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Under suitable assumptions, the quantum-phase-estimation (QPE) algorithm is able to achieve
Heisenberg-limited precision scaling in estimating the ground-state energy. However, QPE requires a
large number of ancilla qubits and a large circuit depth, as well as the ability to perform inverse quan-
tum Fourier transform, making it expensive to implement on an early fault-tolerant quantum computer.
We propose an alternative method to estimate the ground-state energy of a Hamiltonian with Heisenberg-
limited precision scaling, which employs a simple quantum circuit with one ancilla qubit, and a classical
postprocessing procedure. Besides the ground-state energy, our algorithm also produces an approximate
cumulative distribution function of the spectral measure, which can be used to compute other spectral
properties of the Hamiltonian.
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I. INTRODUCTION

Estimation of the ground-state energy of a quantum
Hamiltonian is of immense importance in condensed-
matter physics, quantum chemistry, and quantum informa-
tion. The problem can be described as follows: we have a
Hamiltonian H , acting on n qubits, with the eigendecom-
position

H =
K−1∑

k=0

λk�k,

where �k is the projection operator into the λk eigensub-
space and the λk’s are increasingly ordered. Each eigen-
value may be degenerate, i.e., the rank of �k can be more
than 1. We assume that we can access the Hamiltonian H
through the time-evolution operator e−iτH for some fixed
τ . Our goal is to estimate the ground-state energy λ0 to
within additive error ε.

Some assumptions are needed, as otherwise this problem
is quantum Merlin Arthur (QMA) hard [1–4]. We assume
that we are given a state described by its density matrix
ρ. Let pk = Tr[ρ�k]. Then, if p0 (i.e., the overlap between
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the initial state and the ground state) is reasonably large,
we can solve the ground-state energy-estimation problem
efficiently. This assumption is reasonable in many practical
settings. For example, in quantum chemistry, the Hartree-
Fock method usually yields an approximate ground state
that is easy to prepare on a quantum computer. At least
for relatively small molecular systems, the Hartree-Fock
state can often have a large overlap with the exact ground
state [5]. Therefore, we may use the Hartree-Fock solution
as ρ in this setting. Other candidates for ρ that can be rel-
atively easily prepared on quantum computers have been
discussed in Refs. [5–7] and an overview of methods to
choose ρ can be found in Ref. [8, Sec. V.A.2].

The computational complexity of this task depends on
the desired precision ε. Even in the ideal case where the
exact ground state is given, this dependence cannot be bet-
ter than linear in ε−1 for generic Hamiltonians [9]. This
limit is called the Heisenberg limit [10–13] in quantum
metrology. This notion is closely related to the time-energy
uncertainty principle [9,14–16]. This optimal scaling can
be achieved using the quantum-phase-estimation (QPE)
algorithm [17], which we discuss in detail later.

Much work has been done to develop the algorithms for
ground-state energy estimation both for near-term quan-
tum devices [18–21], and fully fault-tolerant quantum
computers [22–25]. Relatively little work has been done
for early fault-tolerant quantum computers [26–29], which
we expect to be able to accomplish much more compli-
cated tasks than current and near-term devices but these
devices still place significant limitations on the suitable
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algorithms. Careful resource-cost estimation of perform-
ing QPE for the Hubbard model using a surface code to
perform quantum error correction has been carried out in
Refs. [28,30].

To be specific, we expect such early fault-tolerant quan-
tum computers to have the following characteristics, (1)
The number of logical qubits is limited. (2) It is undesir-
able to have a large number of controlled operations. (3)
It is a priority to reduce the circuit depth, e.g., it is better
to run a circuit of depth O(D) for O(M ) times than to run
a circuit of depth O(DM ) for a constant number of times,
even if use of the shorter circuit entails some additional
polylogarithmic factors in the total run time.

In this context, the textbook version of QPE (see, e.g.,
Refs. [31,32]), which uses multiple ancilla qubits to store
the phase and relies on the inverse quantum Fourier trans-
form (QFT), has features that are not desirable on early
fault-tolerant quantum computers. Some variants of QPE
have been developed to achieve a high confidence level
[33–35], which can be important in many applications.
However, such modifications require even more ancilla
qubits to store multiple estimates of the phase and an
additional coherent circuit to perform logical operations.
Another possible way to achieve a high confidence level
is to utilize a resource state ([36, Sec. II B]) to imple-
ment a Kaiser-window filter [37]. This approach requires
the same number of ancilla qubits as the textbook version
of QPE.

Due to the above considerations, we focus on the vari-
ants of QPE that use only very few ancilla qubits (in fact,
all algorithms below use only one ancilla qubit). Kitaev’s
algorithm (see, e.g., Ref. [3]) uses a simple quantum circuit
with one control qubit to determine each bit of the phase
individually. However, this method, together with many
other algorithms based on it [38,39], are designed for phase
estimation with an eigenstate given exactly, which is differ-
ent from our goal. The semiclassical Fourier transform [40]
can simulate QFT+measurement (meaning that all qubits
are measured in the end) with only one-qubit gates, classi-
cal control, and postprocessing, thus trading the expensive
quantum resource for inexpensive classical operations.
One can replace the inverse QFT with the semiclassical
Fourier transform and this results in a phase-estimation
algorithm that uses only one ancilla qubit [41,42]. This
approach can be seen as a simulation of the multiple-
ancilla qubit version of QPE and is therefore applicable
to the case when ρ is not exactly the ground state. Because
of these attractive features, this is the version of QPE used
in Refs. [28,30]. However, as we explain below in Sec. I
A, this type of QPE requires running coherent time evolu-
tion for time O(p−1

0 ε−1). This leads to a large circuit depth
when p0 is small. Moreover, this approach cannot be used
together with the resource state discussed earlier, because
the resource state is not a product state.

In this work, the complexity is measured by the time for
which we need to perform time evolution with the target
Hamiltonian H . We use two metrics: (1) the maximal evo-
lution time, which is the maximum length of time for which
we need to perform (controlled) coherent time evolution,
and (2) the total evolution time, which is the sum of all
the lengths of time we need to perform (controlled) coher-
ent time evolution. They describe, respectively, the circuit
depth and the total run time. Moreover, we are primarily
concerned with how they depend on the initial overlap p0
and the precision ε. The dependence on the system size
n mainly comes indirectly through p0 and the conversion
between the total evolution time and the run time, which
we discuss in more detail later. We present an algorithm
that achieves the following goals:

(1) Achieves Heisenberg-limited precision scaling; i.e.,
the total time for which we run time evolution is
Õ(ε−1poly(p−1

0 )).
(2) Uses at most one ancilla qubit.
(3) The maximal evolution time is at most

O(ε−1polylog(ε−1p−1
0 )).

To the best of our knowledge, our algorithm is the first to
satisfy all three requirements. In our algorithm, we sam-
ple from a simple quantum circuit and use the samples
to approximately reconstruct the cumulative distribution
function (CDF) of the spectral measure associated with
the Hamiltonian. We then use classical postprocessing to
estimate the ground-state energy with high confidence.
Besides the ground-state energy, our algorithm also pro-
duces the approximate CDF, which may be of independent
interest. In the above discussion, we assume that the con-
trolled time evolution can be done efficiently. If controlled
time evolution is costly to implement, then based on ideas
in Refs. [18,43–45], in Appendix E we offer an alternative
circuit that uses two ancilla qubits, with some additional
assumptions.

The problem of ground-state energy estimation is
closely related to that of ground-state preparation but there
are important differences. First, having access to a good
initial state ρ (with large overlap with the ground state)
does not make the energy estimation a trivial task, as even
if we have access to the exact ground state, the quan-
tum resources required to perform phase estimation can
still be significant. Second, ground-state energy-estimation
algorithms do not necessarily involve ground-state prepa-
ration. This is true for the algorithm in this work as well as
in Refs. [23,24]. Consequently, even though the ground-
state preparation algorithms generally have a run time
that depends on the spectral gap between the two lowest
eigenvalues of the Hamiltonian, the cost of ground-state
energy-estimation algorithms may not necessarily depend
on the spectral gap.
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We remark that although we characterize the scaling as
depending on the overlap p0, in practice we need to know a
lower bound of p0, which we denote by η. The dependence
on p0 should more accurately be replaced by a dependence
on η. To the best of our knowledge, in order to obtain a
rigorous guarantee of the performance, knowledge of η
(and the fact that η is not too small) is needed in all pre-
vious algorithms related to QPE. This is because in QPE
we need knowledge of η to obtain a stopping criterion. We
briefly explain this using a simple example. Suppose that
we have a Hamiltonian H on n qubits with eigenvalues λk
(arranged in ascending order) and eigenstates |ψk〉 and that
|φ0〉 is an initial guess for the ground state. Furthermore,
we assume that p0 = |〈φ0|ψ0〉|2 = 0.01, p1 = |〈φ0|ψ1〉|2 =
0.5. We may idealize QPE as an exact energy measurement
to simplify the discussion. If we have no a priori knowl-
edge of p0, then performing QPE on the state |φ0〉 will give
us λ1 with probability 1/2. If we repeat this � 100 times,
most likely all the energies we obtain will be ≥ λ1. Only
when we measure � 100 times can we reach the correct
ground-state energy λ0. Hence if we do not know about a
lower bound of p0, we can never know whether we have
stopped the algorithm prematurely.

