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We present a comprehensive architectural analysis for a proposed fault-tolerant quantum computer
based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware,
we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional
layout. Using estimated physical parameters for the hardware, we perform a detailed error analysis of
measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we
numerically simulate quantum error correction when the outer code is either a repetition code or a thin
rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol
for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physi-
cal Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic state
distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource
estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms.
We find that with around 1000 superconducting circuit components, one could construct a fault-tolerant
quantum computer that can run circuits, which are currently intractable for classical computers. Hardware
with 18 000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime
beyond the reach of classical computing.
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I. INTRODUCTION

Building a fault-tolerant quantum computer is one of the
great scientific and engineering challenges of the 21st cen-
tury. A successful quantum-computing architecture must
meet many conflicting demands: it must have an error-
correction threshold that is achievable by hardware on a
large scale, a convenient physical layout, and implement
arbitrary quantum algorithms with low resource overhead
requirements. All proposed quantum architectures require
trade-offs among these objectives. For example, the most
popular proposed architecture, the surface code [1], has a
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convenient two-dimensional physical layout and relatively
high threshold error rates, but the overhead for running
useful algorithms remains daunting [2–7], even after years
of optimization.

Recent work has shown that qubits with highly biased
noise are a promising route to fault tolerance [8–11], at
least when gates that preserve the noise bias can be eas-
ily implemented in the architecture [12–15]. One possible
route to realizing such qubits is via a two-component
cat code [16–18], a bosonic qubit encoded in an oscil-
lator mode [19–21], subjected to engineered two-photon
dissipation [16,22,23] or an engineered Kerr nonlinearity
[17,24–27]. The engineered interaction heavily suppresses
population transfer between the two constituent coher-
ent states of the cat qubit, causing an effective noise
bias towards phase-flip errors on the cat qubits [16,17].
Experiments suggest that it is possible to engineer highly
biased noise with this approach [28]. Furthermore, bias-
preserving CNOT and Toffoli (TOF) gates can be performed
for these cat codes [13,14].
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The performance of dissipative cat qubits is influenced
by three key parameters. The average number of excita-
tions in each cat is |α|2, which determines the level of noise
bias as bit flips are exponentially suppressed with |α|2.
The rate of phase-flip errors is determined by the competi-
tion between two processes: κ1 is the single-excitation loss
rate (per time) that is the main cause of phase errors; and
κ2 is the engineered two-excitation dissipation rate (per
time) stabilizing the cat-code subspace and suppressing
errors. The ratio of these processes κ1/κ2 is a dimension-
less quantity primarily determining the phase-flip error
rate. Calculating accurate predictions for κ1/κ2 is crucial
for estimating the performance of cat-qubit architectures.

Concatenating the (inner) cat code with another (outer)
quantum error-correcting code can reduce qubit require-
ments by tailoring the outer code to suppress the dominant
phase-flip errors. We call these coding schemes concate-
nated cat codes. While this idea has been explored pre-
viously for the case where the outer code is a repetition
code [14,15], these proposals are completely reliant on
increasing |α|2 to suppress bit-flip errors. As |α|2 increases,
phase errors become more frequent and other physical
mechanisms start to become important, so a fully scal-
able architecture must allow for some bit-flip protection
from the outer code. Furthermore, these previous proposals
[14,15] did not study the rate of bit-flip processes during
CNOT gates and did not propose a two-dimensional (2D)
layout capable of implementing fault-tolerant logic. The
lack of such an analysis has left open several urgent ques-
tions, such as how a 2D architecture with dissipative cats
concatenated with the surface code would perform in prac-
tice, and how parameters at the hardware level (such as
κ1/κ2) relate to the needs of the larger architecture.

In this paper, we give a full-stack analysis of a fault-
tolerant quantum architecture based on dissipative cat
codes concatenated with outer quantum error-correcting
codes. We propose a blueprint for a possible practical
implementation based on hybrid electroacoustic systems
consisting of acoustic resonators coupled to superconduct-
ing circuits. These systems are a promising platform for
realizing concatenated cat codes due to their small foot-
print [29], potential for ultrahigh coherence times [30], and

easy integration with superconducting circuits for control
and readout [31,32].

We give a comprehensive error analysis of this approach
that provides a detailed picture of the physically achiev-
able hardware parameters (including κ1, κ2, and |α|2) and
error rates for gates and measurements based on estimated
parameters for coupling strengths and phonon loss and
dephasing rates. Using the obtained values of the hardware
parameters, we then explicitly analyze quantum error cor-
rection when the outer code is either a repetition code or a
thin rectangular surface code [33,34]. We then show how
to build a fault-tolerant quantum computer in our architec-
ture, combining lattice surgery and magic state distillation
for Toffoli states. Finally, we provide a resource overhead
estimate as a function of physical error rates required to
fault-tolerantly run quantum algorithms.

Our analysis can be broadly classified into three cate-
gories: (1) a hardware proposal; (2) a physical-layer analy-
sis of gate and measurements errors; and (3) a logical-level
analysis of memory and computation failure rates. More
specifically, in Sec. II we describe our hardware proposal
for using phononic band-gap resonators and superconduct-
ing circuits to store and process quantum information at
the physical level. This section provides a range for what
hardware parameters are feasible. Then in Sec. III we
give a complete analysis of gate and measurement errors
for phononic qubits using realistic noise parameters that
we expect from the hardware proposal. In Secs. IV, VI,
and VII we give a gate-level analysis of universal fault-
tolerant quantum computation that looks at logical error
rates across a physically relevant parameter regime.

A. Overview of main results

We frame our main results in terms of regimes for
the hardware parameters, which we denote REGIME 1,
REGIME 2, and REGIME 3, and which we summarize
in Table I. All regimes assume the same number of exci-
tations per cat (|α|2 = 8) but each regime corresponds to a
different order of magnitude in the crucial κ1/κ2 param-
eter. In REGIME 1, the physical cat-qubit CNOT gate
fails with probability 3.6× 10−2, which is well above the

TABLE I. The three regimes studied in this work. The dimensionless loss κ1/κ2 is a key figure of merit of the cat code, as the Z-type
error rates of the bias-preserving CNOT and Toffoli gates scale as

√
κ1/κ2. Therefore, as we move from REGIME 1 to REGIME 3,

the overall performance of the system improves, but the requirements imposed on the storage loss κ1 become progressively more
challenging. These requirements are shown in the table, in the more intuitive form of an energy decay time T1,i = 1/κ1,i. We also show
the required values of the nonlinear interaction strength g2 and the buffer decay rate κb, from which we calculate κ2 = 4|g2|2/κb (see
Sec. II for definitions of g2 and κb, and a derivation of the expression for κ2).

κ1/κ2 g2/2π κb/2π κ2/2π κ1,i = T−1
1,i |α|2 pCNOT Capabilities

REGIME 1 10−3 2 MHz 57 MHz 280 kHz (570 μs)−1 8 3.6 % Repetition-code QEC
REGIME 2 10−4 2 MHz 57 MHz 280 kHz (5.7 ms)−1 8 1.2 % Surface-code QEC
REGIME 3 10−5 2 MHz 57 MHz 280 kHz (57 ms)−1 8 0.3 % Useful quantum algorithms
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threshold for the surface-code error correction. However,
concatenating cat and repetition codes, REGIME 1 is just
below the repetition-code phase-flip threshold and so is
a suitable regime to demonstrate quantum error correc-
tion. In REGIME 2, it is possible to demonstrate small
proof-of-principle algorithms with the cat and repetition
code. However, while bit-flip errors are rare with |α|2 = 8,
without additional bit-flip protection a quantum computer
would decohere before it is able to demonstrate a useful
algorithm. In REGIME 2, CNOT gates fail with probability
1.2× 10−2, which is above the usually reported surface-
code error-correction threshold with depolarizing noise.
Nevertheless, due to noise bias and other aspects of the
noise processes, REGIME 2 would allow a demonstration
of fully scalable quantum error correction and computa-
tion. However, the surface-code overhead remains high in
REGIME 2. In REGIME 3, CNOT gates fail with prob-
ability 3× 10−3 and we estimate the resource overhead
costs for the task of estimating the ground-state energy
density of the Hubbard model. For this algorithm, we find
6× fewer qubits are needed than for hardware assuming
an unbiased, depolarizing noise model with CNOT gate
infidelities of 10−3 as considered in Ref. [6]. We now sum-
marize in more detail how these conclusions were reached
and the technical innovations needed along the way.

In Sec. II we describe our hardware proposal for using
phononic-crystal-defect resonators (PCDRs), of the type
reported in Ref. [32], as the storage elements. These are
periodically patterned suspended nanostructures that sup-
port localized acoustic resonances in the gigahertz range.
They are fabricated from a piezoelectric material such
as LiNbO3, which allows us to couple these resonances
to superconducting circuits with nearly the same strength
as ordinary electromagnetic cavities. Following a recent
demonstration [28], we propose implementing the two-
phonon dissipation by engineering an interaction through
which the storage mode exchanges excitations with an
ancillary “buffer” mode in pairs. This buffer is strongly
coupled to a bath, so these excitations decay rapidly. We
compute κ2 for a bath consisting of a multipole band-
pass filter connected to a semi-infinite transmission line,
or waveguide. The filter allows us to control the density
of states of the bath, causing it to vanish at all frequen-
cies except those within the filter passband [in this work
this is modeled by connecting a dissipative circuit with
an appropriate admittance function Y(ω) to the buffer res-
onator]. The filter is useful not only to protect the storage
mode from radiative decay, but also plays a crucial role
in suppressing correlated phase-flip errors while stabiliz-
ing multiple storage modes simultaneously with the same
buffer mode.

Given the stringent requirement for κ1/κ2, it is ideal to
maximize κ2. In our architecture, however, κ2 is ultimately
limited by crosstalk. Indeed, we find that stronger engi-
neered dissipation can simultaneously lead to increased

crosstalk, such that there comes a point where further
increasing κ2 is no longer beneficial. Specifically, by quan-
tifying crosstalk error rates and calculating their impacts
on logical lifetimes, we find that the optimal value is
κ2/2π ≈ 280 kHz at |α|2 = 8. This constraint on κ2 is dis-
cussed further in this section under the Sec. III summary,
and in more detail in Sec. C. In turn, this imposes the
requirement (shown in Table I) that the intrinsic relaxation
time of the storage modes be at least T1,i ≈ 57 ms to reach
REGIME 3, where it is possible to perform useful quan-
tum algorithms. At present, piezoelectric PCDRs made of
LiNbO3 can only reach T1,i ≈ 1 μs [35].

The engineered dissipation needed to stabilize each cat
code is provided by coupling each phononic resonator
to nonlinear circuit elements. Specifically, we follow the
approach of Ref. [28], where the nonlinearity is provided
by a circuit element variant of a superconducting quan-
tum interference device (SQUID) called an asymmetrically
threaded SQUID (ATS). While Ref. [28] demonstrated an
ATS can be used to stabilize a single mode into a cat
code, our hardware layout necessitates that each ATS cou-
ple to and stabilize multiple resonators simultaneously. We
present a simple scheme for this multiplexed stabilization,
and provide a detailed analysis of the crosstalk that arises
from coupling multiple modes to the same ATS. Moreover,
we show that by employing a bandpass filter and carefully
optimizing the phonon-mode frequencies, we are able to
largely suppress the dominant sources of crosstalk in our
system, though some residual crosstalk remains and we
return to discuss this later.

In Sec. III, we then analyze the errors in our gates and
measurements. To do this, we introduce a method that we
call the shifted Fock-basis method. This method allows us
to efficiently perform a perturbative analysis of the dom-
inant Z-error rates of the cat-qubit gates and improve the
efficiency of numerical simulation of large cat qubits com-
pared to the usual Fock-basis method. The shifted Fock-
basis method allows us to compute the Z-error rates of
various cat-qubit gates using a small Hilbert-space dimen-
sion that is independent of the average excitation number
|α|2 of the cat qubit.

Using this method, we go on to show that the optimal
Z-error rates (per gate) of the cat-qubit gates at the opti-
mal gate time scale as

√
κ1/κ2. The optimal Z-error rates

of the CNOT and TOF gates are in fact independent of the
size of the cat qubit, whereas those of Z and CZ rota-
tions decrease linearly in 1/|α|. We also study the effects
of bosonic dephasing and thermal excitations on various
cat-qubit gates. Provided these additional effects are small,
they do not disturb the noise bias or our main conclusion.

We then develop and analyze schemes for readout in
both the X and Z bases, enabling fast and hardware-
efficient stabilizer measurements. For X -basis readout we
propose to use an additional dedicated mode in each
unit cell of our architecture. By exchanging the ancilla
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information with this mode and performing repeated quan-
tum nondemolition (QND) parity measurements in parallel
with the gates of the subsequent error-correction cycle,
we can suppress the infidelity mechanisms associated with
the transmon while having minimal impact on the syn-
drome measurement cycle time. We present a fast and
high-fidelity Z-basis readout using the storage and buffer
modes; the resulting error probability decays exponentially
as a function of |α|2. In the Z-basis readout scheme, exci-
tations are swapped to the buffer mode where they leak
to the transmission line and are detected via a homodyne
measurement.

With a clear understanding of gate and measurement
error rates, we proceed in Sec. IV to analyze the logical
failure rates for a quantum memory based on concatenat-
ing the cat code with one of two codes: a repetition code
and a thin rectangular surface code. We compute logical
Z failure rates for both the repetition code and the surface
code. In the case of the surface code, we compute explicit
leading-order failure rates for logical X errors as a function
of the Z distance of the code. Our thresholds are computed
using a full circuit-level simulation and a minimum-weight
perfect-matching (MWPM) decoder. These main simu-
lation results, which inform the conclusions of Table I,
neglected any crosstalk errors. While filters can suppress
a wide class of crosstalk errors, there are still residual
crosstalk errors that cannot be eliminated by the filters. To
investigate this, we perform additional simulations using
the detailed information about the residual crosstalk errors
from the hardware analysis (Appendix B) and address
these errors by adding extra edges in the matching graphs
of the surface-code decoder. These extra edges are con-
structed such that they can detect unique syndrome pat-
terns created by the residual crosstalk errors. We find that
the performance of the surface code is largely unchanged
in the presence of crosstalk, provided that the strength of
the engineered coupling between the storage and buffer
modes is less than a few MHz (this informs our choice of
g2/2π = 2 MHz in Table I). Were it not for crosstalk, how-
ever, the architecture could tolerate stronger engineered
couplings and engineered dissipation, which would ease
demands on the storage-mode coherence. Crosstalk is thus
ultimately a limiting factor for our architecture, so we
also describe several future research directions that would
allow us to further mitigate its effects in future designs.

Using the thin surface code, we consider lattice surgery
as a means of performing logical Clifford operations in
Sec. V. By extending our full circuit-level simulation to
model timelike errors during lattice surgery, we obtain
logical error probabilities for Clifford operations.

To fault-tolerantly simulate universal quantum compu-
tation [36] with Toffoli gates, we introduce in Sec. VI a
new protocol to fault-tolerantly prepare TOF magic states
encoded in the repetition code. Due to the fault-tolerant
properties of our protocol, all gates required in our circuits

can be implemented at the physical level. Hence we refer
to such an approach as a bottom-up approach for prepar-
ing TOF magic states. The main insight is that a TOF state
can be prepared by measuring a single Clifford observ-
able, which can be achieved using a sequence of physical
CNOT and TOF gates. To ensure fault tolerance, this Clif-
ford measurement has to be repeated a fixed number of
times, but due to suppressed bit-flip noise the state does
not significantly decohere during this measurement pro-
cess. Using the full circuit-level noise model of Sec. III and
assuming κ1/κ2 = 10−5, we show that TOF magic states
can be prepared with total logical Z failure rates as low as
6× 10−6, which is several orders of magnitude lower than
what could be achieved using non-fault-tolerant methods
to prepare TOF states. Furthermore, the noise on the pre-
pared TOF state is dominated by one specific Pauli error,
which is a feature we can further exploit.

In Sec. VII, we show how TOF magic states proba-
bilistically prepared using our bottom-up approach can be
injected in a new magic state distillation scheme. This
protocol distills two higher-fidelity TOF states from eight
lower-fidelity TOF states with high success probability.
For generic noise, the protocol achieves quadratic error
reduction. In the relevant case where a single Pauli error
dominates, we can achieve cubic error reduction. The pro-
tocol is compiled down to architecture-level lattice-surgery
operations performed at the encoded level using repetition
and surface codes. Hence we refer to such an approach as
being top down. Our top-down approach allows us to dis-
till TOF magic states with low enough logical error rates
for use in quantum algorithms of practical interest. Fur-
ther, we note that given the low error rates achieved using
our bottom-up approach, only one round of distillation is
required in our top-down approach to prepare TOF states
with the desired logical error rates.

Finally, in Sec. VIII we analyze the overhead required
for running quantum algorithms in our architecture, based
on our estimated gate error rates for REGIME 3. We
consider running circuits on 100 qubits with up to 1000
Toffoli gates, which are comfortably beyond the reach of
classical simulability using the best currently known sim-
ulation algorithms. For circuits of this size, and for our
estimated gate error rates, bit-flip errors are sufficiently
rare that it suffices to concatenate the cat code with a repe-
tition code. We find that a device with 1000–2000 ATSs
could execute the circuit reliably. This number of hard-
ware components is compatible with next generation cryo-
genic dilution refrigerators, indicating that our proposal
holds promise for early implementations of fault-tolerant
quantum computation.

For known applications of quantum computing with
potential commercial value, substantially larger circuits are
needed. Again assuming REGIME 3 parameters, we find
that for these larger circuits the cat code should be con-
catenated with a thin surface code, which protects against
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bit flips as well as phase errors, and the overhead cost is
correspondingly higher. As a representative application,
we consider the task of estimating the ground-state energy
density of the Hubbard model. A quantum computer with
about 100 logical qubits executing about 1 million Toffoli
gates could perform this task in a parameter regime that is
very challenging for classical computers running the best
currently known classical algorithms. For this purpose we
estimate that our architecture could be implemented using
18 000 ATS components and that the quantum algorithm
could be executed in 32–89 min depending on the physical
parameters of the Hubbard model.

Notably, for this problem the magic state factory uses at
most 9.5% of the total resources and is never a bottleneck
on algorithm execution time. This low factory overhead is
due to a combination of factors. Firstly, the bottom-up pro-
cedure gives initial TOF states with a cost that is not much
more than a physical TOF but with orders of magnitude
lower error rates. Secondly, at the required TOF-error rate
it suffices to implement one round of the top-down proto-
col using a mixture of repetition codes and surface codes,
which dramatically reduces the factory footprint. In con-
trast, the best performing T-state factories (in architectures
without biased noise) rely completely on surface codes and
either require multiple rounds of distillation to achieve the
same error suppression [37–39] or only produce one T state
at a time so that eight rounds are needed to realize two TOF
gates [40].

II. HARDWARE IMPLEMENTATION AND
STABILIZATION SCHEMES

In our proposal, the lowest-level protection from errors
occurs directly at the hardware level and is based on the
idea of autonomous quantum error correction (QEC) [41],
where rather than correcting errors at the “software level,”
one instead engineers a system whose unitary evolution
and dissipation is sufficient to protect the encoded informa-
tion from Markovian errors. One can think of this process
as the continuous analog of the standard, discrete QEC
cycle consisting of syndrome measurements and correct-
ing unitaries. The value of autonomous QEC is that it
eliminates the need for active measurements and classical
feedback.

Historically, proposals for the implementation of
autonomous QEC have been formulated in the language
of coherent feedback control [42] or reservoir engineering
[43,44], where the evolution is described via a stochastic
master equation or a Lindblad master equation, respec-
tively. Here we specifically adopt a bosonic autonomous
QEC technique that more neatly fits into the latter category.
It was first introduced by Mirrahimi et al. in 2014 [16] and
demonstrated for individual qubits in recent experiments
[22,23,28]. We summarize the most relevant pieces here
for convenience.

A. Overview of cat codes and driven-dissipative
stabilization

The basic idea is to encode a qubit in a two-dimensional
subspace S = span{| − α〉, | + α〉} of a harmonic oscilla-
tor, spanned by the two quasiorthogonal coherent states
| ± α〉 [45,46]. The qubit states can be defined in the
X basis as the following two-component Schrödinger cat
states (see also Fig. 1):

|±〉 = N±(|α〉 ± | − α〉). (1)

These states are eigenstates of the parity opera-
tor P̂ = exp (iπ â†â) with eigenvalues ±1, and N± =
1/
√

2(1± e−|2α|2). The codewords of this code are

|0〉 = | + α〉 +O(e−2|α|2)| − α〉, (2)

|1〉 = | − α〉 +O(e−2|α|2)| + α〉. (3)

Note that |0〉 ≈ | + α〉 and |1〉 ≈ | − α〉 is a very good
approximation for |α|2 � 1, as is typically assumed
throughout this paper. The notation |0〉 and |1〉 is reserved
for these cat-qubit computational states throughout, and
to avoid ambiguity we use |n̂ = 0〉 and |n̂ = 1〉 for the
vacuum and single-phonon (or photon in some alternative
architectures) Fock states.

The usual error channels that affect real oscillators, such
as energy relaxation and dephasing, will eventually cor-
rupt the information encoded in this manner. To protect
against these common errors, one can engineer an artifi-
cial coupling to a bath such that the oscillator emits and
absorbs only excitations to and from this bath in pairs.
Such dynamics can be modeled by a Lindblad master
equation of the form

dρ̂(t)
dt

= κ2D[â2−α2]ρ̂(t)+ κ1D[â]ρ̂(t)+ κφD[â†â]ρ̂(t),

(4)

where D[L̂]ρ̂ := L̂ρ̂L̂† − (1/2)(L̂†L̂ρ̂ + ρ̂L̂†L̂), κ1 is the
usual single-phonon (or photon) dissipation rate, κφ is
the pure dephasing rate, and κ2 is a two-phonon (or two-
photon) dissipation rate. In the case where κ1 = κφ = 0,
any linear combination of the codewords |0〉, |1〉 is a
steady state of Eq. (4). This is straightforward to see, as
any state for which â2|ψ〉 = α2|ψ〉 is stationary under this
master equation, and this includes both the even- and odd-
parity cats. Furthermore, outside this subspace, there are
no further steady states of the Lindblad master equation.
Therefore, any initial state will eventually evolve to a mix-
ture of states within this subspace. We refer to the rate at
which this decay happens as the confinement rate, κconf;
using the displaced Fock basis (see Appendix C) one can
show that κconf = 4|α|2κ2. For finite κ1, κφ , this description
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of the dynamics no longer holds true exactly. In particu-
lar, the stationary solutions of Eq. (4) are no longer pure
states. However, if κconf > κerr, where κerr is the effective
error rate, then the codewords are still metastable states.
The threshold κerr depends on the error channel in ques-
tion: κerr = κ1 for phonon (or photon) loss, and κerr = κφ
for dephasing [47].

The key feature of this code is that, above the threshold
κconf > κerr, the bit-flip rate (or rate of X -type errors) 	0↔1
decays exponentially with the “code distance” |α|2 as

	0↔1 ∼ |α|2e−c|α|2κerr, (5)

where 2 ≤ c ≤ 4 for phonon (or photon) loss [15] and c =
2 for dephasing [16]. On the other hand, the phase-flip rate
(or rate of Z-type errors) 	+↔− increases linearly as

	+↔− ∼ |α|2κerr. (6)

For sufficiently small values of the dimensionless loss
parameter κerr/κ2, and sufficiently large |α|2, this translates
to a large noise bias, i.e., a large discrepancy between the
X - and Z-error rates. As alluded to earlier, this bias is a
key feature of our proposal and will be exploited when
designing the outer error-correcting codes.

The driven-dissipative dynamics of Eq. (4) can be phys-
ically realized by using a cleverly designed nonlinear
element to couple the storage mode â to an engineered
environment, or reservoir. Following Refs. [22,28], the
idea is to generate a nonlinear interaction of the form
g∗2 â2b̂† + h.c. between the storage mode and an ancillary
mode b̂, which here we refer to as the “buffer mode” in
keeping with existing terminology. The buffer mode is in
turn strongly coupled to a bath—it is designed to have a
large energy relaxation rate κb so that it rapidly and irre-
versibly emits the photons it contains into the environment.
If κb � g2, the b̂ mode is in the vacuum state |b̂†b̂ = 0〉
most of the time, and its excited states can be adiabatically
eliminated from the Hamiltonian [22,48]. In this picture,
there exists an effective Markovian description of the â-
mode dynamics where the b̂ mode is considered as part of
the environment and where the emission of excitations via
g∗2 â2b̂† can be accurately modeled as a dissipative process
acting on the â mode alone. To stimulate the absorption
process g2â†2b̂ a linear drive ε∗d b̂e−iωdt + h.c. on the buffer
mode is added to supply the required energy. With this
drive tuned on resonance with the buffer (ωd = ωb), the
evolution of the combined system is described by

dρ̂(t)
dt

= −i[g∗2(â
2 − α2)b̂† + h.c., ρ̂(t)]

+ κbD[b̂]ρ̂(t)+ κ1D[â]ρ̂(t), (7)

where α2 := −εd/g∗2 . After adiabatically eliminating the
b̂ mode, this master equation becomes Eq. (4), with κ2 =
4|g2|2/κb.

B. Physical implementation of buffer and storage
resonators

To realize the dynamics described by Eq. (7) in practice,
previous demonstrations of two-phonon dissipation have
relied on Josephson junctions [22,23] or an “ATS” [28] as
the source of nonlinearity. Other variations of the nonlinear
elements exist, for instance the “SNAIL” [27,49], but in
this proposal we adopt the ATS due to the advantages it
has over other nonlinear elements. These advantages are
outlined in Ref. [28].

The potential energy of an ATS has the form sin(φ̂),
where φ̂ = ϕaâ+ ϕbb̂+ h.c. is the superconducting phase
difference across the ATS and ϕa, ϕb are vacuum fluctua-
tion amplitudes that quantify the contribution of the â and b̂
modes to the phase φ̂. It is important to emphasize that here
â, b̂ are the normal modes of the combined storage and
buffer resonators. Because these resonators are far detuned,
there is little mixing between them, so â is “storagelike”
and b̂ is “bufferlike.”

Terms of cubic and higher orders in the power-series
expansion of sin(φ̂) generate nonlinear couplings between
the modes, provided that the required energy is injected
with pumps tuned to the appropriate frequencies. The
desired interaction g∗2 â2b̂† + h.c. can be resonantly acti-
vated by modulating the magnetic flux that threads the
ATS at frequency ωp = 2ωa − ωb. This modulation, which
from now on we refer to as the “pump,” provides the
missing energy in the conversion process—two storage
phonons get converted to a buffer photon and pump pho-
ton. To stimulate the reverse process—the conversion of
a buffer and a pump photon to two storage phonons—a
linear drive ε∗d b̂e−iωdt + h.c. at frequency ωd is applied to
the buffer. From now on we refer to this simply as the
“drive.” For further details on the implementation and the
calculation of g2, see Appendix A and Ref. [28].

For the storage oscillator, the three cited experi-
ments have used either superconducting three-dimensional
(3D) microwave cavities [22,23] or on-chip coplanar-
waveguide (CPW) resonators [28], and recent theoretical
proposals have focused on similar implementations [14,
15]. Here we study the possibility of using nanomechanical
resonators instead, and tailor our calculations specifically
to the case of one-dimensional PCDRs made of lithium
niobate, a crystalline piezoelectric material. These devices
support resonances at gigahertz frequencies, with modes
that are localized inside a volume< 1 μm3 of a suspended
nanostructure. They have been coupled to transmon qubits
in recent experiments [32,50] and may offer a number of
advantages over electromagnetic resonators.
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First, a PCDR is a micron-scale nanostructured device,
with an on-chip footprint (area) that is at least 3 orders of
magnitude smaller than that of planar superconducting res-
onators, including lumped-element structures. This is not a
significant advantage today, with the largest quantum com-
puters only having a few dozen physical qubits, but it may
become important in the future.

A second consideration is that, unlike electromagnetic
resonators, appropriately designed acoustic devices do not
experience direct crosstalk (unwanted couplings) because
acoustic waves do not propagate through vacuum. They
can still couple through the circuitry that mediates inter-
actions between them, but this can be mitigated with
approaches such as filtering and a carefully chosen con-
nectivity, both of which are important features of our
proposal.

The third and most important consideration is that there
is recent experimental evidence that phononic-crystal-
based devices can have very long coherence times as a
result of the high degree of confinement of their modes
and the quality of their materials. For example, devices
fabricated from silicon and operating at a frequency of
5 GHz have been shown to have energy relaxation and pure
dephasing times of T1 ≈ 1.5 s and Tφ ≈ 130 μs, respec-
tively [30]. These silicon devices cannot be easily coupled
to superconducting circuits, but they offer insight into the
decoherence mechanisms affecting nanomechanical res-
onators and suggest a roadmap for achieving similar levels
of coherence with piezoelectric devices. For example, sim-
ilar studies with lithium niobate PCDRs are already under
way [35], and although their coherence times are currently
limited to approximately 1 μs, it is possible their per-
formance could approach that of the silicon devices after
sufficient advances in materials and surface science.

We remark that although we have tailored our calcula-
tions to the case of PCDRs, the results of this proposal are
still applicable to a setting where the storage modes are
electromagnetic.

C. Wiring and layout

We now describe a way to combine all of these build-
ing blocks to build a two-dimensional grid of cat qubits
that form the basis for an outer code, such as the repeti-
tion code or the surface code. First, following Ref. [28] we
form a buffer resonator with frequency ωb by shunting an
ATS with a capacitor. This buffer mode is then coupled to
the input of a bandpass filter that passes frequencies within
a bandwidth 4J centered at ωb and attenuates frequencies
outside this range. The output of the filter is connected to
an open waveguide (which can be accurately modeled as
a resistive termination). This filter configuration stands in
contrast to the implementation in Ref. [28], where a band-
stop filter (that instead attenuates frequencies within some
band and passes all others) was used to protect the storage

+X +Y

+Z

|0〉 � | + α〉

|1〉 � | − α〉

|−〉 ∝ | + α〉 − | − α〉

|+〉 ∝ | + α〉 + | − α〉

FIG. 1. Bloch sphere of the cat qubit. The codewords |0〉, |1〉
and the |±〉 states are indicated on the Z and X axes, respec-
tively, along with their Wigner function representations (shown
for α = 2).

mode from radiatively decaying into the waveguide. In our
proposal, the bandpass filter also serves this role, but it
also plays a more fundamental role as a means of sup-
pressing crosstalk mechanisms that arise as a result of our
frequency-multiplexed scheme to stabilize (and perform
gates between) multiple modes with a single ATS. From
this point on, we refer to the combination of the buffer,
filter, and waveguide as the “reservoir.”

We arrange reservoirs in a two-dimensional grid, as
shown in Fig. 2, and connect neighboring reservoirs with a
PCDR using each of the two terminals of the resonator. The
reservoirs provide the connectivity between resonators and
are located above, below, to the left, and to the right of each
resonator. These four resonators serve as data and ancilla
qubits in either the repetition or the surface code. In addi-
tion, one more resonator coupled to each reservoir serves
the purpose of an ancillary readout mode, which is used
to measure the cat qubits in the X basis with the aid of an
ordinary transmon. Alternatively, it is possible to omit this
resonator altogether and perform the X readout directly via
the buffer—see Appendix H for further details.

There are two important considerations that motivate
this architecture. The first is that present PCDR designs
only have two available terminals, so each of them can
be connected to at most two different reservoir circuits.
This is simply a design choice—it may be possible to add
more terminals without a significant degradation of perfor-
mance, and this would enable other variations of the 2D
layout. The second consideration comes from our analysis
of correlated errors in the frequency-multiplexed stabiliza-
tion scheme, which we overview below and provide details
of in Appendix B. Our results show that the correlated error
rates increase rapidly with the number of modes connected
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waveguide

ωb

â
b̂

FIG. 2. Hardware implementation of the repetition- and surface-cat codes. In the 2D grid on the right, yellow circles represent data
qubits where the logical information is encoded, and gray circles represent ancilla qubits, which are used to measure the stabilizers
and extract error syndromes. Both data and ancilla qubits are encoded as Schrödinger cat states of localized acoustic modes of PCDRs,
and are stabilized through a driven-dissipative two-phonon interaction with an engineered reservoir. This stabilization strongly biases
the noise, suppressing X errors and increasing Z errors. The letter R in each plaquette represents the reservoir, which is implemented
with a capacitively shunted ATS (the “buffer” resonator), a bandpass filter, and an open waveguide. This circuit is shown inside the
“RESVR” box in the left panel and has a single nongrounded terminal, marked with a white circle on the edge of the box. All resonators
surrounding each reservoir in the layout diagram in the center panel connect to this one physical terminal. The green circles represent
an additional acoustic mode used to measure the cat qubits in the X basis with the aid of a transmon, which is represented by a white
square. Altogether, five PCDRs are connected to each reservoir: four as active qubits, and one for readout.

to an ATS, and the error rates that come with choosing five
modes per ATS are the largest that can be tolerated by the
outer error-correcting codes.

D. Estimation of dissipation rates κ1 and κ2

The dissipation rates κ1 and κ2 are crucial parameters:
they set the error rates of the gates, as well as the error
rates during idling, state preparation, and measurement.
Two-phonon loss is an engineered process, so the two-
phonon loss rate κ2 is a parameter that we can calculate.
On the other hand, the single-phonon loss rate κ1 is largely
determined by intrinsic properties of the hardware. To con-
struct the error model we use in this proposal, then, the
starting points are to (1) calculate a prediction for the max-
imum achievable value of κ2, and (2) infer the values of
κ1 that are required to reach various regimes of interest.
We consider three distinct regimes in this proposal, char-
acterized by the magnitude of the “dimensionless loss”
parameter κ1/κ2: 10−3 (REGIME 1), 10−4 (REGIME 2),
and 10−5 (REGIME 3). This parameter is particularly
important because the Z-type error rates scale as approx-
imately

√
κ1/κ2 for both the CNOT and Toffoli gates (see

Sec. III and Table II for further details). These regimes are
summarized in Table I.

A summary of our κ2 calculation is presented next, with
further details contained in Appendix A. As described
previously, the way the two-phonon loss is engineered is

by inducing a nonlinear coupling g∗2 â2b̂† + h.c. between
the storage mode â and a buffer mode b̂, which decays into
the environment at rate κb. A key requirement is that κb �
2|α|g2, so that the excited states of the buffer can be adia-
batically eliminated to yield an effective description where
the storage directly experiences two-phonon loss. In this
adiabatic regime, κ2 ≈ 4|g2|2/κb. We may write the adi-
abaticity constraint as g2 = ηκb/2|α| for some η 
 1. We
have observed numerically that η = 1/5 is sufficient to sta-
bilize high-fidelity cat states. Putting this together, we find
that the maximum achievable two-phonon dissipation rate
scales linearly with the buffer decay rate κb and inversely
with the mean phonon number |α|2 (the “distance” of the
cat code):

κ2 ≈ κbη
2/|α|2. (8)

We note that the maximum achievable κb is upper bounded
by the filter bandwidth, 4J (see Appendix A for details). In
this work, we fix 4J/2π = 100 MHz, which is sufficient
to satisfy κb ≤ 4J for the values of κb we consider.

We now move on to estimating the required values of
the single-phonon loss rate κ1. Before doing so, we first
recall that â and b̂ are the normal—or hybridized—modes
of the system, and therefore κ1 is given by

κ1 ≈ κ1,i + κ1,rad + (g/δ)2κb,i. (9)
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TABLE II. Table of gate error rates for CNOT and Toffoli from simulation for the three regimes defined in Table I. The noise model
is pure loss with rate κ1 and no gain or dephasing noise. α is the cat-code parameter and κ2 is the rate of two-phonon dissipation. The
rightmost column gives the formula in terms of α, κ1, and κ2. The Toffoli optimal gate time is similar to the CNOT optimal gate time
(see Appendix E). For simplicity and because the CNOT gate time sets the time scale of error correction, the Toffoli gate error rates are
shown for a gate time equal to the CNOT optimal gate time. In the error probability formulas for Idling, T is the length of time that the
system idles. The error probabilities for idle for the three regimes are calculated using the CNOT optimal gate time.

REGIME 1 REGIME 2 REGIME 3 Formula
(κ1/κ2 = 10−3) (κ1/κ2 = 10−4) (κ1/κ2 = 10−5)

CNOT

Optimal gate time 3.9× 10−7 s 1.2× 10−6 s 3.9× 10−6 s 0.31|α|−2(κ1κ2)
− 1

2

Z1 2.9× 10−2 9.1× 10−3 2.9× 10−3 0.91
√
κ1/κ2

Z2 ≈ Z1Z2 4.7× 10−3 1.5× 10−3 4.7× 10−4 0.15
√
κ1/κ2

X1 ≈ X2 ≈ X1X2 3.3× 10−9 1.0× 10−9 3.3× 10−10 0.93 exp(−2|α|2)√κ1/κ2
≈ Y1 ≈ Y1X2 ≈ Z1X2
Y2 ≈ Y1Y2 ≈ X1Y2 3.2× 10−11 3.2× 10−12 3.2× 10−13 0.28 exp(−2|α|2) (κ1/κ2)

≈ X1Z2 ≈ Y1Z2 ≈ Z1Y2

Toffoli at CNOT optimal time
Z1 ≈ Z2 1.8× 10−2 5.8× 10−3 1.8× 10−3 0.58

√
κ1/κ2

Z3 6.0× 10−3 1.9× 10−3 6.0× 10−4 0.19
√
κ1/κ2

Z1Z2 1.0× 10−2 3.2× 10−3 1.0× 10−3 0.32
√
κ1/κ2

Z1Z3 ≈ Z2Z3 1.2× 10−3 3.9× 10−4 1.2× 10−4 0.039
√
κ1/κ2

Z1Z2Z3 1.2× 10−3 3.9× 10−4 1.2× 10−4 0.039
√
κ1/κ2

|0〉 Prep
Time 4.0× 10−9 s 4.0× 10−9 s 4.0× 10−9 s 0.1× (κ2α

2)−1

X -error probability 4.9× 10−15 4.9× 10−15 4.9× 10−15 0.39 exp(−4α2)

|+〉 Prep
Time 4.0× 10−7 s 4.0× 10−7 s 4.0× 10−9 s 10× (κ2α

2)−1

Z-error probability 7.5× 10−3 7.5× 10−4 7.5× 10−5 7.5κ1/κ2
Idle
X -error probability 6.2× 10−17 2.0× 10−17 6.2× 10−18 0.5κ1α

2T exp(−4α2)

Y-error probability 6.2× 10−17 2.0× 10−17 6.2× 10−18 0.5κ1α
2T exp(−4α2)

Z-error probability 1.0× 10−2 3.1× 10−3 1.0× 10−3 κ1α
2T

Here g is the linear coupling rate between the bare stor-
age and buffer resonators, δ = ωb − ωa is their detuning,
and κb,i is the intrinsic decay rate of the bare buffer res-
onator. The first contribution κ1,i is the intrinsic loss rate of
the bare storage mode, an empirical quantity that depends,
for example, on the quality of the resonator materials. The
second contribution κ1,rad is due to direct radiative decay
into the buffer bath, which we make negligibly small by
ensuring the storage frequency ωa lies far outside of the
filter passband, or in other words by ensuring the bath has
a vanishing density of states at ωa. The third contribu-
tion (g/δ)2κb,i is due to the intrinsic loss of the bare buffer
resonator, which the storage inherits due to their hybridiza-
tion and which the filter cannot protect against. Usually
|g/δ| ∼ 10−2, so this last contribution is important when
κ1,i 
 κb,i.

Summing up, κ1 ≈ κ1,i + (g/δ)2κb,i when the buffer bath
has a vanishing density of states at ωa. A key result of
our analysis is that (g/δ)2κb,i can be strongly suppressed
by using a buffer resonator with a large characteristic
impedance Zb. This can be accomplished by increasing
|δ| until (g/δ)2κb,i is suppressed to a value comparable

to or smaller than κ1,i. This comes at the cost of reduc-
ing the nonlinear interaction rate g2, which also scales
with the detuning as g2 ∼ 1/δ2. But one can offset this
penalty by increasing Zb, because g2 ∼ Z5/2

b as we show
in Appendix A. We show that under certain assumptions
of κb,i and κ1,i, once Zb ∼ 1 k� we can access a regime
where κ1 ≈ κ1,i and therefore

κ1/κ2 ≈ κ1,i|α|2/η2κb. (10)

This is a useful result, as it addresses the problems that
arise when coupling a highly coherent, linear storage ele-
ment to a much lossier superconducting circuit. In Fig. 3,
we plot this simple expression for κ1/κ2 as a function of
κ1,i and κb. We assume |α|2 = 8, which is large enough to
result in good performance of the outer codes.

In later sections, we analyze the performance of our
architecture and find that there is an upper limit on κb,
beyond which crosstalk begins to inhibit the performance
of the architecture. Specifically, in Sec. IV C, we show that
the nonlinear coupling strength must satisfy g2/2π ≤ 2
MHz, lest crosstalk degrade the logical lifetimes. As a
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κ b/2
π 

(M
H

z)

1,int (s)

int

FIG. 3. Dimensionless loss κ1/κ2, as given by Eq. (10), as
a function of buffer decay rate κb and storage intrinsic energy
relaxation time T1,i = 1/κ1,i, assuming fixed ωa/2π = 2.16 GHz
and |α|2 = 8. We label the corresponding quality factor Qi =
ωa/κ1,i on the upper horizontal axis, and mark the κb value
used in our proposal with the white dashed line. The points
corresponding to REGIME 1, REGIME 2, and REGIME 3 are
indicated with a circle, a square, and a star, respectively. Future
innovations in the multiplexed stabilization scheme may allow
for larger bandwidths, which would relax these requirements
proportionally.

result, we have the restriction that κb = 2|α|g2/η ≤ 2π ×
57 MHz. At this maximal value, the κ1,i values needed to
reach the three different regimes we study in this paper are
indicated in Fig. 3 (see also Table I). Because crosstalk
is thus a limiting factor for our architecture, we remark
that there are several ways crosstalk could be mitigated in
future designs. For example, in Appendix H, we describe
an alternative version of our architecture with four modes
per unit cell as opposed to five; this modification reduces
crosstalk, thereby enabling larger κ2 and easing the κ1,i
requirements. Future approaches could reduce the num-
ber of modes per unit cell even further by increasing the
number of terminals of each PCDR.

It is important to note that the value κ2 ≈ 4|g2|2/κb ∼
2π × 280 kHz that we derive in this analysis, while the-
oretically possible, would require a larger values of g2
(about 5 times larger) than those previously reported [28].
Because α2 = −εd/g∗2 (see Sec. II A), this would require
a larger drive amplitude on the buffer mode in order to
maintain a fixed α, which may cause unforeseen problems
such as instabilities [51] or the excitation of spurious tran-
sitions [52,53]. Furthermore, the large buffer impedance
Zb required increases the size of the vacuum fluctuations
of the superconducting phase φ̂, making the system more

prone to instabilities. A detailed analysis of the power-
handling capacity of our system is beyond the scope of this
work. This is an area of active research, with promising
advances such as the use of inductive shunts to suppress
instabilities [54].

E. Multiplexed stabilization

In our architecture, each reservoir is responsible for sta-
bilizing multiple storage modes simultaneously, in contrast
to prior proposals [14,16]. This multiplexed stabilization
is both beneficial and necessary in the context of our
architecture. Stabilizing multiple storage modes with a
single reservoir is clearly beneficial from the perspective
of hardware efficiency, as the required number of ATSs
and control lines is reduced. Moreover, the use of PCDRs
(as opposed to, e.g., electromagnetic resonators) actu-
ally necessitates multiplexed stabilization. Current PCDR
designs have only two terminals, meaning that a PCDR
can couple to at most two different reservoir circuits, yet
each reservoir must couple to at least four storage modes
in order to achieve the required 2D-grid connectivity. Each
reservoir must necessarily stabilize multiple storage modes
as a result.

Conveniently, we find that multiplexed stabilization can
be implemented via a simple extension of the single-
mode stabilization scheme demonstrated in Ref. [28]. The
main idea is to use frequency-division multiplexing to sta-
bilize different modes independently. Here, multiplexing
refers to the fact that different regions of the filter pass-
band are allocated to the stabilization of different modes.
When the bandwidth allocated to each stabilization pro-
cess is sufficiently large, multiple modes can be stabilized
simultaneously and independently, as we now show.

To stabilize the nth mode coupled to a given reser-
voir, we apply a pump frequency ω(n)p = 2ωa − ωb +�n,
and drive the buffer mode at frequency ω(n)d = ωb −�n,
where �n denotes a detuning. To stabilize multiple modes
simultaneously, we apply multiple such pumps and drives.
Analogously to the single-mode stabilization case, the non-
linear mixing of the ATS then gives rise to an interaction
Hamiltonian of the form

Ĥ/� =
∑

n

g2
(
â2

n − α2) b̂†ei�nt + H.c., (11)

see Appendix B for derivation. Note that the sum does not
run over all modes coupled to the ATS, but rather only
over the modes stabilized by that ATS. In our architec-
ture, though five modes couple to each ATS, only two must
be stabilized simultaneously, so the sum contains only
two terms. By adiabatically eliminating the lossy buffer
mode, and assuming the detunings are chosen such that
|�n −�m| � 4|α|2κ2 for all m �= n, one obtains an effec-
tive master equation describing the evolution of the storage
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modes,

dρ̂
dt
≈
∑

n

κ2,nD
[
â2

n − α2] ρ̂(t), (12)

see Appendix B for derivation. Here, κ2,n ≈ 4|g2|2/κb if
the corresponding detuning falls inside the filter passband
(|�n| < 2J ), and κ2,n ≈ 0 otherwise, see Appendix A.
The dynamics, Eq. (12), stabilize cat states in different
modes independently and simultaneously. Thus, by simply
applying additional pumps and drives with appropriately
chosen detunings, multiple modes can be simultaneously
stabilized by a single ATS.

The efficacy of this multiplexed stabilization scheme can
be understood intuitively by considering the frequencies
of photons that leak from the buffer mode to the filtered
bath. In the case of �n = 0, a pump applied at frequency
2ωa − ωb facilitates the conversion of two phonons of
frequency ωa to a single photon of frequency ωb (note
that acoustic phonons are converted into buffer photons
via piezoelectricity in our proposal). As a result, photons
that leak from the buffer to the bath have frequency ωb.
If instead the pump is detuned by an amount �n �= 0,
it follows from energy conservation that the correspond-
ing emitted buffer-mode photons have frequency ωb +�n.
When the differences in these emitted-photon frequencies,
�n −�m, are chosen to be much larger than the emitted
photon linewidths, 4|α|2κ2 (see Appendix C), emitted pho-
tons associated with different storage modes are spectrally
resolvable by the environment. Therefore, when the stabi-
lization of mode n causes a buffer-mode photon to leak to
the environment, there is no back action on modes m �= n.
These ideas are illustrated pictorially in Fig. 4(a).

F. Crosstalk

Our multiplexed stabilization scheme can induce unde-
sired crosstalk among the cat qubits, and this crosstalk
must be quantified in order to provide realistic performance
estimates for our architecture. We now enumerate the dif-
ferent sources of crosstalk and show that the dominant
sources can be largely suppressed through a combina-
tion of filtering and phonon-mode frequency optimization.
Later on, in Sec. IV, we incorporate the residual crosstalk
errors into calculations of the logical error rates for our
architecture, finding that these small correlated errors can
nevertheless be a limiting factor for overall performance.

In acting as a nonlinear mixing element, the ATS not
only mediates the desired (g2â2

nb̂† + H.c.) interactions, but
it also mediates spurious interactions between different
storage modes. While most spurious interactions are far
detuned and can be safely neglected in the rotating-wave
approximation, there are others that cannot be neglected.

Emitted photon detunings (2π x MHz)

(b)

Frequency

(a)

... ...

Phonon mode frequencies

0 200 400 600 800 1000

α

δβ ρ

γ

(2π  x MHz)

(c)

FIG. 4. Multiplexed stabilization and crosstalk mitigation.
(a) Frequency multiplexing. Because the desired couplings
(g2â2

nb̂†ei�it + H.c.) are detuned by different amounts, photons
lost to the environment via the buffer have different frequencies.
When the corresponding emitted buffer-mode photons (green
lines) are spectrally well resolved, |�n −�m| � 4|α|2κ2, the
modes are stabilized independently. Dissipation associated with
photon emissions at frequencies inside the filter passband (the
yellow box, with bandwidth 4J/2π = 100 MHz) is strong, while
dissipation associated with emission at frequencies outside the
passband is suppressed. (b),(c) Crosstalk suppression. Red lines
in (b) denote photon-emission frequencies associated with var-
ious correlated errors, calculated for the specific storage-mode
frequencies plotted in (c). The mode frequencies are deliberately
chosen so that all emissions associated with correlated errors
occur at frequencies outside the filter passband (no red lines fall
in the yellow box). In other words, Eqs. (18) and (19) are simul-
taneously satisfied for any choices of the indices that lead to
nontrivial errors in the cat qubits. See Appendix B for further
details.

Most concerning among these are interactions of the form

g2âj âkb̂†eiδijk t + H.c., (13)

for j �= k, where δijk = ω(i)p − ωj − ωk + ωb. This interac-
tion converts two phonons from different modes, j and
k, into a single buffer-mode photon, facilitated by the
pump that stabilizes mode i. These interactions cannot be
neglected in general because they have the same coupling
strength as the desired interactions, Eq. (11), and they can
potentially be resonant or near resonant, depending on the
frequencies of the storage modes involved.

There are three different mechanisms through which
the interactions, Eq. (13), can induce crosstalk among the
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cat qubits. These mechanisms are described in detail in
Appendix B, and we summarize them here. First, analo-
gously to how the desired interactions, Eq. (11), lead to
two-phonon losses, the undesired interactions, Eq. (13),
lead to correlated, single-phonon losses

κeffD[âj âk] → κeff|α|4D[Ẑj Ẑk], (14)

where the rate κeff is discussed shortly, and Ẑi is the logical
Pauli-Ẑ operator for the cat qubit in mode i. The arrow
denotes projection onto the code space, illustrating that
these correlated losses manifest as stochastic, correlated
phase errors in the cat qubits.

Second, the interplay between different interactions of
the form, Eq. (13), gives rise to new effective dynamics
[48,55,56] generated by Hamiltonians of the form

Ĥeff =χ â†
i â†

j âmânei(δ�mn−δijk)t + H.c., (15)

→χ |α|4ẐiẐj ẐkẐlei(δ�mn−δijk)t + H.c., (16)

where the coupling rate χ is defined in Appendix B. The
projection onto the code space in the second line reveals
that Ĥeff can induce undesired, coherent evolution within
the code space.

Third, Ĥeff can also evolve the system out of the code
space, changing the phonon-number parity of one or more
modes in the process. Though the engineered dissipation
subsequently returns the system to the code space, it does
not correct changes to the phonon-number parity. The net
result is that Ĥeff also induces stochastic, correlated phase
errors in the cat qubits,

γeffD[ẐiẐj ẐkẐ�], (17)

where the rate γeff is discussed shortly.
Remarkably, all of the stochastic crosstalk errors,

Eqs.(14) and (17), can be suppressed to negligible levels
through a combination of filtering and phonon-mode fre-
quency optimization. In Appendix B, we show that both
κeff ≈ 0 and γeff ≈ 0, provided

|δijk| > 2J , (18)

|δijk − δ�mn| > 2J , (19)

respectively. This suppression can be understood as fol-
lows. The decoherence associated with κeff and γeff results
from the emission of buffer-mode photons at frequen-
cies ωb + δijk and ωb ± (δijk − δ�mn), respectively. When
the frequencies of these emitted photons lie outside the
filter passband, their emission (and the associated deco-
herence) is suppressed. Crucially, we can arrange for all
such errors to be suppressed simultaneously by carefully
choosing the frequencies of the storage modes, as shown in
Figs. 4(b) and 4(c). We note that the configuration of mode

frequencies in Fig. 4(c) was found via a numerical opti-
mization procedure described in Appendix B and is robust
to realistic frequency fluctuations.

The coherent crosstalk errors, Eq. (16), can also be
suppressed through phonon-mode frequency optimization,
though the suppression is not sufficient to render them
negligible. To suppress these errors, the phonon-mode fre-
quencies have been chosen to maximize the detunings
δijk − δ�mn, such that Ĥeff is rapidly rotating and its damag-
ing effects are mitigated to a large extent (see Appendix B
for details). Even so, the residual crosstalk errors are not
negligible and they must be accounted for when estimat-
ing the overall performance of the architecture. To this
end, in Appendix B we precisely quantify the magnitude
of these residual crosstalk errors, and the impact of these
errors on logical failure rates is calculated in Sec. IV. As
described in that section, we must have g2 � 2π ∗ 2 MHz,
lest these coherent errors degrade logical lifetimes. At the
hardware level, this restriction limits the achievable κ2
(see Sec. D), meaning that longer storage-mode coherence
times are required to reach a given κ1/κ2 because of these
coherent crosstalk errors.

Crosstalk also imposes another limitation on our archi-
tecture: though increasing the number of modes per unit
cell would improve hardware efficiency and connectiv-
ity, crosstalk forces us to minimize the number of modes
per unit cell. Indeed, as more modes are added to a unit
cell, frequencies become increasingly crowded [57–59],
and magnitude of crosstalk errors increases. Accordingly,
we have chosen four modes (plus one additional mode for
readout) per unit cell because this is the minimum number
consistent with our 2D square-grid layout. In Appendix H,
we describe an alternative architecture that uses only four
modes per unit cell, but requires a different approach to X
measurements that may be more challenging to implement.

Broadly speaking, these limitations illustrate the impor-
tance of accounting for crosstalk when designing and
analyzing fault-tolerant quantum-computing architectures.
More specifically, these limitations reveal that finding fur-
ther ways to mitigate crosstalk is an important direction for
future research on dissipative cat qubits. In future designs,
resonators with additional terminals, or tunable couplers
[60,61], could be employed to further mitigate the effects
of crosstalk, for example. Additionally, in Appendix H,
we describe an alternate version of our architecture that
employs a different X -basis readout scheme in order to
reduce the number of modes per unit cell and hence reduce
crosstalk.

III. GATES AND MEASUREMENTS

In this section, we discuss the gates and measurements
of the cat qubits. We first discuss the implementation of
the X gate via a rotating two-phonon dissipation; this will
be helpful for understanding the CNOT and Toffoli gates.
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We then review the fundamentals of the bias-preserving
CNOT and Toffoli gates acting on cat qubits [14] and present
several new analytical and numerical results. In particu-
lar, we explicitly characterize the extra geometric phase
(Z or CZ rotations), which must be taken into account
in the implementation of the CNOT and Toffoli gates if
the average excitation number |α|2 is not an even inte-
ger. Moreover, we introduce the shifted Fock-basis method
and demonstrate that it is useful for the perturbative anal-
ysis of the Z-error rates of various cat-qubit gates. We
then illustrate that the shifted Fock-basis method also
allows more efficient numerical simulation of large cat
qubits (up to |α|2 = 10) than the usual Fock-basis method.
The numerical results on gate error rates are summarized
in Table II and detailed descriptions of the methods are
given in Appendices C to E. These results are fed into
the simulations of the concatenated cat codes in Sec. IV
and VI.

We also describe schemes for X - and Z-basis readout.
Our scheme for X -basis readout has only a small impact
on the length of an error-correction cycle, thanks to the
use of an additional readout mode that is interrogated by
a transmon in parallel with the next error-correction cycle.
We also present a fast Z-basis readout scheme, which uses
a coupling between the storage mode and buffer mediated
by the ATS. This achieves measurement error rates, which
improve exponentially as |α|2 increases. Having hardware
native X - and Z-basis readout schemes allows for higher-
fidelity surface-code stabilizer measurements as explained
in Sec. B. A more detailed analysis of the readout schemes
can be found in Appendix G. Additionally, in Appendix H
we present an alternative X -basis readout scheme where
the readout is performed directly using the ATS, obviating
the need for the extra readout mode and transmon.

A. X gate

The X gate interchanges the cat-code computational
basis states |0〉 and |1〉. For large values of α these cat-
code states are approximately equal to the coherent states
|α〉 and | − α〉, so the X gate acts by rotating the coherent
states by π in the phase-space representation. The value
of α for the stabilized cat state is given by α2 = −εd/g∗2
(c.f. Sec. II A), so that the phase of α is determined by the
phase of the drive. Therefore, modulating the phase of the
drive on the storage cavity such that the stabilized value of
α rotates by π over a time T realizes an X gate. The code
state evolves according to

dρ̂(t)
dt

= κ2D[â2 − α2e2i πT t]ρ̂(t). (20)

This gives an adiabatic implementation of the X gate.
Furthermore, we can apply a compensating Hamiltonian

given by

ĤX = −πT â†â, (21)

so that the code state rotates along with the fixed point of
the dissipator. With this compensating Hamiltonian, the
gate need not be adiabatic and will succeed for any T.
When the X gate is corrupted by phonon loss, gain, or
by dephasing, the logical error rates during the X gate are
identical to the noise during idle. This is because in the
rotating frame of the compensating Hamiltonian ĤX , the
noise and the dissipator are identical to the case of idle.
The error rates for idle are summarized in Table II.

B. CNOT

We can realize the bias-preserving CNOT gate from
Ref. [14] using an ATS coupled to a pair of acoustic
modes. The CNOT gate rotates the cat-code states of the
target mode just as for the X gate, except that now the rota-
tion is conditioned on the state of the control mode. Cavity
mode 1 will be the control and cavity mode 2 the target.
A time-dependent dissipator that realizes this rotation is
given by the Lindblad jump operator

L̂2(t) = â2
2 − α2 + α

2
(e2i πT t − 1)(â1 − α). (22)

When cavity mode 1 is in the |1〉 cat-code state, which is
approximately equal to the | − α〉 coherent state, the corre-
sponding dissipator reduces approximately to the rotating
dissipator for the X gate on the second cavity mode. On the
other hand, when cavity mode 1 is in the |0〉 cat state, the
operator L2 reduces to the usual time-independent Lind-
blad operator. The control cavity mode is always stabilized
by the usual time-independent Lindblad operator:

L̂1 = â2
1 − α2. (23)

When a cat-code state ρ̂(t) evolves according to

dρ̂(t)
dt

= κ2D[L̂1](ρ̂)+ κ2D[L̂2(t)]ρ̂(t), (24)

the encoded state undergoes a CNOT gate (up to an extra
Z rotation on the control qubit; see below), assuming the
gate time T is long compared to the stabilization rate
κ2|α|2. This gate preserves the bias in the noise because
the two cat-code states remain distantly separated during
the conditional rotation.

Just as for the X gate the CNOT gate can be performed
much faster with the help of a compensating Hamiltonian.
In this case, an ideal compensating Hamiltonian would
be −(π/T)| − α〉〈−α|1â†

2â2. This Hamiltonian rotates the
state of mode 2 conditioned on the state of mode 1, so
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that the two-mode system remains in the subspace sta-
bilized by the static dissipator D[L̂1] and the rotating
dissipator D[L̂2(t)]. However, such a compensating Hamil-
tonian is highly nonlinear and would be hard to implement
in practice. Hence, as in Ref. [14], we consider an approx-
imate version of the above Hamiltonian, which requires
only at most third-order nonlinearities: in this case the
compensating Hamiltonian has the following form:

ĤCNOT = π

4αT
(â1 + â†

1 − 2α)(â†
2â2 − α2). (25)

This Hamiltonian rotates the state of mode 2 conditioned
on the state of mode 1, so that the two-mode system
remains in the subspace stabilized by the dissipator D[L̂1]
and the rotating dissipator D[L̂2(t)].

The dissipators D[L̂1] and D[L̂2(t)] combined with the
compromised version of the compensating Hamiltonian
ĤCNOT in Eq. (25) implement a gate

CX ′ ≡ Ẑ1(−πα2) · CNOT1→2, (26)

in the T � 1/(κ2α
2) limit, which differs from the desired

CNOT gate CNOT1→2 by an extra Z rotation on the con-
trol qubit Ẑ1(−πα2) (see Appendix D for more details).
Here, Ẑ(θ) is defined as Ẑ(θ) ≡ exp[iθ |1〉〈1|] and |1〉 is a
computational basis state, the −1 eigenstate of the Pauli Z
operator. The extra Z rotation is trivial if the average exci-
tation number |α|2 is an even integer. We also remark that
the extra Z rotation is not present if an ideal compensating
Hamiltonian −(π/T)| − α〉〈−α|1â†

2â2 is used.
Since the compensating Hamiltonian in Eq. (25) is only

an approximation of an ideal compensating Hamiltonian,
e.g., [i.e.,−(π/T)| − α〉〈−α|1â†

2â2] it introduces a residual
nonadiabatic error that scales like 1/T, where T is the gate
time. Phonon loss, gain, and dephasing noise during the
CNOT gate give rise to a Z-error rate on both cavities that
is proportional to T. The balance between the nonadiabatic
errors and the noise gives rise to an optimal gate time that
maximizes the fidelity.

