GKP state scale as σ ≈ √

ε ∝∼ 1/
√

n̄, with n̄ the

average excitation number in the GKP state. As a result,
we obtain P(error|qubitdecay) ∝∼ 1/

√
n̄. Through a fit we

find P(error|qubitdecay) ≈ 0.53
√
ε, which improves over

the square code constant P(error|qubitdecay) ≈ 0.5.
This last feature is particularly interesting for many

experimental platforms, such as microwave cavities, where
the physical lifetime of the modes is typically much larger
than the physical lifetimes of the ancilllas. Indeed, longer
oscillator lifetimes mean that the modes can host larger
GKP states, which in turn are less sensitive to the propa-
gation of ancilla errors. In contrast, for single-mode codes,
the lifetime of the logical GKP qubits is directly limited by
the ancilla lifetime.

We remark that the analysis above holds only to first
order. In general, a second ancilla decay error cannot
be corrected when it occurs before the state has recov-
ered from the first error. Moreover, we showed earlier
that the effective correction rate scales inversely with the
GKP size, so that more dissipation circuits are required to
recover from ancilla errors as the GKP size increases. As
a result, second-order effects are not completely negligible
for realistic ancilla decay rates.

We now turn to full numerical simulations where we
extract the lifetime of the logical information in the
presence of finite ancilla lifetime. Figure 9 shows the log-
ical infidelity, computed using Eq. (83), as a function of
the ancilla lifetime for the different GKP codes, in the
absence of oscillator errors. For concreteness, we consider
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FIG. 9. Logical process infidelity, iF , in the presence of qubit
ancilla decay, γanc. The infidelity is computed for a time t�, i.e.,
the time required to perform a controlled translation CT̂(s) in the
single-mode square code. The dotted-dashed purple line corre-
sponds to the infidelity of the bare ancilla. Dots are the results
of simulations, and dashed lines are linear fits. Although the infi-
delity of all GKP codes is proportional to the decay rate of the
ancilla, multimode codes are much more robust to ancilla errors.

a model where the qubit ancilla is dispersively coupled to
both oscillator modes. In order to reduce the Hilbert space
required to perform the simulations, we do not model the
qubit directly. Rather, at each step, we apply the Kraus
operators corresponding to a perfect dissipation circuit
with probability e−γancttot/2, and apply an error circuit with
probability 1 − e−γancttot/2, with γanc the decay rate of the
ancilla and ttot the total time of the SBS dissipation circuit,
see Appendix F. To compute the error circuit, we replace
one of the three controlled translations in the SBS circuit
with the unitary Eq. (65), taking an error time terr randomly
from a uniform distribution. We have defined above ttot =
2tε + ts, where tε is the time taken to perform the small
controlled translations and ts is the time taken to perform
CT̂(sj ), with tε/ts = ε. We pick which controlled trans-
lations to replace with probability {tε/ttot, ts/ttot, tε/ttot},
respectively. We assume perfect qubit rotation pulses, as
well as perfect qubit state preparation. These types of
errors can only cause correctable errors, such that their
effect on the logical lifetime is expected to be negligible
compared with decay events during the large controlled
translations [29]. Note that we do include the effects of
finite dispersive shifts between the ancilla and the oscil-
lator modes, which can cause rotation errors. More con-
cretely, we take parameters similar to Ref. [28] and choose
χ ts = 0.08, which for χ/2π = 28 kHz and displacements
to 900 photons corresponds to performing large controlled
translations in ts ≈ 450 ns. For simplicity we choose iden-
tical parameters for both modes, but stress that this is not
a requirement. Although decay events lead to imperfect
echoing of the dispersive interaction and additional oscil-
lator rotations, large logical lifetimes are still attainable in
the regime of small dispersive shift χ ts � 1.

The logical channel infidelity, iF = 1 −F , obtained
from the simulations described above, is shown in Fig. 9.
There, we compare results for the square code (blue) and
the tesseract code (orange). For reference, we show the
infidelity of the bare ancilla (purple dot-dashed line), i.e.,
the lifetime of the information without any oscillator mode.
Extracting the relation between ancilla decay rate and infi-
delity through a linear fit (dashed lines), we obtain that
for the tesseract code iFt� ≈ 0.054γanct�, a more than six-
fold improvement over the square code for which iFt� ≈
0.34γanct�. This graph shows one of the main results of
this paper: multimode lattices can allow a greater robust-
ness against ancilla errors, which is typically the limiting
factor for bosonic codes.

We now make a few remarks to better understand
the results above. First, we discuss our choice of
normalization to make the decay rates dimensionless,
γanct�. Here, t� corresponds to the time required to per-
form a controlled translation CT̂(s) for |s| = √

2, i.e., the
length of the stabilizers for the single-mode square code.
The length of the stabilizers in the tesseract code is given
by |s| = 4√2, such that the probability of a decay event
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during a single controlled translation CT̂(stess) is given by
1 − exp{−γanct�/

4√2}.
Our choice of normalization is consistent with perform-

ing the dissipation circuits in series, comparing different
codes but keeping a fixed ancilla decay rate. This is the
choice we made when considering the error model for
oscillator amplitude damping (see Fig. 5). Performing the
dissipation circuits in parallel would lead to an increase
of logical error rate due to ancilla decay, but a decrease in
error rate due to oscillator errors. Performing the circuits in
series is more adapted to implementations where the phys-
ical lifetimes of oscillators are longer than the lifetimes
of the qubit ancillas used for control, which is typically
the case for microwave cavities coupled to transmon qubit
ancillas.

Moreover, our choice for t� is somewhat arbitrary as the
time taken to perform multimode controlled translations
depends on their physical implementation. Indeed, taking
the displacement rate to be the same as the single-mode
rate in all modes, one could perform multimode controlled
translations faster as the relevant quantity would be the
maximal length of the single-mode projection for each sta-
bilizers. Here we choose the global displacement rate to
be the same irrespective of the number of modes involved,
such that the only quantity setting the time ts is the length
of the stabilizer, |sj |. Another option would be to perform
the controlled translations of each mode sequentially, in
which case multimode controlled translation would take a
longer time. However, performing translations in such a
way would negate the effects of the isthmus feature and
lead to poorer protection against ancilla decay.

Although our simple classical model predicts that the
robustness to ancilla errors scales with the size of the GKP
code words, we have not shown this in Fig. 9. This is due to
the large Hilbert space required to accurately compute the
logical lifetime, which combined with the modest scaling
of the error rate with photon number, iF ∝ √

n̄, makes it
difficult to observe numerically.

Finally, another important remark is that the isthmus
feature of the tesseract code does not make the proto-
col fault tolerant to ancilla decay, in the sense that the
logical lifetime is still proportional to the lifetime of the
qubit ancilla, iF ∝ γanct�. However, the logical error rates
shown in Fig. 9 correspond to the “worst case scenario,”
where the cavity spends all its time entangled with ancilla.
In practice, the ancilla spends a large portion of its time
unentanged with the oscillator modes due to, for exam-
ple, finite ancilla reset times, delays in data processing or
even intentional idle times. As a result, we expect that the
lifetime of the logical information in the tesseract code can
be more than 20 times larger than the physical lifetime of
the ancilla, iF ≤ 0.05γanct�.

Performing a simulation where we include both qubit
decay errors and oscillator amplitude damping for realistic
parameters, we compute that a Z̄ logical lifetime of 2.1 ms

is possible. For this simulation we considered an oscillator
lifetime of 1/κ = 500 μs, a qubit T1 of 1/γanc = 50 μs, a
time δt = 2 μs between dissipation circuits and parameters
for the controlled translations similar to those stated ear-
lier. Reducing the time required for controlled translations
to 200 ns, increasing the lifetime of the ancilla to 100 μs
and increasing the oscillator lifetime to 1 ms, we compute a
logical lifetime for the Z eigenstates of 14 ms, a more than
2 orders of magnitude increase over the ancilla lifetime. In
principle, the logical lifetime could be further increased by
considering larger GKP sizes, although we were not able to
verify that fact. Regardless, the logical fidelity with respect
to oscillator amplitude damping does depend on the GKP
size [29], such that this quantity should be optimized. We
have not performed this optimization here.

The robustness to ancilla errors could be further
increased by using biased-noised ancillas where bit flips
are suppressed, for example Kerr cats [33,102] or fluxo-
nium qubits [103]. Indeed, phase errors on the ancilla com-
mute with the Hamiltonian generating the controlled trans-
lations, such that they propagate to the logical subspace as
correctable errors, T̂(ε) or as full lattice translations, T̂(sj ),
both of which are correctable [29].

3. Homodyne error correction

Finally, we briefly investigate the performances of the
tesseract code when error correction is performed using
GKP ancilla states and homodyne measurements. Full
lines in Fig. 7 are computed taking noiseless (ideal) ancil-
las, and we compute that the tesseract code (orange)
outperforms the square code (blue) for all squeezing lev-
els except for very low squeezing where the overhead of
using two modes instead of one dominates. We attribute
this improvement to the longer logical operators of the
tesseract code, which translates to lower error probabili-
ties. Interestingly, this improvement is maintained in the
more realistic situation of noisy ancillas (dashed lines),
where we compute an order of magnitude reduction in
error rate at σ (dB) ≈ 15 dB. As shown earlier, back prop-
agation of ancilla translation errors happens in the form
T̂(σ sj ), such that the isthmus feature of the tesseract code
also plays a beneficial role when considering homodyne
error correction.

