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We consider quantum circuits consisting of randomly chosen two-local gates and study the num-
ber of gates needed for the distribution over measurement outcomes for typical circuit instances to be
anticoncentrated, roughly meaning that the probability mass is not too concentrated on a small num-
ber of measurement outcomes. An understanding of the conditions for anticoncentration is important for
determining which quantum circuits are difficult to simulate classically, as anticoncentration has been in
some cases an ingredient of mathematical arguments that simulation is hard and in other cases a nec-
essary condition for easy simulation. Our definition of anticoncentration is that the expected collision
probability of the distribution—that is, the probability that two independently drawn outcomes will
agree—is only a constant factor larger than the collision probability for the uniform distribution. We show
that when the two-local gates are each drawn from the Haar measure (or any 2-design), at least�(n log(n))
gates (and thus �(log(n)) circuit depth) are needed for this condition to be met on an n-qudit circuit. In
both the case where the gates are nearest neighbor on a one-dimensional ring and the case where gates
are long range, we show that O(n log(n)) gates are also sufficient and we precisely compute the optimal
constant prefactor for the n log(n). The technique we employ relies upon a mapping from the expected
collision probability to the partition function of an Ising-like classical statistical-mechanical model, which
we manage to bound using stochastic and combinatorial techniques.
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I. INTRODUCTION

Random quantum circuits (RQCs) are a crucial model
for understanding a diverse set of phenomena in both quan-
tum information and quantum many-body physics. They
have been used to study the onset of quantum chaos and the
dynamical spread of entanglement in strongly interacting
quantum systems [1–3], including information processing
in black holes [4]. They also form the basis for recent
experiments aiming to demonstrate exponential quantum
advantage [5–7].

The utility of RQCs in these situations derives from
a myriad of quantitative properties that they have been
shown to possess. For example, RQCs quickly generate
entanglement [1,8,9], lead to fast scrambling and decou-
pling of quantum information [10,11], and act as effi-
cient encoding circuits for good quantum error-correcting
codes [12]. When the circuits are geometrically local, they
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lead to ballistic spreading of local operators [2,3]. Fur-
thermore, they form approximate unitary designs, that is,
despite being composed of local gates, they efficiently
approximate a global random unitary transformation up to
any polynomial number of moments [13–17]. Meanwhile,
the computing of transition amplitudes of RQCs has been
shown to be just as difficult as for arbitrary quantum cir-
cuits [18–22], suggesting that classical simulation of RQCs
should require exponential time.

In this work, we focus on another property of RQCs
called anticoncentration. Roughly speaking, when we
measure the output state of the circuit in the computational
basis, anticoncentration is the property that the distribution
over measurement outcomes is fairly well spread across
all possible outcomes and not too concentrated onto just
one or only a small portion of those outcomes. Quantita-
tively, our definition of anticoncentration depends on the
collision probability, the probability that measurement out-
comes from two independent copies of the circuit agree.
A RQC architecture is said to be anticoncentrated if the
collision probability is at most a constant factor larger
than its minimal value. An understanding of when this
is the case is particularly important for knowing when
RQCs are hard to classically simulate. On the one hand,
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anticoncentration is a necessary ingredient in most formal
hardness arguments for RQC simulation [18,23–29]. On
the other hand, certain classical algorithms for simulat-
ing RQCs require anticoncentration in order to be efficient;
for example, the algorithms discussed in Refs. [30,31] for
noisy-circuit simulation and the algorithm in Ref. [32]
that spoofs the linear cross-entropy benchmarking metric
introduced in Ref. [6].

In most previous work where RQC anticoncentration
is needed, it has been asserted as an implication of the
2-design property (see, e.g., Refs. [27,33]). However, the
2-design property is much stronger than is required for
anticoncentration. It has been shown that n-qubit RQCs on
a fully connected architecture form approximate 2-designs
after roughly O(n) depth [13] and this has later been
shown to also apply to geometrically local RQCs in one
dimension and improved to O(n1/D) in D spatial dimen-
sions [16]. However, recent work by Barak, Chou, and
Gao [32]—using a similar method to the one presented
here—has shown that for one-dimensional (1D) RQCs, the
collision probability converges in depth O(log(n)), much
faster than the 2-design depth of O(n). They have also con-
jectured that two-dimensional (2D) RQCs anticoncentrate
in depth O(

√
log(n)).

In this work, we prove sharp bounds on the num-
ber of gates needed for anticoncentration in two RQC
architectures. For 1D RQCs, we confirm the O(log(n))
upper bound on the anticoncentration depth in Ref. [32]
and add a lower bound that matches the upper bound
even up to the constant prefactor of the log(n). We also
show that an �(log(n)) lower bound on the depth needed
for anticoncentration holds regardless of which RQC
architecture we use, which refutes the conjecture from
Ref. [32] that 2D RQCs anticoncentrate in O(

√
log(n))

depth. We then consider a fully connected (i.e., not geo-
metrically local) RQC architecture, where each gate acts
on a pair of qudits chosen randomly among all n(n −
1)/2 possible such pairs. We show that, for qubits (local
dimension q = 2), 5n log(n)/6 gates are necessary and
sufficient (up to subleading corrections) for anticoncen-
tration to be achieved, which settles a conjecture in
Ref. [16].

Our method employs a technique for analyzing RQCs
that converts the collision probability into a weighted
sum over bit assignments to each location in the cir-
cuit diagram; this weighted sum can be viewed as a
partition function for an Ising-like statistical-mechanical
model. The bit assignments can also be interpreted as a
Markov chain and the number of gates needed for anti-
concentration ultimately translates into the time needed for
certain expectation values to converge under the dynam-
ics of the Markov chain. This method not only yields
sharp quantitative bounds but it also produces an appealing
qualitative explanation on how and why the collision prob-
ability reaches its limiting value, which allows for effective

heuristic reasoning even in architectures that we do not
explicitly consider here.

The main takeaways from our work are twofold. First,
we show that anticoncentration is generally achieved much
faster than the 2-design property. The fact that anticon-
centration occurs in �(n log(n)) circuit size both in 1D
and for the fully connected architecture—these being two
opposite extremes of geometric locality—suggests that
anticoncentration may require only �(n log(n)) size for
any reasonably well-connected architecture. This comes
in sharp contrast to the situation for unitary designs,
where the scaling of the size needed with n is highly
dependent on the architecture. Second, the fact that we
can prove tight upper and lower bounds suggests a
broader utility for our method based on the correspon-
dence between RQCs and statistical-mechanical partition
functions.

II. ANTICONCENTRATION AND THE
COLLISION PROBABILITY

A RQC architecture is an instruction set on how to draw
a circuit diagram given the number of qudits n (each with
local Hilbert space dimension q) and the size s of the cir-
cuit. The two architectures we consider specifically are
the 1D architecture (with periodic boundary conditions)
and the complete-graph architecture. The associated RQC
ensemble for a RQC architecture is formed by following
this instruction set and then choosing the value of each
gate in the diagram independently and uniformly at ran-
dom from the Haar measure. If we fix an instance U from
this ensemble, there is an associated output probability
distribution pU over qn possible computational basis mea-
surement outcomes x ∈ [q]n (where [q] = {1, 2, . . . , q}).
Anticoncentration tries to capture the notion that the prob-
ability mass is well spread out over all the outcomes.
The uniform distribution, where each output is allocated
q−n fraction of the total probability mass, is the ultimate
anticoncentrated distribution because the mass is exactly
equally spread but we say that a distribution is still anticon-
centrated as long as the average fluctuations from uniform
are no larger than O(q−n). This definition is captured pre-
cisely by the collision probability, which is

∑
x pU(x)2.

The collision probability gives the probability that mea-
surement outcomes from two independent copies of the
circuit are identical. It is also proportional to the second
moment (and thus is related to the variance) of the output
probability of a randomly chosen bit string. If pU is the uni-
form distribution, then the collision probability is q−n, its
minimal possible value. For a RQC architecture at a spec-
ified qubit number n and circuit size s, we consider the
collision probability averaged over the randomly chosen
circuit instances U:
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Z := E
U

⎡

⎣
∑

x∈[q]n

pU(x)2

⎤

⎦ = qn
E
U

[
pU(1n)2

]
, (1)

where the second equality holds because by symmetry each
of the qn terms in the sum yields the same number under
expectation as long as at least one Haar-random gate acts
on each qudit.

We say that a RQC architecture with n qudits and s
gates is anticoncentrated if there is a constant α (indepen-
dent of n) with 0 < α ≤ 1 for which Z ≤ α−1q−n, i.e., that
the collision probability is only a constant factor larger
than its minimal value. In particular, our theorem state-
ments roughly correspond to the choice α = 1/4 but other
choices of α would yield the same results up to leading
order. If desired, Markov’s inequality can then be used
to bound the fraction of the randomly chosen U the col-
lision probability of which is larger than some constant
multiple of Z. Moving forward, for convenience, when we
say collision probability we mean the average collision
probability Z.

Very shallow circuit architectures are not anticoncen-
trated: there are expected to be some output probabilities
x for which pU(x) is exponentially larger than the mean
of q−n. As the circuit gets deeper, we expect the probabil-
ity distribution to become closer to uniform, but even at
infinite depth, when the circuit unitary U becomes a glob-
ally Haar-random qn × qn unitary, the output distribution
still does not become completely uniform. In this case, the
output distribution will typically follow a Porter-Thomas
distribution [34] and Z can be exactly computed as

lim
s→∞ Z = ZH := 2

qn + 1
, (2)

roughly twice as large as the minimal value of q−n associ-
ated with the uniform distribution. This statement is proved
using the techniques described later. For a graphical illus-
tration of these cases, see Fig. 1.

While one could capture the notion of anticoncentration
with a different definition, the definition we choose is use-
ful and relevant because it has concrete ramifications in
all of the previously mentioned applications of anticon-
centration. For example, one implication of our definition
(by application of the Paley-Zygmund inequality) is that if
Z ≤ α−1q−n, then for any 0 ≤ β ≤ 1,

Pr
U

[pU(x) ≥ βq−n] ≥ α(1 − β)2, (3)

meaning that for at least a constant fraction of the circuit
instances, the probability of a given measurement outcome
x is at least a constant multiple β of the mean measurement
probability q−n. This sort of inequality is the relevant one
for turning good additive approximations into good mul-
tiplicative approximations (with reasonable probability),
employed in, e.g., Refs. [18,23–29] to argue [35] that it is
hard to classically sample output distributions for a large
fraction of instances up to small total variation distance
error (for more details, see Sec. B). In fact, equations such
as Eq. (3) are sometimes taken to be the definition of anti-
concentration [27], which is a weaker definition than ours
since, in principle, Eq. (3) can hold even in cases where Z
exceeds any constant multiple of q−n.

III. OUR RESULTS

We show that the collision probability is given by
a discrete sum, which we interpret as the expectation
value of a certain stochastic process. The correspondence
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FIG. 1. A sketch of anticoncentration. In the three examples, the fraction (frequency) of bit strings x for which pU(x) = p is plotted
against p . (This could be either for a fixed choice of U or averaged over random choice of U.) Since there are qn bit strings, the mean
of this distribution is q−n (dotted blue line). For the uniform distribution, which is completely anticoncentrated, all qn outcomes are
allocated probability mass q−n and the collision probability is Z = q−n. For globally Haar-random unitaries, the output probabilities are
on average q−n but have some nonzero variance and the collision probability is Z ≈ 2q−n. Whenever Z ≈ cq−n for some c independent
of n, we call the distribution anticoncentrated. For low-depth RQCs, the mean output probability is q−n but the variance is much larger
and the collision probability is much larger than q−n. Most of the probability mass is concentrated onto a few measurement outcomes,
while the vast majority of the outcomes are assigned a very small amount of mass, leading to the divergence in the frequency that
pU(x) is close to 0 depicted in the plot.
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between the collision probability and the discrete sum is
described in Sec. V and a complete derivation is provided
in Appendix B.

In analyzing our expression, we derive rigorous upper
and lower bounds on the collision probability generally
and for two specific architectures. These bounds are stated
here and the proofs are provided in the appendices. These
bounds are then used to form upper and lower bounds
quoted in Table I on the anticoncentration size sAC, defined
as the minimum circuit size required such that Z ≤ 2ZH .
The constant 2 in the definition of sAC is arbitrary but,
since we show that Z approaches ZH as ZH [1 + e−�(s/n)], a
different choice of constant would only lead to linear-in-n
changes to sAC, which would be subleading and would not
affect any of the statements in Table I. All logarithms in
this paper are natural logarithms.

A. Collision probability upper bounds

Our upper bounds take the following form:

Z ≤ ZH

[
1 + e− 2a

n (s−s∗)
]

, (4)

where the constant a is independent of n and depends on
the circuit architecture and s∗ is a function of n that also
depends on the architecture. Thus, if the anticoncentration
size sAC is defined to be the minimum size s such that
Z ≤ 2ZH , then we have sAC ≤ s∗. Specifically, we have the
following results, which are restated here as theorems and
proved rigorously in the appendices.

First, we consider the 1D architecture with periodic
boundary conditions, where the qudits are arranged on a
ring and alternating layers of n/2 nearest-neighbor Haar-
random gates are applied.

Theorem 1. For the 1D architecture, Eq. (4) holds with

a = log
(

q2 + 1
2q

)
, (5)

s∗ = 1
2a

n log(n)+ n
[

1
2a

log(e − 1)+ 1
2

]
, (6)

whenever s ≥ s∗.

Since this depth of the 1D architecture is given by d :=
2s/n, we can define d∗ := 2s∗/n = a−1 log(n)+ O(1) for
1D and conclude that the “anticoncentration depth” dAC
satisfies dAC ≤ d∗ = O(log(n)).

Similarly, we show an upper bound for the complete-
graph architecture, where each gate acts on a random pair
of qudits without regard for their spatial proximity.

Theorem 2. For the complete-graph architecture, Eq. (4)
holds with

a = (q − 1)2

2(q2 + 1)
, (7)

s∗ = q2 + 1
2(q2 − 1)

n log(n)+ cn, (8)

whenever s ≥ s∗, for a constant c that is independent of n.

A size-s circuit diagram chosen randomly from the
complete-graph architecture will have depth at most
O(s log(n)/n) with high probability [11], meaning that
O(log(n)2) depth is typically sufficient for anticoncentra-
tion in the complete-graph architecture.

We also consider general architectures. We define
a property called regularly connected (Definition 5 in
Appendix C), which applies to a RQC architecture when
for any partition of qubits into two sets, there will be a
gate in the circuit that couples the two sets at least once
every O(n) gates. Nearly all natural architectures have
this property, including standard architectures in D spatial
dimensions for any D.

Theorem 3. If an architecture is regularly connected, then
Eq. (4) holds with a = �(1) and s∗ = �(n2)

This corresponds to �(n) gates per qudit. This result is
weaker than our specific result for the 1D and complete-
graph architecture and we conjecture that much better is
possible.

Conjecture 1. Theorem 3 can be improved to s∗ =
�(n log(n)).

TABLE I. Summary of results: upper and lower bounds on the circuit size sAC at which anticoncentration is achieved for different
random circuit architectures.

Architecture sAC upper bound sAC lower bound

General O(n2) �(n log(n))

1D
[
2 log

(
q2+1

2q

)]−1
n log(n)+ O(n)

[
2 log

(
q2+1

2q

)]−1
n log(n)− O(n)

Complete graph q2+1
2(q2−1)

n log(n)+ O(n) q2+1
2(q2−1)

n log(n)− O(n)
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B. Collision probability lower bounds

Our lower bounds on the collision probability take the
form

Z ≥ ZH

2
exp

[
Aelog(n)−Bs/n] , (9)

for constants A and B that are independent of n. (The lower
bound for the complete-graph architecture takes a different
but very similar form.) This form implies that if s grows
with n like s ≈ fn log(n)/B for some f < 1, then we have
Z/ZH ≥ (1/2)eAn1−f

, which becomes arbitrarily large as
n → ∞, meaning that the architecture is not anticoncen-
trated. This puts a lower bound on the “anticoncentration”
size sAC of sAC ≥ n log(n)/B − O(n).

Specifically, we show a general lower bound, as well
as specific lower bounds for the 1D and complete-graph
architectures.

Theorem 4. For any RQC architecture with s two-qudit
gates, the following holds:

Z ≥ ZH

2
exp

[
log(q)
q + 1

elog(n)−2 log
(

q2+1
)

s/n
]

. (10)

This has the consequence that if sAC and dAC are defined
as the minimum size and minimum depth for which Z ≤
2ZH , then

sAC ≥ [2 log(q2 + 1)]−1n log(n)− O(n), (11)

dAC ≥ [log(q2 + 1)]−1 log(n)− O(1). (12)

We improve on the general lower bound for the two
specific architectures that we consider.

Theorem 5. For the 1D architecture, there exists a con-
stant A such that

Z ≥ ZH

2
exp

[
Aelog(n)−2as/n] , (13)

where a = log[(q2 + 1)/(2q)] is the same as for the upper
bound in Eq. (5).

This implies that in 1D,

sAC ≥ (2a)−1n log(n)− O(n), (14)

dAC ≥ a−1 log(n)− O(1), (15)

which is tight with the upper bound up to subleading
corrections.

Theorem 6. For the complete-graph architecture,

Z ≥ ZH

2
exp

{
log(q)
q + 1

e
log(n)+log

[
1− 2(q2−1)

n(q2+1)

]
s
}

. (16)

Although a slightly different form than the other lower
bounds, this still yields the conclusion

sAC ≥ q2 + 1
2(q2 − 1)

n log(n)− O(n), (17)

which is tight with the upper bound up to subleading cor-
rections. When q = 2 (qubits), the prefactor of the n log(n)
is 5/6, settling a conjecture proposed in Ref. [16].

The upper and lower bounds together allow us to con-
clude that sAC = �(n log(n)) for both the 1D architecture
and the complete-graph architecture and, in fact, we have
matching upper and lower bounds on the constant prefactor
of the n log(n).

We note that for q ≥ 5, our results have the counterintu-
itive implication that the 1D architecture anticoncentrates
faster than the complete-graph architecture, even though
it is geometrically local. We argue that this is an artifact
of the definition of the models and can be explained by
the fact that the qudit pairs acted upon by the gates in the
complete-graph architecture are chosen randomly, while
the qudit pairs in the 1D architecture are not random; in
fact, in the latter case they are optimally packed into layers
of n/2 nonoverlapping gates. As q increases, anticoncen-
tration becomes arbitrarily fast for the 1D architecture
[the coefficient of the n log(n) decreases like 1/ log(q)].
Meanwhile, for the complete-graph architecture, no mat-
ter how large q is, there will always be some minimum
number of gates—roughly n log(n)/2—needed simply to
guarantee that all the qudits have been involved in the cir-
cuit with high probability. We suspect that a parallelized
version of the complete-graph architecture would anti-
concentrate with a slightly better constant than the 1D
architecture.

IV. RELATED WORK AND IMPLICATIONS

Here, we highlight a few relevant previous works and
emphasize how our results fit in.

(a) Harrow and Mehraban [16] have studied how
quickly RQCs form approximate unitary t-designs
and anticoncentrate for various architectures. For
geometrically local circuits, they have shown that
the approximate t-design property is achieved after
only O(n1/D) depth in D spatial dimensions, the first
work to break the O(n) barrier for designs. Since
anticoncentration follows from the approximate 2-
design property, their work implies an O(n1/D)

upper bound on the anticoncentration depth. We
show that for D = 1, the anticoncentration depth is
actually �(log(n)) and we conjecture that this is
also the case for D ≥ 2 but we do not prove this, so
the O(n1/D) bound remains the best known for D ≥
2. Harrow and Mehraban have also considered the
question of anticoncentration in the complete-graph
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architecture and have shown an upper bound on the
anticoncentration size of O(n log(n)2) and a lower
bound of �(n log(n)). They have used heuristic
reasoning to conjecture that (for q = 2) the anticon-
centration size should be 5n log(n)/3, up to leading
order. We are able to show that to leading order, the
anticoncentration size for the complete-graph archi-
tecture is 5n log(n)/6. This is off by a factor of 2
from the conjecture stated in their paper, which we
suspect is due to a minor error in their heuristic
reasoning.