In Ref. [14], it was noticed that the residual nonadia-
batic error scales as c/(κ2α

2T) and found that the constant
coefficient is given by c � 1/(2π) via a numerical fit.
In Appendix D, we provide a first-principles perturbative
analysis of the Z-error rates of the CNOT gate by using
the shifted Fock basis as a main tool. The key idea of
the shifted Fock basis is to use the displaced Fock states
D̂(±α)|n̂ = n〉 as the (unorthonormalized) basis states,
where n̂ = â†â is the mode occupation number. In partic-
ular, for the perturbative analysis of the Z-error rates, it
suffices to consider only the ground-state manifold con-
sisting of the coherent states D̂(±α)|n̂ = 0〉 = | ± α〉 and
the first-excited-state manifold consisting of the displaced
single-phonon Fock states D̂(±α)|n̂ = 1〉. See Appendix C

for a detailed description of the shifted Fock basis, includ-
ing orthonormalization and matrix elements of the annihi-
lation operator â in the shifted Fock basis. By taking the
ground and the first-excited-state manifolds in the shifted
Fock basis and using perturbation theory, we find that the
Z-error rates (per gate) of the implemented CX ′ gate are
given by

p̄Z1 = κ1α
2T + π2

64κ2α2T
,

p̄Z2 = p̄Z1Z2 =
1
2
κ1α

2T.

(27)

Here, κ1 is the single-phonon loss rate (per time) and
we assume no dephasing and gain for the moment. We
use p̄ for error rates predicted by the perturbation the-
ory and p for numerical results. Note that the coefficient
π2/64 = 0.154 in the nonadiabatic error term is close to
the coefficient 1/(2π) = 0.159, which was found earlier
via a numerical fit [14]. Hence, the optimal gate time that
minimizes the total gate infidelity is given by

T̄�CX ′ =
π

8α2
√

2κ1κ2
, (28)

and at the optimal gate time, the Z-error rates are given by

p̄�Z1
= 6p̄�Z2

= 6p̄�Z1Z2
= 3π

8

√
κ1

2κ2
= 0.833

√
κ1

κ2
. (29)

These agree well with the numerical results (see Table II)

p�Z1
= 6.067p�Z2

= 6.067p�Z1Z2
= 0.91

√
κ1

κ2
, (30)

within a relative error of 10% (see Appendix D for the rea-
sons for the discrepancy). Note that the perturbation theory
predicts that the optimal Z-error rates of the CX ′ gate (or
the CNOT gate for even |α|2) are independent of the size of
the cat code |α|2.

We simulated the CNOT gate using the effective dis-
sipators and Hamiltonian acting on two cavities. Our
method was to use the shifted Fock basis as described in
Appendix C to find the optimal gate time and perform
tomography at the optimal gate. This allowed us to com-
pute all of the two-qubit Pauli error rates. The shifted
Fock-basis approach allowed us to compute the Z-error
rates with a small Hilbert-space dimension that does not
depend on α. In the standard Fock basis the required
Hilbert-space dimension increases rapidly with α. In con-
trast to the Z-error rates, to accurately resolve the full set
of Pauli error rates a large dimension that increases with α
is required even for the shifted Fock basis. However, even
for the full set of Pauli error rates, our simulations are sev-
eral times faster when we use the shifted Fock basis rather
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than the standard Fock space, because good accuracy can
be attained using a smaller Hilbert-space dimension.

Our code was written in Python using the QuTIP pack-
age to solve the master equation including the dissipaters
and Hamiltonian terms. We ran the simulations using AWS
EC2 C5.18xlarge instances with 72 virtual CPUs, and the
total time required for the CNOT simulations was about
150 h.

C. Toffoli

The bias-preserving Toffoli or CCX gate is directly
analogous to the CNOT gate. The two control modes are
stabilized by the usual jump operator L̂1 = â2

1 − α2 and
L̂2 = â2

2 − α2, while the third mode is stabilized by a jump
operator that couples the three modes and rotates the third
conditioned on the state of the two controls,

L̂3(t) = â2
3 − α2 − 1

4
(e2i πT t − 1)(â1 − α)(â2 − α). (31)

When both modes 1 and 2 are in the |1〉 � | − α〉 cat-
code state, this jump operator reduces to approximately
â2

3 − α2e2i(π/T)t, which is the rotating jump operator that
realizes the X gate on the third mode. When one of the
control modes is in the |0〉 � |α〉 cat-code state, the jump
operator is approximately equal to the usual â2

3 − α2 jump
operator that stabilizes the cat-code states. In this way the
jump operators L̂1, L̂2, and L̂3(t) implement the Toffoli gate
(up to a controlled-Z rotation on the two control qubits).
Also like the CNOT gate we can apply a Hamiltonian to
drive the desired evolution and perform the gate much
faster while canceling part of the nonadiabatic errors. For
the Toffoli gate this Hamiltonian is given by

Ĥs = − π

8α2T
[(â1 − α)(â†

2 − α)+ h.c.](â†
3â3 − α2).

(32)

This Hamiltonian is the natural extension of Eq. (25). It
does not cancel all nonadiabatic noise, and like the CNOT
in the presence of noise, the trade-off between nonadia-
batic errors and noise from loss or dephasing gives rise
to an optimal gate time for each value of α and the noise
parameters.

Similarly, as in the case of the CNOT gate, we empha-
size that the dissipators D[L̂1], D[L̂2], and D[L̂3(t)] com-
bined with the compensating Hamiltonian ĤTOF in Eq. (32)
realize a gate

CCX ′ ≡ CZ1,2(−πα2) · TOF1,2→3, (33)

which differs from the desired Toffoli gate TOF1,2→3 by a
CZ rotation on the two control qubits (see Appendix D
for more details). Here, CZ(θ) is defined as CZ(θ) ≡
exp[iθ |11〉〈11|] and |11〉 is the simultaneous−1 eigenstate

of the Pauli Z operators Ẑ1 and Ẑ2. The extra CZ rota-
tion is not present if an ideal compensating Hamiltonian
−(π/T)| − α,−α〉〈−α,−α|1,2â†

3â3 is used. Note that the
extra CZ rotation CZ1,2(−πα2) is trivial if |α|2 is an even
integer.

We simulated the Toffoli gate subject to phonon loss,
gain, and dephasing at different rates by solving the master
equation given by the Hamiltonian ĤTOF, the dissipator on
each mode, and the Lindblad operators for the noise. These
simulations were carried out using AWS EC2 c5.18xlarge
instances and took about 170 h running on instances with
72 virtual CPUs. Because we simulated three modes for
the Toffoli gate, we were able to resolve only the domi-
nant Z-type error rates and not the other Pauli error rates
that are exponentially small in α2. These simulations used
the shifted Fock-basis approach. With this method we are
able to use a Hilbert-space dimension of 8 for each of the
three modes and simulate all of the Z Pauli error rates with
high precision. The numerical results for the optimal gate
time and the seven Z-type Pauli error rates under a pure-
loss noise model are summarized in Table II. The results
including gain and dephasing can be found in Table VIII.
Our simulations match our perturbation theory calculations
for the Z-error rates.

Similarly as in the case of the CNOT gate, we can use the
ground and the first-excited-state manifolds in the shifted
Fock basis and perform a perturbative analysis. Our per-
turbation theory yields the following Z-error rates of the
CCX ′ gate, or the Toffoli gate when |α|2 is an even integer
(see Appendix D):

p̄Z1 = p̄Z2 = κ1α
2T + π2

128κ2α2T
,

p̄Z3 =
5
8
κ1α

2T,

p̄Z1Z2 =
π2

128κ2α2T
,

p̄Z1Z3 = p̄Z2Z3 = p̄Z1Z2Z3 =
1
8
κ1α

2T.

(34)

Note that, the optimal gate time that minimizes the total
gate infidelity is given by T̄�CCX ′ = [π/(8α2√2κ1κ2)],
which is identical to the optimal gate time of the CX ′ gate
(or the CNOT gate for even |α|2) predicted by the perturba-
tion theory. At the optimal gate time, the Z-error rates (per
gate) are given by

p̄�Z1
= p̄�Z2

= 3.2p̄�Z3
= 2p̄�Z1Z2

= 16p̄�Z1Z3
= 16p̄�Z2Z3

= 16p̄�Z1Z2Z3

= π

4

√
κ1

2κ2
= 0.555

√
κ1

κ2
, (35)
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which agree well with the numerical results (see Table II)

p�Z1
= p�Z2

= 3.05p�Z3
= 1.81p�Z1Z2

= 14.9p�Z1Z3
= 14.9p�Z2Z3

= 14.9p�Z1Z2Z3
= 0.58

√
κ1

κ2
,

(36)

up to a relative error of 5%. Thus, as in the case of the
CNOT gate, the perturbation theory predicts that the optimal
Z-error rates of the CCX ′ gate (or the Toffoli gate for even
|α|2) are independent of the size |α|2 of the cat code.

D. X measurement

X -basis readout entails determining the parity of a
bosonic mode. Specifically this is readout in the basis of
even and odd cat states, i.e., |±〉 ∝ |α〉 ± | − α〉. Here we
describe our approach to X -basis readout. In our scheme,
we use an additional phononic readout mode in every unit
cell that we do not stabilize with two-phonon dissipation.
This readout mode is interrogated by a transmon qubit in
parallel with the gates of the next error-correction cycle.
This allows us to achieve high measurement fidelity and
minimal idling time for the data qubits. The additional
readout mode (colored green) and transmon are pictured
in Fig. 2.

Here we outline the steps for the readout of an ancilla
qubit in the X basis. First we “deflate” the ancilla mode
(â1), which maps the even parity cat state to the Fock state
|n̂ = 0〉 and the odd cat state to the Fock state |n̂ = 1〉 [27].
This can be achieved by abruptly changing the engineered
dissipation from D[â2

1 − α2] to D[â2
1]. Pairs of phonons

will be dissipated mapping the system to the |n̂ = 0〉 and
|n̂ = 1〉 manifold while preserving parity. The purpose of
the deflation is to reduce susceptibility to single-phonon
loss events, which change the parity of the cat qubit.
After this deflation we turn off the two-phonon dissipation.
Subsequent to the deflation the ancilla mode and readout
mode (â2) evolve under the Hamiltonian Ĥ = g(â†

1â2 +
â†

2â1), which transfers the excitation [53,62,63] between
the ancilla mode and readout mode in a time π/2g.

With the excitation in the readout mode, we per-
form repeated QND measurements of the readout mode
[64–66] and take a majority vote to get our final measure-
ment outcome. The individual measurements are standard
QND bosonic parity measurements, which are performed
using a dispersive coupling between the readout mode and
a transmon qubit (q̂) described by Ĥdispersive = χ â2

†â2q̂†q̂.
Evolution under the Hamiltonian for a time π/χ yields
the controlled parity gate U = I ⊗ |g〉〈g| + eiâ†

2â2π |e〉〈e|.
Combined with transmon state preparation and measure-
ment this interaction can be used to realize parity measure-
ments of the readout mode [64].

TABLE III. Table of X -basis and Z-basis measurement error
rates and measurement idling times used in the error-correction
simulations. The error rates correspond to |α|2 = 8. The num-
ber of measurements [up to 3(5) for repetition (surface) code]
is chosen to maximize fidelity. Plots with more datapoints and
details on the simulations and assumed parameters can be found
in Appendix G.

REGIME 1 REGIME 2 REGIME 3

X measurement
Idling time ←− 3.1× 10−6s −→
Infidelity

repetition code
7.2× 10−3 9.7× 10−4 3.6× 10−4

Infidelity surface
code

7.2× 10−3 9.7× 10−4 1.0× 10−4

Z measurement
Infidelity ←− 1.7× 10−4 −→

While this repeated parity measurement is taking place,
the CNOT gates of the next error-correction cycle can occur
in parallel. This enables us to reach high readout fidelity
without affecting the length of an error-correction cycle.
For our repetition-code and surface-code simulations we
use up to three or five parity measurements, respectively,
during the error-correction gates of the next cycle.

We simulated this measurement scheme to get a rough
sense of the expected measurement fidelities. The misas-
signment probabilities and measurement idling times can
be found in Table III for the three regimes considered in
the paper.

E. Z measurement

In Z-basis measurement the goal is to distinguish |0〉
and |1〉, which are approximately the coherent states |α〉
and | − α〉. We achieve this readout by engineering a
coupling between the storage model â and the buffer
mode b̂ described by the “beam-splitter” Hamiltonian Ĥ =
g(â†b̂+ b̂†â). The physical realization of this Hamiltonian
is explained in Appendix G.

If the state of the storage mode is | ± α〉, this cou-
pling drives the buffer mode to a coherent state | ± γ 〉
whose phase is aligned with the initial phase of the stor-
age mode. Hence a homodyne measurement of the buffer
mode distinguishes the states | ± α〉 of the storage mode,
as desired.

In Appendix G we find that the SNR for this readout
scheme at time τ is

SNR(τ ) = α
√

8κb

[
1− e−κbτ/4

(
cosh βτ

4 + κb
β

sinh βτ

4

)]

g
√
τ

(37)

in good agreement with numerics. Here κb is the single-

phonon loss rate of the buffer mode, and β =
√
κ2

b − (4g)2.
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The measurement SNR scales as α, which means there is
an exponential improvement of the measurement fidelity
with |α|2. This measurement process is not QND and at
long times the measurement SNR goes as 1/

√
τ because

the storage mode is emptied. From the measurement SNR,
the measurement separation error, which is the dominant
contribution to the total measurement error ε(|α|2), can be
computed using εsep(τ ) = (1/2)Erfc[SNR(τ )/2] [67].

For the values of |α|2 considered in our Z-basis measure-
ment simulations, we found that the optimal measurement
time is Tmeasure ≈ 850 ns, and that a conservative relation
for the numerical probability of an incorrect readout as a
function of |α|2 is

ε(|α|2) = e−1.5−0.9|α|2 . (38)

For α2 = 8, used in much of our analysis of error correc-
tion, we have ε ≈ 2× 10−4. In contrast to gates, whose
optimal fidelities depend only on the dimensionless ratio
κ1/κ2, readout fidelities and durations depend on additional
parameter assumptions discussed in Appendix G.

F. Gain and dephasing errors

Here we summarize the impact of additional noise
sources investigated in Appendices D and E. Adding
phonon gain to the storage mode in addition to loss only
slightly enhances the error rates of all operations. If the
thermal population is given by nth = 0.01, then the error
rates of the CZ gate are increased by about 1%, for exam-
ple. On the other hand, we expect that pure dephasing noise
in the form of a Lindblad jump operator a†a on the stor-
age mode will substantially increase the X -error rate but
only slightly increase the Z rate. We numerically find that
although the Z-error rates of the Z and CZ gates are not
measurably affected by pure dephasing noise, those of the
CNOT and TOF gates are adversely affected. This is surpris-
ing given that pure dephasing consists of random rotations
on the storage-mode state and does not change the par-
ity of the cat qubit. We provide a perturbative analysis to
explain this behavior and attribute the enhanced Z-error
rates of the CNOT and TOF gates to the fact that the sta-
bilizing jump operators for the target cat qubits are not
static and instead rotate conditioned on the state of the
control qubits. Our perturbative analysis agrees well with
our numerical results, and they predict that the optimal Z-
error rates of the CNOT and TOF gates scale as

√
κφ/κ2,

where κφ is the dephasing rate. These calculations can be
found in Appendix D. Our simulations of gate error rates
in the presence of gain and dephasing noise can be found
in Appendix E.

IV. LOGICAL FAILURE RATES FOR QUANTUM
MEMORY

Equipped with the noise model in Sec. III for performing
gates and measurements on stabilized cat qubits, we now

transition to describing the outer-level error-correcting
codes used to protect encoded logical qubits against phase-
flip and bit-flip errors. Errors can be identified by measur-
ing a codes’ stabilizer generators gi ∈ S where S forms
an abelian group, and the stabilizers act trivially on the
encoded state. Detectable errors anticommute with a subset
of the stabilizers in S and can be identified by their error
syndrome. More details on the stabilizer formalism can be
found in Ref. [68].

The two codes that we use in our architecture for imple-
menting quantum algorithms are the repetition code and
the rotated surface code [69]. Illustrations for such codes,
along with their corresponding syndrome extraction cir-
cuits (which measure the codes’ stabilizer generators), are
given in Fig. 5. As described in Secs. VI and VII, the repe-
tition code is used for preparing |TOF〉 magic states, which
will allow us to implement logical Toffoli gates. However,
the repetition code alone is insufficient for universal quan-
tum computation since, without the ability to correct at
least one bit-flip error, the logical X -failure rates would be
too high during the implementation of most quantum algo-
rithms of interest for reasonable values of α2 (see Fig. 7).
As such, apart from the preparation of |TOF〉 states (which
will be converted to |TOF〉 states encoded in the surface
code using lattice surgery), all logical gates of quantum
algorithms are performed in a dx = 3 by dz rotated surface-
code lattice. Here dx and dz denote the minimum weight of
the X - and Z-type logical operators of the rotated surface
code. We fix dx = 3 since as seen, we need only to correct
one bit-flip error at the surface-code level to get the desired
logical X failure rates for the implementation of quantum
algorithms of practical interest such as those considered in
Sec. VIII.

In this section, we provide logical Z failure rates for the
repetition code and rotated surface code in the context of
quantum memories using a MWPM decoding algorithm
with weighted edges described in Appendix N and the
noise model described in Sec. III. We also provide general
logical X failure-rate polynomials of the rotated surface
code as a function of the dz distance.

A. Repetition-code logical failure rates

The logical Z failure rates of the repetition code for
distance 3 ≤ d ≤ 19 are provided in Fig. 6. All results
were obtained from a Monte Carlo simulation based on the
circuit-level noise model where each gate, state prepara-
tion, idling qubits and measurements fail with probabilities
given in Tables II and III.

In error correction there are two settings of interest:
where the logical information needs to be stored for some
fixed period of time; and where there is flexibility to adapt
the number of rounds before proceeding to the next stage of
the computation. Here we introduce the STOP algorithm,
which is an adaptive policy for deciding how many rounds
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(a)

(b)

(c)

����and

FIG. 5. (a) Circuit illustration of a d = 5 repetition code
embedded in our ATS layout. As explained in Fig. 2, the yel-
low vertices correspond to the data qubits and the gray vertices
to the ancillas, whereas green circles are readout modes and the
white squares are transmon qubits, which we use for X -basis
measurements (see Appendix G and Fig. 40 for more details).
The pink semicircles are used to illustrate the XiXi+1 stabilizer
of the repetition code. We also label each CNOT gate by the
corresponding time step in which it is applied. (b) Circuit illus-
tration of a dx = 3 by dz = 5 thin rotated surface code. The pink
and blue plaquettes correspond to the X - and Z-type stabilizers,
respectively, with the numbers indicating the time steps in which
the CNOT gates are applied. Measurements of X -type stabiliz-
ers detect Z errors whereas measurements of Z-type stabilizers
detect X errors. (c) Key illustrating the different components of
the repetition- and surface-code lattices. CNOT gates are used to
couple qubits connected to the same ATS.

to repeat the syndrome measurements. In the limit of large
code distances, STOP terminates (with high probability) in
the same number of rounds as an algorithm using fixed d
rounds. For smaller code distances and low-noise regimes,
STOP provides an advantage over a fixed round decoder as
it requires (d + 1)/2 rounds. Full details for the implemen-
tation of the STOP algorithm are provided in Appendix I.
We now give two important remarks.

Remark one: Consider first the setting where the logi-
cal information is stored for a fixed period of time. The

FIG. 6. Logical Z failure rates for the repetition code, for a
variety of values of the code distance d. We use the circuit-
level noise model described in Sec. III with κφ = 0 and nth = 0.
The X -basis measurement error rates are obtained from Table III
with three parity measurements. The number of syndrome mea-
surement rounds r for each distance is obtained using the STOP
algorithm described in Appendix I. The dashed green line is
used as a stand-in for comparison with the logical memory error
rates and corresponds to the function 0.3025

√
κ1/κ2, which is a

quarter of the total Z failure rate of a physical CNOT gate (see
Table II).

standard approach that is followed in the literature when
obtaining numerical results for decoding such codes is to
perform d rounds of noisy syndrome measurements fol-
lowed by one round of perfect syndrome measurement
(where no additional errors are introduced). Errors are then
corrected using the full syndrome history. The round of
perfect syndrome measurement is added to ensure that the
final error after correction is either in the stabilizer group
or corresponds to a logical operator (i.e., we must ensure
that we project to the code space to declare success or
failure). Furthermore, if the error syndrome was decoded
based only on d noisy syndrome measurement rounds (i.e.,
without the round of perfect error correction), a single mea-
surement error occurring in the dth round could result in
a logical failure (a fact that is often not fully appreci-
ated). However, for many models of universal quantum
computation, the data qubits are measured directly as part
of the quantum algorithm or during the implementation
of state injection for performing non-Clifford gates (see
Refs. [70–72] and Fig. 42). As illustrated in Fig. 42 of
Appendix I, the direct measurement of the data qubits can
be viewed as a round of perfect error correction since mea-
surement errors in such a process are equivalent to data
qubit errors occurring immediately prior to the measure-
ment of the data. However for our purposes, the repetition
code will be used during the preparation of |TOF〉 magic
states where the circuits used in the preparation protocol
contain non-Clifford gate locations (see Fig. 14). Prior to
the application of these non-Clifford gates, errors on the
encoded code blocks need to be corrected without having
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access to a round of perfect syndrome measurements (since
the data qubits cannot be measured directly prior to apply-
ing the non-Clifford gates). Hence, it is important to have
a decoder that is robust to measurement errors occurring
in the last round when rounds of perfect syndrome mea-
surements cannot effectively be applied in the hardware. A
solution is that instead of repeating the syndrome measure-
ment d times, one can repeat the syndrome r times where r
is computed using the STOP algorithm mentioned above.
Note that in this case, r is not fixed but instead is a function
of the observed syndrome history. For all logical Z fail-
ure rates plotted in Fig. 6, the simulations were performed
using the STOP algorithm for determining when to stop
measuring the error syndrome. To ensure projection onto
the code space, we add one round of ideal syndrome mea-
surements after the last round given by the STOP algorithm
and implement MWPM over the full syndrome history.

Remark two: The x axis in Fig. 6 is plotted as a function
of κ1/κ2. It is important to note that some components of
the hardware fail with probabilities proportional to κ1/κ2
whereas other components (such as the CNOT gates) fail
with probabilities proportional to

√
κ1/κ2 (see Table II). In

particular, in REGIME 3, the noise is dominated by CNOT
gates, whereas in REGIME 1, some idling qubits during
CNOT gate times are afflicted by errors with probabilities
comparable with the CNOT failure rates, hence changing
the slope of the logical failure rate curves. To be clear, in
our simulations we took into account all different types of
idling locations; for this reason, and also because we use
the STOP algorithm for determining the number of syn-
drome measurement rounds instead of repeating a fixed d
times, our numerics should not be directly compared with
previous works such as in [15]. Note further that for com-
parisons with other works (such as in Ref. [15]), the x axis
of our plots would need to be rescaled as a function of√
κ1/κ2.
Given two strips of neighboring repetition codes, a log-

ical CNOT gate can be implemented transversally between
the two strips, and the failure probability of such a gate is
approximately 4 times the values showed in Fig. 6. One
possible interesting quantum error-correction experiment
would be to demonstrate a logical CNOT gate with lower
failure probability compared to a physical CNOT gate. As
such, in Fig. 6, we also plotted a dashed green curve,
which corresponds to the function 0.3025

√
κ1/κ2, which

is a quarter of the total Z failure rate of a CNOT gate
(see Table II). As can be seen, for κ1/κ2 < 4.5× 10−4,
the probability of failure of a CNOT gate encoded in a
d = 7 repetition code is lower than that of a physical
CNOT gate. As such, experiments demonstrating a logi-
cal CNOT gate with a failure probability smaller than a
physical CNOT could be achieved in REGIME 2. From the
hardware analysis, we find that κ2/(2π) = 500 kHz (or
κ2 = 3.14× 106s−1) is achievable for |α|2 = 8 (see Sec. II
and Appendix A 5 for more details). In this case, κ1/κ2 =

10−4 (REGIME 2) corresponds to a lifetime of 3 ms. From
Fig. 6, a logical CNOT gate implemented transversally with
two d = 9 repetition-code strips in REGIME 2 fails with
probability 3.7× 10−5, which would correspond to the
highest CNOT fidelities achieved to date [see, for instance,
Refs. [73,74], where a two-qubit gate fidelity as high as
99.9(1)% is achieved]. Furthermore, we find numerically
that the general polynomial describing the logical Z fail-
ure rate of a distance d repetition code for d rounds of
syndrome measurements is given by

p (Z)L (d) = 0.014d
(

770
κ1

κ2

)0.41d

. (39)

The justifications for the chosen scaling of p (Z)L (d) and the
scaling of the logical failure rates for the rotated surface
code in Sec. IV B are given in Appendix M.

Lastly, in Fig. 7 we compute the total logical failure rate
per code cycle (which includes contributions from logi-
cal X and Y failures) of the repetition code for distances
in the range 3 ≤ d ≤ 19 in REGIME 3 with κφ = 0 and
nth = 0. For |α|2 = 8, it can be seen that above d = 9,
contributions from bit-flip errors are the dominant factor
in the total logical failure rate. As such, going to larger
repetition-code distances results in higher logical failure
rates. Such features demonstrate the importance of taking
into account contributions from bit-flip errors, even though
they are exponentially suppressed. Further, such results
demonstrate that the logical X -error rate when implement-
ing a logical Toffoli gate using the piecewise fault-tolerant

FIG. 7. Total logical failure rate per code cycle for various
repetition-code distances and values of |α|2 with fixed κ1/κ2 =
10−5, κφ = 0, and nth = 0. Therefore, the |α|2 = 8 data points
correspond to REGIME 3. The logical X and Y failure rates were
computed analytically (to leading order) using the noise model
presented in Sec. III while taking into account all malignant and
benign fault locations. For |α|2 = 8, the lowest achievable total
logical error rate is 2.7× 10−8 per code cycle using d = 9.
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construction of Refs. [14,15] would be too high for the
algorithms considered in Sec. VIII unless |α2| � 8.

B. Rotated surface-code logical failure rates

Using the circuit-level noise model described in
Tables II and III and Eq. (38), the logical Z failure rates
for the rotated surface code with dx = 3 and varying dz are
given in Fig. 8. Note that the logical X operator has mini-
mum support on dx qubits along each column of the lattice.
The logical Z operator has minimum support on dz qubits
along each row of the lattice. Contrary to our repetition-
code simulation methodology, the simulation results were
obtained by performing dz rounds of noisy syndrome mea-
surements followed by one round of perfect syndrome
measurement in order to guarantee projection onto the
code space. Throughout this paper, we use the surface
code with only a fixed number of error-correction rounds.
Furthermore, in our proposal we never perform physical
non-Clifford gates directly on surface-code patches, rather
non-Clifford gates are always achieved by gate telepor-
tation using a magic state. As such, all simulations are
performed for dz rounds followed by one ideal round to
project onto the code space.

We also point out that all Z stabilizers are measured
in the Z basis by using CNOT gates (as shown in Fig. 5)
rather than measured in the X basis using CZ gates. The
reason is that, in addition to Z-basis measurements being
more reliable, only X or Y errors (which are exponen-
tially suppressed) on the target qubits of the CNOTs can
result in measurement errors. If CZ gates were used, a
CZ failure resulting in a Z error on an ancilla qubit would

FIG. 8. Logical Z failure rates for the rotated surface code
with dx = 3 and varying dz. We use the circuit-level noise model
described in Sec. III with κφ = 0 and nth = 0. The X -basis mea-
surement error rates are obtained from Table III with five parity
measurements. We point out that κ1/κ2 = 10−5, κ1/κ2 = 10−4,
and κ1/κ2 = 10−3 correspond to CNOT failure rates of 3.8×
10−3, 1.2× 10−2, and 3.8× 10−2. The simulations were done by
performing dz rounds of noisy syndrome measurements followed
by one round of perfect syndrome measurement.

flip the measurement outcomes. Hence if CZ gates paired
with X -basis measurements were used instead of CNOT
gates paired with Z-basis measurements, syndrome mea-
surement errors in Z-type stabilizer measurements would
be much more likely.

Using the stabilizer measurement schedule of Fig. 5 and
detailed further in Fig. 39, the duration of each round of
stabilizer measurements has three contributions: the opti-
mal time for four CNOT gates; the time to deflate the
cat qubit and the time to swap the ancilla qubit into the
readout mode. For example, for REGIME 3 this takes
31 μs.

As can be seen from Fig. 8, in order to obtain low
logical Z failure rates without requiring a very large
dz distance (say dz > 40), it is required that κ1/κ2 ≤
5× 10−5. Hence the hardware parameters must be in
REGIME 3. Put another way, the total CNOT gate Z fail-
ure rate should be less than 7.6× 10−3 to achieve very low
logical failure rates with reasonably small surface-code
distances.

Comparing the logical Z-error rates in Figs. 6 and 8, one
sees that the surface code significantly underperforms the
repetition code. This is mainly because a distance-d repeti-
tion code requires a total of 2d − 1 data and ancilla qubits
compared to the rotated surface code, which requires
2dxdz − 1 data and ancilla qubits. Further, the surface code
requires weight-four stabilizer measurements compared to
weight-two stabilizers for the repetition code and thus the
syndrome measurement circuit has larger depth.

The logical Z and X failure rate polynomials for fixed
dx = 3 and arbitrary dz distances (with dz rounds of stabi-
lizer measurements) were found numerically to be given by

p (Z)L (dz) = 0.028dz

(
3559

κ1

κ2

)0.292dz

, (40)

p (X )L (dz) = 3449d2
z e−4|α|2

(
κ1

κ2

)
. (41)

See Appendix M for further details on the fitting procedure
and additional results on errors during lattice surgery.

For the algorithms considered in Sec. VIII, a detailed
resource cost analysis shows that we require p (X )L (dz) ≤
10−10. As can be seen from Eq. (41), if |α|2 = 6, κ1/κ2 =
10−5 (which requires dz = 31), the logical X -error rate
is approximately 1.3× 10−9, which is an order of mag-
nitude worse than the minimum requirements. However,
setting |α|2 = 8, we obtain p (X )L (dz) = 4.2× 10−13. Given
the above, the algorithms considered in Sec. VIII require
|α|2 ≥ 8 or dx > 3.

From the results obtained in this section and Sec. A, we
can make the following observations. In REGIME 1, the
total logical failure rate of an idling qubit using the rep-
etition code can be smaller than that of a physical qubit
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using a large enough repetition code since the parame-
ters are below threshold. In order to obtain a logical CNOT
gate with failure probability less than a physical CNOT,
the hardware parameters must be in REGIME 2. Lastly,
to implement the algorithms considered in Sec. VIII using
thin stripped surface codes, the hardware parameters must
be in REGIME 3. Note that our scheme for performing
universal fault-tolerant quantum computing is described in
Secs. V, VI, and VII.

We conclude this section by comparing the performance
of our architecture (in REGIME 3) with square surface
codes subject to an unbiased, depolarizing noise model
with CNOT gate infidelity of p = 10−3. In an algorithm
example discussed further in Sec. VIII (the L = 8 and
u = 4 example), we require dx = 3 and dz = 25 to sup-
press p (Z)L + p (X )L to 1.9× 10−11. This requires dxdz = 75
ATS and 3dxdz = 225 qubits (PCDRs) per surface-code
patch. For depolarizing noise, the square surface code
has been simulated [75] and fitted to a logical error rate
pL ≈ d2(100p)(d+1)/2 and so d = 26 suffices to achieve a
similar logical error rate (pL = 2.1× 10−11). Most conven-
tional architectures use 2d2 qubits per surface-code patch
(because they do not use readout qubits). Therefore, our
architecture requires approximately 6× fewer qubits per
surface-code patch.

C. Surface-code logical failure rates in the presence of
crosstalk errors

Recall that in our architecture proposal, each ATS stabi-
lizes multiple phononic modes. Since the ATS mediates
various spurious interactions as well as desired interac-
tions, phononic modes that are connected by the same
ATS undergo crosstalk errors. While stochastic crosstalk
errors can be strongly suppressed by filtering and care-
ful choice of the frequencies of the phononic modes (see
Appendix B 4), coherent micro-oscillation errors cannot be
eliminated by the filters (see Appendix B 5). In particular,
such residual crosstalk errors result in two nontrivial noise
processes: every pair of data qubits that are connected by
a shared ATS (hence aligned vertically) experiences a cor-
related Z error with probability pdouble and every triple of
two data qubits and an ancilla qubit that measures an X
stabilizer of the surface code experiences a correlated Z
error with probability ptriple. In particular, the Z error on
the ancilla qubit is realized in the form of a flipped mea-
surement outcome of the corresponding X -type stabilizer
(see Fig. 9).

In Appendix B 5, we optimize the frequencies of the
five phononic modes coupled to a shared ATS to mini-
mize pdouble and ptriple, assuming that the maximum fre-
quency difference between different phononic modes is
2π × 1 GHz. With the optimal choice of phononic mode
frequencies, we find that the correlated error rates pdouble

FIG. 9. Crosstalk errors due to multiplexed stabilization.
Phononic modes that are connected via a shared ATS expe-
rience correlated Pauli Z errors due to micro-oscillation (see
Appendix B 5). Every pair of two data qubits that are shared
by the same ATS (hence aligned vertically) undergoes a corre-
lated Z error with a probability pdouble. Also, every triple of two
data qubits and an ancilla qubit that measures an X -type surface-
code stabilizer undergoes a correlated Z error with a probability
ptriple, where the Z error on the ancilla qubit manifests as a flipped
outcome of the corresponding X -type stabilizer.

and ptriple are given by

pdouble = 1.829× 10−8|α|8
(g2/(2π)

1 MHz

)4
,

ptriple = 5.205× 10−10|α|8
(g2/(2π)

1 MHz

)4
.

(42)

Here, g2 is the strength of the desired interaction â2b̂†

needed for the engineered two-phonon dissipation. See
Appendix B 5 for more details on why pdouble and ptriple
scale as g4

2 . Note that ptriple is 35 times smaller than pdouble.
For g2/(2π) = 1 MHz and |α|2 = 8, pdouble is given by
pdouble = 7.5× 10−5, which is negligible compared to the
total error rate of the physical CNOT gate between two
cat qubits. However, since pdouble scales as pdouble ∝ g4

2 ,
it increases rapidly as we use larger coupling strengths.
For instance, pdouble is given by pdouble = 1.2× 10−3 at
g2/(2π) = 2 MHz and pdouble = 1.9× 10−2 at g2/(2π) =
4 MHz.

In Fig. 10 we provide logical Z failure rates of the thin
surface code under the presence of the crosstalk errors
described above for various values of g2. We note that in
the presence of crosstalk errors with probabilities pdouble
and ptriple [which are given in Eq. (42)], extra edges need
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FIG. 10. Logical Z failure rates for a dx = 3 and dz = 11 thin
surface code in the presence of the residual crosstalk errors
[given in Eq. (42)] arising from the coherent micro-oscillations
and the circuit-level noise model of Sec. III. The X -basis mea-
surement error rates are obtained from Table III with five parity
measurements. We compute the logical Z-error rates for different
values of g2 shown in the legend, and compare such results to the
case where the crosstalk errors are not present.

to be added to the matching graphs of the surface code.
Details of the modified graphs in addition to the edge
weight calculations are provided in Appendix N 3.

As can be seen from Fig. 10, when g2/(2π) = 1 MHz,
the effects from crosstalk errors are negligible (the log-
ical error rate curves with and without crosstalk almost
perfectly overlap). When g2/(2π) = 2 MHz, the effects
are very small. However, if g2/(2π) ≥ 3 MHz, the dif-
ference between logical Z-error rates of the surface code
with and without crosstalk errors is large enough such that
one would need to use larger code distances to achieve
the target logical failure rates for the algorithms consid-
ered in Sec. VIII. Hence, to maintain the overhead results
obtained in Sec. VIII, it would be preferable to use val-
ues of g2/2π ≤ 2 MHz, since in that case effects from
crosstalk errors are very small. This bound on g2 imposes a
corresponding bound on κ2 = 4|g2|2/κb and hence dictates
the maximum tolerable κ1 to achieve a given ratio κ1/κ2
(see Table I, as well as further discussion in Sec. II D).
Thus, crosstalk errors are currently a limiting factor for our
architecture because suppressing their impacts at the logi-
cal level has required us to demand higher coherence at the
physical level.

Ways to further mitigate crosstalk errors therefore rep-
resent an important direction for future research on dis-
sipative cat qubits. One potential solution to this prob-
lem is described in Appendix H. There, we consider an
alternative version of our architecture where the limita-
tions imposed by crosstalk errors are less severe. The
alternative architecture employs a modified scheme for
X -basis readout that allows us to reduce the number of
modes per unit cell from five to four, which, in turn,
reduces crosstalk. With these modifications, we find the

effects of crosstalk are negligible for g2/2π ≤ 4 MHz, as
opposed to g2/2π ≤ 2 MHz for the five-mode case. This
increase in the allowable range in g2 would enable stronger
engineered dissipation and hence ease requirements on
the storage-mode coherence times. See Appendix H for
details.

V. COMPUTATION BY LATTICE SURGERY AND
TIMELIKE ERRORS

In both repetition and surface codes, the logical CNOT
gate is transversal, which means CNOTL = CNOT⊗n. There-
fore, a logical CNOT can be fault-tolerantly implemented
whenever the hardware supports physical CNOTs between
corresponding qubits in the code blocks. For the repeti-
tion code, we can realize a transversal CNOT gate in a
2D layout between two repetition codes. However, for the
surface code, a logical CNOT cannot be realized in a way
that is both transversal and uses physical CNOT gates in a
2D hardware geometry. A well-known solution is to use
lattice surgery between blocks of surface codes [76–79].
The simplest example of lattice surgery realizes a logical
XL ⊗ XL or ZL ⊗ ZL measurement between two surface-
code patches separated by a distance �. The two code
blocks are merged into a single code block for dm rounds of
surface-code stabilizer measurement and then split apart.
We illustrate this in Fig. 11 with more fine-grained details
in Fig. 52 of Appendix M.

During lattice surgery, certain types of logical errors can
occur resulting in the wrong measurement outcome of mul-
tiqubit logical Pauli operators. We call these timelike errors
since in the space-time picture they correspond to strings
of errors in the time direction (see Fig. 11). As shown in
Appendix M, such logical failure modes are exponentially
suppressed by increasing dm, which comes at the price of
increasing the execution time for this logical operation. A
seemingly natural choice is to set dm = dx = dz, but since
our noise model is highly biased this leads to an asymme-
try in the optimal choices. We discuss timelike errors in
more detail in Appendix M and present simulation results
showing that for our noise model, the rate of timelike
errors is comparable to (even slightly lower than) logical
Z-error rates. A detailed decoding scheme used for such
simulations is described in Appendix N 4.

Lattice-surgery measurements combined with logical
|0〉 and |+〉 preparations, and logical single-qubit X and
Z measurements, can be used to perform logical CNOT,
Hadamard and CZ gates [76]. Furthermore, the two code-
block lattice surgery sketched in Fig. 11 can be generalized
to act on multiple code blocks to enable measurements
of any tensor product of logical Z and X operators. By
making use of lattice twists, domain walls, and lattice
deformations, any logical multiqubit Pauli operator can be
measured by lattice surgery [78].
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FIG. 11. Space-time diagram of memory and lattice-surgery processes using a thin, rotated surface code with boundaries. Pink (the
left and right sides) represents boundaries where Z strings can terminate. Blue (the fore and rear sides) represents boundaries where X
strings can terminate. We show examples of Z strings: when traveling in a spatial direction they represent physical Z errors and when
traveling in the vertical time direction, they represent errors on X stabilizer measurements. We show only Z strings that are closed loops
or terminate on suitable boundaries. These can be regarded as the final Z strings (after matching) including physical and measurement
errors combined with recovery operations. In the case of memory, a logical Z error occurs whenever a Z string propagates between
two topologically disconnected red boundaries. When performing lattice surgery to measure the XL1 ⊗ XL2 logical operator between
two patches, an additional failure mechanism is possible. If a Z string propagates between two red boundaries disconnected in the time
direction then we have a timelike Z error. Computationally, this flips the outcome of the XL1 ⊗ XL2 measurement. Such processes are
exponentially suppressed by increasing the measurement distance dm.

However, all these operations are either Clifford group
gates or Pauli measurements, so some non-Clifford opera-
tion is required to complete a universal gate set. The model
of Pauli-based computation [80] shows that it is possible
to perform universal quantum computation using just mul-
tiqubit Pauli measurements and access to suitable magic
states and performing gate teleportation. We denote the
magic state for a Toffoli gate injection as

|TOF〉 = 1
2

∑

a,b∈F2

|a〉|b〉|a ∧ b〉, (43)

where a ∧ b is the AND of bits a and b. The |TOF〉 state is
stabilized by the Abelian group STOF = 〈gA, gB, gC〉where

gA = XACNOTB,C, (44)

gB = XBCNOTA,C, (45)

gC = ZCCZA,B. (46)

To simplify the notation used in Sec. VII, we label the three
qubits involved in a Toffoli gate by A, B, and C instead of
1, 2, and 3. Given one copy of a |TOF〉 state, Toffoli gate
teleportation is performed using the circuit in Fig. 12 to
realize a logical Toffoli gate. Notice that the circuit requires
a Clifford correction ga

Agb
Bgb

C for the binary measurement
outcome (a, b, c) of the single-qubit Pauli measurements.

In a purely Pauli-based computation, rather than using
lattice surgery to simulate the CNOT circuit for magic state
injection, the CNOTs can be completely eliminated using

the circuit identities shown in Fig. 12. Furthermore, the
Clifford corrections and Clifford gates in an algorithm
do not necessarily need to be performed. Rather we can
keep a record of the accumulated Clifford gates so far
into a Clifford frame (see, for instance, Ref. [71]). When
we need to measure a Pauli P, we instead measure the
Pauli CPC† whenever the Clifford frame records C. In
such a Pauli-based computational model, Clifford gates
do not contribute to an algorithms runtime. Rather the
runtime is determined by two factors: how fast we can
prepare high-fidelity TOF states; and how fast they can
be teleported into the algorithm. The rate of gate tele-
portation depends on how much routing space between
qubits is budgeted for in the device. Using a fast data
access structure [79], it is known that lattice surgery can
perform a single arbitrary multiqubit Pauli operator with
approximately 2× overhead in routing costs. Such a space
overhead cost is pessimistic since not all qubits need to
be involved in every lattice-surgery operation, so consid-
erable compression is possible. Reference [81] assumed an
approximately 1.5× overhead suffices and Refs. [2,6,82]
assumed this cost could be made negligible, so approxi-
mately 1×. Furthermore, it has been shown that for biased
noise architecture the routing overhead is lower than for
depolarizing noise [7]. In our later analysis of overheads,
we assume an approximately 1.3× routing overhead cost
(roughly midway between the commonly used approxi-
mately 1.5× and approximately 1× overheads) suffices to
maintain this pace of teleportation. The routing overhead
estimates are justified more rigorously in Ref. [83].
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FIG. 12. Top: Toffoli gate injection that implements a Toffoli
gate by consuming a |TOF〉 resource state. The Clifford correc-
tions depend on the three measurement outcomes and are given
in Eqs. (44) to (46). All qubits and gates are implemented at
the logical level. Bottom: these circuit identities illustrate how
to convert a teleportation circuit into a Pauli-based computation.
We present five equivalent circuits showing how to convert from
a CNOT followed by measurements with m CNOT gates into a
Pauli-based computation that can be realized by lattice surgery.
Circuit 1 to 2: we insert the identity. Circuit 2 to 3: we have
replaced the highlighted box with a multiqubit Z⊗m+1 measure-
ment. Circuit 3 to 4: we add a single qubit X measurement before
we discard the qubits. Circuit 4 to 5: we use the X measurement
to replace the CNOT gates with classically controlled Z gates. A
similar identity holds with the CNOT direction reversed and the
roles of X and Z interchanged. Applying the identities of the bot-
tom figure in the m = 1 case to the top figure yields a Pauli-based
Toffoli gate injection procedure. We make use of the m > 1 case
in Sec. VII and Appendix O 4 b.

One can also inject at a considerably faster pace than
sequentially injecting magic states, up to the limit of time-
optimal quantum computation [84], though this approach
incurs significantly higher routing overhead costs and is
not practical for modest size quantum computers. In the
next two sections, we consider the pace and fidelity with
which we can prepare TOF magic states. In what follows,
we use |TOF〉 and TOF interchangeably when referring to
the state in Eq. (43).

VI. TOFFOLI DISTILLATION: BOTTOM-UP
SCHEME

In magic state distillation schemes, the goal is to dis-
till magic states with circuits that require only stabilizer

operations [37,38,40]. The circuits used to distill such
magic states are typically not fault tolerant to all Clif-
ford gate errors and thus must be implemented using a
sufficiently large error-correcting code. Recently, with the
advent of flag qubits and redundant ancilla encoding, scal-
able approaches to fault-tolerantly preparing magic states
have been devised such that all stabilizer operations can
be implemented directly at the physical level [85,86]. We
refer to such methods as a bottom-up approach to preparing
magic states.

In this section, we provide a protocol to fault-
tolerantly prepare TOF magic states encoded in the repe-
tition code using a bottom-up approach (herein BUTOF).
In Sec. VII, we show how the scheme presented in
this section can be supplemented by using a top-down
approach to prepare TOF states with the very high fideli-
ties required to implement the algorithms considered in
Sec. VIII.

We now describe how to fault-tolerantly prepare
the |TOF〉 state. First, note that the state |ψ1〉 =
(1/
√

2)(|100〉 + |111〉) is stabilized by gB and gC. Such
a state can straightforwardly be prepared using the cir-
cuit in the dashed blue box of Fig. 13. In what follows,
physical Toffoli gates will need to be applied between
ancilla qubits and |ψ1〉 prior to measuring the data. As
such it is very important that the states |0〉L and |1〉L in
the circuit of Fig. 13 (which are encoded in the repetition
code) be prepared using the STOP algorithm since other-
wise measurement errors in the last ancilla measurement
round could lead to logical failures [87]. An alternative to
avoid using the STOP algorithm would be to prepare |0〉L
and |1〉L using postselection. However, such an approach
would reduce the acceptance probability of our scheme
(see below) thus increasing its space-time overhead cost.
Once |+〉L = |+〉⊗n, |1〉L and |0〉L have been prepared, the
CNOT gate in the dashed blue box of Fig. 13 is applied
transversally.

Now, given a copy of |ψ1〉, we can prepare |TOF〉 by
measuring gA using the circuit in the dashed red box of
Fig. 13 resulting in the state |ψ〉out. If the measurement
outcome is +1, then |ψ〉out = |TOF〉, and if it is −1, then
|ψ〉out = ZA|TOF〉. Hence we apply a ZA correction given
a −1 measurement outcome. Note that neither error detec-
tion nor error correction is applied to any of the data blocks
at this stage. The reason is that it is not necessary for ensur-
ing the fault tolerance of our scheme. Further, we found
numerically that adding error correction at this stage results
in higher logical failure rates when preparing |TOF〉. Fur-
thermore, adding unnecessary error-detection units would
lower the acceptance probability of our scheme. We pro-
vide a more detailed implementation of the controlled-gA
gate in Fig. 14 below.

A measurement error on the ancilla results in a logi-
cal ZA failure and so the measurement of gA needs to be
repeated (similar repetitions are needed for the preparation
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|1 L

|+ L
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|ψ1 |ψout
d − 1

2

STOP

Z
A

B

C

|+|+|+
STOP

X X X

FIG. 13. Circuit for our entire BUTOF protocol. The first step (shown in the dashed blue box) consists of preparing the state |ψ1〉 =
1√
2
(|100〉 + |111〉). The preparation of the states |0〉L and |1〉L are described in Appendix J 1. The next step consists of measuring

gA = XACNOTB,C. If the measurement outcome on the ancilla is−1, a ZA correction is applied to the output state. Note that at this stage,
error correction is not applied to the data block. The first two steps are enclosed within the dashed red box. We label the output state of
the first two steps as |ψout〉. Lastly, the measurement of gA is repeated (d − 1)/2 times for a distance d repetition code. The ED blocks
correspond to one round of stabilizer measurements of the repetition code. If any of the measurement outcomes of error detection (ED)
or ancillas are nontrivial, the protocol is aborted and begins anew.

of logical computational basis states, see Appendix J). This
can be done using the STOP algorithm. However, due to
the increasing circuit depth with increasing repetition-code
distance in addition to the high cost of the controlled-gA
gate, such a scheme does not have a threshold and results in
relatively high logical failure rates. As in Refs. [85,86], an
alternative approach is to use an error-detection scheme by
repeating the measurement of gA exactly (d − 1)/2 times
for a distance d repetition code. In between each mea-
surement of gA, one round of error detection is applied
to the data qubits by measuring the stabilizers of the rep-
etition code (see Fig. 13). If any of the measurement
outcomes are nontrivial, the BUTOF protocol is aborted
and reinitialized. In Fig. 14(a), we provide an example of
the two-dimensional layout and sequence of operations for

measuring gA, which is compatible with our ATS architec-
ture for a distance-5 repetition code. To realize the protocol
with local operations, we replace the |+〉 ancilla in Fig. 13
with five qubits that we prepare in a Greenberger-Horne-
Zeilinger (GHZ) state. Subsequently, the required Toffoli
and CNOT gates are applied, followed by a disentangling of
the GHZ states and measurement of the |+〉 state ancilla.
The equivalent circuit implementing the gA measurement
for a d = 5 repetition code is shown in Fig. 14(b).

As a remark, we point out that in general, it is possi-
ble to use one fewer ancilla in the circuit of Fig. 14(a)
with a lattice that is no longer translationally invariant
with respect to yellow and gray vertices. However, such
a layout could not straightforwardly be used with our
lattice-surgery implementation of Appendix O.

(a)
(b)

FIG. 14. (a) Implementation of the gA measurement (for a distance d = 5 repetition code) compatible with our ATS layout and
lattice-surgery implementation for universal quantum computation described in Sec. VII. All operations are performed respecting
the connectivity constraints of the ATSs and use the fewest possible ancilla qubits for preparing the GHZ state necessary for the
fault-tolerant measurement of gA. (b) Equivalent circuit for the implementation of (a).
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In Fig. 15(a), we provide the total Z failure proba-
bility of our BUTOF protocol for various repetition-code
distances ranging from d = 3 to d = 9. We note that
given the increasing circuit depth of BUTOF with the

(a)

(b)

(c)

FIG. 15. (a) Total logical Z failure rate for preparing a |TOF〉
state using the fault-tolerant BUTOF protocol described in this
section. (b) Acceptance probabilities for preparing |TOF〉 states
using the fault-tolerant protocols described in this section. (c)
Decomposition of the logical Z errors for a d = 7 |TOF〉 state pre-
pared using the fault-tolerant protocol described in this section.
As can be seen, from all seven possible combinations of log-
ical Z errors, a logical Z error on block A is more likely by
several orders of magnitude. All numerical simulations were per-
formed by setting nth = 0, κφ = 0, and using the circuit-level
noise model described in Sec. III with |α2| = 8.

repetition-code distance d, our scheme does not have a
threshold even though it is fault tolerant. Further, as can be
seen from Fig. 15(b), the acceptance probability for prepar-
ing such states (i.e., the probability that all measurement
outcomes in Fig. 13 are trivial) decreases exponentially
with increasing code distances. Hence, large repetition-
code distances should be avoided. However in REGIME
3 where κ1/κ2 ≈ 10−5, we can still obtain |TOF〉 states
with total failure probabilities on the order of 6× 10−6,
which is orders of magnitude better than the failure prob-
abilities that would be obtained by preparing |TOF〉 states
using non-fault-tolerant methods. This drastically reduces
the overhead requirements of the top-down approach of
Sec. VII. Also, as can be seen from Fig. 15(c), logical
Z errors are highly concentrated on block A. The reason
is that while the error detection units on each block can
detect up to d − 1 physical Z errors, (d − 1)/2 measure-
ment errors on the GHZ ancilla will lead to a logical Z
error on block A.

We note that the GHZ circuit in Fig. 14(b), which is used
to measure gA, is not fault tolerant to X or Y errors [88].
However, since we are assuming that X and Y errors are
exponentially suppressed, flag qubits for detecting X -type
error propagation are unnecessary as long as X - or Y-error
rates multiplied by the total number of fault locations are
below the target levels for algorithms of interest. Indeed
as is shown in Secs. VII and VIII and for the parameters
chosen in this work, X error rates are low enough such that
the desired failure rates can be achieved for implementing
the quantum algorithms with over a million Toffoli gates
(see Table V).

We also remark that all simulations for our BUTOF pro-
tocol were performed by setting |α2| = 8. As can be seen
in Fig. 7, when setting |α2| = 6, the total logical failure
probability of a repetition-code strip is roughly 2 orders
of magnitude higher than the |α2| = 8 results. Given such
features and the fact that the GHZ circuit used to measure
gA is not fault tolerant to bit-flip errors, we thus require that
|α2| ≥ 8. Smaller values of |α2| would not be suitable for
implementing our BUTOF protocol with only one round of
magic state distillation (described in Sec. VII) since bit-flip
failure probabilities would be too high. Therefore, in set-
tings where |α2| ≤ 6, a different approach would be needed
to prepare high-fidelity |TOF〉 magic states.

Lastly, we note that simulating the circuit in Fig. 14 can
be challenging given the presence of physical Toffoli gates.
In Appendix L, we provide a method for performing a near
exact simulation of such circuits (the simulation is exact
if there are less than d Z-type errors on block C prior to
applying the physical Toffoli gates). Also, when using the
STOP algorithm to simulate the preparation of |0〉L and
|1〉L prior to applying the physical Toffoli gates, we do not
add one round of perfect error correction (since projecting
to the code space is not necessary at this stage). Residual
errors at the output of the preparation of |0〉L and |1〉L using
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the STOP algorithm are propagated to the next stage of the
protocol.

VII. TOP-DOWN SCHEME FOR
HIGHER-FIDELITY TOFFOLI GATES

Previous sections established that surface codes and
REGIME 3 are necessary to reach logical memory
error rates needed for large-scale quantum computation.
Section V reviewed lattice surgery and how it provided
reliable Clifford operations through the Pauli-based model
of computation. For large-scale, universal quantum com-
putation we also need a very high-fidelity non-Clifford
gate, such as the Toffoli gate. At the cat-qubit level, we pro-
posed using an adiabatic bias-preserving Toffoli gate (see
Sec. III C). We then proposed using the adiabatic Toffoli
in the BUTOF protocol to prepare TOF states (see Sec. VI).
The lowest infidelity we reported for the BUTOF protocol
was 6× 10−6, which is insufficient for quantum algorithms
using over a million Toffoli gates.

This section completes our proposal for performing a
very high-fidelity Toffoli gate via the preparation of TOF
states. We propose a magic state distillation protocol that
utilizes the output of BUTOF. We use thin surface-code
qubits wherever a potential bit flip would lead to an error
on the output TOF state. We call this the top-down Tof-
foli protocol (herein TDTOF) because it assumes access
to high-fidelity logical Clifford gates, so we are attacking
the problem with a view from the top of the stack. Later,
in Sec. VIII, we show that using one round of BUTOF
concatenated with one round of TDTOF, achieves high
enough fidelities to implement some quantum algorithms
of interest.

This section makes three significant contributions to
the theory of magic state distillation. Our first main con-
tribution is a new set of quantum error-correction codes
that can be used for TOF-to-TOF magic state distillation
more efficiently than all previous proposals. In the main
text, we describe only the specific codes used in TDTOF,
but Appendix O 2 presents a general framework for code
design and TOF state distillation, of which TDTOF is
just one example. Our second main contribution is the
idea of using Clifford symmetries of magic states to per-
form noise tailoring that enables us to exploit noise bias.
Again, Appendix O 6 explores Clifford symmetries at a
general level, and here we discuss the consequences to
TDTOF. In summary, at high noise bias, exploiting Clif-
ford symmetries enables cubic error reduction instead of
quadratic error suppression. Our third main contribution is
numerical, we calculate the performance of TDTOF in our
proposed hardware using REGIME 3 noise parameters.

The Toffoli gate is equivalent, up to conjugation of
the target qubit by a Hadamard transformation, to the
controlled-controlled-Z (CCZ) gate, and for technical rea-
sons we prefer to work with CCZ gates. Throughout this

section we work at an encoded level, so whenever we say
qubit, we mean surface-code qubit. Our starting point for
design of TDTOF is identifying a trio of n-qubit codes
each encoding k logical qubits, which have a transversal,
logical CCZ gate. By transversal, we mean that if CCZj
denotes a CCZ gate acting on the j th qubit in each of three
code blocks, then CCZ⊗n =∏n

j=1 CCZj realizes the logi-
cal CCZ⊗k acting on 3k logical qubits. The error-correction
codes we use for TDTOF are shown in Fig. 16 and each
block uses n = 8 to encode k = 2 logical qubits. Figure 16
also illustrates what we mean by CCZ transversality, with
the transversality proof postponed until Appendix O 2.

Given such a code, a standard recipe for magic state
distillation protocols goes as follows [40]: prepare |+〉⊗3k

L
encoded in the relevant codes; perform imperfect CCZ⊗n

by gate teleportation using noisy TOF states; measure the X
stabilizers and postselect on “+1” outcomes; and decode.
This would require 3n = 24 qubits plus workspace for
Cliffords and routing. However, one can make a space-
time trade-off [79,89,90] so that the full 24-qubit code is
never prepared; rather we work with nine qubits that we
herein call the factory qubits. We label these nine factory
qubits with (j , D) where D ∈ {A, B, C} denotes the code
block and j ∈ {1, 2, 3} specifies the qubit within the code
block. To achieve the space-time trade-off, we can define
an encoding Clifford V such that for D ∈ {A, B, C} we have

VX1,DV† = XL1D,

VX2,DV† = XL2D,

VX3,DV† = (X ⊗8)D.

(47)

The logical operators XL1D and XL2D are shown in Fig. 16.
Instead of encoding |+〉⊗3k

L and performing CCZ⊗n, we
prepare |+〉⊗9 and perform V(CCZ⊗n)V†. At the end of the
protocol, instead of measuring the X stabilizers we need
only measure the three check qubits labeled X3,D.

It is important that V(CCZ⊗n)V† acts nontrivially on
only the nine qubits identified and error-correction prop-
erties of the protocol are unaffected (see Appendix O 3
or Refs. [79,89,90] for details). In a Pauli-based compu-
tation, each noisy gate VCCZj V† can be realized using
a single noisy TOF state (produced by BUTOF) followed
by a sequence of multiqubit Pauli measurements imple-
mented through lattice surgery (recall Sec. V and see also
Appendix O 4). An explicit factory layout is given in
Fig. 62 of Appendix O 7 that provides ample routing space
for lattice surgery to be executed rapidly, with four Toffoli
gate teleportations happening in parallel.

To describe the fault-tolerance properties of TDTOF, let
us first assume the underlying memory and lattice-surgery
operations are implemented perfectly. Since the protocol is
based on a trio of codes, each of which can detect a single
error, we can detect any fault affecting a single noisy TOF
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FIG. 16. Our TDTOF protocol uses a trio of quantum error-
correction codes each using n = 8 qubits to encode k = 2 logical
qubits. The top circuit shows the 3n = 16 qubits and labels the
X stabilizers and logical operators for these codes. Each of the
3k = 6 qubits is actually encoded again into a thin surface code.
The bottom circuit shows the 3k logical qubits encoded by this
code. The crucial and exotic property of these codes is that
they have a transversal a CCZ gate: applying the eight CCZ
gates as shown in the top circuit, results in the two logical CCZ
gates shown in the bottom circuit. See Appendix O 2 for proof
details.

state. Even if an error affects multiple qubits within a single
TOF state (e.g., a Z ⊗ Z ⊗ Z error) we still call it a single
fault-location error because it leads to no more than one
error in each code block, and so is detectable. Therefore, if
the noisy input TOF states have infidelity ε, then after post-
selection the output TOF states will have infidelity O(ε2).
In Appendix O 5, we show exactly how the output fidelity
depends on the noise model of the input TOF states. As a
toy example, in Appendix O 5 we show that for depolariz-
ing noise the output infidelity is 1.878ε2 + O(ε3) per TOF
state output.