V. D4 CODE

In this section, we study in detail a two-mode
GKP code based on the D4 lattice, which allows the
densest lattice packing in four dimensions. As we show,
this particular code has several interesting features, par-
ticularly with respect to logical operations. Indeed, in
contrast to single-mode GKP codes and the tesseract code,
all single-qubit Clifford gates can be performed with pas-
sive Gaussian operations (envelope-preserving gates). The
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D4 code also allows exact non-Clifford gates through
envelope-preserving Kerr-type interactions.

To help with the visualization of the four-dimensional
lattice, we mention that the D4 is a laminated lattice. In a
similar fashion to the three-dimensional hexagonal close-
packed lattice, which can be built by stacking layers of
two-dimensional honeycombs lattices (stacking oranges),
we can build the D4 lattice by “stacking” layers of three-
dimensional body-centered cubic lattices in the fourth
dimension.

A. Code words

Choosing a set of generators, which all have support on
both modes, we set

SD4 =

⎛

⎜⎝

1 0 1 0
1 0 0 −1
0 1 −1 0
1 0 0 1

⎞

⎟⎠ . (84)

However, we remark that this choice is not unique since
the D4 lattice has 12 vectors of minimal length (not count-
ing those that differ only by a sign). We choose the base
representatives of the logical operators to be

L0,D4 =
⎛

⎝
x0
y0
z0

⎞

⎠ =
⎛

⎝
1/2 1/2 1/2 1/2
−1/2 1/2 1/2 1/2

1 0 0 0

⎞

⎠ . (85)

Similar to the stabilizers, this choice is not unique and
for each logical Pauli operator there are four equiv-
alent representatives of minimum length (not count-
ing those that differ only by a sign). For exam-
ple, the Z̄ logical operator can be represented as
z = (±1, 0, 0, 0); (0,±1, 0, 0); (0, 0,±1, 0) or (0, 0, 0,±1),
such that Z̄ eigenstates can be described as hypercubic
qunaught states SZ = I4 = S⊕2

∅
. In the trivial gauge μμμ = 0

and with the choice of basis in Eq. (84), we have

|±Z̄〉 = |±∅〉⊗2, (86)

with |∅〉 the single-mode square qunaught state. We also
define the “negative” qunaught state |−∅〉 as the −1
eigenstate of the translation operators associated to the
generators of S∅, i.e., the square qunaught state with gauge
μμμ = (1, 1). As in the tesseract code, both code words are
separable states of the two modes, and as a result can be
prepared in independent modes.

Measurements in the Z̄ basis of the D4 code can be per-
formed in both modes separately, yielding a simple two-bit
repetition code that can allow the detection of one mea-
surement error. In principle, we could also measure all
four orthogonal representatives and take a majority vote
to determine the most likely measurement result. How-
ever, we note that in this case all measurements are not

independent as, for example, an ancilla decay error dur-
ing the z = (1, 0, 0, 0) measurement can propagate as a
measurement error in the z = (0, 1, 0, 0) measurement.

Due to the fourfold rotation symmetry of the qunaught
states, they have a definite excitation number modulo four,
and they can be expressed in the Fock number basis as

|+∅〉 =
∑

j

cj+|4j 〉, (87a)

|−∅〉 =
∑

j

cj−|4j + 1〉. (87b)

The fact that n = 0 mod 4 for the positive qunaught state
can be computed by directly applying the rotation operator
to the state Eq. (48). By expressing the negative qunaught
state as a translated positive qunaught state, we obtain

ei π2 n̂|−∅〉 = ei π2 n̂T̂[(1/2; 1/2)]|+∅〉
= T̂[(−1/2; 1/2)]|+∅〉
= ei π2 T̂[(1/2; 1/2)]T̂[(−1; 0)]|+∅〉
= ei π2 |−∅〉, (88)

which implies that |−∅〉 has support only on Fock states
n = 1 mod 4. Importantly, since the envelope does not
change the excitation number, this is also true for finite-
energy states.

We remark that in contrast to single-mode GKP codes,
the two finite-energy code words of the D4 code are
exactly orthogonal as evidenced by Eq. (87). However, this
orthogonality has limited usefulness in practice, as logical
measurements of the code words are performed through
(controlled) translations, which do not allow perfect dis-
tinguishability. In principle, one could perform logical
measurement through excitation number measurements in
a similar fashion to logical measurement of cat codes
[3,104]. However, this type of measurement is less robust
against oscillator errors such as photon loss. Moreover,
the distinguishability limit for GKP codes is much smaller
than typical errors induced by practical measurement cir-
cuits, such that we expect measurement of translation
properties to remain optimal.

Interestingly, the D4 code can be equivalently inter-
preted as the concatenation of two single-mode diamond
GKP codes with a two-qubit repetition code along the
Ȳ axis. Taking two single-mode qubits encoded in dia-
mond GKP codes and restricting the subspace to the +1
eigenspace of the Ȳ�Ȳ� logical operator, we obtain the D4
code. An inspection of the logical operators in both D4 and
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diamond codes then reveals the correspondence

X̄ D4 = Z̄� ⊗ Z̄� or X̄ � ⊗ X̄ �, (89a)

ȲD4 = Z̄� ⊗ X̄ � or X̄ � ⊗ Z̄�, (89b)

Z̄D4 = Ȳ� ⊗ Ī or Ī ⊗ Ȳ�. (89c)

In particular, this implies that two diamond codes can be
merged into a single D4 code, or conversely that a D4
code can be split into two (potentially entangled) diamond
codes using the techniques of Sec. II H. We recall that a
diamond code is simply a rotated square code, such that
the same correspondences apply to square GKP codes.
These relations can be used to prepare entangled states of
square GKP codes, for teleportation-based error correction
of GKP codes, and to purify magic states of square or D4
GKP codes, see Appendix G.

B. Gates

Interestingly, for the D4 GKP code, all single-qubit
Clifford gates can be physically realized using envelope-
preserving Gaussian operations. In particular, logical Pauli
gates can be implemented in an envelope-preserving man-
ner in contrast to translations, which do not commute with
the envelope. This is due to the high symmetry of the
D4 lattice, and in particular the fact that all Pauli opera-
tors have the same length, |x0| = |y0| = |z0|. We describe
below the gate set 〈S̄, H̄ , CZ̄〉, with results summarized in
Fig. 10.

1. Phase gate

The S̄ logical gate is given by a rotation of either mode
by π/2,

Û(S̄) = R̂(π/2)⊗ Î or Î ⊗ R̂(π/2). (90)

1.1. Hadamard gate As illustrated in Fig. 10(c), the log-
ical Hadamard gate is obtained by combining a beam-
splitter operation, B̂, with a π/4 rotation of both modes,

ÛD4(H̄) = R̂(π/4)⊗2B̂. (91)

Conveniently, the symplectic representation of H̄ is pro-
portional to a Hadamard matrix. We remark that, in con-
trast to the S̄ gate, the logical H̄ gate modifies the trivial
gauge, motivating the need for gauge updates.

2. Controlled-Z̄ gate

We can realize a CZ̄ gate between two D4 code A and B
by implementing a rescaled SUM gate of the form

ÛD4(CZ̄) = ei2ôAôB , (92)

where ôα ∈ {q̂α,1, q̂α,2, p̂α,1, p̂α,2} can be any quadrature
coordinate of the two modes comprising the D4 code α ∈

=

=

=

= =

(a) (b) (c)

(d) (e)

FIG. 10. D4 code. (a) Phase-space representation of the stabi-
lizer generators. The left and right graphs represent the projection
onto the (q, p) phase space of the first and second mode, respec-
tively. (b) Similar representation for the logical operators. (c)
Logical Clifford operations in the D4 code. The S̄ gate can be
effected by a π/2 rotation in either mode, with a rotation in the
first mode represented. The H̄ gate is implemented by a beam
splitter followed by a rotation of π/4 in both modes. The logical
CZ̄ gate is implemented by a rescaled SUM gate. We represent
this gate as an operation between the second mode of A and the
first mode of B, but choosing any pair of modes from the codes
A and B is equivalent. (d) Non-Clifford

√
Ḡ logical gate, with

Ḡ = X̄ S̄ = (X̄ + Ȳ)/
√

2. A Kerr gate in either mode realizes this
logical operation. (e) Non-Clifford Ḡ-controlled Ḡ logical gate,
which can be realized by a cross-Kerr gate involving any pair of
mode from the two D4 codes.

{A, B}. This is due to the fact that a displacement in any
of these four directions is equivalent to a logical Z̄ gate.
The choice Û(CZ̄) = ei2q̂A,2q̂B,1 is illustrated in Fig. 10(c).
While this CZ̄ gate is not envelope preserving and requires
squeezing, it is qualitatively similar to the square and
tesseract code CZ̄ gates, which also require (rescaled) SUM
gates.