The main idea of our algorithm is to use a binary-search
procedure to gradually narrow down the interval in which
the ground-state energy is located. The key component
is a subroutine CERTIFY (Algorithm 2) that distinguishes
whether the ground-state energy is approximately to the
left or right of some given value. This, however, can only
be performed up to a certain precision and can fail with
nonzero probability. Therefore, our search algorithm needs
to account for this fuzzy outcome to produce a final result
that is correct with probability arbitrarily close to 1. In the
CERTIFY procedure, we use a stochastic method to evalu-
ate the cumulative distribution function associated with the
spectral density and this is the key to achieving the Heisen-
berg scaling. This stochastic method is described in detail
in Sec. III.

A. Related works

We first briefly analyze the cost of the textbook ver-
sion of QPE using multiple ancilla qubits. Although this
method has features that are not desirable on early fault-
tolerant quantum computers, this analysis is nevertheless
helpful for understanding the cost of other variants of QPE.
For simplicity, we assume that ρ = |φ〉〈φ| is a pure state
and that the ground state |ψ0〉 is nondegenerate. Approxi-
mately, the QPE performs a projective measurement in the
eigenbasis of H . With probability p0, |φ〉 will collapse to
the ground state |ψ0〉. If this happens, the energy register
will then give the ground-state energy λ0 to precision ε.
Therefore, we run phase estimation for a total of O(p−1

0 )

times and take the instance with the minimum value in the
energy register. With high probability, this value will be

close to λ0. Each single run takes time O(ε−1). The total
run-time cost is therefore O(p−1

0 ε−1). For simplicity here,
we do not consider the run time needed to prepare |φ〉.

The above analysis, however, is overly optimistic. Since
we need to repeat the phase-estimation procedure for a
total of O(p−1

0 ) times, for an event that only has O(p0)

probability of happening in a single run, the probability of
this event occurring at least once in the total O(p−1

0 ) rep-
etitions is now O(1) (which means that we cannot ensure
that the error happens with sufficient low probability). In
our setting, suppose that the maximal evolution time is T;
then each time we measure the energy register, there is
a O(T−1ε′−1) probability that the output will be smaller
than λ0 − ε′. If we choose T = O(ε−1) as discussed above
and we let ε′ = ε/p0, then the probability of the minimum
of the O(p−1

0 ) energy-register measurement outputs being
smaller than λ0 − ε/p0 is only upper bounded by O(1)
and we no longer have control over the probability of the
error being larger than ε. This means that there might be
a high probability that the error of the ground-state energy
will, in the end, be of order ε/p0 instead of ε. For a more
formal analysis, see Ref. [23, Appendix A]. We numer-
ically demonstrate that this is indeed the case in Fig. 1,
in which we show that the error increases as p0 decreases
and that there is a larger probability of the estimate deviat-
ing beyond a prescribed tolerance if the maximal evolution
time—or, equivalently, the circuit depth—for QPE is fixed.

To avoid this, one can instead choose the maximal evo-
lution time to be T = O(p−1

0 ε−1). After repeating O(p−1
0 )

times, the total run time then becomes O(p−2
0 ε−1). The

increase in the maximal evolution time can prevent the
increase of the error (see Fig. 1). However, the extra p−1

0
factor increases the circuit depth and is undesirable.

There are several other algorithms based on phase esti-
mation using a single ancilla qubit [38,39,46] that are
designed for different settings from ours: they assume
the availability of an exact eigenstate or are designed
for obtaining the entire spectrum and thus only work for
small systems. In Ref. [47], a method is proposed for
estimating the eigenvalues by first estimating Tr[ρe−itH ]
and then performing a classical Fourier transform but no
run-time scaling is provided. The semiclassical Fourier
transform [40] simulates the QFT in a classical manner and
QPE using one ancilla qubit and the semiclassical Fourier
transform has the same scaling in terms of the maximal
evolution time and the total evolution time.

In order to improve the dependence on p0, we may
use the high-confidence versions of the phase-estimation
algorithm [33–35]. In this method, the maximal evolution
time required can be reduced to O(ε−1 log(p−1

0 )), through
taking the median of several copies of the energy register in
a coherent manner. However, this requires using multiple
copies of the energy register, together with an additional
quantum circuit to compute the medians coherently, which
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FIG. 1. A comparison of the performance of the textbook version QPE (blue dashed-dotted line) and the method in this work (red
solid line) in ground-state energy estimation with a fixed maximal evolution time (300 steps of time evolution with H ) and decreasing
initial overlap p0. The results are benchmarked against QPE with maximal evolution time proportional to p−1

0 (green dashed line). To
use QPE, either with fixed or O(p−1

0 ) maximal evolution time, to estimate the ground-state energy, we run QPE for O(p−1
0 ) times and

take the minimum in the energy-measurement outcomes as the ground-state energy estimate. The error is averaged over multiple runs
and the failure rate is the percentage of runs that yields an estimate with an error larger than the tolerance 0.04. The Hamiltonian H is
the Hubbard Hamiltonian defined in Eq. (F1) with U = 10 and the overlap p0 is artificially tuned.

can be difficult to implement. Note that the semiclassical
Fourier transform can only simulate the measurement out-
come and does not preserve coherence and therefore, to
our knowledge, the high-confidence version of phase esti-
mation cannot be modified to use only a single qubit. In
Ref. [23], the authors have used a method called mini-
mum label finding to improve the run time to O(p−3/2

0 ε−1)

but the implementation of the minimum label finding with
limited quantum resources is again difficult.

Besides these algorithms based on phase estimation,
several other algorithms have been developed to solve
the ground-state energy problem. In Ref. [23], a method
has been proposed based on the linear-combination-of-
unitaries (LCU) technique that requires running time
evolution for duration Õ(p−1/2

0 ε−3/2) and preparing the
initial state Õ(p−1/2

0 ε−1/2) times [48]. Assuming that
the Hamiltonian H is available in its block encod-
ing [49,50], Ref. [24] uses quantum signal processing
[51,52] with a binary-search procedure, which queries
the block encoding Õ(p−1/2

0 ε−1) times and prepares the
initial state Õ(p−1/2

0 log(ε−1)) times. To our knowledge,
this is the best complexity that has been achieved. How-
ever, the block encoding of a quantum Hamiltonian of
interest, LCU, and amplitude estimation techniques (used
in Ref. [24]) are expensive in terms of the number of
ancilla qubits, controlled operations, and logical operations
needed.

A very different type of algorithm for ground-state
energy estimation is the variational quantum eigensolver
(VQE) [19–21], which is a near-term algorithm and has
been demonstrated on real quantum computers. The accu-
racy of the VQE is limited both by the representational
power of the variational ansatz and the capabilities of

classical optimization algorithms for the associated non-
convex optimization problem. Hence unlike the aforemen-
tioned algorithms, there are no provable performance guar-
antees for VQE-type methods. In fact, some recent results
show that solution of the nonconvex optimization problem
can be nondeterministic polynomial-time (NP) hard [53].
Furthermore, each evaluation of the energy expectation
value to precision ε requires O(ε−2) samples due to Monte
Carlo sampling. This can, to some extent, be remedied
using the methods in Ref. [33,38], at the expense of the
larger circuit-depth requirement.

There are also a few options that can be viewed to be in
between the VQE and QPE. The quantum-imaginary-time-
evolution (QITE) algorithm [54] uses state tomography to
turn an imaginary time evolution into a series of real-time
Hamiltonian-evolution problems. Inspired by the classi-
cal Krylov-subspace method, Refs. [18,55,56] propose to
solve the ground-state energy problem by restricting the
Hilbert space to a low-dimension space spanned by some
eigenstates that are accessible with time evolution. Similar
to the VQE, no provable complexity upper bound is known
for these algorithms and all algorithms suffer from the ε−2

scaling due to the Monte Carlo sampling. In fact, the sta-
bility of these algorithms remains unclear in the presence
of sampling errors.

A more ambitious goal than ground-state energy esti-
mation is to estimate the distribution of all eigenvalues
weighted by a given initial state ρ [46,57,58]. Using
a quantum circuit similar to that in Kitaev’s algorithm
as well as classical postprocessing, Ref. [58] has pro-
posed an algorithm to solve the quantum eigenvalue
estimation problem (QEEP). We henceforth refer to this
algorithm as the quantum eigenvalue estimation algorithm
(QEEA). Suppose that ‖H‖ ≤ 1/2 and that the interval
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TABLE I. Quantum algorithms for estimating the ground-state energy and whether they satisfy each of the three requirements. We
recall that the requirements are (1) achieving the Heisenberg-limited precision scaling, (2) using at most one ancilla qubit, and (3) the
maximal evolution time being at most O(ε−1polylog(ε−1p−1

0 )).