However, we saw in Fig. 15 that BUTOF outputs states
with errors heavily dominated by Z ⊗ 1⊗ 1. Let us con-
sider the case when the TOF states are generated by
BUTOF with dBU = 7 and assume REGIME 3 parameters;
we refer to this throughout as our benchmark example.
Assuming an ideal implementation of TDTOF (without any
further optimization to the noise profile) gives an out-
put error of 8× 10−10 ∼ 2ε2, so the noise correlations
slightly degrade performance relative to a depolarizing
noise model with the same total error.

If C is a Clifford transformation such that C|TOF〉 =
|TOF〉, we say that C is a Clifford symmetry of the (error-
free) TOF state. For example, the group of Clifford symme-
tries includes {gA, gB, gC} of Eqs. (44) to (46). Using these
symmetries, we can improve the fidelity of the output TOF
states by tailoring the distillation protocol, exploiting the
property that the noise on input TOF states is dominated
by Z errors on the first qubit. In the tailored protocol we
apply a different Clifford symmetry to each of the eight
input TOF states. The Clifford transformation C modifies
the noise model, mapping an error E to CEC†.

We prove in Appendix O 6 the existence of a set of
Clifford symmetries with the following property: given
an initial noise model dominated by a Pauli Z ⊗ 1⊗ 1

error occurring with probability ε1 = pZA and rarer Z errors
occurring with total probability ε2 =

∑
E �=ZA

pE , the tai-
lored protocol outputs TOF states with infidelity O(ε3

1)+
O(ε1ε2)+ O(ε2

2). Furthermore, performing the Clifford
symmetries adds a mere two CNOT gates to the protocol’s
gate complexity because most of the Clifford symmetries
can be chosen as permutations of qubit labels. Having
accounted for both space-time trade-offs and noise tailor-
ing, the full final protocol is described in Table XIII of
Appendix O 7.

Returning to the previously discussed benchmark exam-
ple, then ε1 = 2× 10−5 and ε2 = 7.5× 10−9 so ε2 

ε1 and we expect an improvement from noise tailoring.
Assuming an ideal implementation of the noise-tailored
TDTOF, then we have an output error of 1.2× 10−12 that
is dominated by a contribution approximately 8ε1ε2. How-
ever, the protocol will not be implemented ideally. The
protocol is realized with each qubit encoded into a mem-
ory: either a repetition code or a thin surface code. We
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TABLE IV. Resource costs for TDTOF generation of TOF states
using as input eight noisy states produced by BUTOF using dis-
tance dBU. The protocol outputs two TOF states with infidelity
2εTD and acceptance probability PACC rounded to nearest integer.
We give the expected runtime per Toffoli as TTD. The whole fac-
tory (including BUTOF modules) has a footprint given in terms
of the number of ATS components, or equivalently in terms of
PCDRs (qubits), which is approximately 3 times the ATS count.
Further details are provided in Table XV. We assume REGIME
3 hardware parameters.

Infidelity No. No. PACC TTD Time (μs)
εTD ATS PCDRs (%) per TOF dBU

2.4× 10−9 2814 8442 97 2691 7
2.6× 10−9 2394 7182 97 2434 7
9.0× 10−9 2016 6048 99 2388 5
2.8× 10−8 1680 5040 99 2262 5
5.6× 10−8 1596 4788 99 1886 5
2.6× 10−7 1470 4410 98 1762 5
9.9× 10−7 1386 4158 98 1766 5
1.5× 10−6 1302 3906 94 1724 5
7.6× 10−6 1176 3528 93 1602 5

can exponentially suppress memory and lattice-surgery
errors by increasing the code distance, though this comes at
increased resource cost. The tuning of these code distances
is one of the most important aspects of optimal factory
design. Following an approach similar to prior work on
code-distance tuning [90], we present our analysis of Clif-
ford noise in Appendix O 8. We present a sample of our
numerical results from Appendix O 8 in Table IV.

As we discuss in Sec. VIII, the error rates in Table IV
are sufficiently low for reliable implementation of quantum
algorithms with up to 108 Toffoli gates, at a quite low over-
head cost. Note that the lowest error rate reported in the
table is 2.4× 10−9; this error rate is dominated by bit-flip
errors in repetition-code blocks, and could be surpassed by
more extensive use of surface codes (see Appendix O 9).

Let us compare to the factory of Gidney and Fowler [91]
that concatenates T-state distillation with a protocol that
distills a single TOF state from a supply of T states. Using a
square surface-code distance d, the factory requires 12d ×
6d qubits and takes 5.5d surface-code cycles. They assume
a superconducting transmon architecture with pSC = 10−3

CNOT gate infidelity that can execute one cycle of surface-
code error correction 1 μs. For sample algorithms with
approximately 1–100 million Toffoli gates, they consid-
ered a d = 31 surface code, which gives a 6.9× 104 qubit
footprint generating one TOF state every 170 μs. This is a
considerably larger size than our factory, mainly because
we exploit BUTOF, thin surface codes, and where possible
we use repetition codes. Note that Table IV assumed hard-
ware parameters leading to surface-code cycles of 31 μs
rather than 1.1 μs, so while our factory typically needs
far fewer surface-code cycles per TOF state, our slower

physical gate times mean that the overall factory runtime
(per TOF state) are an order of magnitude slower.

VIII. OVERHEAD ESTIMATES

Here we consider how our architecture could be used
to fault-tolerantly implement a quantum algorithm beyond
the reach of classical computers. Throughout this section,
we assume REGIME 3 hardware parameters and find
competitive performance compared to other architectures.
Since REGIME 1 and REGIME 2 incur much higher
resource overhead costs and/or cannot reach the required
fidelities, a key conclusion is that REGIME 3 or better
should be the long-term goal for the proposed architec-
ture. Using a Pauli-based computation (recall Sec. V), the
complexity is mainly determined by the number of qubits
and Toffoli gates required for the algorithm. Simulations
of 100-qubit circuits are substantially beyond the reach of
current classical methods unless they have low depth or
are near-Clifford circuits. Currently, the best-known clas-
sical simulation algorithm of near-Clifford circuits [94]
for an n-qubit circuit with a total of NTOF Toffoli gates
has a runtime O[poly(n, NTOF)20.83NTOF]. Without sub-
stantial improvement of existing classical simulation algo-
rithms, for NTOF = 1000 the exponential component of
the runtime is comfortably in the classically intractable
regime.

Let us consider a computation with n = 100 and
NTOF = 1000. A computation of this size could be exe-
cuted reliably using only the repetition code; the protection
against bit flips provided by thin-stripped surface codes is
not needed. Using drep = 9 repetition codes for BUTOF,
error rates of 6× 10−6 per TOF gate can be achieved and
therefore an error probability of 0.6% for the full algorithm
arising from errors in TOF gates alone. However, logical
failure rates for data qubits stored in memory must also be
considered. For data qubits encoded in the repetition code,
the lowest achievable logical error rate is 2.7× 10−8 using
a drep = 9 repetition code (Fig. 7). With 1000× drep =
9000 repetition-code cycles and n = 100 logical qubits, the
total probability of a memory error is approximately 2.4%.
Hence the total failure probability of the algorithm due to
the combination of memory TOF errors is approximately
3%. Since BUTOF is probabilistic, we can boost the suc-
cess probability to near unity and produce Toffoli states
effectively on demand by simply making many parallel
attempts at BUTOF. The whole computation is therefore
achievable with 900 ATS components for memory and
several hundred ATS components to parallelize BUTOF.

Additional resources are needed for routing and per-
forming Clifford operations, so the entire device would
require between 1 and 2 thousand ATS components,
depending on routing and Clifford requirements.

While algorithms using a thousand Toffoli gates are
classically intractable with known methods, there are no
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known algorithms of this scale that offer a quantum advan-
tage for useful problems. As a representative example of
a problem where quantum advantage is reachable with a
relatively modest quantum circuit, we consider the task of
estimating the ground-state energy density of the Hubbard
model with Hamiltonian [6,95]

H = u
∑

i

a†
i,↑ai,↑a†

i,↓ai,↓ + t
∑

i,j∈N (i)

(a†
i,↑aj ,↑ + a†

i,↓aj ,↓),

(48)

which describes fermions hopping on an L× L square lat-
tice with periodic boundary conditions; t is the coefficient
of the hopping term in H [N (i) denotes the set of lattice
sites that are neighbors of site i], and u is the coefficient of
an on-site repulsive term. The fermion creation and anni-
hilation operators a†, a can be encoded using qubits by
various methods. The ratio u/t quantifies the interaction
strength. We consider u/t = 4 to enable an easier compar-
ison with Ref. [6]. However, a classical simulation of such
a model is most difficult in the regime near u/t = 8 [96]
and so we also consider this choice.

We use the plaquette Trotterization scheme and analysis
of Ref. [95] to count the non-Clifford gates for estimating
the ground-state energy density. Overall, the gate complex-
ity scales as O(L3/ε3/2) where ε is the allowed error in
the total energy. Since we are interested in the energy den-
sity, we can consider a multiplicative (extensive) error of
5% of the ground-state energy. Since the allowed energy
error ε grows with the system size L2, the overall runtime
complexity is upper bounded by a constant [97]. We also
require the algorithm to succeed with probability at least
90%. From Table V, we see this algorithm requires over 1
million Toffoli gates and over 100 logical qubits [6]. While
simulating the Hubbard model is not feasible using just the
repetition code to protect the logical data qubits, only very
little bit-flip protection suffices, and so we can use a dx = 3
thin surface code as our primary storage and the TDTOF
protocol for Toffoli states. Table V separately presents the
number of logical TOF gates (NTOF) and logical T gates
(NT) required by the algorithm. We can catalyze one TOF
state into two T states [93], so that the algorithm consumes
a total of

τ = NTOF + (NT/2) (49)

TOF states.
Caveats in architectural comparisons: Our results for

u/t = 4 in Table V can be compared with the transmon
architecture resource estimates of Table I of Ref. [6],
though subject to several caveats that we list first. Direct
comparisons are difficult because the noise models are
very different. Transmon architectures are typically consid-
ered with CNOT error probabilities of pSC = 10−3 or pSC =
10−4 and a depolarizing noise model. In contrast, for our

TABLE V. Column “No. ATS” refers to the total number of
ATS components used. The total number of ATS count includes
the following: 2L2 logical qubits to represent the Hubbard model
fermions; ancilla qubits for phase estimation, ancilla-assisted cir-
cuit synthesis [92], Hamming weight phasing and catalysis [93];
and the ATS space for one TDTOF factory (%fac counts the per-
centage of this contribution rounded up to nearest integer); and
we also include a generous+30% space overhead for routing and
lattice-surgery costs.

Size TOF gates T gates No. No. RT fac
L NTOF NT ATS PCDRs mins %

u/t = 4
8 1.8× 105 1.7× 106 1.8× 104 5.4× 104 32 8.8
16 1.9× 105 9.5× 105 6.5× 104 1.95× 105 23 2.5
24 1.9× 105 8.5× 105 1.5× 105 4.5× 105 23 1.0
32 2.0× 105 8.7× 105 2.7× 105 8.1× 105 24 0.6
u/t = 8
8 4.3× 105 4.2× 106 1.8× 104 5.4× 104 89 9.5
16 4.6× 105 2.3× 106 7.0× 104 2.1× 105 60 2.4
24 4.7× 105 2.1× 106 1.5× 105 4.5× 105 57 1.0
32 4.7× 105 2.1× 106 2.7× 105 8.1× 105 62 0.6

REGIME 3 hardware parameters the CNOT infidelity is
3.6× 10−3, but with highly biased noise. To perform a
CNOT with infidelity of 10−4 we would need κ1/κ2 ∼
10−8 (see caption of Fig. 8 for further discussions). So
although we benefit greatly from bit-flip suppression due
to cat codes, our current projections for Z-error rates
are far less optimistic than typically assumed for trans-
mon qubits. Furthermore, transmon-architecture resource
estimates are based on a toy depolarizing noise model,
whereas our noise model has been derived from detailed
modeling of the hardware. An additional important caveat
is that we exploit the Hubbard model simulation analy-
sis of Ref. [95], which provides a 5.5× reduction in gate
count for L = 8 and a larger improvement for larger L
(compared to Ref. [6]). These gate-count reductions lead
to a comparable 5.5× reduction in runtime, but below we
factor out these algorithmic improvements when making
architectural comparisons with Ref. [6].

Qubit cost discussion: Table V includes a column
reporting the number of ATSs required. For an L = 8
and u = 4 Hubbard model, we estimate the cost at 18 000
ATSs, which corresponds to the headline figure in our
abstract. We need to triple this number to obtain the num-
ber of PCDRs (qubits). Comparing to a superconducting
transmon-qubit architecture [6] with a CNOT infidelity p ,
we find that for p = 10−3 we need approximately 6×
fewer qubits; and for p = 10−4 we use a comparable
number of qubits. At the end of Sec. IV B, we made a
comparison of surface-code overheads with a p = 10−3

depolarizing noise model and found we needed approxi-
mately 6× fewer qubits, similar to the approximately 6×
improvement found here. Given better κ1/κ2 than assumed
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by REGIME 3, there would be additional resource sav-
ings. One loose assumption in our qubit counting is that we
multiply our resource overhead costs by a factor of 1.3× to
account for routing and lattice-surgery costs (see discus-
sion of Sec. V and Ref. [7]) whereas we do not know what
routing overhead was assumed in Ref. [6] but believe this
was neglected.

Runtime discussion: The total runtime of our architec-
ture is in the practically reasonable range of 23–89 min
for a classically challenging task. There are two important
factors in the runtime analysis: (1) the time it takes to pre-
pare τ TOF states, which is Ta = τTTD (see Table IV for
examples of values of TTD); (2) the time required to inject
magic states and perform Toffoli uncomputations via lat-
tice surgery Tb = (4NTOF + NT)(dm + 1)Tsurf (see Ref. [7]
for further discussion), where Tsurf is the time per surface-
code cycle and dm is the number of surface-code cycles per
lattice-surgery operation (recall Fig. 11). Note that we use
dm + 1 instead of dm to allow for ancilla qubits to be reini-
tialized between consecutive lattice-surgery protocols. We
take the runtime to be RT = max[Ta, Tb]. We say the archi-
tecture is Clifford bottlenecked if RT = Tb and magic state
bottlenecked if RT = Ta.

Note that our estimate of Ta assumes that we can only
teleport one magic state qubit at a time, since faster injec-
tion rates could incur higher routing or Clifford gate costs.
For our hardware and factory design, we are Clifford bot-
tlenecked as the TDTOF factory is producing Toffoli states
at about the same pace as they can be transported into
the main algorithm. In contrast, estimates for supercon-
ducting transmon architectures [6] have assumed a single
factory leading to them being significantly magic state bot-
tlenecked (with the algorithm often idle and waiting for
the factory). Let us consider the instance with u/t = 4
and L = 8, for which we estimate a runtime of 32 min.
For a transmon architecture with pSC = 10−3, one obtains
a runtime estimate of 3 min, by reducing the results of
Ref. [6] by a factor 5.5 to account for recent algorithmic
improvements [95]. A similar runtime estimate (2.6 min)
is obtained for the transmon architecture by assuming it
generates one TOF state per 170 μs using the factory of
Ref. [91]. Overall, the transmon architecture runs about
11× faster than our architecture, primarily due to 28×
faster execution of each surface-code cycle.

IX. CONCLUSION

In this paper, we presented a comprehensive analysis
of an architecture for a fault-tolerant quantum computer.
At the lowest level, it is based on hybrid electroacous-
tic devices to implement a stabilized cat code with highly
biased noise, dominated by phase flips. This cat code is
then concatenated with an outer code that focuses mostly
on correcting the phase-flip errors. Our estimated over-
heads for performing fault-tolerant quantum algorithms

showcase the promise of this approach if the appropriate
parameter regime can be reached. There are several inter-
esting directions for future work to improve on our current
proposal.

On the hardware side, we would like to explore ways to
increase the value of κ2, which would allow us to achieve
the desired ratio of κ1/κ2 with a less stringent constraint on
T1 = 1/κ1 of the acoustic oscillators. Currently the value
of κ2 is upper bounded by the crosstalk error and the
bandwidth of the filter. We believe similar set ups with
tunable couplers, multiport resonators, and multiple buffer
modes are promising for increasing substantially the attain-
able value of κ2. Higher κ2 would also give faster gates,
allowing for a larger quantum advantage over classical
computing.

As was shown in this work, the magic state factory
accounts only for at most 9.5% of the total resource over-
head requirements. The other 90.5% of the overhead is
largely dominated by the performance of the thin rotated
surface code. Recently, an XZZX -type surface code, which
takes advantage of the noise bias for phase-flip errors was
introduced and shown to have better thresholds compared
to the rotated surface code [11]. An interesting avenue
for future work would be to consider the implementation
of the XZZX surface code (or other topological codes,
which take advantage of the noise bias) in our architec-
ture to determine if further reductions in overhead costs
can be achieved. Further, one could use compass codes
[98–101], which potentially require fewer resources com-
pared to surface codes given the low-weight gauge opera-
tor measurements. However, details for implementing such
codes in a lattice-surgery scheme such as the one pre-
sented in this work remain to be addressed. We also note
that better thresholds and lower logical failure rates for
a given code distance does not necessarily correspond to
lower resource costs for running algorithms. For instance,
a more careful analysis of the XZZX surface code shows
that although it achieves lower logical failure rates than a
thin-stripped surface code for the same dx and dz distances,
the XZZX code requires roughly double the amount of data
and ancilla qubits compared to thin-stripped surface codes.
As such, for desired target logical error rates required to
implement certain algorithms, there are noise parameter
regimes where the overall resource costs for running the
algorithm using a thin-stripped surface code is less than
using the XZZX code.

In this work we considered a standard model of Pauli-
based computation with multiqubit Pauli operators mea-
sured via lattice surgery in order to inject magic states.
This approach comes with an additional qubit cost for
data access and routing, and the choice of routing solu-
tion yields a lower bound on runtime. In previous resource
analyses, these considerations were not especially impor-
tant because algorithms were bottlenecked by the pace at
which they could produce magic states. In contrast, data
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routing emerged as a bottleneck in our architecture, and so
a more careful optimization of routing costs and speed of
gate teleportation might improve the runtime substantially.
Indeed, a rapid runtime is especially important in an archi-
tecture where bit flips are rare because it is desirable to
execute the algorithm fast enough such that we can avoid
needing a code with a higher dx distance.
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APPENDIX A: ENGINEERING TWO-PHONON
DISSIPATION WITH PIEZOELECTRIC

NANOSTRUCTURES

In this Appendix we calculate the dimensionless loss
parameter κ1/κ2—the ratio of the single-phonon and two-
phonon dissipation rates—and show how to minimize
it to the lowest level allowable by the intrinsic loss of
the hardware and the crosstalk constraints derived in
Appendix B. This Appendix is divided into four parts.
First, in Appendix A 1 we revisit an existing method to
engineer two-photon (or in this case two-phonon) dis-
sipation using an ATS device. [28]. Next we show in
Appendix A 2 how to calculate the interaction rate g2 when
the storage resonator is an arbitrary piezoelectric nanos-
tructure, and explicitly calculate g2 for the specific case
of a one-dimensional PCDR [32]. Then in Appendix A 3
we derive, using a classical description of the underlying
superconducting circuits, a general expression for κ2 when
a bandpass filter is placed in between the output port of
the buffer resonator and the external 50� environment and
show how to design the filter to optimize κ2. We include a
filter in our analysis because filtering the output—or engi-
neering the density of states of the system’s reservoir—is
crucial to the multiplexed stabilization protocol described
in Appendix B. Finally, in Appendix A 5 we show that the
loss κ1/κ2 can be minimized by utilizing a high-impedance
buffer resonator and calculate a lower bound for this loss.

1. Implementation of the required Josephson
nonlinearity

In Sec. II in the main text, we described at a high level
how the two-phonon dissipation can be generated by engi-
neering a nonlinear interaction g∗2 â2b̂† + h.c. between the
storage mode â and a very lossy “buffer” mode b̂. Here
we describe in detail how this interaction can be engi-
neered and calculate estimates of g2 specifically for the
hardware in this proposal. Following the method intro-
duced in Ref. [28], we propose implementing the required
nonlinearity using an “ATS” device, which consists of an
ordinary SQUID that is split in the middle by a linear
inductor—see Fig. 17. We reproduce some of the results
of Ref. [28] here for convenience.

In its most general form, the ATS potential is given by

U(φ̂) = 1
2

EL,bφ̂
2 − 2EJ cos(φ�) cos(φ̂ + φ�)

+ 2�EJ sin(φ�) sin(φ̂ + φ�), (A1)

where φ̂ is the phase difference across the ATS, φ� :=
(φext,1 + φext,2)/2, φ� := (φext,1 − φext,2)/2, and φext,1
(φext,2) is the magnetic flux threading the left (right) loop,
in units of the reduced flux quantum �0 = �/2e. Here
EL,b = �2

0/Lb, EJ = (EJ ,1 + EJ ,2)/2, and �EJ = (EJ ,1 −
EJ ,2)/2 is the junction asymmetry. This ATS potential
can be further simplified by tuning φ� and φ� with two

EJ,2EJ,1

I1(t) I2(t)

Lb

φext,2φext,1

FIG. 17. Schematic diagram of an ATS. Two junctions with
Josephson energies EJ ,1, EJ ,2 are connected in parallel, forming
a SQUID. The SQUID loop in turn is “split” in the middle by a
linear inductor with inductance Lb, effectively forming two loops
on either side of the inductor. The magnetic fluxes φext,1 and φext,2
threading the left and right loops, respectively, are controlled
via externally applied, time-dependent currents I1(t), I2(t) that
are buffered to ground in the vicinity of the loops using on-chip
fluxlines.
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separate fluxlines, setting them to

φ� = π/2+ εp(t), (A2)

φ� = π/2, (A3)

where εp(t) = εp ,0 cos(ωp t) is a small ac component added
on top of the dc bias. At this bias point, and assuming that
|εp(t)| 
 1, Eq. (A1) reduces to

U(φ̂) = 1
2

EL,bφ̂
2 − 2EJ εp(t) sin(φ̂)+ 2�EJ cos(φ̂).

(A4)

2. Calculation of nonlinear interaction rate g2

To make further progress, it is necessary to represent
the nanomechanical element as an equivalent circuit that
accurately captures its linear response. This can be done
straightforwardly using the method of Foster synthesis,
provided we know the admittance Ym(ω) seen from the
terminals of the mechanical resonator. This admittance
can be accurately computed using modern FEM solvers.
For further details on the piezoelectrics simulations, see
Ref. [29].

The equivalent circuit (or “Foster network”) is shown
in Fig. 18(a) and in its simplest form consists of a “dc
capacitance” in series with an LC block, with an additional
resistor (not shown) inserted to include the effects of loss
in the resonator. We note that this “lossy Foster” method
is not exact but is accurate enough for our purposes pro-
vided that losses are sufficiently small [102]. The linear
part of the buffer resonator (including the inductor that
splits the ATS) can also be represented as an LC block.
In this representation the buffer and storage resonators are
two linear circuits with a linear coupling and can there-
fore be diagonalized by a simple transformation of coor-
dinates. The resulting “storagelike” (â) and “bufferlike”
(b̂) eigenmodes both contribute to the total phase differ-
ence across the ATS, φ̂ = ϕa(â+ â†)+ ϕb(b̂+ b̂†). These
modes therefore mix via the ATS potential, which we
redefine as U(φ̂) �→ U(φ̂)− EL,bφ̂

2/2 because we already
absorbed the inductor into the linear network. The vacuum
fluctuation amplitudes of each mode mode are given by

ϕk,j =
√

�

2ωk
(C−1/2U)jk, (A5)

where C is the Maxwell capacitance matrix of the circuit, U
is the orthogonal matrix that diagonalizes C−1/2L−1C−1/2,
and L−1 is the inverse inductance matrix [103]. The index
k ∈ {a, b} labels the mode and j labels the node in question.
Note that generally we omit the j index in our notation
because the node of interest is clear from context (it is the
one where the ATS is located).

Buffer

PCDR

Storage

Synthesis Diagonalization

U(φ)
φb

φa

φ = φa + φb

U(φ)

ω /2π (GHz)
/2

π 
(H

z)

/2
π 

(H
z)

 (Ω)

 = 100 Ω
 = 500 Ω
 = 1000 Ω

ω /2π

ω /2π = 2.6 GHz

~

(a)

(b)

FIG. 18. Calculation of g2. (a) Schematic summary of our
method for calculating g2. A PCDR, connected in parallel to a
buffer resonator that is formed by shunting an ATS with a capaci-
tance Cb, is synthesized as a simple Foster network with the same
admittance function Ym(ω) as the original piezoelectric struc-
ture. The Foster network consists of a parallel combination of an
inductance La and a capacitance Ca, in series with a “coupling
capacitance” Cg . In turn, the linear components of the buffer
resonator Lb and Cb are lumped together with the mechanical
Foster circuit, leaving the nonlinear part of the ATS potential as
an additional circuit element that we label by U(φ) in the dia-
gram. The linear network is then diagonalized and the vacuum
fluctuation amplitudes ϕa and ϕb of the storagelike and buffer-
like eigenmodes are used to calculate g2. (b) Dependence of g2
on the buffer resonator frequency ωb and impedance Zb. The g2
curves peak at the storage-mode frequency ωa where the modes
are maximally hybridized. Inset: g2 plotted as a function of Zb
for a fixed ωb, showing the 5/2 power-law dependence.

The way in which the ATS mixes the modes is now
explicitly clear: the third-order term in the Taylor series
expansion of the sin(φ̂) function in Eq. (A4) contains terms
of the form â2b̂† + h.c., which is precisely the required
coupling. This is the key reason for using an ATS as
opposed to an ordinary junction, which has a potential
approximately cos(φ̂). Note also that a finite junction
asymmetry |�EJ | > 1 partially eliminates the benefit of
using an ATS, as this introduces additional self- and cross-
Kerr terms. For the remainder of this analysis we assume
we are operating in the ideal case �EJ = 0, noting that
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with state-of-the-art fabrication one can reliably achieve
�EJ /EJ ∼ 10−2 [104].

In order to select the desired terms one must set the
pump frequency to ωp = 2ωa − ωb [28]. This brings the
term g∗2 â2b̂† + h.c. into resonance and allows us to drop the
other terms using a rotating-wave approximation (RWA).
The coupling rate is given by g2 = (EJ /�)εp ,0ϕ

2
aϕb/2.

Additionally, a linear drive ε∗d b̂+ h.c. at frequency ωd =
ωb is added to supply the required energy for the two-
phonon drive.

We now explicitly calculate g2 assuming that the stor-
age resonator is a one-dimensional lithium niobate PCDR
as reported in Ref. [32]. We use for its Foster network
parameters the values Cg = 0.385 fF, Ca = 1.682 fF, and
La = 2.614 μH, which in previous work have produced
accurate estimates of the linear coupling rate between the
phononic mode and other electrical circuits [32,35]. These
parameters set ωa/2π ≈ 2.17 GHz as the storage-mode
frequency, which will remain fixed for the remainder of
this Appendix. We further take EJ /h = 90 GHz and εp ,0 =
π/80 as representative values that are experimentally real-
istic [28]. We note that Ref. [28] did not explicitly report
a value for εp ,0, but we inferred it by reproducing their
reported value of g2. In some instances we will set εp ,0 to
an even smaller value, which we will indicate accordingly.
In Fig. 18(b) we show g2 plotted as a function of the buffer
mode’s frequency ωb ≈ 1/

√
LbCb for three different val-

ues of the impedance Zb =
√

Lb/Cb. The two parameters
ωb and Zb completely specify the properties of the buffer
resonator for the purposes of this work. One salient feature
is that g2 scales as

g2 ∼ Z5/2
b , (A6)

which is due to the fact that ϕb ∼
√

Zb and ϕa ∼ Zb. This
rapid scaling will prove useful later on, when we explore
how to configure the system to minimize the dimensionless
loss κ1/κ2.

3. Classical filter theory and derivation of dissipation
rates

The above calculation of g2 is only half the story, since
we are ultimately interested in making accurate predic-
tions of κ1/κ2. Indeed κ2 = 4g2

2/κb in the simple two-mode
model with the pump tuned perfectly on resonance ωp =
2ωa − ωb. However, as we show in Appendix B, in order
to stabilize multiple modes with a single ATS (which is
necessary to achieve the required connectivity for the sur-
face code), it is a critical requirement to utilize a bandpass
filter between the buffer resonator and the open 50 � port
in order to protect the storage modes from radiative decay
and to suppress unwanted correlated decay processes—see
Fig. 19(a) for a sketch of the device. We therefore need
a more general expression for the two-phonon dissipation

rate κ2 in the case where the bath that the b mode couples
to is described by a general admittance function Y(ω). We
begin with the Hamiltonian of the closed system compris-
ing the storage mode a and the buffer mode b, neglecting
dissipation:

H = 1
2

qTC−1q+ 1
2
�TL−1�− 2EJ εp(t) sin(φ2), (A7)

q = (q1, q2)
T, � = (�1,�2)

T, �j =
∫

dtVj (t) is the node
flux at node j (with the voltage Vj defined with respect to
the ground node), and

C =
(

Ca + Cg −Cg
−Cg Cb + Cg

)
, L−1 =

(
L−1

a 0
0 L−1

b

)
.

(A8)

We are also using the notation φj := �j /�0 for the
dimensionless flux, where �0 = �/2e is the reduced flux
quantum. The equations of motion (EOMs) are

�̇ = ∂qH = C−1q,

q̇ = −∂�H = −L−1�+ 2IJ εp(t) cosφ2

(
0
1

)
,

(A9)

where we defined IJ := EJ /�0. Note that the charge EOM
in Eq. (A9) is simply Kirchhoff’s current law (KCL). To
include the effect of the external admittance Y(ω), which
describes both the filter and the 50 � output line, we add
an additional source of current Is(t) flowing into node 2:

Is(t) =
∫ ∞

−∞
dωY(ω)�̇F ,2(ω)eiωt (A10)

=
∫ ∞

−∞
dωY(ω)

[
1

2π

∫ ∞

−∞
dt′�̇2(t′)e−iωt′

]
eiωt

(A11)

= 1
2π

∫ ∞

−∞
dt′
∫ ∞

−∞
dωY(ω)�̇2(t′)eiω(t−t′), (A12)

where �̇F ,2(ω) is the Fourier transform of the voltage
�̇2(t). Combining the EOMs Eq. (A9) and adding the
source term, we find

C�̈(t)+ L−1�(t) = F(t)
(

0
1

)
, (A13)

where F(t) is defined as

F(t) ≡ 2IJ εp(t) cosφ2(t)

− 1
2π

∫
dt′
∫

dωY(ω)�̇2(t′)eiω(t−t′). (A14)

Here both integrals run from −∞ to +∞. We use this
convention for the remainder of this section for notational
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simplicity, unless otherwise stated. Let �′ = C1/2�. Then
Eq. (A13) becomes

�̈′(t)+ C−1/2L−1C−1/2�′(t) = F(t)C−1/2
(

0
1

)
. (A15)

We now diagonalize the matrix C−1/2L−1C−1/2 as

C−1/2L−1C−1/2 = U�2UT, (A16)

where � = diag(ωa,ωb) is a diagonal matrix contain-
ing the normal-mode frequencies and U is an orthogonal
matrix. The normal modes are

�′′ = UT�′ = UTC1/2� = (�′′1,�′′2)
T. (A17)

In terms of �′′, the flux EOM Eq. (A15) is given by

�̈′′(t)+�2�′′(t) = F(t)UTC−1/2
(

0
1

)
(A18)

= F(t)
(
(UTC−1/2)12
(UTC−1/2)22

)
(A19)

= F(t)
(
(C−1/2U)21
(C−1/2U)22

)
, (A20)

where we have used the fact that C (and therefore C−1/2) is
symmetric. If we define �a := (C−1/2U)21�

′′
1 and �b :=

(C−1/2U)22�
′′
2, Eq. (A18) can be written more neatly as

C̃a�̈a + C̃aω
2
a�a = C̃b�̈b + C̃bω

2
b�b = F(t), (A21)

where

C̃a := (C−1/2U)−2
21 , C̃b := (C−1/2U)−2

22 (A22)

are the effective capacitances of the a and b normal modes.
Equation (A18) is KCL for a different network—one where
two LC stages, one for each of the normal modes, are
placed in series with each other. The series combination is
in turn connected to the filtered environment Y(ω) and the
ATS potential U(�) [see Fig. 19(b)]. Note that this diag-
onalization procedure is completely equivalent to synthe-
sizing a Foster network representing the coupled storage
and buffer resonators, for example as done in black-box
quantization [102].

Note that � = C−1/2U�′′, and in particular

�2 = (C−1/2U)21�
′′
1 + (C−1/2U)22�

′′
2 (A23)

= �a +�b. (A24)

In terms of these normal-mode amplitudes, F(t) is given
by

F(t) = 2IJ εp(t) cos [φa(t)+ φb(t)]

− 1
2π

∫
dt′
∫

dωY(ω)
[
�̇a(t′)+ �̇b(t′)

]
eiω(t−t′).

(A25)

We now define the following dimensionless, time-varying
mode amplitudes:

a(t) := 1√
2�

⎡
⎣
√

C̃aωa�a(t)+ i
1√

C̃aωa

C̃a�̇a(t)

⎤
⎦ ,

b(t) := 1√
2�

⎡
⎣
√

C̃bωb�b(t)+ i
1√

C̃bωb

C̃b�̇b(t)

⎤
⎦ .

(A26)

Defining ϕj = �−1
0

√
�/2ωj C̃j , where j ∈ {a, b}, we have

φa = ϕa(a+ a†), φb = ϕb(b+ b†). (A27)

Here the † symbol indicates complex conjugation. We
identify ϕj as the amplitude of the vacuum fluctuations of
the phase at node 2 due to mode j .

It is straightforward to show that the EOMs of these
“annihilation variables” are

ȧ(t) = −iωaa(t)+ i(�0/�)ϕaF(t),

ḃ(t) = −iωbb(t)+ i(�0/�)ϕbF(t).
(A28)

In terms of a and b, the source term F(t) is given by

F(t) = 2IJ εp(t) cos{ϕa[a(t)+ a†(t)]+ ϕb[b(t)+ b†(t)]}

− 1
2π

∫
dt′
∫

dωY(ω)
[

i�

2C̃a�0ϕa
[a†(t′)− a(t′)]

+ i�

2C̃b�0ϕb
[b†(t′)− b(t′)]

]
eiω(t−t′). (A29)

We now invoke the RWA and neglect terms that are fast
rotating, namely a†(t′) and b†(t′) in both EOMs and a(t′)
and b(t′) in the EOMs for b and a, respectively. This is
well justified in the regime where ωa, ωb, and |ωa − ωb| are
all much larger than the dissipation rates Re[Y]/2C̃j , j ∈
{a, b}. We see shortly that indeed these quantities emerge
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FIG. 19. Filter design. (a) Schematic of the filtering setup. A bandpass filter centered at frequency ωb is placed in between the output
of the buffer resonator and an open waveguide with characteristic impedance Z0 and phase velocity vφ . Photons that are transmitted
through the filter enter the open waveguide and are irreversibly lost. (b) Circuit diagram showing the normal modes a and b and
their connection to the filter described by an admittance function Y(ω). (c) Detailed circuit diagram for the filter structure, which
consists of a main filter chain with N “unit cells” followed by a taper section with Nt cells, terminated at the end with a load resistance
Z0 that accurately models the open waveguide at the output port. Every cell of the filter has frequency ωf and impedance Zf , and
neighboring cells are coupled capacitively with capacitances C(i,i+1)

c . The coupling capacitance Cκ between the buffer resonator and
the first filter cell is defined separately for generality. (d) Top: coupling capacitances plotted as a function of cell index i for tapered
[(N , Nt) = (10, 3)] and uniform [(N , Nt) = (13, 0)] filters. The tapered structure, found automatically by a Nelder-Mead optimizer,
is characterized by a rapid increase in Cc near the end of the structure. Bottom: typical filter response, here shown as the real part
of Y(ω) for tapered and uniform filters. The response of the uniform structure shows multiple sharp peaks, each corresponding to a
standing-wave resonance of the structure, whereas the tapered response is relatively flat throughout the filter passband. In effect, the
taper allows propagating waves to be transmitted to the open waveguide over a broad bandwidth.

as dissipation rates from our analysis, so this assumption is
self-consistent. The EOMs, Eq. (A28), then become

ȧ(t) = −iωaa(t)− 1
2π

∫
dt′
∫

dω
Y(ω)

2C̃a
a(t′)eiω(t−t′)

+ 2i(EJ /�)εp(t)ϕa cos{ϕa[a(t)+ a†(t)]

+ ϕb[b(t)+ b†(t)]}

ḃ(t) = −iωbb(t)− 1
2π

∫
dt′
∫

dω
Y(ω)

2C̃b
b(t′)eiω(t−t′)

+ 2i(EJ /�)εp(t)ϕb cos{ϕa[a(t)+ a†(t)]

+ ϕb[b(t)+ b†(t)]}. (A30)

We now go to an “interaction frame” (or rotating frame)
defined by the transformations

a(t) �→ a(t)eiωat, (A31)

b(t) �→ b(t)ei(ωb+�)t, (A32)

and explicitly add the flux pump

εp(t) = εp ,0 cosωp t, ωp = 2ωa − ωb −�, (A33)

which was introduced in Appendix A 1. We have also
added a detuning � to keep the analysis general and also
because finite � is a key requirement for multiplexed sta-
bilization—see Appendix B. Expanding the cosine term to
second order and keeping only the resonant terms, we find

ȧ(t) = − 1
2π

∫
dt′
∫

dω
Y(ω)

2C̃a
a(t′)ei(ω+ωa)(t−t′)

+ 2ig2a†(t)b(t),

ḃ(t) = i�b(t)− 1
2π

∫
dt′
∫

dω
Y(ω)

2C̃b
b(t′)ei(ω+ωb+�)(t−t′)

+ ig2a2(t), (A34)

where g2 := (EJ /�)εp ,0ϕ
2
aϕb/2.

The EOMs, Eq. (A34), do not have simple solutions
in general because they are nonlocal in time. However,
we can drastically simplify them—and recast them into a
form that is time local—under a specific regime of interest,
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which we describe next. First, note that
∫

dt′
∫

dωY(ω)b(t′)ei(ω+δ)(t−t′)

=
∫

dt′YT(t− t′)b(t′)eiδ(t−t′), (A35)

where δ equals either ωa or ωb +� depending on which
EOM we are referring to, and YT(t) is the Fourier transform
of the admittance function Y(ω):

YT(t) :=
∫

dωY(ω)eiωt. (A36)

Now suppose for illustration that Y(ω) is a simple function

Y(ω) =
{

Y0 |ω| ≤ 2J
0 |ω| > 2J ,

(A37)

which describes an “ideal” filter with bandwidth J . We
note this is not a physical admittance function and we are
using this simply as an example—in particular, it does not
satisfy certain basic properties such as causality. Its Fourier
transform is

YT(t) = (2Y0J )
sin(2Jt)

Jt
, (A38)

so |YT(t− t′)eiδt| = |YT(t− t′)| is localized in the range
defined by J |t− t′| ∼ 1. Therefore, assuming b(t′) evolves
much more slowly compared to the time scale 1/J , the
following approximation holds:

∫
dt′YT(t− t′)eiδ(t−t′)b(t′) (A39)

≈
∫

dt′YT(t− t′)eiδ(t−t′)b(t) (A40)

=
∫

dt′YT(t′)eiδt′b(t) (A41)

= 2πY∗(δ)b(t), (A42)

where in the last line we used Y(−δ) = Y∗(δ). We verify
shortly that this slowness assumption is self-consistent. For
now, this approximation transforms the EOMs, Eq. (A34),
to the following form:

ȧ(t) = −κ1

2
a(t)+ 2ig2a†(t)b(t),

ḃ(t) =
[

i�̃− κb,eff(�)

2

]
b(t)+ ig2a2(t)+ εd.

(A43)

Here κ1 := Re [Y∗(ωa)] /C̃a and κb,eff(�) := Re
[Y∗(ωb +�)] /C̃b are the effective linear dissipation rates

of the a and b modes, respectively. We have also added
an additional drive term εd (which rotates at frequency
ωb +� in the lab frame and therefore here it is static),
and defined �̃ := �− Im [Y∗(ωb +�)] /2C̃b, which now
includes the frequency shift of the b mode due to its
coupling to the filter. Note we have also neglected the cor-
responding shift −Im [Y∗(ωa)] /2C̃a of the a mode, since
this is negligibly small for the purposes of this analysis.

Let us now find an effective description of the a mode
alone, valid in a regime where the linear dissipation rate
κb,eff is large (in a sense that will be made rigorous shortly).
This procedure is the classical analog of the formal adi-
abatic elimination procedure used in Appendix B 1. Let
us assume that ḃ(t) = 0, i.e., the b mode is evolving suf-
ficiently slowly that the time derivative can be neglected.
Then Eq. (A43) becomes

b(t) = ig2a2(t)+ εd

−i�̃+ κb,eff(�)/2
, (A44)

and

ȧ(t) = −κ1

2
a(t)− κ2a†(t)a2(t)+ αda†(t), (A45)

where

κ2(�) := Re

[
4g2

2

−2i�̃+ κb,eff(�)

]
(A46)

= 4g2
2

4�̃2 + κ2
b,eff(�)

κb,eff(�), (A47)

and αd := 2ig2εd[−i�̃+ κb/2]−1. As a final step, let us
linearize the EOMs around the static solutions a = ±α
given by setting ȧ(t) = 0. Assuming 4κ2|α|2 � κ1, the
solutions are α = ±√εd/g2. Defining d := a− α as the
“fluctuations” around these fixed points, the linearized
equation of motion for d(t) becomes

ḋ(t) = −κ1

2
d(t)− 2κ2|α|2d(t) ≈ −κconf

2
d(t), (A48)

where κconf := 4|α|2κ2. We call this rate the confinement
rate in keeping with existing terminology [28]. Applying
this linearization to Eq. (A44), we find

b(t) = 2ig2α

−i�̃+ κb,eff(�)/2
d(t)+ const. (A49)

The rate κ2 we previously defined is now manifestly the
two-phonon dissipation rate that we wanted to find, as
it sets the rate κconf at which fluctuations away from the
fixed points a = ±α decay back into the “code space.”
It reduces to the familiar form κ2 = 4g2

2/κb,eff in the case
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of a perfectly resonant pump �̃ = 0, and to the form
κ2 = (g2/�̃)

2κb,eff in the far off-resonant limit |�̃| � κb,eff.
This latter form is indeed equivalent to the expressions
for κ2 derived in Appendix B, where the filter is mod-
eled as a linear chain of oscillators with nearest-neighbor
linear couplings. Here, the function κb,eff(�) contains all
the information about the filtered environment, capturing
effects such as the exponential suppression of κ2 when �
lies outside of the filter passband. Finally, we note that the
straightforward linearization procedure above is the classi-
cal analog of the shifted Fock-basis technique described in
Appendix C.

Let us go back and re-examine the two main assump-
tions that we have made so far: (1) that b(t′) evolves
much more slowly compared to the filter response time
scale 1/J , and (2) the adiabatic assumption that ḃ(t) = 0
in Eq. (A43).

First, by inspecting equation Eq. (A48) we can extract
the effective time scale of the dynamics of d mode. We
see that d evolves on a time scale 1/|α|2κ2 (assuming
|α|2κ2 � κ1, which is the regime we are interested in).
Therefore, from the solution for b(t) in Eq. (A49) we
infer that the b mode also evolves on this time scale.
The slowness assumption that led to Eq. (A43) is there-
fore self-consistent as long as |α|2κ2 
 J . Furthermore,
even though we used a “toy model” for Y(ω) to illustrate
the required hierarchy of time scales, we verified numer-
ically using the simulations in Appendix A 4 that this
exact logic remains valid even when Y(ω) describes a real,
appropriately designed filter.

Second, under which conditions is the adiabatic elimi-
nation ḃ(t) = 0 valid? The solution for b(t) in Eq. (A49),
obtained by assuming ḃ(t) = 0, evolves on the same time
scale 1/|α|2κ2 as d(t). Therefore, the adiabatic elimina-
tion step is self-consistent so long as |α|2κ2 
 κb, because
1/κb is the time scale in which b(t), as described by the
full EOM, Eq. (A43), converges to its steady state. Since
κ2(�) ≤ κ2(0), this condition is equivalent to 2|α|g2 

κb:

|α|2κ2 
 κb ⇐⇒ |α|2κ2(0) = 4|α|2g2
2/κb 
 κb

iff 2|α|g2 
 κb. (A50)

For the purposes of this work we assume that 2|α|g2 = ηκb
is sufficient, for some small number η < 1. Using time-
domain master-equation simulations (not shown) we have
verified that using η = 1/5 is sufficient to stabilize the
storage mode.

4. Filter design

Here we turn to the problem of filter design. What
should we use as the physical embodiment of the fil-
tered environment described by Y(ω)? We can start by

outlining some general design principles based on the pre-
ceding analysis. First, recall that the effective dissipation
rate of the b mode is κb,eff(�) = Re [Y∗(ωb +�)] /C̃b,
and second, note that the two-phonon dissipation rate is
given by Eq. (A46), which we repeat here for conve-

nience: κ2(�) = 4g2
2κb,eff(�)

[
4�̃2 + κ2

b,eff(�)
]−1

. As dis-
cussed in Appendix B, different values of � are required
to stabilize multiple modes with a single ATS—one value
for each mode. Therefore, the function κ2(�) should be
constant—and as large as possible—over a certain band of
frequencies B = [ωb −�max,ωb +�max]. In effect, there
should be a finite density of states that the b mode can radi-
ate into within this band. Outside of this band, however,
the density of states should vanish in order to suppress
correlated phase-flip errors resulting from the multiplexed
stabilization (see Appendix B). These requirements trans-
late to a simple design principle: the function Re [Y(ω)]
should ideally be a constant in the band ω ∈ B, and
zero elsewhere, much like in the toy model discussed in
Appendix A 3 where we took �max = 2J . This is akin to a
resistor that absorbs only radiation at certain frequencies.

a. General properties

One of the simplest possible networks with these prop-
erties is a linear chain of N LC resonators with capacitive
couplings, as shown in Fig. 19(c). This resonator chain has
a well-defined band with dispersion [105]

ω(k) = ωf + 2J [cos(πk/N )− 1], k ∈ {0, . . . , N − 1}.
(A51)

Here J is the coupling rate between neighboring resonators
and is approximately given by

J ≈ ωf

2
Cc

Cf + 2Cc
, (A52)

where ωf is the resonance frequency of each LC block, Cc
is the coupling capacitance, and Cf is the shunt capaci-
tance. This rate is directly tied to the filter bandwidth,

(bandwidth) = 4J , (A53)

and is controllable via Cc. Note also that we usually spec-
ify the frequency ωf and impedance Zf of each LC block
of the filter, which together with Cc uniquely specify the
shunt inductance Lf = Zf /ωf and shunt capacitance Cf =
1/ωf Zf . Usually Cf � Cc, so

J ∼ 1
2
ω2

f CcZf . (A54)

This means that for fixed values of ωf and Cc, the filter
bandwidth is directly proportional to Zf . This formula will
be useful shortly.
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Normally the N filter modes with dispersion relation,
Eq. (A51), are standing waves that span the entire chain.
These modes would therefore hybridize with the b mode,
effectively forming a “multimode buffer” with N + 1 sharp
resonances that the a mode interacts with via the ATS.
This is not the behavior we are interested in. Instead of a
structure supporting standing resonances, we ideally seek
a medium that is perfectly transparent to photons with fre-
quency ω ∈ B and perfectly reflective otherwise. One way
to achieve this is to add a small number of additional res-
onators at the end of the chain and rapidly ramp up the
values of the coupling capacitances C(i,i+1)

c between neigh-
boring cells [see Fig. 19(d)]. We refer to this region as the
“taper” in keeping with existing terminology [105]. The
shunt capacitances are also adjusted in order to keep the
frequency of each cell constant across the filter, including
the taper cells. The effect of the taper is to significantly
broaden the resonances of the structure so that the entire
B band is filled by their overlapping lineshapes, or alterna-
tively, it allows the waves that propagate along the chain to
be transmitted to the outside environment with negligible
reflections.

We show in Fig. 19(d) the typical response of such a fil-
ter. The taper parameters (coupling capacitances and shunt
capacitances) have been chosen to minimize the cost func-
tion C = −∑ω∈B log Re[Y(ω)], producing a relatively flat
response over the band of interest B. We note that this
choice of cost function is only a design heuristic that
approximately produces the desired response.

b. Optimizing the filter

Given fixed properties ωa, ωb, Zb, etc. of the coupled
storage-buffer system, what is the optimal choice of fil-
ter parameters? By now it should be self-evident what we
mean by “optimal”: those which maximize the two-phonon
dissipation rate κ2(�) across the filter band {ωb +� ∈ B}
and make it as flat (constant) as possible within B. There
are many parameters that describe the filter: Cκ , Cc,ωf , Zf ,
N (the number of “unit cells”), Nt (the number of “taper
cells”), and the set of coupling capacitances {C(i,i+1)

c } in
the taper region. For fixed values of these first six param-
eters, the set {C(i,i+1)

c } is automatically optimized using the
method described in the preceding paragraph, leaving six
free parameters. What we show next is how to choose
these parameters in order to optimize the function of inter-
est κ2(�) while simultaneously respecting the following
constraints:

(1) 4J/2π = 100 MHz.
(2) ωb = ωf − 2J .
(3) g2 < ηκb/2α.

Constraint (1) is to ensure that photons created as a result
of correlated decay of multiple storage modes during
multiplexed stabilization have frequencies ωcorr. decay �∈ B

outside of the passband. This prevents these photons from
radiating into the environment and suppresses correlated
phase-flip errors. The value 4J/2π = 100 MHz is approx-
imately the largest possible bandwidth the filter can have
while still satisfying this requirement—for further detail
see Appendix B. Constraint (2) sets the b-mode frequency
exactly in the middle of the passband, making the functions
κb,eff(�) and κ2(�) symmetric. This is not absolutely nec-
essary but is rather a matter of convenience. Constraint (3)
is to ensure that the system is in a regime where adiabatic
elimination is valid, as found at the end of Appendix A 3.
Here we fix α = √8 and η = 1/5. Finally, we comment
on what are reasonable values for N and Nt. The number of
taper cells Nt depends on Zf and Z0(= 50�), with Nt need-
ing to be larger the farther Zf deviates from Z0. This agrees
with the intuition that the taper is acting as an impedance-
matching network. Once Zf and Nt are chosen, we observe
numerically that it is sufficient to choose a number of unit
cells N � Nt/2. Anything larger than this is unnecessary
and does not change the results—the chain being longer
does not affect the dissipation rates we are interested in
calculating.

In Fig. 20(a) we show the effect of varying the capaci-
tance Cκ , which sets the strength of coupling between the
b mode and the first resonator in the chain. Here Cc =
3.0 fF is fixed, as well as Zf = 500 �. We observe two
“regimes”: a weak-coupling regime defined by Cκ 
 Cc,
where κb is small and κ2(�) is sharply peaked near� = 0.
This peak indicates that the b mode is filtering the con-
version process g∗2 a2b† + h.c., only allowing the emission
of photons with frequencies inside its narrow bandwidth.
Conversely, in the “overcoupled” regime Cκ � Cc the b
mode decays rapidly, but interestingly κ2(�) saturates and
becomes asymmetric about � = 0. The optimal coupling
Cκ = Cc, in between these two regimes, is where κ2(�) is
nearly perfectly symmetric and flat, and practically satu-
rated. We remark that although κb saturates to a value of
around approximately 4J , it is possible to set Cκ to a small
enough value so that κb is much smaller than this satura-
tion value, assuming a flat κ2(�) were not needed (which
is not the case here).

Next, we show in Fig. 20(b) the effect of varying the
characteristic filter impedance Zf . Because of Eq. (A54),
in order to keep J constant as Zf is varied we must adjust
Cc as well. Furthermore, we observe that κb decreases
with Zf , and so in order to respect the adiabatic threshold
g2 < ηκb/2α introduced earlier we reduce g2 by increasing
ωb(= ωf − 2J ) to further detune the a and b modes. The
key observation is that the optimal value of Zf , for which
κ2(�) is flat, is precisely Zf = Zb/2. This is true regardless
of the chosen value of Zb.

Together, these observations constrain Cκ = Cc and
Zf = Zb/2, and through Eq. (A54), Cc is constrained to
the value Cc ≈ 4J/ω2

f Zb. Once a value of Zb is chosen,
the only remaining free parameter is ωf . But as we did in
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FIG. 20. Exploring the filter design space. (a) Dependence of κb,eff(�) and κ2(�) on the coupling capacitance Cκ between the b
mode and the first filter resonator. Here we fix εp ,0 = 0.015, ωf /2π = 2.55 GHz, Zf = 500 �, ωb = ωf − 2J , Zb = 1 k�, Cc =
3.0 fF, and (N , Nt) = (10, 3). As Cκ increases, we observe two regimes: an “undercoupled” regime Cκ 
 Cc characterized by a
sharply peaked κ2(�), where the narrow b mode filters the dissipation process, and an “overcoupled” regime Cκ � Cc where κ2
saturates and becomes asymmetric. In this latter regime, the b mode strongly hybridizes with the first filter cell. For large enough
Cκ , their normal-mode frequencies shift outside of the filter passband, forming bound resonances that are visible as sharp peaks
to the left of the passband in some of the curves. The optimal value is Cκ = Cc = 3.0 fF, where κ2(�) is maximized and flat, is
shown in red. Note that at this optimal coupling, κb,eff = 4J (gray dashed line). Note also that the adiabatic condition g2 < ηκb/2α
is not respected for several of the plots shown, as g2 is fixed. (b) Dependence of κb,eff(�) and κ2(�) on the characteristic filter
impedance Zf . In order to keep the filter bandwidth 4J constant, increasing Zf requires decreasing Cc, and to keep g2 < ηκb/2α
(adiabatic threshold), increasing Zf requires increasing ωf (which decreases g2 due to the larger detuning between the a and b modes).
The values used for the plotted curves are ωf /2π = 2.4, 2.5, 2.55, 2.6, 2.7 GHz, Cc = 10, 4.5, 2.7, 1.7, 1.2 fF, ωb = ωf − 2J , and
(N , Nt) = (10, 3), (10, 3), (10, 3), (14, 6), (14, 6). Larger values of Zf required larger Nt to compensate for the larger impedance
mismatch to the 50 � line. We also fix Zb = 1 k� here. The optimal value is Zf = Zb/2 = 500 �, which produces a flat κ2(�) curve
(shown in red). Also note that at this optimal value, κb,eff = 4J (gray dashed line). Inset: g2 and ηκb/2α corresponding to each of the
simulations for the different values of Zf , plotted as a function of ωb, showing the adiabatic constraint g2 < ηκb/2α is satisfied (here
α = √8 and η = 1/5).

the preceding exercise, in what follows we again use ωf (=
ωb + 2J ) to fine tune g2 in order to satisfy the adiabaticity
constraint. Therefore, with this design methodology, all of

the (optimal) filter parameters are dictated by the proper-
ties of the storage and buffer resonators, with the exception
of N and Nt ∼ N/2.

010329-40



BUILDING A FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 3, 010329 (2022)

5. Optimization of the dimensionless loss κ1/κ2

We finally address the problem of optimizing the loss
parameter κ1/κ2. For this we turn our attention back to
Eq. (A6), which we repeat here: g2 ∼ Z5/2

b . Since κ2 ∼
g2

2 ∼ Z5
b , the obvious question is, can we exploit this scal-

ing to maximize κ2? The answer is yes, but surprisingly
this is not because of the obvious reason one would expect.
In fact, as Zb increases, all of the filter parameters must
be adjusted accordingly as described in Appendix A 4.
We observe numerically that as this procedure is carefully
repeated with different values of Zb, the dissipation rate
κ2 remains practically constant and is independent of Zb.
A semiquantitative explanation is as follows: (1) because
Cκ = Cc and Zf = Zb/2 as found in the preceding section,
the “b” resonator is hardly distinguishable from any other
resonator in the main section of the filter chain. Its effec-
tive decay rate is therefore κb,eff ∼ J , because the hopping
rate J is the rate that determines how quickly an exci-
tation is transferred to the filter and out of the b mode.

Indeed, we observe numerically that this decay precisely
matches the filter bandwidth, κb,eff = 4J , as we increase Zb
while reoptimizing all of the filter parameters every time
Zb changes. (2) Since g2 = ηκb/2α = 2ηJ/α (to satisfy
the adiabaticity constraint), κ2,max = 4g2

2/κb ≈ 4η2J/α2 ≈
4J/25α2. Therefore, κ2 depends only on the filter band-
width, which is upper bounded by the crosstalk analysis of
Appendix B, and the mean phonon number |α|2. This result
has important implications for our proposal and, as we see
shortly, imposes a lower bound on the phonon relaxation
rate κ1 required to reach the low values of κ1/κ2 that are
necessary for our architecture.

Even though κ2 depends solely on J and |α|2, there is
still something to be gained by increasing Zb. In Fig. 21
we show the “loss spectrum” κ1/κ2(�) for different values
of Zb. We observe that this loss does indeed decrease as Zb
increases, but only relatively slowly and eventually asymp-
totes to a fixed value. This is because as Zb increases, g2
increases as well, so the optimization procedure pushes ωb
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FIG. 21. Behavior of κ1/κ2 in the large Zb limit. Top left panel: g2, κb, and κ2 plotted as a function of Zb. The latter two rates are
averages over the middle of the filter passband, ω ∈ [ωb − J ,ωb + J ]. The detunings δ = ωb − ωa corresponding to each simulation
are also indicated on the horizontal axis. Each result is obtained by optimizing the filter for each value of Zb, following the procedure
outlined in Appendix A 4. We observe that all of these rates remain practically constant, in particular, κb = 4J . Top right panel: single-
phonon relaxation rate κ1 plotted as a function of Zb and δ. This relaxation rate κ1 = κ1,i + κ1,p includes two contributions: the intrinsic
loss κ1,i of the resonator, which here we assume has a fixed intrinsic quality factor Qa,i = ωa/κ1,i = 109, and the Purcell loss κ1,p due
to its coupling to the buffer resonator. This latter rate has a contribution due to radiation into the waveguide (which is vanishingly
small due to the strong filter suppression), and an important contribution ∼ (g/δ)2κb,i due to the intrinsic decay of the buffer resonator
itself, which we assume has Qb,i = 106. This loss channel is not suppressed by the filter. However, it can be mitigated by increasing
the detuning δ. Indeed, at large values of δ, κ1 asymptotes to κ1,i (gray dashed line). We also show the loss parameter κ1/κ2 plotted
in red, where κ2 is averaged over the filter band, which also asymptotes to a lower bound as Zb and δ become large. Bottom panels:
loss spectra κ1/κ2(�) shown for a few selected values of Zb. The gray shading indicates the regions where the adiabatic condition
g2 < ηκb/2α is not satisfied. These regions roughly correspond to the frequencies outside of the passband. Here α = √8 and η = 1/5.
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further away from ωa = ωb + δ to compensate and keep
g2 below the adiabatic threshold ηκb/2α. In doing so,
the loss approximately (g/δ)2κb,i that originates from the
hybridization of the buffer and storage modes (here g is
the linear coupling between them) decreases as well. Note
that only the intrinsic loss κb,i of the buffer resonator enters
this formula, because the radiative contribution is strongly
suppressed since ωa lies far outside the filter passband.
Nevertheless this intrinsic contribution is still important,
because in this proposal we operate under the assumption
that the intrinsic decay rate κb,i of the buffer mode (which
is a superconducting circuit that suffers from several loss
channels including two-level systems, quasiparticles, etc.)
is at least 2 orders of magnitude larger than that of the
storage mode, κ1,i. In the limit g/δ 
 1, this contribution
becomes negligibly small, and the phonon relaxation rate
is purely intrinsic: κ1 ≈ κ1,i. This causes the loss κ1/κ2 to
asymptote to

κ1/κ2 −−−→
Zb→∞

κ1,i|α|2/4η2J . (A55)

This is of course only a theoretical exercise: one cannot
build a device with arbitrarily large Zb, and ωb cannot be
arbitrarily large. In particular, increasing the impedance
will increase the size of the vacuum phase fluctuations,
making the system more prone to instabilities, and a
detailed analysis of this physics is left for future work.
However, as we show in Fig. 21, there is a feasible range
of values of Zb with which we could begin to approach
the limiting value of loss in Eq. (A55), depending on
what assumptions we make for the intrinsic losses of the
buffer and storage modes. These limiting values are plot-
ted in Fig. 3 in the main text as a function of κ1,i and
for different filter bandwidths. It is important to empha-
size that it maybe be possible to increase J beyond its
presently constrained value 4J/2π = 100 MHz through
further innovations in the stabilization protocols, or by
reducing the number of resonators coupled to each ATS.
This is why we plot these curves for different bandwidths.