(b) Barak, Chou, and Gao [32] have developed a clas-
sical algorithm for shallow RQCs that achieves
a non-negligible score on the linear cross-entropy
benchmarking (XEB) metric despite not perform-
ing a full simulation of the RQCs. The linear
XEB metric has been used by Google to verify
its 2019 quantum computational supremacy exper-
iment [6]. Barak, Chou, and Gao show that if a
depth-d RQC architecture in D spatial dimensions
has collision probability Z, their algorithm achieves
a score of ε with high probability after a total run-
time (2nZ) exp(ε 15−d)poly(n, 2dD

) (here, q = 2).
They prove that Z = O(2−n) after d = �(log(n))
for 1D RQCs, which is equivalent to our Theorem
1. This shows that their algorithm achieves an ε ≥
1/poly(n) score in polynomial time for logarith-
mic depth 1D RQCs. For 2D RQCs, they conjec-
ture that Z = O(2−n) after depth d = O(

√
log(n)),

which would imply that their algorithm achieves
an ε ≥ 1/poly(n) score in polynomial time at that
depth. Our Theorem 4 contradicts their conjecture
by showing generally that 2nZ ≥ exp[n1−o(1)] when
d is sublogarithmic.

(c) Our method performs expectations over individual
gates in the RQC using formulas for Haar integra-
tion, a strategy that has also been used on similar
problems in the past. Many works have used this
strategy to form a random walk over Pauli strings
with wide-ranging applications [8,10–13,16,36–38].
Our analysis applies this strategy in a distinct way
that more closely resembles a series of works that
interpret the resulting expression as the partition
function of classical statistical-mechanical models
[2,3,17,39–44]. Here, we analyze those partition
functions using a Markov-chain analysis but our
Markov chain has different transition rules com-
pared to the Pauli-string Markov chain.

A. Connection to 2-design

Anticoncentration for RQCs (as well as some Hamil-
tonian models) is often established as a consequence of
the convergence to approximate unitary 2-designs, where
approximately reproducing the first two moments of the

Haar measure allows one to bound the RQC collision prob-
ability. For both 1D and complete-graph RQCs, size-O(n2)

circuits (of linear depth) form approximate 2-designs and
therefore anticoncentrate. There are a number of defini-
tions of approximate unitary designs utilizing different
norms; we briefly comment on the definitions and require-
ments for anticoncentration in this architecture.

As we review in Appendix F, defined in terms of the
diamond norm, ε-approximate 2-designs have a collision
probability upper bounded by ZH up to additive error.
In order to achieve anticoncentration, ε must be taken
to be exponentially small (i.e., we require ε = 1/q2n).
A stronger notion of approximate design in terms of the
complete positivity of the difference in channels has been
introduced in Ref. [15]. Under this strong definition, 2-
designs bound the collision probability up to relative error
with respect to the Haar value and thus anticoncentrate.
A much weaker definition of approximate design is the
operator norm of the moment operators, often called the
tensor-product-expander (TPE) condition. Interestingly,
TPEs also bound the collision probability up to additive
error but, again, the error needs to be exponentially small
to achieve anticoncentration.

RQCs on the 1D architecture form ε-approximate
2-designs, in both diamond norm and the stronger
definition, when the circuit size is O(n(n + log(1/ε))).
Moreover, 1D random circuits actually form ε-approximate
TPEs in constant depth, when the circuit size is
O(n log(1/ε)). But again, anticoncentration requires that
ε be taken to be ε = 1/q2n, thus mandating linear depth.
So to establish that the collision probability is bounded
up to a relative error, as in the definition of anticoncen-
tration, the use of unitary 2-designs or a general bound on
the moments necessitates linear depth. For nonlocal RQCs
defined on a complete-graph, the best known upper bounds
on the approximate 2-design depth are the same as for the
1D architecture. But it has been conjectured that this may
be improved for nonlocal RQCs, which would close the
gap between the 2-design time and the depth required for
anticoncentration.

To further emphasize the distinction between anticon-
centration and unitary 2-designs, we note that anticon-
centration can be achieved for specific short-depth cir-
cuits without generating entanglement across the system
(indeed, a circuit consisting of a single layer of single-qubit
Hadamards suffices). Moreover, for an ensemble of RQCs,
anticoncentration can be equivalently phrased as the state-
ment that certain matrix elements of second-moment oper-
ator EU[U⊗2 ⊗ U∗⊗2] reach the Haar value of 2/q2n after
some depth, whereas the approximate 2-design condition
gives that EU[〈ψ |U⊗2 ⊗ U∗⊗2|ψ〉] is small for all states
|ψ〉, even those that are entangled across the tensor copies.
As we show in Appendix F, there are necessarily some
states that require linear depth to equilibrate to the minimal
Haar value, at least for RQCs on the 1D architecture.
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B. Implications for arguments on hardness of
simulation

Anticoncentration is a key ingredient in hardness-
of-simulation arguments [18–29] that underlie quantum
computational supremacy proposals. In this section, we
roughly explain its role in those arguments and the impli-
cations our results have in this context.

The starting point for these hardness arguments is the
long-known observation that the answer to a hard classical
problem can be encoded into the output probability pU(x)
of a quantum circuit U [45]. Thus, exact computation of
pU(x) for arbitrary U and x should not be possible in clas-
sical polynomial time. This remains true even if one only
needs to compute pU(x) up to some constant relative error.
The ultimate goal in the context of quantum computational
supremacy is to show that there is no polynomial-time
classical algorithm that approximately simulates random
circuits (or, at least, to give extremely convincing evi-
dence in favor of this conclusion). More precisely, the
approximate simulation task is to produce samples from
a distribution p ′

U for which

‖pU − p ′
U‖1 :=

∑

x

|pU(x)− p ′
U(x)| = ε (18)

for some small ε = O(1) and to do this for a large fraction
of U drawn randomly from some random ensemble. Turn-
ing the starting point into the ultimate goal requires a few
steps (some of which rely on conjecture). Anticoncentra-
tion is one of these steps.

The primary role that anticoncentration plays is to turn
a small additive difference |pU(x)− p ′

U(x)| for most x into
a small relative difference r(x) for most x, where

r(x) := |pU(x)− p ′
U(x)|

pU(x)
. (19)

If Eq. (18) is obeyed, then the value of |pU(x)− p ′
U(x)| is

on the order of ε/qn for most x. Meanwhile, the mean value
of pU(x) for random x is exactly 1/qn. If pU(x) is anticon-
centrated, then for most x, pU(x) will be within a constant
factor of the mean, as shown in the middle diagram of
Fig. 1, and r(x) = O(ε) will hold for most x. However,
if pU(x) is not anticoncentrated, then pU(x) will be much
smaller than the mean for most x, as depicted in the
right-hand diagram of Fig. 1. This means that without anti-
concentration, r(x) � ε for most x, which is problematic
because the hard classical problems encoded into pU(x) are
no longer hard when the relative error is extremely large,
so anticoncentration appears to be necessary if there is any
hope of completing the hardness argument using existing
techniques.

Even if anticoncentration holds, more is needed to
show hardness of approximately simulating RQCs. One
must turn hardness of computing pU(x) into hardness of

sampling from pU and also turn hardness for arbitrary U
into hardness for a random U. There are techniques that
work for each of these steps individually but currently they
do not work together simultaneously and thus an additional
conjecture must be made.

Our work puts sharp bounds on the number of gates
needed for anticoncentration to hold in multiple RQC
architectures, which constrains when these hardness argu-
ments have the potential to work. Our finding that the
number of gates per qudit needed for anticoncentration
grows only like O(log(n)) in the 1D and complete-graph
architectures implies that perhaps RQC-based quantum
computational supremacy could be achieved at a shal-
lower circuit depth than previously believed. For example,
Google’s 2019 quantum computational supremacy experi-
ment was based on 2D RQCs of depth exceeding the

√
n

diameter of the qubit array [5,6]. The fact that 1D cir-
cuits anticoncentrate in �(log(n)) depth is evidence that
2D circuits should have the same scaling (if anything, anti-
concentration should happen faster in 2D). Thus a similar
quantum computational supremacy experiment might be
equally defensible at �(log(n)) depth instead of �(

√
n)

depth. We note, however, that there are other reasons to
want to go to larger depth (e.g., classical simulation via
tensor-network methods becomes harder at larger depths).

Without anticoncentration, the hardness-of-simulation
arguments appear to break down but this does not gener-
ally imply that simulation is easy. On this topic, a subset
of these authors and others have described an algorithm
for solving the approximate simulation problem for 2D
RQCs [43]. The algorithm is proved to be efficient for a
certain constant-depth (and thus not anticoncentrated) 2D
RQC architecture but it is conjectured to become inefficient
once the depth exceeds a larger constant threshold. Thus,
the complexity of the algorithm transitions to inefficient
before the circuits become anticoncentrated, suggesting
that in 2D there could be a regime where the RQCs are
too shallow to be anticoncentrated but classical simulation
is still hard.

V. COLLISION PROBABILITY AS A SUM OVER
BIT-STRING TRAJECTORIES

The main technical contribution of our work is to derive
a correspondence between the collision probability and a
discrete sum (which can be interpreted as the partition
function of a classical statistical-mechanical model or as
the expectation of a Markov chain) and then to derive
rigorous upper and lower bounds on the sum. Here, we
describe the correspondence along with a brief example
for a simple RQC in Fig. 2. We also explain why this
correspondence leads us to expect anticoncentration to be
achieved after �(n log(n)) gates in most architectures. In
Appendix B, we give a more careful derivation of this cor-
respondence, and in the other appendices, we use it to
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∑
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FIG. 2. Two example trajectories for a quantum circuit diagram with n = 4 qubits and s = 5 gates. Each gate displayed is chosen
randomly from the Haar measure over single- or two-qubit unitaries. The collision probability Z is expressed as a weighted sum over
trajectories γ = ( �γ (0), . . . , �γ (s)), which are length-(s + 1) sequences of assignments (“configurations”) of I or S to each of the n qudits.
When the input bits to a gate are assigned opposite values, one must be switched at the next configuration in the sequence. These bit
flips happen at gates 1, 2, 3, and 5 in the first example and at gates 1 and 2 in the second example. Each bit flip results in a reduction
of the weight by a factor 2/5 (when q = 2). In the second example, the trajectory reaches one of the fixed-point configurations where
all n values agree; this is not the case in the first example. Trajectories that quickly reach a fixed point generally have larger weights
and make up most of the contribution to the collision probability.

rigorously prove the upper and lower bounds quoted in
Table I.

Recall that we wish to compute the collision probability

Z := qn
E
U

[
pU(1n)2

]

= qn
E
U

[〈
1n
∣∣⊗2 U⊗2|1n〉〈1n|⊗2U†⊗2 ∣∣1n〉⊗2

]
, (20)

where U is the unitary enacted by the RQC. The Haar
measure uniformly covers the unitary group so, intuitively
speaking, taking the expectation over application of a
Haar-random gate removes much of the bias in the quan-
tum state; we use a technique that allows us to effectively
keep track of only n bits of information about the n-qudit
state after the application of (two copies of) each Haar-
random gate. Instead of 0 or 1, our bits take values I or
S, because they are associated with the identity and swap
operations on two qudit copies.

In particular, if V is a q × q Haar-random matrix and
σ is an operator on two copies of a q-dimensional Hilbert
space, then the quantity EV[V⊗2σV†⊗2] is equal to a linear
combination of the identity operation I on the two copies
of the Hilbert space and the swap operation S on the two
copies of the Hilbert space. Specifically, it is given by

[
Tr(σ )− q−1Tr(σS)

q2 − 1

]
I +

[
Tr(σS)− q−1Tr(σ )

q2 − 1

]
S.

(21)

This well-known formula is derived in Appendix B.
By applying the formula to each of the two-qudit Haar-

random gates sequentially, the state (which begins in

|1n〉〈1n|⊗2) evolves as a sum over n-fold tensor products of
identity and swap operations. Each of these n-fold tensor
products is labeled by an n-bit vector that we call a configu-
ration �ν ∈ {I , S}n. For a circuit with s two-qudit gates, each
term in the resulting sum is then associated with a length-
(s + 1) sequence of configurations γ = ( �γ (0), . . . , �γ (s)),
which we call a trajectory. Each trajectory γ has a certain
non-negative coefficient in the sum, allowing us to write

Z = 1
(q + 1)n

∑

γ

weight(γ ) (22)

for a fairly simple weight function, described as follows
and derived more carefully in Appendix B.

First, the weight for most trajectories is simply 0. In
order for a trajectory to have positive weight, it must obey
the following rules. If the gate at time step t acts on qudits
a and b, then the configuration values γ (t)a , γ (t)b ∈ {I , S} at
positions a and b must be equal, either both I or both S.
Thus if the values disagree at the previous time step, i.e.,
γ (t−1)

a �= γ
(t−1)
b , one of the bits must be flipped during the

transition from �γ (t−1) to �γ (t). If the values at positions a
and b already agree at time step t − 1, they must remain
unchanged from time step t − 1 to time step t. Moreover,
the bit values at the other n − 2 positions must also remain
unchanged from time step t − 1 to time step t.

For trajectories that obey these rules, the weight begins
at 1 but each time a bit flip occurs, the weight is reduced
by a factor of 2/5 for qubits, or q/(q2 + 1) for general
local dimensions. Thus, the most significant terms in the
weighted sum are the terms with the fewest bit flips along
the trajectory.
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The expression for Z as a weighted sum can alternatively
be interpreted as a partition function for an Ising-like clas-
sical statistical-mechanical model, since it is a weighted
sum over “spin” configurations for spins with two possi-
ble values, or it can be interpreted as the expectation of a
certain quantity over a simple Markov chain that generates
the sequence ( �γ (0), . . . , �γ (s)). We take the latter approach
in our application of the method to prove our upper and
lower bounds. For an example of two trajectories for a
simple RQC, along with a calculation of their weight, see
Fig. 2.

The correspondence given in Eq. (22) is powerful
because we have a good sense of what to expect from
the weighted sum over trajectories and we can draw con-
clusions that are not obvious from the definition of the
collision probability itself. For example, we can straight-
forwardly analyze the infinite circuit-size limit. In this
limit, each positive-weight trajectory γ will be forced to
keep flipping bits (each time a two-qudit gate acts on a dis-
agreeing pair of bits) until it reaches a fixed point, either
I n or Sn, in which case bits can no longer be flipped since
all the bits agree. Let Q(x) be the total weight of all tra-
jectories that begin at a configuration with x S assignments
and n − x I assignments. At some point in the circuit, a
disagreeing pair of bits will be acted upon by a gate and
one of the bits must flip, sending the number of S assign-
ments either to x − 1 or x + 1 and reducing the weight by
q/(q2 + 1). Since there are an infinite number of gates, the
following recursion relation must be obeyed:

Q(x) = q
q2 + 1

[Q(x − 1)+ Q(x + 1)] , (23)

which, by imposing the boundary conditions Q(0) =
Q(n) = 1, has the unique solution

Q(x) = qx + q−x

qn + 1
. (24)

Moreover, for each x, there are
(n

x

)
configurations each

contributing weight Q(x), so

lim
s→∞ Z =

∑n
x=0

(n
x

)
(qx + q−x)

(q + 1)n(qn + 1)
= 2

qn + 1
= ZH , (25)

reproducing the value ZH that would be obtained if the
RQC was one large qn × qn Haar-random transformation
instead of a series of q2 × q2 two-qudit gates. [The fact that
a qn × qn Haar-random transformation yields ZH is a direct
consequence of Eq. (21) with the substitution q → qn.]
This conclusion makes sense since a random circuit with
an infinite number of 2-local Haar-random gates should
enact a global Haar-random transformation.

When the circuit size is a finite number s, we have
Z > ZH , corresponding to the fact that many trajecto-
ries have not yet reached a fixed point and are over-
weighted compared to their contribution to ZH . As the

circuit size increases, more of the trajectories get closer
to the fixed point and Z approaches ZH . The point at
which anticoncentration is achieved is intimately con-
nected with the point at which most of the weight can
be accounted for by trajectories that have reached a fixed
point. A depiction of this process at n = 60 is given in
Fig. 3.

Our quantitative challenge is to understand, for a cer-
tain RQC architecture, how quickly these trajectories
approach the fixed points, and consequently how quickly Z
approaches ZH , as the circuit size increases. Recall that we
define the anticoncentration size sAC to be the circuit size
(as a function of the number of qudits n) needed for Z to be
only a constant factor larger than ZH . Perhaps surprisingly,
we find in multiple architectures that sAC = �(n log(n)),
corresponding to only �(log(n)) gates per qudit. We can
explain this observation heuristically by generating tra-
jectories γ at random with probability proportional to
weight(γ ) (in the statistical-mechanical interpretation, this
corresponds to drawing samples from the thermal distri-
bution). For typical trajectories generated in this fashion,
each additional layer of�(n) gates will cause the trajectory
to move a constant fraction of the way closer to terminat-
ing at a fixed point. Since trajectories typically begin on
the order of n bit flips away from the fixed point [i.e., the
initial configuration typically has �(n) I assignments and
�(n) S assignments], �(log(n)) layers are necessary and
sufficient for typical trajectories to get within a constant
distance from the fixed point.

This heuristic statement is perhaps confirmed most
clearly in the complete-graph architecture, where qudit
pairs are chosen uniformly at random. Here, let x � n and
suppose that the current configuration at time step t has
value S at x of the n positions and value I at the other
n − x positions. If we perform gates on n/2 random pairs
of qudits, we expect roughly x of those pairs to couple an
I value with an S value. Each time this happens, a bit must
be flipped and there is an opportunity for the trajectory to
move closer to the fixed point I n. Thus, we expect the num-
ber of S values in the configuration at time step t + n/2
to have decreased by an amount proportional to x. After
�(n log(n)) gates, we expect the trajectory to be at (or very
close to) the fixed point I n with high probability. Fewer
gates would leave most trajectories too far from the fixed
point for anticoncentration to have been reached. In Fig. 3,
we illustrate the convergence of typical trajectories and the
correspondent convergence of Z for the complete-graph
architecture at n = 60.

We prove that a similar situation occurs even if the gates
are arranged in a 1D fashion and we fully expect that this
situation applies for nearly all natural [46] architectures,
including circuits on D-dimensional lattices for D > 1. We
formalize this in Conjecture 1. We believe Conjecture 1
first because anticoncentration should intuitively only be
faster when the circuit becomes more connected and the
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FIG. 3. Thirty trajectories generated randomly for the
complete-graph architecture at n = 60. A trajectory γ is chosen
with probability proportional to weight(γ ) in the s → ∞ limit
and then the number of S assignments (out of 60) are plotted
for the first 300 time steps. The trajectories rapidly approach
either the fixed point I n with 0 S assignments, or the fixed point
Sn with 60 S assignments but not all have reached the fixed
point within 300 time steps. The distance of a typical trajectory
from the nearest fixed point decays exponentially with time,
with characteristic time scale �(n). Thus, it takes �(n log(n))
gates for most typical trajectories to have reached the fixed
point. In the inset, it is shown that as trajectories approach the
fixed points, the collision probability Z (which can be efficiently
numerically calculated for the complete-graph architecture)
approaches ZH . Anticoncentration is defined as the point where
it falls beneath 2ZH (dashed line), which occurs at s = 214 for
n = 60.

1D architecture is perhaps the least connected a natural
architecture can be, as it takes �(n2) gates for information
to travel across the diameter of the qudit array. Second, the
above intuitive argument about the convergence of typi-
cal trajectories to a fixed point in O(n log(n)) gates should
apply to any natural architecture. Specifically, if we choose
a configuration with x S assignments at random and we
apply a layer of �(n) two-qudit gates, with high probabil-
ity we will have formed�(x) disagreeing pairs and moved
the trajectory a constant fraction of the way to the nearest
fixed point. The difficulty in proving Conjecture 1 lies in
characterizing what happens in the low-probability event
that this is not the case.

Indeed, our rigorous proofs for the 1D and complete-
graph architectures have to deal with the fact that it is
not sufficient to examine only typical trajectory behavior.
In particular, the collective contribution of trajectories at
the tails of what is allowed are tricky to bound. Nonethe-
less, heuristic reasoning about typical trajectory behavior
ultimately gives accurate predictions about the collision
probability in these cases.

