PRX QUANTUM 3, 010331 (2022)

Universal Quantum Computing with Twist-Free and Temporally Encoded Lattice
Surgery

Christopher Chamberland®'->* and Earl T. Campbell®

' AWS Center for Quantum Computing, Pasadena, California 91125, USA
2IQIM, California Institute of Technology, Pasadena, California 91125, USA
> AWS Center for Quantum Computing, Cambridge, CB1 2GA, United Kingdom

® (Received 16 November 2021; accepted 18 January 2022; published 25 February 2022)

Lattice-surgery protocols allow for the efficient implementation of universal gate sets with
two-dimensional topological codes where qubits are constrained to interact with one another locally. In
this work, we first introduce a decoder capable of correcting spacelike and timelike errors during lattice-
surgery protocols. Subsequently, we compute the logical failure rates of a lattice-surgery protocol for a
biased circuit-level noise model. We then provide a protocol for performing twist-free lattice surgery,
where we avoid twist defects in the bulk of the lattice. Our twist-free protocol eliminates the extra circuit
components and gate-scheduling complexities associated with the measurement of higher weight stabiliz-
ers when using twist defects. We also provide a protocol for temporally encoded lattice surgery that can be
used to reduce both the run times and the total space-time costs of quantum algorithms. Lastly, we propose
a layout for a quantum processor that is more efficient for rectangular surface codes exploiting noise bias
and that is compatible with the other techniques mentioned above.

DOI: 10.1103/PRXQuantum.3.010331

I. INTRODUCTION

Fault-tolerant quantum computing architectures enable
the protection of logical qubits from errors by encod-
ing them in error-correcting codes, while simultaneously
allowing for gates to be performed on such qubits. Impor-
tantly, failures arising during the implementation of logical
gates do not result in uncorrectable errors as long as the
total number of such failures remains below a certain frac-
tion of the code distance [1-5]. In most practical settings,
quantum logic gates are split into two categories. The
first category corresponds to Clifford operations, which
can be efficiently simulated by classical computers. The
second category corresponds to non-Clifford operations,
which cannot be efficiently simulated using purely clas-
sical resources. Early proposals for fault-tolerant quantum
computation used transversal gates to perform logical Clif-
ford operations [6]. Later, it has been shown that by
braiding defects in a surface code, some Clifford operations
can be realized fault-tolerantly in a two-dimensional (2D)

“mathematicschris@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOL

2691-3399/22/3(1)/010331(25)

010331-1

local architecture with a high threshold [7]. Recently, lat-
tice surgery [8] has replaced the braiding approach due to
its ability to retain locality constraints and high thresholds
(features that are required by many hardware architec-
tures), while additionally offering a much lower resource
cost [9-12]. These approaches all perform non-Clifford
gates by teleportation [13,14] of magic states prepared
by some distillation procedure [15-21]. Alternative ideas
have been proposed for circumventing the need for magic
states [22—25] but detailed studies [26—28] have not found
any of these alternatives to be competitive for a wide range
of failure rates below the surface-code threshold.

Our work introduces the following key results. After
briefly reviewing the model of Pauli-based computation
and its implementation via lattice surgery in Sec. II, we
then explicitly provide a decoder compatible with lattice
surgery in Sec. III. In particular, our decoder is capable
of correcting both spacelike and timelike errors that occur
during lattice-surgery protocols. We then perform simu-
lations of an X ® X Pauli measurement using a biased
circuit-level noise model.

In Sec. IV, we introduce a twist-free approach for mea-
suring arbitrary Pauli operators using the surface code. Our
approach avoids the extra circuit and gate-scheduling com-
plexities that arise when using twists, where by twists we
refer to lattices that contain twist defects in the bulk (see,
e.g., Fig. 1 in Sec. II B). We show that the approximate
cost of avoiding twists is a 2x slowdown in the algorithm

Published by the American Physical Society

https://orcid.org/0000-0003-3239-5783
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.010331&domain=pdf&date_stamp=2022-02-25
http://dx.doi.org/10.1103/PRXQuantum.3.010331
https://creativecommons.org/licenses/by/4.0/

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

ma
Z2

Bt e

my q1 ma 42
(d) ~| Sm1+2q1 }_
1) Py B C
u Sm2+2qg —
’T>_ Il %‘T% Il E‘.Cl
m1 q1 mao 42

FIG. 1. Equivalent approaches to implementing two 7" gates.
The blue rounded rectangles show multiqubit Pauli measure-
ments. (a) A simple unitary circuit approach. (b) The use of
gate teleportation with |T) := (|0) + ¢/#|1))/+/2 magic states,
controlled-NOT (CNOT) gates, Pauli Z measurements with out-
comes m; and m,, and classical conditioned Cliffords based on
these outcomes. The conditional S gates are S = |0)(0] + i|1)(1].
(c) The use of gate teleportation with the CNOT gates replaced
by two-qubit Pauli measurements. (d) Given an input state
|r) that carries a Clifford frame correction C, we conjugate C
through the circuit so that the multiqubit Pauli measurements
are now P; = CZ,Z;C" and P, = CZ,Z4C" (which commute)
and the output state carries a new Clifford frame correction
C' = SN g0 This last circuit represents the standard
PBC approach for computing 792.

run time and a negligibly small additive cost to the num-
ber of logical qubits. We expect that twist-based lattice
surgery has it own associated costs, which may exceed
those of our twist-free approach, but twist performance has
never been fully quantified and so represents a currently
unknown factor in quantum computing design.

In Sec. V, we show how to reduce algorithm run
times using a technique that we call temporal encoding
of lattice surgery. By using fast lattice-surgery operations
(which are inevitably noisier), errors arising from the extra
noise can be corrected by encoding the sequence of mea-
sured Pauli operators within a classical error-correcting
code. The resulting run-time improvement grows (as

a multiplicative factor) with the parallelizability of the
algorithm and the total algorithm run time. We find that
in a regime of interest to quantum algorithms of a prac-
tical scale, we can achieve a 2.2x run-time improve-
ment. Our temporal encoding does not directly lead to
additional qubit overhead costs since it occurs in the
time domain and so the overall space-time complexity is
improved.

Lastly, in Sec. VI, we describe our core-cache archi-
tecture. We show that by using thin rectangular strips
of surface codes for settings where a large noise bias is
present, the overhead costs due to routing in our proposed
architecture adds a multiplicative factor of 1.5 increase to
the total resource costs for performing lattice surgery. This
can be compared with the factor-of-2 cost of Litinski’s fast
data-access structures [12]. Furthermore, we provide a lay-
out that compactly stores surface-code patches in a cache
to further reduce the extra overhead arising from routing
costs, at the cost of some additional time needed for read-
ing from and writing to the cache. Using the numerical
results obtained in Sec. III, in Appendix C we provide
resource-cost estimates for simulating the Hubbard model
using our core-cache architecture.

II. BRIEF REVIEW OF UNIVERSAL QUANTUM
COMPUTING VIA LATTICE SURGERY

In Sec. II A, we briefly review the principles of Pauli-
based computation (PBC) used throughout this work. We
then review in Sec. I B how multiqubit Pauli operators are
measured using lattice surgery.

A. Overview of PBC

In the model of PBC, we have a reserve of magic states
and we drive the computation by performing a sequence
of multiqubit Pauli measurements {Pi, P, ...,P,}, where
later Pauli measurements depend on measurement out-
comes of earlier measurements. In this notation, P, does
not denote a specific Pauli but one conditional on the out-
come of P;. This conditionality occurs because (in the
circuit picture) each Pauli measurement would be followed
by a conditional Clifford operation. However, in a PBC,
these Cliffords are conjugated to the end of the compu-
tation, thereby changing subsequent Pauli measurements.
Since in a PBC all Cliffords are performed “in software,” it
is clear that the algorithm run time will be independent of
the Clifford complexity. The idea of PBC appears through-
out the literature but the phrase “Pauli-based computation”
was coined in Ref. [29]. In Fig. 2, we present several
computationally equivalent circuit diagrams for perform-
ing 2 T gates, with the last diagram representing the PBC
approach.

In Sec. II B, we review how multiqubit Pauli measure-
ments can be performed using lattice surgery. Crucially,
even when Pauli operators commute, it might not be

010331-2

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

4

Qubits
Data Ancilla
® O

Stabilizers

X X Z Z X X
X X

Z 7 Z 7

FIG. 2. A simple example of lattice surgery, illustrating the space overhead needed for routing. (a) Eight rectangular surface-code
patches with some surrounding idle qubits that form the routing space. (b) The stabilizers needed to measure a logical X ® X operator
between the separated surface-code patches using the routing space between them. (c) Similarly, the stabilizers needed to measure a
logical Z ® Z operator between the separated surface-code patches using the available routing space. Stabilizers of mixed X and Z
type are referred to as domain walls and are used to ensure that the d, distance of the surface code does not decrease when measuring
Z-type logical Pauli operators via lattice surgery. White ancillas mark the stabilizers that directly contribute toward computing the

parity of the X ® X and Z ® Z measurement outcomes.

possible to measure such Pauli operators simultaneously
due to the extra space required to perform lattice surgery
(known as the routing space). We can be obstructed from
measuring commuting Pauli operators when the required
lattice-surgery operations need access to the same routing
space. Therefore, it is appropriate to consider sequentially
measuring each Pauli operator, which we call a sequen-
tial Pauli-based computation (seqPBC). In seqPBC, the
time required to execute all the Pauli measurements is
then proportional to Tpgc = (d,, + 1), where we budget
+1 for resetting qubits between lattice-surgery operations.
Here, d,, corresponds to the number of rounds of stabi-
lizer measurements during lattice surgery and w is the
number of sequential Pauli operators being measured. The
proportionality factor depends on the time required to
measure the surface-code stabilizers during one syndrome-
measurement round.

There are several contributions to the number of Pauli
measurements p. At a high level of the stack, we may
think of a quantum algorithm as consisting of a series
of unitaries with some Pauli measurements for readout
and we may let Ny denote the number of such algorith-
mic readout measurements. However, as we see in Fig. 2,
non-Clifford unitaries are performed by measurements. If
an algorithm has Ny T gates, then we also need an addi-
tional Ny Pauli measurements. The Clifford plus 7 gate
set is universal. However, it is advantageous to use an
overcomplete gate set such as Clifford plus 7 and Tof-
foli. While Toffoli can be synthesized using four T gates
[30], it is often more efficient to directly prepare Toffoli
magic states [30—33]. Furthermore, it only takes three Pauli
measurements to teleport a Toffoli state rather than the
four measurements needed to teleport 7' states and then

synthesize a Toffoli. As such, if an algorithm can be exe-
cuted with Ntor Toffoli gates and Ny T gates, then we need
N7 + 3NtoF measurements to perform these teleportations.
Further refinements are possible by using an even richer
gate set and preparing more exotic states [34—36] but we
do not explicitly discuss those schemes here. Lastly, we
can replace some non-Clifford gates with Pauli measure-
ments and feedforward (with no magic state needed). For
instance, such a measurement appears in Gidney’s circuits
for adders [37] and, more generally, any uncomputation
subroutine of an algorithm, where the Toffoli gates are
replaced with Pauli measurements and feedforward. We
use Nynror to denote the number of Toffoli uncomputations
performed in this manner. Hence, for a Clifford plus 7" and
Toffoli gate set, the total number of Pauli measurements
is m = NA + NT + 3NTOF + NunTOF- Note that in many
algorithms, Toffolis exclusively appear in compute-
uncompute pairs and then we have Ny,toF = Nrop. Fur-
thermore, algorithms often only have a small number of
qubit readouts, so Ny << Nr, Ntor. As such, we commonly
have u ~ N7 + 4NtoF.

An architecture also requires time Tyagic to produce the
required magic states—say, Ny T-states and Nrop Toffoli
states. If an architecture produces all the required magic
states in a shorter amount of time than is required to tele-
port them, so that Tiec < Tpc, then we say that the
seqPBC is Clifford bottlenecked. On the other hand, if
Tmagic > Tppc, we say that it is magic-state bottlenecked.
The running time of the algorithm is determined by
maX{Tmagic, TPBC}~

It is informative to briefly review the impact of
these bottlenecks on the history of algorithm resource
analysis. The time T can be made arbitrarily small,

010331-3

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL PRX QUANTUM 3, 010331 (2022)

(D) (et O Oatatetety ©
A C 0 DRSS © D o g £
P SO & O
.:.\JQL[-Io;Q%QIQ o o o o;o;[?;-;joloﬁolo?jolo%n

Domain wall Elongated

e e e J s stabilizers

FIG. 3. A simple example of a lattice-surgery protocol using a twist defect in the bulk of the lattice to measure a ¥ ® Y logical
operator. Step (1) is the initial setup of two surface-code patches. In step (2), the surface-code patches are extended and corners moved
using the routing space. Such an extension allows logical Y operators of the surface code to be expressed along a horizontal boundary.
In step (3), we measure ¥ ® Y using a combination of domain walls, elongated stabilizers, and two twist defects. The domain walls
measure Z ® Z ® X ® X stabilizers and typically offer no additional challenge compared to normal stabilizer measurements. The
elongated stabilizers are long-range operators that pose an additional difficulty in hardware implementations. Elongated stabilizers can
be implemented using either two ancilla qubits [e.g., prepared in a Greenberger-Horne-Zeilinger (GHZ) state], that we connect with
a dashed line, or these two ancilla qubits necessarily merged into a single qubit (hardwired in the architecture) and using long-range
gates. Twist defects (yellow plaquettes) present the biggest difficulty, since in addition to the challenges faced by elongated stabilizers,

they also require a weight-5 measurement.

simply by increasing the number of magic state facto-
ries, although this comes at an increased qubit cost. Some
early algorithm-overhead estimates [5,38,39] minimized
Tmagic by having a large number of factories, leading
to widespread claims that magic state factories could be
approximately 99% of the whole device. However, such
resource estimates ignore the question of how quickly
these states can be teleported and ignored the Tpgpc bot-
tleneck. Accounting for this bottleneck, there is no benefit
from pushing Tiagic to be small Tagic < Tppc. As such,
more recent and careful overhead analyses [33,40—42]
have assumed only a few factories, which is enough to
achieve Tagic ~ Tppc and results in only a small percent-
age of the device footprint (often less than 1%) being used
as a magic state factory. While these analyses have min-
imal qubit cost, the run time is now Tpgc bottlenecked,
motivating rigorous approaches to beating the Tppc bot-
tleneck. Later, in Sec. V A, we review prior lattice-surgery
methods to speed up algorithms by using additional tele-
portation gadgets, although this comes at a high qubit cost.
We then introduce our own approach that instead uses
temporal encoding of lattice surgery (TELS).