Requirements

Algorithms (1) (2) (3) Other issues

QPE (textbook version) [31,32] ✓ ✗ ✗
QPE (high-confidence) [33–35] ✓ ✗ ✓
QPE (semiclassical QFT) [41,42] ✓ ✓ ✗
QPE (iterative) [3] ✓ ✓ ✓ Needs exact eigenstate (p0 = 1)
LCU approach [23] ✗ ✗ ✗
Binary-search approach [24] ✓ ✗ ✗
VQE [19–21] ✗ ✓ ? No precision guarantee
QITE [54] ✗ ✓ ? Requires state tomography
QEEA [58] ✗ ✓ ✓
Krylov-subspace methods [18,55,56] ✗ ✓ ? No precision guarantee
This work ✓ ✓ ✓

[−π ,π ] is divided into M bins of equal size, denoted
by Bj = [−1/2+ j /M ,−1/2+ (j + 1)/M ]. Then, QEEA
estimates the quantities qj =

∑
k:λk∈Bj

pk. Although QEEA
was not designed for ground-state energy estimation,
one can use this algorithm to find the leftmost bin
in which qj ≥ p0/2 and thereby locate the ground-state
energy within a bin of size M−1. While the maximal
evolution time required scales as O(ε−1), the total evo-
lution time of the original QEEA scales as O(ε−6).
We analyze the cost of QEEA in Appendix C and
show that the total run time can be reduced to O(ε−4)

for the ground-state energy estimation in a straightfor-
ward way; yet this is still costly if high precision is
required.

To the extent of our knowledge, none of the existing
algorithms achieves all three goals. Some can have better
maximal evolution time or total evolution-time require-
ment but the advantage always comes at the expense of
some other aspects. In Table I, we list the quantum algo-
rithms discussed in this work and whether they satisfy each
of the requirements.

In Table II, we compare the maximal evolution time,
the number of repetitions (the number of times we need
to run the quantum circuit), and the total evolution time

needed, using the three qubit-efficient methods that require
only one ancilla qubit.

Finally, in a gate-based setting, the exact relations
between the maximal evolution time and the circuit depth,
and between the total evolution time and the total run time,
can be affected by the method we use to perform time evo-
lution. Suppose that we have access to a unitary circuit that
performs e−iτH exactly for some fixed τ . Then, in order to
run coherent time evolution for time T, we only need to
use a circuit of depth O(T). Therefore, the circuit depth
scales linearly with respect to the maximal evolution time.
Similarly, the total run time scales linearly with respect to
the total evolution time.

However, if we can only perform time evolution through
Hamiltonian simulation, then these relations become more
complicated. If advanced Hamiltonian simulation meth-
ods [50,52,59] can be used, the additional cost will be
asymptotically negligible, since to ensure an ε′ error for
time evolution for time T, the cost is O(Tpolylog(Tε′−1)).
Hence the cost is only worse than that in the ideal case by
a polylogarithmic factor. However, for early fault-tolerant
quantum computers, as discussed in Refs. [28,30], Trot-
ter formulas [60] are generally favored. Running time
evolution for time T with error at most ε′ would entail

TABLE II. Comparison of the maximal evolution time, the number of repetitions (the number of times we need to run the quantum
circuit), and the total evolution time needed for estimating the ground-state energy to within error ε, using the three methods that
require only one ancilla qubit: the method in this work; QPE with semiclassical Fourier transform, which uses only one ancilla qubit;
and the QEEA in Ref. [58]. The overlap between the initial state and the ground state is assumed to be p0. The number of repetitions
is also the number of times we need to prepare the initial state. An analysis of the QEEA in Ref. [58] can be found in Appendix C.

Maximum
evolution time Repetitions

Total
evolution time

This work (Corollary 3) Õ(ε−1polylog(p−1
0 )) Õ(p−2

0 polylog(ε−1)) Õ(ε−1p−2
0 )

QPE with semiclassical Fourier transform Õ(ε−1p−1
0 ) Õ(p−1

0 polylog(ε−1)) Õ(ε−1p−2
0 )

QEEA [58] Õ(ε−1polylog(p−1
0 )) Õ(ε−3p−2

0 ) Õ(ε−4p−2
0 )
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a run time of O(T1+1/pε′−1/p). The additional cost will
therefore prevent us from reaching the Heisenberg limit,
though high-order Trotter formulas (i.e., with a large p)
can allow us to get arbitrarily close to the Heisenberg
limit. If one does not insist on having a Heisenberg-
limited scaling, then randomized algorithms [61–63] may
lead to a lower gate count when only low precision is
required.

In Appendix D, we analyze the circuit depth and the
total run time of our algorithm with time evolution per-
formed using Trotter formulas. We also compare with QPE
based on Trotter formulas. We find that when using Trot-
ter formulas, our method has some additional advantage
over QPE, achieving a polynomially better dependence
on p0 (i.e., η in Appendix D) in the total run time. The
total run time scales like ε−1−o(1) using our algorithm
with Trotter formulas and this only approximately reaches
the Heisenberg limit ε−1 in terms of the total run time.
However, it is worth noting that none of the other meth-
ods can strictly reach the Heisenberg limit using Trotter
formulas. Otherwise, we can instead perform Hamilto-
nian simulation with the exponentially accurate methods
to go below the Heisenberg limit, which is an impossible
task. Despite the suboptimal asymptotic scaling, with tight
error analysis [64–67], Trotter formulas may outperform
the advanced Hamiltonian simulation techniques discussed
above in terms of the gate complexity, especially when
only moderate accuracy is needed.

B. Organization

The rest of the paper is organized as follows. In Sec. II,
we introduce the quantum circuit we are going to use and
we introduce the CDF, which is going to play an important
role in our algorithm, and give an overview of the ground-
state energy-estimation algorithm. In Sec. III, we discuss
how to approximate the CDF. In Sec. IV, we show that the
ground-state energy can be estimated by inverting the CDF
and we present the complexity of our algorithm (Corollary
3). In Sec. V, we present the details of our algorithm
for postprocessing the measurement data and analyze the
complexity.

II. OVERVIEW OF THE METHOD

We want to keep the quantum circuit we use as simple
as possible. In this work, we use the following circuit:

|0〉 H W H

ρ e−ijτH
(1)

where H is the Hadamard gate. We choose W = I or W =
S†, where S is the phase gate, depending on the quantity we
want to estimate. The quantum circuit is simple and uses

only one ancilla qubit as required. The quantum circuit
itself has been used in previous methods [3,58]. How-
ever, our algorithm uses a different strategy for querying
the circuit and for classical postprocessing and results in
lower total evolution time and/or maximal evolution time,
achieving the goals (1) and (3).

This circuit requires controlled time evolution, which
can be nontrivial to implement. The idea of removing
controlled operation in phase estimation has also been con-
sidered in Ref. [68]. Here, we can use ideas from Refs.
[18,43–45] to remove the need to perform controlled time
evolution. But this type of approach requires an eigenstate
of H with known eigenvalue that is easy to prepare. In a
second-quantized setting, we can simply use the vacuum
state. We discuss this in detail in Appendix E.

Using the circuit in Eq. (1), in order to estimate
Re Tr[ρe−ij τH ], where j is an arbitrary integer and τ is a
real number, we set W = I . We introduce a random vari-
able Xj and set it to be 1 when the measurement outcome
is 0 and −1 when the measurement outcome is 1. Then,

E[Xj ] = Re Tr[ρe−ij τH ]. (2)

Similarly, for Im Tr[ρe−ij τH ], we set W = S† and introduce
a random variable Yj that depends on the measurement
outcome in the same way. We have

E[Yj ] = Im Tr[ρe−ij τH ]. (3)

The parameter τ is chosen to normalize the Hamiltonian.
Specifically, we choose τ so that τ‖H‖ < π/3. We remark
that τ should be chosen to be O(‖H‖−1) and to avoid
unnecessary overheads we want its scaling to be as close
to �(‖H‖−1) as possible.

We can define a spectral measure of τH associated with
ρ. The spectral measure is

p(x) =
K−1∑

k=0

pkδ(x − τλk), x ∈ [−π ,π ]. (4)

Here, K is the number of different eigenvalues, the λk’s are
the distinct eigenvalues arranged in ascending order, and
each pk is the corresponding overlap, as defined in Sec. I.
We extend it to a 2π -periodic function by p(x + 2π) =
p(x), so that the Fourier transform can be performed on
the interval [0, 2π ] instead of the whole real line, which
leads to a discrete Fourier spectrum. Note that because of
the assumption τ‖H‖ < π/3, within the interval [−π ,π ],
p(x) is supported in (−π/3,π/3). Next, we consider the
CDF associated with this measure.

We define the 2π -periodic Heaviside function by
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H(x) =
{

1, x ∈ [2kπ , (2k + 1)π),
0, x ∈ [(2k − 1)π , 2kπ),

(5)

where k ∈ Z. The CDF is usually defined by C(x) =∑
k:λk≤x pk. This is, however, not a 2π -periodic function

and thus will create technical difficulties in later dis-
cussions. Therefore, instead of the usual definition, we
define

C(x) = (H ∗ p)(x), (6)

where the asterisk (∗) denotes convolution. There is ambi-
guity at the jump discontinuities and we define the values
of C(x) at these points by requiring C(x) to be right con-
tinuous. We check that this definition agrees with the usual
definition when x ∈ (−π/3,π/3), which is the interval that
contains all the eigenvalues of τH :

C(x) =
∫ π

−π
H(y)p(x − y)dy =

∫ π

0
p(x − y)dy

=
∫ x

x−π
p(y)dy =

∫ x

−π
p(y)dy =

∑

k:λk≤x

pk.