The rigorous bounds are provided in the appendices.
In the 1D case, the proof associates each trajectory with

a configuration of domain walls on a 2D lattice [of size
n × (d + 1), where d is the circuit depth] and bounds their
total contribution combinatorially, similar to the method
employed in Refs. [2,3,17,32]. The main intuition is that
trajectories that have not reached a fixed point must have
domain walls that penetrate through the entire depth of
the circuit and thus receive weight that decreases expo-
nentially with the depth as [q/(q2 + 1)]d. If one accounts
for the total number of possible domain walls of this type,
which scales like n2d, one finds that d = O(log(n)) is suf-
ficient for the overall contribution to be small. We use a
similar domain-wall counting method to produce a tight
lower bound.

In the complete-graph case, we present a much differ-
ent and novel approach. For each trajectory γ , we define
R[γ ] as the “reduced” trajectory that results from remov-
ing consecutive duplicates of the same configuration. Note
that the weight of γ depends only on the length of R[γ ] (the
number of bit flips). Long subsequences of consecutive
duplicates occur when the randomly chosen gates repeat-
edly act on pairs of qudits that are already assigned the
same value by the configuration, an outcome that becomes
more likely as the trajectory approaches a fixed point.
For each ψ , we can condition on R[γ ] = ψ and exam-
ine the probability distribution over the length of γ (i.e.,
the number of consecutive duplicates plus the number of
bit flips). We use a Chernoff bound to upper bound the
probability that the length of γ is greater than a certain
quantity. We then use a generalization of the recursive
method that yields Eq. (24) to perform the weighted sum
over all reduced trajectoriesψ . In the appendix, we provide
a more detailed proof summary prior to the full proof.

VI. OUTLOOK

In a quantum computer, quantum information is ulti-
mately accessed by making measurements of the output
state and obtaining samples from the associated output
distribution over measurement outcomes. In many appli-
cations, it is desirable to choose our quantum computa-
tion completely at random, the only constraint being the
arrangement of the different gates, and thus it is important
to characterize the output distribution over measurement
outcomes in RQCs and how it depends on the underlying
circuit architecture.

One feature of the output distribution is that, for very
shallow circuits, there are a relatively small number of very
“heavy” measurement outcomes that are exponentially
more likely than average to be obtained, a fact that inhibits
the design of certain classical simulation algorithms but
also, in other cases, prevents potential proofs that no good
simulation algorithms exist. As the circuit gets deeper, the
probability mass gradually anticoncentrates and eventually
becomes fairly well spread out over all possible measure-
ment outcomes. We develop a framework to quantitatively
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understand this situation; we map the anticoncentration
process to the equilibration of a simple stochastic process
(an alternative interpretation of the stochastic process is the
partition function of a statistical-mechanical model). The
stochastic process allows for effective qualitative reason-
ing but also produces sharp quantitative anticoncentration
upper and lower bounds.

Both sides of our bounds have meaningful and sur-
prising takeaways. On the one hand, the fact that only
O(n log(n)) gates are needed to achieve anticoncentration
in geometrically local and nonlocal architectures contra-
dicts the intuition that anticoncentration should not occur
until information has had time to spread across the entire
system. In fact, up to a constant factor, the anticoncen-
tration time does not appear to be sensitive to the exact
connectivity structure of the circuit. While we only rig-
orously consider two architectures, our work provides
strong evidence that any natural architecture anticoncen-
trates in O(n log(n)) gates [which typically corresponds
to O(log(n)) depth]. In cases where anticoncentration is
a desirable property, our work gives explicit bounds on
how many gates are needed and the fact that this number
is relatively small will come as welcome news in practical
situations where the gates are noisy or otherwise costly to
implement.

On the other hand, by showing that �(n log(n)) gates
are necessary for anticoncentration (and computing the
optimal constant prefactor in our two specific scenarios),
we clear up some confusion about very shallow circuits.
An increase in the depth causes the anticoncentration
process to begin but our lower bound implies that the
phenomenon of very heavy measurement outcomes will
remain for any architecture of constant depth. Even the
2D circuits of depth O(

√
log(n)) [for which the light-cone

volume is O(log(n))] considered in Ref. [32] cannot be
anticoncentrated, as had been speculated in that work.

We conclude with some other specific open problems
inspired by our work:

(a) We prove that the anticoncentration size is
�(n log(n)) for the 1D and complete-graph archi-
tectures. We believe this is true for most other
natural architectures and formally conjecture in
Conjecture 1 that this follows from our “regularly
connected” definition.

(b) A sharp anticoncentration analysis for 2D and
higher-dimensional geometrically local architec-
tures would be particularly valuable since, unlike in
1D, �(log(n))-depth 2D circuits can perform uni-
versal quantum computation [indeed, �(1)-depth is
sufficient [47] ] and 2D circuits form the basis for
Google’s 2019 quantum computational supremacy
experiment [6].

(c) We suspect that the constant prefactor of [2 log(q2 +
1)]−1 in the general lower bound in Theorem 4 could

be improved. What is its optimal value? That is,
can we show an improved general lower bound and
then find a RQC architecture Afast that has a match-
ing upper bound? This would show that Afast is the
fastest anticoncentrator. A candidate for Afast is the
architecture where each layer of n/2 gates is formed
by choosing a random partition of the n qudits into
n/2 pairs.

(d) Are there other problems involving second-moment
calculations over RQCs where our techniques would
produce sharp upper and lower bounds? One such
problem could be the 2-design time for RQCs in
various architectures.
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APPENDIX A: DEFINITIONS: RANDOM
QUANTUM CIRCUIT ARCHITECTURES,

ANTICONCENTRATION, AND THE COLLISION
PROBABILITY

1. Random quantum circuits (RQCs)

Here, we establish some precise definitions for the
terms in this paper. Throughout, we consider systems of
n qudits of local Hilbert space dimension q, with basis
states {|1〉 , |2〉 , . . . , |q〉}. Loosely speaking, a quantum cir-
cuit is a sequence of unitary transformations called gates,
which each typically involve only a few of the n qudits,
acting on the initial state |1〉⊗n ≡ |1n〉. Formally, we let a
quantum circuit diagram of circuit size s be specified by a
length-s sequence (A(1), . . . , A(s)) of nonempty subsets of
[n] := {1, 2, . . . , n}, indicating for each gate which qudits
participate in that gate. Since we consider circuits consist-
ing only of two-qudit gates, we require |A(t)| = 2 for all t.
We also make the assumption that the circuit begins with
a single-qudit gate on each of the n qudits at the begin-
ning of the circuit, without counting these n gates toward
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the circuit size. This sequence can be turned into a dia-
gram as in Fig. 2 (ignoring the overlaid I and S), where the
gate sequence is ({1, 2}, {2, 3}, {1, 2}, {3, 4}, {2, 3}). Note
that the single-qudit unitaries are each displayed with the
symbol U but will not necessarily be the same unitary. The
circuit depth d of a circuit diagram is the minimum num-
ber of layers of nonoverlapping gates needed to implement
all s gates in the circuit or, formally, the smallest integer
such that there exists a sequence 0 = s0 < s1 < s2 < . . . <

sd = s where A(t) ∩ A(t
′) = ∅ whenever sj < t < t′ ≤ sj +1.

Once a circuit diagram is chosen, a quantum circuit
instance is generated by additionally specifying a length-
s + n sequence of unitary matrices (U (−n), . . . , U(−1), U(1),
. . . , U(s)), where U(−j ) is a q × q (single-qudit) matrix for
each j = 1, . . . , n and U(t) is a q2 × q2 (two-qudit) matrix
for each t = 1, . . . , s. We denote the global qn × qn unitary
operator implemented by the circuit by U, where

U := U(s)
A(s)

U(s−1)
A(s−1) . . .U

(2)
A(2)

U(1)
A(1)

U(−1)
{1} . . .U(−n)

{n} , (A1)

with VX indicating the action of the q|X | × q|X | unitary V on
the qudits in subregion X ⊂ [n] tensored with the identity
operation on the qudits in the complement of X .

In this work, we always assume that projective compu-
tational basis measurements are performed on all n qudits
at the end of the circuit. Thus, a quantum circuit instance
U has a corresponding classical probability distribution pU
over possible measurement outcomes x ∈ [q]n, as follows:

pU(x) = ∣∣〈x∣∣U ∣∣1n〉∣∣2 . (A2)

RQCs refer to situations when, once a circuit diagram has
been fixed, the actual unitary gates U(t) that determine
the circuit instance are each randomly chosen indepen-
dently from some distribution over the unitary group. In
this paper, we always take this distribution to be the
Haar measure, but since our techniques rely on calculat-
ing expectations over quantities with only two copies of
each U(t), our results also apply when the gates are drawn
from any 2-design, such as the Clifford group. Note that
Google’s quantum computational supremacy experiment
[6] has drawn gates from another distribution that is not a
2-design. Heuristically speaking, as long as the distribution
lacks any bias or symmetries, we expect properties such
as anticoncentration to be the same as in the Haar-random
case.

2. Random quantum circuit architectures

An architecture for RQCs is simply a procedure for
choosing a circuit diagram. Formally, we define it to be
a (possibly randomized) classical algorithm that, given
parameters n and s, computes a circuit diagram of size s
on n qudits. Given an architecture and parameters n and s,
we let the expectation of some quantity Q, denoted EU[Q],

refer to the expectation over the process of first choosing
a circuit diagram according to the architecture and then
choosing a circuit instance by randomly generating each
gate in the circuit diagram independently from the Haar
measure. Next, we define the two architectures that we
consider.

Definition 1 (Complete-graph architecture). Circuit dia-
grams of size s on n qudits are generated by choosing s
gates each uniformly at random from the set of all two-
qudit gates, i.e., A(t) is chosen uniformly from {{a, b} :
a, b ∈ [n], a �= b}.

Note that if it could be guaranteed that every qudit would
eventually participate in at least one gate, the distribution
over circuit instances would be equivalent if we omitted
the first layer of n single-qudit gates (defined to be part
of every architecture), a fact that follows from the invari-
ance of the Haar measure; the single-qudit gates could be
absorbed into the two-qudit Haar-random gates that act
directly before or after without changing the distribution
over the two-qudit gates. However, in the complete-graph
architecture there is a chance that a qudit does not partici-
pate in any two-qudit gates, although for sufficiently large
circuit size the probability of this vanishes.

Definition 2 (1D architecture). Assume that n is even and
that d := 2s/n is an integer. The circuit diagram of size s
on n qudits is generated by alternating between the two
types of layers of n/2 nonoverlapping nearest-neighbor
two-qudit gates on a ring. That is, for each t = 1, . . . , n/2,
if j is even, then A(t+jn/2) = {2t − 1, 2t}, and if j is odd,
then A(t+jn/2) = {2t, 2t + 1}, where index n is identified
with index 0 to enforce periodic boundary conditions.

3. Collision probability and anticoncentration

Anticoncentration is a concept that describes a classical
probability distribution for which the probability mass is
not too concentrated onto a small number of outcomes of
the random variable. The uniform distribution is the ulti-
mate anticoncentrated distribution, as the probability mass
is allocated evenly over every possible outcome, but we
would still like the term “anticoncentrated” to apply to
some nonuniform distributions if the probability mass is
fairly well spread over many of the outcomes. There are
multiple ways to make this quantitative. For the purposes
of this paper, we choose one way—the collision proba-
bility—that mirrors previous work on anticoncentration of
quantum circuit outputs and suffices for the applications
we discuss in Sec. I.

Let X be a discrete random variable and let M be the set
of outcomes of X . We can form another random variable
p , where p is equal to Pr[X = x] for an x chosen uni-
formly at random from M . Since

∑
x Pr[X = x] = 1, we
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have E[p] = 1/|M | no matter how X is distributed. We
define the collision probability for X to be

Z :=
∑

x∈M

Pr[X = x]2

= |M |E[p2]

= |M |var(p)+ |M |−1 , (A3)

which is the probability that two identical independent
copies of X will be equal to each other—hence collision
probability. If the distribution over X is the uniform distri-
bution, then the distribution over p is the point distribution
on the value |M |−1, the collision probability takes its mini-
mal value Z = |M |−1, and var(p) = 0. If X is nonuniform
but still somewhat anticoncentrated, then p will not always
be |M |−1 but it will usually be close and this will be
reflected by a collision probability that is greater, but not
too much greater, than |M |−1. Formally, we make the
following definition.

Definition 3 (Anticoncentrated). We say that a random
variable X over a set M of outcomes is α-anticoncentrated
for 0 < α ≤ 1 if

Z :=
∑

x∈M

Pr[X = x]2 ≤ 1
|M |α . (A4)

Thus a distribution is 1-anticoncentrated if and only if it
is the uniform distribution.

In our setting, the random variable X is the measure-
ment outcome of a RQC instance, which is distributed
according to the distribution pU over the outcome set [q]n.
Example distributions of pU for RQC outputs in the uni-
form, the nonuniform but still anticoncentrated and the not
anticoncentrated case are shown in the sketch in Fig. 1.
A RQC architecture for specified n and s is under-
stood as an ensemble over many different U, only some
of which will have output distributions pU that are α-
anticoncentrated for a certain choice of α. We would like
to say that the architecture as a whole is anticoncentrated
if typical circuit instances drawn from the architecture are
anticoncentrated, acknowledging that not every instance
will be. We also require this to hold for the same constant
α as n increases, with s increasing like some function s(n).
Formally, we accomplish this by averaging the collision
probability over the random circuit instance, as follows.

Definition 4 (Anticoncentrated RQC architecture). We say
that a RQC architecture is α-anticoncentrated for 0 < α ≤
1 at circuit size s(n) if there exists n0 such that whenever

n ≥ n0

Z := E
U

⎡

⎣
∑

x∈[q]n

pU(x)2

⎤

⎦ ≤ (αqn)−1, (A5)

where EU denotes drawing circuit instances according to
the architecture over n qudits with circuit size s(n). Gen-
erally, we say that the architecture is anticoncentrated at
size s(n) if there exists a constant α > 0 independent of n
for which it is α-anticoncentrated at that size.

RQC architectures for which every qudit experiences
at least one gate, which includes all the architectures
introduced above, will have a symmetry over the qn mea-
surement outcomes in the sense that the quantity pU(x) is
distributed identically (over circuit instances) for every x.
In this case, each term in the sum in Eq. (A5) will have the
same contribution and we can simply write

Z = qn
E
U

[
pU(1n)2

]
. (A6)

The anticoncentration of an architecture implies that most
of the instances drawn from that architecture have good
anticoncentration properties. Given an architecture at a
certain size and a bound on its collision probability Z ≤
α−1q−n, we can use Markov’s inequality to assert that at
least a 1 − β fraction of instances have collision probabil-
ity at most q−n

[
1 + (α−1 − 1)β−1

]
. In practice, we expect

the collision probability of individual instances to be even
more clustered near the mean collision probability than
this analysis indicates, but proving that this is the case
would seem to require computing higher moments such as
EU[pU(1n)k] for k > 2.

As discussed in the main text, an important implication
of an α-anticoncentrated architecture is that for any β with
0 ≤ β ≤ 1 and sufficiently large n,

Pr
U

[pU(x) ≥ βq−n] ≥ (1 − β)2α, (A7)

which follows directly from the Paley-Zygmund inequal-
ity. This inequality indicates that whenever an architecture
is anticoncentrated, at least a constant fraction of the out-
comes will be allocated an amount of mass that is within
a constant factor β of the mean mass; it cannot be the
case that all but a vanishing fraction of the outcomes are
allocated a vanishing fraction of the mean mass.

APPENDIX B: FRAMEWORK FOR ANALYSIS:
RANDOM QUANTUM CIRCUITS AS A

STOCHASTIC PROCESS

This appendix gives more details on the correspondence
discussed in Sec. V of the main text. The key idea in our
analysis of the collision probability of RQCs is to perform
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U|1〉

U|1〉

U|1〉

U|1〉
U (1)

U (2)

U (3)

U (4)

U (5)

Random quantum circuit

Collision probability

Z = qn
E
U

[
pU (1n)2

]

Classical statistical-mechanical model

Partition function

Z = qn
∑

σ∈{I,S}
τ∈{I,S}

∏

〈tt′〉
weight σt, τ t′

)
�γ(0) �γ(1) �γ(2) �γ(3) �γ(4) �γ(5)

Random walk through configuration space

Sum over trajectories

Z =
1

(q + 1)n

∑

γ

s∏

t=1

M�γ(t)�γ(t−1)

FIG. 4. A diagram depicting the equivalent ways to interpret the expected value of the collision probability for RQCs. Left: a RQC
of size five. Middle: the reinterpretation as the partition function of a classical statistical-mechanical model with local Ising-like spins.
Right: another interpretation as a stochastic process of evolving configurations.

the Haar expectation over each local unitary individually.
This is possible due to explicit formulas for expectations
under action by a Haar-random unitary. We use these for-
mulas to reexpress the collision probability, originally an
integral over many continuously varying unitary matrices
drawn from the Haar measure, as a weighted discrete sum,
which is then analyzed using combinatorial and stochas-
tic methods. This weighted sum can also be interpreted as
the partition function of a classical statistical-mechanical
Ising-like model or as the expectation value of a simple
stochastic process. Figure 4 depicts these equivalent repre-
sentations of the problem. In this appendix, we explain this
method and derive the important formulas that will apply
generally for any RQC architecture, which are then used in
Appendices C, D, and E to prove our main results.

1. Averaging individual unitaries over the Haar
measure

The quantity of interest for anticoncentration is the
expected collision probability, which is proportional to
a second moment over choice of unitary operator U, as
illustrated in the following equation, where we recall that
|1n〉〈1n|⊗2 is two copies of the circuit input state:

Z := qn
E
U

[(〈
1n
∣∣U
∣∣1n〉 〈1n

∣∣U†
∣∣1n〉)2

]

= qnTr
[

E
U

[
U⊗2|1n〉〈1n|⊗2U†⊗2] |1n〉〈1n|⊗2

]
. (B1)

Moreover, for a fixed quantum circuit diagram, the unitary
U is given by Eq. (A1) as a product of single-qudit unitaries
U(−j ) acting on qudit j for j = 1, . . . , n and two-qudit uni-
taries U(t) acting on some pair of qudits A(t) ⊂ [n] for t =
1, . . . , s. Each unitary is independently chosen according
to the Haar measure and its expectation can be evaluated

separately. Let

M (t)(ρ) := E
U(t)

[
U(t)

A(t)
⊗2
ρ U(t)

A(t)
†⊗2
]

. (B2)

Then, we can write

E
U

[
U⊗2|1n〉〈1n|⊗2U†⊗2

]

= M (s) ◦ M (s−1) ◦ · · · ◦ M (1)

◦ M (−1) ◦ . . . ◦ M (−n) (|1n〉〈1n|⊗2) . (B3)

When an architecture is itself a mixture over randomly
chosen circuit diagrams, such as the complete-graph archi-
tecture, the overall quantity EU[U⊗2|1n〉〈1n|⊗2U†⊗2] is a
mixture over terms of the above form.

The remainder of this subsection illustrates how the
action of M (t) can be evaluated, ultimately allowing us
to arrive at the expression for Z given in Eq. (B18). In
the other subsections of this section, we explain how that
equation can be interpreted as a partition function of a
classical statistical-mechanical model or as the expectation
over simple stochastic process.

When the local unitaries are drawn from the Haar mea-
sure (or any exact 2-design), the expression M (t)(ρ) can be
evaluated in a simple way. Generally, for σ a q2 × q2 Her-
mitian operator, and with V chosen from the Haar measure
over the set of q × q unitaries, we define

M (σ ) := E
V

[
V⊗2σV†⊗2

]
(B4)

and observe that, for any unitary W and any σ ,

M (σ )W⊗2 = E
V

[
V⊗2σ(W†V)

†⊗2
]

= E
V

[
(WV)⊗2σV†⊗2

]

= W⊗2M (σ ), (B5)
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where the second equality follows from the invariance of
the Haar measure under the substitution V → WV. A math-
ematical fact from Schur-Weyl duality (see Ref. [48]) is
that any operator on k copies of a system that commutes
with W⊗k for any unitary W must be a linear combination
of permutation operators over the k systems. Here, we have
k = 2 and thus the only permutation operators are the iden-
tity operation I and the swap operation S, which can be
defined as the operator satisfying S |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉
for any |ψ〉 , |φ〉. Letting M (σ ) = αI + βS, we make the
following calculations:

Tr[M (σ )] = Tr(σ ) = αq2 + βq, (B6)

Tr[M (σ )S] = Tr(σS) = αq + βq2, (B7)

which determine α and β and allow us to write

M (σ ) = Tr(σ )− q−1Tr(σS)
q2 − 1

I + Tr(σS)− q−1Tr(σ )
q2 − 1

S.