B. Overview of lattice surgery

For quantum hardware where physical qubits can only
interact with one another locally, lattice surgery is a fault-
tolerant protocol that can be used to measure arbitrary
multiqubit Pauli operators. The main idea is to encode the
logical qubits in some topological code arranged in a 2D
layout (in this work, all logical qubits are encoded in the

rotated surface code [43]). The layout contains extra rout-
ing space between the surface-code patches, which consist
of additional qubits. By applying the appropriate gauge-
fixing operations in the routing space (see, e.g., Ref. [44]),
which involves measuring surface-code stabilizers, the
surface-code patches involved in the Pauli measurement
are merged into one larger surface-code patch. After gauge
fixing, the parity of the measurement outcome of the multi-
qubit Pauli operator being measured is obtained by taking
the products of the appropriate stabilizers in the routing
space. Lastly, the surface-code patches for each logical
qubit can be detached from the merged patch by mea-
suring the qubits in the routing space in the appropriate
basis. An illustration of X ® X and Z ® Z Pauli measure-
ments is shown in Fig. 3. Products of the surface-code
stabilizers marked by white ancilla qubits give the par-
ity of the X ® X and Z ® Z measurement outcomes. Note
that for Z-type Pauli measurements, we use domain walls
at the Z logical boundaries of the surface-code patches.
Domain walls correspond to stabilizers of mixed X and
Z type, as illustrated in Fig. 1. The primary reason for
using domain walls is to prevent a reduction in minimum-
weight representatives of logical Z operators during lattice
surgery.

To measure multiqubit Pauli operators containing Y
terms, one option is to extend the surface-code patches
using the routing space in such a way that the logical
Y operators can be expressed along horizontal bound-
aries of the surface code. Logical Y operators can then
be measured using a twist defect, as shown in Fig. 1.
Note that such a protocol requires measuring a weight-5

010331-4

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

operator, such as the ones shown in yellow in Fig. 1. Such
high-weight measurements can be undesirable for many
hardware architectures. An alternative approach that does
not require the extension of surface-code patches and the
use of twist defects in the bulk is provided in Sec. I'V.

When performing a lattice-surgery measurement of a
logical Pauli operator, there will be some probability that
we obtain the wrong outcome. Even with large code
distances, the lattice-surgery measurement could still fail
due to timelike errors occurring during the finite time
allowed for lattice surgery. The probability of these fail-
ure events is exponentially suppressed in the number of
rounds d,, for which we repeat the stabilizer measurements
during lattice surgery. Therefore, we call d,, the mea-
surement distance, which quantifies the protection against
repeated measurement failures during lattice surgery, and
hence explains our choice of subscript. Defining d, and d,
to be minimum weights of logical Z- and X -type operators
of the surface code, this exponential suppression will hold
until d,, > O(d;, d,), when logical Pauli errors become the
dominate mechanism again. Let us assume that code dis-
tances d, and d, are chosen so that even a single logical Z
and X error is very unlikely over the course of the whole
computation. We expect, and numerically find, that these
timelike errors occur with a probability P for which we
have a bound of the form

P < La(pb)““r*h, (1)

where p quantifies the physical gate-failure probabilities,
{a, b, c} are constants, and L is the area of the patch used
for lattice surgery. The value of L will vary for different
measurements and different layouts but it will be conve-
nient to think of it as a constant representing the worst-case
(or average) area of lattice-surgery patches.

In general, if we want to sequentially perform p Pauli
measurements in the algorithm and we want them to fail
with probability no more than §, then we choose d,, to be
large enough such that

pLa(pb) @t ~ 1 — (1 - P)* < 6, 2)

where the approximation holds for small P. In Sec. III,
after introducing a decoder compatible with lattice-surgery
protocols, we compute timelike failure probabilities in
addition to probabilities for other noise processes given
a biased circuit-level noise model. Such results allow us
to obtain accurate resource overhead estimates for imple-
menting quantum algorithms and are discussed further in
Sec. VL.

III. DECODING TIMELIKE ERRORS DURING
LATTICE SURGERY

In this section, we provide an explicit decoding pro-
tocol for correcting both spacelike and timelike errors

that can occur during lattice-surgery protocols. In par-
ticular, our protocol protects logical qubits encoded
in surface-code patches while at the same time cor-
recting logical multiqubit Pauli-measurement failures
that can occur during lattice surgery. We then pro-
vide numerical results for performing X ® X mea-
surements, showing both the logical multiqubit Pauli-
measurement failure rate as a function of the number
of syndrome-measurement rounds and the logical qubit
failure rates.

The generalization of toric code decoders with periodic
boundary conditions to the surface code has been done in
Refs. [7,45,46] by adding virtual vertices at the boundaries
of the surface code. Follow-up work in Refs. [8,9] has pro-
vided a high-level account of how surface-code decoders
can be used in the context of lattice surgery. However,
details such as the correct specification of boundary vertex
locations for both spacelike and timelike failures have not
been provided. In Sec. III A, our lattice-surgery decoding
algorithm makes use of boundary vertices for both spa-
tial and timelike boundaries. Further, no previous work has
performed such realistic circuit-level simulations of lattice
surgery. For comparison, in Ref. [33], timelike errors have
been simulated, but the authors have used a toy model with
idealized boundaries to exclude logical spacelike errors
and thereby simplify both the simulations and the required
decoding algorithm. In what follows, we refer to a surface-
code patch encoding a logical qubit as a logical patch. The
space used for performing multiqubit Pauli measurements
via lattice surgery is referred to as the routing space or
routing region.

In Fig. 4, we provide an example of an X ® X Pauli
measurement performed between two d, = 5, d, = 7 log-
ical patches. After preparing ancilla qubits (gray vertices)
in the routing space in |+) and data qubits (yellow ver-
tices) in |0), X -type surface-code stabilizers are measured.
The products of stabilizers marked by white vertices gives
the measurement outcome of the logical X ® X operator.
In what follows, white vertices the product of which gives
the result of a P ® P, ® - - - ® P Pauli measurement are
referred to as parity vertices. We say that a logical timelike
failure occurs if a set of errors result in the wrong parity
measurement of P} ® P, ® - - - ® Py. Further, we assume
that the logical patches are measured for » rounds prior to
being merged in round 7 + 1.

When measuring Py ® P, ® --- ® P, using lattice
surgery, in addition to an odd number of measurement
errors occurring in round » + 1, an odd number of data-
qubit errors along the boundaries of the logical patches
prior to the merge can also result in a logical timelike
failure. An example is provided in Fig. 4, where a sin-
gle data-qubit Z error along a boundary of the left logical
patch prior to the merge gives the wrong parity of X ® X.
We also note that during the syndrome-measurement round
r + 1, an odd number of data-qubit errors that anticommute

010331-5

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

o
ele
o

o
2
o
2

o
e=e
® O
eeeleele
Y
e

e
o
Kl
o

o

o
ele
o
ele
o
2
o
ele

AETICICIEY

e o ® o @ o @ o

e @ o @ o @ o

FIG. 4. An example of an X ® X measurement performed on
two d, =5, d, = 7 logical patches. Data qubits in the routing
space are first prepared in the |0) state. In the first round of
stabilizer measurements, where the logical patches are merged
into one large surface-code patch, the product of all stabilizers
marked by white vertices (which we call parity vertices) gives
the result of the X ® X measurement. After measuring the sta-
bilizers of the merged patch for d,, rounds, the patches are split
by measuring the data qubits in the routing region in the Z basis.
In the first round of the merge, measurement errors occurring on
parity vertices can result in a wrong X ® X measurement out-
come. Additionally, an odd number of data-qubit Z errors along
the boundary of the logical patches prior to the merge, such as
the one circled in the top row of the figure, can also result in a
wrong X ® X measurement outcome.

with P ® P, ® - - - ® Py will (unless corrected) also result
in a logical timelike failure.

The above examples show that in order to obtain the cor-
rect parity measurement of a P| ® P, ® - - - ® Pj operator
in the presence of full circuit-level noise, one must have
a decoding scheme that, while constantly correcting errors
on the logical patches, also corrects spacelike and timelike
errors that can flip the parity of the measurement outcome.

A. The decoding algorithm

In order to correct logical timelike failures using
a minimum-weight-perfect-matching (MWPM) decoder
[47], we must add timelike boundaries to the match-
ing graphs of the surface code as shown in Fig. 5. In
particular, we divide the measurement of an operator P; ®
Py ® .- ® Py into three steps. In the first step, the logi-
cal patches are measured for rounds. In round » + 1, the
patches are merged by measuring the appropriate opera-
tors in the routing space (see, e.g., Fig. 4) and the parity

Future Round 7 + d,, + 1
ancilla

+
-

RS
<
2
<

FIG. 5. Various 2D slices of the matching graph used for per-
forming an X ® X Pauli measurement via lattice surgery. (a) The
2D slices of the surface-code matching graphs for syndrome-
measurement rounds 7 + d,, (bottom) and » + d,, + 1 (top). The
graph in round r + d,, + 1 includes the future ancilla vertex, with
future vertical edges (solid purple edges) connecting to the par-
ity vertices (white vertices circled in red) of the matching graph
in round » 4 d,,. (b) The 2D slices of the surface-code matching
graphs for syndrome-measurement rounds r (bottom) and » + 1
(top). The graph in round » includes the past ancilla vertex with
past vertical edges (solid pink edges) connecting to the parity
vertices (white vertices circled in red) of the matching graph in
round r + 1. The transition vertices are the purple boundary ver-
tices of the graph prior to the merge (note that transition vertices
appear in rounds 1 to r), in addition to the purple parity vertices
in round + 1.

of the measurement outcome is given by the product of all
parity vertices. The merged patches are measured for d,,
rounds and then, in round d,, + 1, the qubits in the rout-
ing space are measured in the appropriate basis to split the
patches back to their original configuration. In round 7, we
add extra virtual vertices to the matching graph with verti-
cal edges that are incident to such vertices and to the parity
vertices in round » + 1 (see the pink edges in Fig. 5(b)
for the X ® X measurement). We call such vertices past
ancilla vertices and the pink edges incident to them past
vertical edges. Similarly, in round » + d,, + 1 (i.e., right
after the split), we add virtual vertices to the matching
graph with vertical edges that are incident to such vertices

010331-6

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

and to the parity vertices in round r + d,, (see the pur-
ple edges in Fig. 5(a) for the X ® X measurement). We
call such vertices future ancilla vertices and the purple
edges incident to them future vertical edges. Importantly,
the pink vertical edges that are incident to the past ancilla
vertices and to the parity vertices in round » + 1 have zero
weight, while the purple vertical edges incident to the par-
ity vertices in round » 4 d,, and the future ancilla vertices
have nonzero weights. These weights are computed from
all timelike failure processes, which can result in measure-
ment errors occurring in round 7 + d,,. When performing
MWPM over the full syndrome history, the parity of the
measurement outcome of P ® P, ® - - - ® Py is flipped if
there are an odd number of highlighted vertical edges inci-
dent to parity vertices in rounds 7 + 1 and » + 2. In such a
setting, one would require a sequence of consecutive mea-
surement errors that is greater than (d,, — 1)/2 in order to
cause a timelike logical failure. Note that since the mea-
surement outcomes of the parity vertices in round » + 1 are
random, such vertices are never highlighted. If a change in
the measurement outcomes of a subset of the parity ver-
tices are observed between rounds » + 1 and » + 2, then
vertices corresponding to such parity vertices in round
7+ 2 would be highlighted. Furthermore, green horizon-
tal edges incident to the parity vertices in round » + 1 are
taken to have zero weight (or can be omitted).