Note that it is impossible for any GKP-type qubit to have
the full multiqubit Clifford group implemented in a Gaus-
sian and envelope-preserving manner. Take for example an
entangling gate Ḡ such that P̄2 ⊗ P̄3 = Ḡ†(P̄1 ⊗ Ī)Ḡ with
P̄1, P̄2, P̄3 all not identity. The symplectic representation of
the previous equation reads p2 ⊕ p3 = G(p1 ⊕ 0) for some
p1, p2, p3 all not 0. Taking P̄1 such that its Pauli represen-
tative is of minimal length, we have |p2 ⊕ p3| > |p1 ⊕ 0|
with respect to the Euclidian norm, implying that G does
not conserve distances.

3. Non-Clifford gates

In the following, we introduce envelope-preserving non-
Clifford gates following the general approach laid out
in Sec. II E. First, we introduce a logical T̄ =

√
S̄ =

Diag[1; eiπ/4] gate. Leveraging the fact that Z̄ code words
have a definite Fock number modulo four, see Eq. (87), we
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have

ÛD4(T̄) = ei π4 n̂2
j , (93)

where n̂j is the photon-number operator of either mode
comprising the D4 code.

We remark that the T̄ =
√

S̄ is based on the S̄ gate, which
is of order g = 4. Changing the gauge toμμμ = (0, 1, 1, 1), a
rotation R̂(π/2) rather implements a gate Ḡ = X̄ S̄ of order
g = 2. As a result, a Kerr unitary can also implement the
gate

ÛD4

(√
Ḡ
)
= ei π8 n̂2

j . (94)

This gate can equivalently be expressed as
√

Ḡ =
T̄†H̄ S̄H̄ T̄. Tunable Kerr interactions can be realized in a
microwave cavity by driving a transmon qubit ancilla [99],
in which case the

√
Ḡ gate can be realized in half the time

required for the T̄ gate.
Leveraging the same Fock number properties of the D4

code, a controlled-S gate can be realized using a cross-Kerr
interaction

ÛD4(CS̄) = ei π2 n̂An̂B , (95)

which is implemented in the μμμ = 0 gauge. Updating the
gauge of both modes such that the rotation R̂(π/2) imple-
ments a Ḡ gate, μμμ = (0, 1, 1, 1), we rather obtain

ÛD4(C
(Ḡ)Ḡ) = ei π4 n̂An̂B . (96)

This gate can be equivalently expressed as C(Ḡ)Ḡ =
(T̄†)⊗2 × H̄ ⊗ Ī × CNOT × H̄ ⊗ Ī × T̄⊗2. In microwave
cavities, this gate could be realized with a tunable cross-
Kerr coupling [98,99], assuming that higher-order nonlin-
earities are negligible.

We could also realize a
√

H̄ in an envelope-preserving
manner since the H̄ is based on a lattice isometry. How-
ever, performing this gate is likely to prove more challeng-
ing than Kerr or cross-Kerr gates.

Finally, we note that there is a Gaussian operation that
maps the D4 code to the tesseract code (and the converse),
in this case an independent squeezing and rotation of both
modes. As a result, the non-Clifford gates presented in this
section for the D4 code could also be employed in the
tesseract code by mapping one encoding to the other.

C. Error correction

In this section, we follow the same structure as the
tesseract error-correction section and describe the robust-
ness of the D4 code against resonator amplitude damping,
qubit ancilla errors, and finally the Gaussian translation
error channel using homodyne error correction.

1. Amplitude damping

We consider a similar protocol as in the tesseract code,
with the dissipation circuits of the D4 code applied in series
and an excitation loss channel applied in between each dis-
sipation circuit. The results are shown by the red points in
Fig. 5(e).

The obtained distance for the D4 is similar to that of the
square code, δD4 = 3.2 ≈ δ� = 3.3. Although the logical
Pauli operators of the D4 code have an increased length
compared to the square code, min |p0| = 1, the dissipation
circuits are less efficient at correcting errors since the sta-
bilizers are not orthogonal to each other. In particular, the
smallest uncorrectable translation error in the D4 code has
a length |e| = 1/

√
2, which is equal to the length of the

smallest uncorrectable error in the square code. As a result,
the square and D4 code have similar distances δ.

Moreover, since the errors are corrected in series and
the noise channel acts for twice longer than the square code
before a full dissipation round is completed, the break-even
point of the D4 code is smaller than in the single-mode
square code. The break-even point of the D4 code is also
smaller than the tesseract code, which can be understood
through the classical model presented in Sec. III. Com-
puting the eigenvalues of the Hessian matrix H(�D4), we
get a smallest eigenvalue λ = l2(2 −√

3) ≈ 1.7, which is
smaller than the tesseract code minλ H(�tess) = l2 4√2 ≈
8.9. This is a result of the fact that the tesseract code basis
treats the four-dimensional space homogeneously, while
the D4 code has preferred direction, such that there exists
a direction in the D4 code where errors are corrected at a
slower rate.

2. Ancilla decay

Fig. 11 illustrates how translation errors propagate as
logical errors to the D4 code. At first glance, the D4
code does not possess the same “isthmus” properties that
the tesseract code has. Indeed, while errors along s2 are
always correctable and errors along s1 have the isthmus
property, errors along s3 and s4 are not all correctable.
As illustrated in the bottom left of Fig. 11(a), translation
errors in the plane spanned by {s3, s4} propagate as log-
ical errors in a similar fashion to the square GKP code,
see Fig. 4. One solution to recover the isthmus property
is to perform controlled translations in a zigzag manner,
for example decomposing CT̂(s3) = CT̂(s3 − s1)CT̂(s1) as
shown by the dashed purple arrow in the {s1, s3} plane.
While logically equivalent to a direct controlled translation
CT̂(s3), ancilla decay during these controlled displace-
ments now propagate as translation errors along the dashed
line, recovering the isthmus property. This decreases the
probability that an ancilla decay error propagates as a log-
ical error, at the cost of doubling the time required to
perform controlled translations for two of the four sta-
bilizers. Figure 11(b) focuses on the effect of translation
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FIG. 11. Effect of translation errors in the D4 code. (a) Logical
operation applied (colors) as a function of the initial translation
error in the planes given by span(sj , sk). One could achieve the
isthmus property by performing controlled translations follow-
ing the purple dashed line instead of the more direct full line
in the {s1, s3} panel. (b) Logical error probability as a function
of the length of a translation error along s1. We compare the full
quantum model (blue dots) and the classical model (dashed lines)
Inset: integrated logical error probability given that an error ηs1
occurred, with η sampled uniformly.

errors along the stabilizer s1. The points are computed
using the full quantum model, while the dashed lines
are computed using the simpler classical model. This
stabilizer clearly exhibits the isthmus property, with an
integrated error probability that decreases with increas-
ing GKP size (smaller ε). However, the D4 isthmus is
“thinner” compared to the tesseract code, with at worst
an error probability of 75% for e = s1/2. The inset shows
the integrated logical error probability given that a qubit
decay occurred during D(s1), computed using the classical
model. The colored dots correspond to the dashed lines in
the main panel. Through a fit of the black line, we find that
P(error|qubit decay) ≈ 0.94

√
ε.

Using the full quantum model, the red points in Fig. 9
show the lifetime of the logical information as a function
of the ancilla decay rate for the D4 code (red points), using
the zigzag paths. We take the probability of an ancilla
decay during the dissipation of s3, s4 double that of s1, s2
to account for the longer zigzag paths. These simulations
show that an improvement over the single-mode square
code is possible with the D4 code, although the tesser-
act code performs better. Extracting the linear relation
between ancilla decay rate and infidelity, we find iF ≈
0.10γanct�.

3. Homodyne error correction

For the same reasons that the dissipation cicuits are
less efficient in the D4 code than in the tesseract code,
homodyne error correction for the D4 code leads to poorer
results than both the square and tesseract code. This is

due to the fact that, for this choice of basis, the homo-
dyne measurements do not treat the two-mode phase space
homogeneously. However, we remark that our choice of
basis and decoder is not optimal, and we expect that better
performances are possible for this code.

The results above show that although in principle the D4
code allows a better protection against errors, with logical
operators being of longer length than the tesseract code, its
performance is worse than the tesseract code for the error-
correction schemes introduced.

VI. LATTICES AND CONCATENATED CODES

In this section, we explore further the general connec-
tions between multimode lattices and concatenated codes.
Given the strong links between lattices and classical error-
correcting codes [56], it is reasonable to expect that good
quantum codes are also related to interesting lattices. For
example, early studies of multimode GKP codes [79,80]
showed that symplectic multimode lattices can achieve
encoding rates similar to single-mode GKP codes concate-
nated with CSS qubit codes for the Gaussian translation
error channel. In this section, we lay out an explicit con-
catenated code construction for multimode lattices similar
to construction A in Ref. [56].