(B8)

The unitaries U(−j ) are q × q (single-qudit) that act on
qudit j . Two copies of the input state on qudit j is |1〉〈1|⊗2

{j } .
Denote two copies of the input state on the other n − 1

qudits by ρ[n]\{j }. Using Eq. (B8), we then find that

M (−j )
(
ρ[n]\j ⊗ |1〉〈1|⊗2

{j }
)

= ρ[n]\{j } ⊗ 1
q(q + 1)

(I + S){j } , (B9)

meaning that M (−j ) simply replaces the state on qudit j as
a uniform sum over operators I and S. Hence

M (−1) ◦ · · · ◦ M (−n) (|1n〉〈1n|⊗2)

=
n⊗

j =1

(
1

q(q + 1)
(I + S){j }

)

= 1
qn(q + 1)n

∑

�γ∈{I ,S}n

n⊗

j =1

γj . (B10)

We call each �γ ∈ {I , S}n a configuration. The above
equation states that the expected value of two copies of
the state after application of all the single-qudit unitaries
is precisely a uniform sum over all identity and/or swap
configurations of the n sites.

Now, we need to examine the action of M (t) for t > 0. In this case, the unitaries are q2 × q2 and they act on the qudit
pair A(t). We can use Eq. (B8) by replacing q → q2 and sending I → I ⊗ I , the identity operation on two copies of two
qudits, and S → S ⊗ S, the swap operation on two copies of two qudits. We assume that the input state is a product state
ρ[n]\A(t) ⊗ ρA(t) and see that

M (t)(ρ[n]\A(t) ⊗ ρA(t) )

= ρ[n]\A(t) ⊗
[

Tr(ρA(t) )− q−2Tr
(
ρA(t) (S ⊗ S)

)

q4 − 1
(I ⊗ I)A(t) + Tr

(
ρA(t) (S ⊗ S)

)− q−2Tr(ρA(t) )

q4 − 1
(S ⊗ S)A(t)

]

. (B11)

Since the two qudit gates act after the single-qudit gates, the input state to M (t) will always be a sum of tensor products
of I and S, so we only need to evaluate the above expression when ρA(t) is either I ⊗ I , I ⊗ S, S ⊗ I , or S ⊗ S. Doing so,
we arrive at

M (t) (ρ[n]\A(t) ⊗ (I ⊗ I)A(t)
) = ρ[n]\A(t) ⊗ (I ⊗ I)A(t) , (B12)

M (t) (ρ[n]\A(t) ⊗ (S ⊗ S)A(t)
) = ρ[n]\A(t) ⊗ (S ⊗ S)A(t) , (B13)

M (t) (ρ[n]\A(t) ⊗ (I ⊗ S)A(t)
) = M (t) [ρ[n]\A(t) ⊗ (S ⊗ I)A(t)

]

= ρ[n]\A(t) ⊗
[

q
q2 + 1

(I ⊗ I)A(t) + q
q2 + 1

(S ⊗ S)A(t)
]

. (B14)

Thus, if ρ is a linear combination of configurations in {I , S}n, M (t)(ρ) will also be a linear combination of configurations,
with coefficients that transform linearly under application of M (t). For configurations �γ , �ν ∈ {I , S}n, we let M (t)

�ν �γ be the
matrix element of this linear transformation, defined such that
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M (t)

⎛

⎝
n⊗

j =1

γj

⎞

⎠ =
∑

�ν∈{I ,S}n

M (t)
�ν �γ

n⊗

j =1

νj . (B15)

Suppose that U(t) acts on qudits A(t) = {a, b} ⊂ [n]. Then, from Eqs. (B12), (B13), (B14), we have

M (t)
�ν �γ =

⎧
⎪⎪⎨

⎪⎪⎩

1, if γa = γb and �γ = �ν,
q

q2 + 1
, if γa �= γb and νa = νb and γc = νc ∀c ∈ [n] \ {a, b},

0, otherwise.

(B16)

Importantly, M (t)
�ν �γ is always non-negative. The way to think

about the above equation is to note three things. First, the
input configuration �γ and the output configuration �ν must
agree on all indices that are not involved in the gate, i.e.,
for all indices c �∈ {a, b}; otherwise, the matrix element is 0.
Second, if the two input values involved in the gate agree,
i.e., if γa = γb then νa = νb = γa = γb must hold (in which
case the matrix element is 1); otherwise, it is 0. Third, if
the two input values disagree, then one of them must be
flipped so that the two output values agree [in which case
the matrix element is reduced to q/(q2 + 1)]; otherwise, it
is 0.

Note also that

Tr

⎡

⎣

⎛

⎝
n⊗

j =1

γj

⎞

⎠ |1n〉〈1n|⊗2

⎤

⎦ = 1 (B17)

for all �γ ∈ {I , S}n. Thus, from Eq. (B1), we find

Z = 1
(q + 1)n

∑

γ∈{I ,S}n×(s+1)

s∏

t=1

M (t)
�γ (t) �γ (t−1) ,

=:
1

(q + 1)n
∑

γ

weight(γ ), (B18)

which is the expression quoted in Eq. (22) from the main
text. In the above equation, the sum is over length-(s +
1) sequences of configurations, which we call a trajectory
γ = ( �γ (0), . . . , �γ (s)), and the weight of each term is given
by the product of the matrix elements for each step in the
trajectory. This final equation is depicted graphically in the
right-hand part of Fig. 4.

2. Collision probability as statistical-mechanical
partition function

The expression for the collision probability in Eq. (B18)
can be interpreted as a partition function for a classical
statistical-mechanical model by thinking of each γ (t)j as an
Ising spin variable with the association {I , S} ↔ {+1, −1}.
A trajectory γ is then a configuration of the Ising spins

and Z is a weighted sum over all the spin configurations.
Moreover, the weight is always non-negative and is given
by a product of factors M (t)

�γ (t) �γ (t−1) that can be determined by
examining a small number of the spin values. This means
that the energy functional over spin configurations of the
classical Ising-like model is always real and can be broken
up into local terms that depend on the local dimension q
and which qudits are acted upon at each step in the circuit.

The statistical-mechanical interpretation has been a use-
ful one for similar problems in the past, where certain RQC
moment quantities can be exactly rewritten as the partition
sum over spin configurations of a lattice model, as depicted
in the central diagram in Fig. 4. We can arrive at the formu-
lation as in Eq. (B18) from the lattice model by summing
over a subset of the spins and reinterpreting the resulting
nodes as four-body interaction vertices.

This exact rewriting of RQC moment quantities has
been used to compute, for instance, correlation func-
tions [3], Rényi entropies [40], and the distance to forming
an approximate design [17]. Moreover, thermal phase tran-
sitions in the classical model can be related to phase
transitions of entanglement-entropy-like quantities for the
output state of the RQC [41–43]. The interpretation is
particularly intriguing when considering analogous quan-
tities to Z for higher moments. The collision probability
is a second-moment quantity, and the resulting statistical-
mechanical model, has Ising-like variables with two possi-
ble values. Quantities related to the kth moment will map
to classical statistical-mechanical models that have k! pos-
sible values, one for each element of the symmetric group
Sk. However, one challenge of computing higher-moment
quantities is that the weights in the partition function can
be negative (corresponding to nonreal values of the energy
for certain spin configurations), complicating many strate-
gies for bounding its behavior, including the strategies
employed in the rest of this paper.

3. Unbiased random walk

We can build from the formula for Z in Eq. (B18)
and reexpress it in terms of a length-s unbiased random
walk through configuration space {I , S}n, which we denote
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Pu. At time step 0, a configuration �γ (0) is chosen uni-
formly at random, i.e., the initial distribution is the uniform
distribution in configuration space, denoted �u. Then con-
figuration �γ (t+1) at time step t + 1 is generated from the
configuration �γ (t) at time step t as follows: letting A(t) =
{a, b}, if the ath and bth bits of �γ (t) agree, then the configu-
ration is left unchanged at time step t + 1; if they disagree,
either the value at a or the value at b is flipped each with
probability 1/2 to form �γ (t+1). The weight is reduced each
time a bit is flipped. Thus we can write

Z = 2n

(q + 1)n E
Pu,�u

[(
2q

q2 + 1

)(number of bit flips during walk)
]

,

(B19)

where EPu,�u indicates the expectation over the choosing a
length-s walk as described above, where the initial distri-
bution is �u. This is seen to be equivalent to Eq. (B18),
since the probability of a certain trajectory occurring is
given by q−n(1/2)number of bit flips and thus each trajectory
contributes exactly the same amount toward Z, once the
probability of observing the trajectory is accounted for.

4. Biased random walk

A potential problem with the unbiased-random-walk
picture is that the weight of a particular walk is related
to the number of bit flips that occur during that walk; it
depends not only where the walk begins and ends but also
on how it got there. To fix this issue, we can form an equiv-
alent biased random walk denoted Pb. In this case, the
initial distribution �b is not uniform over {I , S}n; rather,
the probability of choosing �γ (0) = �ν is proportional to
q−|�ν|, where |�ν| is the Hamming weight of �ν (number of
S entries). Specifically, we have

�b(�ν) = qn

(q + 1)n
q−|�ν|. (B20)

The dynamics of Pb are the same as Pu, except that when
the two bits involved in a gate disagree, it chooses to flip
the S to I with probability q2/(q2 + 1) and I to S with
probability 1/(q2 + 1). Thus, it is biased in the I direction.
Then, we can express

Z = 1
qn E

Pb,�b

[
q| �γ (s)|

]
. (B21)

Note that the quantity being averaged is exponentially
large in the Hamming weight of its final ending point, mak-
ing the quantity sensitive to the probability that the biased
walk stays far from the all I configuration. The biased walk
is observed to be equivalent to the unbiased walk simply
by noting that once the probability of observing a cer-
tain trajectory is included, every trajectory contributes the

same amount to Z for both walks. The exponential weight-
ing underneath the expectation in the biased walk exactly
cancels the bias in the probability of observing a certain
walk.

5. Computing sums over trajectories

Throughout our analysis, we need to compute weighted
sums over various trajectories or, relatedly, compute prob-
abilities that the biased and unbiased walks end in a certain
place. We use the following lemma. The key takeaway is
that (perhaps surprisingly), in the limit of infinite size, the
contribution of all trajectories originating from a certain
initial configuration depends only on the Hamming weight
of that initial configuration and not on the configuration
itself. Moreover, this contribution can be calculated. This
lemma is a more precise and generalized version of the
recursive calculation of Q(x) in Sec. V in the main text.

Lemma 1. Fix an infinite-size circuit diagram, that is, an
infinite sequence of qudit pairs A = (A(1), A(2), . . .). Also
fix integers 0 ≤ x, y, m ≤ n such that y ≤ x < y + m, as
well as an initial configuration �γ (0) such that | �γ (0)| = x.
For each s ≥ 0, let Ts be the set of length-s trajectories
that

(1) begin at configuration �γ (0)
(2) have a nonzero contribution to Z for the circuit

diagram (A(1), . . . , A(s)) formed by truncating A to
length s

(3) end at any configuration �γ (s) for which | �γ (s)| = y,
and

(4) satisfy y < | �γ (t)| < y + m for all t = 0, 1, 2, . . . ,
s − 1

Let T =⋃∞
s=0 Ts. Then,

∑

γ∈T

(
q

q2 + 1

)(number of bit flips during γ )

= 1
1 − q−2m

(
q−(x−y) − q−2m+x−y) . (B22)

Proof. First, we claim that the sum should depend only on
x, y, and m and not on �γ (0) (other than through its depen-
dence on x). To see this, note that there is a one-to-one
correspondence between trajectories in T and sequences
of Hamming weights (x, x1, . . . , xs′−1, y) with the property
that either xt = xt+1 + 1 or xt = xt+1 − 1 for every t (no
consecutive duplicates). This is seen by (1) the fact that
given a trajectory in T , one can generate such a sequence
by taking the Hamming weight of each configuration in the
sequence and removing consecutive duplicates and (2) the
fact that given such a Hamming weight sequence, one can
generate a unique trajectory by starting with �γ (0), evolv-
ing the trajectory according to the circuit diagram A, and
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always choosing whether to flip I to S or S to I so that
the order of Hamming weights prescribed by the sequence
is followed. Thus, the sum over trajectories in T may be
replaced by a sum over Hamming weight sequences, which
does not depend on �γ (0), except through its Hamming
weight x.

For each x in the interval [y, y + m], let the expression
on the left-hand side of the lemma be given by Q(x). Then
for each x in [y + 1, y + m − 1], we have the recursion
relation

Q(x) = q
q2 + 1

[Q(x − 1)+ Q(x + 1)], (B23)

since the first bit flip will either send x to x − 1 or to x + 1
and in either case a factor of q/(q2 + 1) is incurred. The
recursion relation gives rise to a general solution of the
form

Q(x) = Fqx + Gq−x (B24)

for some constants F and G. This is a unique solution,
since all values can be generated once two consecutive
values are specified, and the specification of two consec-
utive values also uniquely specifies F and G. To find F
and G in this case, we must also impose the boundary
conditions Q(y) = 1 and Q(y + m) = 0, since if x = y the
only trajectory in T is the length-0 trajectory ( �γ (0)) and, if
x = y + m, T is the empty set. By specifying these bound-
ary conditions, we can solve for F and G and verify the
statement of the lemma. �

Corollary 1. Fix non-negative integers x, y, m such that
y ≤ x < y + m. For the biased walk, if the starting con-
figuration has Hamming weight x, the probability that
the walk reaches a configuration with Hamming weight
y before it reaches a configuration with Hamming weight
y + m is given by

qx−y

1 − q−2m

[
q−(x−y) − q−2m+x−y] . (B25)

Proof. The transition rules of the biased walk prescribe
that transitions upward in Hamming weight occur with
probability 1/(q2 + 1) and transitions downward in Ham-
ming weight occur with probability q2/(q2 + 1). Thus the
probability of a series of transitions in which the initial
Hamming weight is x, the final Hamming weight is y,
and the number of times a bit flip occurs is b is pre-
cisely qx−y[q/(q2 + 1)]b. The sum over all paths weighted
by their probability is then precisely the sum on the
left-hand side of Lemma 1 scaled by qx−y , yielding the
corollary. �

Corollary 2. If we begin at a trajectory �γ (0) with | �γ (0)| =
x and allow the biased walk to evolve until it ends at one
of the fixed points I n or Sn, then the probability that the
trajectory ends at I n is given by

PI (x) = 1
1 − q−2n

(
1 − q−2n+2x) (B26)

and the probability that it ends at Sn is given by

PS(x) = q−2n+2x

1 − q−2n

(
1 − q−2x) . (B27)

Proof. Termination at I n corresponds to the cases where
Hamming weight 0 is hit before Hamming weight n. Thus
the equation for PI (x) follows from Corollary 1 with y = 0
and m = n. We have PS(x) = 1 − PI (x), since the trajec-
tory must terminate at one fixed point or the other. �

6. Sanity check: Infinite-circuit-size convergence to
Haar value

The Markov chain has two stationary distributions, at
configurations I n and Sn. In the infinite-circuit-size limit,
the biased walk will converge to a mixture of these two
fixed-point configurations, where the amount of mass at
each fixed point depends only on the Hamming weight of
the initial configuration, as described in Corollary 2. Using
the expressions for PI and PS, we find that, in the infinite-
circuit-size limit,

Z = 1
qn

∑

�γ (0)
�b( �γ (0)) E

Pb, �γ (0)

[
q| �γ (s)|

]

= 1
(q + 1)n

∑

�γ (0)
q−|�γ (0)|[PI (| �γ (0)|)+ qnPS(| �γ (0)|)]

= 1
(q + 1)n(1 − q−2n)

n∑

x=0

(
n
x

)

× q−x(1 − q−2n+2x + q−n+2x − q−n)

= 1
(q + 1)n(1 − q−2n)

[(
q + 1

q

)n

− q−2n(q + 1)n

+ q−n(q + 1)n − q−n
(

q + 1
q

)n]

= (2q−n − 2q−2n)(q + 1)n

(q + 1)n(1 − q−2n)
= 2

qn + 1
= ZH , (B28)

where ZH is the Haar value. This outcome is expected,
since in the infinite-circuit-size limit, the distribution
over random unitaries formed from Haar-random local
components will approach the distribution over n-qudit
Haar random unitaries.
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APPENDIX C: BOUNDS FOR GENERAL
ARCHITECTURES

1. Upper bound on collision probability

In order to have a meaningful upper bound, we need the
architecture to satisfy basic connectivity requirements; for
example, if the architecture performs gates on the same
pair of qudits over and over again, Z will never decrease
and the output distribution will never become anticoncen-
trated. We need to rule out this sort of architecture.

Recall that a RQC architecture is a (possibly ran-
domized) procedure for choosing a length-s sequence
(A(1), . . . , A(s)) of pairs of qudit indices on which to per-
form a Haar-random gate.

Definition 5 (Regularly connected). We say that a RQC
architecture is r-regularly connected if, for any n, any
t, any subsequence A = (A(1), . . . , A(t)), and any proper
subset R ⊂ [n] of qudit indices, there is at least a 1/2 prob-
ability that, conditioned on the first t gates in the gate
sequence being A, there exists some index t′ for which
t < t′ ≤ t + rn, A(t

′) ∩ R �= ∅, and A(t
′) �⊂ R.

The above definition requires that given any partition
of the qudits into two sets, we should expect at least one
gate to couple a qudit from one set with a qudit from the
other set after only a linear number of gates. Note that
both the 1D and the complete-graph architecture have this
property. In 1D, it only takes two layers, or n gates, to
guarantee having performed a gate that crosses any par-
tition one might choose. Similarly, in the complete-graph
architecture, the probability that a randomly chosen gate
crosses a partition is at least 1/n (which happens if the par-
tition splits the indices into a set with one index and a set
with the other n − 1 indices) and the probability of hav-
ing crossed the partition becomes large after �(n) gates.
Most natural architectures that we might consider have
this property. One architecture that is not regularly con-
nected is the hypercube architecture, where n = 2D qudits
lie at the vertices of a D-dimensional hypercube and D
layers of gates are performed by cycling through each
set of parallel edges. In this architecture, it would take
nD/2 = �(n log(n)) gates to guarantee that any partition
has been crossed.

Assuming the regularly connected property, we can
show a weak upper bound on the collision probability.

Theorem 7 (Theorem 3 from main text). If a RQC
architecture is r-regularly connected, then the collision
probability satisfies

Z ≤ ZH

[
1 + e− 2a

n (s−s∗)
]

, (C1)

where

a := (2r)−1 log
[

2(q2 + 1)
(q + 1)2

]
, (C2)

s∗ := (2a)−1 log
(

2q
q + 1

)
n2 + O(n). (C3)

Proof. We use the expression given to us by the unbiased
walk in Eq. (B19):

Z = 2n

(q + 1)n E
Pu,�u

[(
2q

q2 + 1

)(number of bit flips during walk)
]

.

(C4)

Define Z(t) to be the value of the collision probability,
given above via the biased walk, after t time steps, so that
Z = Z(s) and Z(0) = 2n/(q + 1)n.