As mentioned above, a lattice-surgery decoder also
needs to correct logical timelike failures arising from
sets of data qubit errors along boundaries of the logical
qubit patches prior to merging them (recall the exam-
ple shown in Fig. 4). The decoder also needs to correct
wrong parity measurements arising from data qubit errors
in round 7 + 1 that anticommute with the Pauli operator
being measured by lattice surgery. In constructing such
a decoder, note that prior to merging the logical patches
for the X ® X measurement, a single Z error along the
relevant boundaries would result in a highlighted edge
(after implementing MWPM over the full syndrome his-
tory) incident to one of the purple boundary vertices shown
in Fig. 5(b). Note that such boundary vertices become par-
ity vertices after merging the surface-code patches. For
the measurement of a general P ® P, ® --- ® P, Pauli
operator, we define transition vertices to be vertices in
the set VSA = {v[(fl'),...,v,g‘fi}, where 1 <s <r+ 1. When

s<r+1, {v,g‘j) s vl()‘:z} are labels for boundary vertices
of the graphs of split logical patches that become parity
vertices in round »+ 1. If s =7»+ 1, then Vgcfl) is the
set of parity vertices along the boundaries of the logical
qubit patches and routing space used to merge the logical
qubits (see, e.g., the parity vertices highlighted in purple in
Fig. 6). Based on previous observations, after implement-
ing MWPM over the full syndrome history of a multiqubit
Pauli measurement via lattice surgery, if an odd number of
spacelike highlighted edges are present in logical patches

Logical
patch

Logical
patch

Routing space

)—,—’—.—‘ Future ancilla vertex m_,_’_’_
1 1 l m
1

[s
t’—?—?—?—lm Round r + d,, + 1
[R
Round r + d,,

D-’-‘-Fb_o_o_o_o_‘_‘_‘_m Rofmd r+1

5—&—d f:]Roundr

1
1
7 L
[:J [Ij Round 2
EI] [j—* Transition vertices 4= E} [Ij Round 1
FIG. 6. A 2D slice of the surface-code matching graph in the

timelike direction for syndrome-measurement rounds performed
during an X ® X measurement protocol using lattice surgery.
The vertical axis corresponds to the timelike direction. We show
a subset of the vertices and edges of the matching graph for cor-
recting Z errors for an X ® X measurement using lattice surgery.
The parity vertices are the white and red vertices in the ancilla
patch region. The transition vertices are both boundary and parity
vertices colored in purple. The pink edges are past vertical edges
incident to the past ancilla vertex and the parity vertices in round
r + 1, whereas the purple edges are future ancilla edges incident
to the parity vertices in round » 4 d,, and the future ancilla ver-
tex. We also add a dashed-blue weightless edge connecting the
past and future ancilla vertices.

and such edges are incident to transition vertices, the parity
of the Pauli measurement needs to be flipped. An illustra-
tion of a 2D slice of the matching graphs of Fig. 5 in the
timelike direction (which contains a subset of the spacelike
edges and vertices) is shown in Fig. 6. In particular, the
figure illustrates transition vertices and the past and future
ancilla vertices in addition to the past and future vertical
edges.

Combining all the notions introduced in this section,
the decoding algorithm for implementing a multiqubit
Pauli measurement via lattice surgery is described in
Algorithm 1. Each highlighted edge in step (7) of
Algorithm 1 encodes a particular data qubit correction.
Writing such corrections as a binary row vector, where
each column corresponds to a data qubit, we add all correc-
tions arising from each highlighted edge using modulo-2
arithmetic. Further, note that space-time correlated edges
incident to parity vertices in round » + 1 need to be treated
with care in order to correct errors up to the full code dis-
tance. In particular, a subset of the space-time correlated
edges incident to transition vertices can also contribute to
v, (defined in Algorithm 1). A more careful treatment of
such edges is provided in Appendix B.

B. Decoder simplifications

We point out a simplification that can be made in the

implementation of Algorithm 1. Note that vertices in Vg;rrl)

010331-7

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

Result: Data qubit and parity measurement corrections.

initialize: v; = vy = 0. Let GG, be the graph for the
surface code patches before, during and after the
merge.

Measurement: Measure the stabilizers of the split
logical patches for rounds. Merge the logical patches
in round r 4 1 via lattice surgery to perform the
P ® P, ® --- ® P, measurement and let sp,, be the
parity of the measurement outcome. Repeat the
stabilizer measurements of the merged patch for
d,, — 1 rounds.

1) Add the past ancilla vertex vp,g to G- for the round r
(round before the merge). Let
VP(J;H) = {vlﬁiﬁ Lo ,véﬁf)} be the set of parity
vertices for the syndrome measurement round r + 1.
Add weightless past vertical edges to G, which are

incident to vp,y and all vertices v € Vp(arrﬂ). Add
weightless edges to G, which are between vp,s and
virtual boundary edges of all surface code patches

2) Add the future ancilla vertex vy to G- for the
round r + d,,, + 1 (round after the merge). Let
%(f;er’”) = 171%), e 7735;“2} be the set of parity
vertices for the syndrome measurement round r + d.,.
Add future vertical edges (of non-zero weight) to G
which are incident to vgwre and all vertices
v E V}gﬁd’”)

3) Add a weightless edge to G- which is incident to
Upast and Ufuture

4) Set all edges incident to any two vertices
Vi, V5 € V},E;H) to have zero weight

5) Given the full syndrome measurement history, if the
total number of highlighted vertices (obtained by
taking the difference between any two consecutive
syndrome measurement rounds modulo 2) is odd,
highlight vgyre

6) Implement MWPM on G,.. Set v; to be the number
of highlighted edges incident to vertices in Vp(arrﬂ) and
V;)(;;”), and v to be the number of highlighted edges
incident to transition vertices in the data-qubit patch
regions. If v1 + v is odd, set spar — Spar + 1
(mod 2)

7) Apply data qubit corrections based on all highlighted
two-dimensional and space-time correlated edges.

Algorithm 1. The decoding algorithm for measuring P; ®
Py ® - - ® Py via lattice surgery.

are never highlighted during MWPM due to the random
outcomes of stabilizers in the routing space marked by
white vertices in round 7 + 1. As such, one could remove

all vertices in V{,f" and instead have the past vertical

edges incident to the vertices in V(. In such a setting,
edges incident to V7D and ¥{;+* would be removed and
their weights would be assigned to the past vertical edges.
Lastly, we remark that all boundary vertices, including the

past and future ancilla vertices, can be merged into a sin-
gle boundary vertex. In such a setting, each edge of the
matching graph G, encodes both a spacelike and time-
like correction. The timelike component for the edge e;
is obtained by observing whether the failure mechanism
resulting in the highlighted edge e; flips the parity of the
multiqubit Pauli measurement. We choose to describe the
decoding protocol using Algorithm 1 to avoid figures with
multiple edges all incident to the same boundary vertex.

C. Noise model and simulation methodology

Using the decoding algorithm given in Algorithm 1,
we perform a full circuit-level noise simulation of vari-
ous code distances and syndrome-measurement rounds to
estimate the parameters in Eq. (1) for a X ® X measure-
ment. We choose the following biased circuit-level noise
model:

(1) Each single-qubit gate location is followed by a
Pauli Z error with probability p /3 and Pauli X and
Y errors each with probability p /37.

(2) Each two-qubit gate is followed by a {ZQI,I ®
Z,Z ® Z} error with probability p/15 each and
a { XQRLIQX,XRX,ZQX,YRIL,YRX,I®
VYRZXQRZ,ZQYV,X ®Y,Y® Y}, each with
probability p /157.

(3) With probability 2p /37, the preparation of the |0)
state is replaced by |1) = X|0). Similarly, with
probability 2p /3, the preparation of the |+) state is
replaced by |—) = Z|+).

(4) With probability 2p /37, a single-qubit Z basis mea-
surement outcome is flipped. With probability 2p /3,
a single-qubit X -basis measurement outcome is
flipped.

(5) Lastly, each idle gate location is followed by a Pauli
Z with probability p /3 and a {X, Y} error, each with
probability p /37.

In our simulations, we choose n = 100 and for simplic-
ity add a single idle location on the data qubits during
the measurement and reinitialization of ancilla qubits. Note
that in the limit — 1, the above noise model reduces to
the depolarizing noise model used in Refs. [48,49], with
the exception that two idle locations are included during
measurement and reinitialization of the ancillas. Further-
more, the above noise model assumes that the duration of
a controlled-NOT (CNOT) gate is identical to the duration of
an ancilla measurement and reinitialization.

For a biased circuit-level noise model (such as the one
described above) and an X ® X Pauli measurement imple-
mented via lattice surgery, there are 15 different types
of failure mechanisms that can arise during the protocol.
We label such failure mechanisms using the binary string
(bzL, b1, bzr, bx). The bit bz = 1 corresponds to a log-
ical Z error on the left logical patch, whereas bzg = 1

010331-8

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

(a)
Logical | Routing space | Logical
patch patch
LFo—o—¢—] [Fo—o—o—]
D. @Rofmdr—kdm—kl
E. = ID Round r + d,,
M . , [N T
DI ! ! : // : I) : ' 1 [T
DI o0 .B i
EI ﬁ Round r + 1
D: Pl ol f:]Round r
[.] q Round 2
0 "I Round 1
FIG. 7.

(b)
Logical
patch

Logical
patch

Routing space

{]
ID ROL:Hld r+d, +1

ID Round r + d,,

L]
I

ﬁ Round r + 1
f:] Round r

! H
Q Round 2
ﬁ Round 1

R

(a) An example of a series of consecutive measurement errors on the same parity vertex located in the routing space resulting

ina (0, 1,0, 0) logical failure for an X ® X measurement. (b) An example of a horizontal string of spacelike Z data-qubit errors on the

left logical patch resulting in a (1, 1, 0, 0) logical failure.

corresponds to a logical Z error on the right logical patch.
The bit by, = 1 indicates a logical timelike failure. Finally,
the bit by indicates whether a logical X error occurs dur-
ing the lattice-surgery protocol. Examples of such failure
mechanisms using 2D slices of the matching graph are
shown in Fig. 7. For instance, in Fig. 7(a), a series of
consecutive measurement errors occur on the same parity
vertex, starting in round 7 4 1. Since a single measurement
error occurs in round » + 1, the wrong parity of X ® X
is measured. Due to the series of measurement errors, a
single parity vertex near the top boundary is highlighted
in G,. The shortest path correction (highlighted in yel-
low) matches the highlighted parity vertex to the future
ancilla vertex. Hence no parity corrections are applied and
a logical (0, 1,0, 0) error occurs.

Another example is shown in Fig. 7(b), where a string
of Z data-qubit errors results in the highlighted vertices
shown in the figure. Prior to the merge, there are no Z
errors at the boundary between the logical patches and
routing space. Therefore, the correct parity of X ® X
is measured. However, the minimum-weight path (high-
lighted in yellow) connecting the highlighted vertex to the
future ancilla vertex goes through a transition vertex, so
that v; = 1. The correction thus results in a logical Z error
on the left logical patch, in addition to a logical parity
measurement failure (since the decoder incorrectly flips
the parity) leaving the code with a logical (1, 1, 0, 0) error.
Additional examples of failure mechanisms using space-
time diagrams instead of matching graphs are provided in
Fig. 8.

We note that if the stabilizer measurements are termi-
nated after » + d,, rounds, higher-order failure mechanisms
are required to produce logical failures corresponding to

(1,0,0,0),(0,0,1,0),(1,0,1,0),and (1, 1, 1, 0) bit strings.
Failures corresponding to such strings are thus much less
likely compared to (1,1,0,0), (0,1,0,0), and (0,1,1,0)
[50]. For instance, to obtain a logical failure of the type
(1,0,0,0), a logical error on the left logical patch would
need to occur without flipping the parity of the X ® X
measurement. As such, in addition to a logical Z error
occurring before the merge, a second failure mechanism
would need to occur to undo the wrong parity flip [such
as a string of measurement errors like the one shown
in Fig. 7(a)]. Given these observations, we only present
the logical failure-rate polynomials P 1,0,0), P(1.1,0,0), and
P.1.1,0)- Note that due to the high noise bias, we choose a
d, distance such that ulP 0,1y < 8§, where is the number
of lattice-surgery operations in the algorithm.

Our simulations are performed for syndrome-
measurement rounds 1 to »+ d,,, based on the biased
circuit-level noise model described above. The last round
is a round of perfect error correction to guarantee projec-
tion to the code space. We use Algorithm 1 to correct both
spacelike and timelike errors, where each edge in step (7)
of the algorithm encodes a particular correction on a sub-
set of the data qubits. Note that we do not perform a round
of perfect error correction between rounds » and » + 1,
as was done in Ref. [44]. Instead, we perform MWPM
using the full syndrome-measurement history from rounds
1 to r+d,, and use Algorithm 1 to determine which
corrections are applied.