We start by taking m oscillator modes and we define
a separable lattice encoding m qubits, S = S⊕m

base with
det(Sbase) = 2. A standard choice of base single-mode code
is the square code, but we also provide examples below
where other choices lead to interesting lattices. In general,
one could choose a different two-dimensional lattice for
each of the m modes, and the results we present can easily
be generalized to that case. The logical Pauli operators of
the m-mode, m-qubit code can be expressed as

L = (S∗
base)

⊕m = S⊕m
base

2
. (97)

We aim to concatenate these m single-mode GKP qubits
with a [[m, k, d]] qubit stabilizer code Cq. For each of
the m − k (qubit) stabilizers of Cq, we replace a lattice
generator of the base GKP code by the corresponding com-
bination of base GKP Pauli operators. Out of the original
2m stabilizer generators each having support on a single
mode, only m + k then remain.

This replacement can be done by starting with the
binary-matrix representation of a Pauli stabilizer code
[105], which represents Cq as a (m − k)× 2m binary
matrix. To make the rest of the construction easier, we
swap the columns of the binary matrix such that the
odd-numbered columns represent the presence of an X
operator, while the even-numbered columns represent the
presence of a Z operator. For example, the binary matrix
of the five-qubit code, with stabilizer group generated by
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cyclic shifts of XZZXI , is mapped to

⎛

⎜⎝

1 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0
1 0 1 0 0 0 0 0 1 1
0 1 0 1 0 1 0 0 0 1

⎞

⎟⎠ (98)

→ B =

⎛

⎜⎝

1 0 0 1 0 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0
1 0 0 0 1 0 0 1 0 1
0 1 1 0 0 0 1 0 0 1

⎞

⎟⎠ . (99)

We then promote this binary matrix to a 2m × 2m full-
rank integer matrix T by adding rows with a single 2. This
construction is motivated by the fact that, for single-mode
codes, the Pauli operators x0 and z0 can always be cho-
sen to be colinear with the stabilizers, 2S∗ = S. For a QEC
code [106], T can be constructed as

T =
(

B
0(m−k)×(m+k) 2Im+k

)
. (100)

The generator matrix of the multimode lattice correspond-
ing to the concatenated code can then be expressed as

Sq = TL. (101)

One can check that det(T) = 22m−(m−k), such that
det(Sq) = 2k, encoding k qubits as desired. In general,
the decomposition above does not yield generators of
minimal length, and it can be advantageous to redefine
the generator matrix as Sq = RTL, for some unimodular
matrix R, which can be found, for example, through the
Lenstra-Lenstra-Lovász (LLL) algorithm [107].

The logical Pauli operators of the final multimode code
can either be obtained through a similar construction start-
ing with the operators of the qubit code Cq, or by following
the approach outlined above in Sec. II, yielding a dual
lattice generator matrix

S∗
q = −(L−1T−1)T�. (102)

In this construction, the minimal length of the logical Pauli
translations is given by

|p0,conc| = min
P̄Cq

|p| = min
P̄Cq

√√√√
∑

p∈P̄Cq

|p0,base|2, (103)

where the minimization is over all representatives of the
Pauli operator P̄ in the code Cq, and the sum is taken
over all single-qubit Pauli operators comprising this rep-
resentative of P̄. Taking a hexagonal base code where

|x0| = |y0| = |z0|, and defining dp the minimal support of
the logical Pauli P̄ in Cq, the above equation simplifies to

|p0,conc| =
√

dp |x0,�|. (104)

For asymmetric base codes such as the square code where
|x0| = |y0|/

√
2 = |z0|, the representative P̄, which mini-

mizes Eq. (103), is not necessarily the representative of
minimal support. We give below a few examples of mul-
timode lattices that can be reframed in the concatenated
construction.

A. Repetition code and diamond code

Consider the base GKP code to be the diamond code and
the qubit code Cq to be the m-qubit repetition code along
the Ȳ axis, |0̄/1̄〉 = |±Ȳ�〉⊗m. Following the concatenation
construction, one obtains the D2m lattice family described
in Sec. II G, with lattice generators given by, for exam-
ple, Eq. (53). This construction then yields the logical Pauli
operators

L0,D2m =
⎛

⎝
1/2 1/2 · · · 1/2 1/2
−1/2 1/2 · · · 1/2 1/2

1 0 · · · 0 0

⎞

⎠ , (105)

which reduce to the logical operators of the D4 code in the
two-mode case as illustrated in Fig. 12(a).

As demonstrated by this example, the qubit code Cq need
not be a full quantum error-correction code to yield an
interesting lattice. The qubit code merely needs to increase
the distance of some logical Pauli operator. In the case
of the two-qubit repetition code Cq, the distances for each

(a)

(c) (d)

(b)

FIG. 12. Correspondence between some multimode lattices
and concatenated codes. Multimode stabilizers are represented
by both a color coding, with reference on the bottom right of the
figure, and by small black arrows. The diamonds and rectangles
represent single-mode GKP code, with a phase-space represen-
tation of these modes shown in (a),(b). (a) The D4 lattice code
is equivalent to a diamond code concatenated with a two-qubit
repetition code. (b) The tesseract code is equivalent to the con-
catenation of a rectangular code with a two-qubit repetition code
along Z̄. (c) The E8 lattice is equivalent to a stabilizer state with a
base diamond code. (d) Two tesseract codes can be concatenated
along the Ȳ axis to form a four-mode code with equal length
logical Pauli operators.
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logical Pauli operator are given by (dx, dy , dz) = (2, 1, 2).
From Eq. (103), we obtain that the length of the log-
ical Pauli operators is increased from (|x0|, |y0|, |z0|) =
(1/

√
2, 1, 1/

√
2) in the base diamond code to (1, 1, 1)

in the D4 code. On top of the increased error-correction
capabilities, this increased distance also symmetrizes the
length of all logical Pauli operators, which in turn enables
one to perform all single-qubit Clifford operations in an
envelope-preserving manner.

B. Repetition code and rectangular code

As illustrated in Fig. 12(b), the tesseract code can be
obtained from a base rectangular code,

S� = 4√2
(

1 0
0

√
2

)
, (106)

concatenated with the two-qubit repetition code along the
Z̄ axis with z0 = s2/2.

The fact that the D4 and tesseract code can be under-
stood as two-qubit repetition codes explains why one of
the logical Pauli operators can be measured in two sep-
arate modes, allowing the implementation of a two-bit
measurement repetition code.

In a similar fashion to the diamond GKP and qubit rep-
etition code construction, which symmetrizes the length of
the logical Pauli operators, we can concatenate the tesser-
act code with a two-qubit repetition code along the Ȳtess
axis to yield a four-mode lattice where all logical opera-
tors are of the same length. The generator matrix of this
four mode is given by

S = 4√2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1√

2
0 1√

2
0 0 0 0

0 0 1 0 0 0 0 0
0 1√

2
0 − 1√

2
0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 1√

2
0 1√

2
0 0 0 0 0 0 1 0

1/2 1√
2

1/2 0 1/2 1√
2

1/2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(107)

with logical operators

L0 = 4√2

⎛

⎜⎝
1/2 1√

2
1/2 0 0 0 0 0

1/2 0 1/2 0 0 1√
2

0 0
0 1√

2
0 0 0 1√

2
0 0

⎞

⎟⎠ .

(108)

Figure 12(d) illustrates this construction starting from the
single-mode rectangular codes S�. We compute that |x0| =
|y0| = |z0| = 4√2 in this code, such that all single-qubit

Clifford operations can be performed in an envelope-
preserving manner, i.e., with passive Gaussian gates. As
a result, we can prepare entangled Bell states of the tesser-
act code by first preparing two two-mode |Ȳtess〉 states, then
applying an envelope-preserving Clifford operation.

We remark that in the four-mode code above, the log-
ical Pauli operators have equal length, but do not have
support on an equal number of modes, with y0 having sup-
port on three modes while x0 and z0 have support on two
modes. Moreover, while the logical operators are of the
same length, one stabilizer is of longer length, s8 = 4√8
with sj �=8 = 4√2. This contrasts to the D4 code, which has
both logical operators and stabilizers of equal length.

We remark that the D4 and tesseract codes can be
viewed as special cases of the dual-rail code construc-
tion of Ref. [20], where arbitrary bosonic encodings are
concatenated with a two-qubit repetition code, and the
four-mode code is a special case of the quad-rail encod-
ing introduced there. As a result, these GKP multimode
codes also inherit the same properties as the dual- and
quad-rail encoding, such as the ability to perform univer-
sal quantum computations using exponential-swap gates,
provided the gauge is set correctly. However, in contrast
to the general constructions of Ref. [20], the special struc-
ture of the GKP codes allow one to perform Clifford gates
using Gaussian operations, which are easier to implement
than exponential-swap gates. Since the repetition code is
the only nontrivial two-qubit code, it is not so surpris-
ing that concatenation-related constructions of two-mode
bosonic codes are related. However, we emphasize that
the choice of base lattice and the choice of repetition axis
induce important differences as evidenced by, for example,
the types of errors that can be corrected; see Figs. 8 and 11

C. E8 lattice

As a final example, we relate the E8 lattice of Sec. II G
to the construction above. In fact, the base E8 lattice can
be obtained by choosing the diamond code as the base
GKP code and considering the stabilizer state with stabi-
lizer group generated by 〈Ȳ1Ȳ2, Ȳ2Ȳ3, Ȳ3Ȳ4, Z̄1Z̄2Z̄3Z̄4〉. As
illustrated in Fig. 12(c), this stabilizer state is one of the
two code words comprising the [[4, 1, 2]] error-detecting
surface code.