Consequently C(x) is a right-continuous nondecreasing
function in (−π/3,π/3).

If we could evaluate the CDF, then we would be able
to locate the ground-state energy. This is because the CDF
is a piecewise constant function. Each of its jumps in the
interval (−π/3,π/3) corresponds to an eigenvalue of τH .
In order to find the ground-state energy, we only need
to find where C(x) jumps from zero to a nonzero value.
However, in practice we cannot evaluate the CDF exactly.
We will see that we are able to approximate—in a cer-
tain sense, as will be made clear later—the CDF using a
function that we call the approximate CDF (ACDF). To
this end, we first define an approximate Heaviside function
F(x) =∑|j |≤d F̂j eijx such that

|F(x)− H(x)| ≤ ε, x ∈ [−π + δ,−δ] ∪ [δ,π − δ].
(7)

The construction of this function is provided in Lemma 6,
where F̂j is written as F̂d,δ,j . Here, the parameters d and δ
need to be chosen to control the accuracy of this approxi-
mation and their choices are discussed later. We also omit
the d and δ dependence in the subscripts for simplicity.
With this F(x), we define the ACDF by

C̃(x) = (F ∗ p)(x). (8)

In Sec. III, we discuss how to evaluate this ACDF using the
circuit in Eq. (1). The ACDF and CDF are related through

the following inequalities:

C(x − δ)− ε ≤ C̃(x) ≤ C(x + δ)+ ε, (9)

for any |x| ≤ π/3, 0 < δ < π/6 and ε > 0. We prove these
inequalities in Appendix B. Given the statistical estimation
of the ACDF C̃(x), these inequalities enable us to esti-
mate where the jumps of the CDF occur, which leads to
an estimate of the ground-state energy.

By approximately evaluating the ACDF C̃(x) for certain
chosen x, and through Eq. (9), we can perform a binary
search to locate the ground-state energy in smaller and
smaller intervals. The algorithm to do this and the total
computational cost required to estimate the ground-state
energy to precision ε at a confidence level 1− ϑ are dis-
cussed in Secs. IV and V. A schematic illustration of our
algorithm is shown in Fig. 2.

III. EVALUATING THE ACDF

In this section, we discuss how to evaluate the ACDF
C̃(x). We first expand it in the following way:

C̃(x) =
∑

|j |≤d

F̂j

∫ π

−π
p(y)eij (x−y)dy

=
∑

|j |≤d

F̂j eijxTr[ρe−ij τH ], (10)

where the spectral measure p(x) is defined in Eq. (4). In
going from the first line to the second line in the above
equation, we use the fact that

∫ π

−π
p(y)e−ijydy =

K−1∑

k=0

Tr[ρ�k]e−ij τλk = Tr[ρe−ij τH ].

One might want to evaluate each Tr[ρe−ij τH ] using Monte
Carlo sampling, since this quantity is equal to E[Xj + iYj ].
If we want to evaluate all Tr[ρe−ij τH ] to any accuracy
at all, we need to sample each Xj and Yj at least once.
Then, the total evolution time is at least τ

∑
|j |≤d |j | =

�(τd2). Later, we will see that we need to choose d =
O(ε−1polylog(ε−1p−1

0 )) to ensure that the ground-state
energy estimate has an additive error smaller than ε.
Hence this total evolution time would give rise to a ε−2

dependence in the run time.
In order to avoid this ε−2 dependence, instead of eval-

uating all the terms we stochastically evaluate Eq. (10) as
a whole. The idea we are going to describe is inspired by
the unbiased version of the multilevel Monte Carlo method
[69,70]. We define a random variable J that is drawn from
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FIG. 2. An illustration of the classical and quantum compo-
nents of our algorithm: (1) generate samples {Jk} from Eq. (11);
(2) use {Jk} to generate {Zk} according to Eq. (13); (3) compute
Ḡ(x) through Eq. (16). The ground-state energy estimate can be
obtained through postprocessing as discussed in Sec. IV. Only
Step (2) needs to be performed on a quantum computer.

{−d,−d + 1, . . . , d}, with probability

Pr[J = j ] = |F̂j |
F , (11)

where the normalization factor F =∑|j |≤d |F̂j |. We let θj

be the argument of F̂j , i.e., F̂j = |F̂j |eiθj . Then,

E[(XJ + iYJ )ei(θJ+Jx)] =
∑

|j |≤d

E[Xj + iYj ]ei(θj+jx) Pr[J = j ]

= 1
F
∑

|j |≤d

Tr[ρe−ij τH ]eijxF̂j

= C̃(x)
F , (12)

where we use Eqs. (2) and (3). For simplicity, we write XJ
and YJ into a complex random variable

Z = XJ + iYJ ∈ {±1± i}. (13)

Therefore, we can use

G(x; J , Z) = FZei(θJ+Jx) (14)

as an unbiased estimate of C̃(x). The variance can be
bounded by

var[G(x)] ≤ F2
E[|XJ |2 + |YJ |2] ≤ 2F2. (15)

Here, we use the fact that |Xj |, |Yj | ≤ 1.
From the above analysis, we can generate Ns inde-

pendent samples of (J , Z), denoted by (Jk, Zk), k =
1, 2, . . . , Ns, and then take the average

Ḡ(x) = 1
Ns

Ns∑

k=1

G(x; Jk, Zk), (16)

which can be used to estimate C̃(x) in an unbiased man-
ner. The variance is upper bounded by 2F2/Ns. In order to
make the variance upper bounded by a given σ 2, we need
Ns = O(F2/σ 2). The expected total evolution time is

NsτE[|J |] = Fτ
σ 2

∑

|j |≤d

|F̂j ||j |.

Furthermore, by Lemma 6 (iii), we have |F̂j | ≤ C|j |−1 for
some constant C. Therefore,

F = O(log(d)),
∑

|j |≤d

|F̂j ||j | = O(d).

The number of samples and the expected total evolution
time are therefore

Ns = O
(

log2(d)
σ 2

)
, NsτE[|J |] = O

(
τd log(d)
σ 2

)
,

(17)

respectively. We can see that in this way we avoid the d2

dependence, which shows up in a term-by-term evaluation.

FIG. 3. Ḡ(x) and the CDF C(x), for x ∈ [−π/3,π/3] (left) and the enlarged view around τλ0 (right), the ground-state energy for
τH , where H is the Hamiltonian for the eight-site Hubbard model with U/t = 4 at half filling. The dashed vertical line is x = τλ0.
The parameters are δ = 2× 10−4, d = 2× 104, and τ = π/(4‖H‖). In total, 3000 samples are used.
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(c)

(b)(a) FIG. 4. The total evolution time (a), the
maximal evolution time (b), and the aver-
age ground-state energy-estimation error
(c) for the four-site and eight-site Hub-
bard model with U/t = 4 at half filling.
The horizontal axis is the error thresh-
old ε = δ/τ . In (a) and (b), the gray
dashed lines have slope −1 and in (c),
the gray dashed line (with slope 1) shows
the value of ε. For each δ, d is chosen
to be d = 4/δ, with 1800 samples, and
τ = π/(4‖H‖). The maximal evolution
time is τd = 4τ/δ.

In Fig. 3, we show the plot of the ACDF obtained
through our method for the Fermi-Hubbard model. The
details on this numerical experiment can be found in
Appendix F. We can estimate the ground-state energy from
the ACDF in a heuristic manner: we let

x� = inf{x : Ḡ(x) ≥ η/2}

and x�/τ is an estimate for the ground-state energy λ0.
Here, η is chosen so that p0 ≥ η. In Sec. V, we describe
a more elaborate method to achieve the prescribed accu-
racy and confidence level. However, this heuristic method
seems to work reasonably well in practice. In Fig. 4, we
show the scaling of the ground-state energy-estimation
error, the total evolution time, and the maximal evolu-
tion time, with respect to δ = τε (δ here is the param-
eter needed to construct {F̂j } using Lemma 6), where ε
is the allowed error. Both the total evolution time and
the maximal evolution time are proportional to ε−1. The
details on this numerical experiment can also be found in
Appendix F.

IV. ESTIMATING THE GROUND-STATE ENERGY

In this section, we discuss how to estimate the ground-
state energy with a guaranteed error bound and confidence
level from the samples generated on classical and quantum
circuits discussed in Secs. II and III. First, we note that
the CDF C(x) = 0 for all −π/3 < x < τλ0, and C(x) > 0
for all τλ0 ≤ x < π/3. Therefore, getting the ground-state
energy out of the CDF can be seen as inverting the CDF:
we only need to find the smallest x such that C(x) > 0.
One might consider performing a binary search to find such

a point but we run into a problem immediately: we only
have access to estimates of C(x) with statistical noise and
we cannot tell if the estimate is greater than zero is due to
C(x) > 0 or is merely due to statistical noise. We therefore
need to make the search criterion more robust to noise.