APPENDIX B: MULTIPLEXED STABILIZATION
AND CROSSTALK

In this Appendix, we show how multiple storage res-
onators coupled to a common ATS can be stabilized simul-
taneously. Coupling to a common ATS leads to crosstalk,
and we discuss how this crosstalk can be quantified and
mitigated. The main result of this Appendix is that the pre-
dominant sources of crosstalk can be effectively mitigated
when up to five modes are coupled to a common ATS, so
that the five-mode unit cells of our architecture are largely
free of crosstalk.

In Appendix B 1, we begin by reviewing the effective
operator formalism described in Ref. [48], which is the
main tool we employ to analyze the dynamics of these

multimode systems. In Appendix B 2, we describe our pro-
cedure for stabilizing multiple modes with a single ATS,
and in Appendix B 3 we discuss the resulting sources of
crosstalk. Finally, in Appendices B 4 and B 5 we show
how this crosstalk can be effectively mitigated through a
combination of filtering and storage-mode frequency opti-
mization. Throughout this Appendix, we take � = 1 to
simplify notation.

1. Effective operator formalism

In this Appendix, we frequently employ adiabatic elimi-
nation as a tool to extract the effective dynamics of an open
quantum system within some stable subspace. The pur-
pose of this subsection is to describe the effective operator
formalism that we employ in order to perform this adi-
abatic elimination. While adiabatic elimination has been
described in a variety of prior works (see, e.g., Refs. [48,
106,107]), we privilege the treatment in Ref. [48] due to
its simplicity and ease of application. We briefly review
the relevant results.

Consider an open quantum system evolving according
to the master equation

˙̂ρ = −i[Ĥ , ρ̂]+
∑

i

D[L̂i](ρ̂), (B1)

with Hamiltonian Ĥ , jump operators L̂i, and where
D[L̂](ρ̂) = L̂ρ̂L̂† − (1/2)

(
L̂†L̂ρ̂ + ρ̂L̂†L̂

)
. We suppose

that the system can be divided into two subspaces: a stable
ground subspace, and a rapidly decaying excited subspace,
defined by the projectors P̂g and P̂e, respectively. The
Hamiltonian can be written in block form with respect to
these subspaces as

Ĥ =
(

Ĥg V̂−
V̂+ Ĥe

)
, (B2)

where Ĥg,e = P̂g,eĤ P̂g,e, and V̂+,− = P̂e,gĤ P̂g,e. We also
suppose that the jump operators take the system from the
excited to the ground subspace, i.e., L̂i = P̂gL̂iP̂e, and we
define the non-Hermitian Hamiltonian

ĤNH = Ĥe − i
2

∑

i

L̂†
i L̂i. (B3)

ĤNH describes the evolution within the excited subspace;
unitary evolution is generated by Ĥe, while the remain-
ing term describes the nonunitary, deterministic “no jump”
evolution induced by the dissipators D[L̂i].

The authors of Ref. [48] consider the case where the
evolution between the subspaces induced by V̂+,− is per-
turbatively weak relative to the evolution induced by
Ĥ0 ≡ Ĥg + ĤNH. Because the excited subspace is barely
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populated due to the rapid decays, the dynamics of the
system are well approximated by those within the ground
subspace, governed by the effective master equation

˙̂ρ = −i[Ĥeff, ρ̂]+
∑

i

D[L̂eff,i](ρ̂), (B4)

where

Ĥeff = −1
2

V̂−

[
Ĥ−1

NH +
(

Ĥ−1
NH

)†
]

V̂++Ĥg , (B5)

and

L̂eff,i = L̂iĤ−1
NHV̂+. (B6)

These expressions apply for time-independent Hamiltoni-
ans. However, we are also interested in situations where the
perturbations V̂+,− are time dependent and take the form

V̂+(t) =
∑

n

V̂+,neiδnt, (B7)

V̂−(t) =
∑

n

V̂−,ne−iδnt. (B8)

In this case, the effective Hamiltonian and jump operators
are given by

Ĥeff = Ĥg

− 1
2

∑

m,n

V̂−,n

[
Ĥ−1

NH,m +
(

Ĥ−1
NH,n

)†
]

V̂+,mei(δm−δn)t, (B9)

and

L̂eff,i = L̂i

∑

n

Ĥ−1
NH,nV̂+,neiδnt, (B10)

where ĤNH,n = ĤNH + δn.

2. Simultaneous stabilization of multiple cat qubits
with a single ATS

We consider a collection of N storage modes mutually
coupled to a common reservoir. For the moment, we take
reservoir to be a capacitively shunted ATS (buffer res-
onator) with a large decay rate. The Hamiltonian of the
system is

Ĥ = Ĥd + ωbb̂†b̂+
N∑

n=1

ωnâ†
nân

− 2EJ εp(t) sin

(
φ̂b +

N∑

n=1

φ̂n

)
, (B11)

where Ĥd is a driving term (defined below), ân (b̂) is
the annihilation operator for the nth storage mode (buffer

mode) with frequency ωn (ωb), and φ̂n = ϕn(ân + â†
n) is the

phase across the ATS due to mode n, with vacuum fluctu-
ation amplitudes ϕn. To stabilize multiple storage modes
simultaneously, we apply separate pump and drive tones
for each mode. Explicitly,

εp(t) =
∑

n

ε(n)p cos
(
ω(n)p t

)
, (B12)

and

Ĥd =
∑

n

(
ε
(n)
d b̂ eiω(n)d t + H.c.

)
. (B13)

We choose the frequencies of the nth pump and drive tones,
respectively, as

ω(n)p = 2ωn − ωb +�n, (B14)

ω
(n)
d = ωb −�n, (B15)

where �n denote detunings whose importance is made
clear shortly. Note that, in the architecture proposed in the
main text, only a subset of the modes coupled to a given
reservoir are stabilized by that reservoir. Accordingly, only
the corresponding subset of the drives and pumps above
need actually be applied.

To proceed, we expand the sine to third order and move
to the frame where each mode rotates at its respective
frequency. The resultant Hamiltonian is

Ĥ ≈
∑

n

(
ε
(n)
d b̂ e−i�nt + H.c.

)

− 2EJ εp(t)
[
ϕbb̂ e−iωbt +

∑

n

ϕnân e−iωnt + H.c.
]

+ EJ

3
εp(t)

[
ϕbb̂ e−iωbt +

∑

n

ϕnân e−iωnt + H.c.
]3

(B16)

This Hamiltonian contains terms that lead to the required
two-phonon dissipators for each storage mode,

∑

n

[
g2,n

(
â2

n − α2
n

)
b̂†ei�nt + H.c.

]
, (B17)

with

g2,n = EJ ε
(n)
p ϕ2

nϕb/2, (B18)

α2
n = −

(
ε
(n)
d

)∗
/g2,n. (B19)

However, the Hamiltonian (B16) contains numerous other
terms. While many of these other terms are fast rotating
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and can be neglected in the RWA, others can have nontriv-
ial effects. For example, the interplay between the terms
in the second and third lines of Eq. (B16) gives rise to
effective frequency shifts (ac Stark shifts) of the buffer
and storage modes, which modify the resonance condi-
tions (B14) and (B15). One can calculate the magnitudes
of these shifts (and hence compensate for them) by apply-
ing the effective operator approach of Refs. [55,56], in
which case the Stark shifts are given by the coefficients
of the b̂†b̂ and â†â terms that arise in the effective Hamilto-
nian. Alternatively, the shifts can be calculated by moving
to a displaced frame with respect to the linear terms on
the second line of Eq. (B16), as is done in Ref. [28].
The Hamiltonian (B16) also contains terms that lead to
crosstalk, but we defer the discussion of these terms to
the next section. For now, we keep only the desired terms
(B17).

We proceed by adiabatically eliminating the lossy
buffer mode b̂, following the approach described in
Appendix B 1. Specifically, we designate the the ground
subspace as the subspace where the buffer mode is in the
vacuum state, and the excited subspace as the subspace
where the buffer mode contains at least one excitation. We
find that the effective dynamics of the storage modes within
the ground subspace are described by the master equation

˙̂ρ=−i[Ĥeff, ρ̂]+D
[
∑

n

√
κbg2,n

�n − iκb/2
(
â2

n−α2
n

)
ei�nt

]
(ρ̂),

(B20)

where

Ĥeff = −1
2

∑

m,n

{
g∗2,ng2,m(â2

n − α2
n)

†(â2
m − α2

m)

×
[

1
�m − iκb/2

+ 1
�n + iκb/2

]
ei(�m−�n)t

}
.

(B21)

To understand these dynamics, let us first consider the
simple case where �n = 0. The above master equation
reduces to

˙̂ρ = κ2D

[
∑

n

(
â2

n − α2
n

)
]
(ρ̂), (B22)

where κ2 = 4|g2|2/κb. Any product of coherent states

|β1〉 ⊗ |β2〉 ⊗ . . .⊗ |βN 〉 (B23)

that satisfies
∑

n β
2
n =

∑
n α

2
n is a steady state of Eq. (B22).

The subspace of steady states includes states in the code
space, for which β2

n = α2
n , but it also includes states out-

side of the code space. Because a strictly larger space is

stabilized, when noise pushes the system outside of the
code space, the stabilization is not guaranteed to return
the system to the code space. The coherent dissipation in
Eq. (B22) is thus not sufficient for our purposes.

Consider instead the case where the detunings are cho-
sen to be distinct, satisfying |�n −�m| � 4|α|2κ2. In this
limit, we can drop the now fast-rotating cross terms in the
dissipator in Eq. (B20), and the effective master equation
becomes

˙̂ρ =
∑

n

κ2,nD
[
â2

n − α2
n

]
(ρ̂), (B24)

where

κ2,n = κb|g2,n|2
�2

n + κ2
b/4

. (B25)

The incoherent dissipator Eq. (B24) stabilizes cat states
in each mode, as desired. Thus, by simply detuning the
pumps and drives used to stabilize each mode, multiple
modes can be stabilized simultaneously and independently
by a single ATS.

Two remarks about the approximation of Eq. (B22)
by Eq. (B24) are necessary. First, the condition |�n −
�m| � 4|α|2κ2 can be derived by expressing the operators
in Eq. (B22) in the displaced Fock basis (Appendix C).
Roughly speaking, the condition dictates that |�n −�m|
be much larger than the rate at which photons are lost
from the stabilized modes. Second, we have neglected Ĥeff;
the rotating terms in Ĥeff can be dropped in the RWA in
the considered limit, and the nonrotating terms provide
an additional source of stabilization [17] that we neglect
for simplicity. It is also worth noting that the two-phonon
dissipation rate, κ2,n, decreases monotonically with �n.
To avoid significant suppression of this engineered dis-
sipation, one can choose �n � κb so that κ2,n remains
comparable to κ2, or alternatively one can exploit the
filtering procedure described in Appendix A and further
analyzed in Appendix B 4, which enables strong effective
dissipation even for �n > κb.

We demonstrate our scheme for multiplexed stabiliza-
tion numerically in Fig. 22. Through master-equation sim-
ulations, we observe good stabilization for |�1 −�2| �
4|α|2κ2, but not �1,2 = 0, as expected. Moreover, we
also quantify the validity of approximating Eq. (B22) by
Eq. (B24). Strictly speaking, the approximation is valid
only in the regime |�n −�m| � 4|α|2κ2, but we find that
even for |�n −�m| ∼ 4|α|2κ2 the stabilization works rea-
sonably well, by which we mean that the population that
leaks out of the code space is comparable for the two dissi-
pators, Eqs. (B22) and (B24), see Fig. 22(b). The approx-
imation breaks down beyond this point, and accounting
for the additional terms in Eq. (B22) becomes increasingly
important.
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Mode 1

Mode 2 Mode 2

Mode 1

(a) (b)

FIG. 22. Multiplexed stabilization. (a) Comparison of stabilization for �n = 0 and |�n −�m| � 4|α|2κ2. Wigner plots are shown
of two storage modes after evolution under the master equation ˙̂ρ = −i[Ĥ , ρ̂]+ κbD[b̂], with Ĥ given by Eq. (B17). The storage
modes are initialized in a product state |β1〉|β2〉 that does not lie in the code space but which is a steady state of Eq. (B22). Thus,
when �n = 0 (left plots), the evolution is (approximately) trivial. The left two plots thus also serve as Wigner plots of the initial
state |β1〉|β2〉. However, when |�1 −�2| � 4|α|2κ2 (right plots), the system evolves to the code space, defined here by α = √2. (b)
Validity of approximating Eq. (B22) by Eq. (B24). Master Eqs. (B22), (B24) are simulated (with decoherence added to each mode via
the dissipators κ1D[â] and κ1D[â†â]), and the expectation value of 1− P̂c is computed once the system reaches its steady state. Here
P̂c denotes the projector onto the cat-code space, and the subscripts “actual” and “ideal” denote expectation with respect to the steady
states of Eqs. (B22) and (B24), respectively. The ratio of expectations, plotted on the vertical axis, quantifies the relative increase in
population outside the code space. A ratio approximately 1 indicates the approximation works well. Parameters are chosen from the
ranges |α|2 ∈ [1, 4] and |�1 −�2|/κ2 ∈ [5, 100].

We conclude this subsection by providing some phys-
ical intuition as to why detuning the pumps and drives
allows one to stabilize multiple cat qubits simultane-
ously. When�n = 0, excitations lost from different storage
modes via the buffer cannot be distinguished by the envi-
ronment. As a result, we obtain a single coherent dissipator
L̂ ∝∑

n(â
2
n − α2

n). When distinct detunings are chosen for
each mode, however, excitations lost from different modes
via the buffer are emitted at different frequencies. When
these buffer-mode photons are spectrally resolvable, the
environment can distinguish them, resulting in a collec-
tion of independent, incoherent dissipators L̂n ∝ (â2

n − α2
n)

instead. The emitted photon linewidth is 4|α|2κ2, which
can be seen by expressing κ2D[â2 − α2] in the displaced
Fock basis (Appendix C). Thus, the emitted photons are
well resolved when |�n −�m| � 4|α|2κ2, which is the
same condition assumed in the derivation of Eq. (B24). We
illustrate this idea pictorially in Fig. 4(a) of the main text.

3. Sources of crosstalk

In this subsection we describe how undesired terms in
the Hamiltonian (B16) lead to crosstalk among modes cou-
pled to the same ATS. In particular, we show that these
undesired terms lead to effective dissipators and effective
Hamiltonians that can cause correlated phase errors in the
cat qubits.

The predominant sources of crosstalk are undesired
terms in the Hamiltonian (B16) of the form

g2 âiâj b̂†eiδijk t + H.c., (B26)

where

δijk = ω(p)k − ωi − ωj + ωb, (B27)

and we have neglected the dependence of g2 on the indices
i, j for simplicity. In contrast to the other undesired terms
in Eq. (B16), these terms have the potential to induce
large crosstalk errors because they both (i) have coupling
strengths comparable to the desired terms, Eq. (B17), and
(ii) can be resonant or near resonant. In particular, the
undesired term is resonant (δijk = 0) for 2ωk +�k = ωi +
ωj . This resonance condition can be satisfied, for exam-
ple, when the storage modes have near uniformly spaced
frequencies.

These unwanted terms may not be exactly resonant in
practice, but we cannot generally guarantee that they will
be rotating fast enough to be neglected in the RWA either.
In contrast, all other undesired terms in Eq. (B16) are
detuned by at least minn |ωn − ωb|, which is on the order
of approximately 2π × 1 GHz for the parameters consid-
ered in this work. We therefore focus on crosstalk errors
induced by the terms, Eq. (B26).

010329-45



CHRISTOPHER CHAMBERLAND et al. PRX QUANTUM 3, 010329 (2022)

The terms, Eq. (B26), can lead to three different types of
correlated errors:

(a) Type I: Stochastic errors induced by effective dissi-
pators.

(b) Type II: Stochastic errors induced by effective
Hamiltonians.

(c) Type III: Coherent errors induced by effective
Hamiltonians.

We describe each type of error in turn. Without miti-
gation (see Appendices 4 and5), these correlated phase
errors could be a significant impediment to performing
high-fidelity operations.

a. Type I: stochastic errors induced by effective
dissipators

The terms, Eq. (B26), can lead to correlated phonon
losses at rates comparable to κ2, resulting in significant
correlated phase errors in the cat qubits. These deleteri-
ous effects manifest when one adiabatically eliminates the
buffer mode. Explicitly, we apply the effective operator
formalism described in Sec. 1 to the operators

Ĥ (1) = g2 âiâj b̂†eiδijk t + H.c., (B28)

L̂(1) = √κb b̂ (B29)

and obtain the effective operators

Ĥ (1)
eff = −

|g2|2δijk

δ2
ijk + κ2

b/4
(âiâj )

†(âiâj )+ H.c., (B30)

L̂(1)eff =
g2
√
κb

δijk − iκb/2
âiâj eiδijk t. (B31)

The effective Hamiltonian preserves phonon-number par-
ity and thus does not induce phase flips. The effective jump
operator L̂eff describes correlated single-phonon losses in
modes i and j at a rate

κeff = κb|g2|2
δ2

ijk + κ2
b/4

, (B32)

which is comparable to κ2 for δijk � κb. These correlated
single-phonon losses induce correlated phase flips in the
cat qubits, which can be seen by projecting L̂eff into the
code space,

L̂(1)eff →
√
κeff α

2ẐiẐj eiδijk t. (B33)

b. Type II: stochastic errors induced by effective
Hamiltonians

The interplay between different terms of the form,
Eq. (B26), can lead to further correlated errors. As an

example, consider the operators

Ĥ (2) = g2 âiâj b̂†eiδijk t + g2 â�âmb̂†eiδ�mnt + H.c., (B34)

L̂(2) = √κb b̂. (B35)

Adiabatically eliminating the buffer mode yields,

Ĥ (2)
eff =

[
χ(âiâj )

†(â�âm)ei(δ�mn−δijk)t + H.c.
]+ . . . , (B36)

L̂(2)eff =
g2
√
κb

δijk − iκb/2
âiâj eiδijk t + g2

√
κb

δ�mn − iκb/2
â�âmeiδ�mnt,

(B37)

where

χ = −|g2|2
2

[
1

δijk − iκb/2
+ 1
δ�mn + iκb/2

]

and “. . .” denotes additional terms in the effective Hamil-
tonian that preserve phonon-number parity. Note that the
effective dissipator L̂(2)eff leads to type I correlated phase
errors. Indeed, for sufficiently large |δijk − δ�mn|, the action
of L̂(2)eff can be approximated by replacing it with two
independent dissipators of the form, Eq. (B31).

What is different about this example is that the effective
Hamiltonian Ĥ (2)

eff contains terms∝ (âiâj )
†(â�âm) that gen-

erally do not preserve phonon-number parity. Such terms
can unitarily evolve the system out of the code space,
changing the parity in the process. In turn, the engineered
dissipation returns the system to the code space, but it does
so without changing the parity. Therefore, the net effect of
such excursions out of the code space and back is to induce
stochastic parity flips in the storage modes, which manifest
as correlated phase errors on the cat qubits. The errors are
stochastic even though the evolution generated by Ĥ (2)

eff is
unitary because the stabilization itself is stochastic. Specif-
ically, the errors are of the form D[ẐiẐj Ẑ�Ẑm], which one
can show by adiabatically eliminating the excited states of
the storage modes (see Appendix C).

c. Type III: coherent errors induced by effective
Hamiltonians

The parity-non-preserving effective Hamiltonian Ĥ (2)
eff

also induces nontrivial coherent evolution within the code
space. This can be seen by projecting Ĥ (2)

eff into the code
space

Ĥ (2)
eff → (|α|4χ ẐiẐj Ẑ�Ẑmei(δ�mn−δijk)t + H.c.). (B38)

This undesired evolution does not decohere the system but
can nevertheless degrade the fidelity of operations. See
further discussion in Appendix B 5.
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4. Crosstalk mitigation: filtering

In this subsection, we show how type I and type II
crosstalk errors can be suppressed by placing a band-
pass filter at the output port of the buffer mode (see
Appendix A 3 for additional discussion of filtering). The
purpose of the filter is to allow photons of only certain
frequencies to leak out of the buffer, such that the desired
engineered dissipation remains strong but spurious dissipa-
tive processes are suppressed. A crucial requirement of this
approach is that the desired dissipative processes be spec-
trally resolvable from the undesired ones, and we show
that adequate spectral resolution is achievable in the next
section (Appendix B 5).

We begin by providing a quantum-mechanical model of
a bandpass filter [105,108]. While a detailed classical anal-
ysis of the filter is given in Appendix A 3, here we employ
a complementary quantum model. The quantum model
not only allows us to study the filter’s effects numerically
via master-equation simulations, but it is also sufficiently
simple so as to enable a straightforward analytical treat-
ment via the effective operator formalism described in
Appendix B 1.

Motivated by the filter designs described in Appendix
A 4, we employ a tight-binding model where the filter
consists of a linear chain of M bosonic modes with annihi-
lation operators ĉi, and each with the same frequency ωb.
Modes in the chain are resonantly coupled to their near-
est neighbors with strength J . The first mode in the chain
couples to the buffer mode b̂, which is no longer coupled
directly to the open waveguide. Instead, the M th mode
is now the one which couples strongly to the waveguide,
such that its single-photon loss rate is given by κc. The
buffer-filter system is described by the Hamiltonian (in the
rotating frame)

Ĥbuffer+filter = J (ĉ†
1b̂+ ĉ1b̂†)+

M−1∑

i=1

J (ĉ†
i+1ĉi + ĉi+1ĉ†

i ),

(B39)

together with the dissipator κcD[ĉM ]. We show below that
these additional modes act as a bandpass filter, with cen-
ter frequency ωb and bandwidth 4J , and they suppresses
the emission of photons with frequencies outside of this
passband.

a. Suppression of type I errors

To illustrate the suppression of type I errors, we consider
the operators

Ĥ (3) =
(

g2 âiâj b̂†eiδijk t + H.c.
)
+ Ĥbuffer+filter, (B40)

L̂(3) = √κc ĉM , (B41)

where the first term in Ĥ (3) is the same as the unwanted
term Ĥ (1) from Appendix B 3. We adiabatically elimi-
nate both the buffer and filter modes in order to obtain an
effective dynamics for only the storage modes. We note
that adiabatically eliminating the buffer and filter modes
together is not fundamentally different from adiabatically
eliminating the buffer; both calculations are straightfor-
ward applications of the methods in Sec. 1. We obtain the
effective dissipator

L̂(3)eff =
√
κeff(M ) âiâj eiδijk t, (B42)

where the rates for the first few values of M are

κeff(0) = κc|g2|2
δ2

ijk + κ2
c /4

≈ κc
|g2|2
δ2

ijk
, (B43)

κeff(1) = κc|g2|2J 2

(J 2 − δ2
ijk)

2 + δ2
ijkκ

2
c /4

≈ κeff(0)
(

J
δijk

)2

, (B44)

κeff(2) = κc|g2|2J 4

(2J 2δijk − δ3
ijk)

2 + (J 2 − δ2
ijk)

2κ2
c /4

≈ κeff(0)
(

J
δijk

)4

, (B45)

where the approximations assume that δijk � J , κc. In this
regime, κeff(M ) is exponentially suppressed with increas-
ing M via the factor (J/δijk)

2M .
We plot these rates as a function of δijk in Fig. 23(a),

where the exponential suppression of the decoherence rates
outside the filter band is evident. Figure 23(a) should
be understood as analogous to Fig. 20 in Appendix A,
though we emphasize that here the rates are derived from
a fully quantum model of the filter. We also remark
that unlike in Appendix A, where the emphasis was on
detailed classical filter design, here we do not taper the
filter. This explains the “ripples” in κeff within the fil-
ter passband. Figure 23(b) shows the results of analogous
master-equation simulations; good quantitative agreement
with the analytical expressions is observed. Thus we con-
clude that type I errors are indeed suppressed by the filter,
provided |δijk| > 2J .

b. Suppression of type II errors

To illustrate the suppression of type II errors, we con-
struct a simple toy model that both captures the relevant
physics and is easy to study numerically. Consider the
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(a) (b)

FIG. 23. Suppression of type I errors. (a) Plots of κeff(M ) as a function of the detuning, δ, of the unwanted term. (b) Master-
equation simulations. The system is initialized with a single excitation in the storage mode and evolved according to the dynamics
˙̂ρ = −i[(g2âb̂†eiδt + H.c.)+ Ĥbuffer+filter, ρ̂]+D[L̂(3)](ρ̂). These dynamics are analogous to those generated by Ĥ (3) and L̂(3); in both
cases the unwanted term induces losses at rates κeff(M ). Simulation results are indicated by open circles, and the analytical expressions
for κeff(M ) are plotted as solid lines. Parameters: α = √2, κc/g2 = 10, J/g2 = 5. For (b), δ = 4J , as indicated by the dashed line in
(a).

operators

Ĥ (4) =
(

g âb̂†eiδ1t + g b̂†eiδ2t + H.c.
)

+
[
g2(â2 − α2)b̂† + H.c.

]
+ Ĥbuffer+filter, (B46)

L̂(4) = √κc ĉM , (B47)

where â is the annihilation operator for the single storage
mode that we consider in this model. In this toy model, the
first line of Ĥ (4) should be understood as analogous to Ĥ (2).
Indeed we obtain the former from the latter by replacing
âiâj → â and â�âm → 1.

Adiabatically eliminating the buffer and filter modes
yields the effective operators

Ĥ (4)
eff =

[
χeff(M ) â ei(δ1−δ2)t + H.c.

]+ . . . (B48)

L̂(4)eff =
√
κ
(δ1)
eff (M ) â eiδ1t +

√
κ
(0)
eff (M )(â2 − α2). (B49)

Here, “. . .” denotes a parity-preserving term (∝ â†â)
that we neglect, κ(δ)eff (M ) denotes the effective loss rate
[Eqs. (B43) to (B45)] with the replacement δijk → δ, and

χeff(M ) ≈ −|g|
2

2

(
1
δ1
+ 1
δ2

)
(B50)

is independent of M in the limit δ1,2 � J , κb. The first term
in L̂(4)eff gives rise to the type I errors that are suppressed
by the filter, as already discussed. Our present interest is
the type II errors induced by the interplay of Ĥ (4)

eff , the
stabilization, and the filter.

Unfortunately, the effective operators Ĥ (4)
eff and L̂(4)eff do

not properly capture this interplay. In particular, it follows
from energy conservation that type II errors induced by

Ĥ (4)
eff result in photon emissions at frequency ωb + δ2 − δ1.

Intuitively, such emissions should be exponentially sup-
pressed when this frequency lies outside the filter band.
However, this suppression is not apparent in the opera-
tors Ĥ (4)

eff , L̂(4)eff because, in the course of deriving Ĥ (4)
eff , we

already eliminated the filter. After adiabatic elimination the

only vestige of the filter is the term
√
κ
(0)
eff (M )(â2 − α2),

which embodies the behavior of the filter at frequency ωb,
but not at frequency ωb + δ2 − δ1. As such, proceeding to
calculate the type II error rate from these operators is not
valid, and an alternate approach is required.

In order to properly capture the subtle interplay between
the effective Hamiltonian, the stabilization, and filter, we
defer adiabatic elimination and instead begin by calcu-
lating an effective Hamiltonian that describes the time-
averaged dynamics generated by Ĥ (4). We restrict our
attention to a regime where the terms on the first line of
Eq. (B46) are rapidly rotating, so that evolution gener-
ated by Ĥ (4) is well approximated by its time average.
We calculate the time-averaged effective Hamiltonian ˆ̄H (4)

following the approach described in Refs. [55,56],

ˆ̄H (4) =
[
g2(â2 − α2)b̂† + H.c.

]
+ Ĥbuffer+filter

− |g|
2

2

(
1
δ1
+ 1
δ2

)(
2b̂†b̂+ 1

) (
âei(δ1−δ2)t+H.c.

)
,

(B51)

where we have neglected a parity-preserving term (∝ â†â),
and terms rotating at the fast frequencies δ1,2. Notice that

ˆ̄H (4) ≈
[
g2(â2 − α2)b̂† + H.c.

]
+ Ĥbuffer+filter + Ĥ (4)

eff ,

(B52)
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where the approximation is obtained by pre-emptively
replacing b̂†b̂ with its expected value of 0. Doing so reveals
that Ĥ (4)

eff can be understood as arising from the time-
averaged dynamics of the the unwanted terms in Ĥ (4) in
the limit of large δ1,2. In effect, time averaging provides
a way of introducing Ĥ (4)

eff into the dynamics without hav-
ing to eliminate the filter, thereby allowing us to study the
interplay of the filter and effective Hamiltonian.

We proceed by taking the operators ˆ̄H (4) and L̂(4) and
adiabatically eliminating the buffer, the filter, and all
excited states of the storage mode, i.e., all states that do

not lie in the code space. Adiabatically eliminating the
storage-mode excited states is valid in the regime where
the engineered dissipation is strong relative to couplings
that excite the storage mode (Ĥ (4)

eff in this case), such that
these excited states are barely populated. See Appendix C
for further details. We obtain

ˆ̄H (4)
eff = χeff(M ) αẐ ei(δ1−δ2)t + H.c., (B53)

ˆ̄L(4)eff =
√
γeff(M )Ẑ. (B54)

The rates for the first few values of M are

γeff(0) = 4κc|2g2α χeff(0)|2
4
(|2g2α|2 − δ2

12

)2 + δ2
12κ

2
c

, (B55)

γeff(1) = 4J 2κc|2g2α χeff(1)|2
4δ2

12

(
J 2 + |2g2α|2 − δ2

12

)2 + (|2g2α|2 − δ2
12

)2
κ2

c

≈ γeff(0)
(

J
δ12

)2

, (B56)

γeff(2) = 4J 4κc|2g2α χeff(2)|2
4
(|2g2α|2(J − δ12)(J + δ12)+ δ4

12 − 2J 2δ2
12

)2 + δ2
12

(|2g2α|2 + J 2 − δ2
12

)2
κ2

c

≈ γeff(0)
(

J
δ12

)4

, (B57)

where we have used the shorthand δ12 ≡ δ1 − δ2 to sim-
plify the expressions, and the approximations are obtained
in the in the limit of large |δ1 − δ2|. In this limit, we find
that the phase-flip rate is exponentially suppressed by the
filter,

γeff(M ) ≈ γeff(0)
(

J
δ1 − δ2

)2M

, (B58)

as expected.

We plot the rates γeff(M ) as a function of δ1 − δ2 in
Fig. 24(a), where the exponential suppression of the deco-
herence rates outside the filter band is again evident.
Figure 24(b) shows the results of corresponding master-
equation simulations. Good quantitative agreement with
the analytical expressions is observed. (Note that the small
parity oscillations in the simulation results are type III
errors—coherent micro-oscillations due to evolution gen-
erated by the effective Hamiltonian within the code space.
These errors are not suppressed by the filter.) Thus we find

(a) (b)

FIG. 24. Suppression of type II errors. (a) Plots of γeff(M ) as a function of the detuning, δ1 − δ2, of the effective Hamiltonian.
(b) Master-equation simulations. The storage mode is initialized in the even parity cat state and evolved according to the dynamics
˙̂ρ = −i[ ˆ̄H (4), ρ̂]+D[L̂(4)](ρ̂). Simulation results are indicated by open circles, and the analytical expressions for γeff(M ) are plotted
as solid lines. Parameters: α = √2, κc/g2 = 10, J/g2 = 5. Rather than specify values for g and δ1,2, we simply fix χeff(M )/g2 = 0.2.
For (b), δ = 3J , as indicated by the dashed line in (a).
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that type II errors are also suppressed by the filter, pro-
vided the effective Hamiltonian detuning lies outside the
filter passband.

5. Crosstalk mitigation: mode frequency optimization

We have shown that stochastic correlated phase errors
(types I and II) can be suppressed by a filter if the cor-
responding emitted buffer-mode photons have frequencies
outside the filter passband. We now show that it is possi-
ble to suppress all such errors simultaneously by carefully
choosing the frequencies of the storage modes. In doing
so, the effects of type III errors can also be simultane-
ously minimized. Importantly, the storage-mode frequen-
cies are chosen to be compatible with error correction in
the surface code, and we begin this section by describing
how the surface-code architecture constrains the choice of
storage-mode frequencies.

We consider the surface-code architecture and optimize
the storage-mode frequencies such that they are compatible
with the surface-code stabilizer measurement. To under-
stand the constraints imposed by the implementation of
the surface code, recall that each ATS is coupled to five
phononic modes in our proposal (see Fig. 2). Among the
five modes, four modes (two data and two ancilla modes
for the surface code) are stabilized in the cat-code manifold
by an ATS. Another mode (readout mode) is dedicated to
measuring cat qubits in the X basis and is not stabilized
by any ATS. Since every data or ancilla mode couples to
two ATSs, each ATS is only responsible for stabilizing two
of the five phononic modes to which it couples. Thus, for
each given ATS, we must determine which two phononic
modes should be stabilized.

An important consideration in deciding which phononic
modes should be stabilized by a given ATS is that each
ATS is used to realize four CNOT gates (performed in four
different time steps) to measure the stabilizers of the sur-
face code. While a CNOT gate is being performed, the target
mode of the CNOT gate is stabilized by a rotating jump
operator L̂2(t) = â2

2 − α2 + (α/2)(exp[2iπ t/T]− 1)(â1 −
α) that acts nontrivially both on the target mode (â2) and
the control mode (â1). Thus, while a CNOT gate is being
performed, the target mode must be stabilized by the ATS
that also couples to the control mode.

In Fig. 25 we show how these stabilization constraints
can be satisfied. In the top panel of the figure, we show
four (out of six, state preparation and measurement not
shown) time steps of the surface-code stabilizer measure-
ment. During each time step, different CNOT gates between
data and ancilla cat qubits are applied. We label data modes
as α and γ and ancilla modes as β and δ. Ancilla modes
labeled as β (δ) are used to measure the X -type (Z-type)
stabilizers of the surface code. We use black arrows to indi-
cate which phononic modes are stabilized by each ATS at
each time step; each phononic mode at the tip of a black

arrow is stabilized by the ATS at the arrow’s tail. Impor-
tantly, every target mode of a CNOT gate is stabilized by an
ATS that also couples to the corresponding control mode at
all time steps. Note, however, that a given ATS stabilizes
different modes at different time steps, as summarized in
the bottom panel of Fig. 25. In particular, there are two sta-
bilization configurations: in configuration 1 (2) modes α,β
(γ , δ) are stabilized by the given ATS, and the remaining
modes γ , δ (α,β) are stabilized by some other neighboring
ATSs.

Now, our goal is to choose the frequencies of the storage
modes and detunings of the pumps in order to minimize
crosstalk. In order to ensure that the choice of mode fre-
quencies is compatible with the surface-code stabilizer
measurement, we assign modes with the same label in
Fig. 25 to have the same frequency. Thus, there are only
five mode frequencies that must be chosen: the frequencies
ωα ,ωβ ,ωγ ,ωδ corresponding to the four labels in Fig. 25,
plus the frequency of the readout mode (not shown in
Fig. 25), which we take to be the same in each unit cell and
denote by ωρ . Similarly, there are four pump detunings,
�α ,�β ,�γ ,�δ , that must be chosen. Here, as above, �i
denotes the detuning of the pump (and buffer drive) used
to stabilize mode i. In the following, we construct a cost
function C that quantifies crosstalk as a function of these
nine parameters (five mode frequencies and four pump
detunings). Numerically minimizing C allows us to find
the choices of the frequencies and detunings that minimize
crosstalk.

First, C should be large if any emitted buffer-mode pho-
tons associated with type I and II errors lie inside the
filter’s bandwidth 4J . We thus take C = 1 if any of the fol-
lowing conditions are met for either of the two stabilization
configurations shown in Fig. 25:

(a) |δijk| < 2J (type I errors not suppressed).
(b) |δijk − δ�mn| < 2J (type II errors not suppressed).
(c) |δiii| > 2J (desired dissipation suppressed).

In other words, we set C = 1 if any type I or II errors
are not suppressed by the filter, or if any of the desired
engineered dissipation is suppressed by the filter. We
emphasize that these conditions must be checked for both
stabilization configurations in Fig. 25; checking both con-
figurations is necessary in order to ensure that type I and II
crosstalk is suppressed by the filter at all time steps.

Second, C should be large if the coherent type III errors
have significant damaging effects, and we now quantify
these effects in the context of the surface code. Recall that
these errors are generated by effective Hamiltonian terms
of the form, Eq. (B38), which we repeat for convenience,

|α|4χ ẐiẐj Ẑ�Ẑmei(δ�mn−δijk)t + H.c. (B59)
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FIG. 25. Cat-qubit stabilization in the surface-code architecture. Each ATS is coupled to two data modes α, γ and two ancilla modes
β, δ. In practice, ATSs are also coupled to a fifth readout mode (not shown here because it is not stabilized by any ATS). Each ATS
is responsible for performing four CNOT gates (at different time steps) and stabilizing two phononic modes in the cat-code manifold
during each time step. In the top panel, we show configurations of the cat-qubit stabilization, which respect the constraint discussed
in the main text: at each time step, a CNOT’s target mode must be stabilized by an ATS that also couples to its control mode. Each
phononic mode, pointed by a black arrow, is stabilized by an ATS where the black arrow originates from. In the bottom panel, we
show two stabilization configurations in the perspective of each host ATS. In configuration 1 (2), modes α,β (γ , δ) are stabilized by
the host ATS and the remaining modes γ , δ (α,β) are stabilized by some other neighboring ATSs.

When these terms are rapidly rotating, i.e., when |α4χ | 

|δijk − δ�mn|, their effects are suppressed. Indeed, these
terms effectively induce detuned Rabi oscillations between
states of different parity, and the magnitude of these oscil-
lations is small in the far-detuned limit. To quantify this
suppression, note that these micro-oscillation errors remain
coherent during gates but can be converted to incoher-
ent, correlated Ẑ errors when the X -type stabilizers are
measured. The probability pijk�mn of inducing a correlated
phase error upon a such a measurement scales quadrati-
cally in the ratio of the coupling strength and detuning,

pijk�mn =
( |α4χ |
δijk − δ�mn

)2

. (B60)

Among the various type III errors, we focus on those that
induce phase errors in both of the data modes α and γ since
such errors are specific to our architecture and not taken
into account in the standard surface-code analysis. In par-
ticular, we define pdouble as the total probability at least one
type III error ∝ ẐαẐγ Îβ , and ptriple as the total probability
of at least one type III error ∝ ẐαẐγ Ẑβ . Explicitly,
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FIG. 26. Type III crosstalk errors in the surface-code architec-
ture. We define pdouble as the probability of getting a type III error
∝ ẐαẐγ Îβ , and ptriple as the probability of getting a type III error
∝ ẐαẐγ Ẑβ .

pdouble =
∑

{ijk�mn}∈D
pijk�mn, (B61)

ptriple =
∑

{ijk�mn}∈T
pijk�mn, (B62)

where D and T denote sets of indices that give rise to
errors ∝ ẐαẐγ Îβ and ∝ ẐαẐγ Ẑβ , respectively, see Fig. 26.
Note that the Ẑ error on the ancilla mode β manifests
as a flipped X -basis measurement outcome. On the other
hand, Ẑ errors on the other ancilla mode δ do not flip the
measurement outcomes. This is because the mode δ is mea-
sured in the Z basis, and Z-basis measurements commute
with Ẑ errors.

We incorporate these type III errors into the cost func-
tion as follows. We take C = 1 if type I or II errors are not
suppressed by the filter (see aforementioned conditions on
the δijk), and otherwise we take

C = 1
2

(
p (1)double + p (1)triple + p (2)double + p (2)triple

)
, (B63)

where p (i)double and p (i)triple denote the values of pdouble and
ptriple for the ith stabilization configuration. Equation (B63)
thus represents the average probability of a type III error
occurring during one time step. Costs C 
 1 are thus
achieved only when both the probability of type III errors
is small, and all type I and II errors are suppressed by the
filter.

(a)

(b)

Phonon mode frequencies
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Emitted photon detunings (2  x MHz)
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γ
δβ ρ
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FIG. 27. Optimized mode frequencies. (a) Plot of the opti-
mized frequencies of the five storage modes. (b) Emitted buffer-
mode photon detunings. Red dashed (solid) lines indicate pho-
tons emitted via parity-non-preserving type I (type II) processes.
The yellow box covers the region [−50, 50] (2π ×MHz), rep-
resenting a bandpass filter with center frequency ωb and a 4J =
2π × 100 MHz passband. The fact that no lines lie inside the yel-
low box indicates that all type I and II processes are sufficiently
far detuned so as to be suppressed by the filter. The top (bottom)
plot in (b) is for the case where modes α and β (γ and δ) are
stabilized simultaneously.

Having defined the cost function C, we perform a
numerical search for the values of the mode frequencies
and pump detunings which minimize the cost. In perform-
ing this optimization, we place two additional restrictions
on allowed frequencies and detunings. First, we restrict the
mode frequencies to lie within a 1-GHz bandwidth. This
is done because the modes are supported by PCDRs, and
as such all mode frequencies must lie within the phononic
band gap, or at least within the union of two separate
band gaps each associated with different PCDRs. These
band gaps are typically not more than 500 MHz wide
for the devices we consider [32]. Second, we restrict the
values of the detunings to � = ±J . This is done to max-
imize use of the filter bandwidth; emitted buffer-mode
photons are detuned from one another by 2J and from
the nearest band edge by J , see Fig. 4(a). Additionally,
we choose 4J/2π = 100 MHz because this value is both
small enough to ensure that all stochastic crosstalk errors
are suppressed by the filter, and large enough so that the

TABLE VI. Frequency optimization results. The parameters 4J and ω are given in units of 2π×MHz. The type III error probabilities
and the cost C are expressed in terms of α and g2. For realistic choices of |α| = √8 and g2/2π = 2 MHz, the cost function evaluates
to C = 1.23× 10−3. We fix −�α = �β = −�γ = �δ = J .

4J ωα ,ωβ ,ωγ ,ωδ ,ωρ 1
2 (p

(1)
double + p (2)double)

1
2 (p

(1)
triple + p (2)triple) C

100 0, 1000, 242, 879, 61 1.83× 10−8
[
|α|2g2

2πMHz

]4
5.20× 10−10

[
|α|2g2

2πMHz

]4
1.88× 10−8

[
|α|2g2

2πMHz

]4
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buffer decay rate κb/2π = 57 MHz is not limited by the
filter bandwidth.

The optimization results are listed in Table VI and illus-
trated in Fig. 27. For the optimal configurations, all type
I and type II errors are simultaneously suppressed by the
filter. Note also that all emitted photon frequencies associ-
ated with type I or II errors lie at least 10 MHz outside the
filter passband. As a result, the optimized configuration is
robust to deviations in the mode frequencies of the same
order, and larger deviations can be tolerated by decreas-
ing the filter bandwidth. Moreover, for realistic values of
|α| and g2, we have C 
 1, indicating that type III errors
are strongly suppressed. Therefore, all dominant sources of
crosstalk are strongly suppressed.

APPENDIX C: SHIFTED FOCK BASIS

Simulating a large cat qubit (with large |α|2 � 1) by
using the usual Fock basis becomes quickly inefficient.
Here, we introduce a shifted Fock-basis method, which
can describe large cat states in a more efficient way (i.e.,
using a smaller Hilbert-space dimension) than the usual
Fock basis. Specifically, we explain how to construct the
annihilation operator â in the shifted Fock basis.

Recall that a cat state is composed of two coherent state
components | ± α〉, which can be understood as displaced
vacuum states D̂(±α)|n̂ = 0〉, where D̂(α) ≡ exp[αâ† −
α∗â] is the displacement operator. In the shifted Fock basis,
we use 2d displaced Fock states D̂(±α)|n̂ = n〉 as basis
states, where n ∈ {0, . . . , d − 1}. Note that while displaced
Fock states in each ±α branch are orthonormalized, dis-
placed Fock states in different branches are not necessarily
orthogonal to each other. We thus need to orthonormalize
the displaced Fock states.

We first define the nonorthonormalized basis states as
follows:

|φn,±〉 ≡ 1√
2

[
D̂(α)± (−1)nD̂(−α)]|n̂ = n〉, (C1)

where |φn,+〉 and |φn,−〉 have even and odd excitation
number parity, respectively. Note that we grouped the
nonorthonormalized states into the even and odd branches
instead of the ±α branches. As a result, in the ground-
state manifold (n = 0), the normalized basis states |φ0,±〉
are equivalent to the complementary basis states of the cat
qubit |±〉, not the computational basis states |0/1〉, i.e.,

|±〉 ∝ |φ0,±〉 = 1√
2
(|α〉 ± | − α〉). (C2)

We use the even and odd branching convention so that
any two basis states in different branches are orthogonal to
each other and hence the orthonormalization can be done

separately in each parity sector. Note that

�±m,n ≡ 〈φm,±|φn,±〉 = δm,n ± (−1)mDm,n(2α), (C3)

where Dm,n(α) ≡ 〈n̂ = m|D̂(α)|n̂ = n〉 are the matrix ele-
ments of the displacement operator D̂(α) in the usual Fock
basis:

Dm,n(α) = e−
|α|2

2

√
min(m, n)!
max(m, n)!

L(|m−n|)
min(m,n)(|α|2)

×
{
αm−n m ≥ n
(−α∗)n−m m < n.

(C4)

Here, L(α)n (x) is the generalized Laguerre polynomial.
Since |Dm,n(2α)| = O(|α|m+ne−2|α|2), Dm,n(2α) is negligi-
ble if m+ n 
 |α|2. In this regime, the basis states |φn,±〉
are almost orthonormal. For the purpose of estimating the
phase-flip (or Z) error rates within a small multiplicative
error, it is often permissible to neglect the nonorthogonal-
ity of the states |φn,±〉. However, this is generally not the
case if we want to evaluate the Z-error rates with a very
high precision or if we want to estimate the bit-flip (or X )
error rates because the bit-flip error rates decrease expo-
nentially in |α|2. In these cases, taking into account the
nonorthogonality of the states |φn,±〉 is essential.

We orthonormalize the basis states |φn,±〉 by applying
the Gram-Schmidt orthonormalization procedure. Specif-
ically, given the nonorthonormalized basis states |φn,±〉,
we construct d orthonormalized basis states in each parity
sector starting from the ground state |φ0,±〉:

|ψn,±〉 =
d−1∑

m=0

c±m,n|φm,±〉. (C5)

The coefficients c±m,n (0 ≤ m, n ≤ d − 1) are determined
inductively. In the base case (k = 0),

c±0,0 =
1√
�±0,0

, c±m,0 = 0 for all 1 ≤ m ≤ d − 1, (C6)

and thus the logical |±〉 states of the cat qubit are given by

|±〉 ≡ |ψ0,±〉 = 1√
�±0,0

|φ0,±〉 = |α〉 ± | − α〉√
2(1± e−2|α|2)

. (C7)

In the general case with 1 ≤ k ≤ d − 1, suppose we are
given with c±mn for all 0 ≤ m ≤ d − 1 and 0 ≤ n ≤ k − 1.
Thus, at this point, the first k columns of c± are known. Let
c±:,0:k−1 be the d × k matrix, which is obtained by taking the
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first k columns of the matrix c±. Given c±:,0:k−1, we assign
the k + 1th column of c± as follows:

c±m,k = −
[c±:,0:k−1(c

±
:,0:k−1)

†�±]m,k√
�±k,k − [(�±)†c±:,0:k−1(c

±
:,0:k−1)

†�±]k,k

, (C8)

for 0 ≤ m ≤ k − 1,

c±k,k =
1√

�±k,k − [(�±)†c±:,0:k−1(c
±
:,0:k−1)

†�±]k,k

, (C9)

and c±m,k = 0 for all m > k.
Having constructed the 2d orthonormalized shifted

Fock-basis states |ψn,±〉, we now need to find the matrix
elements of an operator Ô (e.g., Ô = â) in the orthonormal-
ized basis. Let |φn〉 = |φn,+〉 and |φn+d〉 = |φn,−〉 for n ∈
{0, . . . , d − 1} and also define |ψn〉 and |ψn+d〉 similarly.
Suppose that the operator Ô transforms the nonorthonor-
malized basis states |φn〉 as follows:

Ô|φn〉 =
2d−1∑

m=0

Om,n|φm〉. (C10)

We call Om,n the matrix elements of the operator Ô in
the nonorthonormalized basis |φn〉. Then, in the orthonor-
malized basis, the matrix elements of the operator Ô are
given by

O′m,n ≡ 〈ψm|Ô|ψn〉 = (c†�Oc)m,n, (C11)

where � and c are 2d × 2d matrices, which are defined as

� =
[
�+ 0
0 �−

]
, c =

[
c+ 0
0 c−

]
. (C12)

The matrix elements of the d × d matrices �± and c± are
given in Eqs. (C3), (C6), (C8), and (C9).

Consider the annihilation operator Ô = â and note that
it transforms the nonorthonormalized basis states |φn,±〉 as
follows:

â|φn,±〉 =
√

n|φn−1,∓〉 + α|φn,∓〉. (C13)

Note that the annihilation operator â flips the ± parity to
the ∓ parity. Thus, in the nonorthonormalized basis, the
matrix elements of the annihilation operator are given by

[
0 b̂+ α

b̂+ α 0

]
= X̂ ⊗ (b̂+ α), (C14)

where X̂ is the Pauli X operator and b̂ is the truncated
annihilation operator of size d × d. Then, the matrix ele-
ments of the annihilation operator in the orthonormalized

basis |ψn,±〉 can be obtained via the transformation given
in Eq. (C11).

Recall that |ψn,±〉 are complementary basis states. To
find the matrix elements of an operator in the compu-
tational basis states, we should conjugate the matrix by
the Hadamard operator Ĥ . Thus, in the orthonormalized
computational basis, the annihilation operator is given by

â ≡ (Ĥ ⊗ Î) · c†�[X̂ ⊗ (b̂+ α)]c · (Ĥ ⊗ Î)

|α|2�d−−−→ Ẑ ⊗ (b̂+ α). (C15)

The approximate expression â � Ẑ ⊗ (b̂+ α) is useful for
analyzing the Z-error rates of large cat qubits (with |α| �
1) in the perturbative regime where the cat-qubit states
may sometimes be excited to the first-excited-state man-
ifold (n = 1) but quickly decay back to the ground-state
manifold (n = 0). In particular, the engineered two-phonon
dissipator κ2D[â2 − α2] is given by

κ2D[Î ⊗ (b̂2 + 2αb̂)] � 4κ2α
2D[Î ⊗ b̂] (C16)

by using the approximate expression â � Ẑ ⊗ (b̂+ α) and
disregarding higher than second excited states (i.e., b̂2 =
0). Hence, the linewidth of the engineered two-phonon dis-
sipation is approximately given by 4κ2α

2, which from now
on we refer to as the confinement rate κconf. For numer-
ical simulations (Appendix E), we thoroughly take into
account the orthonormalization and use the orthonormal-
ized shifted Fock basis obtained by the Gram-Schmidt
process. We lastly remark that the parity operator eiπ̂ â†â

is exactly given by X̂ ⊗ Î in the shifted Fock basis (with
the orthonormalization accounted for) because of the way
we define the basis states, i.e., |ψn,+〉 (|ψn,−〉) has an even
(odd) excitation number parity.

APPENDIX D: PERTURBATIVE ANALYSIS OF
THE Z ERROR RATES OF THE CAT-QUBIT

GATES

Here, we analyze the Z-error rates of the cat-qubit
gates (idling, Z rotations, CZ rotations, CNOT, and Tof-
foli) by using the shifted Fock basis (Appendix C)
and adiabatic elimination or effective operator formalism
(Appendix B 1).

1. Idling

Consider an idling single cat qubit, which is stabilized
by the two-phonon dissipation κ2D[â2 − α2] and is subject
to single-phonon loss κ1D[â]:

dρ̂(t)
dt

= κ2D[â2 − α2]ρ̂(t)+ κ1D[â]ρ̂(t). (D1)
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Assuming |α| � 1, the above master equation is given by

dρ̂(t)
dt

= κ2D[Î ⊗ (b̂2 + 2αb̂)]ρ̂(t)

+ κ1D[Ẑ ⊗ (b̂+ α)]ρ̂(t) (D2)

in the shifted Fock basis, where we used the mapping â →
Ẑ ⊗ (b̂+ α). Suppose that the system is initially in the cat-
qubit manifold, i.e., ρ̂(0) = ρ̂g(0)⊗ |0〉′〈0|′, where ρ̂g(0)
is a density operator of size 2× 2 and |0〉′ ≡ |b̂†b̂ = 0〉
(not to be confused with the computational basis state |0〉).
When the system is idling, the states are never excited to
the excited-state manifold and thus ρ̂(t) = ρ̂g(t)⊗ |0〉′〈0|′.
Projecting the master equation in Eq. (D2) to the ground-
state manifold, we find

dρ̂g(t)
dt

= κ1α
2D[Ẑ]ρ̂g(t), (D3)

and hence

ρ̂g(T) � (1− p̄Z)ρ̂g(t)+ p̄ZẐρ̂g(t)Ẑ, (D4)

provided that the idling Z-error rate (per gate) p̄Z ≡ κ1α
2T

is small (i.e., p̄Z 
 1) where T is the idling time. Note that
we used the notation p̄ with a bar to indicate that the pre-
sented expression is obtained via a perturbative analysis.
We use p without bar to refer to numerical results.

2. Z rotations

Assume that α is real and positive. To implement a Z
rotation Z(θ) ≡ exp[iθ |1〉〈1|] on a cat qubit (where |1〉 �
| − α〉 is a cat-code computational basis state), we need to
apply a linear drive εZ(â+ â†):

dρ̂(t)
dt

= κ2D[â2 − α2]ρ̂(t)+ κ1D[â]ρ̂(t)

− i[εZ(â+ â†), ρ̂(t)]. (D5)

In the shifted Fock basis, the linear drive εZ(â+ â†) is
given by εZẐ ⊗ (b̂+ b̂† + 2α). Thus, in the ground-state
manifold, it induces a Z rotation via the term 2εZαẐ. At
the same time, the term εZẐ ⊗ b̂† excites the cat qubit
to its first excited state, which then quickly decays back
to the ground-state manifold due to the engineered dis-
sipation κ2D[â2 − α2] ↔ κ2D[Î ⊗ (b̂2 + 2αb̂)]. Thus, to
capture the first-order effects, we consider only the ground-
state manifold and the first-excited-state manifold (n =
0, 1), hence ignoring b̂2 in κ2D[Î ⊗ (b̂2 + 2αb̂)]. Also,
assuming κ2 � κ1, we ignore the intrinsic decay due to
the single-phonon loss in the excited-state manifold, i.e.,
κ1D[â] ↔ κ1D[Ẑ ⊗ (b̂+ α)] � κ1α

2D[Ẑ ⊗ Î ], where we

used D[cÂ] = |c|2D[Â]. Then, the master equation is
given by

dρ̂(t)
dt

= 4κ2α
2D[Î ⊗ b̂]ρ̂(t)+ κ1α

2D[Ẑ ⊗ Î ]ρ̂(t)

− 2iαεZ[Ẑ ⊗ Î , ρ̂(t)]− i[εZẐ ⊗ (b̂+ b̂†), ρ̂(t)].
(D6)

The second term on the right-hand side of this master
equation describes a Z error acting on the encoded cat qubit
due to single-phonon loss, occurring at the rate (per time)
κ1α

2. The third term rotates the cat qubit about the Z axis.
The fourth term excites the cat qubit from its ground-state
manifold to its first-excited-state manifold, with a coupling
strength g = εZ , and at the same time inflicts a Z error on
the cat qubit. This excitation decays back to the cat-code
ground-state manifold with a decay rate κ = 4κ2α

2 due
to the engineered dissipation described by the first term.
Assuming κ � g the creation and decay of this excitation
results in an additional Z error in the ground-state manifold
with an effective error rate (per time) 4g2/κ = ε2

Z/(κ2α
2),

augmenting the Z-error rate due to single-phonon loss. The
effective master equation therefore becomes

dρ̂g(t)
dt

=
(
κ1α

2 + ε2
Z

κ2α2

)
D[Ẑ]ρ̂g(t)− i[2εZαẐ, ρ̂g(t)],

(D7)

where we have used the subscript g to indicate that ρ̂g(t) is
the density operator in the ground-state manifold of the cat
state.

Given this effective master equation, we can analyze the
effective Hamiltonian and the effective phase-flip error sep-
arately because they commute with each other. The effec-
tive Hamiltonian Ĥeff = 2εZαẐ induces a Z rotation Ẑ(θ)
with θ = 4εZαT after the gate time T, i.e., εZ = θ/(4αT).
Then, the Z-error rate (per gate) due to the effective phase
flip is given by

p̄Z = κ1α
2T + ε2

Z

κ2α2 T = κ1α
2T + θ2

16κ2α4T
, (D8)

provided that p̄Z 
 1. This Z-error rate is minimized at the
optimal gate time

T̄�Z(θ) =
|θ |

4α3√κ1κ2
, (D9)

and the corresponding optimal Z-error rate is given by

p̄�Z =
|θ |
2α

√
κ1

κ2
. (D10)
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3. CZ rotations

A ZZ interaction between two cat qubits can be imple-
mented by using a beam-splitter coupling εZZ(â1â†

2 +
â†

1â2), which is given by 2εZZα
2Ẑ1Ẑ2 in the ground-state

manifold of the cat qubits. To implement a controlled Z
rotation CZ(θ) ≡ exp[iθ |11〉〈11|], we should add single-
qubit Z rotations so that only the state |11〉 accumulates a
nontrivial phase. More specifically, we need

Ĥ = εZZ(â1â†
2 + â†

1â2)− εZZα(â1 + â†
1)

− εZZα(â2 + â†
2), (D11)

and the master equation is given by

dρ̂(t)
dt

= κ2

[
D[â2

1 − α2]+D[â2
2 − α2]

]
ρ̂(t)

+ κ1

[
D[â1]+D[â2]

]
ρ̂(t)− i[Ĥ , ρ̂(t)]. (D12)

Similarly as in the case of single-qubit Z rotations, the
engineered dissipation induces a strong decay from the
first-excited-state manifold to the cat-qubit manifold with
a decay rate (per time) κ = 4κ2α

2. Also, the single-phonon
loss causes local phase-flip errors in each cat-qubit mani-
fold with an error rate κ1α

2. In the shifted Fock basis, the
Hamiltonian Ĥ is given by

Ĥ = 2εZZα
2(Ẑ1Ẑ2 − Ẑ1 − Ẑ2)⊗ Î

+ εZZα(Ẑ1Ẑ2 − Ẑ1)⊗ (b̂1 + b̂†
1)

+ εZZα(Ẑ1Ẑ2 − Ẑ2)⊗ (b̂2 + b̂†
2)

+ εZZẐ1Ẑ2 ⊗ (b̂1b̂†
2 + b̂†

1b̂2). (D13)

The first term generates an effective Hamiltonian Ĥeff =
8εZZα

2|11〉〈11| in the ground-state manifold. Due to the
second (third) term, the first (second) cat qubit is excited
to its first-excited-state manifold with a coupling strength
g = εZZα while the encoded cat qubits are subjected to
a Ẑ1Ẑ2 − Ẑ1 (Ẑ1Ẑ2 − Ẑ2) error. The excited state decays
back to the ground-state manifold at the rate κ = 4κ2α

2

due to the engineered dissipation; as a result the cat qubits
experience effective Ẑ1Ẑ2 − Ẑ1 and Ẑ1Ẑ2 − Ẑ2 errors, each
with rate (per time) 4g2/κ = ε2

ZZ/κ2. Note that the last
term in the effective Hamiltonian can, in principle, induce
excitation exchange between the two modes but we may
neglect this effect because the excited states decay very
quickly back to the ground-state manifold (i.e., εZZ 

4κ2α

2, which is indeed the case in the parameter regime
we focus on). Putting all this together, we find the follow-
ing effective master equation in the ground-state manifold

of two cat qubits:

dρ̂g(t)
dt

= κ1α
2
[
D[Ẑ1]+D[Ẑ2]

]
ρ̂g(t)

+ ε2
ZZ

κ2

[
D[Ẑ1Ẑ2 − Ẑ1]+D[Ẑ1Ẑ2 − Ẑ2]

]
ρ̂g(t)

− i[8εZZα
2|11〉〈11|, ρ̂g(t)]. (D14)

The effective Hamiltonian (which commutes with the Z-
type effective jump operators) generates a CZ rotation
CZ(θ) with θ = −8εZZα

2T where T is the gate time.
Hence, εZZ = −θ/(8α2T). The remaining effective jump
operators induce an error channel

NCZ(θ)(ρ̂) � ρ̂ + κ1α
2T
[
D[Ẑ1]+D[Ẑ2]

]
ρ̂

+ θ2

64κ2α4T

[
D[Ẑ1Ẑ2 − Ẑ1]

+D[Ẑ1Ẑ2 − Ẑ2]
]
ρ̂, (D15)

provided that the error rates (per gate) κ1α
2T and

θ2/(64κ2α
4T) are much smaller than unity. Ignoring the

off-diagonal terms like Ẑ1Ẑ2ρ̂Ẑ1, we get Pauli Z-error rates

p̄Z1 = p̄Z2 = κ1α
2T + θ2

64κ2α4T
,

p̄Z1Z2 =
θ2

32κ2α4T
.