We finish this section by commenting on the differ-
ences between concatenated GKP codes and “genuine”
multimode lattices. First, we remark that while all Pauli
stabilizer codes correspond to a multimode lattice, the
converse is not true. Indeed, starting from any concate-
nated decomposition Eq. (101), we can find new lattices
by applying a symplectic transformation M ,

S′ = TLM . (109)

Except in special cases, the resulting lattice S′ cannot be
decomposed as an integer matrix T and a block-diagonal
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matrix L, and therefore does not correspond to a concate-
nated code.

A second difference is that it is not necessarily obvi-
ous how qubit properties, such as the minimal support
of logical operators, translate to the minimal length of
Pauli operators in the multimode lattice. As a result, con-
sidering the properties of the multimode lattices can be
helpful in the design of the code. For example, starting
from single-mode rectangular codes instead of the more
standard square code results in interesting codes such as
the tesseract and four-mode code.

Finally, we argue that the main difference between con-
catenated codes and multimode lattice lies in the practical
approach to the decoding procedure, not in the code words
themselves. Since the code words themselves are identical,
the maximum likelihood decoder is the same in both cases.
However, maximum likelihood decoding is a hard problem
that cannot be solved efficiently, such that efficient approx-
imations must be made. Traditionally, concatenated codes
are decoded in a hierarchical fashion, correcting continu-
ous translation errors at the single-mode level, then cor-
recting discrete Pauli errors at the multimode level. In con-
trast, the decoding of “genuine” multimode lattices is done
by identifying the most likely multimode translation corre-
sponding to the syndrome and correcting it. In particular,
concatenated decoders requires 3m − k measurements for
a k-qubit code, while multimode decoders require only 2m
measurements. While the former requires more measure-
ments, the error correction can also benefit from the added
redundancy by passing information between levels of the
hierarchy [23,25,26,84]. We remark that the multimode
decoder presented in Sec. III is not optimal, as evidenced
by the gap between the theoretical protection of the D4
code and its practical performances shown in Fig. 7. We
leave the optimization of such decoders for future work.

VII. DISCUSSION AND CONCLUSION

In this work, we have investigated bosonic quantum
error-correction codes based on multimode grid states. We
first discussed how to design codes based on lattices in
R

2m, and what code dimensions are allowed by scaling and
rotating the lattice. We showed for the four-dimensional
hypercubic lattice that only code dimensions that can be
written as a sum of three squares are possible. Looking
ahead, we aim to generalize these relations and establish
a link between arbitrary lattices and allowed code dimen-
sions. For example, it would be interesting to investigate if
it is possible to design a three-mode qubit code based on
Bavard’s F6 lattice [80], or the E8 lattice.

We investigated how lattice symmetries are reflected
in the associated code words, and how to design non-
Clifford gates based on these symmetries. Importantly,
we showed that lattice symmetries, which are isometries
enable non-Clifford gates that are exact for finite-energy

codes. For the single-mode square code, we showed that
a Kerr Hamiltonian can generate a square-root-Hadamard
logical gate.

We have introduced error-correction schemes for mul-
timode grid codes based on qubit ancillas or single-mode
GKP state ancillas. The latter approach follows closely the
methods introduced originally in Ref. [18], and is quali-
tatively as hard as the error-correction circuits for single-
mode codes. On the other hand, the error-correction cir-
cuits using two-level systems are based on building blocks
that have already been demonstrated (separately) in differ-
ent experimental platforms. As a result, we believe that the
implementation of multimode grid codes is within reach in
experimental platforms such as microwave cavities and the
motion of trapped ions.

Although we focused in this work on qubit encodings,
the error-correction circuits we introduced can also be
applied to other code dimensions. For example, these cir-
cuits could be used to stabilize one-dimensional grid states,
which could allow more precise force measurements in
multiple modes [61,108].

We have introduced in detail two qubit codes, namely
the tesseract and the D4 code, which have support on two
modes. We showed how to correct errors and how to per-
form a universal set of logical operations. The D4 code has
the interesting property that all Clifford operations can be
performed using passive linear optics, i.e., beam splitters
and phase shifters. This property is enabled by the lattice
geometry, in particular the fact that all Pauli operators are
translations of equal length.

One of the main results of our work is to show that both
the D4 and tesseract codes are more robust than single-
mode codes to propagation of errors from the ancilla. This
is linked to their “isthmus” property, where regions of
correctable translation errors are directly linked in phase
space. By considering only controlled translations that
fall within correctable regions, we can recover from most
ancilla decay errors. Moreover, the robustness of the grid
codes to ancilla errors increases with code size. These
properties are in stark contrast to single-mode codes, where
the logical lifetime of the grid codes are directly limited by
the physical lifetime of the ancilla. Other techniques have
been developed to increase the robustness of bosonic codes
to errors in the ancilla such as path independence [31,32]
and Kerr cats [33]. These methods focus on improving the
ancillas used for quantum control and are agnostic to the
particular bosonic code used. As a result, these methods
could be compatible with the multimode grid codes we
introduced, which could lead to further improvements in
the logical lifetimes of the GKP qubits.

Finally, we discussed several links between interesting
lattices and single-mode GKP codes concatenated with
qubit stabilizer codes. In particular, it is interesting to note
that the lattices allowing the densest sphere packings in
four (D4) and eight (E8) dimensions can be understood
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as the concatenation of a square qubit code with a two-
qubit repetition code and a four-qubit stabilizer state,
respectively.

Although multimode codes promise the realization of
long lifetimes for logical qubits, we do not expect that
they will provide an efficient way to arbitrarily reduce
the error rates of logical information. In order to build a
fault-tolerant quantum computer, it would be interesting
to study hybrid approaches where small multimode codes
are concatenated with qubit codes. For example, it would
be interesting to investigate the concatenation of the two-
mode tesseract code with a surface code [81]. In particular,
qubit codes are designed to exponentially suppress errors,
such that an order of magnitude reduction in the error rate
of the inner code (GKP codes) can lead to multiple orders
of magnitude reduction of the logical error rate of the outer
code (e.g., surface code).
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APPENDIX A: LATTICE THEORY

In this section we introduce in more details some lat-
tice theory, first discussing lattices in Euclidian geometry
and then the corresponding notions in symplectic geome-
try. We refer the reader to Ref. [56] for a more in-depth
discussion of lattices in general.

1. Lattices in Euclidian geometry

A (Bravais) lattice� = {λλλj } is an infinite set of points in
R

n that is closed under standard vector addition, λλλi + λλλj ∈
� for all λλλi,λλλj ∈ �. To specify these points, we choose n
linearly independent points {s1, . . . , sn} that form a basis
for �, i.e., all lattice points can be expressed as λλλ =∑n

j=1 aj sj for a set integers {aj }.
The fundamental parallelotope of the lattice is defined

as the region within
∑n

j=1 θj sj for θj ∈ [0, 1). Translating
this fundamental parallelotope by each lattice point com-
pletely covers R

n. The choice of basis generating � is not
unique, hence the shape of the fundamental parallelotope
is not unique. However, its volume is the same for all basis
choices.

It is convenient to stack the basis (row) vectors {sj } into
a generator matrix S, where the j th row of S is given by

sj , see Eq. (11). Since the basis vectors are linearly inde-
pendent, the generator matrix S has full rank n. From S,
the set of lattice points can be succinctly defined as in Eq.
(12). The volume of the fundamental parallellotope is also
easily computed using the generator matrix and is given by
its determinant, Vp = det(S).

The Gram matrix of the lattice,

G = SST, (A1)

is defined such that its (i, j )th entry is given by the inner
product si · sj . From this definition, it is easy to see that
G = GT is a symmetric matrix. The determinant of the lat-
tice � is defined to be the square of the volume of the
fundamental parallelotope, and is given by det(�) = V2

p =
det(S)2 = det(G).

The dual lattice �∗ is defined as the set of points, which
have integer inner product with all points in �. Since it is
enough to impose an integer inner product with the basis
vectors of�, the set of points defining�∗ can be expressed
as

�∗ = {
λλλ∗ | Sλλλ∗ ∈ Z

n} . (A2)

A generator matrix for the dual lattice is obtained from
S∗ = (ST)−1. The volume of the fundamental parallelo-
tope of �∗ is inversely proportional to the volume of the
fundamental parallelotope of �, V∗

p = 1/Vp .
An integral lattice is a lattice where G contains only

integers. Since G corresponds to the pairwise inner product
between the basis vectors of �, the definition of the dual
lattice then imposes that � ⊆ �∗. We note that, in gen-
eral, the dual lattice points do not have integer norm within
themselves unless � = �∗, in which case the volume of
the fundamental parallelotope must be one, Vp = 1.