D. Simulation results and conclusions

Here, we report the outcome of our lattice-surgery simu-
lations as summarized by Egs. (3)~5) and Fig. 9. For each

010331-9

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

b=(0,0,0,00 b= (1,0,0,0)
ga =
E mI t
TR T |
4
L | ' L
A 0
b=(0,0,1,0) b= (0,1,0,0)

FIG. 8. A space-time diagram of a lattice-surgery protocol,
illustrating different types of failure mechanisms represented
by the vector b = (bzr,brL,bzr,by). For each element b; in
the vector b, we associate a logical sheet (shown in yellow or
green when triggered) and we have b; = 1 if and only if the
relevant error type crosses the logical sheet an odd number of
times. The Z strings trigger yellow logical sheets and termi-
nate on pink boundaries. The X strings trigger green logical
sheets and terminate on the foreground and background bound-
aries (these are transparent for visual clarity). For instance, a
(1,0,0,0) event (top right) occurs in the presence of a logical
Z stringlike excitation on the left surface-code patch. Since the
excitation does not cross the yellow m-shaped logical sheet, the
correct outcome of the multiqubit Pauli measurement is recorded.
A (0,1,0,0) event (middle right) is a pure timelike failure, where
the incorrect multiqubit Pauli-measurement outcome is recorded
without introducing additional logical Z failures to the two log-
ical patches. This holds because the Z string only crosses the
yellow r-shaped logical sheet. A (0, 1, 1,0) event (bottom left)
occurs when a Z stringlike excitation crosses the rightmost yel-
low logical sheet in addition to the yellow m-shaped logical sheet.
Such an error results in both a logical Z error on the right logi-
cal patch in addition to a timelike lattice-surgery failure. Lastly,
we illustrate an X stringlike excitation crossing the green logical
sheet, resulting in a logical X failure on both logical patches.

of the dominant failure mechanisms in (bzy, b1, bzr, bx),
we fit all our data to an ansatz with two free parameters to
generate the failure-rate polynomials given by

P0.1.00) = 0.01634d,£(21.93p)n+D/2] 3)

P00 = 0.031484,(28.91p)@=+D/2, 4)
Po11.0 = 0.03dx(28.95p)(dz+1)/2’ 5)
P0.0.0.1) = 0.01484.(0.762p) 4 +1/2, 6)

'IO_Z/
3}]

S

Oﬁ

!

i 10_4 A

o 10 't

S 107}

] _6 e dn=3

= , dm =5]

S ’|O7 gmi7

8 107}~ | S vinTh
0.2 0.4 06 08 10

cnotT gate infidelity P (%)

FIG. 9. A comparison between the best-fit polynomial P 0,0
for various values of d,, given in Eq. (3) with the data obtained
from our Monte Carlo simulations. We choose parameters where
di =9,d, =11, r=d,, and £ = 5. The translucent data points
are omitted when obtaining the fitting polynomial in Eq. (3).

In Eq. (3), £ corresponds to the width of the rout-
ing space between the two logical patches. All logi-
cal error-rate polynomials in Eqs. (4)+6) provide error
rates per syndrome-measurement round. Per-round error
rates are computed by varying the number of syndrome-
measurement rounds for fixed d, and d, distances, repeat-
ing such procedures for different d, and d, distances, and
fitting all the obtained data to an ansatz. Note that the d.
distance in Eq. (6) is taken to be the d, distance of the full
merged surface-code patches, whereas d, in Egs. (4) and
(5) is the d, distance of the individual logical patches (since
logical Z errors are much less likely to occur when surface-
code patches are merged, due to the increased d, distance).
In Fig. 9, we compare the best-fit polynomial P)
with a representative subset of our data obtained from our
Monte Carlo simulations for various values of d,,, where
the chosen parameters are described in the caption. The
plot shows the exponential suppression in purely timelike
error probabilities as a function of d,, and that the data are
in good agreement with our best-fit polynomials. In Sec.
VI, after introducing our protocol for minimizing routing
costs, we use the logical failure-rate polynomials in Egs.
(3)+6) to estimate the overhead costs for implementing
quantum algorithms.

We conclude this section by pointing out that the above
labels used in the logical error-rate polynomials, which
represent different failure mechanisms that can occur dur-
ing lattice surgery, can be generalized using k 4 2 bits for
an arbitrary P; ® P, ® - - - ® P Pauli measurement. Out
of the k + 2 bits, & bits are used to represent a logical Pauli
error on the logical patches that can also flip the parity of
the measured Pauli (such as logical Z errors for X ® X).
Another bit represents a logical parity measurement fail-
ure. The last bit encodes the logical Pauli error that affects
all logical qubits in the merged patch (such as a logical X
error during an X ® X measurement).

010331-10

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

IV. PROTOCOL FOR TWIST-FREE LATTICE
SURGERY

Lattice surgery provides a fault-tolerant way to measure
Pauli operators and is well suited for topological codes.
However, not all Pauli operators are equally easy to mea-
sure. We say that an operator is a XZ Pauli when it is a
tensor product of {1, X, Z}. For XZ Pauli operators, stan-
dard lattice surgery suffices and a surface-code architecture
would need only weight-4 stabilizer measurements. How-
ever, for some topological codes such the surface code,
measuring Pauli operators containing any Y terms is more
difficult. It has been shown that this can be achieved by
introducing a twist defect for each Y in the Pauli opera-
tor [11,12,51]. For examples of twist-defect lattice surgery,
see Fig. 1 of this work and Fig. 40(d) of Ref. [12]. How-
ever, each surface-code twist defect requires a stabilizer
measurement on five physical qubits. This can be very
challenging to implement in a 2D architecture with lim-
ited connectivity and could require multiple ancilla qubits.
The additional ancilla qubits and gates will thus increase
the total measurement-failure probabilities for weight-5
checks. Furthermore, even a single isolated weight-5 check
will have an impact on the gate scheduling over the whole
surface-code patch, which can introduce additional types
of correlated errors. Lastly, twist-based surface codes cou-
pled with a MWPM decoder have been shown to have a
reduced effective code distance [52]. As such, we expect
that twist-based Pauli measurements will suffer a perfor-
mance loss relative to twist-free Pauli measurements. Any
increases in measurement error probabilities during twist-
based lattice surgery can be suppressed by extending d,,,.
In other words, we expect use of twists to increase the run
time of lattice-surgery computations. The exact magnitude
of this run-time cost is currently unknown and will depend
on the precise twist implementation details and the noise
model [53].

Here, we outline an alternative twist-free approach to
measuring operators containing Pauli Y terms. The addi-
tional cost of supporting Pauli Y terms relative to mea-
suring XZ Pauli operators is roughly a 2x slowdown in
algorithm run time and a 42 additive cost in the num-
ber of logical qubits (although we show later that one of
these logical qubits can be borrowed from space allocated
to routing). Whether this 2 x slowdown is preferable to the
slowdown incurred by using twists is an open question, due
to a lack of data on twist performance.

To explain our protocol, we make use of the notation

N
Xl :=]]x". (7
Jj=1
N .
zivl=[]z". (8)
Jj=1

for any binary vectors w = (uj,up,...uy) and v=
(v1,v3,...vy). It is well known that any Hermitian Pauli
operator can (up to a 1 phase) be decomposed as

P = " Z[v]Xu]. ©)

Then, u-v =) wv; counts the number of locations
where X [u] and Z[v] have overlapping support. Therefore,
using X; Z; o< Y;, we see that u - v gives the number of Y
terms in P. Furthermore, X [u] and Z[v] commute when-
ever u - v is even. Equivalently, whenever P contains an
even number of Y terms, it can be decomposed (up to a
phase) into a product of two commuting operators X [u]
and Z[v].

Let us assume for now that u - v is even, returning to the
odd case later. This suggests that we could measure P by
using twist-free lattice surgery to measure X [u] and Z[v].
However, this would reveal additional unwanted informa-
tion about X[u] and Z[v]. To obfuscate this unwanted
information, we perform the protocol as illustrated in
Fig. 10 and described below:

(1) Prepare an ancilla (qubit A4) in the state |0).

(2) Measure X [u] ® X, with outcome m, € {0, 1}.

(3) Measure Z[v] ® X, with outcome m, € {0, 1}.

(4) Return m, @ m, & c as the outcome of P =
"VX [u]Z[v].

(5) Measure qubit 4 in the Z basis with outcome g €
{0, 1}.

(6) If ¢ = 1, then apply a Z[v] correction (to the Pauli
frame).

In step (4), we use a constant ¢ that we define as follows:

0, ifu-v=0 (mod4),

oo 1, %fu-v—l (mod 4), (10)
1, ifu-v=2 (mod4),
0, ifu-v=3 (mod4).

Clearly, the product of measurement outcomes in steps (2)
and (3) gives X [u]Z[v] up to some constant. However, at
no point do we learn the value Z[v] or X [u]; therefore the
protocol works as claimed. In Appendix A, we provide a
more formal proof of the correctness of our protocol and
the derivation of the constant c.

We have assumed earlier that the Pauli operator P con-
tains an even number of Y terms. To handle odd numbers
of Y terms, we prepare an additional ancilla in the Y
basis eigenstate |Y) = (|0) + i|1))/\/§. Then, by measur-
ing Y ® P, we effectively measure P. Furthermore, if P
contains an odd number of Y terms, then Y ® P contains
an even number and can be measured using the above
construction. This modified variant of the twist-free lattice-
surgery measurement is also illustrated in Fig. 10. Note
that the Y ® P measurement does not affect the |Y) state

010331-11

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

Twist-free
for u-v even

With a twist

and so it can be reused many times and its preparation cost
(e.g., through state distillation [7]) only needs to be paid
once per algorithm and is therefore negligible.

Our twist-free approach uses up to two logical ancillas,
a |0) ancilla that is repeatedly reset and sometimes a |Y)
ancilla that is reused. Therefore, we have an additive +2
logical qubit cost. The run-time cost is dominated by steps

Twist-free
for u-v odd

FIG. 10. Implementations of a Pauli measurement of
P = i"VX[u]Z[v]. Whenever P contains any Y terms,

simple lattice-surgery operations cannot be used. The
standard solution is to use twist-based lattice surgery.
However, we show that the same outcome can be
achieved twist free, with an extra |Y) ancilla used

to handle cases where X[u] and Z[v] do not com-
mute. The twist-free approaches report m, @ m, @ c as
the outcome for the measurement of P, where c is a
constant determined by u and v.

(2) and (3). All other steps use only single-qubit operations
that effectively take zero time in lattice surgery. Therefore,
the run time doubles compared to the run time of measur-
ing a Pauli operator free from Y terms. If steps (2) and (3)
each fail with probability P [e.g., as in Eq. (1)], then the
whole protocol fails with probability P’ = 2P(1 — P) ~
2P. This is a minor effect, since failure probabilities are

FIG. 11.

An example of a 2D layout for a quantum computer and the implementation of twist-free lattice-surgery operations to

realize a P=Y® Y ® X ® Z Pauli measurement, for which the circuit diagram is given in Fig. 10. (a) An initial layout of thin
rectangular surface codes (d, = 3 and d, = 7), with labels showing the Pauli operators to be measured. Note the pink rectangle where
the hardware layout is slightly adapted to enable elongated stabilizer measurements just within this region. The space between surface-
code patches is referred to as the routing space and is used in the subsequent steps. (b) The preparation of a logical |0) state in the
routing space. (c) A lattice-surgery measurement of X @ X @ X ® 1 ® X. (d) A lattice-surgery measurement of Z® Z @ 1 ® Z Q X,
where at every Z logical boundary we use a domain wall and at the single X logical boundary we use elongated stabilizers within the
pink region. In both steps (c) and (d), the parity of the logical Pauli measurement is determined by the product of the stabilizers marked

with a white vertex, with corrections applied by the decoder.

010331-12

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

FIG. 12. A simple TELS protocol: it is an error-detecting ver-
sion of the PBC used in Fig. 2, using the measurement code given
in Eq. (14). While this approach uses three multiqubit Pauli mea-
surements, the capability to detect an error means that lattice
surgery can be executed over a shorter time d,. If there is no
error, we have that the measurement outcomes obey m @ m, =
m3. When an error is detected, we simply remeasure the Pauli
operators.

exponentially suppressed by increasing the run time d,, and
using large enough d, and d; code distances.

In Fig. 11, we show an example of how the circuit
picture of Pauli measurements in Fig. 10 can be explic-
itly mapped into a 2D lattice-surgery protocol consisting
only of XZ-Pauli-operator measurements. We present our
protocol for thin rectangular surface codes, although our
protocol would also work for square surface-code patches.
First, we note how the temporary |0) ancilla is prepared
in the spare routing space provided for performing lattice
surgery, so that it does not actually contribute to the space
overhead. Note also that to accomplish the Z[v] ® X, mea-
surement in Fig. 11(d), there is one region (highlighted
in pink) where we measure elongated stabilizers. Here,
we assume that the hardware is permanently deformed
in this region. In other words, the circuit is hardwired
at this location, so that the elongated stabilizer can be
measured with minimal performance loss compared to
any other weight-4 stabilizers (e.g., by using longer res-
onators) and thus does not require additional ancilla qubits.
Alternatively, these elongated stabilizers could also be
measured in a homogeneous hardware layout but with a
modified procedure for performing the measurement. For
instance, one could use two ancilla qubits prepared in a
Greenberger-Horne-Zeilinger (GHZ) state to measure the
elongated stabilizers. However, since the result of the sta-
bilizer measurement would be given by the product of the
measurement outcomes of both ancillas, and due to the
extra fault locations, the use of GHZ states would increase
the total measurement-failure probability of the elongated
checks. Another possibility would be to use the second
ancilla qubit as a flag qubit [20,21,48,49,54—61]. How-
ever, by doing so, one might require an additional time
CNOT step per round of stabilizer measurements to perform
all two-qubit gates for the stabilizer measurements while
avoiding scheduling conflicts.

V. TEMPORAL ENCODING FOR FAST LATTICE
SURGERY

In Secs. I A and II B, we discuss the standard approach
to PBC using lattice surgery and related algorithm run-
time bottlenecks. In this section, we show how to exceed
this bottleneck and run algorithms at faster clock speeds
using TELS. The key idea behind TELS is to use fast
noisy lattice-surgery operations, with this noise corrected
by encoding the sequence of Pauli measurements within
a classical error-correcting code. This encoding can be
thought of as taking place in the time domain, so the encod-
ing does not directly lead to additional qubit overhead
costs. However, there can be a small additive qubit cost
when TELS is used for magic state injection, with magic
states needing to be stored for slightly longer times.