Note that the CDF cannot take values between 0 and p0:
C(x) ≥ p0 for τλ0 ≤ x < π/3 and C(x) = 0 for −π/3 <
x < τλ0. Now suppose that we know p0 ≥ η; then for
any x, rather than distinguishing between C(x) = 0 and
C(x) > 0, we instead distinguish between C(x) = 0 and
C(x) ≥ η/2 (here, η/4 is chosen to be consistent with later
discussion and it can be any number between 0 and 1 times
η). In this setting, if the estimate of C(x) is larger than η/4,
then we tend to believe that C(x) ≥ η/2, and if the estimate
is smaller than η/4, then we tend to believe that C(x) = 0.
Thus we can tolerate an error that is smaller than η/4.

It may appear that we can find the ground-state energy
by performing a binary search for the point at which
C(x) first becomes larger than η/2. However, we can
only estimate the continuous function C̃(x), which can-
not uniformly approximate C(x). This is because C(x)
has many jump discontinuities (each of which corresponds
to an eigenvalue). As a result, we cannot perform this
binary-search procedure directly.

From the above discussion, we need a search criterion
that can be checked via C̃(x). We consider the following
criterion:

Problem 1 (Inverting the CDF): For 0 < δ < π/6, 0 <
η < 1, find x� ∈ (−π/3,π/3) such that

C(x� + δ) > η/2, C(x� − δ) < η. (18)
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First, we verify that this can be checked via C̃(x). In Eq.
(9), if we choose x = x�, ε = η/6, then C̃(x�) > (2/3)η
implies C(x�) > η/2 and C̃(x�) < (5/6)η implies C(x�) <
η. Therefore, we only need to find x� satisfying (2/3)η <
C̃(x�) < (5/6)η to satisfy this criterion. Second, we show
that an x� satisfying this criterion gives us an estimate of
the ground-state energy to within additive error δ/τ . Sup-
pose that we choose η > 0 so that p0 ≥ η. Then, if we
solve Problem 1, we will find an x� such that C(x� + δ) >
η/2 > 0 and C(x� − δ) < η ≤ p0. C(x� + δ) > 0 indicates
that x� + δ ≥ τλ0. Since C(x) cannot take a value between
0 and p0, C(x� − δ) < p0 indicates C(x� − δ) = 0, and thus
x� − δ < τλ0. Hence we know that |x� − τλ0| ≤ δ. If we
choose δ = τε and λ̃0 = x�/τ , then

|̃λ0 − λ0| ≤ ε.

Then, λ̃0 is our desired estimate.
Note that Eq. (18) is a weaker requirement than η/2 <

C(x�) < η, for which due to the discontinuity of C(x)
the required x� may not exist. However, an x� satisfying
Eq. (18) must exist. In fact, let a = sup{x ∈ (−π/3,π/3) :
C(x) ≤ η/2} and b = inf{x ∈ (−π/3,π/3) : C(x) ≥ η}.
Then, because C(x) is monotonously increasing, a ≤ b,
and any x� ∈ [a− δ, b+ δ) satisfies Eq. (18).

Using the samples {Jk} and {Zk} generated on classical
and quantum circuits, respectively, we are able to solve
Problem 1.

Theorem 2 (Inverting the CDF): With samples {Jk}Mk=1
satisfying |Jk| ≤ d and {Zk}Mk=1, generated according
to Eqs. (11) and (13), respectively, we can solve
Problem 1 on a classical computer with probability
at least 1− ϑ , for d = O(δ−1 log(δ−1η−1)) and M =
O(η−2 log2(d)(log log(δ−1)+ log(ϑ−1))). The classical
postprocessing cost is

Õ(η−2 log3(δ−1) log(ϑ−1)). (19)

To generate the samples {Zk}Mk=1 on a quantum circuit, the
expected total evolution time and the maximal evolution
time are

τME[|J |] = Õ(τδ−1η−2 log(ϑ−1)), (20)

and

τd = O (
τδ−1 log(δ−1η−1)

)
, (21)

respectively.

The meanings of the symbols used in this theorem can be
found in Table III in Appendix G. We prove this theorem
by constructing the algorithm for classical postprocessing
in Sec. V. Since solving Problem 1 enables us to estimate

the ground-state energy as discussed above, from Theorem
2 we have the following corollary:

Corollary 3 (Ground-state energy): With samples
{Jk}Mk=1 satisfying |Jk| ≤ d and {Zk}Mk=1, generated accord-
ing to Eqs. (11) and (13), respectively, we can estimate the
ground-state energy λ0 to within additive error ε on a clas-
sical computer with probability at least 1− ϑ , if p0 ≥ η for
some known η, d = O(ε−1τ−1 log(ε−1τ−1η−1)), and M =
O(η−2 log2(d)(log log(ε−1τ−1)+ log(ϑ−1))). The classi-
cal postprocessing cost is O(η−2polylog(ε−1τ−1η−1)).
The expected total evolution time and the maximal
evolution time are O(ε−1η−2polylog(ε−1τ−1η−1)) and
O(ε−1polylog(ε−1τ−1η−1)), respectively.

Usually, the Heisenberg limit is defined in terms of the
root-mean-square error (RMSE) of the estimate. In this
paper, we focus on ensuring the error of the ground-state
energy to be below a threshold ε with probability at least
1− ϑ . From Corollary 3, our algorithm only has a loga-
rithmic dependence on ϑ−1 and the error can be at most
2‖H‖. We can easily ensure that the RMSE is O(ε) using
the result by choosing ϑ = O(ε2‖H‖−2). We can see that
the total evolution-time scaling with respect to ε is still
Õ(ε−1).

Remark 4 (System-size dependence): One might note
the absence of an explicit system-size dependence in the
evolution-time scaling in Theorem 2 and Corollary 3. This
is because, as mentioned before in Sec. I, the total evo-
lution time depends on the system size indirectly through
two parameters, τ and η. Moreover, if we consider the
dependence of the total run time on the system size, we
also need to account for the overhead that comes from
performing Hamiltonian simulation. This overhead and the
scaling of η with respect to the system size can be highly
problem-specific and are independent from the tasks we
are considering in this paper. Because the Hamiltonian
norm can generally be upper bounded by a polynomial
of the system size and the total evolution-time dependence
on τ−1 is polylogarithmic, τ contributes a polylogarithmic
overhead in the system-size dependence.

V. INVERTING THE CDF

In this section, we prove Theorem 2 by constructing
the classical postprocessing algorithm to solve Problem 1
using samples from a quantum circuit. Since we want to
search for an x� satisfying the requirement in Eq. (18), a
natural idea is to use binary search. Our setting is some-
what different from the usual binary-search setting but we
show that a similar approach still works. The current set-
ting differs from the setting of binary search mainly in
two ways: first, any x� ∈ [τλ0 − δ, τλ0 + δ] satisfies the
requirement Eq. (18) and can therefore be a target. When
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performing binary search, we want to be able to tell if the
target is to the left or right of a given x but here the tar-
gets may be on both sides of x. When this happens, there
is some uncertainty as to how the algorithm will proceed
next. However, in our algorithm we show that this does not
present a problem. Also, because this algorithm is based on
random samples, there is some failure probability in each
search step. We use a majority-voting procedure to sup-
press the failure probability, so that in the end the algorithm
will produce a correct answer with probability arbitrarily
close to 1.

We suppose that we are given independent samples of
(J , Z) defined in Eqs. (11) and (13) generated from a quan-
tum circuit. We denote these samples by {(Jk, Zk)}Mk=1. We
divide them into Nb batches of size Ns, where NsNb = M .
This division is for the majority-voting procedure we men-
tioned above. The maximal evolution time needed to gen-
erate these samples is proportional to maxk |Jk| ≤ d. The
expected total evolution time we will need is proportional
to ME[|J |].

We first reduce Problem 1 into a decision problem. For
any x ∈ (−π/3,π/3), one of the following must be true:

C(x + δ) > η/2, or C(x − δ) < η. (22)

If there is a subroutine that tells us which one of the two is
correct, or randomly picks one when both are correct, then
we can use it to find x�. We assume that such a subroutine,
which uses {(Jk, Zk)}Mk=1, exists and denote it by the name
CERTIFY(x, δ, η, {(Jk, Zk)}). The subroutine returns either 0
or 1: 0 for C(x + δ) > η/2 being true and 1 for C(x − δ) <
η being true.

In Algorithm 1, with CERTIFY(x, δ, η, {(Jk, Zk)}), we
describe the algorithm to solve Problem 1. We denote this
algorithm by INVERT_CDF(δ, η, {(Jk, Zk)}). It runs as fol-
lows. We start with x0,0 = −π/3 and x1,0 = π/3. They are
chosen so that C(x1,0) > η/2 and C(x0,0) < η. Let � be
the number of iterations that we perform and let � = 0
at the beginning. At each iteration, we let x� = (x0,� +

Input: δ, η, {(Jk, Zk)}
x0 ← −π/3, x1 ← π/3;
while x1 − x0 > 2δ do

x ← (x0 + x1)/2;
u ← CERTIFY(x, (2/3)δ, η, {(Jk, Zk)});
if u = 0 then

x1 ← x + (2/3)δ;
else

x0 ← x − (2/3)δ;
end if

end while
Output: (x0 + x1)/2

Algorithm 1. INVERT_CDF.

x1,�)/2 and run CERTIFY(x�, (2/3)δ, η, {(Jk, Zk)}). This tells
us either C(x� + (2/3)δ) > η/2 or C(x� − (2/3)δ) < η. If
the former, then we let x0,�+1 = x0,� and x1,�+1 = x� +
(2/3)δ, and if the latter, we let x0,�+1 = x� + (2/3)δ and
x1,�+1 = x1,�. This is done so that for each �, we have

C(x0,�) < η, C(x1,�) > η/2. (23)

We then let �← �+ 1 and go to the next iteration. The
algorithm stops once x1,� − x0,� ≤ 2δ. We denote the total
number of iterations by L. The output is xL = (x0,L +
x1,L)/2. Because Eq. (23) holds for each iteration, we have

C(xL − δ) ≤ C(x0,L) < η, C(xL + δ) ≥ C(x1,L) > η/2.