(D16)

The total gate infidelity 1− p̄Z1 − p̄Z2 − p̄Z1Z2 is mini-
mized at the optimal gate time

T̄�CZ(θ) =
|θ |

4α3
√

2κ1κ2
, (D17)

and the Z-error rates (per gate) at this optimal gate time are
given by

p̄�Z1
= p̄�Z2

= 3
2

p�Z1Z2
= 3|θ |

8α

√
κ1

2κ2
. (D18)

Note that the optimal Z-error rates for Z and CZ rotations
decrease as α increases. Below, we show that this is not the
case for the CNOT and Toffoli gates.

4. CNOT

The CNOT gate between two cat qubits can be realized
by

dρ̂(t)
dt

= κ2

[
D[â2

1 − α2]+D[L̂2(t)]
]
ρ̂(t)

+ κ1

[
D[â1]+D[â2]

]
ρ̂(t)− i[Ĥ , ρ̂(t)], (D19)

010329-56



BUILDING A FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 3, 010329 (2022)

where â1 and â2 are the annihilation operators of the con-
trol and the target modes, respectively, and L̂2(t) and Ĥ are
given by

L̂2(t) = â2
2 − α2 + α

2
(e2i πT t − 1)(â1 − α),

Ĥ = π

4αT
(â1 + â†

1 − 2α)(â†
2â2 − α2).

(D20)

How and whether this master equation can be physically
implemented is discussed in Appendix F. Here, we focus
on analyzing the effective Z-error rates on the cat qubits
under this master equation.

Note that the time-dependent engineered jump oper-
ator L̂2(t) stabilizes the target mode in the | ± α〉 (or
| ± αei(π/T)t〉) manifold if the control cat qubit is in the
|0〉 � |α〉 (or |1〉 � | − α〉) state. As a result, the target cat
qubit is rotated by 180◦ at time t = T only if the control
qubit is in the |1〉 state. That is, an X̂ gate is applied to the
target cat qubit (i.e., | ± α〉 → | ∓ α〉) conditioned on the
control cat qubit being in the |1〉 state, hence the desired
CNOT gate. Note that for this conditional stabilization to
work, the engineered jump operator L̂2 should be modu-
lated adiabatically [i.e., T � 1/(κ2α

2)] such that the target
mode does not leak out of the | ± αei(π/T)t〉 manifold if the
control qubit is in the |1〉 state. Adverse effects due to the
nonadiabaticity can be partially (but not fully) compen-
sated for by the compensating Hamiltonian Ĥ . See more
on this below.

To analyze this master equation, we first use a hybrid
basis where the control and the target modes are described
by the shifted and usual Fock basis, respectively. In the
hybrid basis, assuming |α| � 1 and using an approximate
expression â � Ẑ ⊗ (b̂+ α), the compensating Hamilto-
nian is given by

Ĥ = −π
T
|1〉〈1|1 ⊗ (â†

2â2 − α2)

+ π

4αT
Ẑ1 ⊗ (b̂1 + b̂†

1)(â
†
2â2 − α2). (D21)

Since we are using the shifted Fock basis for the control
mode and the usual Fock basis for the target mode at this
point, b̂1 is a d × d matrix whereas â2 is a 2d × 2d matrix,
where d is defined in Appendix C.

Note that the first term in Eq. (D21), which is a desired
term, rotates the target mode conditioned on the con-
trol mode being in the |1〉 state branch. Hence, this term
actively brings the target mode to the | ± αei(π/T)t〉 mani-
fold (if the control qubit is in the |1〉 state) and thus makes
it unnecessary for the system to adiabatically relax under
the engineered jump operator L̂2. In particular, conditioned
on the control qubit being in the |1〉 state, this term makes
the target mode rotate by 180◦ at t = T, implementing an
X gate (i.e., | ± α〉 → | ∓ α〉) to the target cat qubit.

While the first term compensates for the adverse effects
of the nonadiabaticity, the second term induces an undesir-
able back action to the control mode, which, as we show
below, turns out to be a significant error source for the
CNOT gate. Intuitively, the reason why the second term
is detrimental is because the cat states in the target mode
are not eigenstates of the excitation number operator â†

2â2
and rather follow a Poissonian-like distribution with mean
excitation number α2. Due to such fluctuations in the exci-
tation number of the target mode, the undesired second
term makes the control mode leak out of its ground-state
manifold and at the same time causes a Z error on the
control qubit space. How this undesired term degrades the
CNOT gate fidelity can be best described in a rotating frame
and in the full shifted Fock basis, which we describe below.

Now, we go to a rotating frame with respect to the
desired compensating Hamiltonian

Ĥ ′ ≡ −π
T
|1〉〈1|1 ⊗ (â†

2â2 − α2), (D22)

that is, we consider the time evolution of ρ̂I (t) ≡
eiĤ ′tρ̂(t)e−iĤ ′t, which should ideally be idling. In the rotat-
ing frame (assuming |α| � 1), the annihilation operator
of the control mode Ẑ1 ⊗ (b̂1 + α) is unchanged since Ẑ1
commutes with |1〉〈1|1 in Ĥ ′ (this is not the case when
the orthonormalization is taken into account as there are
exponentially small time-dependent corrections to â1 in the
rotating frame). On the other hand, â2 is transformed as

â2 → eiĤ ′tâ2e−iĤ ′t

= |0〉〈0|1 ⊗ â2 + |1〉〈1|1 ⊗ â2ei πT t = Ẑ1

(π
T

t
)
⊗ â2,

(D23)

where we define Ẑk(θ) as Ẑk(θ) ≡ exp[iθ |1〉〈1|k]. Having
moved to the rotating frame, we finally use the shifted Fock
basis for the target mode and replace â2 by Ẑ2 ⊗ (b̂2 + α).

In the rotating frame (and in the full shifted Fock basis),
the master equation is given by

dρ̂I (t)
dt

= κ2

[
D[Î1,2 ⊗ (b̂2

1 + 2αb̂1)]+D[L̂′2(t)]
]
ρ̂I (t)

+ κ1

[
D[Ẑ1 ⊗ (b̂1 + α)]

+D[Ẑ1

(π
T

t
)

Ẑ2 ⊗ (b̂2 + α)]
]
ρ̂I (t)

− i
[ π

4αT
Ẑ1 ⊗ (b̂1 + b̂†

1)

× [b̂†
2b̂2 + α(b̂2 + b̂†

2)], ρ̂I (t)
]
, (D24)
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where the jump operator L̂′2(t) ≡ eiĤ ′tL̂2(t)e−iĤ ′t in the
rotating frame is given by

L̂′2(t) = Ẑ1

(2π
T

t
)
⊗ (b̂2

2 + 2αb̂2)+ α

2
(e2i πT t − 1)Ẑ1 ⊗ b̂1.

(D25)

Similarly as in the case of Z and CZ rotations, we consider
only the first excited state in each mode (b̂2

1 = b̂2
2 = 0) and

ignore weak internal couplings and dissipations within the
excited-state manifold assuming that the engineered dissi-
pation rate κ2 dominates. Lastly, we ignore the second term
in the jump operator L̂2(t) to not complicate the analysis
and convey the main idea more easily. This approximation
can have a minor quantitative impact as the second term in
L̂2(t) is only 4 times weaker than the first term in the worst
case (t = T/2). However, the key qualitative features (e.g.,
scaling) are not affected by this simplification.

With the above simplifications, the master equation is
given by

dρ̂I (t)
dt

= 4κ2α
2
[
D[Î1,2 ⊗ b̂1]+D[Ẑ1

(2π
T

t
)
⊗ b̂2]

]
ρ̂I (t)

+ κ1α
2
[
D[Ẑ1 ⊗ Î ]+D[Ẑ1

(π
T

t
)

Ẑ2 ⊗ Î ]
]
ρ̂I (t)

− i
[ π

4T
Ẑ1 ⊗ (b̂1b̂2 + b̂†

1b̂†
2), ρ̂I (t)

]
. (D26)

Note that the undesired term in the compensating Hamilto-
nian Ĥ − Ĥ ′ = (π/4T)Ẑ1 ⊗ (b̂1b̂2 + b̂†

1b̂†
2) jointly excites

both the control and the target modes with a coupling
strength g = π/(4T) and at the same time causes a Ẑ1
error on the control qubit. The excited state |11〉′ (defined
as |b̂†

1b̂1 = 1〉 ⊗ |b̂†
2b̂2 = 1〉, not to be confused with the

computational basis state |11〉) eventually decays back to
the code space through either |11〉′ → |01〉′ → |00〉′ or
|11〉′ → |10〉′ → |00〉′ with a total decay rate (per time)
κ = 8κ2α

2. Note that whichever way the excited state
decays, the decay is accompanied by a Z rotation on
the control mode, i.e., Ẑ1[(2π/T)t]. Thus, after adiabat-
ically eliminating the excited states, we get an effective
jump operator Ẑ1Ẑ1[(2π/T)t] with a decay rate (per time)
4g2/κ = π2/(32κ2α

2T2) in the ground-state manifold.
Thus, we have the following master equation:

dρ̂I ,g(t)
dt

= κ1α
2
[
D[Ẑ1]+D[Ẑ1

(π
T

t
)

Ẑ2]
]
ρ̂I ,g(t)

+ π2

32κ2α2T2D
[
Ẑ1Ẑ1

(2π
T

t
)]
ρ̂I ,g(t), (D27)

where the dissipators in the first line are due to the single-
phonon loss projected to the ground-state manifold. By

integrating and ignoring higher-order terms, we find

ρ̂I ,g(T) � ρ̂g(0)+
∫ T

0
dt
{
κ1α

2
[
D[Ẑ1]+D[Ẑ1

(π
T

t
)

Ẑ2]
]

+ π2

32κ2α2T2D
[
Ẑ1Ẑ1

(2π
T

t
)]}

ρ̂g(0) (D28)

at the gate time T.
To go back to the original frame [i.e., ρ̂(T) =

e−iĤ ′Tρ̂I (T)eiĤ ′T], note that e−iĤ ′T is given by

e−iĤ ′T = |0〉〈0|1 ⊗ Î + |1〉〈1|1 ⊗ eiπ â†
2â2e−iπα2

(D29)

in the hybrid basis. In the shifted Fock basis, eiπ â†â is
exactly given by X̂ ⊗ Î and thus we have

e−iĤ ′T = [Ẑ1(−πα2) · CNOT1→2]⊗ Î (D30)

in the full shifted Fock basis. Thus, projecting e−iĤ ′T

to the ground-state manifold of the cat qubits, we
find ρ̂g(T) = CX ′ρ̂I ,g(T)CX ′† where CX ′ ≡ Ẑ1(−πα2) ·
CNOT1→2. Therefore, we can understand ρ̂g(T) as a state
that results from applying a unitary operation CX ′ to the
input state ρ̂g(0), which is then corrupted by an error
channel

NCX ′(ρ̂) � ρ̂ +
∫ T

0
dt
{
κ1α

2
[
D[Ẑ1]+D[Ẑ1Ẑ1

(π
T

t
)

Ẑ2]
]

+ π2

32κ2α2T2D
[
Ẑ1Ẑ1

(2π
T

t
)]}

ρ̂, (D31)

where we used the fact that Ẑ2 is transformed via CNOT1→2
into Ẑ1Ẑ2. Performing the integration explicitly and ignor-
ing off-diagonal terms similarly as in the analysis of the
controlled Z rotations, we find that the Z-error rates (per
gate) of the CX ′ gate are given by

p̄Z1 = κ1α
2T + π2

64κ2α2T
,

p̄Z2 = p̄Z1Z2 =
1
2
κ1α

2T.

(D32)

Hence, the optimal gate time that minimizes the total gate
infidelity is given by

T̄�CX ′ =
π

8α2
√

2κ1κ2
, (D33)

and at the optimal gate time, the Z-error rates (per gate) of
the CX ′ gate are given by

p̄�Z1
= 6p̄�Z2

= 6p̄�Z1Z2
= 3π

8

√
κ1

2κ2
= 0.833

√
κ1

κ2
. (D34)

Note that the Z errors (per gate) due to the single-phonon
loss account only for half the total CX ′ gate error rate at the
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optimal gate time. The remaining half comes from the Z
error due to the undesired term in the compensating Hamil-
tonian [see the discussion below Eq. (D21)]. Numerically,
we find that the optimal Z-error rates (per gate) of the CNOT
gate are given by (see Table II)

p�Z1
= 6.067p�Z2

= 6.067p�Z1Z2
= 0.91

√
κ1

κ2
, (D35)

which agree well with the perturbative prediction in
Eq. (D34) within a relative error of 10%. Note that the
quantitative differences are mostly due to the fact that
we neglected the second term in Eq. (D25) to make
the analysis simpler and also that we consider only the
first-excited-state manifold in each mode.

We emphasize that to really implement the desired
CNOT1→2 gate, one should apply a Z rotation Ẑ1(πα

2) to
the control cat qubit to compensate for the extra Z rotation
in the CX ′ gate and such an extra operation will result in
additional Z errors (see Appendix D 2). However, if the
average excitation number α2 is an even integer, the extra
Z rotation is not needed and thus the Z-error rates of the
CNOT gate are simply given by the ones in Eq. (D34).

It is often said that bosonic dephasing κφD[â†â] does
not cause any Z errors on cat qubits because it preserves
the parity. While this is true for idling, Z, and CZ rotations,
this is not the case for the CNOT and Toffoli gates. To see
why this is the case, note that κφD[â†â] is given by

κφD[â†â] = κφD[Î ⊗ (b̂† + α)(b̂+ α)]
= κφD{Î ⊗ [b̂†b̂+ α(b̂+ b̂†)]} (D36)

in the shifted Fock basis, where we assumed |α| � 1 and
used the fact that D[Ô+ cÎ ] = D[Ô] for all hermitian
operators Ô† = Ô and a scalar c. If the cat qubit is in its
ground-state manifold, b̂†b̂+ αb̂ acts trivially and thus the
dominant effect due to the dephasing is the heating caused
by the term αb̂†, i.e.,

κφD[â†â] � κφα2[Î ⊗ b̂†]. (D37)

Such heating, however, does not induce any Z errors on
the qubit space, as indicated by the identity operator in the
first slot of the tensor product; this is consistent with the
fact that the bosonic dephasing alone cannot change the
excitation number parity.

In the case of the CNOT gate, dephasing in each mode
independently causes heating, resulting in direct popu-
lation transfer from the ground-state manifold associ-
ated with |00〉′ to the excited-state manifolds with |10〉′
and |01〉′. As shown in the first line of Eq. (D26), the
excited states |10〉′ and |01〉′ decay back to the code
space via the engineered dissipation 4κ2α

2D[Î1,2 ⊗ b̂1] and

4κ2α
2D{Ẑ1[(2π/T)t]⊗ b̂2}, respectively. While the for-

mer engineered dissipation (corresponding to the control
mode) is parity preserving, the latter (corresponding to the
target mode) induces a Z rotation of the control mode, i.e.,
Ẑ1[(2π/T)t]. This is because the engineered jump oper-
ator on the target mode L̂2(t) rotates conditioned on the
state of the control mode. Consequently, while the process
|10〉′ → |00〉′ is parity preserving in overall, the other pro-
cess |01〉′ → |00〉′ induces Z errors on the qubit degree of
freedom. More explicitly, the heating followed by the fast
relaxation in the target mode induces a new noise process

κφα
2D
[
Ẑ1

(2π
T

t
)]
ρ̂I ,g(t) (D38)

in addition to the noise processes described in the right-
hand side of Eq. (D27). Integrating over the time window
t ∈ [0, T] and ignoring off-diagonal terms, such a noise
process adds an error rate (per gate) κφα2T/2 to pZ1 , i.e.,

p̄Z1 = κ1α
2T + 1

2
κφα

2T + π2

64κ2α2T
,

p̄Z2 = p̄Z1Z2 =
1
2
κ1α

2T.

(D39)

That is, even in the lossless case (i.e., κ1 = 0), the CNOT
gate is not free from Z errors and is instead limited
by p̄�Z1

∝ √
κφ/κ2 at the optimal gate time. In contrast,

dephasing does not induce any additional Z errors in the
case of idling, Z rotations, and CZ rotations because in
these cases the engineered dissipation is always static (i.e.,
κ2D[â2 − α2] in the usual Fock basis or approximately
4κ2α

2D[Î ⊗ b̂] in the shifted Fock basis) and thus pre-
serves the parity when it brings the excited states back to
the cat-code manifold. We also remark that in the pres-
ence of nonzero thermal population nth, we simply need
to replace κ1 by κ1(1+ 2nth).

We reinforce that the above perturbative approach based
on an approximate expression â � Ẑ ⊗ (b̂+ α) is not
capable of capturing non-Z-type errors, which decrease
exponentially in |α|2. Numerically, however, we simulate
the master equation in the shifted Fock basis without mak-
ing any approximations to capture the exponentially small
error rates and get accurate Z-error rates. In particular, we
use an exact expression of the annihilation operator in the
shifted Fock basis (obtained via the procedure described in
Appendix C) and perform the frame transformations sim-
ilarly as in this section (i.e., hybrid basis, rotating frame,
and then full shifted Fock basis) but in a way that takes
into account exponentially small corrections in |α|2. See
Appendix E for numerical results.
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5. Toffoli

A Toffoli gate among three cat qubits can be imple-
mented by

dρ̂(t)
dt

= κ2

[
D[â2

1 − α2]+D[â2
2 − α2]+D[L̂3(t)]

]
ρ̂(t)

+ κ1

[
D[â1]+D[â2]+D[â3]

]
ρ̂(t)− i[Ĥ , ρ̂(t)],

(D40)

where the engineered dissipation L̂3(t) and the compensat-
ing Hamiltonian Ĥ are given by

L̂3(t) = â2
3 − α2 − 1

4
(e2i πT t − 1)(â1 − α)(â2 − α),

Ĥ = − π

8α2T
[(â1 − α)(â†

2 − α)+ h.c.](â†
3â3 − α2).

(D41)

Similarly as in the case of the CNOT gate, the time-
dependent engineered jump operator L̂3(t) stabilizes the
target mode â3 in the | ± αei(π/T)t〉 manifold if the con-
trol modes â1 and â2 are in the “trigger” state |11〉 �
| − α,−α〉 or in the usual cat code manifold | ± α〉 oth-
erwise. Hence, the target mode is rotated by 180◦ (i.e.,
X gate on the cat qubit) at the gate time t = T only if
the control qubits are in the trigger state |11〉, realizing
the controlled-controlled-X gate, or the Toffoli gate on the
three cat qubits. Moreover, the compensating Hamiltonian
Ĥ mitigates the adverse effects due to the nonadiabaticity
by actively bringing the target mode in the desired mani-
fold | ± αei(π/T)t〉 when the control qubits are in the trigger
state |11〉 � | − α,−α〉.

To analyze the Z-error rates of the Toffoli gate pertur-
batively, we first use the hybrid basis system where the
control modes are described by the shifted Fock basis and
the target mode is described by the usual Fock basis. In the
hybrid basis, the compensating Hamiltonian is given by

Ĥ = −π
T
|11〉〈11|1,2 ⊗ (â†

3â3 − α2)

− π

8αT
(Ẑ1 − Ẑ1Ẑ2)⊗ (b̂1 + b̂†

1)(â
†
3â3 − α2)

− π

8αT
(Ẑ2 − Ẑ1Ẑ2)⊗ (b̂2 + b̂†

2)(â
†
3â3 − α2)

+ π

8α2T
Ẑ1Ẑ2 ⊗ (b̂1b̂†

2 + b̂†
1b̂2)(â

†
3â3 − α2), (D42)

where we used âk � Ẑk ⊗ (b̂k + α) for k ∈ {1, 2}. Note that
the first term is a desired term that rotates the target mode
by 180◦ over the gate time T only if the two control qubits
are in the trigger state. The fourth term acts trivially if the
system is in the ground-state manifold. The second and the
third terms, on the other hand, make the system excited and
leak out of the ground-state manifold.

Similarly as in the case of the CNOT gate, we go to a
rotating frame with respect to the desired compensating
Hamiltonian

Ĥ ′ ≡ −π
T
|11〉〈11|1,2 ⊗ (â†

3â3 − α2), (D43)

i.e., ρ̂I (t) ≡ eiĤ ′tρ̂(t)e−iĤ ′t. In this frame, the annihilation
operators of the control modes â1 and â2 are unchanged
but the annihilation operator of the target mode â3 is
transformed as

â3 → eiĤ ′tâ3e−iĤ ′t = CZ1,2

(π
T

t
)
⊗ â3, (D44)

where CZ1,2(θ) ≡ exp[iθ |11〉〈11|1,2]. Lastly, by using the
shifted Fock basis for the target mode as well [i.e., â3 �
Ẑ3 ⊗ (b̂3 + α)], we find the following equation of motion
for ρ̂I (t):

dρ̂I (t)
dt

= κ2

[
D[Î1,2,3 ⊗ (b̂2

1 + 2αb̂1)]

+D[Î1,2,3 ⊗ (b̂2
2 + 2αb̂2)]+D[L̂′3(t)]

]
ρ̂I (t)

+ κ1

[
D[Ẑ1 ⊗ (b̂1 + α)]+D[Ẑ2 ⊗ (b̂2 + α)]

+D[CZ1,2

(π
T

t
)

Ẑ3 ⊗ (b̂3 + α)]
]
ρ̂I (t)

− i[Ĥ − Ĥ ′, ρ̂I (t)]. (D45)

Here, L̂′3(t) ≡ eiĤ ′tL̂3(t)e−iĤ ′t is given by

L̂′3(t) = CZ1,2

(2π
T

t
)
⊗ (b̂2

3 + 2αb̂3)

− 1
4
(e2i πT t − 1)

[
Ẑ1Ẑ2 ⊗ b̂1b̂2 − α(Ẑ1 − Ẑ1Ẑ2)⊗ b̂1

− α(Ẑ2 − Ẑ1Ẑ2)⊗ b̂2

]
. (D46)

We neglect all the other terms than the first term in the
right-hand side because they are much smaller than the first
term. Also, we consider only the first excited states and set
b̂2

1 = b̂2
2 = b̂2

3 = 0.
In the full shifted Fock basis, Ĥ − Ĥ ′ is given by

Ĥ − Ĥ ′

= − π

8αT
(Ẑ1 − Ẑ1Ẑ2)⊗ (b̂1 + b̂†

1)[b̂
†
3b̂3 + α(b̂3 + b̂†

3)]

− π

8αT
(Ẑ2 − Ẑ1Ẑ2)⊗ (b̂2 + b̂†

2)[b̂
†
3b̂3 + α(b̂3 + b̂†

3)]

+ π

8α2T
Ẑ1Ẑ2 ⊗ (b̂1b̂†

2 + b̂†
1b̂2)[b̂

†
3b̂3 + α(b̂3 + b̂†

3)].

(D47)

As explained above, the third term acts trivially on the code
space and thus we focus on the first two terms. In partic-
ular, we consider only the dominant driving effects due to
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the first two terms and approximate Ĥ − Ĥ ′ as

Ĥ − Ĥ ′ � − π

8T
(Ẑ1 − Ẑ1Ẑ2)⊗ (b̂1b̂3 + b̂†

1b̂†
3)

− π

8T
(Ẑ2 − Ẑ1Ẑ2)⊗ (b̂2b̂3 + b̂†

2b̂†
3). (D48)

Putting everything together, we find the following master
equation:

dρ̂I (t)
dt

= 4κ2α
2
[
D[Î1,2,3 ⊗ b̂1]+D[Î1,2,3 ⊗ b̂2]

+D[CZ1,2

(2π
T

t
)
⊗ b̂3]

]
ρ̂I (t)

+ κ1α
2
[
D[Ẑ1 ⊗ Î ]+D[Ẑ2 ⊗ Î ]

+D[CZ1,2

(π
T

t
)

Ẑ3 ⊗ Î ]
]
ρ̂I (t)

+ i
[ π

8T
(Ẑ1 − Ẑ1Ẑ2)⊗ (b̂1b̂3 + b̂†

1b̂†
3)

+ π

8T
(Ẑ2 − Ẑ1Ẑ2)⊗ (b̂2b̂3 + b̂†

2b̂†
3), ρ̂I (t)

]
.

(D49)

The undesired terms of the compensating Hamiltonian in
Eq. (D48) make the system excited to the manifold associ-
ated with |101〉′ (|011〉′) via b̂†

1b̂†
3 (b̂†

2b̂†
3) and at the same

time cause an error Ẑ1 − Ẑ1Ẑ2 (Ẑ2 − Ẑ1Ẑ2) on the qubit
space at a rate (per time) g = π/(8T). These excited states
decay back to the code space via the engineered dissipa-
tion. For instance, |101〉′ decays back to the code space
through either |101〉′ → |001〉′ → |000〉′ or |101〉′ →
|100〉′ → |000〉′ with a total decay rate (per time) κ =
8κ2α

2. In both decay routes, the annihilation of the exci-
tation in the target mode (i.e., b̂3) is accompanied by an
additional error CZ1,2[(2π/T)t] on the control qubits. The
same is true for the other excited state |011〉′, which decays
back to the code space either via |011〉′ → |001〉′ → |000〉′
or |011〉′ → |010〉′ → |000〉′. Consequently, by using adi-
abatic elimination, we find that these driven-dissipative
processes induce two independent decay processes with
jump operators (Ẑ1 − Ẑ1Ẑ2)CZ1,2[(2π/T)t] and (Ẑ2 −
Ẑ1Ẑ2)CZ1,2[(2π/T)t] with an effective decay rate (per
time) 4g2/κ = π2/(128κ2α

2T2). Hence, the effective mas-
ter equation in the ground-state manifold is given by

dρ̂I ,g(t)
dt

= κ1α
2
{
D[Ẑ1]+D[Ẑ2]+D

[
CZ1,2

(π
T

t
)

Ẑ3

]}
ρ̂I ,g(t)

+ π2

128κ2α2T2

{
D
[
(Ẑ1 − Ẑ1Ẑ2)CZ1,2

(2π
T

t
)]

+D
[
(Ẑ2 − Ẑ1Ẑ2)CZ1,2

(2π
T

t
)]}

ρ̂I ,g(t), (D50)

where ρ̂I ,g(t) ≡ 〈000|′ρ̂I |000〉′ is the projected density
matrix (of size 23 × 23) to the ground-state manifold of the
three cat qubits.

To go back to the original frame [i.e., ρ̂(T) =
e−iĤ ′Tρ̂I (T)eiĤ ′T], note that e−iĤ ′T is given by

e−iĤ ′T = (Î1,2,3 − |11〉〈11|1,2)⊗ Î

+ |11〉〈11|1,2 ⊗ eiπ(â†
3â3−α2) (D51)

in the hybrid basis, and since eiπ â†â is given by X̂ ⊗ Î in
the shifted Fock basis, we have

e−iĤ ′T = [CZ1,2(−πα2) · TOF1,2→3]⊗ Î (D52)

in the full shifted Fock basis, where TOF1,2→3 is the
desired Toffoli gate. Thus, projecting e−iĤ ′T to the ground-
state manifold, we find ρ̂g(T) = CCX ′ρ̂I ,g(T)CCX ′†
where CCX ′ ≡ CZ1,2(−πα2) · TOF1,2→3. Therefore, we
can understand ρ̂g(T) as a state that results from applying
a unitary operation CCX ′ to the input state ρ̂g(0), which is
then corrupted by an error channel

NCCX ′(ρ̂) � ρ̂ +
∫ T

0
dt
(
κ1α

2
{
D[Ẑ1]

+D[Ẑ2]+D
[
CZ1,2

(π
T
(t+ T)

)
Ẑ3

]}

+ π2

128κ2α2T2

{
D
[
(Ẑ1 − Ẑ1Ẑ2)CZ1,2

(2π
T

t
)]

+D
[
(Ẑ2 − Ẑ1Ẑ2)CZ1,2

(2π
T

t
)]})

ρ̂. (D53)

Here, we used the fact that Ẑ3 is transformed via TOF1,2→3

into CZ1,2Ẑ3. Evaluating the integral explicitly and ignor-
ing off-diagonal Pauli errors, we find the following Z-error
rates (per gate) of the CCX ′ gate:

p̄Z1 = p̄Z2 = κ1α
2T + π2

128κ2α2T
,

p̄Z3 =
5
8
κ1α

2T, p̄Z1Z2 =
π2

128κ2α2T
,

p̄Z1Z3 = p̄Z2Z3 = p̄Z1Z2Z3 =
1
8
κ1α

2T.

(D54)

Hence, the optimal gate time that minimizes the total gate
infidelity is given by

T̄�CCX ′ =
π

8α2
√

2κ1κ2
, (D55)
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and at the optimal gate time, the Z-error rates (per gate) of
the CCX ′ gate are given by

p̄�Z1
= p̄�Z2

= 3.2p̄�Z3
= 2p̄�Z1Z2

= 16p̄Z1Z3 = 16p̄Z2Z3 = 16p̄Z1Z2Z3

= π

4

√
κ1

2κ2
= 0.555

√
κ1

κ2
. (D56)

Numerically, we find that the optimal Z-error rates (per
gate) are given by (see Table II)

p�Z1
= p�Z2

= 3.05p�Z3
= 1.81p�Z1Z2

= 14.9pZ1Z3 = 14.9pZ2Z3 = 14.9pZ1Z2Z3 = 0.58
√
κ1

κ2
,

(D57)

which agree well with the perturbative prediction in
Eq. (D56).

Similarly as in the case of the CNOT gate, we remark that
the implemented gate CCX ′ differs from the desired Tof-
foli gate TOF1,2→3 by a CZ rotation CZ1,2(−πα2). Thus,
unless the average excitation number α2 is given by an
even integer, one should apply CZ1,2(πα

2) to compensate
for the extra phase shift. Lastly, note that dephasing can
induce direct heating in each mode with a heating rate (per
time) κφα2 [see Eq. (D37)]. The excited states due to the
heating decay back to the code space via the engineered
dissipation. The engineered jump operators in the control
modes are static and thus the excitations in the control
modes decay back to the code space in a parity-preserving
way, i.e., 4κ2α

2D[Î1,2,3 ⊗ b̂1] and 4κ2α
2D[Î1,2,3 ⊗ b̂2]. On

the other hand, the engineered jump operator on the target
mode is time dependent and thus the relaxation of the exci-
tation in the target mode is accompanied by a CZ rotation
in the control qubits, i.e., 4κ2α

2D{CZ1,2[(2π/T)t]⊗ b̂1}.
Consequently, such a heating-relaxation process in the
target mode generates a new noise process

κφα
2D
[
CZ1,2

(2π
T

t
)]
ρ̂I ,g(t) (D58)

in addition to the noise processes described in the right-
hand side of Eq. (D50) and adds κφα2T/8 to pZ1 , pZ2 , and
pZ1Z2 , i.e.,

p̄Z1 = p̄Z2 = κ1α
2T + 1

8
κφα

2T + π2

128κ2α2T
,

p̄Z3 =
5
8
κ1α

2T, p̄Z1Z2 =
1
8
κφα

2T + π2

128κ2α2T
,

p̄Z1Z3 = p̄Z2Z3 = p̄Z1Z2Z3 =
1
8
κ1α

2T.

(D59)

Hence, even in the lossless case (i.e., κ1 = 0), the Tof-
foli gate has nonzero Z-error rates, which scale as p̄∗Z1

=

p̄∗Z2
= p̄∗Z1Z2

∝ √
κφ/κ2 at the optimal gate time. Lastly, in

the presence of nonzero thermal population nth, we simply
need to replace κ1 by κ1(1+ 2nth).

APPENDIX E: SIMULATIONS OF GATE ERROR
RATES

1. CNOT

We simulated the CNOT gate as described in Appendix
D 4 using the shifted Fock-basis approach on AWS EC2
instances. Our code is written in Python using the QuTiP
package. The results presented here took approximately
150 h to run on an AWS EC2 C5.18xlarge instance with
72 virtual CPUs. To compute the Pauli error rates for the
CNOT gate, we use two types of simulation. One set of
simulations is aimed at the Z-type Pauli error rates and
also determined the optimal gate time. These simulations
require only a small dimension in the shifted Fock basis.
The second type of simulation uses a much larger Hilbert-
space dimension to perform full tomography of the CNOT
gate at the optimal gate time for relatively small values of
the cat-code size α.

We consider four noise models: first pure phonon loss
at a number of different rates. We are most interested in
the range of loss (κ1/κ2) from 10−4 to 10−5. Next, we con-
sider phonon loss at rate κ1, phonon gain at a rate such
that the thermal occupation is given by nth = 1/100, and
dephasing noise at three different rates κφ = 1, 2.5, and 10
times κ1. This value of the thermal occupation number is
larger than what we expect in acoustic cavities. We chose
nth = 1/100 so that we could resolve the contribution of
phonon gain on the gate error rates. With nth = 1/100 the
gate error rates are enhanced by a factor of about 1.01
relative to the error rates with no phonon gain. Dephas-
ing noise is more significant; it increases the dominant
error rate, Z error on the control qubit and decreases the
optimal gate time. The CNOT error rates including differ-
ent values of dephasing are shown in Table VII. While
idling, the bosonic dephasing term κφD[â†â] in the mas-
ter equation does not induce any additional Z errors since
dephasing preserves the excitation number parity. Thus,
one might be tempted to conclude that dephasing affects
only non-Z-type error rates of the CNOT gate and leaves
the Z-error rates unchanged. However, surprisingly, we
numerically find that this is not the case. In particular,
as shown in Table VII, we observe that the optimal gate
time decreases noticeably and the total optimal Z-error rate
(per gate) of the CNOT gate increases as the dephasing rate
(per time) κφ increases. In Appendix D, we show that the
enhanced Z error rates of the CNOT gate due to dephasing
are attributed to the fact that the target stabilization oper-
ator L̂2(t) is not static and instead rotates conditioned on
the state of the control mode. More specifically, dephas-
ing in each mode causes direct population transfer from
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TABLE VII. Table showing the CNOT optimal gate time and error rates for nonzero thermal gain (nth) and dephasing (κφ) along
with loss (κ1). In each case phonon gain is with nth = 1/100, while the rate of dephasing noise relative to loss varies across the three
columns.

CNOT κφ = κ1, κφ = 2.5κ1, κφ = 10κ1,
nth = 1/100 nth = 1/100 nth = 1/100

Optimal gate time 0.27|α|−2(κ1κ2)
− 1

2 0.24|α|−2(κ1κ2)
− 1

2 0.16|α|−2(κ1κ2)
− 1

2

Z1 1.10
√
κ1/κ2 1.33

√
κ1/κ2 2.14

√
κ1/κ2

Z2 ≈ Z1Z2 0.14
√
κ1/κ2 0.12

√
κ1/κ2 0.079

√
κ1/κ2

X1 ≈ X2 ≈ X1X2 1.07 exp(−2|α|2)√κ1/κ2 1.28 exp(−2|α|2)√κ1/κ2 2.01 exp(−2|α|2)√κ1/κ2
≈ Y1 ≈ Y1X2 ≈ Z1X2
Y2 ≈ Y1Y2 ≈ X1Y2 0.29 exp(−2|α|2) (κ1/κ2) 0.30 exp(−2|α|2) (κ1/κ2) 0.28 exp(−2|α|2) (κ1/κ2)

≈ X1Z2 ≈ Y1Z2 ≈ Z1Y2

the ground-state manifold of a cat qubit to its first-excited-
state manifold. While such a heating itself does not cause
a phase-flip error since dephasing preserves the excitation
number parity, the rotating target stabilization operator L̂2
does cause a Z error on the control qubit when it brings the
excited states of the target mode back to the ground-state
manifold.

The Z-error rates for the CNOT gate are well captured
by the shifted Fock basis with small dimension, indicating
that the Z-error rates are dominated by dephasing resulting
from the excitation of the cat qubit to the lowest energy
excited states. The results plotted in Figs. 28 to 30 were
obtained with d = 7, or a total Hilbert-space dimension
of 14. The simulations converge rapidly as the dimen-
sion increases. The relative difference in the error rates
shown in Fig. 28 between the simulations with d = 6 and
d = 7 is about 10−6, and this gives a bound on how closely
these simulations reflect the true error rates in an infinite-
dimensional cavity. We call the control cavity 1 and the
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r
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CNOT Z-error rates
Z1

Z2 = Z1Z2

FIG. 28. Log-log plot of Pauli Z-type error rates for the CNOT
gate at optimal gate time with mean phonon number n = 8 in the
presence of pure loss at rate κ1. The fits are performed over the
range κ1/κ2 from 10−4 to 10−5. The error rates Z2 and Z1Z2 differ
by no more than 10−5.

target 2. As described in Appendix D 4, the nonadiabatic
error contribution to the Z1-error rate of the CNOT gate
scales with 1/T, where T is the gate time, while the error
due to single-phonon loss scales with T. As a result of the
trade-off between nonadiabatic error, the optimal gate time
scales like 1/

√
T. As shown in Fig. 29, around the optimal

gate time the Z1-error rate is decreasing with T, whereas
the Z2- and Z1Z2-error rates are increasing. This is because
the nonadiabatic errors affect only the control cavity, i.e.,
Z1. We find an optimal gate time that differs only slightly
from the prediction in Appendix D 4. In Fig. 28 we find
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FIG. 29. Plot of Pauli Z-type error rates for the CNOT gate with
mean phonon number n = 10 at various values of the gate time.
The noise model is at rate κ1 = 10−5κ2, dephasing at a rate κφ =
κ1, and gain with nth = 1/100. The gate time is plotted relative
to the optimal gate time for these parameters. The optimal gate
time minimizes the total error. The dotted curves are a linear fit
for the Z2-error rate and a sum of a linear term and a 1/T term
for the Z1 and total error rates, representing the contributions of
loss and nonadiabatic errors.
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FIG. 30. Plot of the fit parameters of the square root fit as
shown in Fig. 28 for the Pauli Z-type error rates of the CNOT
gate for different values of mean phonon number n. The noise
model in this figure is pure phonon loss.

the expected square root scaling of the Z-error rates with
loss rate over a wide range of loss rates. We do observe
that the points corresponding to larger values of loss near
(κ1/κ2) = 10−3 tend to lie below the square root best-fit
curve. For this reason, we perform our fits over the range
of loss from 10−4 to 10−5, which is our range of interest
for our error correction simulations. This leads to slightly
larger error rate fit parameters than if we fit over the full
range of loss. Figure 30 shows the dependence of the Z-
error rate coefficients on the mean phonon number of the
cat n = α2. These coefficients come from fits of each error
rate to c

√
κ1/κ2 for each value of n. There is variation over

the range n = 2, . . . 10, but for n = 8 and n = 10 the varia-
tion is quite small. The values quoted in Table II represent
this large-n value.

Once the optimal gate time is found using the Z-error
rate simulation, we performed tomography for the CNOT
gate at several values of loss, dephasing, and n to compute
the full noise channel. The noise channel for n = 4, nth =
1/100, and κφ = κ1 = 10−5 is illustrated in Fig. 31. The
noise channel is largely incoherent with small off-diagonal
elements. The diamond distance from identity is equal to
about 2.5 times the average infidelity of the channel across
all values of α, loss, and dephasing that we simulated. The
Hilbert-Schmidt norm of the off-diagonal elements of the
super operator in the Pauli basis is 10−2–10−3 times the
norm of the diagonal elements. Neglecting the off-diagonal
components, we are able to read off the full set of 15
two-qubit Pauli error rates. For the values of n = α2 that
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|Id − CNOT noise super operator |
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FIG. 31. Plot of identity minus the super operator for the CNOT
noise channel in the Pauli basis. The CNOT parameters are n = 4,
κ1/κ2 = 10−5, nth = 1/100, and κφ = κ1. The diagonal compo-
nents of the matrix are the Pauli infidelities, in other words, one
minus the probabilities that the CNOT noise channel maps a given
Pauli operator back to itself. The off-diagonal components repre-
sent the coherent part of the noise channel. These terms are orders
of magnitude smaller than the dominant noise terms. The domi-
nant Z1-error rate manifests itself as the relatively larger diagonal
terms that are sensitive to a Z1 error, i.e., Pauli operators with X
or Y on the first qubit.

are not even integers, we must cancel the extra Z1 rotation
by angle πα2 that comes with our implementation of the
CNOT gate. In practice this would entail additional error,
but we do not include the effect of the noisy Z rotation
because we are interested in the error intrinsic to the CNOT
gate and we expect to operate with even n as much as
possible. Besides the dominant Z-error rates, each of the
other Pauli error rates is exponentially small in α. How-
ever, we observe that these exponentially small error rates
are divided into two classes—six of them scale like the
square root of κ1/κ2 just like the Z-error rates and the
remaining six error rates scale linearly with κ1/κ2. The
error rates with square root scaling are plotted for one
choice of parameters in Fig. 32. The error rates scaling
linearly are much smaller and are shown in Fig. 33. A
large dimension is required to accurately recover some of
the Pauli error rates. As shown in Fig. 34 when n = 3
the Pauli errors that involve X or Y acting on the con-
trol qubit require a much larger value of d than the other
error rates. The relative difference between the error rates
with d = 8 and d = 9 in this case was as much as 15%.
We used a dimension of d = 9, 10, and 11 for n = 3, 4,
and 4.5, respectively, and the total Hilbert-space dimen-
sion is 2d in the shifted Fock basis. We did not go to larger
values of n because the required Hilbert-space dimension
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FIG. 32. Log-log plot of the Pauli error rates for the CNOT gate
with parameters, n = 4, κ1 = κφ , and nth = 1/100. Each of these
error rates scale like

√
κ1/κ2.

required an unreasonably long time to simulate. Across all
values of loss, dephasing, and mean phonon number, the
error rates for the largest dimension d that we used and
the error rates at d − 1 differed by several percent. This
provides a sense of the difference we expect between the
largest dimension we used and the d →∞ limit. Because
of this uncertainty of perhaps several percent in certain of
the Pauli error rates and for simplicity, we have chosen to
report a single fit for each of the two groups of exponen-
tially small error rates. These include both the small error
rates that scale with the square root of loss in Fig. 32 and
those that scale linearly in Fig. 33. This is why only a single
best-fit curve appears over the clusters of small error rates
in those plots. We have taken the average within each of
the two classes of exponentially small error rates and fit the
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FIG. 33. Log-log plot of the smallest error rates for the CNOT
gate with parameters, n = 4, κ1 = κφ , and nth = 1/100. These
error rates are proportional to κ1/κ2 rather than the square root
scaling of the other error rates in Fig. 32.
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FIG. 34. Plot of the Pauli error rates at a fixed value of the
noise parameters and different values of the shifted Fock-basis
dimension d. Each error rate is scaled by its value at largest value
of dimension d = 9 to show the convergence as d increases. The
parameters are set to n = 3, κ1 = 10−5, κφ = 0, and nth = 0. One
set of Pauli error rates converges rapidly as d increases. This
includes all Pauli errors where Z or Id act on the control qubit.
Another set of Pauli errors with X or Y acting on the control
qubit require much higher Hilbert-space dimension to capture
accurately. This implies that these error rates include significant
contributions from highly excited states.

square root or linear curve to those averages. Correspond-
ingly, in our simulations of error correction we assume
that pX1 = pX2 = pX1X2 = pY1 = pY1X2 = pZ1X2 and pY1 =
pX1Y2 = pX1Z2 = pY1Y2 = pY1Z2 = pZ1Y2 , and the error prob-
abilities are given by the average fits. Both classes of small
error rates exhibit the expected exponential scaling with
the mean phonon number n of the cat code as shown in
Fig. 35.

2. Toffoli

We simulate the Toffoli gate using the shifted Fock basis
as we did for the CNOT gate. In this case we solve the mas-
ter equation for three cavities. This leads to a much larger
total Hilbert-space dimension, and for this reason we are
unable to use the large values of d necessary to resolve all
63 Pauli error probabilities. Instead we focus on the domi-
nant errors, which are the Z-type Pauli errors. These errors
do not require a large value of d to calculate with good pre-
cision. We used d = 4 for each of the three cavities in these
Toffoli simulations, which required a total of about 170 h
running on an AWS EC2 c5.18xlarge instance with 72 vir-
tual CPUs. We simulated the noise channel on a complete
set of X eigenstates and averaged over the initial states. We
simulated a range of gate times, and the optimal gate time
is the one that minimizes the total error rate. For loss with-
out gain or dephasing, we found that this gate time matched
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FIG. 35. Log-linear plot showing exponential decay of non-
Z-error rates as mean phonon number n = |α|2 increases. Four
values of dephasing are plotted, κφ = 0, 1, 2.5, and 10 times
κ1. The asterisk that appears for the nonzero values of dephas-
ing represents that these points include phonon gain at a rate
nth = 1/100. No gain is present in the κφ = 0 points. For each
set of noise parameters, the upper set of points represents the
Pauli error rates from Fig. 32 that scale with

√
κ1/κ2 and expo-

nentially with n. The lower set of points are the Pauli error rates
from Fig. 32 that scale linearly with κ1/κ2 and exponentially with
n. The parameters of the exponential fits can be found in Table II.

the optimal gate time for the CNOT gate. The Z-error rates
in this case are summarized in Table II.

With dephasing noise added we found a small differ-
ence in optimal gate time. These error rates are found in
Table VIII. As in the case of the CNOT gate, dephasing

noise increases the Z-error rates and shortens the optimal
gate time. The dominant Z error on the control qubits 1
and 2 increases from 0.58

√
κ1/κ2 to 0.91

√
κ1/κ2 as the

dephasing rate increases from 0 to 10κ1. Dephasing noise
primarily affects the Z1-, Z2-, and Z1Z2-error rates. Many of
the other Pauli Z-error rates decrease because of the reduc-
tion in optimal gate time. Also, with dephasing noise in
addition to loss, the optimal gate time for the Toffoli gate
differs from the optimal gate time for the CNOT gate. With
large dephasing κφ = 10κ1 the optimal gate time for the
Toffoli gate is about 1.18 times the optimal gate time for
CNOT. For simplicity, we have chosen to always operate
the Toffoli gate using a gate time equal to the CNOT optimal
gate time. This has a small effect on the total fidelity of the
Toffoli gate and on the relative size of the different Pauli Z-
error probabilities. We chose to use the optimal gate times
for the CNOT gate throughout the paper. The Toffoli error
rates at the true optimal gate time and at the CNOT opti-
mal gate time are shown in Table VIII. The difference in
the total fidelity of the Toffoli gate is small, however the
relative size of individual Pauli Z-error rates does differ by
several percent when κφ = 10κ1.

Figure 36 shows the seven Z-type error probabilities for
the Toffoli gate at optimal gate time as a function of the
loss rate with n = 8, κφ = κ1, and nth = 1/100. We see
the expected square root scaling with κ1/κ2 for each of the
error rates and perform best fits. We simulate Toffoli with
n = 4, 6, 8, and 10 and for four sets of noise parameters:
only phonon loss and then phonon loss, gain, and dephas-
ing at three different rates, κφ = 1, 2.5, and 10 times κ1.
Similar to the CNOT example in Fig. 30, the parameters of
the square root fits depend on n but reach a plateau around

TABLE VIII. Table comparing Toffoli Z Pauli error rates, on the one hand, at the optimal gate time and, on the other hand, using
a gate time equal to the optimal gate time for the CNOT gate. The error rates from our numerical simulations were fit to

√
κ1/κ2 to

produce the coefficients that appear in the table. Three different values of dephasing are included. The gate times for CNOT and Toffoli
match in the case of no dephasing, and the difference between the two increases as the dephasing rate κφ increases. Qubits 1 and 2 are
the controls, and qubit 3 is the target.

Toffoli at optimal gate times κφ = κ1 κφ = 2.5κ1 κφ = 10κ1
nth = 1/100 nth = 1/100 nth = 1/100

Gate time 0.28|α|−2(κ1κ2)
− 1

2 0.25|α|−2(κ1κ2)
− 1

2 0.18|α|−2(κ1κ2)
− 1

2

Z1 = Z2 0.62
√
κ1/κ2 0.68

√
κ1/κ2 0.90

√
κ1/κ2

Z3 0.18
√
κ1/κ2 0.16

√
κ1/κ2 0.12

√
κ1/κ2

Z1Z2 0.40
√
κ1/κ2 0.48

√
κ1/κ2 0.79

√
κ1/κ2

Z1Z3 = Z2Z3 0.036
√
κ1/κ2 0.033

√
κ1/κ2 0.024

√
κ1/κ2

Z1Z2Z3 0.035
√
κ1/κ2 0.032

√
κ1/κ2 0.024

√
κ1/κ2

Toffoli at CNOT optimal times
Gate time 0.27|α|−2(κ1κ2)

− 1
2 0.24|α|−2(κ1κ2)

− 1
2 0.16|α|−2(κ1κ2)

− 1
2

Z1 = Z2 0.62
√
κ1/κ2 0.68

√
κ1/κ2 0.91

√
κ1/κ2

Z3 0.17
√
κ1/κ2 0.15

√
κ1/κ2 0.098

√
κ1/κ2

Z1Z2 0.41
√
κ1/κ2 0.50

√
κ1/κ2 0.84

√
κ1/κ2

Z1Z3 = Z2Z3 0.035
√
κ1/κ2 0.031

√
κ1/κ2 0.020

√
κ1/κ2

Z1Z2Z3 0.034
√
κ1/κ2 0.030

√
κ1/κ2 0.020

√
κ1/κ2
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FIG. 36. Log-log plot of the various Z-type error rates for
the Toffoli gate at optimal gate time with parameters n = 8,
κφ = κ1, and nth = 1/100. These error rates were obtained in
a shifted Fock-basis simulation using d = 4 for a total Hilbert-
space dimension of 8 for each of the three cavities involved in the
Toffoli gate. Qubits 1 and 2 are the controls and 3 is the target.

n = 8 or 10. For our error-correction simulations we are
most interested in values of n in this regime. To produce
the numbers in Table VIII we average the values for n = 8
and n = 10. The relative difference between these two is
only order 10−2 or less.

3. Z and CZ

To implement our CNOT and Toffoli gates with values of
α such that n = α2 is not an even integer, we need to apply
an additional Z or CZ rotations on the control cavity or
cavities. These rotations can be implemented as described
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FIG. 37. Plot of the Z-error rates for the Z and CZ gates as a
function of loss for n = 10. The noise model for this plot is pure
phonon loss with no gain. Gain will have a small effect of these
error rates, while dephasing noise will have only a negligible
effect. The dotted curves are best fits in the form c ∗ √κ1/κ2.
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FIG. 38. Plot of the Z-error rate parameters from best fits like
the ones in Fig. 37 as a function of mean phonon number n. The
error rates are the product of these fit parameters and the loss
rate

√
κ1/κ2. The dotted best-fit curves in this plot are fits to c/α

where α = √n. For small values of α the scaling differs some-
what from the 1/α scaling in the large α limit. For this reason the
fits were performed over the range n = 6 to 10.

in Sec. III. The dominant error rates are the Z-error rates,
and at the optimal gate time the Z-error rates scale with√
κ1/κ2. Unlike the case of CNOT or Toffoli, the error rates

decrease with α for the Z and CZ rotations. We simulate
the Z-error rates for the Z and CZ gates, in other words
Z and CZ rotations by angle π . Once again we use the
shifted Fock basis as described in Appendix C to simulate
the Z-error rates using a small Hilbert-space dimension.
Figure 37 shows the Z-error rates for both the Z and CZ
gates when n = 10 and the noise model is phonon loss. We
fit the error rates to

√
κ1/κ2 for each value of n and for

each noise model. Then Fig. 38 shows the scaling of the
coefficients of the

√
κ1/κ2 fits as a function of n when the

noise model is phonon loss. We fit these curves to 1/α.
The results of the fits that give the Z-error rates as func-
tions of α and κ1/κ2 are summarized in Table IX. We also
simulated the Z and CZ gates subject to dephasing noise
and confirmed that dephasing noise does not contribute

TABLE IX. Table of Z gate and CZ gate optimal times and Z-
error rates from numerical simulations. Dephasing noise has a
negligible effect on the Z-error rates.

Z gate Loss, no gain Loss and gain nth = 1/100

Opt. time 0.61(α3√κ1κ2)
−1 0.61(α3√κ1κ2)

−1

Z 1.63
√
κ1/κ2/α 1.64

√
κ1/κ2/α

CZ gate
Opt. time 0.56(α3√κ1κ2)

−1 0.56(α3√κ1κ2)
−1

Z1 = Z2 0.83
√
κ1/κ2/α 0.84

√
κ1/κ2/α

Z1Z2 0.56
√
κ1/κ2/α 0.56

√
κ1/κ2/α
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significantly to the Z-error rates. Including phonon gain
with nth = 1/100 has a small effect as shown in Table IX.

APPENDIX F: PHYSICAL IMPLEMENTATION OF
CAT-QUBIT GATES

Here, we discuss physical realization of the cat-qubit
gates. Note that engineering static two-phonon dissipations
in a multiplexed setting has been extensively discussed in
the previous section. Also implementation of the rotating
dissipators for the CNOT and Toffoli gates are discussed in
detail in Ref. [14]. We thus focus on engineering Hamilto-
nian interactions needed to implement the cat-qubit gates.
In particular, we discuss realization of the linear drive
in ĤZ , beam-splitter coupling in ĤCZ , selective frequency
shift in ĤX , cubic optomechanical coupling in ĤCNOT, and
the quartic interaction in ĤTOF in the stated order.

Recall the Hamiltonian of the system consisting of
multiple phononic modes âk coupled to a shared ATS
mode b̂:

Ĥ =
N∑

k=1

ωkâ†
k âk + ωbb̂†b̂− 2EJ εp(t) sin

( N∑

k=1

φ̂k + φ̂b

)
.

(F1)

Here, φ̂k ≡ ϕk(âk + â†
k) and φ̂b ≡ ϕb(b̂+ b̂†). Also, ϕk and

ϕb quantify zero-point fluctuations of the modes âk and
b̂. To simplify the discussion, we neglect small frequency
shifts due to the flux pump εp(t) for the moment and
assume that the frequency of a mode is given by its bare
frequency (in practice, however, the frequency shifts need
to be taken into account; see below for the frequency shift
due to pump). Then, in the rotating frame where every
mode rotates with its own frequency, we have

Ĥrot = −2EJ εp(t) sin
( N∑

k=1

ϕkâke−iωkt + h.c.

+ ϕbb̂e−iωbt + h.c.
)

. (F2)

Linear drive on a phononic mode, say âk, can be read-
ily realized by using a flux pump εp(t) = εp cos(ωp t) and
choosing the pump frequency ωp to be the frequency of the
mode we want to drive, that is, ωp = ωk. Then, by taking
only the leading-order linear term in the sine potential [i.e.,
sin(x̂) � x̂], we get the desired linear drive

Ĥrot = −EJ εpϕk(âk + â†
k)+ Ĥ ′, (F3)

i.e., εZ = −EJ εpϕk, where Ĥ ′ contains fast-oscillating
terms such as −EJ εp(ϕlâle−i(ωl−ωk)t + h.c.) with l �= k and
−EJ εp(ϕbb̂e−i(ωb−ωk)t + h.c.) as well as other terms that
rotate even faster, e.g., −EJ εpϕk(âke−2iωkt + h.c.). Since

the frequency differences between different modes are
on the order of 100 MHz but |εZ |/(2π) is typically not
required to be larger than 1 MHz, the fast-oscillating
terms can be ignored by using a RWA. For instance, the
strength of the linear drive needed for the compensating
Hamiltonian for the CNOT gate ĤCNOT is given by

πα

4T�CNOT
= πα3

1.24
√
κ1κ2

=

⎧
⎪⎨
⎪⎩

2π × 2.89 MHz κ1/κ2 = 10−3

2π × 912 kHz κ1/κ2 = 10−4

2π × 289 kHz κ1/κ2 = 10−5
(F4)

at the optimal CNOT gate time T�CNOT = 0.31/(
√
κ1κ2α

2)

assuming α2 = 8 and κ2 = 107s−1. Note that the sublead-
ing cubic term in the sine potential is also neglected here.
These unwanted cubic terms are smaller than the desired
linear term by a factor of ϕ2

k . We remark that to avoid
driving unwanted higher-order terms, one may alterna-
tively drive the phononic mode directly, at the expense of
increased hardware complexity, instead of using the pump
εp(t) at the ATS node.

Let us now consider a beam-splitter interaction between
two phononic modes, e.g., εZZ(â

†
1â2 + â1â†

2), which is
needed for implementing a CZ rotation between two cat
qubits. It is also used to realize the compensating Hamil-
tonian for the Toffoli gate ĤTOF and to realize the SWAP
operation for the X readout of a cat qubit. Note that the
beam-splitter interaction is quadratic and even. Hence, it
cannot be directly driven with a single pump tone since
the sine potential has an odd parity. We thus jointly apply
one pump tone and another drive tone to off-resonantly
drive two odd terms and choose the detunings such that
these two odd terms realize a resonant beam-splitter inter-
action when they are combined together. Since average
Hamiltonian theory is useful for the analysis of the above
scheme as well as many other schemes we propose below,
we briefly state a key result of average Hamiltonian theory
[56,109]: given a time-dependent Hamiltonian

Ĥ = Ĥ0 +
∑

n

[
V̂ne−i�nt + h.c.

]
(F5)

with fast-oscillating time-dependent terms, one gets the
following effective Hamiltonian by averaging out fast-
oscillating terms:

Ĥeff = Ĥ0 + 1
2

∑

m,n

( 1
�m

+ 1
�n

)
[V̂†

m, V̂n]ei(�m−�n)t. (F6)

To realize the beam-splitter interaction â†
1â2 + h.c., we

drive the two terms â†
1â2b̂† and b̂ off resonantly. In par-

ticular, we use a pump εp(t) = εp cos(ωp t) with a pump
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frequency ωp = ω2 − ω1 − ωb −� to off-resonantly drive
the term â†

1â2b̂† and directly drive the b̂ mode via

Ĥd = εd(b̂†e−iωdt + h.c.) (F7)

with a drive frequency ωd = ωb +� to off-resonantly
drive the linear term b̂†. Note that the size of the detun-
ing |�| must not be larger than half the filter bandwidth
2J so that the drive is not filtered out. Then, by tak-
ing up to the third-order terms in the sine potential [i.e.,
sin(x̂) � x̂ − x̂3/6] in Eq. (F2), we find

Ĥrot = EJ εpϕ1ϕ2ϕbâ†
1â2b̂†e−i�t + h.c.