A. Parallelizable Pauli measurements

Here, we review parallelization, where the sequence
of Pauli measurements can be grouped into sets
of parallelizable Pauli measurements. Let P4 =
{P, Pi11,...,P.;} be a subsequence of our Pauli opera-
tors. We say that Py, is a parallelizable set if they all
commute and if any Clifford corrections can be commuted
to the end of the subsequence. For example, we obtain a
parallelizable set whenever we use magic states to perform
a T® gate. In Fig. 2, we show several ways to imple-
ment 7%? with the PBC approach, requiring two paral-
lelizable measurements {P;, P} = {CZ;Z;CT, CZ,Z,CT}.
Therefore, given a circuit with p T gates and 7-depth y,
the Pauli-measurement sequence can always be split into a
sequence of y parallelizable sets of average size k := u/y.

Fowler introduced the notion of time-optimal quantum
computation [62] and Litinski (see Sec. 5.1 of Ref. [12])
showed how this can be realized using lattice surgery in a
2D layout. In time-optimal PBC, an n-qubit computation of
T depth y can be reduced to run time O(n + y). However,
the space-time volume is never compressed by using the
time-optimal approach, so that reducing the algorithm run
time to 10% of a seqPBC run time would require at least a
10x increase in qubit cost. Litinski worked through some
highly paralleziable examples in greater detail, showing
that a reduction to 56.5% of seqPBC run time would need
over 6x the qubit costs and that a reduction to 11% of
seqPBC run time would need over 20x the qubit cost.
The qualifier “over” in these estimates reflects that an
increase in space-time volume also increases the code dis-
tance needed, further increasing the overhead of the time-
optimal approach by a polylogarthmic factor on top of
Litiniski’s estimates. While this is a powerful approach to
exploring space-time trade-offs, early fault-tolerant quan-
tum computers will be qubit limited. Kim et al. [63] has
also proposed another way to exploit large parallelizable
sets, but they have used long-range gates that are not pos-
sible in 2D hardware and they have also made some strong

010331-13

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

assumptions regarding the speed at which transversal gates
can be fault-tolerantly applied.

From the above, we see that it is crucial to understand
the extent to which algorithms possess potential for paral-
lelization. Fortunately, Kim et a/. [63] have already studied
quantum algorithms for chemistry and found & to vary
between 9 and 14 depending on the orbitals used, so we
regard this as a practically reasonable range.

B. Encodings and code-parameter proofs

Here, we introduce our own approach to exploiting
parallelizable Pauli sets. Unlike previous time-optimal
approaches, it does not incur a multiplicative qubit over-
head cost and can reduce the overall space-time cost.

Due to the properties of a parallelizable Pauli set,
all Pauli operators within the set can be measured in
any order. Furthermore, we can measure any set S that
generates the group (P, Pii1,...,Pui). If the set S is
overcomplete, there will be some linear dependencies
between the measurements that can be used to detect
(and correct) for any errors in the lattice-surgery measure-
ments. For example, consider the simplest parallelizable
set {P1, P>} as in Fig. 2 and let d,, be the required lattice-
surgery time, so that performing both measurements takes
2(d,, + 1) error-correction cycles. We could instead mea-
sure {P, P, P1P,}. If the third measurement outcome is
not equal to the product of the first two measurements, then
we know that something has gone wrong and we can repeat
the measurements to gain more certainty of the true val-
ues. By measuring the overcomplete set {Py, P,, P1 P}, we
have performed an extra lattice-surgery measurement but
we have gained that we can tolerate a single lattice-surgery
failure. This means that we could instead use d,, < d,, and
still achieve the same overall success probability. If 3d,, <
2d,,, then the computation has been accelerated. This is
the key insight behind TELS and next we dive deeper into
more general encoding schemes and their performance.

In general, given a parallelizable Pauli set

P={Pt’Pl‘+1a"‘9Pt+k—1}a (11)

we can define operators generated from this set as follows:

Xj

k—1
oIx] =[P (12)
j=0

where x is a length-k binary column vector. Given a set that
generates all the required Pauli operators, so that (S) =
(P), we can write the elements as

S = {QIx"], 0[x*], ..., O[x"1}, (13)

with the superscripts denoting different vectors. Since this
is a generating set, the vectors {x',x?,...,x"} must span

the relevant space. Furthermore, we can define a matrix G
with these vectors as columns and this matrix specifies the
TELS protocol. In the simple £ = 2 example where & =
{Py, P>, PP}, we would have that

(10 1Y,
G—<011>—("

Note that the rows of this matrix generate the code words
of the [3,2,2] classical code. In general, we consider G
as the generator matrix for the code words of an [n, k, d]
classical code and we call this the measurement code for
the protocol. Note that &k is the number of (unencoded)
Pauli operators in the generating set. We only consider
full-rank G, where k equals the number of rows in G.
The number n represents how many Pauli measurements
we physically perform in the encoded scheme and corre-
sponds to the number of columns in G. The distance d is
the lowest-weight vector in the row span of G.

Next, we show that the code distance d does indeed
quantify the ability of TELS to correct errors. First,
we formalize the redundancy in the set of Ilattice-
surgery measurements. For any length-» binary vector u =
(uy,uy, . ..,u,), we have that

x> x°). (14)

[] ew1=0 [Z ule] (15)
/

Juj=1

Since the matrix G is full rank and has more columns than
rows, there will exist u such that 3, u;x' = 0. For these u,
we have that '

[T o¥1=1. (16)

j:uj =1

Therefore, these u vectors describe redundancy in the mea-
surements. The condition }_; u; ¥ =0 can be rewritten
compactly as Gu = 0. Following the convention in coding
theory, this set of u is called the dual of G and denoted

Gt:={u:Gu=0 (mod?2)}. (17)

Next, we consider how this redundancy is used to detect
timelike lattice-surgery errors. We let m = {m, m», ... m,}
be a binary vector denoting the outcomes of the lattice-
surgery Pauli measurements in the set S. That is, if a
measurement of O[¥’] gives outcome “+1” we set m; = 0
and when the measurement of Q[¥'] gives “-1” we set
m; = 1. Given a u € G*, we know the Pauli operators
product to the identity [recall Eq. (16)], so when there are

010331-14

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

no timelike lattice-surgery errors, we have

[[m=u-m=0 (mod2). (18)

Jj Uj =1
Conversely, if we observe

[[m=um=1 (mod2), (19)

j:uj=l

then we know a timelike lattice-surgery error must have
occurred. Let us write m = s + e, where s is the ideal
measurement outcome and e is the measurement error.
The ideal measurement outcomes are self-consistent and
so always satisfy u - s = 0 for all u € G*. Therefore, we
see that an error e is undetected if and only if u-e =0
for some u € G*. This is equivalent to undetected errors
e being in the row span of G (since the dual of the dual
is always the original space). Recall that the distance d
denotes the lowest- (nonzero) weight vector in the row
span of G. Therefore, d also denotes the smallest number of
timelike lattice-surgery errors needed for them to be unde-
tected by TELS. Consequently, if IP is the probability of a
single timelike error, TELS error detection will fail with
probability O(P?).

Matrices such as G also appear in the literature in
the context of measuring overcomplete sets of stabilizers
for some quantum error-correction code. In the error-
correction setting, these codes have been called measure-
ment codes [64], metachecks [65,66], symmetries [67], and
syndrome-measurement codes [68]. However, we deploy
this idea in the context of lattice surgery as a strategy to
improve algorithm run times.

C. Examples and numerics

The simplest examples of TELS will detect a single
error. Given a Pauli set {P;, Piy1,. .., P}, We measure
each of these observables separately and then their product,
so that the measurement code has generator matrix

1 0 ... 0
01 ... 01

G=\|| (20)
0 0 1 1

which is an identity matrix padded with an extra col-
umn that is an all-1 vector. Therefore, this corresponds
to a [a + 1,, 2] classical code that detects a single error.
Concatenation of such a code m times gives a code with
parameters [(« + 1), a™,2™].

We can also consider using a simple [8,4, 4] extended
Hamming code as the measurement code, with generator

matrix
0000 1 1 11
1 111000 0
G=|l1 1001100 @D
1010101 0

This corresponds to replacing {P, P,, P3, P4} with S con-
taining the eight operators

S = {P,P3P4, PyP3, PyPy, Py, P\P3P4, P\P3, P\ P4, P1}.
(22)

Because the generator matrix has distance 4, this scheme
will detect up to three errors. This Hamming code is the
m = 3 member of a family of [2”,2" — m — 1, 4] extended
Hamming codes.

There are several viable strategies to handle a detected
error. Here, we consider the following detect-and-
remeasure strategy: if a distance-d measurement code is
used with lattice surgery performed for time d,,, then
whenever an error is detected we “remeasure,” but this
time using the original Pauli set P instead of using the
overcomplete set S. For the remeasure round, we perform
lattice surgery using an amount of time [¢d,, |, where ¢ is
some constant scaling factor the value of which we discuss
shortly. The expected run time to execute the protocol is
then

where p, is the probability of detecting an error. When
we do not detect an error, the probability of a fail-
ure is O(p@n+1/2) ~ O(p¥n/2). When we do detect
an error, the remeasure round will fail with probabil-
ity O(pm+1/2y &~ O(p?9n/?). The total failure probabil-
ity will then be O(p¥n/? 4 p,p4dmn/2). Therefore, we can
ensure that the total failure probability is O(p%/?) by set-
ting g = d. However, due to constant factors, the optimal
choice of ¢ may be slightly different from g = d and so
we numerically optimize from this initial guess. When an
error detection occurs, this leads to a long delay of time
kqd,, to implement the remeasure round, but in practice py
is so small that this has minimal impact on the expected
run time.

We could alternatively just measure the overcomplete
set S and run the measurement code in error-correction
mode with lattice surgery repeated for time d,. Then,
the protocol would fail with probability approximately
O(p@n/*). Compared to the detect-and-remeasure strategy,
we need d,, ~ 2d,, to achieve the same failure probability.

010331-15

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

[n, k, d] Measurement codes

] e Without measurement code

[2’(”7 2’(” —m — 1’ 4]

Extended Hamming

[a+1,0,2]

Single error detect
A [l@+1)%a? 4]

Concatenation of

single error detect

20 — 1 v v r 1 v T T T T T T T
— r ® © 6 ¢ ¢ ¢ 6 © ¢ 6 o © © o © o oo o o
E [

L 15[

(] L

o

(0] L

£ 10l .

g |

© 5h]

s

>

<C L
O-lwlwll PR T PR "
0 5 10 15 20

Number of parallelizable Pauli measurements &

FIG. 13.

A comparison of the standard lattice-surgery approach (without the measurement code) with three different TELS schemes

for performing a set of k parallelizable Pauli measurements. We assume that the Pauli measurements give an incorrect outcome due to a
timelike failure with a probability determined by Eq. (3) with d.£ = 100 and p = 10~3. We set the allowed error per Pauli at § = 10713,
The [2",2" — m — 1,4] are well-known Hamming codes. The [« + 1, «, 2] are single error-detection codes and [(« + 1)2, «?,4] are
concatenated single error-detection codes. While there are big jumps in & between the best-performing codes, these jumps could
be partially smoothed out by considering other codes such as concatenated codes with different inner and outer code sizes, such as
the [(@ + 1)(B + 1), @B, 4] codes. We also consider the triply concatenated codes with parameters [(« + 1)3, %, 8] but they perform
poorly in the parameter regime shown here and so are omitted for clarity.

The run time of an error-correction scheme is then

T =n(d,+ 1)~ nQ2d,+1). (24)
Compared to Eq. (23), in 7" we drop the second term
at the price of roughly doubling the first term. How-
ever, the second term is small because p; is small, so
overall error correction is not favorable compared to our
detect-and-remeasure scheme.

Figure 13 shows some example numerical results using
distance-2 and -4 codes. For example, when perform-
ing k = 11 parallelizable gates, the TELS scheme using
extended Hamming codes will have a run time of 46%
that of a standard seqPBC approach that measures the
original parallelizable Pauli set P. Since Kim et al. [63]
have found that interesting quantum algorithms can have
average k between 9 and 14, this suggests around a 2.2 x
speed-up due to TELS on practical problems. To obtain
a similar speed-up, Litinski has estimated that the time-
optimal approach would cost over 6x in qubit overhead.
The TELS scheme has no multiplicative qubit overhead,
although it does have a small additive qubit overhead, as
all £ magic states must be stored for the full duration of
the protocol. However, fault-tolerant algorithms typically
have N > 100 logical qubits and so the increase in logical
qubits N — N + k is small. Indeed, overall the space-time
volume will decrease, which is impossible using Fowler’s
time-optimal approach.

We do not find any examples of higher-distance codes
(d > 4) that perform better in this parameter regime (e.g.,
§ = 10~1%). Going to even lower error rates (8§ < 1071%)

or changing the noise model, then higher-distance codes
become useful and the advantage improves further. Indeed,
because of the existence of good classical codes with
n/k=0() and d = Q(k), we know that TELS will
asymptotically (for large k) be able to execute k& paral-
lelizable Pauli measurements in O(k) time and with error
8 = O(p**) for some constant «. In contrast, a standard
seqPBC with unencoded lattice surgery would take run
time O(kpolylog(k)) to achieve the same error.

VI. THE CORE-CACHE ARCHITECTURE AND
ROUTING OVERHEADS

In this section, we discuss a layout and data-access
structure for a quantum computer that extends on the lay-
out given in Fig. 11(a). We consider patches of (possibly
rectangular) surface codes of size d, by d,. Between these
patches we have some qubits dedicated as a lattice-surgery
“bus” or routing space. We say that the routing space sup-
ports fast access if logical X and Z operators of every
patch are adjacent to the routing space. Litinski has pro-
posed several data-access structures [12], with his fast
data structures using two-tile two-qubit patches (surface-
code patches that each encode two logical qubits) that are
sometimes called hexon surface codes.