Thus we can see that xL satisfies the requirements for x� in
Problem 1. The next question is, how many iterations does
it take to satisfy the stopping criterion? Regardless of the
outcome of the CERTIFY subroutine, we always have

x1,�+1 − x0,�+1 = 1
2
(x1,� − x0,�)+ 2

3
δ.

From this, we can see that

x1,� − x0,� = 2π/3− (4/3)δ
2�

+ 4
3
δ.

Therefore, it takes L = O(log(δ−1)) iterations for the
algorithm to stop.

Next, we discuss how to construct the subroutine
CERTIFY(x, δ, η, {(Jk, Zk)}). While we cannot directly eval-
uate the CDF C(x) for any x, we can estimate the ACDF
C̃(x) using the data {Jk} and {Zk}. We can let ε = η/8 in
Eq. (7) and choose d = O(δ−1 log(δ−1η−1)) according to
Lemma 6. Then, by Eq. (9), we have C(x − δ) ≤ C̃(x)+
η/8 and C(x + δ) ≥ C̃(x)− η/8. One of the following
must be true:

C̃(x) > (5/8)η, or C̃(x) < (7/8)η, (24)

then the former implies C(x + δ) > η/2 and the latter
C(x − δ) < η. Therefore, the CERTIFY subroutine only
needs to decide which one of the two is correct or to output
a random choice when both are correct.

As discussed in Sec. III, Ḡ(x) is an unbiased estimate of
C̃(x). We use {Jk} and {Zk} to obtain Nb samples for Ḡ(x),
denoted by Ḡr(x), via

Ḡr(x) = 1
Ns

Ns∑

k=1

G(x; J(r−1)Ns+k, Z(r−1)Ns+k),

for r = 1, 2, . . . , Nb. Here, G(x; J , Z) is defined in Eq.
(14). For each r, we compare Ḡr(x) with (3/4)η. If
Ḡr(x) > (3/4)η for a majority of batches, then we tend to
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Input: x, δ, η, {(Jk, Zk)}
b ← 0, c ← 0;
for r = 1, 2, . . . , Nb do

Ḡr(x) ← (1/Ns)
∑Ns

k=1 G(x; J(r−1)Ns+k, Z(r−1)Ns+k);
{G(x; J, Z) defined in (14)}
if Ḡr(x) > (3/4)η then

c ← c + 1;
end if

end for
if c ≤ B/2 then

b ← 1;
end if

Output: b

Algorithm 2. CERTIFY.

believe C̃(x) > (5/8)η and output 0 for C(x + δ) > η/2.
Otherwise, we tend to believe that C̃(x) < (7/8)η and
output 1 for C(x − δ) < η. This is the majority-voting pro-
cedure that we mentioned earlier. For the pseudocode for
the subroutine, see Algorithm 2.

In the CERTIFY subroutine, an error occurs when C̃(x) >
(5/8)η yet a majority of estimates Ḡr(x) are smaller than
(3/4)η, or when C̃(x) < (7/8)η yet a majority of estimates
Ḡr(x) are larger than (3/4)η. We need to make the proba-
bility of this kind of error occurring upper bounded by ν.
First, we assume that C̃(x) > (5/8)η. Then, for each r, by
Markov’s inequality, we have

Pr[Ḡr(x) < (3/4)η] ≤ 64 var[Ḡr(x)]
η2 .

We want to make this probability at most 1/4. Therefore,
we need var[Ḡr(x)] ≤ η2/256. To ensure this, by Eq. (17),
in which we let σ 2 = η2/256, we can choose

Ns = O
(

log2(d)
η2

)
. (25)

Then, by the Chernoff bound, the probability of the major-
ity of estimates Ḡr(x) being smaller than (3/4)η is at most
e−C′Nb for some constant C′. In order to make this probabil-
ity bounded by ν, we only need to let Nb = O(log(ν−1)).

In the algorithm INVERT_CDF, the subroutine CERTIFY is
used L = O(log(δ−1)) times. If an error occurs in a single
run of CERTIFY with probability at most ν, then in the total
L times we use this subroutine, the probability of an error
occurring is at most Lν. Therefore, in order to ensure that
an error occurs with probability at most ϑ in INVERT_CDF,
we need to set ν = ϑ/L. Therefore, Nb = O(log(Lϑ−1)) =
O(log log(δ−1)+ log(ϑ−1)).

The above analysis shows that in order to solve Prob-
lem 1, the total evolution time is ME[|J |] = NbNsE[|J |].

We evaluate NsE[|J |] by Eq. (17), in which we let σ 2 =
η2/256 as discussed before when we estimate how large
Ns needs to be in Eq. (25). Multiplying this by Nb, we
have Eq. (20). Note here that we do not need to mul-
tiply by L because in each CERTIFY subroutine, we can
reuse the same {Jk}, {Zk}. The maximal evolution time
required is τd and this leads to Eq. (21). The main cost
in classical postprocessing comes from evaluating Ḡr(x).
This needs to be done LNb times. Each evaluation involves
O(Ns) = O(η−2 log2(d)) arithmetic operations. The total
run time for classical postprocessing is therefore LNbNs =
LM , which leads to Eq. (19). Thus we obtain all the cost
estimates in Theorem 2 and prove the theorem.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we present an algorithm to estimate
the ground-state energy with Heisenberg-limited precision
scaling. The quantum circuit that we use requires only one
ancilla qubit and the maximal evolution time needed per
run has a polylogarithmic dependence on the overlap p0.
Such dependence on p0 is exponentially better than that
required by QPE using a similarly structured circuit using
the semiclassical Fourier transform, as discussed in Sec.
I A. Both rigorous analysis and numerical experiments
are done to validate the correctness and efficiency of our
algorithm.

Although our algorithm has a near-optimal dependence
on the precision, the dependence on p0 (more precisely,
on its lower bound η), which scales as p−2

0 in Corollary
3, is far from optimal compared to the p−1/2

0 scaling in
Refs. [23,24]. Whether one can achieve this p−1/2

0 scal-
ing without using a quantum circuit with substantially
larger maximal evolution time, and without using such
techniques as LCU or block encoding, remains an open
question.

The probabilistic choice of the simulation time accord-
ing to Eq. (11) plays an important role in reducing the total
evolution time. However, we may partially derandomize
the algorithm following the spirit of the multilevel Monte
Carlo (MLMC) method [71] in the classical setting. The
method that we develop for computing the approximate
CDF in Sec. III is, in fact, a quite general approach for
evaluating expectation values from matrix functions. This
method can act as a substitute of the LCU method in many
cases, especially in a near-term setting. The use of this
method to compute other properties of the spectrum, such
as the spectral density, is a direction for future work.
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APPENDIX A: CONSTRUCTING THE
APPROXIMATE HEAVISIDE FUNCTION

In this appendix, we construct the approximate Heavi-
side function satisfying the requirement in Eq. (7). We first
need to construct a smeared Dirac function, which we use
as a mollifier in constructing the approximate Heaviside
function. To the best of our knowledge, this particular ver-
sion of the smeared Dirac function has not been proposed
in previous works.

Lemma 5: We define Md,δ(x) by

Md,δ(x) = 1
Nd,δ

Td

[
1+ 2

cos(x)− cos(δ)
1+ cos(δ)

]
,

where Td(x) is the dth Chebyshev polynomial of the first
kind, and

Nd,δ =
∫ π

−π
Td

[
1+ 2

cos(x)− cos(δ)
1+ cos(δ)

]
dx.

Then:

(i) |Md,δ(x)| ≤ (1/Nd,δ) for all x ∈ [−π ,−δ] ∪ [δ,π ],
and Md,δ(x) ≥ −(1/Nd,δ) for all x ∈ R.

(ii)
∫ π
−π Md,δ(x)dx = 1, 1 ≤ ∫ π−π |Md,δ(x)|dx ≤ 1
+ (4π/Nd,δ).

(iii) When tan(δ/2) ≤ 1− 1/
√

2, we have

Nd,δ ≥ C1edδ/
√

2

√
δ

d
erf(C2

√
dδ),

for some constants C1 and C2 that do not depend on
d or δ.

Proof. We first note that, by the property of Cheby-
shev polynomials, when x ∈ [−π ,−δ] ∪ [δ,π ], i.e.,
cos(x) ≤ cos(δ), we have |Td (1+ 2{[cos(x)− cos(δ)]/
[1+ cos(δ)]})| ≤ 1. This proves the first inequality in (i).
Note that when x ∈ [−δ, δ], Td (1+ 2{[cos(x)− cos(δ)]/
[1+ cos(δ)]}) ≥ −1. Combine this inequality, the first
inequality in (i), and the fact that Md,δ(x) is 2π periodic
we prove the second inequality in (i).