Consider a given trajectory produced by the unbiased
walk up to time step t, γ = ( �γ (0), . . . , �γ (t)). If �γ (t) = I n

or �γ (t) = Sn, then the walk has reached a fixed point and
will never again change. From the calculation in Sec. 6,
we know that the sum of all the weights of all walks of any
length that reach a fixed point is precisely ZH . Since the
weights are non-negative, this implies that the sum over
walks that have reached it before time step t is less than ZH
and hence the combined weight of trajectories that have
not reached a fixed point by time step t is at least Z(t) − ZH .
Meanwhile, if �γ (t) is not at a fixed point, then we can con-
sider the proper subset R ⊂ [n] of sites with value S. By
the r-regularly connected property, there is at least a 1/2
chance that one of the gates between time step t + 1 and
t + rn matches an index in R with one in the complement of
R. When this happens, a bit must be flipped and the weight
of that trajectory is reduced by factor 2q/(q2 + 1). Thus,
the following must hold:

Z(t+rn) − ZH ≤
(

1
2

+ 1
2

2q
q2 + 1

) [
Z(t) − ZH

]
. (C5)

Moreover, we know that Z(0) = 2n/(q + 1)n, so

Z(s) ≤ ZH +
[
(q + 1)2

2(q2 + 1)

]s/(rn) [ 2n

(q + 1)n
− ZH

]

≤ ZH +
[
(q + 1)2

2(q2 + 1)

]s/(rn) [ 2n

(q + 1)n

]

= ZH

{

1 + 2n(qn + 1)
2(q + 1)n

[
(q + 1)2

2(q2 + 1)

]s/(rn)
}

≤ ZH

{

1 + 2nqn

(q + 1)n

[
(q + 1)2

2(q2 + 1)

]s/(rn)
}

≤ ZH [1 + e− 2a
n (s−s∗)], (C6)
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where

a := (2r)−1 log
[

2(q2 + 1)
(q + 1)2

]
= �(1), (C7)

s∗ := (2a)−1 log
(

2q
q + 1

)
n2 = �(n2). (C8)

�
Note that we make no attempt to optimize the constant

prefactor of the �(n2) or the value of a. Indeed, we con-
jecture that Theorem 7 could be improved so that s∗ =
�(n log(n)), which would be a dramatic improvement
that implies that the fundamental scaling of the anticon-
centration size is independent of the connectivity of the
architecture, so long as it satisfies the regularly connected
property.

2. Lower bound on collision probability

In this section, we prove an �(n log(n)) lower bound
on the circuit size needed for anticoncentration in general
circuit architectures. This also implies an �(log(n)) lower
bound on the anticoncentration depth.

Theorem 8 (Theorem 4 from main text). For any RQC
architecture of size s on n qudits with local dimension q,
the collision probability satisfies

Z ≥ ZH

2
exp

{
log(q)
q + 1

exp
[

log(n)− 2s
n

log
(
q2 + 1

)]}
.

(C9)

Corollary 3. For a given RQC architecture, let sAC be
the minimum circuit size, as a function of n, such that
Z ≤ 2ZH . Then, it must hold that

sAC ≥ [2 log
(
q2 + 1

)]−1
n log(n)− O(n). (C10)

Proof. This statement follows directly from the bound in
Eq. (C9). �

Corollary 4. For a given RQC architecture, let dAC be
the minimum circuit depth, as a function of n, such that
Z ≤ 2ZH . Then, it must hold that

dAC ≥ [log
(
q2 + 1

)]−1
log(n)− O(1). (C11)

Proof. Each layer can have at most n/2 gates, so it must
hold that dAC ≥ 2sAC/n. �

Proof of Theorem 8. We use the framework of the biased
random walk, given by the expression for Z in Eq. (B21).
For each of the n sites, there is some initial probability that

it starts with value S and then each gate involving that site
has some chance of flipping it to value I . However, there
will always be some minimum probability that even after
many gates, the value has not yet been flipped to I . This
constitutes the idea behind our lower bound.

Given an index j ∈ [n], we compute a lower bound on
the probability that γ (t)j = S for all t = 0, 1, . . . , s (i.e., the
j th bit begins with value S and is never flipped to I ), as a
function of the number of gates sj that act on qudit j ,

Pr
Pb,�b

[γ (t)j = S ∀t ∈ {0, . . . , s}] ≥ 1
q + 1

(
1

q2 + 1

)sj

,

(C12)

since there is a 1/(q + 1) chance that γ (0)j = S when we
draw �γ (0) from �b and the probability it does not flip after
each gate is at least 1/(q2 + 1). This holds for each j and
thus we have

E
Pb,�b

[| �γ (s)|] =
n∑

j =1

Pr
Pb,�b

[γ (s)j = S]

≥
n∑

j =1

Pr
Pb,�b

[γ (t)j = S ∀t ∈ {0, . . . , s}]

≥ 1
q + 1

n∑

j =1

(
1

q2 + 1

)sj

. (C13)

Since each of the s gates in the circuit diagram acts on two
indices, it must hold that

∑
j sj = 2s and, given this con-

straint, the minimum of the final expression above occurs
when all the sj are equal and thus

EPb,�b[| �γ (s)|] ≥ 1
q + 1

n
(

1
q2 + 1

)2s/n

. (C14)

By convexity of the exponential function, we have E[qx] ≥
qE[x] and hence

Z = 1
qn E

Pb,�b
[q| �γ (s)|]

≥ 1
qn exp

[

log(q)
n

q + 1

(
1

q2 + 1

)2s/n
]

≥ ZH

2
exp

{
log(q)
q + 1

exp
[

log(n)− 2s
n

log
(
q2 + 1

)]}
.

(C15)

�
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APPENDIX D: BOUNDS FOR THE 1D
ARCHITECTURE

We now focus specifically on the 1D architecture
defined formally in Definition 2. We assume periodic
boundary conditions, although it would be possible to con-
sider open boundary conditions as well. In 1D, the qudits
are arranged in a geometrically local fashion and it is
fruitful to think of a configuration �γ ∈ {I , S}n as being
composed of contiguous domains, consecutive sites where
all the values are I or all the values are S. We then iden-
tify domain walls as locations where one domain ends
and another begins. Gates that couple qudits in different
domains cause one of the values to flip, which moves the
domain wall separating those domains one unit to the left
or one unit to the right. The notation for talking formally
about this is discussed in the next subsection and then the
upper and lower bounds on Z are proved.

1. Domain walls and notation

In 1D, configurations �γ ∈ {I , S}n are associated with a
set of domain-wall locations. We let

DW( �γ ) := {e ∈ {0, 1, 2, . . . , n − 1} : γe �= γe+1} (D1)

be the set of domain-wall positions for a configuration
�γ , where γ0 is identified with γn when there are periodic
boundary conditions. For each set of domain-wall loca-
tions, there are exactly two configurations that map to it,
since choosing γ0 = I or γ0 = S determines the value of
all other sites.

A configuration trajectory γ = ( �γ (0), . . . , �γ (s)) is then
associated with a sequence of sets of domain-wall loca-
tions G = (g(0), . . . , g(s)), where g(t) = DW( �γ (t)). We call
G a domain-wall trajectory. Domain-wall trajectories with
nonzero contribution to the collision probability Z obey
the following rules: when there is a domain wall at posi-
tion e and a gate acts on qudits {e, e + 1}, the domain wall
must move to position e − 1 or e + 1 (at the cost of a
reduction in the weight) and may annihilate with another
domain wall if there is already a domain wall at the new
position. However, pairs of domain walls cannot be cre-
ated; the number of domain walls that exist throughout
the domain-wall trajectory is nonincreasing and a partic-
ular domain wall can be uniquely tracked throughout each
step of the trajectory (either until the final step or until its
annihilation). Let G be the set of all domain-wall trajec-
tories that obey these rules. Any domain-wall trajectory
G ∈ G will have the property that when t is odd, e is even
for all e ∈ g(t), and when t is even (but nonzero), e is odd
for all e ∈ g(t). This is because odd- (even-) numbered
layers couple qubits {2j − 1, 2j } ({2j , 2j + 1}), meaning
that domain walls must lie between qudit positions 2j and
2j + 1 (between qudit positions 2j − 1 and 2j ) for some j .

By converting the sum over trajectories in Eq. (B18) to
a sum over domain-wall trajectories, we can express Z by
the equation

Z = 2
(q + 1)n

∑

G∈G
weight(G), (D2)

where the weight is given as follows, recalling that A(t) is
the pair of qudit indices involved in the tth gate, which in
1D is always A(t) = {j , j + 1} for some j :

weight(G) :=
s∏

t=1

M (t)
g(t−1)g(t)

, (D3)

M (t)
g(t−1)g(t)

:=
⎧
⎨

⎩

q
q2 + 1

, if min(A(t)) ∈ g(t−1),

1, otherwise.
(D4)

In other words, if the gate on qudits {j , j + 1} and there
is a domain wall at position j , then the weight is reduced
by a factor q/(q2 + 1) (and the domain wall must move to
position j − 1 or position j + 1, possibly annihilating if a
domain wall already exists at that position).

Given two domain-wall trajectories G and G′, we con-
sider the combined domain-wall trajectory

G � G′ := (g(0) � g′(0), . . . , g(s) � g′(s)), (D5)

where � is the disjoint union and is defined only under the
assumption g(t) ∩ g′(t) = ∅ for all t.

The upshot of thinking about trajectories in this way is
that if H = G � G′, then

weight(H) = weight(G) weight(G′). (D6)

In particular, we find it useful to decompose a domain-wall
trajectory G into G = GU � G0, where GU is a domain-
wall trajectory with a conserved number of domain walls
throughout the trajectory and G0 is a trajectory for which
|G(s)

0 | = 0, i.e., all the domain walls have annihilated by the
end of the trajectory. This decomposition is unique and an
example is shown in Fig. 5. Let GU and G0 be the subsets
of G that have no annihilations and that have no surviv-
ing domain walls at the end of the circuit, respectively. Let
GU,k be the subset of GU with k domain walls. When the
boundary conditions are periodic, k must be even for GU,k
to be nonempty.

2. Collision probability upper bound

Theorem 9 (Theorem 1 from main text). For the 1D
architecture, let

a := log
(

q2 + 1
2q

)
, (D7)
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= �

Sp
ac

e
Time

G G0 GU

FIG. 5. A sketch illustrating
unique decomposition of a
domain-wall trajectory G into
a disjoint union of one part,
G0, where all domain walls
annihilate prior to the end of the
circuit, and another part, GU,
where no domain walls
annihilate.

s∗ := 1
2a

n log(n)+ n
[

1
2a

log(e − 1)+ 1
2

]

= (2a)−1n log(n)+ O(n). (D8)

Then,

Z ≤ ZH [1 + e− 2a
n (s−s∗)] (D9)

whenever s ≥ s∗. The circuit depth d is d = 2s/n, so we
may define d∗ = 2s∗/n and equivalently conclude that

Z ≤ ZH [1 + e−a(d−d∗)]. (D10)

Note that when s < s∗, an upper bound on Z can still
be inferred from this method. The essence of the proof
of Theorem 9 is the same as the proof of the statement
proved in Ref. [32], although we express it here within our
notation and framework.

Proof. We use the formula in Eq. (D2), which expresses
Z as a weighted sum over domain-wall trajectories. Each
domain-wall trajectory G = (g(0), . . . , g(s)) can be associ-
ated with an integer k = |g(s)|, the number of domain walls
that remain unannihilated at the end of the trajectory. Due
to periodic boundary conditions, k must be even, and we
let k0 = k/2. Let Gk ⊂ G be the associated set of length-
s domain-wall trajectories and let GU,k ⊂ Gk be the subset
containing domain-wall trajectories that have a conserved
number of domain walls throughout. As discussed in the
previous subsection, it is possible to uniquely decompose
H ∈ Gk into H = G � G′, where G ∈ GU,k and G′ ∈ G0.

Suppose that we fix a domain-wall configuration g(0) for
the initial time step at the beginning of the circuit with
k domain walls. There are

(n
k

)
such configurations. The

total weight of all the trajectories in GU,k that begin at
this configuration is at most [2q/(q2 + 1)]k(d−1), since each
domain wall must move either left or right (introducing a
factor of 2) during each of the d layers of gates, except for

possibly the first layer (if the domain wall begins at an even
position, it does not move during the first layer), and each
time one moves it incurs a weight reduction of q/(q2 + 1).
This does not account for the rule that the k domain walls
cannot intersect but it still yields an upper bound on the
total weight.

Meanwhile, the sum of the weights of all domain-wall
trajectories in G0 approaches ZH (q + 1)n/2 from below as
the depth increases. This follows from the analysis in Sec.
6, where it is shown that the sum over all trajectories that
eventually reach a fixed point is exactly ZH (q + 1)n but at
a finite depth not every trajectory will have reached a fixed
point, so only a subset of the terms are included in the sum.
Due to the fact that each domain-wall configuration corre-
sponds to two equal-weight trajectories through {I , S}n, the
sum of the weights of all the domain-wall trajectories in G0
can be at most ZH (q + 1)n/2.

Collecting these observations, and recalling that k =
2k0, we have

Z = 2
(q + 1)n

n/4∑

k0=0

∑

G∈G2k0

weight(G)

= 2
(q + 1)n

n/4∑

k0=0

∑

G∈GU,2k0

∑

G′∈G0
G∩G′=∅

weight(G) weight(G′)

≤
⎡

⎣
n/4∑

k0=0

∑

G∈GU,2k0

weight(G)

⎤

⎦

⎡

⎣ 2
(q + 1)n

∑

G′∈G0

weight(G′)

⎤

⎦

≤
⎡

⎣
n/4∑

k0=0

(
n

2k0

)(
2q

q2 + 1

)2k0(d−1)
⎤

⎦ (ZH )
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= ZH

n/4∑

k0=0

(
n

2k0

)
(e−a)

2k0(d−1)

≤ ZH [1 + e−a(d−1)]n

≤ ZH [1 + (e − 1)ne−a(d−1)] (D11)

= ZH {1 + exp [log(n)− da + log (e − 1)+ a]}
≤ ZH

{
1 + exp

[−a(d − d∗)
]}

, (D12)

where Eq. (D11) holds so long as d ≥ d∗, by application of
Lemma 2. �

Lemma 2. If b, c > 0 and cb ≤ 1, then

(1 + c)b ≤ 1 + cb(e − 1). (D13)

Proof.

(1 + c)b =
b∑

k=0

(
b
k

)
ck = 1 + cb

b∑

k=1

(
b
k

)
ck−1

b

≤ 1 + cb
b∑

k=1

(
b
k

)
b−k ≤ 1 + cb

[
(1 + b−1)b − 1

]

≤ 1 + cb(e − 1). (D14)

�

3. Collision probability lower bound

Theorem 10 (Theorem 5 from main text). Consider the
1D architecture. There are constants A and A′ such that as
long as s∗ − s ≥ A′n, the collision probability satisfies

Z ≥ ZH

2
exp

[
Aelog(n)− 2a

n s
]

. (D15)

where a and s∗ are the same as in Theorem 9.

In our proof, the constant A is explicit but very small, on
the order of e−10, and A′ ≈ − log(A). The value of A could
certainly be improved with some attempt at optimization.

Corollary 5. For the 1D architecture, if we define sAC and
dAC to be the smallest circuit size and circuit depth for
which Z ≤ 2ZH , then
∣∣∣∣∣
sAC −

[
2 log

(
q2 + 1

2q

)]−1

n log(n)

∣∣∣∣∣
≤ O(n), (D16)

∣∣∣∣∣
dAC −

[
log
(

q2 + 1
2q

)]−1

log(n)

∣∣∣∣∣
≤ O(1) . (D17)

Proof. Theorem 9 implies that

sAC ≤ s∗ = (2a)−1n log(n)+ O(n). (D18)

Meanwhile, Theorem 10 implies that if

s ≤ (2a)−1n log(n)− max
{
(2a)−1 log[log(4)A−1], A′}

n = (2a)−1n log(n)− O(n), (D19)

then Z ≥ 2ZH . Hence sAC ≥ (2a)−1n log(n)− O(n).
Together, these imply that |sAC − (2a)−1n log(n)| =
O(n). �

Proof of Theorem 10. Equation (D2) expresses Z as a
weighted sum over domain-wall trajectories. Heuristically,
when d < d∗, we expect that the output distribution will
not be anticoncentrated and that domain-wall trajecto-
ries drawn at random with probability proportional to its
weight will usually have many domain walls that never
annihilate. To lower bound Z, we sum over the set of
configurations with k unannihilated domain walls for a
particularly chosen value of k.

For a fixed value of the depth d, define

nH := e(d−1)a

2(e − 1)
. (D20)

We choose nH to be exactly half the value of n for which
a depth-d circuit would be anticoncentrated. Heuristically,
we expect on the order of n/2nH unannihilated domain
walls in typical configurations.

Let k be an even integer to be specified later. Let Hk ⊂
GU,k be the set that contains any domain-wall trajectory
H = (h(0), . . . , h(s)) for which:

(1) H has k domain walls at each time step (none
annihilate).

(2) For each of the k domain walls in the initial con-
figuration h(0), the nearest domain wall in both
directions is at most nH positions away.

Now, temporarily fix some H ∈ Hk. It has k domain walls
that move around throughout the trajectory. We let eH, j,t
be the location of the jth domain wall at time step t in the
trajectory H . We then define the set JH, j ⊂ G0, for j =
1, . . . , k to be the set of domain-wall trajectories for which
(1) all of the domain walls annihilate before time step s and
(2) the position et of any domain wall at time step t satisfies

eH, j,t < et < eH , j +1,t. (D21)

In other words, all of the domain walls fall between the jth
and ( j + 1)th domain walls of H . This ensures that H is
disjoint from any Jj ∈ JH , j .
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...
...

...
...

e1

e2

e3

e1

e2

e3

e2 e2

e1

e3

= � � � · · ·

= � � � · · ·H ′ H JH,1 JH,2

FIG. 6. The outline of the main idea of the proof of Theorem 10. We choose a domain-wall trajectory H that has k domain walls
that never annihilate and such that the distance between consecutive domain walls is always at most nH . We then choose domain-wall
trajectories JH ,1, . . . , JH ,k such that the domain walls of JH , j lie between the j th and ( j + 1)th domain walls of H and all annihilate
before the end of the circuit. The domain-wall configuration H ′ is the disjoint union of H and JH , j for j = 1, . . . , k. We can lower
bound the collision probability by lower bounding the weighted sum over the contribution from all H ′ formed this way.

The specification of a trajectory H ∈ Hk as well as
Jj ∈ JH , j , for each j = 1, . . . , k, determines a unique tra-
jectory H ′ = H � JH ,1 � . . . � JH,k. This decomposition is
illustrated in Fig. 6. Thus, if we perform the weighted sum
only over the set of H ′ formed in this way, we arrive at a
lower bound to Z, as follows:

Z = 2
(q + 1)n

∑

H∈G
weight(H)

≥ 2
(q + 1)n

⎡

⎣
∑

H∈Hk

weight(H)

⎤

⎦

⎡

⎣
∑

J1∈JH ,1

weight(J1)

⎤

⎦

· · ·
⎡

⎣
∑

Jk∈JH,k

weight(Jk)

⎤

⎦ . (D22)

The quantities in parentheses can be bounded with the
following two lemmas, the proofs of which are delayed
until after the proof of the theorem.
Lemma 3. If 4d ≤ �n/k� and nH/2 ≥ �n/k� hold, then the
set Hk satisfies

∑

H∈Hk

weight(H) ≥
(

1
2

⌊n
k

⌋)k ( 2q
q2 + 1

)dk

. (D23)

Lemma 4. Fix a value of H and j . Suppose that the j th
and ( j + 1)th domain walls of the initial configuration of
H lie at positions e and e + X − 1 (mod n), respectively,
for some positive integer X < n. Then,

⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦ ≥ 1
c

(
q + 1

q

)X

, (D24)

where c = 3e10.

The sum of the domain length X for each of the domains
is simply n. Thus the ((q + 1)/q)X factors cancel the
1/(q + 1)n prefactor for Z, and we have

Z ≥ q−n
(

1
2

⌊n
k

⌋)k

c−k
(

2q
q2 + 1

)dk

= q−n
(

1
2

⌊n
k

⌋)k

c−ke−adk (D25)

for any k that satisfies 4d ≤ �n/k� and nH/2 ≤ �n/k�.
Now, we choose a value of k to maximize the right-

hand side of the above equation. In the limit of large n,
the requirement that k is an even integer will have negli-
gible effect. In our analysis, we handle this requirement by
defining k′ to be a real number and k to be the smallest even
integer larger than k′ and then we make a few rather crude
bounds on the floor and ceiling of quantities such as n/k,
which are not asymptotically tight but are good enough for
our purposes. We choose

k′ :=
n
(

2q
q2+1

)d

8ce
= ne−da

8ce
= n

nH

e−a

16e(e − 1)c
, (D26)

k := smallest even integer greater than k′. (D27)

Note that n/k′ is at least 8ce, which is very large, meaning
that �n/2k′�/2 ≤ n/2k′ ≤ 2�n/2k′� certainly holds. For
finite n, we can say that as long as k′ ≥ 1, then k′ ≤ k ≤ 2k′
will hold. The requirement k′ ≥ 1 translates into

d ≤ a−1[log(n)− log(8ce)], (D28)
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which, by recalling s = nd/2 and that s∗ ≥ (2a)−1n log(n),
can be reexpressed as

s∗ − s ≥ A′n, (D29)

with A′ := (2a)−1 log[8ce(e − 1)] + 2−1, which is assumed
to hold in the theorem statement. This implies that

⌊n
k

⌋
≥
⌊ n

2k′
⌋

≥ n
4k′ . (D30)

Inspection of the formula for k′ reveals that the rela-
tion 4d ≤ �n/k� holds for any d and n. Moreover, we
have nH/2 = (ne−a)/[k′32e(e − 1)c] ≤ �n/k�, so the sec-
ond relation holds as well.