There exists multiple choices of basis for a same lat-
tice. A change of basis can be expressed in a unimodular
matrix R, an invertible integer matrix with unit determi-
nant. Under this change of basis, the new generator matrix
is expressed as S′ = RS. Note that the Gram matrix does
depend on the basis choice since in general G′ = RGRT �=
G.

Generally, we refer to lattices related by an isometry
with the same name, although the specific set of points can
be different. For example, a rotated square lattice is still
considered a square lattice. In particular, the Gram matri-
ces are identical for two lattices related by an orthogonal
transformation, G′ = SOOTST = SST = G. To summarize,
by a lattice we mean the equivalence class of all genera-
tor matrices related by a basis change and an orthogonal
transformation, S′ = RSO.

The minimum of a lattice is defined as the smallest
distance between any two of its points. Since the set of
distances from a given lattice point is translation invariant,
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we can choose to define the minimum of the lattice from
the minimum distance to the point at origin 0 ∈ �,

min(�) = min
λλλ∈�,λλλ �=0

|λ|2. (A3)

Placing the center of a sphere at each lattice point, the
sphere packing ratio � is defined as the maximal fraction
of space that can be covered by these sphere without the
spheres overlapping. Considering that the radius of each
sphere cannot be extended beyond

√
min(�)/2, we have

� = Vn[min(�)]n/2

2n
√

det(�)
, (A4)

where we define the volume of a sphere of unit radius in
R

n as

Vn = πn/2

�(n/2 − 1)
. (A5)

The densest lattice packings (largest �) are known for all
dimensions n ≤ 8 and for n = 24.

2. Lattices in symplectic geometry

Many notions defined above for Euclidian geometry in
R

n have an analogous version in symplectic geometry,
which we describe below. We consider symplectic vector
spaces in R

2m.
A symplectic matrix is a matrix, which, when viewed

as a linear transformation on R
2m, preserves the sym-

plectic form. Mathematically, a matrix M is symplectic
if M T�M = �. A matrix is symplectic if and only if its
transpose is symplectic, M T�M = �⇔ M�M T = �.

In analogy with the Gram matrix of the lattice � where
the (i, j )th entry is the inner product between the basis vec-
tor si and sj , we define the symplectic Gram matrix of a
lattice � as A = S�ST, where the (i, j )th entry is the sym-
plectic form between the basis vectors si and sj , Aij =
ω(si, sj ) = si ·� · sj . Since the symplectic form is anti-
symmetric, the symplectic Gram matrix is antisymmetric,
A = −AT.

We also define the symplectic dual of a lattice as the set
of points having integer symplectic form with the lattice
points,

�∗
s = {

λλλ∗ | S�λλλ∗ ∈ Z
n} . (A6)

In this Appendix, we denote the symplectic dual lattice
and its generator matrix with an “s” index to distinguish
it from the standard dual. A generator matrix for the dual
lattice can be obtained from S∗

s = A−1S. The standard and
symplectic dual are related through S∗

s = −S∗�. The vol-
ume of the fundamental parallelotope of the symplectic

dual lattice is identical to the volume of the dual lattice,
|det(S∗)| = |det(S∗

s )|.
A lattice is called symplectically integral if its sym-

plectic Gram matrix A contains only integers. From the
definition of the symplectic dual lattice, this implies that
� ⊆ �∗

s .
A lattice is called symplectic if � (viewed as a linear

transformation) acts as an isometry from � to its dual �∗.
Equivalently, the generator matrix of a symplectic lattice
can be chosen to be a symplectic matrix when viewed as
a linear transformation in R

2m, S�ST = �. A symplectic
lattice has unit determinant.

APPENDIX B: GAUGE UPDATES

In this section, we show how to update the gauges after
different operations.

1. Translations

We first derive Eq. (35a), which sets the new gauge
after a translation by half a lattice vector τττ/2, with τττ ∈ �.
Computing how the eigenvalue of a translation by a lattice
vector λλλ ∈ � changes, we get

T̂(λλλ)T̂(τττ/2)|ψ〉 = eiπλλλT�τττ νμμμ(λλλ)T̂(τττ/2)|ψ〉. (B1)

We therefore set the new gauge μμμ′ such that

νμμμ′(λλλ) = eiπλλλT�τττ νμμμ(λλλ). (B2)

Replacing the definition of the ν function Eq. (30), we get
that for all λλλ ∈ �,

λλλTS−1μμμ′ = λλλT�τττ + λλλTS−1μμμ,

⇒ μμμ′ = S�τττ +μμμ, (B3)

with the equalities above understood modulo 2. Equation
(35b) is proven in a similar way.

2. Gaussian operations

Next we show how to update the gauges after a quadratic
operation Q̂(M ). Using the commutation relation Eq. (6),
we obtain that in the code space

T̂(λλλ)Q̂(M )|ψ〉 = νμμμ(M−1λλλ)Q̂(M )|ψ〉, (B4)

which then sets the equation that determines the new
gauge, νμμμ′(λλλ) = νμμμ(M−1λλλ). To make the following equa-
tions more concise, we define a = (ST)−1λλλ with a ∈ Z

2m,
as well as N T = SM TS−1. Replacing the gauge function
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defined by Eq. (30), we obtain

aTN T [ANa +μμμ′] = aT [Aa +μμμ] ,

aT [A − N TAN
]

a = aT [N Tμμμ′ −μμμ] , (B5)

which yields an equation that sets one element of μμμ′. To
find the whole gauge, we choose a set of 2m vectors {λλλj } =
{sj }, which corresponds to choosing an ensemble of a as
the canonical basis for Z

2m. Using the fact that the diagonal
elements of A are 0, aTAa = 0, we arrive at

μμμ′ = (N T)−1(μμμ+ �diag[N TAN ]) mod 2, (B6)

Next, we derive the equation to update the Pauli frame
gauge υυυ after a Gaussian operation M . We start with an
equation similar to Eq. (B4), which yields

Q̂(M )T̂(p0)|ψ+P〉 = T̂(Mp0)Q̂(M )|ψ+P〉. (B7)

After applying the gate, the state is again in the code
space, and we define |ψιP̃〉 = Q̂(M )|ψ+P〉, with ι ∈ {±}.
This yields an equation to solve for each Pauli P,

(−1)υp = (−1)ινP̃
μμμ′,υυυ′(Mp0),

υp = ι+ υ ′
P̃ + p̃T

0�Mp0 + (Mp0 − p̃0)
TS−1

× [
A(S−1)T(Mp0 − p̃0)+μμμ′] . (B8)

Conjugation of Pauli operators by Clifford operations can
be written as a (signed) permutation matrix of the Paulis
P = (X ; Y; Z), P̃ = MLP with det(ML) = 1. For example,
the matrix associated with the logical S̄ gate is

ML =
⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ . (B9)

Further defining a vector of ones, 1, and V ≡ (MLL0M T −
L0)S−1, we get the full gauge update equation

υυυ ′ = MLυυυ + (ML + I)
2

1 + Vμμμ′

+ �diag
[
L0�MLT

0ML + VAVT] mod 2, (B10)

where we also define V ≡ (MLL0M T − L0)S−1 and �diag is
the operation of building a vector from the diagonal of a
matrix.

3. Basis change

We now show how to update the gauge after a change in
the choice of basis, S′ = RS. Choosing a vector λλλ ∈ �, we

apply T̂(λλλ) to any code word to obtain

νμμμ(λλλ) = νμμμ′(λλλ),

⇒ bTAb + bT ·μμμ = aTA′a + a ·μμμ′, (B11)

where we define λλλ = S′Ta = STb for some a, b ∈ Z
2m.

This yields an equation that sets one element ofμμμ′. Replac-
ing b = (ST)−1S′Ta = RTa and choosing an ensemble of
{aj } such that they form the canonical basis for Z

2m, we
get an ensemble of 2m equations

μμμ′ = Rμμμ+ �diag[RART]. (B12)

We note that this equation does not require that the two
lattices are identical, only that �′ ⊆ �. As a result, it can
also be used to perform a lattice-splitting operation where,
for qubit codes, det S′ = 2 det S.

When the two lattices are identical, �′ = �, we can
update the Pauli frame gauge using

υυυ ′ = υυυ +�Lμμμ+ �diag[L0�L′T
0 +�LA�T

L], (B13)

where we define �L = (L′
0 − L0)S−1.

4. Gauge condition

We now derive the condition to impose on the gauge μμμ
so that the eigenvalues of the logical Pauli operators are
real. Imposing that νμμμ(2p0) = 1 is equivalent to imposing
that

(2pT
0)S

−1 [A(S−1)T(2p0)+μμμ
]

mod 2 = 0. (B14)

Writing p0 = (S∗)Tb for some integer vector b ∈ Z
2m and

replacing S∗ = A−1S using Eq. (17), we obtain

4bTA−1A�b + 2bTA−1μμμ mod 2 = 0. (B15)

The matrix 2A−1 is integral and the first term always sums
to 0 modulo 2. Imposing the condition above for all b leads
to Eq. (34).