+ εdb̂†e−i�t + h.c.+ Ĥ ′, (F8)

where Ĥ ′ contains fast-oscillating terms, which we ignore
for the moment. Let χ1 ≡ EJ εp ,1ϕ1ϕ2ϕb and χ2 ≡ εd.
Then, neglecting Ĥ ′, the average Hamiltonian theory
yields

Ĥeff = 1
�

[(χ1â1â†
2 + χ2)b̂, (χ1â†

1â2 + χ2)b̂†]

= 1
�

[
(χ1â1â†

2 + χ2)(χ1â†
1â2 + χ2)

+ [(χ1â1â†
2 + χ2), (χ1â†

1â2 + χ2)]b̂†b̂
]

b̂†b̂
1−−−→ 1
�
(χ1â1â†

2 + χ2)(χ1â†
1â2 + χ2)

= χ1χ2

�
(â†

1â2 + â1â†
2)+

χ2
1

�
(â†

1â1 + 1)â†
2â2. (F9)

Note that we assumed that the population in the b̂ mode is
negligible (i.e., b̂†b̂ 
 1) and dropped the constant energy
shift χ2

2 /� in the last line. The first term in the last line is
the desired beam-splitter interaction εZZ(â

†
1â2 + â1â†

2)with
a coupling strength

εZZ = χ1χ2

�
= EJ εp ,1ϕ1ϕ2ϕbβ, (F10)

where β ≡ χ2/� = εd/� can be understood as an effec-
tive displacement in the b̂ mode. For the population of
the b̂ mode to be negligible, we need |β| 
 1. Assum-
ing β = 0.1 and noting that EJ εp ,1ϕ1ϕ2ϕb ∼ g2 � 2π ×
5 MHz, we find that εZZ ∼ 2π × 500 kHz is achievable.
The strength of the beam-splitter interaction in the com-
pensating Hamiltonian for the Toffoli gate ĤTOF is given

by [see Eq. (F16)]

π

8T�TOF
= πα2

2.48
√
κ1κ2

=

⎧
⎪⎨
⎪⎩

2π × 1.02 MHz κ1/κ2 = 10−3

2π × 323 kHz κ1/κ2 = 10−4

2π × 102 kHz κ1/κ2 = 10−5
(F11)

at the optimal Toffoli gate time T�TOF = 0.31/(
√
κ1κ2α

2)

assuming α2 = 8 and κ2 = 107s−1. We also remark that
the second term in the last line of Eq. (F9) gives rise to
undesired cross-Kerr interaction and energy shift of the
â2 mode. The unwanted cross-Kerr interaction â†

1â1â†
2â2

can in principle be cancelled by off-resonantly driving the
term â1â2b̂† with a detuning �′ different from �. The fre-
quency shift of the mode â2 [i.e., (χ2

1 /�)â
†
2â2] can either

be incorporated into the frequency matching condition or
physically cancelled by off-resonantly driving the term
â2b̂† (see below for more details).

Note that we have so far ignored fast-oscillating
terms [i.e., Ĥ ′ in Eq. (F8)]. These fast-oscillating terms
include unwanted cubic terms, e.g., EJ εp ,1ϕ2ϕ3ϕbâ†

2â3b̂†

ei(2ω2−ω1−ω3−�)t + h.c., which would give rise to an
unwanted beam-splitter interaction â†

2â3 + h.c. If the fre-
quencies of the modes â1, â2, and â3 are equally spaced,
2ω2 − ω1 − ω3 vanishes and the unwanted term â†

2â3b̂†

interferes with the desired term â†
1â2b̂† as they rotate with

the same frequency. However, in practice, equal frequency
spacing is avoided in the optimization of the frequencies
of the phononic modes. Hence, unwanted beam-splitter
interactions are far detuned from the desired beam-splitter
interaction. We remark that remaining fast-rotating terms
in Ĥ ′ (different from the above beam-splitter type) are of
less concern as their rotating frequencies are farther away
from the frequencies of the desired terms.

Let us now move on to the selective frequency shift,
which is needed, e.g., for removing nonadiabatic errors
of the X gate if we were to implement the X gate phys-
ically [see Eq. (21)]. In practice, the 180◦ rotation eiπ â†â

(or â →−â) for the X gate can be performed via software
by adapting the phases of subsequent drives. However, we
still discuss the selective frequency shift because it is con-
ceptually useful for understanding our proposal for imple-
menting the compensating Hamiltonians for the CNOT and
Toffoli gates.

We first consider frequency shifts due to a pump εp(t) =
εp cos(ωp t). Note that the terms â†

k âkb̂† and b̂† in the sine
potential are off-resonantly driven by the pump with the
same detuning � = ωp − ωb and with coupling strengths
EJ εpϕ

2
kϕb and −EJ εpϕb, respectively. Hence, through the

average Hamiltonian theory, we find that the frequency of
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the âk mode is shifted by

δωk = −
E2

J ε
2
pϕ

2
kϕ

2
b

ωp − ωb
. (F12)

Similarly as in the case of beam-splitter interaction, the fre-
quency shift is accompanied by undesirable quartic terms
such as self-Kerr (â†

k)
2â2

k and cross-Kerr â†
k âkâ†

l âl nonlin-
earities. While we have ignored the frequency shifts due to
pump in the discussions so far, they need to be carefully
taken into account in practice.

Note that the size of frequency shift can be modulated by
changing the pump amplitude εp (i.e., |δωk| ∝ ε2

p ). How-
ever, we cannot engineer the frequency shifts due to â†

k âkb̂†

and b̂† in a mode-selective manner since â†
l âlb̂† with l �= k

rotates with the same frequency as those of â†
k âkb̂† and b̂†.

In particular, since δωk/δωl = ϕ2
k/ϕ

2
l and the zero-point

fluctuations of phononic modes are almost identical, the
frequency shifts of the phononic modes δωk are approxi-
mately independent of the mode index k. Thus, we cannot
rely on frequency shifts due to â†

k âkb̂† and b̂† to exclusively
shift the frequency of a specific mode âk.

Selective frequency shift the mode âk can neverthe-
less be realized by off-resonantly driving the term âkb̂†: if
we are given with a Hamiltonian Ĥ = χ âkb̂†e−i�t + h.c.,
the average Hamiltonian theory yields [assuming b̂†b̂ 
 1
similarly as in Eq. (F9)]

Ĥeff = χ2

�
â†

k âk, (F13)

i.e., frequency shift of the mode âk. In practice, the pumps
used to off-resonantly drive the term âkb̂† may also drive
âlb̂† with l �= k, which will lead to the frequency shift of
another mode âl. However, âlb̂† is detuned from âkb̂† by
ωl − ωk so the relevant detuning �′ of the unwanted term
âlb̂† is given by �′ = �+ ωl − ωk. Hence, the unwanted
frequency shift in another mode âl can in principle be
suppressed by ensuring |�′| � |�|.

Building up on the intuitions gained from the discussion
of selective frequency shift, we now discuss implementa-
tion of the compensating Hamiltonian for the CNOT gate
in Eq. (25). Without loss of generality, we focus on the
CNOT gate between the modes â1 (control) and â2 (target).
Note that ĤCNOT consists of an optomechanical coupling
[π/(4αT)](â1 + â†

1)â
†
2â2 between two phononic modes,

a linear drive on the control mode −[πα/(4T)](â1 +
â†

1), and a selective frequency shift of the target mode
−[π/(2T)]â†

2â2. Similarly as the 180◦ rotation for the X
gate needs not be implemented physically, the selective
frequency shift of the target mode can be taken care of via
software. That is, instead of using ĤCNOT in Eq. (25), one

may use a different compensating Hamiltonian

Ĥ ′
CNOT =

π

4αT
(â1 + â†

1)(â
†
2â2 − α2) (F14)

as well as an appropriately modified rotating jump operator
L̂′2(t) such that the cat states |0〉 � |α〉 and |1〉 � | − α〉 in
the target mode are mapped to | − iα〉 and |iα〉 if the con-
trol mode is in the state |0〉 � |α〉, and to |iα〉 and | − iα〉 if
the control mode is in the trigger state |1〉 � | − α〉. Hence,
one may simply redefine the cat-code computational basis
states of the target mode as |0〉 ← | − iα〉 and |1〉 ← |iα〉
and adjust the phases of subsequent drives accordingly.

Note that the optomechanical coupling and the linear
drive on the control mode still need to be implemented
physically. Implementation of the linear drive is already
discussed above. To realize the optomechanical coupling,
one might be tempted to directly drive the cubic term
â1â†

2â2 + h.c. in the sine potential via a pump εp(t) =
εp cos(ωp t). However, the direct driving scheme is not suit-
able for a couple of reasons: since the term â1â†

2â2 rotates
with frequency ω1, the required pump frequency is given
by ωp = ω1, which is the same pump frequency reserved to
engineer a linear drive on the â1 mode. Moreover, the term
â1â†

2â2 rotates at the same frequency as those of undesired
cubic terms such as â1â†

3â3, â1â†
4â4, and also â†

1â2
1. Hence,

even if the linear drive is realized via a direct driving of
the phononic mode, one still cannot selectively drive the
desired optomechanical coupling by using the pump fre-
quency ωp = ω1 due to the frequency collision with other
unwanted cubic terms. This issue is analogous to the one
we had earlier that the selective frequency shift of the â1

mode is not possible via the synthesis of two terms â†
1â1b̂†

and b̂†.
To circumvent the above frequency-collision issue, we

propose to realize the optomechanical coupling (â1 +
â†

1)â
†
2â2 by off-resonantly driving the term (â1 + λ)â2b̂†.

That is, given a Hamiltonian Ĥ = χ(â1 + λ)â2b̂†e−i�t +
h.c., we get the following effective Hamiltonian through
the time averaging

Ĥeff = χ2λ

�

(
â1 + â†

1 + λ+
1
λ

â†
1â1

)
â†

2â2, (F15)

where we again assumed that the population of the b̂ mode
is negligible (i.e., b̂†b̂ 
 1). In particular, by choosing
λ = −2α, we can realize the optomechanical coupling as
well as the selective frequency shift of the â2 mode, i.e.,
Ĥeff ∝ (â1 + â†

1 − 2α)â†
2â2 up to an undesired cross-Kerr

term −â†
1â1â†

2â2/(2α) (which can in principle be can-
celled by off-resonantly driving the term â1â2b̂†). Hence,
if we realize ĤCNOT this way, we need not rely on soft-
ware to keep track of the phase of the target mode as the
phase shift is physically realized. We also remark that the

010329-70



BUILDING A FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 3, 010329 (2022)

term (â1 + λ)â2b̂† is detuned from other undesired terms
such as (â1 + λ)âkb̂† with k ≥ 3 by a frequency difference
ω2 − ωk. Thus, the unwanted optomechanical coupling
(â1 + â†

1)â
†
k âk can be suppressed by a suitable choice of the

detuning � similarly as in the case of selective frequency
shift.

Note that while the cubic term â1â2b̂† in (â1 + λ)â2b̂†

can be realized by using the sine potential, the other
quadratic term â2b̂† cannot be directly realized from the
sine potential, which has an odd parity. The quadratic inter-
action â2b̂† can in principle be realized by synthesizing
(using the average Hamiltonian theory) two odd terms
â2(b̂†)2 and b̂†. To put everything together and get the
desired optomechanical coupling, however, the results of
average Hamiltonian theory need to be concatenated. In
other words, to analyze the full scheme for the desired
optomechanical coupling, a higher-order average Hamil-
tonian theory is needed. We leave it as a future work to
thoroughly analyze such a scheme.

Lastly, let us consider the compensating Hamiltonian
ĤTOF for the Toffoli gate in Eq. (32). ĤTOF is explicitly
given by

ĤTOF = −
π

8α2T
(â†

1â2 + â1â†
2)(â

†
3â3 − α2)

+ π

8αT
(â1 + â†

1 − α)(â†
3â3 − α2)

+ π

8αT
(â2 + â†

2 − α)(â†
3â3 − α2). (F16)

Note that the terms in the second and the third lines
are in the same form as the compensating Hamiltonian
for the CNOT gate. Thus, they can be realized in a sim-
ilar way as described above. The terms in the first line
contain a beam-splitter interaction (â†

1â2 + â1â†
2), which

we have already discussed above, as well as a quartic
term (â†

1â2 + â1â†
2)â

†
3â3. Since the sine potential has an

odd parity, it is not possible to drive the quartic term
directly. The quartic term can nevertheless be realized by
off-resonantly driving the term (â1 + â2)â3b̂†: given Ĥ =
χ(â1 + â2)â3b̂†e−iδt + h.c., we get

Ĥeff = χ2

�
(â†

1â2 + â1â†
2)â

†
3â3 + χ2

�
(â†

1â1 + â2â†
2)â

†
3â3,

(F17)

i.e., the desired quartic interaction and unwanted cross-
Kerr interactions between a control and the target modes.
The undesired cross-Kerr terms, which are as strong as
the desired quartic term, can in principle be cancelled by
off-resonantly driving the terms â1â3b̂† and â2â3b̂† with
detunings �1 and �2, which are different from each other
and also from �.

The required coupling strength of the quartic interaction
(â†

1â2 + â1â†
2)â

†
3â3 is given by

π

8α2TTOF
= π

2.48
√
κ1κ2

=

⎧
⎪⎨
⎪⎩

2π × 128 kHz κ1/κ2 = 10−3

2π × 40.3 kHz κ1/κ2 = 10−4

2π × 12.8 kHz κ1/κ2 = 10−5
(F18)

at the optimal Toffoli gate time T�TOF = 0.31/(
√
κ1κ2α

2)

assuming κ2 = 107 s−1. Note that the coupling strength
of the term â12̂b̂† and â13̂b̂† are comparable to g2 �
2π × 5 MHz. Incorporating the bosonic enhancement fac-
tor due to the average excitation number α2, we require
the detuning � to be much larger than g2α

2, e.g., � =
10g2α

2. Then the achievable coupling strength of the quar-
tic interaction is given by g2

2/(10g2α
2) = g2/(10α2) �

2π × 60 kHz assuming α2 = 8.

APPENDIX G: MEASUREMENT

In this Appendix we discuss measurement schemes for
high-fidelity readout in both the X and Z basis. Com-
pared to gates where the optimal gate errors can be cleanly
described in terms of dimensionless constants like κ1/κ2,
for readout absolute time scales matter more. We enumer-
ate the parameter choices for the different schemes at the
end of the corresponding sections.

1. X -basis measurement

Here we discuss in more detail the X -basis readout
scheme used to generate the infidelities used in most
of the error-correction simulations. Note that throughout
this Appendix, when we refer to measurement infidelities
or error probabilities, we are referring to misassignment
probabilities

εs = 1− P(s|s) (G1)

where P(s|s) is the probability of reading out the state s
given that the cavity was in state s.

X -basis measurement refers to determining the parity of
a phononic mode or equivalently readout in the basis of
even and odd cat states, i.e., |±〉 ∝ |α〉 ± | − α〉. To realize
such a measurement with minimal impact on the length of
an error correction cycle we utilize an additional phononic
mode, which we refer to as the readout mode. This mode is
interrogated by a transmon in parallel with the next error-
correction cycle. As is pictured in Fig. 2, every unit cell
contains this additional readout mode connected to a trans-
mon. Pictured in Fig. 39 is the circuit we use for measuring
an X stabilizer, which we now walk through in more detail.
To perform an X -stabilizer measurement first the ancilla
qubit â1 is entangled with the data qubits. Subsequently we
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Data
qubits

Ancilla
qubit

Phononic readout mode

FIG. 39. Circuit used for an X -basis measurement in the context of an X -type stabilizer measurement. The first step consists of
entangling the ancilla qubit with the data qubits. Afterwords, the ancilla qubit is deflated followed by a SWAP with a readout mode.
Lastly, the readout mode is repeatedly measured using a transmon qubit. The durations for the parts of the measurement procedure are
labeled at the bottom of the figure below each circuit element. While these repeated parity measurements are occurring, the CNOT gates
of the next error-correction cycle can begin. Also included is a diagram of the physical layout of the stabilizer to give context to the
measurement circuit.

“deflate” the ancilla qubit on a time scale comparable 1/κ2,
mapping the even parity state to |n̂ = 0〉 and the odd parity
state to |n̂ = 1〉 [27]. Deflation is achieved under evolution
with the two-phonon dissipator,

dρ̂(t)
dt

= κ2D[â2
1 − α(t)2]ρ̂(t), (G2)

by taking α(t) from α0 to α1 < α0. In our case we rapidly
take α(t) from its initial value to α1 = 0 where we evolve
for a time on the order of 1/κ2. The deflation is not required
to be adiabatic since we do not need to maintain phase
coherence between the even and odd parity states. The
utility of the deflation is that it makes the state of the
cavity less susceptible to single-phonon-loss events, which
change its parity.

After the deflation we perform a SWAP between the
ancilla phononic mode (â1) and the readout mode (â2). The
SWAP is performed using the Hamiltonian

Ĥrot = gr(â
†
1â2 + â†

1â2). (G3)

Evolution under this Hamiltonian for a duration π/2gr
realizes a SWAP gate (there is a rotation of the swapped
state by 90◦). Physical implementation of this Hamiltonian
is discussed in Eq. (F7).

An advantage of this readout scheme is that after the
exchange has occurred, the next cycle of quantum error
correction can continue in parallel with the measurement
of the readout mode. With the idling time now set only by
the deflation + SWAP steps, we can spend more time mea-
suring the readout mode without compromising on idling

error. This simple layout choice could be generally useful
in other architectures. In the specific case of this proposal,
we perform repeated QND parity measurements, which
we majority vote to get our final measurement outcome
[64–66]. In general, more advanced methods than majority
voting will give higher fidelity [65].

Measurement of the readout mode parity is done using
a dispersive coupling with a transmon qubit [64] H =
−χσ̂zâ†â where â corresponds to a bosonic mode and
σ̂z corresponds to a transmon qubit. Evolution under this
Hamiltonian for a time t = π/χ realizes the unitary Û =
I ⊗ |g〉〈g| + eiâ†

2â2π |e〉〈e| in which is a controlled parity
gate. As pictured in Fig. 39, when the controlled parity gate
is placed between an initialization in |+〉 and measurement
of the transmon in the X -basis this realizes a QND mea-
surement of the readout mode parity. Importantly our use
of repeated measurement suppresses the effect of transmon
error mechanisms (i.e., transmon readout error, transmon
T1 · · · ) on the final readout fidelity. The readout is still
QND in the presence of such errors as they commute with
the dispersive coupling.

We have performed simulations of this measurement
scheme to determine the rough infidelities for different
single-phonon-loss rates κ1 = κ2 ∗ (κ1/κ2). We start by
performing master equation evolution under the deflation
and swap to determine P(even) [P(odd)], which is the
probability that the final state after the deflation and swap
steps is even (odd). We include the effects of single phonon
loss during the deflation and swap. Then we sample from
these probabilities to determine the state of the readout
mode after the first measurement. After the measurement
the readout mode is in the |n̂ = 0〉 and |n̂ = 1〉 manifold,
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which is a good approximation since after the deflation
step the population of the readout mode is very close to
0 or 1 depending on the initial state. Starting from the state
the readout mode is projected onto after the first measure-
ment we perform master-equation evolution to include the
effects of the single phonon loss, gain, and dephasing on
the readout mode during the inter measurement period and
during measurement (Tentangle + Tmeas + Treset). We then
repeat this projection and evolution for the remaining num-
ber of measurements that are used, giving us one sequence
of projections. To include the effect of transmon errors
such as loss, dephasing, and incorrect measurement we
add additional randomness associated with a fixed trans-
mon error probability (εq) giving us the final measurement
sequence. We have performed Monte Carlo sampling of
these measurement sequences to determine the infideli-
ties of this measurement process. A plot of the infidelities
are pictured in Fig. 40. The assumed numbers in the
simulations are listed at the end of this section.

In other circumstances, such as stabilization of four-
component cat codes, decay during entanglement with the
transmon is problematic because it induces dephasing of
the cavity. In our case since we are only concerned about
measuring the parity this dephasing is not important. As a
result we are justified in lumping the effect of this transmon
decay into our fixed parameter representing the transmon
infidelity mechanisms. We also note that recent advances
in transmon measurement would allow more aggressive
transmon measurement fidelities than what we assume
[66]. This would allow us to use fewer measurements to
achieve the same fidelities we currently expect to achieve.

We can also get an approximate form for the measure-
ment infidelities to expect with this repeated measurement
procedure. Defining N (odd) to be the total number of mea-
surements and k ≡ (N + 1)/2, to leading order the error
probability for the majority voting of the repeated mea-
surements for initial even and odd cat states in the case of
no gain are

εeven = ε(deflate + SWAP) +
(

N
k

)
εk

q(1− εq)
N−k,

εodd = ε(deflate + SWAP) +
(

N
k

)
εk

q(1− εq)
N−k + κ1Tp ,

(G4)

where Tp is the amount of time after the SWAP and before
the kth measurement and ε(deflate + SWAP) is the error from the
deflation and SWAP for the given initial state. In the above
expressions the first term is the contribution to the error
from the deflation and SWAP steps. The second term is due
to transmon error where k measurements are incorrect. The
last term in the case of an odd initial state is the probability
of a T1 event before the kth measurement, which will lead
with high probability to all the remaining measurements

X measurement infidelities with even parity initial state

X measurement infidelities with odd parity initial state
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FIG. 40. Simulated (markers) and analytical (curves) error
probabilities for X measurement for the cases of both even parity
and odd parity initial states. We have taken the parity measure-
ment to be QND and projective. The dependence on κ1/κ2 is
stronger for the case of an odd initial state since the cavity is
mapped to |1〉 after the deflation. The plotted curve is the leading-
order analytic model for the case of κφ = 0 Eq. (G4). Numerical
imprecision predominantly due to the deflation simulation can
have about a 10 percent effect on the simulated infidelities for
the smaller κ1/κ2.

giving 0. Note that this is the reason that for an odd initial
state and larger κ1/κ2 values majority-voting five measure-
ments underperforms majority-voting three measurements.
Using a more advanced procedure than majority voting
would mitigate this problem.

Assumptions: The properties of the measurement were
chosen to make the error probabilities dependent only on
κ1/κ2 and the measurement times scale as 1/κ2 to follow
the gates, which have the same dependence. This is conve-
nient for the error-correction simulations because it means
that the logical failure rates are independent of the absolute
scale of κ2.

The properties that feed into our measurement
error probabilities and times are a transmon related
error probability (εq) of 1%, a deflation time of
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3/κ2, transmon-related times of Tentangle = Treadout =
Treset = 200 ns× [1/(100 ns)× κ2], α2 = 8, and g/2π =
1 MHz× [(100 ns)× κ2] [110,111]. For simplicity, in
the error-correction simulations we have used up to three
measurements in the repetition code and up to five mea-
surements in the surface code. This choice is well justified
in the important regime for REGIME 3. For example,
for the surface code the duration of four CNOT gates is
approximately 28 μs, larger than the relevant measure-
ment duration of 5× Tentangle + 5× Tmeasure + 5× Treset ∼
17.05 μs. In REGIME 1 and REGIME 2 this simplifica-
tion breaks down and fewer measurements or more time
for the measurements would be needed. However, in these
regimes fault-tolerant quantum computation is infeasible
even with this optimistic measurement error model. In the
overhead calculations the idling duration corresponding to
the X -basis measurement is 3/κ2 + π/2g.

2. Z-basis measurement

For Z measurement we use a beam-splitter interaction
between the buffer mode and a phononic storage mode

Ĥr = gr(â†b̂+ b̂†â), (G5)

where â is an annihilation operator on a storage mode and
b̂ is an annihilation operator on the buffer mode. By homo-
dyning the output of the buffer mode we determine the state
of the storage mode. We perform this readout scheme with
the two-phonon dissipation off. A similar scheme has been
realized for Kerr-Cat qubits in Ref. [27].

To realize this interaction we drive the two terms â†b̂2

and b̂ off resonantly. In particular, we use a pump εp(t) =
εp cos(ωp t) with frequency ωp = 2ωb − ωa +� to off-
resonantly drive the term âb̂†2 and directly drive the b̂
mode at frequency ωd = ωb +� to produce the term

Ĥd = εd(b̂†e−iωdt + h.c.). (G6)

Then the complete Hamiltonian in the rotating frame of all
of the modes is

Ĥrot = 1
2

EJ εpϕaϕ
2
b â†b̂2ei�t + h.c.

+ εdb̂†e−i�t + h.c.+ Ĥ ′, (G7)

where Ĥ ′ contains rapidly rotating terms. Now let χ1 ≡
EJ εpϕaϕ

2
b/2. Then, neglecting Ĥ ′ and constants, average

Hamiltonian theory yields [55,56]

Ĥeff = 1
�

[χ1â†b̂2 + εdb̂,χ1âb̂†2 + εdb̂†]

= 1
�

[
χ2

1 [2(1+ 2b̂†b̂)â†â− b̂†2b̂2]

+ 2χ1εd(â†b̂+ âb̂†)
]

b̂†b̂
1−−−→ g(â†b̂+ âb̂†)+ gbâ†â. (G8)

The coupling constant is given by g = EJ εpβϕaϕ
2
b where

β = εd/� and there is an energy shift. The strength of the
coupling is on the order of g2 since it depends twice on
ϕb > ϕa and β < 1 to ensure b̂†b̂ < 1.

Next we proceed by finding the measurement SNR for
this readout scheme. The coupled Langevin equations gov-
erning the evolution of the storage and buffer modes in the
interaction picture are

˙̂a = −i[â, Ĥr] = −igrb̂,

˙̂b = −i[b̂, Ĥr]− κb

2
b̂−√κbb̂in = −igrâ− κb

2
b̂−√κbb̂in.

(G9)

Here κb is the single-photon-loss rate of the buffer mode
and we have neglected the single-phonon-loss rate of the
storage mode under the assumption that it is far slower than
the readout time scale. These equations can be straightfor-
wardly integrated [112] to give

â(t) = â(0)
β

e−
κbt
4

(
β cosh

βt
4
+ κb sinh

βt
4

)
,

b̂(t) = −i
4gâ(0)
β

e−κbt/4 sinh
βt
4

,
(G10)

where β =
√
κ2

b − (4gr)2. Here we have not included the

mean zero terms with b̂in since they are not relevant for
computing the signal. The measurement operator with a
uniform readout window is defined to be [113,114]

M̂ (τ ) = √κb

∫ τ

0
dt[b̂†

out(t)e
iφh + b̂out(t)e−iφh] (G11)

Using the input-output boundary condition that b̂out =
b̂in +√κbb̂. We can determine the average of the measure-
ment operator to be

〈M̂ (τ )〉 = 2κb〈â(0)〉 sinφh

gr

×
[

1− e−κbτ/4
(

cosh
βτ

4
+ κb

β
sinh

βτ

4

)]
.

(G12)
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We have also taken the input to be the vacuum with the
property 〈b̂in(t′)b̂

†
in(t)〉 = δ(t− t′). There is a weak drive

on b̂ to realize the Hamiltonian which we neglect and
could be replaced with a flux pump. From the average
of the measurement signal 〈M̂ (τ )〉 we can determine the
measurement SNR using

SNR2 = |〈M̂ 〉α − 〈M̂ 〉−α|2
〈M̂ 2

N (α)〉 + 〈M̂ 2
N (−α)〉

. (G13)

We take the noise terms to be given by

〈M̂ 2
N (±α)〉 = 〈[M̂ (τ )− 〈M̂ (τ )〉±α]〉 = κbτ , (G14)

which we have checked in numerics.
Solving for the SNR and optimizing the phase we get

SNRα(τ ) = α
√

8κb

[
1− e−κbτ/4

(
cosh βτ

4 + κb
β

sinh βτ

4

)]

g
√
τ

.

(G15)

As is expected since this readout scheme is not QND and
does not preserve the state of the cavity at long times the
readout SNR goes as 1/

√
τ as we are only integrating

noise. The readout separation error, which is the dominant
source of error for this readout scheme, will be given by

εsep,α(τ ) = 1
2

Erfc
(

SNRα(τ )
2

)
. (G16)

From these equations we can then determine the fidelity
as a function of time for different alpha for our measure-
ment scheme as is shown in the colored line in Fig. 41(a).
In Fig. 41(b) we fit the optimal readout error to an expo-
nential decay. We used a more conservative relation ε =
e−1.5−0.9|α|2 for the error-correction simulations.

We have simulated trajectories for this measurement
procedure using a stochastic master equation for confirma-
tion. The stochastic master-equation simulations include
κ1/2π = 1 KHz. The integrated and classified and mea-
surement results from the stochastic master equation com-
pared to the analytic expression are pictured in Fig. 41(a).
The stochastic master-equation simulations were per-
formed with the evolution

dρ̂(t)
dt

= −i[gr(â†b̂+ b̂†â), ρ̂(t)]

+ κb(1− η)D[b̂]ρ̂(t)+ κbηD[b̂]ρ̂(t)

+ κ1D[â]ρ̂(t)+ nthκ1D[â†]ρ̂(t)+ κφD[â†â]ρ̂(t),
(G17)

Error versus time

(b)(a)

Error fit

FIG. 41. (a) Measurement error probability for Z-basis readout as a function of time. The colored lines correspond to the analytic
formula for the separation error Eq. (G16) for α2 = 1, 2, . . . , 10. The black lines correspond to infidelities from simulations of the
corresponding stochastic master equation Eq. (G17) (QuTiP) in the interaction picture for a few thousand trajectories with the initial
condition |α〉 for the cases α2 = 1,α2 = 3,α2 = 5, and α2 = 7. The simulated curves, which include κ1/2π = 1 KHz, and analytic
curves agree well indicating the small effect of the additional single-phonon loss. In order to get concrete time numbers, the simulations
use 1/κ2 = 100 ns but as discussed this can be scaled to any κ2. (b) Plot of the minimum infidelities versus α2 and the fit line.
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FIG. 42. Distance-5 repetition code, where one round of stabilizer measurements is performed (green measurements) followed by a
direct measurement of the data qubits (red measurements). The data qubits are the yellow rectangles, and the ancilla qubits (prepared in
|+〉) are the gray rectangles. On the left, a measurement error on the third data qubit occurs during the direct measurement of the data,
which is equivalent to having a Z data qubit error immediately before the measurement (shown on the right). Such settings illustrate
the importance of the STOP algorithm, where one might have to correct errors prior to applying a non-Clifford gate, and a round of
perfect error correction (which in practice is achieved by directly measuring the data) cannot be performed. In such settings, a single
measurement error during the last round of stabilizer measurements (green measurements in the figure) can lead to a logical failure if
the syndrome measurement is repeated a fixed number of times (say d) rather than using the STOP algorithm.

where the second term on the second line is the detection
part of the master equation that is unraveled. We see expo-
nential suppression of the error probability with increasing
α2. In the future we expect to be able to improve the perfor-
mance by optimizing the window function for the readout
and using the confidence of the measurement result to feed
back and improve the matching. These advances in addi-
tion to the robustness of the error correction (EC) to larger
measurement errors than those currently assumed would
allow us to make looser assumptions.

Assumptions: The chosen parameters for this work
are κb/2π = 20× [(100 ns)× κ2] MHz and g/2π = 4×
[(100 ns)× κ2] MHz. These rates depend on κ2 so the read-
out time will scale as 1/κ2. We also include the effect of a
nonunity quantum efficiency η = 0.5 (η is the proportion
of the signal detected). For κ2 = 2π × 280e3 used in the
paper the optimal duration of the measurement is roughly
850 ns. Note that κb can be made larger with the main effect
of lengthening the readout time.

APPENDIX H: ALTERNATIVE ARCHITECTURE
WITH ATS-BASED BASIS READOUT

In this Appendix, we describe an alternative version of
our architecture where the X -basis readout is performed
directly using the ATS. As discussed below, this modifica-
tion favorably impacts practicality and performance across
several different levels of our architecture. For example,
this modification obviates the need for a transmon in each
unit cell, and allows us to reduce the number of modes
coupled to each reservoir from five to four, see Fig. 43. As
a result, crosstalk is reduced, easing limitations on logical

lifetimes posed by correlated errors. Though such bene-
fits are highly desirable, the ATS-based X -basis readout
that underlies this alternative architecture may be difficult
to perform in practice. Because the practical feasibility of
the readout scheme is more speculative, we do not use
the ATS-based readout scheme in any of the analyses in
the main text. Instead, we describe the ATS-based readout
scheme and enumerate its favorable impacts here in this
Appendix. The ATS-based readout scheme is presented
and analyzed in Appendix H 1, while Appendix H 2 cat-
alogs the beneficial impacts of this modification across
different levels of the architecture.

FIG. 43. Alternative architecture. The X -basis readout is per-
formed directly using the ATS [contained within the reservoir
(RESVR)], as opposed to using an ancillary readout mode and
transmon qubit, cf. Fig. 2. By eliminating the readout mode, the
number of modes per unit cell is reduced from five to four.
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1. ATS-based X -basis measurement scheme

Here we present a modified X -basis readout scheme that
can be implemented using only the ATS and the buffer
mode. The readout scheme is implemented by engineering
a coupling Hamiltonian of the form

Ĥr = igrâ†â(b̂† − b̂). (H1)

Here â is the annihilation operator for a storage mode
and b̂ is the annihilation operator for the buffer mode.
Note that this Hamiltonian is equivalent to the longitu-
dinal readout discussed with transmons [114]. Practically
speaking, engineering this Hamiltonian may be challeng-
ing because it rotates at the frequency of the buffer mode.
That is, we cannot engineer this Hamiltonian simply by
pumping the system at the resonance frequency of the
buffer mode, because the same pump would also bring
corresponding Hamiltonians for other storage modes on
resonance simultaneously [e.g., â†

2â2(b̂+ b̂†)].
To circumvent this frequency-selectivity problem, we

sketch how a Hamiltonian of the form, Eq. (H1), could
be engineered via off-resonant pumping. Consider the
following Hamiltonian (in the rotating frame),

Ĥ = (gaâb̂†2 + igbâb̂†)e−i�t + h.c. (H2)

This Hamiltonian can be realized in a number of ways.
For example, the âb̂†2 term can be realized by pump-
ing the ATS at frequency 2ωb − ωa +�, while the âb̂†

term can be realized by synthesizing two odd terms [as
described in the vicinity of Eq. (F7)]. For simplicity, we
assume access to Hamiltonians of the form, Eq. (H2), and
leave the precise details of how they are to be engineered
to future work. For ga,b 
 �, evolution generated by the
Hamiltonian (H2) is well described by the corresponding
time-averaged effective Hamiltonian [56],

Ĥeff = g2
a

�
[â†b̂2, âb̂†2]+ g2

b

�
[â†b̂, âb̂†]

+ igagb

�
([â†b̂2, âb̂†]− [â†b̂, âb̂†2])

= g2
a

�
[2â†â(1+ 2b̂†b̂)− b̂†2b̂2]+ g2

b

�
(â†â− b̂†b̂)

+ igagb

�
(2â†â− b̂†b̂)(b̂− b̂†)

〈
b̂†b̂

〉

1

−−−−→ 2igagb

�
â†â(b̂− b̂†)+ 2g2

a + g2
b

�
â†â, (H3)

where in the last line we have neglected many of the terms
due to the small occupation of the buffer mode.

To implement an X -basis readout using this Hamilto-
nian, we first deflate the storage mode. As described in

Appendix G, this deflation is achieved by abruptly setting
the two-phonon dissipator for the storage mode equal to
D[â2], as opposed to D[â2 − α2], and waiting for a time
scale comparable to 1/κ2. When the storage mode begins
in an even (odd) parity state, this deflation procedure maps
it to the |0〉 (|1〉) phonon Fock state. Subsequent to this
deflation, we perform a homodyne measurement of the
buffer mode while the system evolves under the Hamil-
tonian (H3). In effect, this Hamiltonian drives the buffer
mode conditioned on whether the parity of the storage
mode was initially even or odd.

We compute the fidelity of this homodyne readout,
where we aim to distinguish |n̂a = 0〉 from |n̂a = 1〉. We
closely follow the derivation of SNR in Ref. [114]. The
Langevin equation for the evolution of the buffer mode in
the interaction picture is

˙̂b = −i[b̂, Ĥeff]− κb

2
b̂−√κbb̂in

= grâ†â− κb

2
b̂−√κbb̂in, (H4)

where b̂in is the input field and gr ≡ 2gagb/�. In the fol-
lowing calculations we neglect the single-phonon loss of
the ancilla mode, which in this simple case will add an
average readout error probability of roughly κat/4. We
integrate this equation to get the expected value of the
buffer mode

〈b̂(t)〉 = 2gr

κb
〈â†â〉(1− e−

κbt
2 ). (H5)

The measurement operator for integration up to time τ and
with homodyne angle φh is defined as [113,114]

M̂ (τ ) = √κb

∫ τ

0
dt[b̂†

out(t)e
iφh + b̂out(t)e−iφh]. (H6)

Evaluating the average of this integral with the optimal
phase gives

〈M̂ (t)〉 = 4gr〈â†â〉
κb

(−2+ 2e−
κbt
2 + κbt). (H7)

Here we have used the standard input-output condition that
b̂out = b̂in +√κbb̂ and the conditions on b̂in that 〈b̂in〉 =
0 and 〈b̂in(t)b̂

†
in(t

′)〉 = δ(t− t′). There is a drive on b̂ to
realize the Hamiltonian, which we neglect and could be
replaced by an appropriate pump. Next we compute the
SNR, which is defined as

SNR2 = |〈M̂ 〉1 − 〈M̂ 〉0|2
〈M̂ 2

N (1)〉 + 〈M̂ 2
N (0)〉

, (H8)
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where M̂N (x) = M̂ − 〈M̂ 〉x so 〈M̂ 2
N (0)〉 = 〈M̂ 2

N (1)〉 = κbt.
Thus the SNR is

SNR(τ ) = 4gr

κb
√

2κbt
(−2+ 2e−

κbt
2 + κbt). (H9)

The separation error for this readout, which will be in
addition to the effect of the single-phonon loss mentioned
earlier, will be given by [67]

εsep(τ ) = 1
2

Erfc
(

SNR(τ )
2

)
. (H10)

There will also be an additional contribution to the read-
out error associated with the deflation procedure (see
Appendix G)

2. Benefits of ATS-based X -basis readout

The analysis of the previous section demonstrates that,
in principle, high-fidelity X -basis readout can be per-
formed directly using the ATS. We now show how this
readout scheme can be exploited to improve the practi-
cality and performance of our architecture. The following
analysis demonstrates that improved X -basis readout rep-
resents one potential path to improved future designs. At
the same time, it also illustrates a more general point:
improvements at low levels of the architecture can prop-
agate into significant savings at higher levels. These
findings thus underscore the importance and utility of
comprehensive architectural analyses.

At the hardware level, the modified X -basis readout
scheme enables us to simplify the unit cell of our architec-
ture. Specifically, in comparison to the unit cell described
in the main text (Fig. 2), the unit cell of Fig. 43 has no
transmon and has four phononic modes instead of five.
Removing the transmon reduces the number of control
lines and is helpful for device layout because the transmon
requires significant additional space in comparison to the
phononic modes.

Reducing the number of modes per unit cell from five to
four significantly reduces crosstalk within each unit cell.
We can quantify this reduction following the approach

described in Appendix B. To briefly summarize, we opti-
mize the frequencies of the storage modes within each
unit cell in order to minimize the effects of crosstalk.
More specifically, the frequencies are chosen so that the
effects of coherent crosstalk errors are minimized subject
to the constraint that all incoherent crosstalk errors must be
exponentially suppressed by the filter. The impacts of the
residual coherent errors are quantified via two parameters,
pdouble and ptriple, that, respectively, describe the probabili-
ties that either two data qubits, or two qubits and an ancilla
qubit, suffer correlated Z errors.

In Table X, we compare the results of this mode-
frequency optimization for four- and five-mode unit cells.
There are two important takeaways from these optimiza-
tion results. The first takeaway is simply that the mag-
nitude of the residual coherent errors is substantially
reduced. Indeed, the total correlated error probability,
pdouble + ptriple, is over an order of magnitude smaller for
the four-mode case than in the five-mode case. As we dis-
cuss below, this reduction can significantly impact logical
error rates.

The second important takeaway from Table X is that
the four-mode unit cell can accommodate a larger filter
bandwidth, which ultimately eases requirements on the
lifetimes of the phononic resonators to achieve a desired
value of κ1/κ2. As described in Appendix B, the con-
straint that all incoherent crosstalk errors be suppressed
by the filter places an upper bound on the filter band-
width, and this upper bound decreases as the number of
modes in the unit cell increases. Reducing the number
of modes from five to four thus enables us to increase
the filter bandwidth. In particular, we find that the band-
width can be increased by nearly a factor of 2 (from 4J =
2π × 100 MHz to 4J = 2π × 180 MHz). As described
in Sec. II, the filter bandwidth constrains the achiev-
able value of κ2, meaning that an increased bandwidth
enables an increased κ2. Equivalently, an increased fil-
ter bandwidth eases the coherence requirement on the
phononic resonators to achieve a desired value of κ1/κ2.
From Fig. 3, we see that the factor of approximately
2 increase in bandwidth correspondingly lowers the T1
requirement on the phononic resonators by roughly a factor
of 2.

TABLE X. Frequency optimization results. The parameters 4J and ω are given in units of 2π×MHz. The correlated error probabili-
ties in the last three columns are expressed in terms of α and g2. For realistic choices of |α| = √8 and g2/2π = 2 MHz, the probabilities
evaluate to C = 1.05× 10−4 and C = 1.23× 10−3 for the four- and five-mode configurations, respectively. See Appendix B for further
details.

No. modes 4J ωα ,ωβ ,ωγ ,ωδ ,ωρ pdouble ptriple pdouble + ptriple

4 180 0, 1000, 798, 101, - 1.22× 10−9
[
|α|2g2

2π MHz

]4
3.87× 10−10

[
|α|2g2

2π MHz

]4
1.60× 10−9

[
|α|2g2

2π MHz

]4

5 100 0, 1000, 242, 879, 61 1.83× 10−8
[
|α|2g2

2π MHz

]4
5.20× 10−10

[
|α|2g2

2π MHz

]4
1.88× 10−8

[
|α|2g2

2π MHz

]4
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FIG. 44. Logical Z-error rates of the thin rotated surface code
with five modes coupled to an ATS (which includes a transmon
qubit and an additional readout mode in each unit cell and corre-
sponds to the data in Fig. 8) and four modes coupled to an ATS
(which excludes the transmon qubit and performs direct X -basis
measurements). We labeled measurements with the transmon
qubit as low measurement and the direct X -basis measurement as
high measurement. For the direct X -basis measurement, the mea-
surement error rate is fixed at 2× 10−3 for all values of κ1/κ2.
Measurement error rates with the transmon qubit were obtained
from Table III with five parity measurements.

Having described the effects of the ATS-based X -basis
readout scheme at the hardware level, we now consider
effects at the logical level. We begin by quantifying the
impact of the increased measurement error rate of the
ATS-based readout scheme (see Table III) on the logical
error rates. In Fig. 44, we plot the logical Z-error rate
of the thin rotated surface code, both for the main-text
architecture of (five-mode unit cell, transmon-based read-
out) and for the alternative architecture of this Appendix
(four-mode unit cell, ATS-based readout). For the former
architecture, we used the same data as shown in Fig. 8,
while for the latter architecture (labeled high measure-
ment), we fixed the measurement error rate to 2× 10−3.
As can be seen, even though the measurement error rate
can be more than an order of magnitude larger for the
ATS-based readout, the logical Z-error rates increase by a
small amount in the low κ1/κ2 regime. The reason the log-
ical failure rate is not greatly affected by the large increase
in measurement failure rates is that CNOT failures are the
dominant source of noise. As such, we do not expect the
overhead results of Sec. VIII to increase when using the
alternative architecture of Fig. 43 because the same code
distances can be used for implementing the algorithms of
interest.

Finally, we consider how the reduction in crosstalk
(Table X) impacts logical error rates. Logical Z-error
rates of the thin rotated surface code for the main-text
architecture and the alternative architecture are plotted in
Figs. 45(a) and 45(b), respectively, where correlated errors
are simulated with probabilities given in Table X. The
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FIG. 45. Logical Z failure rates for a dx = 3 and dz = 11 thin
surface code in the presence of the residual crosstalk errors
(given in Table X). The X -basis measurement error rates are
obtained from Table III with five parity measurements. We com-
pute the logical Z-error rates for different values of g2 shown
in the legend, and compare such results to the case where
the crosstalk errors are not present. The results in (a) [respec-
tively, (b)] are obtained with crosstalk error rates taken from the
five-mode (four-mode) row of Table X with |α|2 = 8.

results reveal that the effects of crosstalk on logical errors
are less severe in the alternative architecture. In particu-
lar, the main-text architecture can accommodate values of
g2/(2π) up to approximately 2 MHz before the impacts of
correlated errors become significant, while the alternative
architecture can accommodate values twice as large g2 ∼
4 MHz before the impacts of correlated errors become
significant. This increase in the maximum allowable g2
can enable larger stabilization rates κ2, or equivalently
can reduce the requirement on the phonon-mode lifetime
required to reach a given κ1/κ2.

APPENDIX I: STOP ALGORITHM

When performing physical non-Clifford operations in
between rounds of EC, in order to maintain the full
effective code distance, it is crucial to use a fault-tolerant
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error-correction protocol, which satisfies the following
definition (taken from Ref. [68,115]).

Definition 1. Fault− tolerant error correction For t =
"(d − 1)/2#, an error-correction protocol using a distance-
d stabilizer code C is t-fault-tolerant if the following two
conditions are satisfied:

1. For an input codeword with error of weight s1, if
s2 faults occur during the protocol with s1 + s2 ≤
t, ideally decoding the output state gives the same
codeword as ideally decoding the input state.

2. For s faults during the protocol with s ≤ t, no matter
how many errors are present in the input state, the
output state differs from a codeword by an error of
at most weight s.

Apart from being useful for proving thresholds of
fault-tolerant error-correction schemes based on code con-
catenation [116], such a definition of fault-tolerant error
correction is also relevant when performing physical non-
Clifford operations on encoded qubits before directly mea-
suring the data qubits. In particular, if one implements a
MWPM decoder (see Ref. [117]) with O(d) rounds of
stabilizer measurements (where d is the code distance of
the error-correcting code protecting the data), a measure-
ment error in the last round can lead to a logical failure
and Definition 1 would not be satisfied. In many fault-
tolerant implementations, such a problem can be avoided
by implementing non-Clifford operations via gate injection
and stabilizer operations, followed by direct measurement
of the data qubits (hence physical non-Clifford gates are
never directly applied to the data qubits). An example of
direct measurements of the data qubits after performing
one round of stabilizer measurements for a d = 5 repeti-
tion code is given in Fig. 42. By measuring the data qubits,
measurement errors can be treated as data qubit errors aris-
ing prior to performing the measurement [72]. As such,
measuring the data directly acts as a round of perfect error
correction.

As was shown in Sec. VI, postselection can be avoided
when preparing the logical |0〉L and |1〉L states (used to
obtain the state |ψ〉1) if we have a decoder that is robust
to measurement errors in the last syndrome measurement
round prior to applying the physical Toffoli gates. For the
BUTOF protocol, we cannot directly measure the data prior
to applying the physical Toffoli gates. Using ideas from
Ref. [115], in this section we propose an algorithm, which
tells us when to terminate the sequence of error syndrome
measurements, which we call the STOP algorithm, and
which satisfies Definition 1 when using the syndrome mea-
surement from the last round to correct errors. Further, in
Appendix J, we show how the STOP algorithm can be used
with gate injection to perform all stabilizer operations of
the repetition code.

FIG. 46. Example of a single controlled-Z failure resulting in
the error Zn ⊗ Zn+1 (where Zn+1 acts on the ancilla qubit) when
measuring the operator Z⊗n. Here n is the number of data qubits.
This single fault can cause three consecutive syndrome measure-
ments to yield three distinct outcomes. Here Ein is an input error
with syndrome s(Ein) = s1.

The goal of the STOP algorithm is to track consec-
utive syndrome outcomes s1, s2, . . . , sr and to compute
the minimum number of faults, which could have caused
this sequence of syndromes. In particular, let ndiff be a
counter, which tracks the minimum number of faults caus-
ing changes in syndrome outcomes, and consider the con-
secutive syndromes sk−1, sk, and sk+1. Given that a single
fault can lead to two syndrome changes as in the example
below, suppose we obtain different syndromes in rounds k
and k + 1 (so that sk �= sk+1). In order to decide whether
to increment ndiff by one, we must first check whether ndiff
was incremented after measuring the kth error syndrome. If
ndiff did not increase after the kth round, then we increment
ndiff by one. Otherwise, ndiff remains unchanged.

As an example, suppose a single fault occurs during the
second round of stabilizer measurements of an EC proto-
col adding a weight-one error to the data qubits while also
flipping the measurement outcome of one of the stabilizers
(in this case Z⊗n as shown in Fig. 46). Further, suppose the
input error to the second round of the EC protocol Ein has
the error syndrome s(Ein) = s1, and that the error ZnEin has
error syndrome s3 �= s1 (here Zn is the Z error added to the
data qubit arising from the two-qubit gate failure). Since
the Z error flipped the measurement outcome of Z⊗n, the
syndrome s2 measured during the second round can differ
from both s1 and s3.

With the above example in mind, the STOP algorithm
is given by Algorithm 1. To see why a decoding algorithm
based on Algorithm 1 satisfies Definition 1, consider the
case where the total number of input errors and faults
during the EC is t = (d − 1)/2 for a distance d error-
correcting code. If at any time during the EC the same
syndrome sj is measured t− ndiff + 1 times in a row, then it
must have been the correct syndrome (with very high prob-
ability). The reason is that given the value of ndiff, which
counts the minimum number of faults compatible with the
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Algorithm 1. STOP algorithm

syndrome history since the beginning of the current cycle
of error correction, there would need to be more than t
faults to cause all t− ndiff + 1 consecutive syndromes to
be incorrect due to failures resulting in flipped measure-
ment outcomes. As such one could use the syndrome sj
to correct errors and terminate the protocol. Doing so,
there could only be ≤ t residual leftover errors that went
undetected in the last measurement round.

Similarly, if after measuring the r− 1’th syndrome ndiff
gets incremented to ndiff = t, then we know that at least
t faults must have occurred during the EC. As such,
by repeating the syndrome measurement one more time
(resulting in the syndrome sr) and using that syndrome to
decode, there would need to have been more than t faults
for sr to be the wrong syndrome (due to faults flipping
some of the stabilizer measurement outcomes in the last
round). Hence using sr to decode would result in residual
errors with weight v ≤ t (where, as stated at the beginning
of the previous paragraph, the total number of input errors
and faults during the EC is t).

Given the above, we conclude that when using
Algorithm 1, the sequence of syndrome measurements will
terminate if one of the following conditions is satisfied:

1. The syndrome sr is repeated t− ndiff + 1 times in a
row.

2. The counter ndiff gets incremented to ndiff = t. Mea-
sure the syndrome one more time resulting in the
syndrome sr. Use sr to decode.

Decoding will succeed if the total number of input errors
and faults during the EC cycle is ≤ t.

We now provide a few remarks. Firstly, given a par-
ticular error-correcting code and decoder along with the
STOP algorithm for repeating the syndrome measurement,
one can satisfy Definition 1 by using the last measured
syndrome sr to decode while ignoring the entire syn-
drome history. Hence in such settings, one can use a
simple code-capacity-type decoder to decode with sr (i.e., a
decoder, which ignores measurement and space-time cor-
related errors). As an example, one can decode with the
surface code using a MWPM or Union Find decoder (see
Ref. [118]) on a two-dimensional graph instead of a three-
dimensional graph tracking the entire syndrome history.
Doing so could significantly reduce the overall decoding
time. In general however, the approach where the STOP
algorithm is used to ignore the entire syndrome history
apart the last syndrome sr does not have a threshold [119].
To see this, consider a distance d repetition code and
a stochastic noise model where fault locations fail with
probability p . After d rounds of repeating the syndrome
measurement, there will be approximately pd2 failures. For
large distances d, with high probability the error syndrome
will change in every round. Hence the probability of a mea-
surement error in the final round will not depend on the
past syndrome history and the decoder will fail to correct
the errors with high probability.

On the other hand, tracking the entire syndrome his-
tory and using Algorithm 1 to decide when to terminate
the rounds of repeated syndrome measurement generally
leads to lower failure rates and has a threshold. Indeed,
when computing the memory failure rates of the repetition
code using Algorithm 1 for deciding when to terminate
the syndrome measurements), we found that performing
MWPM on the entire syndrome history leads to lower
logical failure rates compared to performing MWPM on
a one-dimensional graph using only the final syndrome
sr (note that the logical Z failure rates for the repetition
code in Fig. 6 were computed by applying MWPM to the
full syndrome history of the measured syndromes using
the STOP algorithm). As such, the EC protocols used in
this work when considering repetition codes implement
MWPM on the entire syndrome history in conjunction with
Algorithm 1 to decide when to stop measuring the error
syndrome.
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We conclude this section by providing a lower and upper
bound on the maximum number of syndrome measure-
ment repetitions that can be performed using the STOP
algorithm. For the case where there are no failures, it
is straightforward to see that the syndrome measurement
will be repeated t+ 1 times. To find the upper bound,
we consider the worst-case scenario, where (starting with
ndiff = 0) there are no failures in the first t rounds of syn-
drome measurement, so that the same syndrome is repeated
t times. However, in round t+ 1, a measurement error
occurs and ndiff gets incremented to ndiff = 1. Now again,
suppose there are no failures in the next t− 1 rounds (so
the same syndrome is repeated t− 1 times) and a mea-
surement error occurs in the t’th round, so that ndiff is
incremented to ndiff = 2. Suppose the same pattern repeats
itself until all t faults are exhausted resulting in ndiff = t.
By the protocol of the STOP algorithm, we must repeat the
syndrome measurement one more time. For such a fault
pattern, the total number of syndrome measurements stot is
then given by

stot =
t−1∑

k=0

(t− k)+ t+ 1 = 1
2
(t2 + 3t+ 2) =

(
t+ 2

2

)
.

(I1)

For low code distances and low-noise-rate regimes, the
average number of repetitions will approach t+ 1. How-
ever ,for large code distances, with high probability, the
syndrome measurement outcome will change every round
and thus ndiff changes every other round. Thus after 2t
rounds, ndiff = t and the syndrome must be repeated one
more time resulting in a total number of 2t+ 1 = d rounds.
It should then be expected that for large code distances,
the performance of MWPM decoders based on a fixed d
rounds will perform similarly to a decoder, which uses the
STOP algorithm to terminate while implementing MWPM
over the full syndrome history.

APPENDIX J: STABILIZER OPERATIONS WITH
THE REPETITION CODE

In this section we describe how to do all stabilizer oper-
ations with the repetition code. However, the methods we
provide apply to any family of Calderbank-Shor-Steane
(CSS) codes.

1. Computational basis states

We begin by describing how to prepare the logical com-
putational basis states of the repetition code. Doing so, we
provide two schemes for preparing |0〉L.

Scheme 1: Using the fact that for an n-qubit repetition
code |+〉L = |+〉⊗n, preparing |+〉⊗n followed by a logi-
cal ZL = Z⊗n measurement (see Fig. 47) projects the state
to |0〉L given a +1 outcome and |1〉L given a −1 out-
come. Since a measurement error on the ancilla results

FIG. 47. Circuit for preparing logical computational basis
states of the repetition code. A measurement error results in a
logical X error applied to the data. Fault tolerance is achieved by
repeating the measurement using the STOP algorithm.

in a logical XL = X1 error applied to the data, fault tol-
erance can be achieved by repeating the measurement of
ZL using the STOP algorithm (where the syndrome corre-
sponds to the ancilla measurement outcome) and applying
the appropriate XL correction given the final measurement
outcome. For instance, if |0〉L is the desired state and the
final measurement outcome at the termination of the STOP
algorithm is −1, X1 would be applied to the data. Lastly,
note that only X errors can propagate from the ancilla to
the data but these are exponentially suppressed by the cat
qubits.

Scheme 2: Here we present a more conventional
approach for preparing the computational basis states,
which involves only stabilizer measurements (see, for
instance, Refs. [120–122]). Starting with the state |ψ1〉 =
|0〉⊗n, which is a +1 eigenstate of ZL, measure all stabi-
lizers of the repetition code (each having a random ±1
outcome) resulting in the state

|ψ2〉 =
n−1∏

i=1

( I ± XiXi+1

2

)
|0〉⊗n. (J1)

If the measurement outcome of XkXk+1 is −1, the cor-
rection

∏k
j=1 Zj can be applied to the data to flip the

sign back to +1. However, given the possibility of
measurement errors, the measurement of all stabilizers
〈X1X2, X2X3, . . . , Xn−1Xn〉 must be repeated. If physical
non-Clifford gates are applied prior to measuring the data,
then the STOP algorithm can be used to determine when
to stop measuring the syndrome. Subsequently, MWPM is
applied to the full syndrome history to correct errors and
apply the appropriate Z corrections to fix the code space
given the initial stabilizer measurements. After performing
numerical simulations, we found that scheme 2 achieves
lower logical failure rates compared to scheme 1. Further,
since physical Toffoli gates are applied to the data qubits in
order to prepare a |TOF〉magic state (see Sec. VI) and given
the constraints imposed by our ATS architecture (which
make performing global Z measurements very challeng-
ing using a single ancilla qubit), we always use scheme
2 along with the STOP algorithm when preparing logical
computational basis states.
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Lastly, we remark that although the logical component
of an uncorrectable error E(z)ZL (where E(z) is correctable)
can always be absorbed by |0〉L resulting in an output
state |ψout〉 = E(z)|0〉L, it is still important to have a fault-
tolerant preparation scheme for |0〉L (and thus to repeat the
measurement of all stabilizers enough times). For instance,
if a single fault results in a weight-two correctable Z error
(assuming n ≥ 5), a second failure adding one or more
data qubit errors during a subsequent part of the compu-
tation can combine with the weight-two error resulting in
an uncorrectable data qubit error. Hence, such a prepara-
tion protocol would not be fault tolerant up to the full code
distance.

2. Implementation of logical Clifford gates

Since the CNOT gate is transversal for the repetition
code, we focus on implementing a generating set of single-
qubit Clifford operations. Recall that the Clifford group is
generated by P (2)

n = 〈Hi, Si, CNOTij 〉, where

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, (J2)

are the Hadamard and phase gate operators. In what fol-
lows we show how to implement S and Q = SHS, which
also forms a generating set for single-qubit Clifford oper-
ations. A key to the implementation of such gates will be
the injection of the state |i〉 = (1/√2)(|0〉 + i|1〉), which
is a +1 eigenstate of the Pauli Y operator. The logical state
|i〉L can be prepared using scheme 1 of Appendix J 1 by
replacing ZL with YL = Y1Z2 · · · Zn.

In Fig. 48 we provide a circuit for implementing SL,
which requires |i〉L as an input state, a transversal CNOT
gate, and a logical Z-basis measurement. If a −1 mea-
surement outcome is obtained, we apply a ZL correction
to the data. Note however that a measurement error can
result in a logical ZL being applied incorrectly to the data.
As such, to guarantee fault tolerance, one can repeat the
circuit of Fig. 48 and use the STOP algorithm to decide
when to terminate. The final measurement outcome is then
used to determine if a ZL correction is necessary. The
implementation of SL can thus be summarized as follows.

FIG. 48. Circuit for implementing a logical S gate. The circuit
requires the preparation of |i〉L, and the CNOT gate is transver-
sal. A logical |Z〉L operator is applied when the measurement
outcome of the ancilla is −1.

FIG. 49. Circuit for implementing a logical Q = SHS gate.
The circuit requires the preparation of |i〉L, and the CNOT gate
is transversal. A logical |Y〉L operator is applied when the
measurement outcome of the ancilla is −1.

SL gate implementation:

1. Implement the circuit in Fig. 48 and let the measure-
ment outcome be s1.

2. Repeat the circuit in Fig. 48 and use the STOP
algorithm to decide when to terminate.

3. If the final measurement outcome sr = +1, do noth-
ing, otherwise apply ZL = Z1Z2 · · · Zn to the data.

The circuit for implementing the logical Q = SHS gate
is given in Fig. 49. The circuit consists of an injected
|i〉L state, a transversal CNOT gate and a logical X -basis
measurement is applied to the input data qubits. If the mea-
surement outcome is −1, YL is applied to the data. As
with the SL gate, we repeat the application of the circuit
in Fig. 49 to protect against measurement errors. The full
implementation of QL is given as follows.

QL gate implementation:

1. Implement the circuit in Fig. 49 and let the measure-
ment outcome be s1.

2. Repeat the circuit in Fig. 49 and use the STOP
algorithm to decide when to terminate.

3. If the final measurement outcome sr = +1, do noth-
ing, otherwise apply YL = Y1Z2 · · · Zn to the data.

Note that the logical Hadamard gate can be obtained
from the SL and QL protocols using the identity H =
S†SHSS† = S†QS†. Hence ignoring repetitions of the cir-
cuits in Figs. 48 and 49, the implementation of HL requires
three logical CNOT gates, two |−i〉L and one |i〉L state,
two logical Z-basis measurements, and one logical X -basis
measurement. Instead of using two logical Hadamard gates

FIG. 50. Efficient circuit for implementing a CZ gate given the
higher cost of logical H gates compared to logical S gates.
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and one CNOT gate to obtain a CZ gate, we provide a more
efficient circuit in Fig. 50.