Recall that ZH = 2/(qn + 1) ≤ 2q−n. If we substitute
the above bound on �n/k� into Eq. (D25), we find that

Z ≥ ZH

2
exp(k) ≥ ZH

2
exp(k′)

≥ ZH

2
exp

(
ne−da

8ce

)

= ZH

2
exp

[
1

8ce
elog(n)−da

]

= ZH

2
exp

[
1

8ce
elog(n)− 2as

n

]

= ZH

2
exp

[
Aelog(n)− 2as

n

]
, (D31)

for A := 1/8ce. Note that this value of A is quite small (on
the order of e−10) but with some optimization could likely
be made much larger. �

Now, we provide the delayed proofs of the two lemmas.

Proof of Lemma 3. Each term in the sum on the left-hand
side is non-negative, so we make a lower bound by sum-
ming over a subset of the terms. To do so, we can split the
n indices up into k nearly equal-size segments of length at
most �n/k�, which is less than nH/2 by assumption. Then,
for each of these segments, we choose the location of a sin-
gle domain wall that is at least distance d from each edge
of the segment. This will generate a unique initial domain-
wall configuration that satisfies criteria (2) of Hk, since any
pair of consecutive domain walls is closer than nH apart.
The total number of choices is at least

(⌊n
k

⌋
− 2d

)k
, (D32)

which, by the assumption 4d ≤ �n/k�, is at least
(�n/k�/2)k.

Once the initial k domain-wall locations have been cho-
sen, we examine how they can propagate through the
circuit. Each layer of gates will force each of the k domain

walls to move in one of two directions and the weight
is reduced by a factor [q/(q2 + 1)]k, except for the first
layer, where some of the domain walls may not move if
they begin at an even index. Since, by construction, there
are no instances where domain walls start within a dis-
tance of 2d of any other domain wall, there is no chance
of domain walls crossing. Thus, we find that for each ini-
tial set of k locations chosen in the manner outlined above,
the combined weight of all possible trajectories is at least
[2q/(q2 + 1)]kd. This proves the lemma. �

Proof of Lemma 4. Consider an alternative 1D qudit sys-
tem with periodic boundary conditions consisting of X
sites by identifying site e + X with site e and ignoring
all other sites. Because H ∈ Hk, we can be assured that
X ≤ nH . Let J ′

H , j be the set of all domain-wall trajecto-
ries on the size-X system. Let J ′

H , j ,l be the subset that
have l = 2l0 domain walls on the last time step. Because
the collision probability, denoted ZX , for this X -qudit sys-
tem must satisfy ZX ≥ ZH, X , and here ZH, X = 2/(qX + 1),
it must be the case that

ZX := 2
(q + 1)X

⎡

⎢
⎣
∑

J ′∈J ′
H , j

weight(J )

⎤

⎥
⎦

= 2
(q + 1)X

X /4∑

l0=0

⎡

⎢
⎣

∑

J ′∈J ′
H , j ,2l0

weight(J )

⎤

⎥
⎦

≥
(

2
qX + 1

)
=: ZH, X . (D33)

We can upper bound the contribution of all the terms with
l0 > 0 in the above expression by the method that yields
the upper bound in Theorem 9. The sum of those terms is
upper bounded by the second term in Eq. (D11), that is,

2
(q + 1)X

X /4∑

l0=1

⎡

⎢
⎣

∑

J ′∈J ′
H , j ,2l0

weight(J )

⎤

⎥
⎦

≤ ZH, X (e − 1)Xe−a(d−1)

=
(

2
qX + 1

)
X

2nH
≤ 1

2

(
2

qX + 1

)
, (D34)

since X ≤ nH . Combining Eqs. (D33) and (D34), we find
a lower bound on the l0 = 0 term:

010333-25



DALZELL, HUNTER-JONES, and BRANDÃO PRX QUANTUM 3, 010333 (2022)

∑

J ′∈J ′
H , j ,0

weight(J )

≥
[
(q + 1)X

2

](
2

qX + 1

)(
1 − 1

2

)

=
(

q + 1
q

)X (1
2

qX

qX + 1

)
≥
(

q + 1
q

)X (1
3

)
,

(D35)

where the last inequality follows since q ≥ 2 and X ≥ 1
must be true. Now, every domain-wall trajectory in JH , j
will also be in J ′

H , j ,0 but the converse will not be true.
Some trajectories in the latter set will have one or more
domain walls that intersect with either the j th or the
( j + 1)th domain wall of H at some time step, which is
not allowed within the former set. Thus, the sum over the
domain-wall trajectories in JH , j will be smaller than the
sum over those in J ′

H , j ,0 but, we argue, by at most some
constant factor due to the following argument, which is
also described in Fig. 7. Let BH , j be the set of all tra-
jectories in which every domain wall either intersects the
j th domain wall of H at some time step t or it annihilates
with a domain wall that previously intersected with the j th
domain wall of H . Then, any trajectory in J ′

H , j ,0 can be
formed as the disjoint union of a trajectory in J ∈ JH , j , a
trajectory in K ∈ BH , j , and a trajectory in K ′ ∈ BH , j +1, to
account for the parts that intersect the j th and ( j + 1)th
domain walls. Given J ′, the choice of J for this decom-
position is unique but there may be multiple choices of
(K , K ′) for which it holds. Note also that a trajectory in

BH , j can be decomposed into individual domain-wall pairs
that coincide with the j th domain wall of H at some time
step t and annihilate at some time step t′. The combined
weight of all such pairs, given fixed coincidence point at
eH, j,t, is at most (2q/(q2 + 1))2t′ . If we sum over t′ ≥ t, we
find that the combined weight for all possible domain-wall
pairs coinciding at time step t is at most

(
2q

q2+1

)2t

1 −
(

2q
q2+1

)2 = (q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t

. (D36)

There can be many domain-wall pairs that intersect the j th
domain wall of H but for each value of t, there will either
be no intersection (in which case the factor is 1) or one
intersection (in which case the factor is at most the above
quantity). Thus we can take the product over including or
not including a domain wall at each value of t and find

∑

K∈BH , j

weight(K) ≤
s∏

t=1

[

1 + (q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t
]

.

(D37)

This implies that

ej

ej+1

ej

ej+1

ej

ej+1

X

�

�

=

= �J ′ J K � K ′

J ′
J

K

K ′

FIG. 7. The outline of the argument in the proof of Lemma 4 that the sum over domain-wall trajectories in JH , j is at least the sum
in J ′

H , j ,0 divided by some constant factor, expressed in Eq. (D38). Every trajectory in J ′ ∈ J ′
H , j ,0 can be decomposed into a trajectory

J ∈ JH , j a trajectory K ∈ BH , j , and a trajectory K ′ ∈ BH , j +1, where each domain wall in K intersects the j th domain wall of H , and
each domain wall of K ′ intersects the ( j + 1)th domain wall of H . Because the combined weight of all possible K and K ′ is only
a constant factor, independent of n, the combined weight of all possible J cannot be more than a constant factor smaller than the
combined weight of all possible J ′. Note that the system with X sites has periodic boundary conditions in this figure.
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∑

J ′∈J ′
H , j ,0

weight(J ) ≤
⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦

⎡

⎣
∑

K∈BH , j

weight(K)

⎤

⎦

⎡

⎣
∑

K ′∈BH , j +1

weight(K ′)

⎤

⎦

≤
⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦
s∏

t=1

[

1 + (q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t
]2

≤
⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦ exp

[

2
s∑

t=1

(q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t
]

≤
⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦ exp

⎡

⎢
⎣

8q2

(q2 − 1)2
1

1 −
(

2q
q2+1

)2

⎤

⎥
⎦

=
⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦ exp
[

8q2(q2 + 1)2

(q2 − 1)4

]

≤
⎡

⎣
∑

J∈JH , j

weight(J )

⎤

⎦ e10, (D38)

where the last inequality follows since q ≥ 2 and the func-
tion of q inside the exp is monotonically decreasing. By
combining the above with Eq. (D35), we arrive at

⎛

⎝
∑

J∈JH , j

weight(J )

⎞

⎠

≥
(

q + 1
q

)X ( 1
3e10

)
=
(

q + 1
q

)X

c−1. (D39)

�

APPENDIX E: BOUNDS FOR THE
COMPLETE-GRAPH ARCHITECTURE

1. Proof intuition and guide

In the following sections, we complete the proofs for
upper and lower bounds of the complete-graph architec-
ture, defined formally in Definition 1. The first insight
about the complete-graph architecture is that all config-
urations with the same Hamming weight are equivalent,
as there is a symmetry upon permutation of the qudits.
Thus, trajectories through configuration space {I , S}n are
reduced to trajectories through Hamming weight space
{0, 1, . . . , n}.

Our upper bound uses the framework of the unbiased
walk and the lower bound uses the biased walk. Recall that
we can use the unbiased walk to express the collision prob-
ability Z as a sum over all possible paths that the trajectory

might take, working from Eq. (B19):

Z = 1
(q + 1)n

∑

�γ (0)
E

Pu, �γ (0)

⎡

⎢
⎣
(

2q
q2 + 1

)
(
number of bit
flips during walk

)⎤

⎥
⎦

= 1
(q + 1)n

n∑

x=0

(
n
x

)

E
Pu,x

⎡

⎢
⎣
(

2q
q2 + 1

)
(
number of bit
flips during walk

)⎤

⎥
⎦,

(E1)

where the
(n

x

)
comes from the fact that this is the number

of initial configurations with Hamming weight x. For the
complete-graph case, Pu takes on a simple form: if the cur-
rent configuration is x, the chance that the configuration
changes on the next time step is precisely the chance of
finding mismatching values upon drawing a random pair
of indices in [n], which is given by 2x(n − x)/n(n − 1),
and if it does change, it is equally likely to become x − 1
or to become x + 1. For the biased walk Pb, everything
is the same except that when the configuration changes, it
is biased to travel to x − 1 with probability q2/(q2 + 1).
Also, in the biased case, the initial configuration is not
a uniform choice over all configurations but instead dis-
tributed according to �b and the expectation in the above
equation is replaced with E[q| �γ (s)|]. Thus larger Hamming
weight configurations are exponentially more significant in
their contribution to Z.
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To gain an intuition for what we expect, we first think
about the biased walk, which is what we use for the
lower bound. Here, the peak of the probability mass in
the initial configuration�b starts around Hamming weight
x = n/(q + 1). On average, the walk lingers for n(n −
1)/2x(n − x) time steps before moving, which is approxi-
mately equal to n/2x when x is close to 0. Due to the bias,
and due to the time required to wait, the effective speed of
the biased walk is

veff(x) = 2x(n − x)
n(n − 1)

(
q2

q2 + 1
− 1

q2 + 1

)
≈ 2x

n
q2 − 1
q2 + 1

(E2)

in the direction of 0, since each time it moves, it has a
q2/(q2 + 1) chance of moving one unit closer to 0 but a
1/(q2 + 1) chance of moving one unit further away from
0. Thus, in expectation, the time it takes for the peak of the
probability mass to reach value 0 is

n/(q+1)∑

x=1

1
veff(x)

≈ q2 + 1
q2 − 1

1
2

n log(n) ≈: s∗, (E3)

noting that
∑

x(1/x) ≈ log(n).
This strongly suggests that s∗ time steps are necessary

for anticoncentration, as any less time would mean that the
peak of the distribution over Hamming weights at the end
of the circuit would be located at some Hamming weight
y > 0 and as a result, it would receive a significant amount
of weight qy in its contribution to Z. This is the intuition
for our lower bound.

The biased walk also gives intuition for why there is a
matching upper bound. If the circuit size is a little bigger
than the lower bound, we expect the peak of the distribu-
tion to have terminated at the fixed point at 0. It is still
possible that the tail of the distribution, which will not yet
have reached the fixed point, is too fat for anticoncentra-
tion to have been achieved; each unit further away from
0 results in a factor-of-q-larger contribution to Z, so we
need the tail to be exponentially decaying if we want to
be able to ignore it. This is essentially what we are able to
show, albeit in such a way that it might not be completely
clear that this is what we are doing. Intuitively, one reason
we expect this exponentially decaying tail is because the
effective speed slows down as we get closer to zero. This
gives the tail of the distribution, which is sitting further
away from 0, time to “catch up,” as its effective speed is
faster.

To actually perform the upper bound, we turn back to the
unbiased walk. To be clear and to match the progression in
the full proof, we introduce the concept of a reduced path
(equivalently, “reduced walk”) as a walk that never stands
still at a certain configuration. If its Hamming weight at
time step t is y, then its Hamming weight at time step t + 1

will move to y − 1 or y + 1. For each walk, we can form
a corresponding reduced walk simply by removing con-
secutive duplicates from the sequence of configurations.
Another way to look at it is that given a fixed reduced
walk, the actual walk will linger at each location for a cer-
tain number of time steps before continuing. In the limit
of large circuit size s, there is enough time for the actual
walk to linger as long as it would like at each step and
any reduced walk will successfully be “completed” by the
actual walk. In this limit, Z = ZH where ZH := 2/(qn + 1)
is the Haar value. Away from this limit, there is some
probability that some reduced paths will not be completed.

We are able to express the difference between Z and ZH
as a sum over all reduced paths, including reduced paths
that do not terminate at Hamming weight 0 or Hamming
weight n, where the summand is proportional to the proba-
bility that the reduced path is not completed within s time
steps:

(q + 1)n(Z − ZH )

=
∑

red path φ

(
q

q2 + 1

)length of φ
(q − 1)2

2q

× Pr[φ not completed in s time steps]. (E4)

The next key insight is to use a Chernoff bound to bound
the probability of a reduced walk not being completed. If
L is the length of the walk, the Chernoff bound states (for
any constant a > 0) that

Pr[L > s] ≤ E[eaL]
eas , (E5)

but this is particularly useful because, for fixed φ, L is itself
a sum of independent random variables Lφ(i) , the number of
time steps the walk waits on step i. Thus

E[eaL] =
∏

i

E[eaL
φ(i) ] (E6)

and because each random variable Lφ(i) is exponentially
distributed, we can calculate E[eaL

φ(i) ] exactly. For the
purposes of the proof sketch, denote

Tx := E[eaLx ]. (E7)

The dependence of Tx on x (the walk will wait longer when
x is near 0 or n than when it is near n/2) appears to be a
problem, as it is unclear how to actually perform the fol-
lowing sum over all possible φ (where the constant a for
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each reduced walk φ, denoted aφ , is specified later):

(q + 1)n(Z − ZH )

= (q − 1)2

2q

∑

red path φ

e−aφs
length of φ∏

i=1

(
q

q2 + 1
Tφ(i)

)
.

(E8)

To proceed, we break φ up into subpaths that inch closer
and closer to 0 and n. We can write φ as the concatena-
tion of φx, φx−1, . . . , φw, where φv begins at either v or
n − v and only reaches v − 1 or n − v + 1 for the first
time on the very last step. Then, w is the minimum Ham-
ming weight distance from one of the fixed points (0 or n)
that the reduced walk φ ever reaches. Because the walk φv
spends all its time between v and n − v, the expectation
Ty for all of the y within one of these φv walks will be
less than or equal to Tv (the walk moves slower when it is
closer to 0 or n) and we can write

(q + 1)n(Z − ZH ) ≤ (q − 1)2

2q

n∑

x=0

(
n
x

) min(x,n−x)∑

w=0

e−aws

×
⎡

⎣
∑

φx

(
q

q2 + 1
Tx

)length of φx

⎤

⎦ . . .

×
⎡

⎣
∑

φw

(
q

q2 + 1
Tw

)length of φw

⎤

⎦ .

(E9)

Here, the
(n

x

)
comes in as the number of configurations with

Hamming weight x and aφ has changed to aw because we
choose it so that it only depends on the end point w of φ.

The above equation is huge progress, because we
already know how to perform the sums in brackets. Essen-
tially, the factor of Tx simply changes the effective value of
q; we may define q̄ to satisfy

q̄/(q̄2 + 1) = qTx/(q2 + 1). (E10)

Then, we can use the formulas for sums over paths that
we have already developed in Lemma 1 to perform the
sums. What we find is that, for the values of aw that we can
choose, we must allocate roughly (q2 + 1)n/2(q2 − 1)x
time steps for s such that e−aws can cancel out the value
of the sum in brackets for φx. Note that this is precisely the
inverse of the effective speed that we defined before. Then,
for all the sums to be canceled from v = 1 to v = n/2, we
must allocate

n/2∑

v=1

q2 + 1
2(q2 − 1)

n
x

≈ q2 + 1
2(q2 − 1)

n log(n) (E11)

time steps. Fundamentally, the log(n) factor becomes nec-
essary because the walk waits longer and longer as it gets
closer and closer to the fixed points. In the full analysis,
we find that a term linear in n is also necessary to fully
anticoncentrate, but our analysis of the linear term is not
tight.

2. Preliminaries

a. Trajectories

For the complete-graph architecture, we may keep track
of only the Hamming weight of a certain configuration.
Thus, our random walks are over the set {0, 1, . . . , n}.
A trajectory γ is now a sequence of integers (γ (0), . . . , γ (s)).
Generally speaking, if t > s for a sequence of length s, let
γ (t) return γ (s). A sequence is valid if for every t, |γ (t) −
γ (t−1)| ≤ 1 and such that if 0 or n appears, it appears only
once at the very end of the sequence. Let � be the set of all
valid trajectories.

For any valid trajectory γ , the unbiased random walk
associates a nonzero probability:

Pr
Pu

[γ ] :=
s∏

t=1

Pu[γ (t)|γ (t−1)], (E12)

where

Pu[y|x] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(n − x)
n(n − 1)

, if |y − x| = 1,

1 − 2x(n − x)
n(n − 1)

, if y = x,

0, otherwise.

(E13)

We can make the same definition for the biased random
walk by replacing Pu with Pb, where

Pb[y|x] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2q1+x−y

q2 + 1
x(n − x)
n(n − 1)

, if |y − x| = 1,

1 − 2x(n − x)
n(n − 1)

, if y = x,

0, otherwise.

(E14)

For P ∈ {Pu, Pb} and any subset ϒ ⊆ �, we let PrP[ϒ] =∑
γ∈ϒ PrP[γ ] be the total probability assigned to paths

in ϒ .

b. Conditional probabilities and expectations

For any γ ∈ ϒ , we may also define the conditional
probability

Pr
P

[γ |ϒ] := PrP[γ ]
PrP[ϒ]

, (E15)

which indicates drawing from the subset ϒ with a prob-
ability proportional to that assigned by the (unbiased or
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biased) random walk. This also allows us to naturally
define conditional expectation values for some quantity Q
computed from γ :

E
P

[Q[γ ]|γ ∈ ϒ] :=
∑

γ∈ϒ

PrP[γ ]
PrP[ϒ]

Q[γ ]. (E16)

c. Trajectory concatenation and other operations

For any trajectory γ = (γ (0), . . . , γ (s)) ∈ �, let L[γ ] = s
be the length of the trajectory and let γ (L) be shorthand
for γ (L[γ ]). The statement w ∈ γ returns true if there exists
some t for which γ (t) = w. Then, we let

Sw[γ ] =
{

min
({t : γ (t) = w}) , if w ∈ γ ,

−1, if w �∈ γ ,
(E17)

be the first time step along γ for which the trajectory
reaches w. We also let

M [γ ] := max
0≤t≤L[γ ]

γt, (E18)

m[γ ] := min
0≤t≤L[γ ]

γt (E19)

be the maximum and minimum Hamming weights through
which the trajectory passes.

We can naturally concatenate two trajectories γ1 and γ2

if γ (L)1 = γ
(0)
2 to form a trajectory γ = γ1 · γ2 of length

L[γ1] + L[γ2]. We say that γA ⊂ γC if there exists some
γB for which γA · γB = γC.