APPENDIX C: GAUGE UPDATES IN CODE
SWITCHING

In this section we focus on the gauge update equation in
code switchings.

1. Lattice splitting

The stabilizer gauge update can be realized using Eq.
(B12), so we focus on the Pauli frame gauge, υυυ. We can
always express a representative of two-qubit Pauli oper-
ators in the AB code as p(AB) = LT

0,ABb, where we define
L0,AB = L0,A ⊕ L0,B and b ∈ Z

6. The hierarchy Eq. (56)
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implies that all Pauli operators of the C code correspond
to a product of Paulis of the AB code, such that we can
also find Pauli representatives of the C code written as
p(C) = LT

0,ABb. Taking two representatives p1, p2 for each
Pauli operator of the C code such that they are all linearly
independent, we write

⎛

⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2

⎞

⎟⎟⎟⎟⎟⎠
= UL0,AB. (C1)

Computing the sign for each of these representatives yields
a set of equations,

b · υυυAB = υp ,C + pT
0,C�LT

0,ABb

+ (bTL0,AB − pT
0,C)B(L

T
0,ABb − p0,C), (C2)

where we define B = S−1
C AC(ST

C)
−1. Solving the above, we

set the Pauli frame gauges,

υυυAB = U−1υυυ⊕2
C + U−1 �diag

[
L(2)0,C�LT

0,ABUT + EBET
]

,

(C3)

where we define

L(2)0,C =
(

L0,C
L0,C

)
, (C4)

and E = (UL0,AB − L(2)0,C).

2. Lattice merging

To perform the merging operation, we first choose a
merging vector λλλm ∈ �C in the C lattice stabilizers that is
not in the AB lattice, λλλm /∈ �A ⊕�B. We then measure the
eigenvalue of T̂(λλλm), setting it to a definite value νm = ±1.
This measurement can be done with circuits similar to
those required for error correction, see Sec. III.

After the measurement, we get a new lattice with genera-
tor matrix S′, which we obtain by replacing a row of SAB by
λλλm. The replaced vector should respect sAB · λλλm �= 0, such
that S′ is full rank. Without loss of generality, we choose to
replace the last generator vector of the B lattice, obtaining

S′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

sA,1 ⊕ 0
· · ·

sA,2mA ⊕ 0
0 ⊕ sB,1

· · ·
0 ⊕ sB,2mB−1

λλλm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, μμμ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

μA,1
· · ·

μA,2mA
μB,1
· · ·

μB,2mB−1
νm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (C5)

By construction, S′ and SC generate the same lattice and
are related by a basis change R = SCS′−1. Using Eq. (B12),

we can convert the gauge to match the desired generator
matrix SC.

We remark that there are multiple possible choices for
the merging vector λλλm, which correspond to different logi-
cal operators of the AB code. As a result, the choice of λλλm
also sets the projection operator from the two-qubit log-
ical subspace of the AB code to the single-qubit logical
subspace of the C code.

Writing the base Pauli representatives of the C code as
p0,C = pA ⊕ pB, the elements of the Pauli frame gauge are
updated using

υp ,C = ϕ
[
νPA
μμμA,υυυA

(pA)ν
PB
μμμB,υυυB

(pB)
]

, (C6)

where we define ϕ(1) = 0,ϕ(−1) = 1.

APPENDIX D: MULTIMODE CONTROLLED
TRANSLATIONS

In this section, we describe how to realize a controlled
displacement in multiple modes indexed by j . We consider
a single qubit coupled to multiple modes via a pairwise
dispersive interaction, with a drive Ej (t) on each mode,

Ĥ(t) =
∑

j

[χj

2
â†

j âj σ̂z + Ej (t)â
†
j + E∗

j (t)âj

]
. (D1)

The Hamiltonian generates displacements, but also an
ancilla qubit phase and a qubit state-dependent rotation
of the oscillator modes. In order to echo out the ancilla-
dependent rotation due to the dispersive shift, we consider
an evolution in K steps with a qubit flip between each step
in analogy with the scheme used in Ref. [28],

Û = 	K
k=1σ̂xT e−i

∫ tk,f
k,i dτ Ĥ(τ ), (D2)

where we define the kth step ranging from tk,i to tk,f and
the product is time ordered. The final qubit flip is omitted
if K is odd. We commute through the qubit flips σ̂x such
that, during the kth step, the sign of σ̂z is multiplied by
zk ∈ {±1}, which we include in a continuous function z(t).
With this simplification, we can write the whole evolution
in a single step, Û = T e−i

∫ T
0 dτ Ĥz(τ ), with

Ĥz(t) =
∑

j

[χj

2
â†

j âj σ̂zz(t)+ Ej (t)â
†
j + E∗

j (t)âj

]
,

= �χ · �̂n
2
σ̂zz(t)+ �̂a† · �E + �E∗ · �̂a. (D3)

Considering the form of the Hamiltonian, we take an
ansatz for the resulting unitary

Û = eiθ σ̂z
2 e

�̂a†·( �γ+�δσ̂z)−( �γ †+�δ†σ̂z)·�̂ae−i �φ·�̂nσ̂z , (D4)

where θ sets the ancilla qubit phase, �φ ∈ R
m represents

the qubit-dependent rotation of each mode and �γ , �δ ∈ C
m
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represent the displacement and controlled-displacement of
each mode, respectively. We extract a differential equation
for each parameters using Schrödinger’s equation, ˙̂U =
−iĤz(t)Û. Neglecting terms leading to an irrelevant global
phase, we obtain

θ̇ = −2Re[ �E∗ · �δ], (D5a)

γ̇j = −i
χj

2
z(t)δj − iEj , (D5b)

δ̇j = −i
χj

2
z(t)γj , (D5c)

φ̇j = χj

2
z(t). (D5d)

In order to echo out the qubit state-dependent rotation of
the oscillators, we choose a z(t) such that �φ(T) = 0. The
differential equations above can easily be solved, yielding
the parameters

θ(t) = −2
∫ t

0
dτ Re[�ε(τ )∗ · �δ(τ )], (D6a)

γj (t) = −i
∫ t

0
dτ cos[φj (τ )− φj (t)]Ej (τ ), (D6b)

δj (t) =
∫ t

0
dτ sin[φj (τ )− φj (t)]Ej (τ ), (D6c)

φj (t) = χj

2

∫ t

0
dτ z(τ ). (D6d)

Using the Baker-Campbell-Hausdorff (BCH) formula to
separate the overall and controlled translations, we rewrite
the resulting unitary as

Û = eiθ ′ σ̂z
2 × T̂(�g)× CT̂(�d), (D7)

where we define �g, �d ∈ R
2m as �g = Vec[ �γ (T)] and �d =

Vec[2�δ(T)] with Vec[�v] = √
2/l × Re[�v] ⊕ Im[�v]. The

(exact) BCH expansion term yields a correction to the
phase

θ ′ = θ + 2Im[ �γ † · �δ]. (D8)

The desired controlled translation is therefore obtained by
applying the drives {Ej }, with a displacement and a qubit
phase correction at the end. Alternatively, one can choose
the drives such that �γ (T) = �0 and θ(T) = 0. For example,
to obtain a controlled translation CT̂(�b), we can split the
evolution in two parts and choose the drives

Ej (t) = αd,j
[
δ(t)− 2δ(t − T/2) cos(χj T/4)

+δ(t − T) cos(χj T/2)
]

,

αd,j = [C�b]j
l

2 sin(χj T/2)
, (D9)

where δ(t) is the Dirac δ function. This drive can approxi-
mately be realized in a system where the displacements by
αd,j can be effected in a time scale much faster than 1/χj .

We now investigate the effect of ancilla qubit decay dur-
ing a controlled displacement. More precisely, we study the
effect of a decay event σ̂− at time terr ∈ [0, T]. Assuming
that the populations of the g and e states of the ancilla qubit
are roughly equal during the evolution, the probability dis-
tribution for the time of errors is uniform. Commuting the
decay event through the unitary, we get

Ûerr = σ̂ierrT e−i
∫ T

0 dτ Ĥerr(τ ), (D10)

where we define ierr = −z(terr) ∈ {±1}. The Hamiltonian
Ĥerr(τ ) is identical to the Hamiltonian Eq. (D3), with the
replacement z(t)→ zerr(t), which we define as zerr = +z(t)
if t < terr and zerr = −z(t) if t ≥ terr. Following a similar
approach as above and including the displacement correc-
tion by �g at the end, we find that in the case of a decay error
the effective operation is

CT̂err = σ̂ierrT̂[�e − �g]	j R̂j [ϕj ,err(T)], (D11)

with parameters

ϕj ,err(t) = −χj z(terr)

2

∫ t

0
dτ zerr(τ ), (D12a)

γj ,err = −ie−iϕj ,err(T)
∫ T

0
dτ Ej (τ )eiϕj ,err(τ ), (D12b)

and �e = Vec[ �γerr]. The qubit phase is irrelevant since the
decay event destroys the ancilla coherence at time terr. An
error during a controlled translation therefore propagates
to the modes as a rotation and a displacement. The rotation
error is upper bounded by |ϕj ,err| ≤ χj T/2 × 1/�K/2 ,
such that it is advantageous to consider systems with small
χ , or alternatively a large number of echo pulses. While
the displacement error can be large, it necessarily happens
along a path parametrized by the time of the error, terr. Tak-
ing a pulse such that �g = 0 and in the limit that χj → 0,
this displacement is exactly on the line spanned by the
target generator sj ,

CT̂err ≈ σ̂ierrT̂[ηsj ], (D13)

with η ∈ [0, 1/2]. We remark that T̂[0] is the worst case
error in this situation since the gauge is updated based on
the assumption that a translation T̂[±sj /2] occurred.