In Sec. VI A, we show that the hexon approach is not
necessary and give a layout for a quantum core (what
Litiniski calls a fast data-access structure). Furthermore,
we show that a lower routing overhead is possible when the
surface-code patches are thin rectangles (e.g., d. > d,), as
is the optimal choice for highly biased noise. In Sec. VI B,

010331-16

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

(a) one tile (b) one surface-code patch
4 q z
t e 'W . -T " f'T .
d » .J e | I e | .
A - x ») ® o ¢
l L
d,d, tiles

(d) four unit cells
. 300

(C) one unit cell
2d. +dy +1

FIG. 14. The building blocks for a quantum computer. (a) A single tile containing two qubits: the ancilla qubits (cut at the four
corners of the tile) are shared with neighboring tiles. (b) A single (asymmetric) surface-code patch. The number of tiles needed is the
height times the width and so d,d.. (c) A single unit cell containing four surface-code patches and some routing space. Note that all
surface-code patches have a X and Z logical boundary adjacent to either routing space within the bulk or the boundary of the unit
cell. (d) Four unit cells tiled together. (e¢) The same as (d) but with the inclusion of extra padding highlighted in green at the edges to
provide access to the remaining X and Z logical boundaries and ample routing space. There is more padding on the top and right since

we need room to access the remaining X' and Z logical operators.

we also discuss the idea of a core-cache model where logi-
cal qubits are temporally moved out of the fast data-access
structure to reduce the routing overhead.

A. A quantum computer core

We count resource costs in terms of square tiles as
defined in Fig. 14(a). Each tile contains a single data qubit
and four quarter-ancilla qubits. Therefore, a device with
T tiles will require roughly 27 qubits. However, we can-
not cut qubits into quarters and so a precise counting will
include these. For instance, a rectangular device with a
height of 4 tiles and width of w tiles would have a total of
T = wh tiles and 2T + w + h + 1 qubits. When the device
is roughly square, then A and w are of size O(+/T) and so
there is a negligible additive cost compared to 27. We can
realize a surface-code patch using d,d; tiles as in Fig. 14(b)
and therefore 2d.d. qubits. The number of data and ancilla
qubits actively used in the surface-code patch is 2d,d, — 1
and so when we try to pack them in a 2D arrangement, the
tightest possible packing will contain one idling qubit per
patch.

We collect surface-code patches into groups of four,
which we call a unit cell [see Fig. 14(c)]. These unit
cells are then repeated as shown in Fig. 14(d) to obtain
the required number of logical qubits. Furthermore, we
arrange the unit cells to form a quantum “core” and assume
some additional padding shown in Fig. 14(e). Note that in

Fig. 14, every patch has logical X and Z boundary oper-
ators connected to the routing space, which enables us to
quickly perform multiqubit Pauli measurements between
any subset of qubits within the core. Additionally, there are
unused qubits between some of the surface-code patches.
The spacing of the qubits ensures that lattice surgery can
be performed (as we saw in Fig. 11) without using lattice
twists that incur additional practical difficulties to imple-
ment in fixed- and low-connectivity hardware. In contrast,
the data-access structures proposed by Litinski [12] have
assumed liberal use of twists.

The routing overhead for unit cells is then the ratio of
the number of tiles divided by the cost without any routing
space (e.g., 4d.d,):

(unit cell) (Zdz + dx + 1)(3dx + 1)

O
(dz,dx) 4d.d,

(25

The overhead for the entire core includes a contribution
from the additional padding shown in Fig. 14(ec). How-
ever, in the limit of many unit cells, the total overhead is
dominated by the unit-cell overhead. In the limit of large
distances d:, dy > 1, we have

O(unit cell)

dedy) S5 T (26)

RN

3
4

N W

Therefore, in the limit of large noise bias, d, > d,, the
routing overhead factor is 1.5. We can compare this with

010331-17

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL PRX QUANTUM 3, 010331 (2022)

Magic state factories
Magic state factories

FIG. 15. A small example of a quantum computer layout, with
a core composed of four unit cells (and therefore 16 surface-code
patches); cache on the top or bottom edge of the core; and magic
state factories on the left or right of the core. A pink dashed rect-
angle in the top-right corner indicates a hardwired lattice defect
so as to enable twist-free lattice surgery.

Litinski’s fast data blocks (see, e.g., Fig. 23 of Ref. [12]),
where the overhead factor is 2 (in the large device limit)
and so is more expensive. In contrast, for unbiased noise
and d, = d,, our scheme has an asymptotic routing over-
head factor of 9/4, which is slightly worse than Litinski’s
multiplicative factor-of-2 routing overhead. Indeed, solv-
ing Eq. (26) equal to 2 shows that d, < (2/3)d; is the
condition for our approach to have a routing overhead
advantage. A more general analysis of the routing over-
head that includes the green padded regions shown in

(a) Write to cache

Fig. 14(e) and contributions from the cache (see Sec. VI
B) is given in Appendix C. We also point out that rout-
ing overhead is not the only important figure of merit.
Our proposed design avoids twist defects and other signif-
icant lattice irregularities and therefore may be useful even
without noise bias.

B. A quantum computer cache

We now proceed to build additional structure around the
core. Using state distillation to prepare magic states, we
need factories that supply the core. The purely fast data-
access approach prioritizes speed over qubit cost. Here,
we also discuss the idea of a core and cache architec-
ture, where some logical qubits are temporarily stored in a
quantum analog of cache. However, with some time cost,
logical qubits can be quickly swapped in and out of the
cache. A small-scale sketch of a device comprising core,
cache, and magic state factories is illustrated in Fig. 15.

Packing qubits more compactly in the cache will clearly
reduce the overhead costs. However, such a layout comes
at a price, since only the X logical operators of these qubits
can be accessed when it is in the cache. To access the
logical Z operators, it must be swapped out of the cache
and into the core. For a qubit stored in the cache, we can
perform the following operations:

(1) Perform single-qubit X or Z measurements for a
qubit in the cache (time cost zero).

(2) Measure multiqubit operators of the form 4 ® B,
where B acts on the cache qubits and is a tensor
product of X operators only and 4 acts on the core
qubits and can be an arbitary Pauli operator (time

(]

Hg

N
O _
(O]

o cl:

8 X— 7

Clifford b, .
frame

(b) Read from cache

cost dy,).
O Xm Zm O —_
' Cl|fford Clifford
frame frame

(0))

I

@) X—Z _ —

e : . P 0

S 10§ 0) ¢ 0y ¢
Clifford ’IU?,L m. 7'7'% m, Clifford Clifford
frame frame frame

FIG. 16. Circuit diagrams for the operations (a) write to cache (WTC) and (b) to read from cache (RFC).

010331-18

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE... PRX QUANTUM 3, 010331 (2022)

FIG. 17. Example lattice-surgery diagrams for using write to cache and read from cache to exchange qubits j and k between core
and cache. (a) An illustration of the initial configuration with a |0) ancilla (index label i) in the cache. Qubit is in the core and qubit &
is in the cache and we wish to swap their locations. (b) We measure P ® X;, where P = CX; C', in which C is the Clifford frame. For
simplicity, we assume that P is composed of only X operators. (c) We measure Q = CZ; C{ and this time assume that it is composed
of only Z operators. (d) We measure P ® X}, where P = CX; C" is the same operator as in (b). (¢) We measure the single-qubit Pauli
Zy. If either of the simplifying assumptions we made for P or Q do not hold, then we need to use the twist-free protocol (or use twists).
() At the end of the protocol, qubit is in the cache, qubit k is in the core, and there is a |0) ancilla in the cache ready for further swaps.

(3) Perform Pauli updates to the Pauli frame (in soft-
ware).

(4) Perform Cliffords to qubits in the core, by updating
the Clifford frame (in software).

For algorithms where swapping in or out of the cache can
be made infrequently (compared to other time costs), our
approach reduces the routing overhead, with a mild impact
on the algorithm run time. Note also that our core-cache
architecture can be used in combination with the twist-free
or TELS schemes already proposed.

This leaves the question of how to swap the loca-
tion of qubits from the cache to the core. We cannot
directly implement the Clifford SWAP operation, since Clif-
ford operations can only be performed on core qubits.

Furthermore, surface-code patches cannot be moved
around to swap their positions, since such operations
would require the Clifford frame C to be relabeled. Such
a relabeling might make C act nontrivially on qubits in the
cache. Rather, when performing a SWAP from a qubit in the
core to the cache, we need to clean the Clifford frame so
that it only acts on core qubits.

We now define two elementary operations—write to
cache (WTC) and read from cache (RFC)—which, when
combined, enable a Clifford-cleaned swap. We first present
the WTC and RFC protocols using circuit diagrams in
Fig. 16. They are both essentially two-qubit teleporta-
tion protocols but with the Clifford frame adapting the
Pauli measurements performed. The WTC operation uses
two multiqubit Pauli measurements, whereas RFC can

010331-19

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

be performed faster as it uses only one multiqubit Pauli
measurement and a single-qubit Pauli measurement (that
takes zero time). The WTC operation requires a logical
|0) ancilla in the cache, which through the protocol swaps
place with a logical qubit in the core. The RFC operation
requires a logical |0) ancilla in the core, which through the
protocol swaps place with a logical qubit in the cache.

For a pair of logical qubits, one in the core and one in
the cache, we can cleanly SWAP their positions, by exe-
cuting WTC followed by RFC. The |0) ancilla initially
in the cache moves to the core, then back to the cache
but to a different cache location compared to where it
started. The whole swap procedure requires three multi-
qubit Pauli measurements. Figure 17 shows an example
using lattice surgery. This figure shows a simple scenario
where these three multiqubit Pauli measurements are XZ
Pauli measurements (even after conjugated by the Clifford
frame) and so can be realized with three simple lattice-
surgery operations. However, more generally, when some
measurements are not of XZ type, we need to either use
twist defects (and benchmark their performance) or use
our twist-free protocol and realize the swap with up to six
lattice-surgery operations.

In Appendix C, we perform a resource-cost analysis
for simulating the Hubbard model using the full core-
cache architecture described in this section. In particular,
we provide a rigorous analysis of routing overhead costs
including contributions from the cache and green padded
region in Fig. 14(e).

VII. CONCLUSION

In Sec. III, we introduce a decoding algorithm compati-
ble with lattice-surgery protocols and numerically compute
failure-rate polynomials for the dominant failure mech-
anisms of an X ® X Pauli measurement. Our analysis
allows one to compute appropriate d, and d, code dis-
tances, as well as the number of syndrome-measurement
rounds d,, during lattice surgery for successfully imple-
menting algorithms.

In Sec. IV, we introduce a twist free protocol for
measuring arbitrary Pauli operators using lattice surgery.
The protocol incurs a multiplicative factor-of-2 slow-
down in algorithm run time. However, surface codes with
twists require higher-weight-stabilizer measurements and
increased gate-scheduling complexities and have a reduced
effective code distance when using a MWPM decoder.
Such features inevitably cause a reduction in performance
compared to lattice-surgery protocols involving only X
and Z Pauli measurements. Consequently, a careful numer-
ical analysis with twists is needed in order to determine
whether using twists can beat the 2 x cost of the twist-free
approach.

In Sec. V, we introduce a technique that we call temporal
encoding of lattice surgery. By encoding lattice-surgery
measurements in the time domain, we show that a 2x

reduction in algorithm run times can be achieved for quan-
tum algorithms of practical scale without incurring addi-
tional qubit overhead costs. For more highly parallelizable
algorithms or larger algorithms, the use of larger classical
code distances and the exploration of other code families
will lead to even greater improvements in algorithm run
times. Since posting a preprint of this work.

Lastly, in Sec. VI, we provide a core-cache architecture
compatible with our lattice-surgery protocols. A subset of
the data qubits are stored in a cache, which reduces the
footprint of the routing space, and can be quickly accessed
when Z measurements need to be performed. We find that
for such an architecture, the routing of overhead costs adds
a multiplicative factor-of-1.5 increase to the total resource
costs for performing lattice surgery. A clear direction for
future work would be to analyze such architectures in the
presence of twists in order to better understand the trade-
offs with using a twist-free lattice-surgery protocol.

Apart from considering twists, a direction of future work
would be to apply our methods using other error-correcting
codes to potentially achieve lower resource costs. Promis-
ing code candidates include codes tailored for biased noise
such as the XZZX surface codes [67,69—71], subsystem
codes with high thresholds [72], and other code families
with high encoding rates, such as hyperbolic surface codes
[73,74].

ACKNOWLEDGMENTS

We thank Giacomo Torlai for his help with using the
AWS clusters. We thank Oscar Higgott, Fernando Bran-
dao, and Noah Shutty for their comments and suggestions
on our manuscript.

Craig Gidney noticed that temporal encoding of lattice
surgery could be used to reduce the runtime of magic state
distillation factories.