Lastly, we point out that since the circuits in Figs. 48
and 49 contain only stabilizer operations and injected |i〉L
states, using the STOP algorithm to repeat the measure-
ments is not strictly necessary. For instance, one could
repeat the measurement a fixed number of times and major-
ity vote instead of using the STOP algorithm. However,
in low-noise-rate regimes, the STOP algorithm can poten-
tially be much more efficient since the average number of
repetitions for the measurements can approach t+ 1 where
t = (d − 1)/2.

APPENDIX K: GROWING ENCODED DATA
QUBITS TO LARGER CODE DISTANCES WITH

THE REPETITION CODE

In this section, we provide a simple protocol for growing
a state |ψ〉d1 = α|0〉d1 + β|1〉d1 encoded in a distance d1

repetition code to a state |ψ〉d2 = α|0〉d2 + β|1〉d2 encoded
in a distance d2 > d1 repetition code. We emphasize that
the protocol presented in this section is applicable to arbi-
trary states and will be used for growing |TOF〉 states
prepared using the fault-tolerant methods of Sec. VI to
larger code distances.

Let Sd1 = 〈X1X2, X2X3, . . . , Xd1−1Xd1〉 be the stabi-
lizer group for the distance d1 repetition code with
cardinality |Sd1 | = d1 − 1. Similarly, we define Sd′1 =〈Xd1+1Xd1+2, . . . , Xd2−1Xd2〉with |Sd′1 | = d2 − d1 − 1. Fur-
thermore, the stabilizer group for the distance d2 repetition
code is given by Sd2 = 〈X1X2, X2X3, . . . , Xd2−1Xd2〉.

In the remainder of this section, we define g(d1)
i to be the

i’th stabilizer in Sd1 and g
(d′1)
i to be the i’th stabilizer in Sd′1 ,

so that g(d1)
i = XiXi+1 and g

(d′1)
i = Xd1+iXd1+i+1.

Protocol for growing |ψ〉d1 to |ψ〉d2 :

1. Prepare the state |ψ1〉 = |0〉⊗(d2−d1).
2. Measure all stabilizers in Sd′1 resulting in the state

|ψ2〉d′1 =
∏d2−d1−1

i=1

(
I ± g

(d′1)
i /2

)
|0〉⊗(d2−d1).

3. Repeat the measurement of stabilizers in Sd′1 and
apply MWPM to the syndrome history to correct

errors and project to the code-space. If g
(d′1)
i is mea-

sured as −1 in the first round, apply the correction∏d1+i
k=d1+1 Zk to the data.

4. Prepare the state |ψ3〉 = |ψ〉d1 ⊗ |ψ2〉d′1 and mea-
sure Xd1Xd1+1.

5. Repeat the measurement of all stabilizers if Sd2 and
use MWPM over the syndrome history to correct
errors. If in the first round the stabilizer Xd1Xd1+1

is measured as −1, apply the correction
∏d1

i=1 Zi.

As a remark, the corrections stated in step 3 and 5 can
be postponed to a later time after the growing protocol
is completed. The reason is that one can use the entire
syndrome history from each step, in addition to the syn-
dromes measured after the states have merged to apply the
appropriate corrections.

The growing scheme involves two blocks, the first being
the state |ψ〉d1 , which we want to grow to |ψ〉d2 . The sec-
ond block involves the set of qubits, which are prepared
in the state |ψ2〉d′1 and stabilized by Sd′1 (steps 1–3). The
key is to measure the boundary operator Xd1Xd1+1 between
the two blocks, which effectively merges both blocks into
the encoded state |ψ〉d2 and constitutes a simple imple-
mentation of lattice surgery [76,78,123,124]. To see this,
consider the state prior to step 4:

|ψ3〉 = |ψ〉d1 ⊗ |ψ2〉d′1
= α|0〉d1 ⊗ |ψ2〉d′1 + β|1〉d1 ⊗ |ψ2〉d′1

= α
d2−1∏

i=d1+1

( I + g
(d′1)
i

2

)
|0〉d1 ⊗ |0〉⊗(d2−d1)

+ βX1

d2−1∏

i=d1+1

( I + g
(d′1)
i

2

)
|0〉d1 ⊗ |0〉⊗(d2−d1),

(K1)

where we used |1〉d1 = X1|0〉d1 . When measuring Xd1Xd1+1

and performing the correction
∏d1

i=1 Zi if the measurement
outcome is −1, |ψ〉3 is projected to

|ψ〉f = α
d2−1∏

i=d1+1

( I + g
(d′1)
i

2

)( I + Xd1Xd1+1

2

) d1−1∏

j=1

×
( I + g(d1)

j

2

)
|0〉⊗d2 + βX1

d2−1∏

i=d1+1

( I + g
(d′1)
i

2

)

×
( I + Xd1Xd1+1

2

) d1−1∏

j=1

( I + g(d1)
j

2

)
|0〉⊗d2

= α
d2−1∏

i=1

( I + XiXi+1

2

)
|0〉⊗d2

+ βX1

d2−1∏

i=1

( I + XiXi+1

2

)
|0〉⊗d2

= α|0〉d2 + βX1|0〉d2

= |ψ〉d2 . (K2)

The rounds of repeated stabilizer measurements in steps 3
and 5 are required due to the random outcomes and mea-
surement errors, which can occur when performing the
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FIG. 51. Diagram illustrating our protocol for growing the
state |ψ〉d1 to |ψ〉d2 with the ATS layout by starting with the
two blocks stabilized by Sd1 and Sd′1 . The yellow vertices are the
data qubits, and the gray vertices correspond to the ancilla qubits
used to measure the stabilizers of the repetition code. The mea-
surement of Xd1 Xd1+1 (with random ±1 outcome) is highlighted
by the purple semicircle. After performing the appropriate cor-
rections, the final block is stabilized by Sd2 .

appropriate projections. A pictorial representation for the
growing scheme is shown in Fig. 51.

APPENDIX L: TOFFOLI SIMULATION
TWIRLING APPROXIMATION

To simulate the fault-tolerant preparation of the |TOF〉
state taking into account all fault locations, we imple-
ment Monte Carlo methods using a Gottesman-Knill-type
simulation [125] to avoid running into scalability issues.
However, since the circuit in Fig. 14(b) contains physi-
cal Toffoli gates, some type of approximation is necessary
to perform a Gottesman-Knill-type simulation with such
circuits.

In order to determine the most appropriate type of
approximation, writing a Toffoli gate as CCX, we first
observe that

(CCX)(I ⊗ I ⊗ Z)|ψ〉 = (CZA,B ⊗ Z)(CCX)|ψ〉, (L1)

for some arbitrary state |ψ〉. In other words, propagating a
Z error through the target qubit of the Toffoli gate results in
a CZ error on the two control qubits. Recall that we label
the three logical qubits by {A, B, C}.

In what follows, we consider the transformation of the
|TOF〉 state with input data qubit Z errors on the third block
when using a single |+〉 ancilla to measure gA. Note that all
conclusions remain unchanged if instead we used the GHZ
state of Fig. 14(b).

Let Ak be a subset of k qubits and consider k ≥ 1 data
qubit errors on the third block expressed as E(C) = I ⊗ I ⊗

∏
j∈Ak

Zj ≡
∏k

j=1 Z(C)j . We have that

|ψ〉in = |+〉
k∏

j=1

Z(C)j |TOF〉. (L2)

After applying gA and propagating the Z errors through the
Toffoli gates, |ψ〉in becomes

k∏

j=1

Z(C)j

(
|0〉|TOF〉 + |1〉

k∏

j=1

Z(A)j |TOF〉
)

=
k∏

j=1

Z(C)j

[
|+〉

( I +∏k
j=1 Z(A)j√
2

)
|TOF〉

+ |−〉
( I −∏k

j=1 Z(A)j√
2

)]
, (L3)

where
∏k

j=1 Z(A)j are products of Z errors on the first data
block, which have identical support with the Z errors
on the third block. After measuring the ancilla in the X
basis, a ±1 measurement outcome results in the state |ψ〉f
given by

|ψ〉f =
k∏

j=1

Z(C)j

( I ±∏k
j=1 Z(A)j√
2

)
|TOF〉. (L4)

From Eq. (L4), we see that when performing one
round of error detection of the first block A, the error(

I ±∏k
j=1 Z(A)j /

√
2
)

will project either to I or
∏k

j=1 Z(A)j

with 50% probability each unless
∏k

j=1 Z(A)j = Z(A)L in
which case the state remains unchanged.

Given the above, when performing our Gottesman-
Knill-type simulations when measuring gA, if the input Z
errors to the third block are

∏k
j=1 Z(C)j , we flip the GHZ

ancilla measurement outcome with 50% probability and do
the following: if k < d, we add the Z errors

∏k
j=1 Z(A)j to

the first block with 50% probability. If k = d, we add ZL to
the first block with 100% probability.

Note that such a simulation method is exact when k < d
and introduces only a discrepancy when k = d. Since such
events are rare, our approximation method differs from an
exact simulation of the bottom-up |TOF〉 state preparation
scheme only by a small amount.

APPENDIX M: FITTING PROCEDURE FOR
MEMORY AND LATTICE SURGERY

Here we extend the discussion of lattice surgery pre-
sented in Sec. V as well as describe and justify the fit-
ting procedures used in our error-correction simulations.
These fits enable us to reliably extrapolate to larger code
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FIG. 52. The three stages of lattice surgery corresponding to cross sections (time slices) of the lattice-surgery space-time diagram
in Fig. 11. Step 1 prepare: data qubits between the surface-code blocks are prepared in the |0〉 state. Step 2 merge: start measuring the
Z and X stabilizers indicated. The product of the X stabilizers (highlighted with white vertices) yields the outcome XL1XL2. However,
a measurement error on a white vertex will flip the outcome and so these stabilizer measurements must be repeated dm times, with dm
chosen sufficiently large to suppress timelike errors to the desired probability. Step 3 split: The qubits between the initial surface-code
blocks are measured in the Z basis. Note that it is not possible to use X -basis measurements to disentangle as this would measure XL1
and XL2. If the parity of the single-qubit Z measurements is “−1” then we must apply a Pauli correction XL1 (or equivalently XL2) as a
correction. Both the measurement of XL1XL2 and the estimated Pauli correction must be done fault tolerantly after having decoded the
syndrome. In the case of XL1XL2, we choose one particular time slice tp and make an initial guess by multiplying all the white vertices
at time tp . If the decoder assigns a measurement error to any white vertex at time tp , then we must account by flipping the XL1XL2. If
the accumulated physical Z errors before time tp anticommute with XL1XL2 then we flip the outcome. For a similar discussion of lattice
surgery see Ref. [124]. Compared to Figs. 2 and 5 we use a similar graphical representation but for simplicity omit the location of the
transmon, readout qubit, and ATS.

sizes than simulated, which is required for our analysis of
resource costs for large-scale quantum computations (see
Sec. VIII).

In addition, to presenting results for memory errors we
also consider lattice-surgery errors. Lattice surgery is the
primary technique we consider for performing Clifford
gates and magic state injection. It is a procedure for mea-
suring multiqubit logical Pauli operators such as X ⊗m

L with
m ≥ 2. It can be regarded as a code deformation where
the m logical qubits are temporally merged into a code of
m− 1 logical qubits, and then split into their constituent m
logical qubits. For the simple m = 2 case, we illustrate the
space-time diagram for this process in Fig. 11 of the main
text. Here we present a more detailed diagram in Fig. 52.

An incredibly powerful and beautiful feature of lattice
surgery is that decoding via matching naturally extends
over this 3D space-time structure without being interrupted

by lattice surgery. However, some care is needed to cor-
rectly account for boundaries and assess different failure
modes. For a planar surface code, it is well known that
one must allow defects to match with the appropriate
boundaries in the space direction. When performing lat-
tice surgery, it is also important to match to appropriate
boundaries in the time directions.

To understand boundary effects, consider the more
detailed explanation of lattice surgery in Fig. 52. The pro-
cedure starts and ends with Z-basis state preparations and
measurements. A bit-flipped single-qubit measurement or
preparation will yield a pair of Z syndrome defects. That
is, the initial and final rounds of Z stabilizer measurements
are semi-ideal as they are reconstructed from single-qubit
information so that any defects occur in pairs. These short
X strings are then easily matched. In contrast, an X syn-
drome measurement error (at the start and end of lattice
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surgery) can lead to an isolated defect and is potentially
harmful as it flips the outcome of the lattice-surgery oper-
ation. However, for such an isolated defect near a time
boundary, the best explanation is clearly an isolated mea-
surement error. Therefore, we match these defects to red
boundaries in the time direction.

As a warm up to discussing the probability of timelike
errors, we first recap the error-scaling properties of mem-
ory and logical Z errors. Consider a dx by dz surface-code
patch storing a logical qubit for t surface-code cycles. We
expect the total logical error probability to scale as [1−
exp(−λt)]/2 for some constant rate λ, which for small λ is
approximately λt/2. Furthermore, as dx increases the num-
ber of paths across the code increases linearly, so we expect
that λ ∝ dx and the total Z-logical probability to scale as

PZ = dxtF(dz, p1, . . . , pk), (M1)

for some function F of dz and relevant hardware parame-
ters (p1, . . . , pk). Note that dxt corresponds to the area of
the vertical red boundaries in Fig. 11. For fixed parameters
(dz, p1, . . . , pm) the value of F(dz, p1, . . . , pm) can be esti-
mated by Monte Carlo simulation and evaluating PZ/(dxt).
For simulation purposes, standard practice is to assume:
at time zero, the system is in a “+ 1" eigenstates of all
stabilizers; at time t, the round of stabilizer measurements
is ideal. This assumption introduces a finite-size effect
error into PZ/(dxt). This is suppressed by taking t large,
and community folklore suggests that t = max[dz, dx] will
suffice though one could push higher. The exact form of
function F can be quite involved, though we know it will
be exponentially suppressed by the relevant distance dz.
Taking our sole experimental parameter to be κ1/κ2 we
find good fits of the form

PZ = dxtaz(bzκ1/κ2)
czdz , (M2)

where az, bz, cz are fitted parameters. For small dx, there
will be a finite-size effect so the scaling is not linear in dx.
However, we can still use such a fit when dx is held con-
stant provided we do not attempt to extrapolate to larger
dx. Note that Eq. (M2) is not necessarily a leading-order fit
of the classical form O(p (d−1)/2). Since the probability of
logical failures has a entropic and combinatorial compo-
nent, it is dominated by errors with a weight much larger
than (d − 1)/2. As such, we do not attempt a leading-order
fit but rather it is appropriate to fit the scaling exponent cz.

We present the result of this fitting procedure in Fig. 53
and observe that it works well over the interval 10−5 ≤
κ1/κ2 ≤ 10−4. At higher values of κ1/κ2, higher-order
contributions to a logical Z failure become important. Sim-
ilarly, at lower values of κ1/κ2, lower-order contributions
become important. Even if a more sophisticated fitting
function of κ1/κ2 is assumed, we expect a finite range of
applicability since there are other relevant experimental
parameters in the noise model.
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FIG. 53. Fitted results for simulation of dx = 3 surface code
for logical Z and timelike errors. We fit according to the ansatz of
Eqs. (M2) and (M3). (Top) The logical Z simulations for which
we set t = dz and plot the error probability divided by t. (Bot-
tom) the probability of a timelike error during lattice surgery for
which we set � = dm − 1. All data points shown are used in fit-
ting. This is a truncated data set eliminating points above 10−4

on the error rate axis and eliminating points outside the relevant
range of κ1/κ2.

Similar reasoning can be applied to timelike errors. The
relevant boundary has an area �dx, where � is the distance
between the code blocks. As with Z-logical errors, the
exponential decay of timelike errors follows from a per-
colation theory analysis [126,127] of a string connecting
the timelike boundaries. As always in percolation prob-
lems, the probability of a percolation event is exponentially
suppressed in the distance between the boundaries (when-
ever below some threshold). The relevant boundaries are
separated by a distance dm, which we call the measure-
ment distance, and physically corresponds to the number
of repeated rounds of syndrome measurements during the
merge step. Therefore, we fit to the ansatz

PM = �dxaz(bmκ1/κ2)
cmdm , (M3)

where am, bm, cm are fitted parameters. To obtain an esti-
mate of PM we simulate the middle group of qubits in
Fig. 52. We wish to isolate the timelike errors and so
freeze out Z-logical errors by assuming that the leftmost
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and rightmost qubits are ideal and error-free. This is analo-
gous to the assumption of ideal measurements in a memory
simulation. Furthermore, since the dz distance is tempo-
rally extended during lattice surgery, such errors will be
rare in comparison. Again, this idealization introduces a
finite-size effect that vanishes as � grows relative to dm.

We present the result of this fitting procedure for thin
surface codes in Fig. 53 and observe that it works well over
the interval 10−5 ≤ κ1/κ2 ≤ 5× 10−4. We did not collect
data for κ1/κ2 ≥ 5× 10−4 as we had already identified that
the surface-code overhead will be prohibitively large in
this regime.

To the best of our knowledge, there have not been
previous simulations that investigate timelike errors in
codes with boundaries and/or using circuit-level noise.
For instance, timelike errors were accounted for by
Raussendorf and Harrington [128] but using a toy, phe-
nomenological noise model and periodic boundary condi-
tions in both space and time.

Widespread practice is to set dm = dx = dz but there is
no a prior reason to believe this is optimal. Indeed, just as
physical bias in X and Z noise leads to an asymmetry in our
choice of dx and dz, a realistic noise model will influence
the optimal choice of dm. In later calculations we find that
dm = dz − 2 is the most common optimal choice for the
main algorithm. Furthermore, in the design of magic state
distillation factories, the timelike errors are not critically
important (see Table XIV) and so inside the factory dm can
be set much smaller (by about a factor 1/2) than one would
otherwise expect.

APPENDIX N: EDGE WEIGHTS AND DECODING
GRAPHS FOR THE REPETITION AND SURFACE

CODES

In this section we provide the decoding graphs used
to implement MWPM with the repetition and surface
codes considered in this paper. We also provide details for
computing the edge weights of all edges in a given graph.

1. Repetition-code decoding graphs

The circuit for measuring the stabilizer of the d = 5
repetition code is shown in Fig. 54(a) and can straight-
forwardly be generalized to arbitrary code distances. The
corresponding graph for decoding the d = 5 repetition
code using MWPM with five rounds of syndrome mea-
surements is shown in Fig. 54(b). The purple vertices
correspond to the measurement outcome of each ancilla
qubit (prepared in |+〉 and measured in the X basis),
and the horizontal edges correspond to the physical data
qubits. A vertex is highlighted if the measurement out-
come of the corresponding ancilla is nontrivial. We also
add spacelike boundary vertices and edges (shown in red).
For a given syndrome measurement round [corresponding
to a one-dimensional slice of the graph in Fig. 54(b)], a

(a) (b)

FIG. 54. (a) Circuit for measuring the stabilizers of the d = 5
repetition code. The dark rectangular boxes correspond to idling
qubit locations. (b) MWPM decoding graph for the d = 5 rep-
etition code where the syndrome measurement is repeated 5
times.

boundary vertex is highlighted if on odd number of bulk
vertices in the corresponding one-dimensional slice are
highlighted. To deal with measurement errors, dashed gray
vertical edges are added and connect vertices of two one-
dimensional graphs. Lastly, cross-diagonal edges (shown
in green) are added to deal with space-time correlated
errors arising from failures at CNOT gate locations (see
below for explicit examples). More details for implement-
ing graph-based decoding using MWPM can be found in
Refs. [82,129,130].

We now describe how to compute the edge weights for
each edge type of the graph in Fig. 54(b). For a given
edge e, we must first compute the probability Pe of all fail-
ure events resulting in e being highlighted. The weight we
for the edge e is then given by we = − log(Pe) (see, for
instance, Refs. [99,129,131]). Such a prescription ensures
that edges arising from more likely failure events are cho-
sen with higher probability when finding the lowest weight
path between two highlighted vertices. In what follows, we
refer to Pe as the edge-weight probability for the edge e.

The first and last data qubits in Fig. 54(a) have an
extra idling location compared to all other data qubits,
and their edge-weight probabilities are labeled Ph1 and
Ph2 , whereas the other data qubits have edge-weight prob-
abilities labeled by Ph. The dashed gray vertical edges
connecting are labeled Pv and the green space-time cor-
related edges are labeled Pd. Next we define Ps to be the
probability of a |+〉 state preparation error, Pm the proba-
bility of a measurement error, Pi the probability of an idle
error and PZ1 , PZ2 , and PZ1Z2 the probability of a Z ⊗ I ,
I ⊗ Z and Z ⊗ Z CNOT failure (where the first qubit is the
control qubit of the CNOT).

We now show how to compute Ph and Pd to leading
order (the other edge-weight probabilities can be obtained
using analogous methods). In the case of a single failure,
a bulk horizontal edge (say corresponding to an error on
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the data qubit qj ) can be highlighted if either a Z error
occurs at the idle location during the preparation of |+〉, a
Z ⊗ Z failure on the CNOT gate at the second time step with
qj as a target qubit, or an I ⊗ Z failure on the CNOT gate
on the third time step occurring in the previous syndrome
measurement round. Hence we have

P(t1)h = Pi(1− PZ1Z2)+ PZ1Z2(1− Pi), (N1)

and

P(t>t1)
h = 2Pi(1− PZ1Z2)(1− PZ2)(1− Pi)

+ PZ1Z2(1− Pi)
2(1− PZ2)

+ PZ2(1− Pi)
2(1− PZ1Z2), (N2)

where P(t1)h = Ph in the first syndrome measurement round,
and P(t>t1)

h = Ph in all subsequent syndrome measurement
rounds.

Now suppose a Z ⊗ Z error occurs on a CNOT gate in
the third time step of the syndrome measurement round
t resulting in a Z data qubit error on qubit qj while also
flipping the measurement outcome of the ancilla ak. Note
that if a Z error had occurred on qubit qj prior to apply-
ing the two CNOT gates, both ancillas ak and ak+1 would be
measured nontrivially. Hence in round t+ 1 (and assum-
ing no other failures), the measurement outcome of ak will
not change whereas the measurement outcome of ak+1 will
change. To ensure that such an event is treated to leading
order, we introduce a green cross-diagonal edge as seen in
Fig. 54(b). Also note that a I ⊗ Z error on a CNOT in the
second time step also results in such an edge. Hence we
have that

Pd = PZ1Z2(1− PZ2)+ PZ2(1− PZ1Z2). (N3)

A similar analysis results in the following expressions for
the remaining edge-weight probabilities:

Pv = Pm(1− Ps)(1− PZ1)
2 + Ps(1− Pm)(1− PZ1)

2

+ 2PZ1(1− PZ1)(1− Ps)(1− Pm), (N4)

P(t1)h1
= P(t1)h , (N5)

P(t>t1)
h1

= 3Pi(1− Pi)
2(1− PZ1Z2)(1− PZ2)

+ PZ1Z2(1− Pi)
3(1− PZ2)

+ PZ2(1− Pi)
3(1− PZ1Z2), (N6)

P(t1)h2
= 2Pi(1− Pi)(1− PZ1Z2)+ PZ1Z2(1− Pi)

2, (N7)

and

P(t>t1)
h2

= P(t>t1)
h1

. (N8)

2. Surface-code decoding graphs

The two-dimensional graphs for decoding the X - and Z-
stabilizer measurement outcomes of a dx = 5 and dz = 7
surface code, along with their corresponding edge-weight
probability labels, are shown in Fig. 55. We show below
the edges that need to be added when considering measure-
ment errors and space-time correlated errors arising from
CNOT gate failures. However, we first provide edge-weight
probabilities for the edges of the two-dimensional graphs.

Let G(2D)
(dx)

and G(2D)
(dz)

be the two-dimensional graphs
corresponding to the X - and Z-stabilizer measurement out-
comes. For the graph G(2D)

(dx)
, we label the bulk edge-weight

probabilities by P(2D)
BLTRX and P(2D)

TLBRX. All other labels in
Fig. 55(b) are used for boundary edges. Similarly, for the
graph G(2D)

(dz)
, we label the bulk edge weight probabilities by

P(2D)
BLTRZ and P(2D)

TLBRZ with all other labels in Fig. 55(c) rep-
resenting boundary edge-weight probabilities. In order to
simplify the expressions for the edge-weight probabilities,
we define the following function:

	(P1, P2, . . . , Pj ; n1, n2, . . . , nj ) ≡
j∑

k=1

nkPk(1− Pk)
nk−1

j∏

i=1,i�=k

(1− Pi)
ni . (N9)

In what follows, we define P
(PiPj )

CNOT to be the probabil-
ity that a CNOT gate failure results in a two-qubit Pauli
error of the form Pi ⊗ Pj . We also define P(Pi)

id to be the
probability that a single-qubit idling location results in a
Pi Pauli error on that qubit. To further simplify the edge-
weight probability polynomials, we define the following
probabilities:

P(1)ZZCX = P(ZZ)
CNOT + P(ZY)

CNOT + P(YZ)
CNOT + P(YY)

CNOT, (N10)

P(1)IZCX = P(IZ)CNOT + P(XZ)
CNOT + P(IY)CNOT + P(XY)

CNOT, (N11)

P(1)ZICX = P(ZI)
CNOT + P(ZX )

CNOT + P(ZY)
CNOT + P(ZZ)

CNOT + P(YI)
CNOT

+ P(YX )
CNOT + P(YZ)

CNOT + P(YY)
CNOT, (N12)

P(2)IZCX = P(IZ)CNOT + P(XZ)
CNOT + P(IY)CNOT + P(XY)

CNOT + P(ZI)
CNOT

+ P(ZX )
CNOT + P(YI)

CNOT + P(YX )
CNOT, (N13)

P(3)IZCX = P(IZ)CNOT + P(IY)CNOT + P(ZZ)
CNOT + P(ZY)

CNOT + P(XZ)
CNOT

+ P(XY)
CNOT + P(YZ)

CNOT + P(YY)
CNOT, (N14)

and

P(2)ZICX = P(ZI)
CNOT + P(YI)

CNOT + P(ZX )
CNOT + P(YX )

CNOT, (N15)

P(1)d = P(Z)id + P(Y)id . (N16)
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(b)

(a)

(c)

FIG. 55. (a) Surface-code lattice with
dx = 5 and dz = 7. (b) Graph used for
decoding X stabilizer measurement out-
comes with both bulk and boundary edge-
weight probability labels. (c) Graph used
for decoding Z-stabilizer measurement out-
comes with both bulk and boundary edge-
weight probability labels.

Using Eqs. (N9) to (N16) and the same methods as in
Appendix N 1, the leading-order edge-weight probabilities
for the graph G(2D)

(dx)
are given by

P(2D)
BLTRX = 	(P(1)ZZCX, P(1)IZCX, P(1)d ; 1, 1, 1), (N17)

P(2D)
TLBRX = 	(P(1)ZZCX, P(1)IZCX, P(1)ZICX, P(2)IZCX, P(1)d ; 2, 2, 1, 1, 1),

(N18)

PC1X = 	(P(3)IZCX, P(2)ZICX, P(1)d ; 1, 1, 1), (N19)

PTB2X = P(2D)
BLTRX, (N20)

PTB1X = 	(P(1)ZZCX, P(1)IZCX, P(2)IZCX, P(1)d ; 2, 1, 1, 1), (N21)

PC2X = 	(P(3)IZCX, P(2)IZCX, P(1)ZZCX, P(1)d ; 1, 1, 1, 1), (N22)

PMRX 1 = 	(P(3)IZCX, P(2)ZICX, P(1)d ; 1, 2, 1), (N23)
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PMRX 2 = 	(P(3)IZCX, P(1)IZCX, P(1)ZICX, P(2)IZCX, P(1)d ; 1, 2, 1, 1, 1),
(N24)

PC3X = 	(P(3)IZCX, P(1)IZCX, P(1)ZICX, P(1)d ; 1, 1, 1, 1), (N25)

PBB2X = P(2D)
BLTRX, (N26)

PBB1X = 	(P(1)IZCX, P(1)ZZCX, P(1)ZICX, P(1)d ; 2, 1, 1, 1), (N27)

PC4X = PC3X , (N28)

PMLX 1 = 	(P(3)IZCX, P(1)IZCX, P(2)ZICX, P(1)ZICX, P(1)d ; 1, 1, 1, 1, 1),
(N29)

and

PMLX 2 = PMLX 1. (N30)

For the graph G(2D)
(dz)

, we first define the following probabil-
ities:

P(1)XXCX = P(XX )
CNOT + P(XY)

CNOT + P(YX )
CNOT + P(YY)

CNOT, (N31)

P(1)XICX = P(XI)
CNOT + P(YI)

CNOT + P(XZ)
CNOT + P(YZ)

CNOT, (N32)

P(1)IXCX = P(IX )CNOT + P(ZX )
CNOT + P(IY)CNOT + P(ZY)

CNOT, (N33)

P(2)IXCX = P(IX )CNOT + P(IY)CNOT + P(ZX )
CNOT + P(ZY)

CNOT + P(XX )
CNOT

+ P(XY)
CNOT + P(YX )

CNOT + P(YY)
CNOT, (N34)

P(3)IXCX = P(IX )CNOT + P(IY)CNOT + P(ZX )
CNOT + P(ZY)

CNOT + P(XI)
CNOT

+ P(XZ)
CNOT + P(YI)

CNOT + P(YZ)
CNOT, (N35)

P(2)XICX = P(XI)
CNOT + P(YI)

CNOT + P(XX )
CNOT + P(YX )

CNOT + P(XZ)
CNOT

+ P(YZ)
CNOT + P(XY)

CNOT + P(YY)
CNOT, (N36)

and

P(2)d = P(X )id + P(Y)id . (N37)

Using Eqs. (N31) to (N37), the leading-order edge-weight
probabilities for the graph G(2D)

(dz)
are given by

P(2D)
BLTRZ = 	(P(1)XXCX, P(1)XICX, P(2)d ; 1, 1, 1), (N38)

P(2D)
TLBRZ = 	(P(1)XXCX, P(1)XICX, P(2)IXCX, P(3)IXCX, P(2)d ; 2, 2, 1, 1, 1),

(N39)

PC1Z = 	(P(2)XICX, P(1)IXCX, P(2)d ; 1, 1, 1), (N40)

PTB1Z = 	(P(2)XICX, P(1)XICX, P(2)IXCX, P(3)IXCX, P(1)XXCX,

P(2)d ; 1, 1, 1, 1, 1, 1), (N41)

PTB2Z = 	(P(2)XICX, P(1)IXCX, P(2)d ; 1, 2, 1), (N42)

PC2Z = PC1Z , (N43)

PMRZ1 = 	(P(1)XXCX, P(1)XICX, P(3)IXCX, P(2)d ; 1, 2, 1, 1), (N44)

PMRZ2 = P(2D)
BLTRZ, (N45)

PC3Z = PC1Z , (N46)

PBB1Z = 	(P(2)XICX, P(1)IXCX, P(2)IXCX, P(1)XICX, P(2)d ; 1,1,1,1,1),
(N47)

PBB2Z = PBB1Z , (N48)

PC4Z = 	(P(2)XICX, P(1)XICX, P(2)IXCX, P(2)d ; 1, 1, 1, 1), (N49)

PMLZ1 = 	(P(1)XXCX, P(1)XICX, P(2)IXCX, P(2)d ; 1, 2, 1, 1), (N50)

and

PMLZ2 = P(2D)
BLTRZ. (N51)

We now consider the three-dimensional version of the
graphs in Figs. 55(b) and 55(c) (which we label G(3D)

(dx)

and G(3D)
(dz)

) to deal with measurement errors in addition to
space-time correlated errors arising from CNOT gate fail-
ures. As an example, consider an I ⊗ Z error arising from a
CNOT gate failure in the second time step of an X -type (red)
plaquette during the kth syndrome measurement round.
Such a failure adds a Z data-qubit error, which propagates
through the CNOT in the fifth time step of the top right red
X -type plaquette. Let vj and vk be the vertices correspond-
ing to the measurement outcomes of the two ancilla qubits,
which would detect the Z error. Assuming there were no
other failures, only one of the two vertices (say vj ) changes
from rounds k − 1 to round k. In the next syndrome mea-
surement round, both X -type plaquettes will detect the Z
data qubit error the ancilla qubits in both X -type plaque-
ttes will be highlighted. Hence only the vertex vk changes
from round k to k + 1. In order to ensure that the high-
lighted ancillas arising from failures as in the example
considered here can be reached by a single edge when
implementing MWPM, the dark green edges in the graph
of Fig. 56(a) (labeled P(bulk)

d1,X ) are added to the graph of
Fig. 55(b). The other types of space-time correlated edges
are distinguished by their color and associated label (all
edges of the same color have identical edge-weight proba-
bilities). Similarly, we add the dashed gray vertical edges
in Figs. 56(a) and 56(b) connecting identical vertices from
two consecutive syndrome measurement rounds to deal
with measurement errors. The edge-weight probabilities
of such edges are labeled PX

V and PZ
V . Note that there are

also solid dark vertical edges at some of the boundaries of
the graphs where weight-two X -type and Z-type stabiliz-
ers occur in Fig. 55(a). These vertical edges have different
edge-weight probabilities, which are labeled PX ,bound

V and
PZ,bound

V .
In order to avoid making the visualization of the

three-dimensional graphs too cumbersome, in Figs. 56(a)
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(a)

(b)

FIG. 56. (a) Graph used for decoding X -
type stabilizer measurements, which include
vertical edges (dashed gray edges) for deal-
ing with measurement errors and space-time
correlated edges for correcting errors arising
from CNOT gate failures causing two dif-
ferent syndrome measurement outcomes in
consecutive rounds. (b) Same as in (a) but
for Z-type stabilizer measurements.

and 56(b) we included only vertices corresponding to the
first two syndrome measurement rounds. Further, the two-
dimensional edges from the second round were omitted
in order to maintain focus on the vertical and space-time
correlated edges connecting vertices from two consecutive
syndrome measurement rounds.

Let

PVCX = P(ZI)
CNOT + P(ZX )

CNOT + P(YI)
CNOT + P(YX )

CNOT, (N52)

and

PVCZ = P(IX )CNOT + P(IY)CNOT + P(ZX )
CNOT + P(ZY)

CNOT. (N53)

Further, let Ps be the probability of preparing |−〉 instead of
|+〉 and Pm be the probability that a X -basis measurement
outcome is flipped. The edge weight probabilities corre-
sponding to the dashed gray edges in Figs. 56(a) and 56(b)
(i.e., the vertical edges of G(3D)

(dx)
and G(3D)

(dz)
) are given by

PX
V = 	(PVCX, Ps, Pm; 4, 1, 1), (N54)

PX ,bound
V = 	(PVCX, Ps, Pm; 2, 1, 1), (N55)

PZ
V = 	(PVCZ, Ps, Pm; 4, 1, 1), (N56)

and

PZ,bound
V = 	(PVCZ, Ps, Pm; 2, 1, 1). (N57)

Next we consider the edge-weight probabilities for the
space-time correlated edges of G(3D)

(dx)
. The dark green edges

labeled by P(bulk)
d1,X have different values at the boundaries

[dashed dark green edges in the first and last column of
Fig. 56(a)] and are labeled by P(bound)

d1,X . We have that

P(bulk)
d1,X = 	(P(1)IZCX, P(1)ZZCX, P(2)ZICX; 1, 1, 2), (N58)

and

P(bound)
d1,X = 	(P(1)IZCX, P(1)ZZCX, P(2)ZICX; 1, 1, 1). (N59)

The edge-weight probability Pd2,X [represented by the light
green edges in Fig. 56(a)] is given by

Pd2,X = 	(P(1)IZCX, P(1)ZZCX; 1, 1). (N60)

Lastly, the edge-weight probability Pd3,X [represented by
the yellow edges in Fig. 56(a)] is given by

Pd3,X = Pd2,X . (N61)

Similarly, for the graph G(3D)
(dz)

, the edge-weight probability
Pd1,Z (represented by the light green edges) is given by

Pd1,Z = 	(P(1)XICX, P(1)XXCX; 1, 1). (N62)

The bulk and boundary edge-weight probabilities P(bulk)
d2,Z

(dark green edges) and P(bound)
d2,Z (dashed dark green edges)
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are given by

P(bulk)
d2,Z = 	(P(1)XICX, P(1)XXCX, P(1)IXCX; 1, 1, 2), (N63)

and

P(bound)
d2,Z = 	(P(1)XICX, P(1)XXCX, P(1)IXCX; 1, 1, 1). (N64)

Lastly, the edge-weight probability Pd3,Z (represented by
the yellow edges) is given by

Pd3,Z = Pd1,Z . (N65)

3. Adding edges for dealing with correlated errors

In this section we provide a modified version of the
graph G(3D)

(dx)
(described in Appendix N 2), which includes

extra edges to deal with two-qubit and three-qubit corre-
lated errors arising from the micro oscillations described
in Appendix B 5.

For the purposes of the edge-weight analysis, in
Fig. 57(a), we illustrate fictitious two-qubit and three-qubit
gates, which act as the identity and which are applied
immediately prior to the X -basis measurements of the red
plaquettes. The two-qubit correlated errors can be viewed
as an Z ⊗ I ⊗ Z-type error at a three-qubit gate location,
where the Z errors act on the qubits adjacent to the gray
squares and green circles of such gates. Such errors occur

with probability Pcd. Similarly, the three-qubit correlated
errors can be viewed as an Z ⊗ Z ⊗ Z-type error at a three-
qubit gate location. Such errors occur with probability
Pct. Additionally, there can be correlated errors occurring
between the ancilla and data qubits at the top and bottom
boundaries of the lattice in Fig. 57(a). Hence, we add ficti-
tious two-qubit gate locations at such boundaries as shown
in the figure.

In order to incorporate the different types of corre-
lated errors mentioned above into our MWPM decoding
protocol, extra edges are added to the graph G(3D)

(dx)
as

shown in Fig. 57(b). The first type of extra edges are
two-dimensional cross edges shown in orange that deal
with two- and three-qubit correlated errors arising at the
three-qubit fictitious gate locations of Fig. 57(a). The edge-
weight probabilities of such edges are labeled P(bulk)

cross . Due
to boundary effects, we also add dashed orange edges
with edge-weight probabilities labeled P(bound)

cross . Addition-
ally, extra space-time correlated edges (shown in red) are
added at the bottom row of the graph in Fig. 57(b) with
edge-weight probabilities labeled by Pd,corr. Note that the
two-qubit correlated errors arising at the top boundary of
Fig. 57(a) result in space-time correlated edges, which are
already included in G(3D)

(dx)
.

In addition to the extra edges added to G(3D)
(dx)

, the
edge-weight probabilities of a subset of the edges
already included in G(3D)

(dx)
need to be renormalized. The

(a) 

(b)

FIG. 57. (a) Fictitious identity gates
illustrating the possible correlated
errors arising before the X -basis
measurement of the X -type ancilla
qubits. Gray squares correspond to
the first qubit, blue triangles to the
second qubit and green circles to the
third qubit. (b) X -type decoding graph
with added edges to correct correlated
errors. The edge-weight probabilities
of the orange cross edges are labeled
Pcross. We also add red edges with
edge-weight probabilities labeled Pd,corr
at the bottom row of the graph.
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edge-weight probabilities of the added edges in addition
to the renormalized edges are given by

P(bulk)
cross = 	(PctPcd; 2, 2), (N66)

P(bound)
cross = 	(PctPcd; 1, 1), (N67)

Pd,corr = Pct, (N68)

PTB2X = 	(P(1)ZZCX, P(1)IZCX, P(1)d , Pcd; 1, 1, 1, 1), (N69)

PTB1X = 	(P(1)ZZCX, P(1)IZCX, P(2)IZCX, P(1)d , Pcd; 2, 1, 1, 1, 1),
(N70)

PC2X = 	(P(3)IZCX, P(2)IZCX, P(1)ZZCX, P(1)d , Pcd,

Pct; 1, 1, 1, 1, 1, 1), (N71)

PBB2X = 	(P(1)ZZCX , P(1)IZCX , P(1)d , Pcd; 1, 1, 1, 1), (N72)

PBB1X = 	(P(1)IZCX, P(1)ZZCX, P(1)ZICX, P(1)d , Pcd; 2, 1, 1, 1, 1),
(N73)

PC4X = 	(P(3)IZCX, P(1)IZCX, P(1)ZICX, P(1)d , Pcd,

Pct; 1, 1, 1, 1, 1, 1), (N74)

PX
V = 	(PVCX, Ps, Pm, Pct; 4, 1, 1, 1). (N75)

For the space-time correlated edges, at the top row of the
graph in Fig. 57(b), we have

P(bound,top)
d1,X = 	(P(1)IZCX, P(1)ZZCX, P(2)ZICX, Pct; 1, 1, 1, 1),

(N76)

whereas at the bottom boundary P(bound,bottom)
d1,X is given by

Eq. (N59). Similarly, at the top row of Fig. 57(b), we have

P(top)
d2,X = 	(P(1)IZCX , P(1)ZZCX , Pct; 1, 1, 1), (N77)

whereas anywhere else in the graph Pd2,X is given by
Eq. (N60).

4. Decoding timelike errors

In this section, we show how the decoding graphs
in addition to the MWPM decoding protocols need to
be modified for correcting timelike errors discussed in
Appendix M. Since visualizing three-dimensional graphs
can be challenging, we focus on correcting timelike errors
in the context of the repetition code, even though time-
like errors occur in surface-code patches when imple-
menting our lattice-surgery schemes. However, the main
techniques discussed in the context of the repetition can
straightforwardly be applied to the rotated surface code.

An example of a decoding graph for timelike errors
occurring in a d = 5 repetition code with dm = 4 is given
in Fig. 58. Note that unlike Fig. 54(b), the boundary
edges and vertices (shown in blue) are at the top and bot-
tom of the graph since we follow the matching protocol

FIG. 58. Example of a decoding graph for correcting time-
like errors using a d = 5 repetition code with dm = 4. The top
and bottom boundary edges (with zero weight) and vertices are
shown in blue and are connected by a blue edge with zero weight.
As explained in Appendix M, we have removed the left and
two-dimensional black edges (which correspond to the left and
rightmost qubits) to isolate timelike errors.

explained in Fig. 11. In particular, we are considering a
setting analogous to Fig. 52, where data qubits between
two repetition-code patches are initially prepared in the |0〉
state, and the product of the X stabilizers yields the out-
come XL1XL2. Note that although the measurement of each
X stabilizer in the first round is random, the parity of the
product of all measurement outcomes gives the outcome
of XL1XL2. Due to the possibility of measurement errors,
measurements of the X stabilizers are repeated dm times.
MWPM is then performed over the entire syndrome his-
tory in order to determine if measurement errors occurred
during the measurement of X stabilizers in the first round.
We thus summarize the decoding protocol as follows:

1. Repeat the measurement of all X stabilizers dm
times.

2. Implement MWPM using a timelike decoding graph
(such as the one in Fig. 58). If there is an odd number
of highlighted vertices (purple vertices in Fig. 58),
highlight a boundary vertex (the particular choice is
irrelevant).

3. Let v(1)j correspond to the j th X -stabilizer measure-
ment outcome in the first round (represent by the j th
purple vertex, starting from the left, in the first layer
of the graph in Fig. 58). If there are highlighted time-
like edges (i.e., vertical edges) incident to v(1)j , flip
the measurement outcome of v(1)j .

4. Let ṽ(1)j correspond to the values of v(1)j after
implementing MWPM and performing the appro-
priate measurement flips described in the previous
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step. The outcome vf of XL1XL2 is given by vf =∑d−1
j=1 ṽ

(1)
j mod(2).

In Fig. 59, we provide two examples for the implemen-
tation of the timelike decoder. In Fig. 59(a), we consider
the case where a single measurement error occurs in the
first round when measuring the stabilizer X2X3. Since the
syndrome changes between the first and second round, the
second vertex (starting from the left to right) of the second
two-dimensional layer is highlighted. A boundary vertex is
also highlighted to ensure the total number of highlighted
vertices is even. After implementing MWPM, the mini-
mum weight path connecting the two highlighted vertices
correctly passes through v(1)2 in the timelike direction. The

(a)

(b)

FIG. 59. (a) Implementation of the timelike decoding protocol
in the presence of a single measurement error when measuring
the stabilizer X2X3 during the first round. The minimum weight
path matches to the bottom boundary going through the vertex
v
(1)
2 whose outcome is correctly flipped (illustrated by the yellow

star). (b) Same as in (a) but with an additional measurement error
occurring in the second round when measuring X2X3. In this case,
the minimum weight path matches to the top boundary and fails
to flip the measurement outcome of v(1)2 (which is incorrect given
the measurement error in the first round) resulting in a logical
failure.

decoder then flips the measurement outcome of X2X3 in
the first round resulting in the correct parity for the he out-
come of XL1XL2. In Fig. 59(b), we consider a similar setting
but with two consecutive measurement errors of the stabi-
lizer X2X3 occurring in the first and second round. In this
case, the syndrome changes only between the second and
third round resulting in the red highlighted vertex shown
in Fig. 59(b). After implementing MWPM, the minimum
weight path connect to the top boundary and so the mea-
surement outcome of X2X3 in the first round is incorrectly
left unchanged resulting in a logical failure.

We conclude this section with an important remark. Sup-
pose a measurement error occurs in the first round when
measuring the X -type stabilizer S(x)j of a given code. In
order to prevent highlighted timelike edges from being
incident to the vertex v(1)j , one requires additional measure-
ment errors such that minimum weight paths are matched
in the top timelike portion of the decoding graph [as in
Fig. 59(b)]. By increasing dm to dm + 2, one requires an
additional measurement error to guarantee that the mini-
mum weight path is not incident to v(1)j , thus explaining
the scaling in Eq. (M3).

APPENDIX O: TOFFOLI STATE DISTILLATION
(TDTOF)

1. Prior state of the art

Here we give a high-level comparison of how our
TDTOF protocol compares to the prior state of the art in
terms of magic state conversion rates.

Early protocols for fault-tolerant quantum computation
focused on TOF state preparation in concatenated codes
[132] or they protected against one type of error [133].
However, none of these protocols are suitable for protect-
ing against generic noise in topological (e.g., repetition or
surface) codes.

A more modern approach to magic state distillation uses
a supply of low-fidelity T magic states. There are many
protocols for distillation of noisy T states to purer T states
[37,38,40,134–136]. One can also use T states as input to
protocols that output other types of magic states, includ-
ing TOF states [137–142]. For instance, there were parallel
discoveries of protocols [137,138] that distill one TOF state
from eight noisy T states, which we write as 8T → 1TOF.
This was later generalized using synthillation [140,141]
to a family of protocols (6k + 2)T → kTOF for any inte-
ger k. However, in some settings, the supply of noisy TOF
states can be prepared with better fidelities than the noisy
T states. For instance, in this paper we have shown that
in system with highly biased noise we can use a repetition
encoding and the BUTOF protocol to realize TOF state at
better fidelities than physical TOF gates, with only a mild
additional resource cost.
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It has been previously noted [143] that triorthogonal
codes enabling (6k + 8)T → (2k)T state distillation can
also be lifted to perform (6k + 8)TOF → (2k)TOF. The
conversion rate of these protocols is 2k/(6k + 8), which
is poor when k is small (starting at 1/7 for k = 1) but
improving when k is larger (approaching 1/3 for k →∞).
However, the ratio of inputs to outputs is not the sole
metric of importance; also crucial is the space-time com-
plexity of the Clifford circuit implementing the distillation
protocol. Previous analysis has found that the space-time
complexity of Clifford distillation circuits tends to be more
favorable for simpler protocols using smaller block sizes
[79,90,135] and that this effect can outweigh the improve-
ment of conversion rate in the asymptotic regime. In other
words, the desiderata for distillation protocols converting
n → k magic states, are that the protocol has a good rate,
so k/n is large; the protocol is compact so n is as small as
possible. These desiderata are in tension since rates tends
to improve asymptotically as block size n is increased.
A protocol satisfying these desiderata, will likely have a
small space-time footprint when compiled down to phys-
ical qubits and gates. In this work, we present a 8TOF →
2TOF protocol that protects against any single location fault
(of X , Y, or Z type), so it has a relatively high conversion
rate of 1/4 without needing to scale to large blocks. In con-
trast, to achieve the same conversion rate using the ideas
of Ref. [143] would require a much larger 32TOF → 8TOF
protocol.

2. Transversality proofs

Here we prove that the trio of [[8, 2, 2]] codes introduced
in Sec. VII have the required CCZ tranversality proper-
ties. Recall that CCZ is a three-qubit gate that adds a “−1”
phase to the state |111〉 and “+1” to all other computa-
tional basis states. The corresponding magic state |CCZ〉
differs from |TOF〉 by a single Hadamard gate. For reasons
of mathematical elegance, it is simpler to work mostly in
terms of |CCZ〉 state distillation, but our final description
of the distillation protocol will be presented in terms of
|TOF〉 states.

For our trio of codes, each block encodes k = 2 logical
qubits into n = 8 physical qubits and can detect an error
on any single qubit. In the main text, we define the code
using Fig. 16 and for completeness we give an algebraic
definition here. All three code blocks one X stabilizer X ⊗8

but different logical X operators

XL1A = (X ⊗ X ⊗ X ⊗ 1⊗ 1⊗ X ⊗ 1⊗ 1)A,

XL2A = (X ⊗ X ⊗ 1⊗ 1⊗ X ⊗ X ⊗ 1⊗ 1)A,

XL1B = (X ⊗ X ⊗ 1⊗ 1⊗ X ⊗ X ⊗ 1⊗ 1)B,

XL2B = (X ⊗ 1⊗ X ⊗ 1⊗ X ⊗ 1⊗ X ⊗ 1)B,

XL1C = (X ⊗ 1⊗ X ⊗ 1⊗ X ⊗ 1⊗ X ⊗ 1)C,

XL2C = (X ⊗ X ⊗ X ⊗ 1⊗ 1⊗ X ⊗ 1⊗ 1)C,

(O1)

where the index {A, B, C} labels the three different code
blocks and the numerical index labels the two logical
qubits in this code block. We write (. . .)D=A,B,C to empha-
size that the operator acts nontrivially on code block D and
trivially on other code blocks. While the code blocks share
the same X stabilizer, they will have different Z stabilizers
as a consequence of having different logical X operators.

We say a set of [[n, k, d]] codes is CCZ transversal when-
ever CCZ⊗n performs a logical CCZ⊗k gate. Note that if
we take three copies of a CSS code that has a transversal
T gate (so that T⊗n = TL or similar, then it must also be
CCZ transversal). This is simply because CSS codes have
transversal CNOT gates and we can synthesize CCZ gates
from CNOT and T gates. Essentially, this is the observation
exploited to construct (6k + 8)TOF → (2k)TOF protocols
[143]. However, it is possible for a trio of codes to be
CCZ transversal, but not be T transversal. To the best of
our knowledge, this was first shown for the 3D surface
codes by showing an equivalence (via unfolding) to 3D
color codes [144]. Later, Vasmer and Brown gave a more
direct proof that the 3D surface codes are CCZ transversal
[145].

Here, we use similar proof techniques to Vasmer and
Brown [145], though generalized (to k > 1), and with a
new code construction so that the code does not appear to
be a surface code. From just the X stabilizer and logical
operator information, we prove that our trio of codes are
CCZ transversal. The key element of the proof is a lemma
relating tranversality to the support of logical X operators
and X stabilizers. The lemma requires that for j = 1, 2,
the operators XLjA, XLjB, and XLjC share support on an odd
number of qubit indices. Furthermore, we need that for any
other choice of three X operators (either logical X or X
stabilizer) with one selected from each code block, they
must share support on an even number of qubit indices.
It is easy to verify the operators provided above have this
property.

We define codes here using slightly different nota-
tion from the main text. Given an n-qubit bit string s =
(s1, s2, . . . , sn), we use X [s] := ⊗j X sj . For example, if

u = (1, 1, 1, 0, 0, 1, 0, 0), (O2)

then

X [u] = X ⊗ X ⊗ X ⊗ 1⊗ 1⊗ X ⊗ 1⊗ 1. (O3)

With this notation we can define an [[n, k, d]] CSS code
using a binary G-matrix representation as follows.

Let G be a binary matrix that is row-wise linearly
independent and partitioned as follows:

G =
(

G1
G0

)
, (O4)
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where G has n columns and G1 has k rows. Letting m
denote the number of rows in G0, then for a nontrivial
(d ≥ 2) code we know m ≥ 1. Here, we review the rel-
evant facts for G matrices, but for additional details and
proofs refer the reader to Refs. [89,140–142]. This allows
us to define a CSS code with all-zero logical state

|(0, . . . , 0)〉L = 2−m/2
∑

u∈F
m
2

|uG0〉. (O5)

Note we use bold font for row vectors. The notation uG0
represents left multiplication of matrix G0 by the row vec-
tor u, performed modulo 2, which will produce a length
n row vector describing a physical, computational basis
state. The set of all uG0 corresponds to the row span of
G0 and form a group under addition modulo 2.

Furthermore, logical computation basis states can be
represented by a k-bit string x = (x1, . . . , xk) as follows:

|x〉L = 1√|G0|
∑

u∈F
m
2

|uG0 + xG1〉, (O6)

where xG1 is again obtained by matrix multiplication
(modulo 2) and is a constant shift identifying a coset of
the group generated by addition (modulo 2) of rows of G0.
We can compress this notation slightly by noting

uG0 + xG1 = (x, u)G, (O7)

where (x, u) is the row vector resulting from joining u
and x. Again, note that Eq. (O7) should be read as mod-
ulo 2 and this will be the convention for such expressions
throughout the remainder of this Appendix.

The j th logical X operator, denoted XLj , ought to flip the
|0〉L state to |(ôj )〉L state, where ôj is a unit vector with a
single “1” entry at the j th location. It is straightforward to
verify that XLj = X [ôj G1] performs the required flip and
that ôj G1 is equal to the j th row of G1. Therefore, the log-
ical operators of the code are given by the row vectors of
G1. Furthermore, for every g in the row span of G0, the
operator X [g] is an X stabilizer of the code space, and this
enumerates all the X stabilizers.

As a final notational preliminary, we make use of a triple
dot product between triples of vectors. If a, b, and c are
binary vectors of equal length, we define

|a ∧ b ∧ c| =
∑

j

aj bj cj (mod 2), (O8)

which we again evaluate modulo 2. It is useful to note that
this counts the parity of the number of locations where
operators X [a], X [b], and X [c] all act nontrivially.

This G-matrix representation was also used for tri-
orthogonal codes [37] and quasitriorthogonal codes [140,

141] except we are interested in different transversality
properties and so we require different constraints on the
weight of rows in G0 and G1. The additional constraints
determine the transversality properties that we summarize
with the following result, which is a slight generalization
(beyond k = 1) of the proof techniques used by Vasmer
and Browne [145].

Lemma 1. Let {GA, GB, GC} be a trio of G matrices
that represent a trio of [[n, k, d]] codes. Additionally,
assume the following triple dot product conditions [recall
Eq. (O8)]:

|ôpGA ∧ ôqGB ∧ ôrGC| =
{

1 if p = q = r ≤ k
0 otherwise,

(O9)

where ôp is a binary unit vector with 1 in location p and
0 everywhere else. Then it follows that a physical CCZ⊗n

realizes a transversal, logical CCZ⊗k.

Let us remark on what Eq. (O9) means in terms of opera-
tors. Observe that when p ≤ k, the operator X [ôpGD] is the
pth logical operator for code block D ∈ {A, B, C}. There-
fore, the condition of Eq. (O9) tells us that the XLp logical
operators must share an odd number of qubit indices where
they all act nontrivially. All other combinations of logi-
cal operators and stabilizers have an even number of such
locations.

Proof. To determine the phase acquired from acting on the
code space with CCZ⊗n, we first ask how this operator
acts on an arbitrary computational basis state. Recall that
CCZ⊗n =∏n

j=1 CCZj where CCZj acts on qubit j in each
block. Given a triple of n-qubit binary vectors a, b, and c
we have

CCZj |a〉|b〉|c〉 = (−1)aj bj cj |a〉|b〉|c〉, (O10)

and so

CCZ⊗n|a〉|b〉|c〉 = (−1)|a∧b∧c||a〉|b〉|c〉, (O11)

where |a ∧ b ∧ c| =∑
j aj bj cj as we introduced earlier.

Next, we ask how this acts on the code space.
Consider a trio of computational basis states |x〉L|y〉L|z〉L

encoded in blocks A, B, and C, respectively. Using
Eqs. (O6) and (O7), we see that

|x〉L|y〉L|z〉L
= 2−3m/2

∑

u,v,w∈F
m
2

|(x, u)GA〉|(y, v)GB〉|(z, w)GC〉. (O12)

To determine the phase acquired from acting on
|x〉L|y〉L|z〉L with CCZ⊗n, we consider its action on each
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term in the superposition using Eq. (O11). Each term
acquires a phase

CCZ⊗n|(x, u)GA〉|(y, v)GB〉|(z, w)GC〉
= (−1)λ|(x, u)GA〉|(y, v)GB〉|(z, w)GC〉, (O13)

where the phase exponent is

λ = |(x, u)GA ∧ (y, v)GB ∧ (z, w)GC|. (O14)

Using linearity of the triple dot product and expand-
ing the vectors in terms of unit vectors, e.g., (x, u) =∑

p ôp(x, u)p , we have

λ =
∑

p ,q,r

(x, u)p(y, v)q(z, w)r|ôpGA ∧ ôqGB ∧ ôrGC|.

(O15)

Next, using the assumption of Eq. (O9), we see almost all
these terms vanish except a few when p = q = r ≤ k

λ =
∑

p≤k

(u, x)p(v, y)p(w, z)p . (O16)

Notice that if p ≤ k, (x, u)p = (x)p since x is length k.
Therefore,

λ =
∑

p≤k

(x)p(y)p(z)p

= |x ∧ y ∧ z|, (O17)

where in the last line we have noted that the summation
is exactly the triple dot product between these vectors.
Substituting this back into Eq. (O13) we have

CCZ⊗n|(x, u)GA〉|(y, v)GB〉|(z, w)GC〉
= (−1)|x∧y∧z||(x, u)GA〉|(y, v)GB〉|(z, w)GC〉. (O18)

Since the dependence on u, v, and w has vanished, CCZ⊗n

acts identically on every term in the superposition com-
prising the logical computation basis states so we have

CCZ⊗n|x〉L|y〉L|z〉L = (−1)|x∧y∧z||x〉L|y〉L|z〉L. (O19)

This is precisely the phase expected from CCZ⊗k =∏
j CCZLj since each CCZLj contributes one term xj yj zj

to the phase exponent. �
We remark that the above proof closely follows previous

work on 3D surface codes [145] but generalized to arbi-
trary k. This approach could be further extended using a
proof technique similar to Refs. [140,141] to cover cases
where the logical unitary is not CCZ⊗k but some other

non-Clifford unitary; and/or the full code space is not nec-
essarily divisible into three equal sized blocks. However,
this more sophisticated approach is not required for our
present purposes.

Rather, we are interested in the special case.

Lemma 2. Consider a trio of G matrices as follows:

GA =
⎛
⎝

u1
u2
1

⎞
⎠ , GB =

⎛
⎝

u2
u3
1

⎞
⎠ , GC =

⎛
⎝

u3
u1
1

⎞
⎠ ,

(O20)

where 1 = (1, 1, . . . , 1). Assume that

1. ∀t: |ut| =
∑n

j=1(ut)j (mod 2) = 0;
2. ∀t, t′: |ut ∧ ut′ | =

∑n
j=1(ut)j (ut′)j (mod 2) = 0;

3. |u1 ∧ u2 ∧ u3| = 1.

Then the corresponding codes are [[n, 2, 2]] codes with a
tranversal logical CCZ⊗n = CCZ⊗2

L . For instance, these
conditions are met by setting

u1 = (1, 1, 1, 0, 0, 1, 0, 0), (O21)

u2 = (1, 1, 0, 1, 1, 0, 0, 0), (O22)

u3 = (1, 0, 1, 0, 1, 0, 1, 0), (O23)

to produce a trio of [[8, 2, 2]] codes with CCZ transversal-
ity as above.