APPENDIX E: SEARCHING FOR INTEGRAL
LATTICES

Given a basis S for a lattice, we are looking for an
orthogonal transformation O such that A′ = S′�S′T is inte-
gral, with S′ = SO. In general, a 2m-dimensional rotational
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can be decomposed into 2m(2m − 1)/2 parameters, which
we express as a series of Givens rotations,

O = 	kG(ik, jk, θk), (E1)

where ik, jk, and θk are the axes and angle of the kth
rotation, respectively.

To simplify the problem, we leverage the fact that A′ is
invariant when O is also symplectic. In particular, we can
always transform the basis through an orthogonal and sym-
plectic transformation such that one of the basis vectors
points only in the q1 direction. Without loss of general-
ity, we choose to fix the global lattice orientation such
that s1 ∝ (1, 0, 0, . . .), effectively removing one dimension
from the problem and reducing the number of parameters
to (2m − 1)(m − 1).

Finally, we choose a decomposition of O such that it
contains m − 1 rotations contained in a single mode (i.e.,
rotations that are also symplectic), and choose them to be
the last m − 1 rotations in Eq. (E1). We can then neglect
these rotations, which brings the number of effective
parameters to 2(m − 1)2. In four dimensions, we obtain a
two-parameter decomposition O = G(2, 3, θ1)G(2, 4, θ2).

1. Tesseract codes

We search for codes of size d based on a four-
dimensional hypercube, i.e., lattice bases of the form S =
d1/4G(p1, x2, θ1)G(p1, p2, θ2). Computing the symplectic
Gram matrix for S, we obtain

A =
√

d

⎛

⎜⎝

0 cos θ1 cos θ2 sin θ1 cos θ2 sin θ2
0 sin θ2 − sin θ1 cos θ2

0 cos θ1 cos θ2
0

⎞

⎟⎠ ,

(E2)

where we omit the lower part of A for clarity. For A to be
integral, we should therefore have

a =
√

d cos θ1 cos θ2, (E3a)

b =
√

d sin θ1 cos θ2, (E3b)

c =
√

d sin θ2, (E3c)

for some a, b, c ∈ Z. Squaring the equations above and
replacing Eq. (E3b) and (c) in (a), we obtain that a, b, c
must respect the Diophantine equation

d = a2 + b2 + c2. (E4)

According to Legendre’s three-square theorem, there
exists solutions for all code sizes except those that can be
written as d = 4e(8f + 7) for some non-negative integers
e, f .

2. D4 codes

Carrying out a similar procedure as above and starting
from Eq. (54), S = d1/4SD4,∅G(p1, x2, θ1)G(p1, p2, θ2), we
obtain that there exists solutions for θ1, θ2 when there exists
a solution to the Diophantine equation

4d = 3a2 + 4ab + 4b2 + c2. (E5)

A solution exists for this equation for all code sizes d ≤ 50
except d = 14, 30, 46.

APPENDIX F: PROBABILITY OF QUBIT DECAY

In this section, we show that the probability of a qubit
decay occurring during one SBS dissipation circuit is
approximately given by 1 − e−γancttot/2, with γanc the ancilla
decay rate and ttot the time required to apply all three con-
trolled translations the circuit of Fig. 3(a). Expressing the
amplitude damping Kraus operators from Eq. (82) in the
two-level case, we obtain

K̂0(t) = |g〉〈g| + |e〉〈e|e−γanct/2, (F1a)

K̂1(t) =
(

1 − e−γanct

e−γanct

)1/2

σ̂−(|g〉〈g| + |e〉〈e|e−γanct/2).

(F1b)

We consider an echo pulse during the controlled dis-
placements as in Appendix D and decompose the error
channel in two steps of time T/2 each. The Kraus oper-
ator for the no-decay evolution after a time T is therefore
given by K̂0(T) = K̂0(T/2)σ̂xK̂0(T/2)σ̂x = e−γancT/4Î . The
probability that this no-decay channel occurs is there-
fore given by P[K̂0(T)] = 〈ψ |K̂†

0 (T)K̂0(T)|ψ〉 = e−γancT/2.
Neglecting the probability that two decay events occur, we
take the probability that a single decay event occurs as
1 − e−γancT/2. Extending this analysis to all three controlled
translations in the SBS circuit, we obtain probabilities
of {e−γancttot/2, 1 − e−γancttot/2} for the no decay and single
decay channels, respectively.

We remark that one additional benefit of the echo pulse
is to symmetrize the effect of the “no-jump” part of the
decay channel, which would otherwise increase the ampli-
tude of the qubit |g〉 state at the end of the controlled
translations.

APPENDIX G: CODE SWITCHING IN THE D4
CODE

Consider two modes each encoding a logical qubit in the
diamond code, with resulting generator matrix S = S⊕2� . A
comparison between this lattice and the D4 code reveals
that all lattice points �⊕2� are also in the set �D4 . Differ-
ently put, we have �∗

D4
⊂ (�∗�)⊕2, such that every lattice
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FIG. 13. Teleportation-based error correction for a single-
mode square code. The physical circuit on the left can be
reinterpreted using the logical circuit on the right.

point in the dual D4 lattice corresponds to a point in the
(denser) lattice obtained by combining two diamond GKP
codes, and all code words of the D4 code correspond to a
code word of the two-qubit diamond code. Note that each
Pauli operator of the D4 code has multiple representatives,
which are associated with different Pauli operators of the
combined diamond codes. For example, representatives of
Z̄D4 with support on the first mode such as z = (1, 0, 0, 0)
or (0, 1, 0, 0) correspond to ±Ȳ�Ī , while representatives
with support on the second mode correspond to ±Ī Ȳ�.
In general, the signs in Eq. (89) depend on the gauges μμμ
and υυυ.

Splitting the D4 code into two diamond codes does not
require any operation and can be done in software. How-
ever, in order to respect the gauge condition Eq. (34)
imposing that eigenvalues of the logical Pauli operators are
real, the gauge should be set toμμμ = (0, 1, 1, 1) before “per-
forming” the split. This gauge change can be realized with
a translation T̂(τττ ), with τττ computed using Eq. (36).

In order to merge the two diamond codes toward the
code space of the D4 lattice, the operator Ȳ�Ȳ� should
be measured, for example using the methods in Sec. III.
There are four representatives for Ȳ� in the diamond code,
and there are eight equivalent choices of representatives
for Ȳ�Ȳ� that lead to an equivalent merging towards the
D4 code (we do not count representatives that differ by a
sign). Disregarding the continuous nature of the GKP code,
the merging procedure then corresponds to nondeterminis-
tically projecting the space of two qubits onto the logical
subspace of a repetition code.

A first example where code switching is useful is
the teleportation-based error-correction circuit originally
introduced in Ref. [27] and shown in Fig. 13. On the left of
the figure, we show the physical circuit, and on the right we
show the equivalent logical circuit involving splitting and
merging square codes into the D4 code. First, we initialize
the two lower states in qunaught states, which equiva-
lently correspond to a |+Z̄D4〉 state or the tensor product of
two (modified gauge) |+Ȳ�〉 states. Then, the beam-splitter
operation acts as a D4 Hadamard gate, which maps the
state to a logical |+X̄ D4〉 state. Performing a code-splitting
operation then maps the single-qubit state of the D4 code
to the two-qubit Bell state ∝ |+Z̄�,+Z̄�〉 + |−Z̄�,−Z̄�〉,
see Eq. (89a), with the gauge naturally mapped to the
required value for splitting by the beam splitter. Omitting
the R̂(π/4) rotations of the Hadamard in Eq. (91) allows

the states from the diamond to be mapped to the square
qubit code. The upper part containing the second beam
splitter is understood in a similar manner, with the merging
realized through the final homodyne measurements.

A second example where code switching could be useful
is the purification of magic states. For example, in the D4
code, we could adopt an “amputate and regrow” strategy
that leverages the fact that the nonlinear gates presented
in Sec. V B affect only one of the two modes. After the
(cross-)Kerr gate, we can split the lattice into two diamond
codes, yielding an entangled state of two diamond codes.
In order to mitigate the effect of errors during the non-
Clifford gate, one option is to measure the infected code
and postselect on not measuring errors. Finally, the lat-
tice can be regrown by providing a fresh diamond GKP
code word in the |+X̄ �〉 state and measuring a Ȳ�Ȳ�
representative.
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