For any trajectory γ , we let γ̃ be the flipped trajectory:

γ̃ := (n − γ (0), n − γ (1), . . . , n − γ (s)). (E20)

In general, if v is an integer with 0 ≤ v ≤ n, then let ṽ :=
min(v, n − v).

Similarly, let γ̄ return the reversed trajectory:

γ̄ := (γ (s), . . . , γ (0)). (E21)

Moreover, let γ [t] return the trajectory γ truncated to length
t, or simply return γ if t ≥ L[γ ], i.e.,

γ [t] :=
{
γ , if t ≥ L[γ ],
(γ (0), . . . , γ (t)), if t < L[γ ].

(E22)

Let γ [L−t] be shorthand for γ [L[γ ]−t]. More generally, let
γ [a,b] = (γ (a), γ (a+1), . . . , γ (b)).

d. Important subsets of �

We now define various subsets of �. Let

�x := {γ ∈ � : γ (0) = x} (E23)

be the subset of trajectories that begin at x and let

�w := {γ ∈ � : Sw[γ ] = L[γ ]} (E24)

be the set of trajectories that reach w for the first time and
immediately terminate. We make the natural combination
of these:

�w
x := {γ ∈ � : γ0 = x, Sw[γ ] = L[γ ]}. (E25)

Of particular importance are sets where w = 0 or w = n,
which include valid trajectories that terminate at one of the
fixed points of the random walk. Define

�∗
x = �0

x ∪ �n
x (E26)

and note that PrPu[�∗
x ] = PrPb[�∗

x ] = 1, a statement that
intuitively makes sense since walks will eventually reach
either 0 or n with probability 1. Adding the superscript w
to any set ϒ restricts to walks for which L[γ ] = Sw[γ ].

When any walk in ϒ can be concatenated with any walk
in ϒ ′, we let

ϒ · ϒ ′ := {γ · γ ′ : γ ∈ ϒ , γ ′ ∈ ϒ ′}. (E27)

Additionally, we let

ϒ̃ := {γ̃ : γ ∈ ϒ}, (E28)

ϒ̄ := {γ̄ : γ ∈ ϒ}. (E29)

e. Reduced trajectories

We also introduce the concept of a reduced trajectory,
which we sometimes refer to synonymously as a reduced
walk, which is a valid trajectory for which |γ (t) − γ (t−1)| =
1 for all t; that is, the reduced walk never stands still. We let
the set of reduced walks be � and we let all subscripts and
superscripts restrict � in the same way that they restrict
�. For any γ ∈ �, we can associate a reduced walk ψ ∈
� by removing consecutive duplicates from γ . Under this
definition, we let R[γ ] := ψ . For any ψ ∈ �, we let

�ψ = {γ ∈ � : R[γ ] = ψ , R[ψ [L−1]] �= ψ}, (E30)

where the second condition acts to include only trajecto-
ries γ the final configuration of which appears only once
(i.e., when the final configuration is removed, the reduced
sequence changes).
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Under dynamics by either the unbiased or biased walk,
it is easy to calculate the probability associated with �ψ :

Pr
Pu

[�ψ ] :=
(

1
2

)L[ψ]

, (E31)

Pr
Pb

[�ψ ] := qψ
(0)−ψ(L)

(
q

q2 + 1

)L[ψ]

. (E32)

Finally, define the following subsets of �:

�x = �x−1
x|n−x+1 ∪�n−x+1

x|x−1 , (E33)

�w = {ψ ∈ �w : m(ψ) ≥ w, M (ψ) ≤ n − w}, (E34)

where the subset �c
a|b is defined as follows:

�w
x|z :=

⎧
⎪⎨

⎪⎩

{ψ ∈ �w
x : M [ψ] < z}, if w < x < z,

{ψ ∈ �w
x : m[ψ] > z}, if z < x < w,

∅, otherwise.
(E35)

In words, the set �w
x|z includes reduced walks that begin at

x and end at w without ever reaching z. Thus �x is the set
of reduced walks that start at x and end at x − 1 without
ever reaching n − x + 1 or end at n − x + 1 without ever
reaching x − 1. The set �w is the set of reduced walks of
any finite length that start at w but never reach either w − 1
or n − w + 1.

3. Upper-bound proof

Theorem 11 (Theorem 2 from main text). For the
complete-graph architecture with circuit size s on n qudits
with local Hilbert space dimension q,

Z ≤ ZH

[
1 + e− 2a

n (s−s∗)
]

, (E36)

as long as s ≥ s∗, where

s∗ = q2 + 1
2(q2 − 1)

n log(n)+ O(n), (E37)

a = (q − 1)2

2(q2 + 1)
. (E38)

Proof. In this proof, we are working with expressions for
the collision probability Z. It will take several steps to
manipulate the original expression into the form we need,
so we will move back and forth between updating the
expression and developing the tools needed to justify these
updates.

We start by expressing

Z = 1
(q + 1)n

n∑

x=0

(
n
x

)

E
Pu

⎡

⎣
(

2q
q2 + 1

)L
[
R
[
γ [s]

]]
∣∣∣ γ ∈ �∗

x

⎤

⎦.

(E39)

This is seen to be equivalent to Eq. (B19) as follows. There
are
(n

x

)
initial configurations with Hamming weight x and

generating a length-s trajectory beginning at x with the
unbiased Markov chain is equivalent to randomly choos-
ing a trajectory γ from �∗

x , which begins at x and ends
at a fixed point (0 or n), with a probability proportional
to that assigned by the unbiased walk, and then truncat-
ing the walk to length s, denoted by γ [s]. Then, R[γ [s]]
is the reduced trajectory, where consecutive duplicates are
removed, and L[R[γ [s]]] is the length of that reduced tra-
jectory or, in other words, the total number of bit flips that
have occurred within the first s time steps.

Moving ahead, we observe that drawing γ from �∗
x is

equivalent to first drawing a reduced trajectory ψ from �∗
x

and then drawing γ from �ψ , so we can rewrite

Z = 1
(q + 1)n

n∑

x=0

(
n
x

) ∑

ψ∈�∗
x

Pr
Pu

[�ψ ]E
Pu

×
⎡

⎣
(

2q
q2 + 1

)L
[
R
[
γ [s]

]]
∣∣∣ γ ∈ �ψ

⎤

⎦ . (E40)

Now, note the following general statement about any
integer-valued random variable X such that 0 ≤ X ≤ M .
For any function f , we have

E[f (X )] =
M∑

m=0

Pr[X = m]f (m)

=
M∑

m=0

(Pr[X < m + 1] − Pr[X < m]) f (m)

= f (M )+
M∑

m=1

Pr[X < m] [f (m − 1)− f (m)] .

(E41)

Taking X = L[R[γ [s]]] for γ drawn at random from �ψ
and f (X ) = [2q/(q2 + 1)]X , we find that
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E
Pu

⎡

⎣
(

2q
q2 + 1

)L
[
R
[
γ [s]

]]
∣∣∣ γ ∈ �ψ

⎤

⎦

=
(

2q
q2 + 1

)L[ψ]

+
L[ψ]∑

m=1

Pr
Pu

[
L[R[γ [s]]] < m

∣∣∣ γ ∈ �ψ
]( 2q

q2 + 1

)m−1
(q − 1)2

q2 + 1

=
(

2q
q2 + 1

)L[ψ]

+
L[ψ]∑

m=1

Pr
Pu

[
L[γ ] > s

∣∣∣ γ ∈ �ψ [m]

]( 2q
q2 + 1

)m−1
(q − 1)2

q2 + 1
, (E42)

where the last line follows since the conditions L[R[γ [s]]] < m with γ ∈ �ψ and L[γ ] > s with γ ∈ �ψ [m] both correspond
to deciding if the configuration has changed at least m times within the first s steps.

The quantity

1
(q + 1)n

n∑

x=0

(
n
x

) ∑

ψ∈�∗
x

Pr
Pu

[�ψ ]
(

2q
q2 + 1

)L[ψ]

(E43)

is precisely equal to ZH , as this represents the limit of infinite size where all trajectories terminate at one of the fixed points
(see Sec. 6). Thus, also noting that PrPu[�ψ ] = 2−L[ψ], we have

Z = ZH + (q − 1)2

(q + 1)n(q2 + 1)

n∑

x=0

(
n
x

) ∑

ψ∈�∗
x

Pr
Pu

[�ψ ]
L[ψ]∑

m=1

Pr
Pu

[
L[γ ] > s

∣∣∣ γ ∈ �ψ [m]

]( 2q
q2 + 1

)m−1

= ZH + (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∑

ψ∈�∗
x

Pr
Pu

[�ψ ]
L[ψ]∑

m=1

Pr
Pu

[
L[γ ] > s

∣∣∣ γ ∈ �ψ [m]

]( 2q
q2 + 1

)m

= ZH + (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∑

ψ∈�∗
x

2−L[ψ]
L[ψ]∑

m=1

Pr
Pu

[
L[γ ] > s

∣∣∣ γ ∈ �ψ [m]

]( 2q
q2 + 1

)m

. (E44)

Now, in the first line below, by associating φ = ψ [m] we reorder and regroup the sums: instead of summing over paths ψ
that end at a fixed point and then all intermediate points m = 1, . . . , L[ψ] along the path, we first sum over all m, all φ
(not necessarily ending at a fixed point) of length m, and then all ψ for which φ ⊂ ψ (recall that this means that the first
L[φ] entries in the trajectory ψ are equal to φ). In the second line, we note that the sums over m and φ of length m can be
replaced by a simple sum over all φ (of any length). In the third line, we note that the total probability of all the walks ψ
for which φ ⊂ ψ is just 2−L[φ]:

Z = ZH + (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∞∑

m=1

∑

φ∈�x
L[φ]=m

⎛

⎜⎜
⎝
∑

ψ∈�∗
x

φ⊂ψ

2−L[ψ]

⎞

⎟⎟
⎠ Pr

Pu

[
L[γ ] > s

∣∣∣ γ ∈ �φ
]( 2q

q2 + 1

)L[φ]

= ZH + (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∑

φ∈�x

⎛

⎜⎜
⎝
∑

ψ∈�∗
x

φ⊂ψ

2−L[ψ]

⎞

⎟⎟
⎠ Pr

Pu

[
L[γ ] > s

∣∣∣ γ ∈ �φ
]( 2q

q2 + 1

)L[φ]

= ZH + (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∑

φ∈�x

(
2−L[φ]) Pr

Pu

[
L[γ ] > s

∣∣∣ γ ∈ �φ
]( 2q

q2 + 1

)L[φ]

= ZH + (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∑

φ∈�x

Pr
Pu

[
L[γ ] > s

∣∣∣ γ ∈ �φ
]( q

q2 + 1

)L[φ]

. (E45)
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Now, we examine the final expression. The difference
between Z and ZH is a sum over �x, which includes all
reduced paths φ that start at x and may or may not ter-
minate at 0 or n. The statement L[γ ] > s is true if the
number of time steps it takes to complete this reduced
path is at least s, i.e., the probability that the path does
not finish within s time steps. As a sanity check, when s
becomes infinite, we expect this probability to become zero
for any path, as there would be enough time for any path
to finish, and in this case Z = ZH as expected. This expres-
sion represents progress because we will be able to bound
the probability of a certain path being completed using a
Chernoff bound.

For any random variable X and for any constant a > 0,

Pr[X > k] ≤ E[eaX ]
eak . (E46)

We use this bound with X = L[γ ], k = s and yet-to-be-
specified constants aφ > 0:

Z − ZH ≤ (q − 1)2

(q + 1)n(2q)

n∑

x=0

(
n
x

) ∑

φ∈�x

e−aφs
E
Pu

×
[
eaφL[γ ]

∣∣∣ γ ∈ �φ
]( q

q2 + 1

)L[φ]

. (E47)

The Chernoff bound has the additional benefit that E[eaX ]
separates when X is the sum of independent random vari-
ables. In particular, once φ is fixed, L[γ ] is the sum of
exponentially distributed random variables corresponding
to how many time steps the path γ waits at each position
along the reduced path φ.

This is seen formally by noting that

φ = (φ(0),φ(1)) · (φ(1),φ(2)) · . . . · (φ(L−1),φ(L)), (E48)

�φ = �(φ(0),φ(1)) · �(φ(1),φ(2)) · . . . · �(φ(L−1),φ(L)), (E49)

and meanwhile, for any collection of subsets ϒm,

E
Pu

[
eaL[γ ] | γ ∈ ϒ1 · . . . ·ϒM

] =
M∏

m=1

E
Pu

[
eaL[γ ] | γ ∈ ϒm

]
.

(E50)

For any r = 0, . . . , L[φ] − 1, we can evaluate

E
Pu

[
eaL[γ ] | γ ∈ �(φ(r),φ(r+1))

] =
∞∑

t=1

(
1 − λ−1

φ(r)

)t−1
λ−1
φ(r)

eat

= 1
1 − λφ(r) (1 − e−a)

, (E51)

where

λv := n(n − 1)
2v(n − v)

(E52)

is the expected amount of time the walk will wait at
Hamming weight v before moving to v + 1 or v − 1, and
hence

E
Pu

[
eaφL[γ ]

∣∣∣ γ ∈ �φ
]

=
L[φ]−1∏

r=0

1
1 − λφ(r) (1 − e−aφ )

.

(E53)

We have made some progress at evaluating the bound on Z
but at this point it remains unclear how to perform the sum
over paths φ ∈ �x. To do so, first we decompose paths φ
into a series of subpaths that inch closer and closer to the
fixed points at 0 and n. In particular, we decompose a path
φ as a concatenation of subpaths drawn from �v for vari-
ous v and one final subpath drawn from �w, as described
in the following lemma. Recall from Eqs. (E33) and (E34)
that these subsets of � are defined by where they start,
where they end, and the maximum or minimum point they
reach.

Lemma 5. Suppose that φ ∈ �x. Let x̃ = min(x, n − x)
and let w = min[m(φ), n − M (φ)]. Then there is a unique
sequence of trajectories (φv)x̃v=w with φv ∈ �v for v =
w + 1, . . . , x̃ and φw ∈ �w and such that

φ = αx̃ · αx̃−1 · . . . · αw, (E54)

where for each v, either αv = φv or αv = φ̃v , depending
on whether αv+1 terminates at v or at n − v.

Proof. Let rv be the minimum r such that φ(r) = v or
φ(r) = n − v. Then, for each v = w + 1, . . . , x̃, we can
define

αv = φ[rv ,rv−1] (E55)

and

αw = φ[rw,L[φ]]. (E56)

Then, each αv begins at either v or n − v and terminates
upon reaching either v − 1 or n − v + 1 for the first time.
Hence it is a member of�v or �̃v but not both. Finally, αw
is a member of�w because it begins at w and never reaches
either w − 1 or n − w + 1, since this would contradict the
definition of w. �

We use the notation ṽ := min(v, n − v) for any integer
v throughout the remainder of the proof. The above lemma
allows us to replace the sum over φ ∈ �x with sums over
w from 0 to x̃ and sums over φv ∈ �v , φw ∈ �w. The sum-
mand is a product of factors [1 − λφ(r) (1 − e−aφ )]−1, each
of which can be collected within just one of the sums.
Moreover, the fact that these products are invariant under
reversing the path, i.e.,
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L[ψ]−1∏

r=0

f [ψ(r)] =
L[ψ]−1∏

r=0

f [ψ̃(r)], (E57)

for any function f , means that it is unimportant that αv can equal φv or φ̃v as both yield the same result.
We choose aφ so that it only depends on w = min[m(φ), n − M (φ)], denoted henceforth by aw. Collecting these obser-

vations and noting that the L[φ] factors of q/(q2 + 1) can each be allocated to one of the steps taken in φ, we find
that

(q + 1)n(2q)
(q − 1)2

(Z − ZH ) ≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−aws
x̃∏

v=w

⎡

⎢⎢⎢
⎣

∑

φv∈�v
or

φw∈�w

L[φv ]−1∏

r=0

q
q2 + 1

1
1 − λ

φ
(r)
v
(1 − e−aw)

⎤

⎥⎥⎥
⎦

≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−aws
x̃∏

v=w

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

φv∈�v
or

φw∈�w

[
q

q2 + 1
1

1 − λv(1 − e−aw)

]L[φv ]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (E58)

where in the final line, we use the fact that by definition of φv ∈ �v or φv ∈ �v , v ≤ φ(r)v ≤ n − v for all r < L[φ] and
also λv ≥ λv′ whenever ṽ < ṽ′.

This form is very useful because we know how to perform sums in parentheses, using the strategy we have first seen in
Lemma 1. The values of these sums are given by the following lemma, the proof of which is delayed until after the main
proof.

Lemma 6. Given v and a parameter a that satisfies 1 ≤ ea ≤ {1 − [(q − 1)2/q2 + 1](1/λv)}−1,

∑

α∈�v

[
q

q2 + 1
1

1 − λv(1 − e−a)

]L[α]

= q̄−1
v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

, (E59)

∑

α∈�v

[
q

q2 + 1
1

1 − λv(1 − e−a)

]L[α]

= q̄2
v,a + 1

(q̄v,a − 1)2

(

1 − q̄−1
v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

)

, (E60)

where q̄v,a is defined in Definition 6.

Definition 6. Given x and parameter a satisfying 1 ≤ ea ≤ (1 − ((q − 1)2/q2 + 1)(1/λx))
−1, let

q̄x,a =
(

q2 + 1
2q

) [
1 − λx(1 − e−a)

]
⎧
⎨

⎩
1 +

√

1 − 4q2

(q2 + 1)2[1 − λx(1 − e−a)]2

⎫
⎬

⎭
. (E61)

Note that q̄x,a satisfies the equation

q̄x,a

q̄2
x,a + 1

= q
q2 + 1

1
1 − λx(1 − e−a)

(E62)

and that

q̄−1
x,a =

(
q2 + 1

2q

) [
1 − λx(1 − e−a)

]
⎧
⎨

⎩
1 −

√

1 − 4q2

(q2 + 1)2[1 − λx(1 − e−a)]2

⎫
⎬

⎭
. (E63)
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This lemma allows us to state

(q + 1)n(2q)
(q − 1)2

(Z − ZH ) ≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−saw

(
x̃∏

v=w+1

q̄−1
v,aw

1 + q̄−n+2v
v,aw

1 + q̄−n+2v−2
v,aw

)[
q̄2

w,aw
+ 1

(q̄w,aw − 1)2

(

1 − q̄−1
w,aw

1 + q̄−n+2w
w,aw

1 + q̄−n+2w−2
w,aw

)]

≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−saw

(
x̃∏

v=w+1

q̃−1
v,aw

)

e
q2

q2−1

[
q̄2

w,aw
+ 1

(q̄w,aw − 1)2

(

1 − q̄−1
w,aw

1 + q̄−n+2w
w,aw

1 + q̄−n+2w−2
w,aw

)]

, (E64)

where the second line follows from the observation that (also noting q̄v,a < q for all v, a)

x̃∏

v=w+1

1 + q̄−n+2v
v,aw

1 + q̄−n+2v−2
v,aw

≤
∞∏

m=0

1 + q−2m

1 + q−2m−2 =
∞∏

m=0

(
1 + q−2m 1 − q−2

1 + q−2m−2

)
,

≤
∞∏

m=0

(
1 + q−2m) ≤

∞∏

m=0

exp
(
q−2m) = exp

( ∞∑

m=0

q−2m

)

= exp
(

q2

q2 − 1

)
. (E65)

To continue, we make choices for aw and show upper bounds for the various factors in the above expression. For w > 0,
we make the specification for aw that

ηw := 1 − e−aw := (q − 1)2

q2 + 1
1

2λw
= (q − 1)2

q2 + 1
w(n − w)
n(n − 1)

(E66)

and that η0 = η1. This choice implies that

aw ≥ (q − 1)2

q2 + 1
1

2λw
= (q − 1)2

q2 + 1
w(n − w)
n(n − 1)

. (E67)

Moreover, it implies that, so long as w ≤ x ≤ n − w,

1 − λx(1 − e−aw) ≥ 1 − λw(1 − e−aw) = 1 − (q − 1)2

2(q2 + 1)
= (q + 1)2

2(q2 + 1)
, (E68)

which, by Definition 6, implies that

q ≥ q̄x,aw ≥ (q + 1)2

4q
. (E69)

When this is the case, we have
[

q̄2
w,aw

+ 1
(q̄w,aw − 1)2

(

1 − q̄−1
w,aw

1 + q̄−n+2w
w,aw

1 + q̄−n+2w−2
w,aw

)]