The first part of (ii) is obvious because of the definition
of Nd,δ . For the second part, we have

∫ π
−π |Md,δ(x)|dx ≥∫ π

−π Md,δ(x)dx = 1. Also,

∫ π

−π
|Md,δ(x)|dx =

(∫ −δ

−π
+
∫ π

δ

)
|Md,δ(x)|dx

+
∫ δ

−δ
Md,δ(x)dx ≤ 4π

Nd,δ

+
(∫ −δ

−π
+
∫ π

δ

)
Md,δ(x)dx

+
∫ δ

−δ
Md,δ(x)dx = 1+ 4π

Nd,δ
. (A1)

We now prove (iii). This requires lower bound-
ing Td (1+ 2{[cos(x)− cos(δ)]/[1+ cos(δ)]}) when x ∈
[−δ, δ]. For δ small enough so that

max
x

2
cos(x)− cos(δ)

1+ cos(δ)
= 2 tan2(δ/2) ≤ 3−

√
2,

which is equivalent to tan(δ/2) ≤ 1− 1/
√

2, we can use
Ref. [72, Lemma 13] to provide a lower bound for the x ∈
[−δ, δ] case:

Td

[
1+ 2

cos(x)− cos(δ)
1+ cos(δ)

]

≥ 1
2

exp

[√
2d

√
cos(x)− cos(δ)

1+ cos(δ)

]
. (A2)

By the elementary inequality | sin(x)| ≤ |x|, we have
√

cos(x)− cos(δ)
1+ cos(δ)

=
√

tan2

(
δ

2

)
− sin2(x/2)

cos2(δ/2)

= tan
(
δ

2

)√

1− sin2(x/2)
sin2(δ/2)

≥ tan
(
δ

2

)(
1− sin2(x/2)

sin2(δ/2)

)

≥ tan
(
δ

2

)(
1− x2

4 sin2(δ/2)

)
.

Substituting this into Eq. (A2), we have

Td

[
1+ 2

cos(x)− cos(δ)
1+ cos(δ)

]

≥ 1
2

e
√

2d tan(δ/2) exp
[
− dx2

√
2 sin(δ)

]
. (A3)

Then,

Nd,δ ≥
∫ δ

−δ
Td

[
1+ 2

cos(x)− cos(δ)
1+ cos(δ)

]
dx − 2π

≥ 1
2

e
√

2d tan(δ/2)

√√
2π sin(δ)

d
erf

(√
d√

2 sin(δ)
δ

)

− 2π ≥ C1edδ/
√

2

√
δ

d
erf(C2

√
dδ),

for δ ∈ (0,π/2) and some constants C1, C2 > 0. This
proves (iii). �
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FIG. 5. Illustration of Md,δ(x) for δ = 0.2, d = 20, 40.

A plot of Md,δ is shown in Fig. 5. As we can see, it
roughly takes the shape of a Dirac function. We then use it
as a mollifier to approximate the Heaviside function using
the convolution of Md,δ and the Heaviside function.

Lemma 6: Let H(x) be the periodic Heaviside func-
tion defined in Eq. (5). For any δ ∈ (0,π/2) such
that tan(δ/2) ≤ 1− 1/

√
2 and ε > 0, there exists d =

O(δ−1 log(δ−1ε−1)) and a 2π -periodic function Fd,δ(x) of
the form

Fd,δ(x) = 1√
2π

d∑

k=−d

F̂d,δ,keikx,

satisfying

(i) −ε/2 ≤ Fd,δ(x) ≤ 1+ ε for all x ∈ R

(ii) |Fd,δ(x)− H(x)| ≤ ε for all x ∈ [−π + δ,−δ] ∪
[δ,π − δ]

(iii) |F̂d,δ,k| ≤ 2(1+ ε)/(√2π |k|) for k = 0.

Proof. We first construct the function Fd,δ(x). Let Md,δ(x)
be the mollifier in Lemma 5. Because of Lemma 5 (i) and
(ii), Md,δ(x) can be used as to mollify nonsmooth func-
tions. Also, because Td(x) is a polynomial of degree d, the
Fourier coefficients

M̂d,δ,k = 1√
2π

∫ π

−π
Md,δ(x)e−ikxdx

are nonzero only for −d ≤ k ≤ d. Also,

∣∣∣M̂d,δ,k

∣∣∣ ≤ 1√
2π

∫ π

−π
|Md,δ(x)|dx = 1+ ε√

2π
. (A4)

We construct Fd,δ by mollifying the Heaviside function
with Md,δ(x):

Fd,δ(x) = (Md,δ ∗ H)(x) =
∫ π

−π
Md,δ(x′)H(x − x′)dx′.

(A5)

We then show we can choose d = O(δ−1 log(δ−1ε−1)) to
satisfy (ii). We have

∣∣Fd,δ(x)− H(x)
∣∣ =

∣∣∣∣
∫ π

−π
Md,δ(x′)(H(x − x′)− H(x))dx′

∣∣∣∣

≤
∫ π

−π
Md,δ(x′)|H(x − x′)− H(x)|dx′.

For any x such that |x| ∈ [δ,π − δ], we first con-
sider the case where |x′| < δ. In this case, H(x − x′) =
H(x) and therefore the integrand Md,δ(x′)|H(x − x′)−
H(x)| = 0. Then, we consider the case where |x′| ≥
δ. By Lemma 5 (i), we have Md,δ(x′) ≤ 2/Nd,δ and
as |H(x − x′)− H(x)| ≤ 1, Md,δ(x′)|H(x − x′)− H(x)| ≤
2/Nd,δ . Thus for any x such that |x| ∈ [δ,π − δ],

∣∣Fd,δ(x)− H(x)
∣∣ ≤ 4π

Nd,δ
. (A6)

If we want to keep the approximation error for x ∈ [−π +
δ,−δ] ∪ [δ,π − δ] to be below ε, we will need, by Lemma
5 (i) and Eq. (A5),

C1edδ/
√

2

√
δ

d
erf(C2

√
dδ) ≥ 4π

ε
.

It can be checked that we can choose d = O(δ−1 log
(ε−1δ−1)) to achieve this.

We then show that this choice of d ensures (i) as well.
From Eq. (A1),

Fd,δ(x) ≤
∫ π

−π
|Md,δ(y)|dy ≤ 1+ 4π

Nd,δ
≤ 1+ ε

and by the second inequality in Lemma 5 (i),

Fd,δ(x) ≥ − 1
Nd,δ

∫ π

−π
H(y)dy = − 2π

Nd,δ
≥ −ε

2
.

Finally, we prove that our construction satisfies (iii).
Because Fd,δ(x) is defined through a convolution, its
Fourier coefficients can be obtained through

F̂d,δ,k =
√

2πM̂d,δ,kĤk,

where Ĥk’s are the Fourier coefficients of the rectangle
function H(x). Therefore, F̂d,δ,k = 0 only for −d ≤ k ≤ d.
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Because of Eq. (A3), we have

|F̂d,δ,k| ≤ (1+ ε)|Ĥk|.
Since when k = 0,

Ĥk = 1√
2π

∫ π

−π
H(x)e−ikxdx

=
⎧
⎨

⎩

2

i
√

2πk
2 � k

0 2 | k,

we have (iii). �

APPENDIX B: THE RELATION BETWEEN THE
CDF AND THE APPROXIMATE CDF

In this appendix, we prove Eq. (9). Let 0 < δ < π/6.
First, we have a 2π -periodic function F(x) from Lemma 6
that satisfies

|F(x)− H(x)| ≤ ε, x ∈ [−π + δ,−δ] ∪ [δ,π − δ],
and F(x) ∈ [0, 1] for all x ∈ R (In Appendix A we
have F(x) ∈ [−ε/2, 1+ ε]. Here we slightly shift and
rescale F(x) so that F(x) ∈ [0, 1] for the discussion in
this appendix.). We further define FL(x) = F(x − δ) and
FR(x) = F(x + δ). They satisfy

|FL(x)− H(x)| ≤ ε, x ∈ [−π + 2δ, 0] ∪ [2δ,π ],

|FR(x)− H(x)| ≤ ε, x ∈ [−π ,−2δ] ∪ [0,π − 2δ].
(B1)

We define some functions related to the ACDF as follows:

C̃L(x) = (FL ∗ p)(x), C̃R(x) = (FR ∗ p)(x). (B2)

Then, we have

C̃L(x) = C̃(x − δ), C̃R(x) = C̃(x + δ). (B3)

The functions C̃L(x) and C̃R(x) can be used to bound
C(x). Because of Eq. (B1), the fact that p(x) is supported
in (−π/3,π/3) in [−π ,π ], δ < π/6, and that H(y) and
FL(y) both take value in [0, 1], for x ∈ (−π/3,π/3), we
have

|C̃L(x)− C(x)| ≤
∫ π

−π
p(x − y)|H(y)− FL(y)|dy

≤ ε +
∫ 2δ

0
p(x − y)dy

= ε + C(x)− C(x − 2δ).

Therefore,

C̃L(x) ≥ C(x)− [ε + C(x)− C(x − 2δ)] = C(x − 2δ)− ε.