APPENDIX A: TWIST-FREE PROOF

Here, we give a formal proof that the twist-free lattice-
surgery protocol works as claimed. Consider the case when
step (5) yields a ¢ = 0 outcome so that we project onto the
|0) state. Then, steps (1)~(5) implement

M.y == 10){0] TTzy (m-) [Lyy (my)]0) (01 4, (A
where

Mzy (m.) = % 11+ D"ZVI®Q X4}, (A2)

My (my) := % 11+ D" Xul®X,). (A3)

010331-20

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

Using that for arbitrary Q,

0)(014(Q ® 1)[0){0; = Q ® [0){0l4;

[0)(0],(Q ® X4)[0)(0], = 0, (A4)
we deduce
1

My = 7 {1+ D™= (Z[vVIX[uD} ® [0)(0,, (AS)

which is proportional to the projector for a Z[v]X[u]
measurement with outcome m, @ m,. When u-v=20
(mod 4), we have P = Z[v]X[u] and so m, @ m, is the
outcome of measuring P (justifying ¢ = 0 in this case).
On the other hand, if u-v =2 (mod 4), we have P =
—Z[v]X[u] and so m, @& m, @ 1 is the outcome of mea-
suring P (justifying ¢ = 1 in this case). Recall that we are
currently assuming that u - v is even.

In the event that step (5) yields a ¢ = 1 outcome, we
have that

M_y = 1) (1] T zx (m:) Ixx (my)|0) (0] 4. (A6)
Using that for arbitrary Q,
D@ ® 1)[0){0] = 0,
I (11(Q ® X10){(0] = O ® [1)(0], (A7)

we have

1
Mot = 5 {172V + (=)™ X Tul} @ [1)(0L, (A8)

= {(=D)"Z[V]} ® XuM,. (A9)
Therefore, we see that M_ differs from M| by a Z[v] cor-
rection that we perform in step (6). There is also a global
phase (—1)™= but this is unimportant.

We remark that for the case where u-v =1 (mod 4),
adding an additional Y operator to P and performing the
measurement using the |Y) ancilla is identical to the case
where u - v =2 (mod 4); hence cis 1. A similar argument
can be used to show that ¢ = 0 for the case whereu - v =3
(mod 4).

APPENDIX B: TREATING SPACE-TIME
CORRELATED EDGES INCIDENT TO PARITY
VERTICES

As mentioned in Sec. III, the space-time correlated
edges incident to the parity vertices during the first round
of the merged surface-code patches (i.e., vertices v €
Véﬁi”) need to be treated with care. Such edges are high-

lighted in red, black, and purple in Figs. 18(b) and 18(c)
for an X ® X measurement.

i ° ARe o XO. XO. - ' X. x o
><?<x><>< e xff"xfﬁ e xf&_

E(.o X.o Xo’ .XD. ° X X._@
E VT><. e ><o>é°><o- >s<o>i<'xf X

(c)

T A G A g R A GRETR GEEA GREm g A g A oot
E(o. e Q >< o Xo’ 3 .’X °
;(x?x;(xﬁ%@.- XX
S e v S X

Q°) :
{ y Tal e xo\‘ A e)3
D/DVDVDVDVD\‘Q/DVD‘DVDVD
FIG. 18. (a) A surface-code lattice with d, = 5, d; = 7. The
numbers in each stabilizer measurement plaquettes indicate the
gate scheduling of the two-qubit gates (which in our simulations
are CNOT gates). (b) The first type of space-time correlated edges
for X stabilizers. (c) The second type of space-time correlated
edges for X stabilizers. Space-time correlated edges incident to
vertices present in the routing space are assigned different colors
other than green for the reasons described in the text.

First, in round » 4 1, edges highlighted in purple must
have infinite weight and can thus be removed. This is due
to the fact that when the logical patches are merged using
the routing space in round » + 1, individual X -stabilizer
measurements performed in the routing space (the ancillas
of which are marked by white vertices) will have random
outcomes and thus cannot be highlighted. As such, fail-
ures arising from two-qubit gates performed in the routing
space, and which introduce errors that do not interact with
stabilizers belonging to logical patches, cannot generate a
nontrivial measurement outcome between two consecutive
rounds of stabilizer measurements. Although the purple
edges discussed above must be removed when they are
incident to vertices in rounds » + 1 and » 4 2, such edges
incident to vertices v; and v; belonging to rounds greater
than » 4 1 must be included since they will have finite
weights.

Second, space-time edges incident to a single parity ver-
tex v € Vi,V are highlighted in red in Figs. 18(b) and
18(c). Note that in round » + 1, such edges are incident
to parity vertices colored in purple, which are also tran-
sition vertices. Such edges arise from two-qubit gate fail-
ures in round j > r + 1, with the property that the errors

010331-21

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

introduced by the failure only flip the parity vertices in
that round. In round j + 1, the error is detected by X
stabilizers belonging to both logical patches and the rout-
ing region. Errors introduced by such failures can flip the
parity of the X ® X measurement outcome. As such, v,
(defined in Algorithm 1) should also include the number
of highlighted red space-time correlated edges incident to
transition vertices.

Third, space-time correlated edges highlighted in black
have the same effect for correcting errors as all other space-
time correlated edges belonging to the logical patches
(highlighted in green). The reason is that they are inci-
dent to parity vertices in rounds j > r + 2 and thus failure
mechanisms leading to such edges cannot flip the parity of
the X ® X measurement outcome.

Lastly, we note that a two-qubit gate failure arising in
round » + 1 and that results in a red highlighted space-time
correlated edge will only highlight a single vertex (belong-
ing to the logical patch in round r 4 2) throughout the
entire syndrome-measurement history (assuming no other
failures occur). This is due to the random outcomes of X
stabilizers in round » 4 1 (so that vertices for such stabi-
lizers cannot be highlighted in round » + 1). Since there
is an asymmetry between the number of red space-time
correlated edges incident to the left data-qubit patch and
those incident to the right data-qubit patch, an asymmetry
in the logical failure-rate polynomials P 0,0y and IP(o 0.1,0)
(defined in Sec. IIT) will also arise.

APPENDIX C: RESOURCE-COST ANALYSIS OF
THE HUBBARD MODEL

Following Ref. [75], the total number of logical qubits
used for simulating a Hubbard model of lattice size L is
Np = 2L + L?/2 + 2. If T gates are performed by catal-
ysis, then an extra logical qubit is needed. We also add
another logical qubit for the logical |0) required in the
WTC-RFC protocol described in Sec. VI B. Using the
core-cache model shown in Fig. 15, let N; be the num-
ber of logical qubits in the core and let N, be the number
of logical qubits in the cache. Adding the cost of the green
padding shown in Fig. 14(e), we now compute the total
routing overhead cost in the core with 4 unit cells stacked
in the vertical direction and w unit cells stacked in the hor-
izontal direction [# = w = 2 in Fig. 15(d)]. We begin by
defining the following functions that count the number of
tiles in the green padded region of Fig. 14(e), where we
separate the region into four sections:

s1(dy, h) = h(3d; + 1),
S2(dm dz,W) = dx +2+ W(zdz + dx + 1):
s3(dy, h) = h(3d; +) (d + 1),

sa(dydoy) = (dy + 1)[w(2dz bdi+ D) +dy+ 2].

The total number of tiles in the green padded region is then
given by

STRGP(dX9 dz» ha W) = Sl(dmh) + sz(dxnd27w)

+S3(dx,h)+S4(dx,dz,W). (Cl)
The total routing overhead in the core is then
(core) Wh(zdz + dx + 1)(3dx + 1) + STRGP
(dedzhw) = - (C2)

4whd.d,

In the cache, the routing cost adds an additional 1 4 (N, —
1)/(N2d,) ~ 1 + 1/d, multiplier when using surface-code
patches of distance d, and d.. Hence, the total routing costs
including both the core and the cache are given by

wad_ Oldvdipn T N+ 1) — 1]
(dx,dzh.w) did.(4wh + Ny)

» (©3)

where we define OEZTZJBW) = 4whd.d., OEZ,(:Z,h,w)‘ '

For the Hubbard model, the total number of logical
qubits Ntrq, which excludes those used in the magic state
factory, is

NTLQ = 4Wh + N2, (C4)
with
L2
N, =2L% + -+ 3 — 4wh, (C5)

since there are 4wh logical qubits in the core. The total
number of physical qubits used in the algorithm is then

Nitys = 2dxd-NtLqO{) 1 (C6)
where we use the fact that a surface-code patch can be
realized using a rectangular region of size 2d,d..

We now compute the algorithm run time. Let u be the
total number of injected magic states in the core and Pauli
measurements in the algorithm. Recall that in Sec. 1T A,
W is shown to be given by u = 4Ntor + Ny. The time
Ty required to inject magic states via lattice surgery is
thus 7, = w(dy, + 1) Tsut, Where Tyye 1S the time required
to measure the stabilizers and reset ancillas during one
surface-code syndrome-measurement cycle. Using Egs. (4)
and (6), the parameters d,, d. and d,, are chosen such that

0.01634ud,£(21.93p)n*tV/2 ~ /3, (C7)

0.03148 Nt dnd, (28.91p) =012 < 573, (C8)
FA (dx+1)/2

0.0148/J,dmd—(0.762p) v < 8/3. (C9)

In Eq. (C7), we pessimistically take d,f = [d; + 2+
h@Bd, + D]ldx + 2 +w(2d. + d, + 1)] — 4whd..d., which

010331-22

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE... PRX QUANTUM 3, 010331 (2022)

TABLE I. For a Hubbard-model simulation with lattice size L and unit cells of height 4 and width w in the core, we provide the
minimum values of dy, d,, and d,, such that Egs. (C7)~«C9) are satisfied with § ~ 1%. For the given parameters, we also provide the
total number of physical qubits using Eq. (C6) and the number of logical qubits in the core and in the cache. The last column includes
the multiplicative factor [defined in Eq. (C3)] that is added to the physical qubit overhead, which takes routing costs into account. The
values for Ntor and N7 used in computing w are obtained from Ref. [75]. All resource costs exclude contributions from the magic state
factory.

Size Number of Number of logical Number of logical Ozgﬂz,h’w)
L h w dy d. dpy, physical qubits qubits (core) qubits (cache)

u/t =38
8 2 6 7 13 12 46472 48 115 1.57
8 6 6 7 13 12 63992 144 19 2.16
32 6 8 7 15 12 657276 192 2371 1.23
32 14 18 7 15 12 812532 1008 1555 1.51

is the full area of the routing space in the core. By doing so,
we consider a worst-case scenario where the full routing
space is used to perform lattice surgery for each injected
magic state. In Eq. (C8), we use Pz, = P10, since
the difference with P10 is negligible. We also ignore
higher-order contributions arising from lattice surgery for
the reasons explained in Sec. III. Lastly, in Eq. (C9) we
pessimistically set FA = [d; +2 + h(3d, + D][d: + 2 +
w(2d, + d, 4+ 1)] to be the full area in the core. Such an
assignment is done to take into account the possibility
that the full routing space can used when performing lat-
tice surgery after injecting a magic state. Such a scenario
would lead to a large d, distance, which would also include
contributions from the logical qubits.

In Table I, we provide overhead costs associated with
performing a Hubbard-model simulation of lattice size L.
Given the chosen values of 4 and w for a unit cells in the
core, we first compute the minimum required values of d,,
d., and d,, by solving Egs. (C7)+C9) with § ~ 1%. We
then compute the required number of physical qubits using
Eq. (C6) and give the number of logical qubits in the core
and in the cache. The last column includes the multiplica-
tive factor resulting from the routing overhead costs. As
can be seen, having more logical qubits in the core relative
to those in the cache can substantially increase the routing
overhead costs.

Apart from the chosen value of d,,, which satisfies Eq.
(C7), the algorithm run time will depend on several fac-
tors. The first factor is the ratio of logical qubits used in
the cache and in the core. Such a ratio will affect how many
times one needs to read from and write to the cache during
the algorithm run time. The second factor involves whether
multiqubit Pauli operators with Y terms are measured using
our twist-free approach or with twists. Lastly, the third fac-
tor includes run-time savings that can be achieved using
our temporal-encoding scheme for fast lattice surgery. As
such, a more careful analysis of the algorithm run times
is left for future work. We also leave the inclusion of
resource costs associated with the magic state factories to
future work. However, from the results of Refs. [33,76],

we expect contributions from the magic state factories to
only have a mild effect on the total resource overhead costs
shown in Table 1.

[1] J. Preskill, Reliable quantum computers, Proc. R. Soc.
London Ser. A: Math., Phys. Eng. Sci. 454, 385 (1998).

[2] B. M. Terhal, Quantum error correction for quantum mem-
ories, Rev. Mod. Phys. 87, 307 (2015).

[3] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads
towards fault-tolerant universal quantum computation,
Nature 549, 172 (2017).

[4] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. (N. Y) 303, 2 (2003).

[5] A.G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cle-
land, Surface codes: Towards practical large-scale quantum
computation, Phys. Rev. A 86, 032324 (2012).

[6] P. W. Shor, in Proceedings of the 37th Annual Symposium
on Foundations of Computer Science (IEEE, 1996), p. 56.

[7]1 R. Raussendorf, J. Harrington, and K. Goyal, Topological
fault-tolerance in cluster state quantum computation, New
J. Phys. 9, 199 (2007).

[8] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter,
Surface code quantum computing by lattice surgery, New
J. Phys. 14, 123011 (2012).

[9] A. G. Fowler and C. Gidney, Low overhead quantum
computation using lattice surgery (2018), arXiv preprint
ArXiv:1808.06709.

[10] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R.
Wootton, Poking Holes and Cutting Corners to Achieve
Clifford Gates with the Surface Code, Phys. Rev. X 7,
021029 (2017).

[11] D. Litinski and F. v. Oppen, Lattice surgery with a twist:
Simplifying Clifford gates of surface codes, Quantum 2, 62
(2018).

[12] D. Litinski, A game of surface codes: Large-scale quantum
computing with lattice surgery, Quantum 3, 128 (2019).