≤ q̄2
w,aw

+ 1
(q̄w,aw − 1)2

(
1 − q̄−1

w,aw

)

= q̄2
w,aw

+ 1
(q̄w,aw − 1)q̄w,aw

≤ q2 + 1
[
(q+1)2

4q − 1
]
(q+1)2

4q

= (q2 + 1)(4q)2

(q − 1)2(q + 1)2

≤ 320
9

, (E70)

where the last line follows for all q ≥ 2, which will be true for any physically realizable circuit. This takes care of the
final factor in Eq. (E64). What remains are the factors of q̄−1

v,aw
. To handle these, we use the following bound, the proof of

which is delayed to the next section.
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Lemma 7. With q̄x defined as in Definition 6 and as long as 1 ≤ ea ≤ {1 − [(q − 1)2/q2 + 1](1/λx)}−1,

q̄−1
x,a ≤ q−1 exp

{
a
[
λx

q2 + 1
q2 − 1

+ λ2
x(1 − e−a)

(q2 + 1)4

(q2 − 1)3

]}
. (E71)

We also need the following observation, which holds under the assumption that 1 ≤ j < k ≤ (n/2):

k∑

r=j +1

λr ≤ n
2

k∑

r=j +1

(
1
r

+ 1
n − r

)
≤ n

2

(∫ k

j
dρ

1
ρ

+
∫ n−j −1

n−k−1
dρ

1
ρ

)

= n
2
{
log(k/j )+ log

[
(n − j − 1)/(n − k − 1)

]}

≤ n
2

[log(k/j )+ log(2)] <
n
2

[log(2k/j )+ 1] , (E72)

k∑

r=j +1

λ2
r ≤ n2

4

k∑

r=j +1

n2

r2(n − r)2
≤ n2

k∑

r=j +1

1
r2 ≤ n2

j
<
π2n2

6j
. (E73)

Similarly, for the case where j = 0, we find that

k∑

r=1

λr ≤ n
2
[

log(2k)+ 1
]

,
k∑

r=1

λ2
r ≤ π2n2

6
. (E74)

Now, we can write the following, where w̄ := max(w, 1):

exp
(

− q2

q2 − 1

)
9(q + 1)n(2q)
320(q − 1)2

(Z − ZH )

≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−saw

(
x̃∏

v=w+1

q̄−1
v,aw

)

≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−saw

{
x̃∏

v=w+1

q−1 exp
[

q2 + 1
q2 − 1

awλv + (q2 + 1)4

(q2 − 1)3
awηwλ

2
v

]}

=
n∑

x=0

(
n
x

) x̃∑

w=0

e−sawq−x̃+w exp

[
q2 + 1
q2 − 1

aw

x̃∑

v=w+1

λv + (q2 + 1)4

(q2 − 1)3
awηw

x̃∑

v=w+1

λ2
v

]

≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−sawq−x̃+w exp
[

q2 + 1
q2 − 1

aw
n
2

(
log

2x̃
w̄

+ 1
)

+ (q2 + 1)4

(q2 − 1)3
awηw

n2π2

6w̄

]

≤
n∑

x=0

(
n
x

) x̃∑

w=0

e−sawq−x̃+w exp
{

aw

[
q2 + 1
q2 − 1

n
2

(
log

2x̃
w̄

+ 1
)

+ (q2 + 1)3(q − 1)2

(q2 − 1)3
nπ2(n − w)

6(n − 1)

]}
. (E75)

We are now in a position to nearly complete the proof. We choose

s∗ = 1
2

q2 + 1
q2 − 1

n log(n)+ cn, (E76)

where

c = q2 + 1
2(q2 − 1)

+ (q2 + 1)3(q − 1)2

(q2 − 1)3
π2

6
+ q2 + 1
(q − 1)2

{
log
[

320(q − 1)(qn + 1)
9qn

]
+ q2

q2 − 1
+ 4 log(q)

}
. (E77)

The O(n log(n)) term in s∗ is necessary to cancel the O(n log(2x̃/w)) term in Eq. (E75). Meanwhile, the first two terms of
c are needed to cancel the remaining terms on the right-hand side of Eq. (E75). The next two terms in c are used to cancel
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factors on the left-hand side of Eq. (E75) and, finally, the last term is vital for canceling the qw factor, as follows:

qn + 1
qn (q + 1)n(Z − ZH ) ≤ q − 1

q

n∑

x=0

(
n
x

) x̃∑

w=0

e−(s−s∗)awq−x̃+w exp
[
−4w(n − w)

n − 1
log(q)

]

≤ q − 1
q

n∑

x=0

(
n
x

) x̃∑

w=0

e−(s−s∗)awq−x̃−w

≤ e−(s−s∗)a1
q − 1

q

n∑

x=0

(
n
x

)
q−x̃

x̃∑

w=0

q−w (E78)

≤ e−(s−s∗)a1

n∑

x=0

(
n
x

)
q−x̃

≤ e−(s−s∗)a1

n∑

x=0

(
n
x

) (
q−x + q−n+x)

= 2e−(s−s∗)a1

(
q + 1

q

)n

.

It is in Eq. (E78), where we use a1 ≤ aw to pull the exponential out from the sum, that the assumption s ≥ s∗ is necessary.
This is the only place where it is needed. As ZH = 2/(qn + 1), we then have

Z ≤ ZH [1 + e−(s−s∗)a1 ], (E79)

where a1 = (q − 1)2/[n(q2 + 1)]. Defining a = na1/2, this completes the proof of the upper bound. �

4. Lower-bound proof

Theorem 12 (Theorem 6 from main text). For the complete-graph architecture of size s on n qudits with local dimension
q, the collision probability satisfies

Z ≥ ZH

2
exp

[
log(q)
q + 1

exp
{

log(n)+ s log
[

1 − 2(q2 − 1)
n(q2 + 1)

]}]
. (E80)

Corollary 6. For the complete-graph architecture, let sAC be the minimum circuit size, as a function of n, such that

Z ≤ 2ZH . (E81)

Then it must hold that
∣∣∣∣sAC − q2 + 1

2(q2 − 1)
n log(n)

∣∣∣∣ = O(n). (E82)

Proof. The upper bound on Z in Theorem 11 implies that

sAC ≤ q2 + 1
2(q2 − 1)

n log(n)+ O(n). (E83)

Meanwhile, since s = sAC implies Z ≤ 2ZH , the bound in Theorem 12 implies that

exp
[

log(q)
q + 1

exp
{

log(n)+ sAC log
[

1 − 2(q2 − 1)
n(q2 + 1)

]}]
≤ 4 (E84)
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and thus

sAC ≥
log(n)− log

[
(q+1) log(4)

log(q)

]

− log
[
1 − 2(q2−1)

n(q2+1)

]

≥
{

log(n)− log
[
(q + 1) log(4)

log(q)

]}[
n(q2 + 1)
2(q2 − 1)

− 1
]

= n(q2 + 1)
2(q2 − 1)

log(n)− O(n), (E85)

where we use the general inequality −1/ log(1 − u) ≥ 1/u − 1. �

Proof of Theorem 12. The structure of the proof is very similar to Theorem 8 for general architectures. We use the
framework of the biased random walk.

Let x := γ (t). The transition rule is such that

γ (t+1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x, with probability 1 − 2x(n − x)
n(n − 1)

,

x − 1, with probability
2x(n − x)
n(n − 1)

q2

q2 + 1
,

x + 1, with probability
2x(n − x)
n(n − 1)

1
q2 + 1

,

(E86)

and so

E
Pb

[γ (t+1)|γ (t) = x] = x − 2x(n − x)
n(n − 1)

q2 − 1
q2 + 1

≥ x
[

1 − 2(q2 − 1)
n(q2 + 1)

]
. (E87)

As this is true for all x, when we have some probability distribution � over values of x, it still holds that

E
Pb

[γ (t+1)] =
n∑

x=0

Pr
�

[γ (t) = x]E
Pb

[γ (t+1)|γ (t) = x]

≥
n∑

x=0

Pr
�

[γ (t) = x]x
[

1 − 2(q2 + 1)
n(q2 − 1)

]

=
[

1 − 2(q2 + 1)
n(q2 − 1)

] n∑

x=0

Pr
�

[γ (t) = x]x

=
[

1 − 2(q2 − 1)
n(q2 + 1)

]

E
�

[γ (t)] (E88)

and by applying this equation recursively from the starting distribution �b, we find that

E
Pb,�b

[γ (s)] ≥
[

1 − 2(q2 − 1)
n(q2 + 1)

]s

E
�b

[γ (0)]

=
[

1 − 2(q2 − 1)
n(q2 + 1)

]s n
q + 1

. (E89)
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By convexity, we have E[qx] ≥ qE[x], and hence

Z = 1
qn E

Pb,�b
[q| �γ (s)|]

≥ 1
qn exp

{

log(q)
n

q + 1

[
1 − 2(q2 − 1)

n(q2 + 1)

]s
}

≥ ZH

2
exp

[
log(q)
q + 1

exp
{

log(n)+ s log
[

1 − 2(q2 − 1)
n(q2 + 1)

]}]
. (E90)

�

5. Delayed proofs of lemmas

Proof of Lemma 6. The first equation follows fairly straightforwardly from Lemma 1. Note that the factor in parentheses
on the left-hand side is q̄v,a/(q̄2

v,a + 1) as defined in Definition 6, as well as the fact that �v contains walks that start at v
and end at v − 1 or n − v + 1. The walks that start at v and end at v − 1 are covered by Lemma 1 with x → v, y → v − 1,
and m → n − 2v + 2. The walks that start at v and end at n − v + 1 are equivalent to walks starting at n − v and ending
at v − 1 and are thus covered by Lemma 1 with x → n − v, y → v − 1, and m → n − 2v + 2. By summing the results
from these two substitutions, we obtain the quantity

1

1 − q̄−2(n−2v+2)
v,a

(
q̄−1
v,a − q̄−2n+4v−3

v,a

)+ 1

1 − q̄−2(n−2v+2)
v,a

(
q̄−n+2v−1
v,a − q̄−n+v−3

v,a

) = q̄−1
v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

, (E91)

which proves that the first equation in the lemma is correct.
The second equation is not a direct application of Lemma 1 but it can be shown by a similar method. Define

�x,v = {ψ ∈ �x : v ≤ m(ψ), M (ψ) ≤ n − v}, (E92)

so that �v = �v,v. Moreover, for fixed v, let

I(x) :=
∑

α∈�x,v

[
q

q2 + 1
1

1 − λv(1 − e−a)

]L[α]

=
∑

α∈�x,v

(
q̄v,a

q̄2
v,a + 1

)L[α]

. (E93)

The function I(x) obeys the recursion relation

I(x) = 1 + q̄v,a

q̄2
v,a + 1

[I(x − 1)+ I(x + 1)] , (E94)

since there is one term in the sum corresponding to the length-0 trajectory, which contributes 1, but all other terms appear
either in I(x − 1) or I(x + 1) reduced by factor q̄v,a/(q̄2

v,a + 1). The general solution to this recursion relation is

I(x) = q̄2
v,a + 1

(q̄v,a − 1)2
+ Aq̄x

v,a + Bq̄−x
v,a (E95)
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for some constants A and B. Here is where we rely on boundary conditions. We must have I(v − 1) = I(n − v + 1) = 0,
since these sums do not include any terms. This allows us to solve for A and B and find

A = − q̄2
v,a + 1

(q̄v,a − 1)2
q̄−n+v−1
v,a

1 + q̄−n+2v−2
v,a

, (E96)

B = − q̄2
v,a + 1

(q̄v,a − 1)2
q̄v−1
v,a

1 + q̄−n+2v−2
v,a

, (E97)

I(v) = q̄2
v,a + 1

(q̄v,a − 1)2

(

1 − q̄−1
v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

)

. (E98)

�

Proof of Lemma 7. Define η = λx(1 − e−a) and let ζ = 1 − (1 − η)2. Thus, 1 − η = √
1 − ζ .

We can write

q̄−1
x,a = q−1

(
q2 + 1

2

)(√
1 − ζ

)
⎡

⎣1 −
√

1 − 4q2

(q2 + 1)2(1 − ζ )

⎤

⎦

= q−1
(

q2 + 1
2

)⎡

⎣
√

1 − ζ − q2 − 1
q2 + 1

√

1 − (q2 + 1)2

(q2 − 1)2
ζ

⎤

⎦

≤ q−1
(

q2 + 1
2

){
1 − 1

2
ζ − q2 − 1

q2 + 1

[
1 − (q2 + 1)2

2(q2 − 1)2
ζ − (q2 + 1)4

2(q2 − 1)4
ζ 2
]}

= q−1
[

1 + 1
2

q2 + 1
q2 − 1

ζ + (q2 + 1)4

4(q2 − 1)3
ζ 2
]

≤ q−1 exp
[

1
2

q2 + 1
q2 − 1

ζ + (q2 + 1)4

4(q2 − 1)3
ζ 2
]

≤ q−1 exp
[

q2 + 1
q2 − 1

aλx + (q2 + 1)4

(q2 − 1)3
aηλx

]
, (E99)

which is equal to the lemma statement, where in the first inequality we utilize 1 − (u/2)− (u2/2) ≤ √
1 − u ≤ 1 − (u/2),

in the second inequality we use 1 + u ≤ exp(u), and in the third inequality we use ζ ≤ 2η ≤ 2aλx. The condition on a is
necessary to ensure that q̄x is real. �

APPENDIX F: APPROXIMATE 2-DESIGNS AND ANTICONCENTRATION

In this appendix, we clarify the relation between approximate unitary 2-designs and anticoncentration. As we discussed
in the text, forming a unitary 2-design is a sufficient condition for anticoncentration.

First, we recall some definitions. The k-fold channel of an operator O with respect to a probability distribution μ on the
unitary group U(qn) is defined as

�(k)
μ (O) :=

∫
dμ(U)U⊗k(O)U†⊗k . (F1)

We denote the channel with respect to the Haar measure on the unitary group as �(k)
H . The diamond norm of a quantum

channel � is defined as ‖�‖" := supψ ,D ‖�⊗ ID(ψ)‖1, where ID is the identity channel on a D-dimensional ancilla and
ψ is a state on the entire system.
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Definition 7 (Approximate designs). A probability distribution μ on U(qn) is an ε-approximate unitary k-design if the
k-fold channels obey

∥∥�(k)
μ −�

(k)
H

∥∥
"≤ε. (F2)

For a given k, if ε = 0, we say that the distribution forms an exact k-design.
A weaker notion of approximate design involves the operator norm of the moment operators, sometimes referred to as

the TPE condition. The vectorization isomorphism uniquely maps channels to operators, with which we can define the kth
moment operator from the k-fold channel for a probability distribution μ on the unitary group U(qn) as

�̂(k)
μ := vec

(
�(k)
μ ) =

∫
dμ(U)U⊗k ⊗ U∗⊗k. (F3)

For convenience, we denote U⊗k,k := U⊗k ⊗ U∗⊗k.

Definition 8 (Weak approximate designs). A probability distributionμ on U(qn) is a weak ε-approximate unitary k-design
if the kth moment operators obey

∥∥�̂(k)
μ − �̂

(k)
H

∥∥
∞ ≤ ε . (F4)

The expectation of the collision probability for completely Haar-random unitaries is ZH = EH [Z] = 2/(qn + 1) ≤ 2/qn

and thus anticoncentrates with α = 1/2 as defined in Definition 4. But as the collision probability is a second-moment
quantity, where pU(x)2 = | 〈x| U |1n〉 |4, for an exact unitary 2-design μ, we find

Z = E
μ

[∑

x

pU(x)2
]

= E
H

[∑

x

pU(x)2
]

= 2
qn + 1

(F5)

and thus also 1/2-anticoncentrates, where EH [· · · ] denotes the expectation with respect to the Haar measure on the unitary
group.

Proposition 1. An ε-approximate 2-design μ with ε = 1/q2n has a collision probability of Z = Eμ[
∑

x pU(x)2] ≤ 3/qn

and is thus a 1/3 anticoncentrator. Moreover, the same holds for a weak ε-approximate 2-design (TPE) μ with ε = 1/q2n.

Proof. For an ε-approximate 2-design in the diamond norm, we find

E
μ

[
pU(x)2

] = E
μ

[|〈x|U|1n〉|4]− E
H

[|〈x|U|1n〉|4]+ E
H

[|〈x|U|1n〉|4]

= Tr
(
|x〉〈x|⊗2

{
E
μ

[
U⊗2(|1n〉〈1n|)U†⊗2]− E

H

[
U⊗2(|1n〉〈1n|)U†⊗2]

})
+ 2

qn(qn + 1)

≤
∥∥∥|x〉〈x|⊗2[�(2)

μ (|1n〉〈1n|)−�
(2)
H (|1n〉〈1n|)]

∥∥∥
1
+ 2

qn(qn + 1)

≤ ∥∥|x〉〈x|⊗2
∥∥

∞
∥∥[�(2)

μ −�
(2)
H ](|1n〉〈1n|)∥∥1 + 2

qn(qn + 1)

≤ 2
qn(qn + 1)

+ ε, (F6)

where we write the difference in terms of the 2-fold channels, in the second to last line use Hölder’s inequality, and in the
last line use the definition of the diamond norm and the definition of an ε-approximate 2-design.

Given the definition of an approximate design in terms of the diamond norm, we must take the error to be expo-
nentially small. Thus, for an approximate 2-design μ with ε = 1/q2n, the collision probability is Z ≤ 3/qn and thus
1/q2n-approximate unitary 2-designs in diamond norm anticoncentrate with α = 1/3.
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For a weak ε-approximate 2-design in the operator norm (TPE), we proceed similarly,

E
μ

[
pU(x)2

] = E
μ

[|〈x|U|1n〉|4]− E
H

[|〈x|U|1n〉|4]+ E
H

[|〈x|U|1n〉|4]

= Tr
(
|1nx〉〈1nx|⊗2

(
E
μ

[
U⊗2,2]− E

H

[
U⊗2,2]

))
+ 2

qn(qn + 1)

≤
∥∥∥�̂(2)

μ − �̂
(2)
H

∥∥∥
∞

+ 2
qn(qn + 1)

≤ 2
qn(qn + 1)

+ ε, (F7)

where we write the difference in terms of the 2-fold
moment operators, in the second to last line use Hölder’s
inequality, and in the last line use the definition of a
weak ε-approximate 2-design. Again, we must take the
error to be exponentially small. For ε = 1/q2n, the colli-
sion probability is Z ≤ 3/qn and thus 1/q2n-approximate
unitary 2-designs in operator norm anticoncentrate with
α = 1/3. �

As n-qudit RQCs on the 1D architecture are known to
form ε-approximate unitary 2-designs in O(n + log(1/ε))
depth [15,49], anticoncentration for 1D random circuits in
linear depth is an immediate corollary. Moreover, an n-
independent upper bound on the spectral gap for the 1D
architecture [15] implies that they form weak approximate
2-designs in O(log(1/ε)) depth. By Proposition 1, where
we must take ε = 1/q2n, this again requires linear depth
for 1D RQCs.

For nonlocal RQCs on the complete-graph architecture,
the best known upper bounds on the 2-design circuit size
are O(n2) [13]. However, it has been conjectured that this
can be improved to O(n log(n)), in which case anticoncen-
tration and 2-designs could occur at the same depth for the
complete-graph circuit architecture.

To argue that anticoncentration must be distinct from
the 2-design property, we consider lower bounds on the 2-
design depth for RQCs on the 1D architecture. The spectral
gap of the second moment of a probability distribution ν
on the unitary group is defined as g(ν) := ‖�̂(2)

ν − �̂
(2)
H ‖∞.

An n-independent bound on the spectral gap for 1D RQCs
has been proved in Ref. [15]. This implies that the behav-
ior of the spectral gap for 1D RQCs of depth d must be
g(ν1D RQC) = (1 − 1/c)d, for some constant c > 1. Further
recalling that the operator norm can be written as ‖M‖∞ =
maxy〈y|M |y〉, this implies that some states requires linear
depth in order to become small. Specifically, there is some
state |y〉 on the 4-fold space that requires the 1D circuit
depth to be at least d = �(n) in order for the second-
moment operator for 1D RQCs E

U

[〈y|U⊗2,2|y〉] to approach

the minimal Haar value.
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