The above lemma provides an example trio of [[8, 2, 2]]
codes with the desired transversality property. To be more
concrete, by combining Eq. (O20) and Eqs. (O21) to (O23)
the trio of codes have G-matrix representation

GA =
⎛
⎝

1 1 1 0 0 1 0 0
1 1 0 1 1 0 0 0
1 1 1 1 1 1 1 1

⎞
⎠ , (O24)

GB =
⎛
⎝

1 1 0 1 1 0 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎞
⎠ , (O25)

GC =
⎛
⎝

1 0 1 0 1 0 1 0
1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 1

⎞
⎠ . (O26)

By translating these matrices into X stabilizers (all have
the X [1] = X ⊗8 stabilizer) and logical X operators (which
differ), we verify that these are the same codes as specified
by the operators given the main text [see, e.g., Eq. (O1)].
However, the lemma provides some general conditions
under which transversality is satisfied to provide a better
insight into the proof technique.
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Proof. The proof of Lemma 2 follows quickly from
Lemma 1 by simply verifying all the cases. For instance,
for p = q = r we have

|ô1GA ∧ ô1GB ∧ ô1GC| = |u1 ∧ u2 ∧ u3| = 1,

|ô2GA ∧ ô2GB ∧ ô2GC| = |u2 ∧ u3 ∧ u1| = 1,

|ô3GA ∧ ô3GB ∧ ô3GC| = |1 ∧ 1 ∧ 1| = 0.

(O27)

In the second line, we have used that the triple dot product
is invariant under permutation of vectors, for instance, |a ∧
b ∧ c| = |b ∧ c ∧ a|. The last equality in each line comes
from the assumptions in Lemma 2. Since k = 2, we see
that we indeed get unity when p = q = r ≤ k and zero for
p = q = r > 2 [as required by Eq. (O9)]. Let us consider
a case when p , q, r ≤ k but p �= q, such as

|ô2GA ∧ ô1GB ∧ ô1GC| = |u2 ∧ u2 ∧ u3| (O28)

= |u2 ∧ u3| = 0.

We have used the simple identity that in F2 we have a2b =
ab and the natural extension to vectors that |a ∧ a ∧ b| =
|a ∧ b|. The last equality comes from the assumptions in
Lemma 2 and gives the result required by Eq. (O9). By
inspecting Eq. (O20), we find that for any triple of rows
(except for the special case when p = q = r) from the
upper block G1, two of the selected rows will be equal
and so the triple dot product will again give zero, therefore
satisfying Eq. (O9).

Next, let us consider a case when one row comes from
G0, for instance, q = 3 and so

|ô1GA ∧ ô2GB ∧ ô3GC| = |u1 ∧ u3 ∧ 1|
= |u1 ∧ u3|
= 0. (O29)

In the second line, we have use that a · 1 = a extends to
vectors so that in general |a ∧ b ∧ 1| = |a ∧ b|. The last
line uses assumption 2 of Lemma 2. Indeed, whenever one
(or more) of the rows is 1, we are able to deploy assump-
tion 1 (or 2) of Lemma 2. This enumerates all possible
cases and confirms that Eq. (O9) always holds, therefore
proving the main transversality statement of Lemma 2.

Lastly, that Eqs. (O21) to (O23) satisfy assumptions 1–3
of Lemma 2 is easily verified. For example,

|u1 ∧ u2 ∧ u3| = (u1)1(u2)1(u3)1 +
8∑

j=2

(u1)j (u2)j (uj )j

= 1+
8∑

j=2

0 = 1,

where in the first line we split off the j = 1 case from
the rest of the summation to highlight that this is the only

nonzero term. A deeper explanation is provided by notic-
ing that the example vectors ut correspond to generators
of a Reed-Muller code for which these properties are well
known [146]. �

3. Trading space and time

Here we construct a magic state distillation protocol
from the G-matrix representation of Appendix O 2 that
minimizes space requirements. The intuition is that one
never encodes into the full code space but rather converts
the CCZ⊗n gate into a product of n conjugated CCZ gates
that we can think of as being conjugated by some partial
encoding unitary.

In particular, consider some GD matrix representing an
[[n, k, d]] code and a unitary VD such that

VD|x〉|u〉|0〉 = |(x, u)GD〉, (O30)

where x is a length k bit string and u is length m (recall
m the number of rows in GD

0 ). Furthermore, it is known
that such a unitary VD can be found that is Clifford and
composed solely of CNOT gates [141]. It follows that

VD|x〉|+⊗m〉|0〉 = 2m/2
∑

u∈F
m
2

VD|x〉|u〉|0〉

= 2m/2
∑

u∈F
m
2

|(x, u)GD〉

= |x〉L, (O31)

where the second line uses Eq. (O30) and the last line uses
Eq. (O6). This confirms that VD is an encoding unitary for
the code associated with GD. To encode the logical state
|+⊗k〉L, we simply use linearity so that

VD|+⊗k〉|+⊗m〉|0〉 = |+⊗k〉L. (O32)

Given three code blocks, we can encode simultaneously
with V = (VA ⊗ VB ⊗ VC). The all |+〉 state encoded
across three code blocks is then

V(|+⊗k〉|+⊗m〉|0〉)⊗3 = |+⊗3k〉L. (O33)

A standard recipe for magic state distillation protocols
[37,40,140] is to encode into logical |+〉 states, perform
tranversal non-Cliffords as follows

CCZ⊗nV(|+⊗k〉|+⊗m〉|0〉)⊗3 = (CCZ|+⊗3〉L)⊗k

= |CCZ〉⊗k
L , (O34)

which produces k logical CCZ states. Decoding gives

(V†CCZ⊗nV)(|+⊗k〉|+⊗m〉|0〉)⊗3 (O35)
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= V†|CCZ〉⊗k
L (O36)

= |CCZ⊗k〉|+⊗3m〉|0⊗3〉,

where in the last line we have slightly abused qubit order-
ing to collect together the physical |CCZ〉 state output.
In the case of a detectable error, at least one of the
|+⊗3m〉 qubits will be phase flipped and detected by an X
measurement.

To reduce space overhead, we observe that the |0⊗3〉
qubits effectively play no role here. Furthermore, the uni-
tary V†CCZ⊗nV acts nontrivially only on the first 3(k + m)
qubits, so that the |0⊗3〉 qubits [a total of 3(n− m− k)
qubits] are truly surplus to requirement. Using our earlier
notation V†CCZ⊗nV =∏

j V†CCZj V where CCZj acts on
qubit j of each block, one then has that

(V†CCZj V)|(x, u)〉|(y, v)〉|(z, w)〉
= (−1)[(x,u)GA]j [(y,v)GB]j (z,w)GC]j |(x, u)〉|(y, v)〉|(z, w)〉
= (−1)(x,u)[GA]j ·(y,v)[GB]j ·(z,w)[GC]j |(x, u)〉|(y, v)〉|(z, w)〉,

(O37)

where [. . .]j denotes the j th element of the vector inside or
the j th column of a matrix. Notice, we have suppressed the
presence of the redundant |0〉 qubits.

In Appendix O 4 we describe two concrete implemen-
tations of the VCCZV† gates. Of course, it is crucial that
the space reduction and VCCZV† implementation does not

distort the way errors propagate and that error-correction
properties are retained, which is proven from first princi-
ples in Appendix O 5.

4. Implementing conjugated-CCZ gates

Here we give explicit implementations for the eight
conjugated-CCZ gates described in Eq. (O37). Any such
gate can be realized using a single CCZ magic state and
we give further details for two different implementations:
the first implementation uses CNOT gates and single-qubit
measurements (Appendix O 4 a); the second implementa-
tion uses only multiqubit Pauli measurements via lattice
surgery (Appendix O 4 b).

Herein, we label qubits as follows.

Definition 2 (Qubit labels). Consider a magic state dis-
tillation protocol using n noisy CCZ magic states and
GD matrices with k + m rows. We label each input magic
states by (D, j )BU where j ∈ [1, n] labels which CCZ state
the qubit is part of and D ∈ {A, B, C} distinguishes the
three qubits within a CCZ state. The BU subscript high-
lights that these are input noisy state qubits possibly pro-
duced by BUTOF. We also have 3(m+ k) qubits that we
call factory qubits and label (D, i)f with a subscript f for
factory and where D ∈ {A, B, C} and i ∈ [1, m+ k].

Notice that the qubit labels assume we have made a
space-time trade-off, so the factory qubits refer to the
3(m+ k) qubits prepared in a |+〉 state. The 3(n− m− k)

Z

|+
|+

|+
|+

|+
|+

Z

. . .. . .

. . .. . .

. . .. . .

Conditional

 (example)

X

X

X

Error detect
and postselect

Z Z

Z Z

Z

Z

Z

|+

|+

|+
j = 1 j = 2 j = 8

(A, 1)f

(A, 2)f

(A, 3)f

(B, 3)f

(B, 2)f

(B, 1)f

(C, 1)f

(C, 2)f

(C, 3)f

Eight CCZ injections

|CCZ

|CCZ

(A, 1)BU

(B, 1)BU

(C, 1)BU

(A, 2)BU

(B, 2)BU

(C, 2)BU

(A, 8)BU

(B, 8)BU

(C, 8)BU

FIG. 60. A magic state distillation protocol for 8CCZ → 2CCZ with the eight CCZ injections performed using Algorithm 2. Qubit
labels of form (D, i)f and (D, j )BU follow notation of Definition 2. For each j , the triple of qubits (A, 1)BU, (B, 2)BU, and (C, 3)BU are
prepared in a noisy CCZ states (e.g., using BUTOF) but this preparation is not shown. We show explicitly the CNOT gates for the first
two steps and the last step, but omit the middle steps for brevity. The full circuit is reproducible using Eqs. (O24) to (O26) to specify
the CNOT pattern as outlined in Algorithm 2.
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qubits described earlier as being in the |0〉 state are omitted
as they are surplus to requirement. For the code of interest
[recall Eqs. (O24) to (O26)], there are nine factory qubits
and 24 BU qubits, though the BU qubits do not all need to
be prepared at the same time and can be encoded in smaller
distance code blocks.

A circuit using this labeling appears later in Fig. 60.

a. Injection with CNOT gates and single-qubit
measurements

To perform the required sequence of n conjugated-CCZ
gates from Eq. (O37), we may implement Algorithm 2. In
items 1(b) and 1(c) of Algorithm 2, the indices (D, D′, D′′)
should be read as distinct triples from the set {A, B, C}. For
example, if D = A and D′ = C then one infers D′′ = B.
Furthermore, these adaptive Clifford corrections commute
with the rest of the circuits and so can all be postponed
until later. We illustrate some of the steps in Fig. 60.

Next, we calculate the action of the circuit described by
Algorithm 2 for one particular j value. With respect to the
factory qubit basis states, we have

|a〉|b〉|c〉 = |(x, u)〉|(y, v)〉|(z, w)〉, (O38)

where we have broken the state up into three blocks cor-
responding to indices A, B, and C. For example, qubit
(A, i)f is in state ai. Furthermore, ai equals xi when i ≤ k
and ui when i > k. For each D = {A, B, C}, we implement
CNOT gates targeted on the magic state qubit (D, j )BU and
controlled on qubits (D, i)BU indicated by [GD]i,j = 1.

Algorithm 2. A CNOT circuit realizing V†CCZ⊗nV as defined in
Appendix O3. Uses a trio of G matrices with n rows and k + m
columns. Qubit label convention given in Definition 2.

Therefore, for D = A the target (A, j )BU qubit is flipped
precisely when

∑

i

[GA]i,j ai = [aGA]j = 1 (mod 2), (O39)

where the summation has been changed to matrix mul-
tiplication. Recall [aGA]j just means the j th element of
vector aGA. Similar expressions hold for D = B, C. The
CCZ magic state is given by

|CCZ〉 = 2−3/2
∑

yD∈F2

(−1)yAyByC |yA〉|yB〉|yC〉. (O40)

Ignoring 2−3/2 for brevity, the CNOTs of Algorithm 2 act as
follows on a |CCZ〉|a〉|b〉|c〉 state

∑

yD∈F2

(−1)yAyByC |yA〉|yB〉|yC〉|a〉|b〉|c〉

→
∑

yD∈F2

(−1)yAyByC |y ′A〉|y ′B〉|y ′C〉|a〉|b〉|c〉,

with

y ′A = yA + [aGA]j ,

y ′B = yB + [bGB]j ,

y ′C = yC + [cGC]j .

(O41)

We follow these CNOTs by measurement of the BU qubits
in the Z basis, which are afterwards discarded. Assum-
ing measurement outcomes |mA

j 〉|mB
j 〉|mC

j 〉 then the only
nonvanishing terms have mD

j = y ′D, so

yA = mA
j + [aGA]j , (O42)

yB = mB
j + [bGB]j , (O43)

yC = mC
j + [cGC]j . (O44)

Discarding the BU qubits, we get

|CZZ〉|a〉|b〉|c〉 → (−1)f (m)|a〉|b〉|c〉, (O45)

where the phase exponent depends on the measurement
outcomes m = (mA

j , mB
j , mC

j ) as follows:

f (m) = (mA
j + [aGA]j )(mB

j + [bGB]j )(mC
j + [cGC]j ).

(O46)

The value of this phase exponent was originally yAyByC but
with the substitutions determined by Eqs. (O42) to (O44)
we get Eq. (O46).
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In the case of a m = (0, 0, 0) projection, we get the
phase

f (0, 0, 0) = [aGA]j [bGB]j [cGC]j , (O47)

so that after switching notation by using Eq. (O38) we
get the desired phase in Eq. (O37). However, for nonzero
measurement outcomes we have

f (m) = f (0, 0, 0)+ g(m), (O48)

where g(m) represents the remaining terms in the expan-
sions of Eq. (O46). We can see that these remaining terms
will be quadratic in the variables {a, b, c} and so represent
Clifford corrections: the quadratic terms correspond to a
circuit of CZ gates, the linear terms correspond to a circuit
of Z gates, and the constant term gives a global phase.

For example, consider the case when m = (1, 0, 0) so

g(m) = [bGB]j [cGC]j

=
∑

p ,q

GB
p ,j GC

q,j bpcq. (O49)

This is corrected by a CZ between qubits (B, p)f and
(C, q)f for every {p , q} such that GB

p ,j = GC
q,j = 1. This

correction precisely matches the rule given in items 1(b)
and 1(c) of Algorithm 2. It is straightforward but tedious
to verify that the corrections of Algorithm 2 always give
the desired phase needed to cancel (−1)g(m).

b. Injection using lattice surgery

Here we provide an alternative formulation of the conju-
gated CCZ injection from that presented in Appendix O 4 a.
Instead of using a CNOT circuit, the injection procedure will
be described entirely in terms of multiqubit Pauli opera-
tor measurements, as this is the natural set of operations
in lattice-surgery implementations. We have already dis-
cussed the key ideas of this mapping in Appendix M and
Sec. V. Here we wish to allow for the option of perform-
ing a lattice-surgery operation between a repetition-code
clock (really just a dx = 1 surface code) and thin surface
codes, and we present an example lattice-surgery diagram
in Fig. 61.

In general, imagine a circuit that performs the following:
(i) do n CNOT gates targeted on qubit 0 and controlled on
qubits 1 to n; (ii) measure Z0; (iii) discard qubit zero. This
is equivalent to the following measurement driven proce-
dure: (i’) measure multiqubit Pauli

∏n
j=0 Zj ; (ii’) measure

single-qubit Pauli X0 and discard; (iii’) if second step gives
“− 1" outcome perform a

∏n
j=1 Zj correction. In the bot-

tom diagram of Fig. 12, we prove equivalence of these
approaches through a series of circuit identities (illus-
trated for the n = 3 case). Applying this equivalence to
Algorithm 2 we obtain Algorithm 3.

Algorithm 3. A Pauli measurement scheme realizing
V†CCZ⊗nV as defined in Appendix O3. Uses a trio of GD

matrices with n rows and k + m columns. Qubit label convention
given in Definition 2.

Note that in a Pauli measurement scheme, we never per-
form the Clifford corrections. Rather whenever there is a
subsequent Pauli measurement P, if the Clifford correction
register contains C, we instead measure CPC†. The correc-
tions in Algorithm 3 commute with all the measurements
here, and so can be postponed until later.

5. Error propagation and detection

Here we discuss the effect of noisy |CCZ〉 states used
in the TDTOF protocol. For now, we assume all encoded
Clifford gates are ideal, but later we relax this assumption.

To be precise regarding error propagation we introduce
the following language.

Definition 3. Given a |CCZ〉 magic state, we say it has
error pattern e = (eA, eB, eC) ∈ F

3
2 error if it is in the state

E|CCZ〉 = Z[e]|CZZ〉 (O50)

= (ZeA ⊗ ZeB ⊗ ZeC
)|CCZ〉. (O51)

Given n such states, for each j ∈ [1, n] we use ej =
(eA

j , eB
j , eC

j ) to denote the error for the j th |CCZ〉 state, so
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Step 1: Prepare
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Step 2: Merge

Step 3: Split and measure repetition code in logical X basis

ancilladata
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Z Z
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FIG. 61. Lattice surgery to measure a multipatch Pauli measurement between three code blocks: one repetition-code logical qubit
and two thin surface-code logical qubits. See Fig. 52 for comparison. This provides the principle building block for the execution of
item 1(a). In TDTOF, a multipatch Pauli measurement is always followed by a single-qubit measurement of the repetition code and
here we combine this with the third (split) step of lattice surgery. The gradient colored squares represent where an X ⊗ X ⊗ Z ⊗ Z
stabilizer measurement called a domain wall. Multiplying the outcome of the stabilizers labeled with a white dot, gives the outcome
of the ZL ⊗ ZL ⊗ ZL multipatch Pauli measurement [this is how we obtain the outcomes labeled ωD

j in item 1(a) of Algorithm 3]. To
ensure fault tolerance of this measurement outcome, we repeat these stabilizer measurements dm times as discussed in Appendix N3.
Afterwards all qubits are measured in Z basis, with their product determining the operator ZL ⊗ 1⊗ 1 [this is how we obtain the
outcomes labeled mD

j in item 1(a) of Algorithm 3]. Since an error during a Z measurement is physically indistinguishable from a
bit-flip error prior to the measurement, to fully exploit noise bias we need these failures to be similarly unlikely. However, in practice,
in our noise model we find Z measurement errors are much more likely than bit flips. However, since the qubits are idle for a long time
after the Z measurement, we can boost their effective fidelity by using an ancilla qubit to perform a nondestructive Z measurement and
repeat until the fidelity is suitably high. As such, here the single-qubit Z measurements should be interrupted as repeated nondestructive
Z measurements. We discuss in Appendix O 8 the effect of errors in lattice surgery due to using finite-size code blocks. If we wish to
instead measure XL ⊗ ZL ⊗ ZL then we do not use the domain wall on the repetition-code block.
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that

E|CCZ〉⊗n =
n⊗

j=1

(
Z[ej ]|CCZ〉) . (O52)

We say an error has w fault locations if there are w nonzero
ej . Furthermore, for D ∈ {A, B, C} we define

eD = (eD
1 , eD

2 , . . . , eD
n ). (O53)

The distinction between our notion of fault locations
and the usual Hamming weight of the concatenated string
(e1, . . . , en) is important because many methods of prepar-
ing a noisy |CCZ〉 state will lead to errors such as Z ⊗
Z ⊗ Z that could have a comparable probability to a single-
qubit error Z ⊗ 1⊗ 1. Indeed, we are typically interested
in knowing how many |CCZ〉 states are affected by an
arbitrary error, though we assume errors are uncorre-
lated between different |CCZ〉 states. Errors propagate as
follows.

Claim 1 ((How errors propagate)). Consider an implemen-
tation of Algorithm 3 using noisy CCZ states with Pauli Z
error described by {eA, eB, eC} as in Definition 3. For each
D ∈ {A, B, C}, let

wD = eDGD. (O54)

The output of Algorithm 3 differs from the ideal case by
an error Z[wA]⊗ Z[wB]⊗ Z[wC] on the factory qubits
and where the tensor product represents the three differ-
ent code blocks. Identifying the last m qubits of each block
as check qubits, we can partition the wD into two parts as
follows:

uD = eDGD
1 , (O55)

vD = eDGD
0 . (O56)

Claim 1 tells us that Z errors propagate through
Algorithm 3 in a manner that is isomorphic to their prop-
agation through error-correction codes represented by the
corresponding G matrices.

We can prove Claim 1 by considering how a single Z
error on a BU qubit propagates onto a factory qubit under
Algorithm 3. Since an error on a factory qubit propagates
to the end of the circuit, they compose independently. Con-
sult the last circuit of Fig. 12 and consider a Z error on the
top qubit. It commutes with the multiqubit Pauli Z mea-
surement but flips the final single-qubit X measurement.
The outcome for this X measurement decides whether to
apply Z to the qubits below. In other words, a Z on the top
qubit propagates to all the qubits below. In Algorithm 3,
when operating on qubit (D, j )BU we apply the circuit
of Fig. 12 to sets of factory qubits identified by (D, i)f

whenever GD
i,j = 1. Therefore, a Z error on (D, j )BU occurs

whenever eD
j = 1 and will propagate to every (D, i)f for

which GD
i,j = 1. Summing over all j ∈ [1, n] magic state

injections, factory qubit (D, i)f will have a Z error if

∑

j

eD
j GD

i,j =
[
eDGD]

i = 1 (mod 2). (O57)

Since the ith qubit is Z flipped according to the ith element
of vector wD := eDGD, this vector describes the Z-error
distribution on factory block D. Splitting GD into its block
matrix components GD

1 and GD
0 gives Eq. (O55).

We have already described the main components of the
magic state distillation routine, but for completeness we
recap how they fit together in Algorithm 4. Combining our
previous results, we have the following.

Claim 2 ((Distillation)). Consider an implementation of
Algorithm 4 using GD matrices of size n× (m+ k) satis-
fying Lemma 2 and using n noisy CCZ states with Pauli
Z error described by {eA, eB, eC} as in Definition 3. The
protocol will ACCEPT whenever

vD = eDGD
0 = 0 (O58)

for every D ∈ {A, B, C}. Furthermore, provided for every
D ∈ {A, B, C} we have

uD = eDGD
1 = 0, (O59)

the protocol outputs |CCZ〉⊗k. Furthermore, if the
j th |CCZ〉 state has error Z[ej ] with probability Pj (ej )

Algorithm 4. A complete magic state distillation routine using
a space-time trade-off and multiqubit Pauli measurements. It
assumes a trio of GD matrices of size n× (m+ k) representing
[[n, k, d]] codes with CCZ transversality as in Lemma 2. We gave
suitable GD matrices in Eqs. (O24) to (O26) for which we have
n = 8, k = 2, d = 2, and m = 1. Qubit label convention given in
Definition 2
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then the probability of passing the error detection test is

Pacc =
∑

eD:[eDGD
0 =0]∀D

∏

j

Pj (ej ), (O60)

and the output fidelity is

F = 1
Pacc

⎛
⎜⎝

∑

eD:[eDGD
1 =0]∀D

∏

j

Pj (ej )

⎞
⎟⎠ . (O61)

First consider when there are no Z errors. From
Appendix O4b we see that Algorithm 2 will (when there
is no Z noise) apply CCZ⊗k to the 3k qubits labeled (D, i)f
with i ≤ k. The check qubits with i > k are unaffected.
Therefore, the check qubits should still be in the |+〉 state
and give “+1” in response to an X measurement. This
confirms that the protocol acts correctly in the ideal case.

When there are one or more Z errors, Claim 1 shows
that the check qubits remain unflipped if and only if uD =
eDG0 = 0 for all D. Furthermore, if vD = eDG1 = 0 then
Claim 1 tells us whether there are no Z errors propagated
onto the factory qubits forming the output |CCZ⊗k〉 state.
The formulae for Pacc and F follow by simply summing
over the probabilities of these events.

For the remainder of this subsection, we consider
the special case when GD

0 = (1, 1, . . . , 1) as we have in
Eqs. (O24) to (O26). Then, the state will pass the error-
detection test whenever

vD = eDGD
0 =

∑

j

eD
j = 0. (O62)

If there are no fault locations so ej = 0 for all j , then the
protocol will ACCEPT. If there is a single fault location,
so a single j for which ej = (eA

j , eB
j , eC

j ) �= (0, 0, 0) then the
error must be detected as there is no chance for cancella-
tion. If there are two fault locations for which ej �= 0 and
ei �= 0 then the errors will go undetected only if they cancel
exactly, so ej = ei. Therefore, to leading order

Pacc=
n∏

j=1

Pj (0)+
∑

{i,j }⊂[1,n],e �=0

Pi(e)Pj (e)
∏

��=i,j

P�(0)+ . . . .

(O63)

For instance, let us consider an independent identically dis-
tributed depolarizing noise model such that Pj (0) = 1− ε
and Pj (e �= 0) = ε/7. There are seven types of fault e �= 0
and 28 pairs of possible locations, making 196 different
undetected two fault-location errors, so that

Pacc = (1− ε)8 + 196
(ε

7

)2
(1− ε)6 + . . . . (O64)

To leading order, the infidelity 1− F is upper bounded by
the probability of an undetected two fault-location error,

1− F ≤ 196
(ε

7

)2
(1− ε)6 + . . . . (O65)

However, some undetected two fault-location errors will
not lead to an output error (i.e., when [eDGD

1 = 0]∀D).
For the GD matrices of interest [Eqs. (O24) to (O26)], by
brute-force counting we find that 184 of the undetected
196 two fault-location errors will lead to an error. The 12
harmless faults are listed in Table XI and will return to
play an important role in noise tailoring of Appendix O 6.
Therefore, we can tighten Eq. (O65) to

1− F ≤ 184
(ε

7

)2
(1− ε)6 + . . . (O66)

∼ 3.755ε2 + O(ε3). (O67)

Therefore, we have quadratic error suppression with quite
a small constant factor for depolarizing noise. In the main
text, we usually quote the error per TOF state and since the
protocol outputs two TOF states, we have εTD := (1/2)(1−
F). For the depolarizing noise model this leads to

εTD = ∼1.878ε2 + O(ε3). (O68)

a. Truncation errors

While we give expressions up to second order, these
summations can be easily performed to higher order and
any truncation error can be controlled. If we perform cal-
culations up to tmax fault locations, then the truncation error
can be easily upper bounded by assuming that every error
above the cutoff leads to an undetected output error so that

TABLE XI. List of the errors with two fault locations that are undetected but do not cause a logical fault when executing Algorithm 4
with GD matrices as in Eqs. (O24) to (O26). The errors follow the notation of Definition 3. For example, e = (1, 0, 0) corresponds
to Z ⊗ 1⊗ 1 and is undetected yet harmless when it acts on BU qubits (A, 1)BU and (A, 2)BU. This is a direct consequence of
(1, 1, 0, 0, 0, 0, 0, 0)GA

1 = (0, 0) that can be confirmed by inspection of Eq. (O24). Notice that only unit vector e appears in this list
of fault types.

Fault type ei = ej = e = (1, 0, 0) (0, 1, 0) (0, 0, 1)

Fault locations {i, j } = {1, 2}, {3, 6}, {4, 5}, {7, 8} {1, 5}, {2, 4}, {3, 7}, {6, 8} {1, 3}, {2, 6}, {4, 8}, {5, 7}
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we have the rigorous bound

1− F ≤ (1− Ftmax)+
8∑

t=tmax+1

(
8
t

)
7t
(ε

7

)t
(1− ε)8−t,

(O69)

where (1− Ftmax) is a estimate counting up to tmax fault
locations and the additional summation is our bound on the
truncation error. In all subsequent numerical calculations
we have confirmed the possible truncation error is many
orders of magnitude smaller than the estimated error. For
instance, using tmax = 3 then for ε ≤ 10−4 the truncation
error is no more than 3× 10−16 and therefore negligible.

In practice, the error distribution from BUTOF is far
from depolarizing and this is further skewed when we
account for Clifford noise (see Appendix O 8). However,
truncation error can be estimated of any noise model and
controlled in the above manner. Furthermore, one can also
tailor the protocol to the noise profile (see Appendix O 6).

b. Generic noise

We have shown Algorithm 4 tolerates Z-error noise.
Next, we show it also tolerates X noise on the noisy
|CCZ〉 states. Abstracting away the details of Claim 2, the
protocol maps pure states as follows:

Z[e]|CCZ〉⊗n → det(e)Z[ν(e)]|CCZ〉⊗k, (O70)

where det(e) = 0, 1 depending on whether the error e is
detected or not, and the output error is some function ν of
e. Formulae for det and ν can be extracted from Claim 2,
but here it is useful to ignore these details. Going to density
matrices, we can write

ρ := |CCZ〉〈CCZ|⊗n,

σ := |CCZ〉〈CCZ|⊗k.
(O71)

Because Z[e]|CCZ〉⊗n form an orthonormal basis, any
input mixed state can be written as

ρ̃ :=
∑

e,f

Ae,fZ[e]ρZ[f]. (O72)

If the state suffered stochastic Z noise then it would be
diagonal with respect to this basis, so Ae,f = 0 whenever
e �= f. If there are off-diagonal elements Ae,f �= 0 these
could be eliminated by applying a random twirl using
the Clifford operators that stabilize |CCZ〉. However, this
would add unnecessary Clifford gates as these off diagonals
are unimportant, as we now show.

By Eq. (O70) and linearity, we have

ρ̃ → σ̃ =
∑

e,f

det(e)det(f)Ae,fZ[ν(e)]σZ[ν(f)]. (O73)

Because any physical process does not increase the trace of
any terms, there is no way for off-diagonal elements (with
e �= f) to be mapped to on-diagonal elements [with ν(e) �=
ν(f)]. Since the success probability and fidelity depend
only on the output diagonal elements, we conclude that
our figures of merit only depend on the diagonal Ae,e ele-
ments. In other words, the success probability and output
fidelity are unchanged whether or not we twirl the initial
state. In all numerics presented, whenever the input magic
states suffer a mix of Z and X noise, we have calculated the
exact ρ̃ matrix, extracted the diagonal elements and used
them to build an equivalent stochastic Z noise model. Con-
sequently, any error on a single |CCZ〉 state appears as a
stochastic mixture of Z errors at one fault location.

After the protocol is complete, we can twirl the output
states to ensure that the infidelity matches the trace-norm
error of the output states. Though again, this twirl is never
actually performed but included into the Clifford record to
modify Pauli measurements used to inject the magic state
into the algorithm.

6. Noise tailoring through Clifford symmetries

There is some freedom in how injections are scheduled
and whether to include certain Clifford gates in the TDTOF
protocol. A |CCZ〉 gate is invariant under permutation of
qubits A, B, and C. More generally, there are Clifford sym-
metries C such that C|CCZ〉 = |CCZ〉. A permutation is a
sort of Clifford symmetry, but one that can be realized at
no further gate count.

As such, we can add Cliffords or freely permute some of
the indices in Algorithm 3. In the ideal case, with no errors,
these symmetry operations have no effect. However, they
can change the noise model. For qubits with depolarizing
noise, the noisy state is invariant under all these symme-
tries. However, for BUTOF the output noise model is very
asymmetric and highly skewed towards a Z error on qubit
A and so applying symmetry operations can change the
protocol’s performance. Here we explain the idea of noise
tailoring through symmetries and find that the change can
be dramatic. Indeed, while the protocol usually quadrati-
cally suppresses errors, we can tailor the noise for cubic
suppression of one error type. To make a clean statement
we consider a toy noise model.

Claim 3. Consider a noise model on |CCZ〉 states such
that for every j it experiences error Z[ej ] (recall Definition
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3) with probability

Pj (ej ) :=

⎧
⎪⎨
⎪⎩

1− ε1 − ε2 if ej = (0, 0, 0)
ε1 if ej = (1, 0, 0)
(ε2/6) otherwise,

(O74)

where ε2 
 ε1. Directly applying Claim 2 leads to an
output infidelity of O(ε2

1)+ O(ε2
2)+ O(ε1ε2). However,

there exists a set of Clifford symmetries {Cj } such that
Cj |CCZ〉 = |CCZ〉 and if applied at the start of the pro-
tocol lead to an output infidelity of O(ε3

1)+ O(ε1ε2)+
O(ε2

2).

Consider a set of Clifford symmetries such that

Cj Z[ej ]C†
j = ±Z[ej Mj ], (O75)

where Mj is an invertible 3× 3 binary matrix and ej Mj
represents matrix multiplication. The ± phase will depend
on Z[ej ] but is irrelevant to our analysis. For example, if
Cj permutes qubits in Hilbert space then Mj represents the
permutation of the indices. Then applying Cj to the input
magic states generates a new probability distribution for Z
errors

P
′
j (ej Mj ) := Pj (ej ). (O76)

Using that M must be invertible, we equivalently have

P
′
j (ej ) := Pj (ej M−1

j ). (O77)

Only errors with two fault locations give second-
order contributions to the output infidelity. Recall from
Appendix O 5 that for such an error to go undetected,
we must have that ei = ej =: e �= 0 for some distinct pair
{i, j }. We introduce the shorthand e for whatever nonzero

error type is under consideration. This occurs with proba-
bility

P
′
i(eMi)P

′
j (eMj )P

′
j (0)

6 = Pi(eM−1
i )Pj (eM−1

j )Pj (0)6.
(O78)

This probability is of size O(ε2
1) if

eM−1
i = eM−1

j = (1, 0, 0), (O79)

and otherwise the probability is smaller: either O(ε1ε2),
O(ε2

2) or zero. Inverting again, Eq. (O79) can be converted
into

e = (1, 0, 0)Mi = (1, 0, 0)Mj . (O80)

It follows that to achieve O(ε3
1) scaling of output infidelity,

we require that for every {i, j } pair either

(1�) (1, 0, 0)Mi �= (1, 0, 0)Mj ;
(2�) or if (1, 0, 0)Mi = (1, 0, 0)Mj then fault e =

(1, 0, 0)Mj corresponds to one of the harmless errors listed
in Table XI.

There are seven different possible values of (1, 0, 0)Mj but
eight different j indices, so it is (narrowly) not possible to
use condition 1� alone. However, it is possible to find a
set of Clifford symmetries such that some pairs {i, j } are
covered by condition 1� and some pairs {i, j } are covered
by condition 2�.

We provide such an {Mj } set in Table XII, which suffices
to prove Claim 3. Furthermore, this set can be imple-
mented especially easily. Consulting Table XII we find
that the Clifford symmetries for indices {1, 2, 3, 4, 7, 8} all
correspond to permutations of indices and so can all be
performed in software. The only exceptions are indices
{5, 6} that correspond to a W = CNOTB,AXA gate followed
by an index permutation. In other words, W bit flips qubit
A if qubit B is in the |0〉 state. Consequently, the state
|1, 1, 1〉 is invariant under W and other computational basis
states are permuted. Therefore, W is a Clifford symmetry
of the |CCZ〉 state since all terms except |1, 1, 1〉 carry the
same amplitude and phase. Since |TOF〉 = HC|CCZ〉 and

TABLE XII. Set of transformation matrices Mj that represent Clifford symmetries as defined in Eq. (O75). For every distinct pair of
indices {i, j } they satisfy either condition 1� or condition 2� as stated in the proof of Claim 3. In particular, the only pairs for which
condition 1� does not hold are {1, 2},{3, 7} and {4, 8}. However, for these three cases the fault pattern is one of the harmless cases listed
in Table XI.

j 1 2 3 4 5 6 7 8

Mj

⎛
⎝

1 0 0
0 0 1
0 1 0

⎞
⎠

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝

0 1 0
1 0 0
0 0 1

⎞
⎠

⎛
⎝

0 0 1
0 1 0
1 0 0

⎞
⎠

⎛
⎝

1 0 1
0 0 1
0 1 0

⎞
⎠

⎛
⎝

1 1 0
1 0 0
0 0 1

⎞
⎠

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠

⎛
⎝

0 0 1
0 1 0
1 0 0

⎞
⎠

(1, 0, 0)
(
1 0 0

) (
1 0 0

) (
0 1 0

) (
0 0 1

) (
1 0 1

) (
1 1 0

) (
0 1 0

) (
0 0 1

)
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[W, HC] = 0, we know W also stabilizes |TOF〉. Further-
more, when conjugating a Z error we have that Eq. (O75)
takes the form

WZ[ej ]W† = W(−1)e
A
j Z[ej MW], (O81)

where

MW =
⎛
⎝

1 1 0
0 1 0
0 0 1

⎞
⎠ . (O82)

Permuting qubit indices after W corresponds to swapping
columns of MW. We get M5 of Claim 3 by swapping
columns 2 and 3 of MW. We get M6 of Table XII by
swapping columns 1 and 2 of MW.

The actual noise distribution output from BUTOF is not
exactly the toy noise model of Table XII but it shares the
feature that (Z ⊗ 1⊗ 1) errors dominate. In all numer-
ics presented, we use the Clifford symmetry operations
of Claim 3 and Table XII but analyzed using the correct
BUTOF noise model.

Implementing W on repetition encoded qubits A and B
is straightforward because W is transversal and the code
blocks are adjacent to each other in the proposed layout.

7. Factory layout and scheduling

We see from Fig. 61 that lattice surgery require some
additional workspace to connect the various code blocks.
Figure 62 presents a 2D layout to realize TDTOF using
lattice surgery, including all necessary workspace. If bit
flips are sufficiently small, then the factory can be realized
completely with repetition codes. In the regime where bit
flips are rare but not completely negligible, we use a mix
of repetition-code blocks (for the BU qubits) and dx = 3
thin surface codes (for the factory qubits) to tolerate a sin-
gle physical bit flip anywhere in the factory. Additional
bit-flip protection could be achieved by increasing the X
distance of all code blocks and/or performing two rounds
of TDTOF. Here we describe only a single round and pri-
marily focus on the version using dx = 3 surface-code
blocks.

For now, we assume a supply of TOF states generated
from BUTOF. Then we can schedule the main TDTOF steps
as listed in Table XIII. The required eight input |TOF〉 are
divided into two batches of four. How quickly can a batch
of four input |TOF〉 magic states be injected? Each |TOF〉
state comprises three qubits, so there are a total of 12 =
3× 4 multipatch Pauli measurements needed per batch.
These can be partly parallelized. Figure 62 shows four hor-
izontal empty regions that we call access corridors labeled
{A, AB, BC, C}. This allows us to perform four multipatch
Pauli measurement in parallel. There are some constraints
on which multipatch Pauli measurements are performed
(further discussion in the caption of Fig. 62). The first

batch is injected in factory clock steps 1–3. The second
batch is injected in factory clock steps 4–6. Factory clock
step 7 performs the measurement of the check qubits, and
starts the process of exiting some factory qubits out of the
factory. Factory clock step 8 completes the process of exit-
ing the factory qubits. Each factory clock step takes a time
(dm + 1)Tsurf, where Tsurf is the duration of one surface-
code cycle and dm is the number of surface-code cycle used
per multiqubit Pauli measurement. The “+ 1" in (dm + 1)
provides time to perform high-fidelity single-qubit mea-
surements and reset between rounds of multiqubit Pauli
measurement. Roughly, a single execution of TDTOF takes
time 8(dm + 1)Tsurf, though small extra additive time costs
may be incurred to execute BUTOF, which we discuss next.

The BUTOF protocol can have a fairly high failure
probability, labeled here by FBU. This failure probabil-
ity depends on the repetition-code distance dBU used in
BUTOF. To boost the probability of having ample supply
of states from BUTOF, we add redundancy in both time and
space. Our illustrations show M = 20 modules for BUTOF,
but we need only eight input |TOF〉 or |CCZ〉 states for the
protocol. Not all eight input |TOF〉 or |CCZ〉 states need to
exist at the same time as they are split into two batches.
Rather we aim to prepare four |TOF〉 at the start of factory
clock steps 1 and 4. Therefore, during the factory clock
steps 4–8 [a total time of 5(dm + 1)Tsurf], we need to pre-
pare four |TOF〉 for the first batch of the next round of
TDTOF. During the factory clock steps 1–3 [a total time
of 3(dm + 1)Tsurf], we need to prepare four |TOF〉 for the
second batch in the current round of TDTOF. Let us focus
our discussion on preparation during steps 1–3 as this is the
bottleneck point. Furthermore, our schedule requires that,
of these four |TOF〉 states, two are located on the left and
two are located on the right. Considering just one side, we
have M/2 BUTOF modules. Of these M/2 modules, two
are busy storing |TOF〉 states and performing the required
lattice-surgery operations. This leaves (M − 1)/2 modules
responsible for preparing two |TOF〉 states. Each attempt at
BUTOF takes a time

TBU = 2dBUTrep + dBU + 1
2

(2+ dBU + 1)TCNOT, (O83)

where TCNOT is the optimal time for a CNOT gate and Trep
is the time for a repetition-code cycle. Therefore, steps 1–3
provide enough time to fit in R := "3(dm + 1)Tsurf/TBU#
repeated attempts at BUTOF. Given R temporally multi-
plexed attempts, each BUTOF module has its failure prob-
ability reduced from FBU to F̃BU := FR

BU. Each side fails if
there are zero or one module successes of the (M − 1)/2
modules, which occurs with probability

Fside = F̃ (M−1)/2
BU + M − 1

2
F̃ (M−1)/2

BU (1− F̃BU)

= FR(M−1)/2
BU + M − 1

2
FR(M−1)/2

BU (1− FR
BU). (O84)
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9+ 2drep + dz + 2Dz

Factory qubits

Check qubits
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{ Contains three
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code blocks

(D, i ≤ 2)f (D, 3)f

(A, j)BU

(B, j)BU

(C, j)BU

Magic qubits

21 ATS

dx = 3

BU

BU

BU

BU

BU Corridor A

Corridor AB

Corridor BC

Corridor C BU

BU

BU

BU

BU
(A, 1)f (A, 2)f (A, 3)f

(B, 1)f (B, 2)f (B, 3)f

(C, 3)f(C, 2)f(C, 1)f

FIG. 62. A 2D layout for realizing 8TOF → 2TOF distillation via lattice surgery using a mixture of repetition codes and thin surface
code. Example dimensions shown here with encoding distances dx = 3, drep = 5, dz = 5, and Dz = 7; and M = 10 BUTOF modules.
Additional space between code blocks is provided for lattice surgery and routing between code blocks (see Appendix M and Fig. 61).
We give explicit locations for the nine factory qubits with labels (D, i)f following Definition 2. The modules labeled BU consists of
three repetition codes and provide space to attempt a noisy |TOF〉 preparation using the BUTOF protocol. Note that BUTOF is executed
with a distance dBU repetition code (typically we set dBU = 5, 7) and then immediately grow to distance dz > dBU.

For instance, executing BUTOF at distance 5 and using
dm = 15 surface-code cycles per lattice-surgery operation
we have R = 3 attempts at BUTOF (assuming κ1/κ2 =
10−5 and |α|2 = 8). If FBU = 0.447 then the temporal

redundancy reduces this to F̃BU = F3
BU = 0.089. Providing

M = 10 modules in total, there is (M − 1)/2 = 3 available
spatial redundancy on each side, which further suppresses
the failure probability to Fside = 0.023. This is already
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TABLE XIII. The final form of our TDTOF protocol for one full cycle of the factory. It executes a variant of Algorithm 4 that
has been modified according to the qubit permutations required for noise tailoring (see Appendix O 6) and embedded within the 2D
layout of Fig. 62. Each cell for factory clocks 1–6 has the form A then B. Instruction A specifies a multiqubit Pauli operator using
the qubit notation of Definition 2. For example, X (C, 4)BU, Z(A, 3)f means measure the operators X ⊗ Z, where the X acts on magic
input labeled (C, 4)BU and the Z acts on factory qubit (A, 3)f . Instruction B specifies a single-qubit measurement of a magic input
qubit. The B instructions can be realized with physical single-qubit measurements that take a single surface-code cycle. As such, B
instructions require negligible time compared to the A instructions, so we present both a and B within a single factory clock step
that has duration dm + 1. In factory clock steps 1 and 4, the role of Z and X are swapped on the magic state qubits to account for
the Hadamard difference between |CCZ〉 and |TOF〉. The column headers “Corridor” indicate which corridor from Fig. 62 is used to
realize the multiqubit Pauli measurement since lattice surgery requires some workspace to operate. Note that “Corridor AB” can only
be used to access factory qubit with labels of the form (A, i)f or (B, i)f . The column headers also list which factory blocks {A, B, C}
the corridor can be used to access and this constraint it respected in this schedule. Notice that multiqubit measurements of the form
X (C, 4)BU, Z(A, 3)f involve different capital letter indices on the factory and magic qubits. In contrast, item 1(a) of Algorithm 3
describes multiqubit Pauli measurements with matching capital letter indices. This is due to the permutation operations required for
noise tailoring (see Appendix O 6). In particular, when performing measurements with the j = 4 index, the matrix M4 of Table XII
instructs us to swap the A and C indices for the magic state qubit. In the cases of M6 and M7, these are decomposed into a single Clifford
gate W and a permutation. The above table accounts only for the permutation, with the Clifford performed on the input magic state
qubits prior to injection into TDTOF. Factory clock times 1–3 correspond to batch 1, so that measurements involve only magic state
qubits of the form (D, i)BU with i ∈ [1, 4]. Factory clock times 4–6 correspond to batch 2, so that measurements involve only magic
state qubits of the form (D, i)BU with i ∈ [5, 8]. The importance of batching and the related issue of BUTOF scheduling is discussed in
Appendix O 7. “Exit” refers to factory qubits moving out of the factory.

Factory clock Corridor A Corridor AB Corridor BC Corridor C

1

X(C, 4)BU
Z(A, 3)f

then
Z(C, 4)BU

X(C, 3)BU
Z(B, 1)f
Z(B, 2)f
Z(B, 3)f

then
Z(C, 3)BU

X(C, 2)BU
Z(C, 2)f
Z(C, 3)f

then
Z(C, 2)BU

X(C, 1)BU
Z(C, 1)f
Z(C, 2)f
Z(C, 3)f

then
Z(C, 1)BU

2

Z(B, 1)BU
Z(A, 0)f
Z(A, 1)f
Z(A, 2)f

then
X(B, 1)BU

Z(B, 2)BU
Z(B, 0)f
Z(B, 2)f

then
X(B, 2)BU

Z(B, 4)BU
Z(B, 0)f
Z(B, 2)f

then
X(B, 4)BU

Z(B, 3)BU
Z(C, 1)f
Z(C, 2)f

then
X(B, 3)BU

3

Z(A, 3)BU
Z(A, 0)f
Z(A, 2)f

then
X(A, 3)BU

Z(A, 2)BU
Z(A, 0)f
Z(A, 1)f
Z(A, 2)f

then
X(A, 2)BU

Z(A, 1)BU
Z(B, 0)f
Z(B, 1)f
Z(B, 2)f

then
X(A, 1)BU

Z(A, 4)BU
Z(C, 1)f
Z(C, 2)f

then
X(A, 4)BU

4

X(C, 8)BU
Z(A, 3)f

then
Z(C, 8)BU

X(C, 6)BU
Z(B, 2)f
Z(B, 3)f

then
Z(C, 6)BU

X(C, 7)BU
Z(B, 1)f
Z(B, 3)f

then
Z(C, 7)BU

X(C, 5)BU
Z(C, 1)f
Z(C, 3)f

then
Z(C, 5)BU

5

Z(B, 5)BU
Z(A, 0)f
Z(A, 1)f
Z(A, 2)f

then
X(B, 5)BU

Z(B, 7)BU
Z(A, 1)f
Z(A, 2)f

then
X(B, 7)BU

Z(B, 8)BU
Z(B, 2)f

then
X(B, 8)BU

Z(B, 6)BU
Z(C, 2)f

then
X(B, 6)BU

6

Z(A, 6)BU
Z(A, 0)f
Z(A, 2)f

then
X(A, 6)BU

Z(A, 5)BU
Z(B, 1)f
Z(B, 2)f

then
X(A, 5)BU

Z(A, 7)BU
Z(C, 2)f

then
X(A, 7)BU

Z(A, 8)BU
Z(C, 2)f

then
X(A, 8)BU

7 Setup
exit

X(A,3)f
Clifford

corrected

X(B,3)f
Clifford

corrected

X(C,3)f
Clifford

corrected
8 exit exit exit exit
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quite low. We can further reduce the failure probability by
either increasing space cost M or inserting a small number
Q additional rounds of BUTOF between steps 3 and 4. In
the latter case, the runtime of TDTOF is extended to

TTD = QTBU + 8(dm + 1)Tsurf, (O85)

where we have assumed QTBU ≤ 2(dm + 1). This further
reduces Fside. A coarse bound is obtained by replacing
R → R+ Q in Eq. (O84), though actually the suppression
is slightly better as there are now M/2 modules available
for the Q attempts. We do not wish to set Q too high, as the
additional delay leads to logical error accumulation due to
finite distance choices.

Whenever BUTOF fails to proceed the required |TOF〉
states, we count this as a failure of the whole TDTOF pro-
tocol. However, we use sufficient redundancy that such
occurrences are very rare. Typically, we set Q = 1 or Q =
2, and we use M = 10 when dBU = 5 and M = 20 when
dBU = 7.

An additional consideration is that a lattice dislocation
is used when performing a multiqubit Pauli measurement
including a ZL on a repetition encoded logical qubit (see
Fig. 61). This dislocation uses a small amount of additional
space. However, when using |TOF〉 input states (instead of
|CCZ〉) the third qubit differs by a Hadamard and so the
protocol is adjusted to measure XL and a dislocation is not
required. For this reason, we inject the qubits in reverse
order: (C, j )BU, (B, j )BU then (A, j )BU. After (C, j )BU is
injected (without needing a dislocation) some space is
freed up for dislocations to be used, enabling (B, j )BU and
(A, j )BU to be injected.

8. Clifford noise

Perhaps one of the most important aspects of magic state
factory design is the choice of distance for various code
blocks. It is possible to use much smaller code distances
within the factory than used inside the main algorithm.
Using finite code distances leads to noisy Clifford gates,
noisy lattice-surgery operations and non-negligible mem-
ory noise. This needs to be accounted for in addition to the
error estimated by Claim 2 under the assumption of ideal
Cliffords. Indeed, typically Clifford noise is the dominate
source of errors and the error of Claim 2 should instead be
regarded as the minimum achievable error (with one round
of TDTOF) in the limit of infinite code distances.

Some of the relevant spatial code-distance parameters
are shown in Fig. 62. An important additional quantity is
the “measurement distance” dm that is increased to sup-
press the effect of timelike errors during lattice surgery (see
Appendix M for further details). A common choice in the
literature is to set dm = max[dz, dx], but this is by no means
necessary or optimal.

Rather than a Monte Carlo simulation of Clifford noise,
we perform a computer-assisted analytical analysis. It is

helpful to distinguish critical and noncritical faults. We say
a Clifford fault is a critical risk if (assuming no other errors
occur) it leads to an undetected fault on the output magic
states. Conversely, a fault is a noncritical risk if it will be
detected (assuming no other errors). All sources of Clifford
noise can be grouped into one of four classes

1. Backwards propagating and not critical: these are
errors that can be commuted towards the start of the
circuit, so that they act on a single noisy input |TOF〉
state. If ρ is the density matrix with only noise from
BUTOF, the backwards propagating noise is applied
so ρ → ρ ′. Then the effective Z logical error distri-
bution is determined from ρ ′ using the procedure of
Appendix O 5 b.

2. Forwards propagating and not critical: these errors
can be commuted to the end of the circuit, so that
they act on the check qubits in the factory just before
they are measured.

3. Forwards propagating and critical: these errors can
be commuted to the end of the circuit, so that they
act on the output magic state qubits.

4. Stuck errors and potentially critical: these are errors
that are difficult to commute forwards or backwards
through the circuit. We sum the probability of these
events and add it to the error rate on the output
magic states.

Our treatment of stuck errors means that we obtain an
upper bound on the performance. One might be concerned
that this bound is loose, but in practice the stuck errors are
very rare and not, therefore, of major importance. Indeed,
if we instead attempted a Monte Carlo simulation, the sta-
tistical variance in the error estimate would exceed that of
the total stuck error probability. Therefore, our computer-
assisted analytical analysis leads to more accurate results
than Monte Carlo methods. We further remark that while
a mild amount of truncation of higher-order processes is
employed, we use the procedure of Appendix O 5 a to
monitor this truncation error and verify that it is negligible.

We list all the source of imperfections in Table XIV and
describe the propagation type and risk level. Let us assume
that backwards propagation has been performed and we
have accounted for the effect of noise tailoring (recall
Appendix O 6) on the error distribution. Following earlier
notation of Definition 3 and Appendix O 6, we say j th noisy
TOF state suffers fault Z[ej ] with probability Pj (ej ) that we
precompute. Then, without any other noise sources, Claim
2 would describe the acceptance probability and output
infidelity. However, the factory qubits may be affected by
some forwarded propagated error Z[(w̃A, w̃B, w̃C)] where
the labels {A, B, C} refer to the three different blocks of
factory qubits. We used similar notation, without the tilde,
in Claim 1 to describe how errors due to input magic
states impact the protocol. To combine with the forwarded
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TABLE XIV. Fault sources due to imperfect Cliffords. Each error is either propagated forwards or backwards, or it is stuck. We
sum the probability of all stuck errors and add to the overall infidelity of TDTOF. Backwards propagated errors modify the noise
distribution on the input magic states. Forwards propagated are handled by modifying the formulae [see Eqs. (O86) and (O87)] for
the infidelity and acceptance probability. An error is a critical risk it occurs with probability p and contributes to the overall infidelity
with probability O(p) rather than O(p2). Every error source can exponentially suppress some parameter, where {drep, dz , DZ , dx} are
code distances illustrated in Fig. 62; dm is the measurement distance denoting the number of surface-code cycles used during lattice
surgery (see Appendix M); and |α|2 is the mean phonon number in the cat-code qubit. For critical risk errors, the associated parameter
is typically set higher than the parameters set for noncritical errors. In particular, the parameters {dz, dm, drep} can be safely set at about
half the value of Dz though our actual choice is determined by numerical search.

Fault source and remarks Propagated Risk Suppressing
parameter

Z-logical errors on repetition codes during storage Backwards Not critical drep
Z-logical errors on factory qubits during storage Forwards Critical Dz
Z-logical errors on check qubits during storage Forwards Not critical dz
X logical on repetition codes during storage Backwards Not critical |α|2
X logical on surface codes’ factory qubits Stuck Critical dx, |α|2
Timelike error during lattice-surgery multipatch measurement. Remarks: This

flips the multiqubit measurement outcome (denoted ωD
j in Algorithm 3) but is

equivalent to Pauli error on input magic state. See Appendix M for details.

Backwards Not critical dm

Measurement failure when resetting after lattice surgery. Remarks: This flips
some single Pauli measurement outcome mD

j in Algorithm 3. Equivalent to
Pauli error on input magic state.

Backwards Not critical |α|2

propagated errors we simply replace w → w+ w̃ to add
the effect of the forwarded propagated errors and follow
this modification through the analysis of Claim 2. As we
did earlier, it will be useful to split w = (v, u) to dis-
tinguish errors on check qubits and output qubits. If the
forwarded propagated error w̃ on each block occurs with
some probability F(w̃) then the results of Claim 2 modify
to

Pacc =
∑

w̃D ,eD

[eDGD
0 =ṽD]∀D

∏

1≤j≤8
D∈{A,B,C}

Pj (ej )F(w̃D), (O86)

and

F = 1
Pacc

∑

w̃D ,eD

[ẽDGD
1 =ũD]∀D

∏

1≤j≤8
D∈{A,B,C}

Pj (ej )F(w̃D). (O87)

There are three important changes here. First, in both equa-
tions we have summed over forwards propagated errors
and weighted by the appropriate probability. In the accep-
tance probability the summation constraint [eDGD

0 = 0]∀D
has been replaced by [eDGD

0 = ṽD]∀D since to pass the
check measurement any forwards propagated error ṽD

must cancel (therefore equal) some other error to go
undetected. Similarly, in the fidelity expression we have
replaced [eDGD

1 = 0]∀D with [eDGD
1 = ũD]∀D because to

contribute to the fidelity any forwarded propagated error
ũD must cancel (therefore equal) some other error.

Calculating the expressions for Pj , F, performing the
summation and adding the stuck error events is too

involved to perform by hand. But it is relatively straight-
forward for a symbolic mathematics package such as
Mathematica. Optimizing over various error suppressing
parameters, we find the factory designs that achieve a cer-
tain target error per Toffoli at the minimum qubit and ATS
cost (without making significant sacrifices to acceptance
probabilities) and present results in Table XV.

9. The fidelity bottleneck in TDTOF

There are many contributing sources of error to the
results presented in Tables IV and XV. In the main text
summary of Table IV, the lowest reported Toffoli error
probability was 2.3× 10−9. Here we discuss which error
sources are the bottleneck factor that limit us from reach-
ing higher fidelities with TDTOF protocol. We conclude
with a discussion how the presented TDTOF protocol can
be adapted to pass this bottleneck.

Let us consider the process of bit-flip errors on noisy
input TOF states encoded in repetition codes. For hardware
parameters κ1/κ2 = 10−5, κφ = 0, and |α2| = 8, the lowest
total error rate is δ := 2.7× 10−8 per repetition-code cycle
(recall Fig. 7). If a single TOF state is stored for r repetition-
code cycles, then roughly the accumulated error on qubits
B and C is δr and this gives an additional contribution of
2δr to the nondominate noise contributions ε2. Returning
to our benchmark example, the output error is (roughly)
lower bounded by

Cε1ε
′
2 ∼ Cε1 (ε2 + 2δr)

= C(2× 10−5)
(
7.5× 10−9 + 2× 2.7× 10−8r

)
,

(O88)
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TABLE XV. Assuming κ1/κ2 = 10−5, κφ = 0, and |α|2 = 8. Performance of optimized TDTOF factory using BUTOF with dBU = 5
and MBU = 10. Zero-dephasing noise.

εTD No. ATS PACC (%) Time/TOF (μs) dBU drep dz Dz dx dm

7.6× 10−6 1176 93 1602 5 5 7 15 3 11
7.3× 10−6 1218 73 1871 5 5 9 15 3 10
4.8× 10−6 1218 94 1723 5 5 9 15 3 12
3.7× 10−6 1260 93 1734 5 5 7 17 3 12
1.5× 10−6 1302 94 1724 5 5 9 17 3 12
9.9× 10−7 1386 98 1766 5 5 9 19 3 13
8.6× 10−7 1386 94 1721 5 7 9 17 3 12
8.2× 10−7 1428 94 1723 5 5 11 19 3 12
6.1× 10−7 1428 98 1889 5 5 11 19 3 14
2.6× 10−7 1470 98 1762 5 7 9 19 3 13
1.3× 10−7 1512 99 1886 5 7 11 19 3 14
5.6× 10−8 1596 99 1886 5 7 11 21 3 14
4.1× 10−8 1596 99 2137 5 7 11 21 3 16
3.3× 10−8 1680 99 2011 5 7 11 23 3 15
2.8× 10−8 1680 99 2262 5 7 11 23 3 17
1.7× 10−8 1722 99 2136 5 7 13 23 3 16
1.5× 10−8 1722 99 2388 5 7 13 23 3 18
1.3× 10−8 1806 99 2388 5 7 13 25 3 18
1.3× 10−8 1890 99 2513 5 7 13 27 3 19
1.1× 10−8 1890 99 2388 5 9 13 25 3 18
1.1× 10−8 1932 99 2388 5 7 15 27 3 18
1.1× 10−8 1932 99 2639 5 7 15 27 3 20
1.1× 10−8 1974 99 2513 5 9 13 27 3 19
1.1× 10−8 2016 99 2639 5 7 15 29 3 20
9.0× 10−9 2016 99 2388 5 9 15 27 3 18
8.9× 10−9 2016 99 2639 5 9 15 27 3 20
8.8× 10−9 2100 99 2639 5 9 15 29 3 20
8.5× 10−9 2226 99 2639 5 9 17 31 3 20
8.5× 10−9 2436 99 2639 5 9 19 35 3 20
8.5× 10−9 2604 99 2764 5 9 19 39 3 21

where C is some constant that depends on the exact details
of the noise profile and we have discussed examples where
C ∼ 2 and C ∼ 8. Furthermore, for the larger factory
examples in Table IV repetition codes could be in stor-
age for as long as r ∼ 200 repetition-code cycles. Together
this approximate accounting indicates (with r = 200 and
C = 5) that we should not expect output infidelities lower
than approximately 1.1× 10−9. Of course, this is a rough
estimation of one error source, just to provide the reader
with some intuition. Rather, for a precise accounting of
all error sources the lowest observed infidelity was 2.5×
10−9. However, there are several straightforward routes to
reaching even lower infidelities. By converting immedi-
ately after BUTOF from repetition code to thin surface code
we would reduce the time exposed to bit-flip errors. For our
benchmark example, encoding directly into surface codes
should enable us to get much closer to 1.2× 10−12 infi-
delity (the ideal Clifford limit for noise tailored TDTOF).
Ultimately, arbitrarily high fidelities can be reached by
concatenating TDTOF, though resource costs jump sub-
stantially with each level of concatenation. Alternatively,

better fidelities could be reached it hardware parameters
could be improved by either further suppressing bit flips
by increasing |α|2 or decreasing κ1/κ2.
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