[13] D. Gottesman and I. L. Chuang, Demonstrating the viability
of universal quantum computation using teleportation and
single-qubit operations, Nature 402, 390 (1999).

[14] X. Zhou, D. W. Leung, and I. L. Chuang, Methodology for
quantum logic gate construction, Phys. Rev. A 62, 052316
(2000).

010331-23

https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1038/nature23460
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1088/1367-2630/9/6/199
https://doi.org/10.1088/1367-2630/14/12/123011
https://arxiv.org/abs/1808.06709
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1038/46503
https://doi.org/10.1103/PhysRevA.62.052316

CHRISTOPHER CHAMBERLAND and EARL T. CAMPBELL

PRX QUANTUM 3, 010331 (2022)

[15] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[16] S. Bravyi and J. Haah, Magic-state distillation with low
overhead, Phys. Rev. A 86, 052329 (2012).

[17] A. M. Meier, B. Eastin, and E. Knill, Magic-state distilla-
tion with the four-qubit code, Quant. Inf. Comp. 13, 195
(2013).

[18] C. Jones, Multilevel distillation of magic states for quantum
computing, Phys. Rev. A 87, 042305 (2013).

[19] E.T. Campbell and M. Howard, Magic state parity-checker
with pre-distilled components, Quantum 2, 56 (2018).

[20] C.Chamberland and A. W. Cross, Fault-tolerant magic state
preparation with flag qubits, Quantum 3, 143 (2019).

[21] C. Chamberland and K. Noh, Very low overhead fault-
tolerant magic state preparation using redundant ancilla
encoding and flag qubits, npj Quantum Inf. 6, 91
(2020).

[22] H. Bombin and M. A. Martin-Delgado, Topological Quan-
tum Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[23] T. Jochym-O’Connor and R. Laflamme, Using Concate-
nated Quantum Codes for Universal Fault-Tolerant Quan-
tum Gates, Phys. Rev. Lett. 112, 010505 (2014).

[24] H. Bombin, Dimensional jump in quantum error correction,
New J. Phys. 18, 043038 (2016).

[25] T.J. Yoder, R. Takagi, and I. L. Chuang, Universal Fault-
Tolerant Gates on Concatenated Stabilizer Codes, Phys.
Rev. X 6, 031039 (2016).

[26] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme,
Thresholds for Universal Concatenated Quantum Codes,
Phys. Rev. Lett. 117, 010501 (2016).

[27] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme,
Overhead analysis of universal concatenated quantum
codes, Phys. Rev. A 95, 022313 (2017).

[28] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of
universality: A comparative study of the overhead of state
distillation and code switching with color codes, PRX
Quantum 2, 020341 (2021).

[29] S. Bravyi, G. Smith, and J. A. Smolin, Trading Classical
and Quantum Computational Resources, Phys. Rev. X 6,
021043 (2016).

[30] C. Jones, Low-overhead constructions for the fault-tolerant
Toffoli gate, Phys. Rev. A 87, 022328 (2013).

[31] B. Eastin, Distilling one-qubit magic states into Toffoli
states, Phys. Rev. A 87, 032321 (2013).

[32] C. Gidney and A. G. Fowler, Efficient magic state factories
with a catalyzed |CCZ) to 2|T) transformation, Quantum 3,
135 (2019).

[33] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T.
Campbell, C. T. Hann, J. Iverson, H. Putterman, T. C.
Bohdanowicz, S. T. Flammia, A. Keller, G. Refael, J.
Preskill, L. Jiang, A. H. Safavi-Naeini, O. Painter, and F.
G. S. L. Brandao, Building a fault-tolerant quantum com-
puter using concatenated cat codes (2020), arXiv preprint
ArXiv:2012.04108.

[34] E. T. Campbell and M. Howard, Unified framework for
magic state distillation and multiqubit gate synthesis with
reduced resource cost, Phys. Rev. A 95, 022316 (2017).

[35] E. T. Campbell and M. Howard, Unifying Gate Synthesis
and Magic State Distillation, Phys. Rev. Lett. 118, 060501
(2017).

[36] J. Haah and M. B. Hastings, Codes and protocols for dis-
tilling 7, controlled-S, and Toffoli gates, Quantum 2, 71
(2018).

[37] C. Gidney, Halving the cost of quantum addition, Quantum
2,74 (2018).

[38] J. O’Gorman and E. T. Campbell, Quantum computa-
tion with realistic magic-state factories, Phys. Rev. A 95,
032338 (2017).

[39] E. Campbell, A. Khurana, and A. Montanaro, Applying
quantum algorithms to constraint satisfaction problems,
Quantum 3, 167 (2019).

[40] D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R.
Babbush, Qubitization of arbitrary basis quantum chemistry
leveraging sparsity and low rank factorization, Quantum 3,
208 (2019).

[41] 1. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe,
J. McClean, W. Sun, Z. Jiang, N. Rubin, A. Fowler,
A. Aspuru-Guzik, H. Neven, and R. Babbush, Improved
fault-tolerant quantum simulation of condensed-phase cor-
related electrons via Trotterization, Quantum 4, 296
(2020).

[42] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R.
McClean, N. Wiebe, and R. Babbush, Even more efficient
quantum computations of chemistry through tensor hyper-
contraction, PRX Quantum 2, 030305
(2021).

[43] Y. Tomita and K. M. Svore, Low-distance surface codes
under realistic quantum noise, Phys. Rev. A 90, 062320
(2014).

[44] C. Vuillot, L. Lao, B. Criger, C. G. Almudéver, K. Bertels,
and B. M. Terhal, Code deformation and lattice surgery are
gauge fixing, New J. Phys. 21, 033028 (2019).

[45] R. Raussendorf and J. Harrington, Fault-Tolerant Quan-
tum Computation with High Threshold in Two Dimensions,
Phys. Rev. Lett. 98, 190504 (2007).

[46] A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-
threshold universal quantum computation on the surface
code, Phys. Rev. A 80, 052312 (2009).

[47] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[48] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and
A. W. Cross, Topological and Subsystem Codes on Low-
Degree Graphs with Flag Qubits, Phys. Rev. X 10, 011022
(2020).

[49] C.Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Trian-
gular color codes on trivalent graphs with flag qubits, New
J. Phys. 22, 023019 (2020).

[50] Note, however, that if the numbers of syndrome-
measurement rounds both before and after the merge are
identical, we expect (1,0,0,0) and (1,1,0,0) events to
have similar failure probabilities.

[51] H. Bombin, Topological Order with a Twist: Ising Anyons
from an Abelian Model, Phys. Rev. Lett. 105, 030403
(2010).

[52] T. J. Yoder and I. H. Kim, The surface code with a twist,
Quantum 1, 2 (2017).

[53] An analysis for the impact of twists on the run time and
performance of lattice surgery will appear in future work.

[54] R. Chao and B. W. Reichardt, Quantum Error Correction
with Only Two Extra Qubits, Phys. Rev. Lett. 121, 050502
(2018).

010331-24

https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.26421/QIC13.3-4-2
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.22331/q-2018-03-14-56
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1038/s41534-020-00319-5
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.112.010505
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1103/PhysRevLett.117.010501
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevA.87.032321
https://doi.org/10.22331/q-2019-04-30-135
https://arxiv.org/abs/2012.04108
https://doi.org/10.1103/PhysRevA.95.022316
https://doi.org/10.1103/PhysRevLett.118.060501
https://doi.org/10.22331/q-2018-06-07-71
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-12-02-208
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1088/1367-2630/ab0199
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1088/1367-2630/ab68fd
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.1103/PhysRevLett.121.050502

UNIVERSAL QUANTUM COMPUTING WITH TWIST-FREE...

PRX QUANTUM 3, 010331 (2022)

[55] R. Chao and B. W. Reichardt, Fault-tolerant quantum
computation with few qubits, npj Quantum Inf. 4, 2056
(2018).

[56] C. Chamberland and M. E. Beverland, Flag fault-tolerant
error correction with arbitrary distance codes, Quantum 2,
53 (2018).

[57] Y. Shi, C. Chamberland, and A. Cross, Fault-tolerant prepa-
ration of approximate GKP states, New J. Phys. 21, 093007
(2019).

[58] T. Tansuwannont, C. Chamberland, and D. Leung, Flag
fault-tolerant error correction, measurement, and quan-
tum computation for cyclic Calderbank-Shor-Steane codes,
Phys. Rev. A 101, 012342 (2020).

[59] R. Chao and B. W. Reichardt, Flag fault-tolerant error cor-
rection for any stabilizer code, PRX Quantum 1, 010302
(2020).

[60] B. W. Reichardt, Fault-tolerant quantum error correction for
Steane’s seven-qubit color code with few or no extra qubits,
Quantum Sci. Technol. 6, 015007 (2020).

[61] T. Tansuwannont and D. Leung, Achieving fault tolerance
on capped color codes with few ancillas (2021), arXiv e-
prints, eid ArXiv:2106.02649.

[62] A. G. Fowler, Time-optimal quantum computation (2012),
arXiv preprint ArXiv:1509.03239.

[63] I. H. Kim, E. Lee, Y.-H. Liu, S. Pallister, W. Pol,
and S. Roberts, Fault-tolerant resource estimate for
quantum chemical simulations: Case study on Li-ion
battery electrolyte molecules (2021), arXiv preprint
ArXiv:2104.10653.

[64] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini,
P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, and A. Blais,
et al., Bias-preserving gates with stabilized cat qubits, Sci.
Adv. 6, eaay5901 (2020).

[65] E. T. Campbell, A theory of single-shot error correction for
adversarial noise, Quantum Sci. Technol. 4, 025006 (2019).

[66] A.O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Campbell,
Single-shot error correction of three-dimensional homolog-
ical product codes, PRX Quantum 2, 020340 (2021).

[67] D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J.
Brown, Fault-Tolerant Thresholds for the Surface Code in
Excess of 5% under Biased Noise, Phys. Rev. Lett. 124,
130501 (2020).

[68] A. Ashikhmin, C.-Y. Lai, and T. A. Brun, Quantum data-
syndrome codes, IEEE J. Sel. Areas Commun. 38, 449
(2020).

[69] D. K. Tuckett, A. S. Darmawan, C. T. Chubb, S. Bravyi,
S. D. Bartlett, and S. T. Flammia, Tailoring Surface
Codes for Highly Biased Noise, Phys. Rev. X 9, 041031
(2019).

[70] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[71] A.S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K. Tuck-
ett, and S. Puri, Practical quantum error correction with
the XZZX code and Kerr-cat qubits (2021), arXiv e-prints
ArXiv:2104.09539.

[72] O. Higgott and N. P. Breuckmann, Subsystem Codes with
High Thresholds by Gauge Fixing and Reduced Qubit
Overhead, Phys. Rev. X 11, 031039 (2021).

[73] N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna,
and B. M. Terhal, Hyperbolic and semi-hyperbolic sur-
face codes for quantum storage, Quantum Sci. Technol. 2,
035007 (2017).

[74] J. Conrad, C. Chamberland, N. P. Breuckmann, and B. M.
Terhal, The small stellated dodecahedron code and friends,
Phil. Trans. R. Soc. A 376, 20170323 (2018).

[75] E. T. Campbell, Early fault-tolerant simulations of the
Hubbard model (2020), ArXiv:2012.09238.

[76] D. Litinski, Magic state distillation: Not as costly as you
think, Quantum 3, 205 (2019).

010331-25

https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1088/1367-2630/ab3a62
https://doi.org/10.1103/PhysRevA.101.012342
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.1088/2058-9565/abc6f4
https://arxiv.org/abs/2106.02649
https://arxiv.org/abs/1509.03239
https://arxiv.org/abs/2104.10653
https://doi.org/10.1126/sciadv.aay5901
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.1103/PRXQuantum.2.020340
https://doi.org/10.1103/PhysRevLett.124.130501
https://doi.org/10.1109/JSAC.2020.2968997
https://doi.org/10.1103/PhysRevX.9.041031
https://doi.org/10.1038/s41467-021-22274-1
https://arxiv.org/abs/2104.09539
https://doi.org/10.1103/PhysRevX.11.031039
https://doi.org/10.1088/2058-9565/aa7d3b
https://doi.org/10.1098/rsta.2017.0323
https://arxiv.org/abs/2012.09238
https://doi.org/10.22331/q-2019-12-02-205

	I.. INTRODUCTION
	II.. BRIEF REVIEW OF UNIVERSAL QUANTUM COMPUTING VIA LATTICE SURGERY
	A.. Overview of PBC
	B.. Overview of lattice surgery

	III.. DECODING TIMELIKE ERRORS DURING LATTICE SURGERY
	A.. The decoding algorithm
	B.. Decoder simplifications
	C.. Noise model and simulation methodology
	D.. Simulation results and conclusions

	IV.. PROTOCOL FOR TWIST-FREE LATTICE SURGERY
	V.. TEMPORAL ENCODING FOR FAST LATTICE SURGERY
	A.. Parallelizable Pauli measurements
	B.. Encodings and code-parameter proofs
	C.. Examples and numerics

	VI.. THE CORE-CACHE ARCHITECTURE AND ROUTING OVERHEADS
	A.. A quantum computer core
	B.. A quantum computer cache

	VII.. CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: TWIST-FREE PROOF
	. APPENDIX B: TREATING SPACE-TIME CORRELATED EDGES INCIDENT TO PARITY VERTICES
	. APPENDIX C: RESOURCE-COST ANALYSIS OF THE HUBBARD MODEL
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