Similarly, we have

C̃R(x) ≤ C(x)+ [ε + C(x + 2δ)− C(x)] = C(x + 2δ)+ ε.

Combining these two inequalities with Eq. (B3), we have

C(x − 2δ) ≤ C̃(x − δ)+ ε, C(x + 2δ) ≥ C̃(x + δ)− ε.

This proves Eq. (9).

APPENDIX C: OBTAINING THE GROUND-STATE
ENERGY BY SOLVING THE QEEP

Here, we discuss how to obtain the ground-state energy
using algorithm in Ref. [58] to solve the QEEP. The cost
of solving the QEEP as analyzed in Ref. [58] scales as ε−6.
However, the cost can be much reduced for the problem of
ground-state energy estimation. For simplicity, we assume
that ‖H‖ < π/3 and that τ is chosen to be 1.

In order to find the interval of size 2ε contain-
ing the ground-state energy, we first divide the interval
[−π/3,π/3] into M bins of equal size smaller than 2ε.
We then define the indicator function associated with an
interval [a, b] to be

1[a,b](x) =
{

1, x ∈ [a, b],
0, x /∈ [a, b].

In QEEP, the goal is to estimate Tr[ρ1[a,b](H)], where
[a, b] is one of the M bins, to within precision O(ε).
However, in our setting, if we know p0 ≥ η, one can esti-
mate Tr[ρ1[a,b](H)] to within error O(η). If we obtain
Tr[ρ1[a,b](H)] < η with high confidence, then we know
that the ground-state energy λ0 is not in this interval.
If we know Tr[ρ1[a,b](H)] > η/2 with high confidence,
then there is an eigenvalue in [a, b]. If the above task
can be done, then we choose the leftmost bin in which
Tr[ρ1[a,b](H)] > η/2. This will enable us to solve the
ground-state energy-estimation problem.

To estimate Tr[ρ1[a,b](H)], in Ref. [58] the indicator
function 1[a,b](x) has first been approximated using a trun-
cated Fourier series [58, Appendix A], similar to what
we do in Sec. A. The number of terms Nterm and the
maximal evolution time T both scale like ε−1. In Ref.
[58], the author has proposed estimating each Fourier
mode Tr[ρe−ijH ] to within error O(ε/Nterm). Because
here the estimation precision is O(η) rather than O(ε),
we should instead estimate Tr[ρe−ijH ] to within error
O(η/Nterm) = O(ηε). Because we are using Monte Carlo
sampling, this requires O(η−2ε−2) samples. We need the
same number of samples for each Tr[ρe−ijH ] and there-
fore the total time we need to run time evolution is
O(NtermTη−2ε−2) = O(η−2ε−4). We omit polylogarithmic
factors in the complexity.
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However, if the analysis is done more carefully, the
dependence on ε can be improved. First, one should note
that the error for each Tr[ρe−ijH ] is independent and the
estimate is unbiased (if we do not consider the Fourier
approximation error), as is the case in our algorithm (Sec.
III). Therefore, the total error for estimating Tr[ρ1[a,b](H)]
accumulates sublinearly. More precisely, let the error for
estimating Tr[ρe−ijH ] be εj , with variance σ 2

j , and let
the coefficient for Tr[ρe−ijH ] be Aj . Then, the total error∑

j Aj εj has variance
∑

j A2
j σ

2
j . Therefore, the total error

is roughly
√∑

j A2
j σ

2
j instead of the linearly accumulated

error
∑

j Aj σj . These two can have different asymptotic
scaling depending on the magnitude of Aj . Because of this,
one can in fact choose to estimate Tr[ρe−ijH ] to within
error O(η/√Nterm) = O(ηε−1/2). This saves an ε−1 fac-
tor in the total run time. Furthermore, one can choose to
evaluate the approximate indicator function in a stochas-
tic way, as we do in Sec. III. By taking into account the
decay of Fourier coefficients, similar to Lemma 6 (iii), it is
possible to further reduce the complexity.

APPENDIX D: COMPLEXITY ANALYSIS FOR
USING TROTTER FORMULAS

In this appendix, instead of using the maximal evolution
time and the total evolution time to quantify the com-
plexity, we directly analyze the circuit depth and the total
run time when the time evolution is simulated using Trot-
ter formulas. We suppose that the Hamiltonian H can be
decomposed as H =∑γ Hγ , where each of Hγ can be effi-
ciently exponentiated. A pth-order Trotter formula applied
to e−iτH with r Trotter steps gives us a unitary operator
UHS that approximates e−iτH with error

‖UHS − e−iτH‖ ≤ CTrotterτ
p+1r−p ,

where CTrotter is a prefactor, for which the simplest bound is
CTrotter = O((∑γ ‖H‖γ )p+1). Tighter bounds in the form
of a sum of commutators are proved in Refs. [65,73].

1. The algorithm in this work

Our algorithm requires approximating Eq. (10) to preci-
sion η (as in Theorem 3, η is a lower bound of p0/2) using
Trotter formulas. Suppose that we are using a pth-order
Trotter formula. Then, we want

∥∥∥
∑

j

F̂j eijxTr[ρe−ij τH ]−
∑

j

F̂j eijxTr[ρUj
HS]
∥∥∥ = O(η).

Since the left-hand side can be upper bounded by

∑

j

|F̂j ||j |‖e−iτH − UHS‖ = O(d‖e−iτH − UHS‖)

by Lemma 6 (iii), we only need to choose r so that

CTrotterτ
p+1r−p = O(ηd−1).

Therefore, we can choose

r = max{1, Õ(d1/pη−1/pC1/p
Trotterτ

1+1/p)}.
The maximal evolution time in Corollary 3 tells us how
many times we need to use the operator UHS (multiplied
by a factor τ ). Multiplying this by r, we have the maximal
circuit depth that we need, which is

dr = Õ(max{τ−1ε−1, ε−1−1/pη−1/pC1/p
Trotter}). (D1)

Similarly, we have the total run time

Õ(max{τ−1ε−1η−2, ε−1−1/pη−2−1/pC1/p
Trotter}). (D2)

If we fix H and let ε, η→ 0, then we can see that this gives
us an extra ε−1/pη−1/p factor in the circuit depth and total
run time, compared to the maximal evolution time and the
total evolution time, respectively.

2. Quantum phase estimation

We then analyze the circuit depth and total run-time
requirement for estimating the ground-state energy with
QPE, where the time evolution is performed using Trot-
ter formulas. We analyze the multiancilla qubit version of
QPE and the result is equally valid for the single-ancilla
qubit version using the semiclassical Fourier transform.

In QPE, when we replace all exact time evolution with
UHS, we would like to ensure that the probability of
obtaining an energy measurement close to the ground-state
energy remains bounded away from 0 by �(η). There-
fore, the probability distribution of the final measurement
outcome should be at most O(η) away from the original
distribution in terms of the total variation distance.

Because the only part of QPE that depends on the time-
evolution operator is the multiply controlled unitary

J−1∑

j=0

|j 〉〈j | ⊗ e−ij τH ,

which is replaced by

J−1∑

j=0

|j 〉〈j | ⊗ Uj
HS

when we use Trotter formulas, we only need to ensure that
the difference between the two operators is upper bounded
by O(η) in terms of the operator norm. Therefore, we need

J‖e−ij τH − UHS‖ = O(η).
As discussed in Sec. I A, we need to choose J =
O(τ−1ε−1η−1) (we need the τ−1 factor to account for
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rescaling H and p0 in Sec. I A is replaced by η). Follow-
ing the same analysis as in the previous section, we need
to choose the number of Trotter steps for approximating
e−iτH to be

r = max{1,O(J 1/pη−1/pC1/p
Trotterτ

1+1/p)}.

Therefore, the circuit depth needed is

Jr = O(max{τ−1ε−1η−1, ε−1−1/pη−1−2/pC1/p
Trotter}), (D3)

and the total run time is

O(max{τ−1ε−1η−2, ε−1−1/pη−2−2/pC1/p
Trotter}). (D4)

Again, if we fix H and let ε, η→ 0, then we can see that
this gives us an extra ε−1/pη−2/p factor in the circuit depth
and total run time, compared to the maximal evolution time
and the total evolution time, respectively. This is worse by
a factor of η−1/p than the cost using our algorithm.

APPENDIX E: THE CONTROL-FREE SETTING

In this appendix we introduce, as an alternative to the
quantum circuit in Eq. (1), a circuit that does not require
controlled time evolution. This construction is mainly
based on the ideas in Refs. [43–45]. We introduce the
construction of the circuit and discuss how to use the mea-
surement results from the circuit to construct a random
variable Z̃ satisfying

E[̃Z] = Tr[ρe−itH ], (E1)

for any given t. Then, choosing t = j τ , we are able to
replace Xj and Yj with Re Z̃ and Im Z̃, respectively, while
satisfying Eqs. (2) and (3). In order to remove the need
to perform controlled time evolution of H , we need some
additional assumptions:

(1) The initial state ρ is a pure state |φ0〉, prepared using
a unitary circuit UI .

(2) We have a reference eigenstate |ψR〉 of H corre-
sponding to a known eigenvalue λR. This eigenstate
can be efficiently prepared using a unitary circuit
UR.

(3) 〈ψR|φ0〉 = 0.

The last assumption 〈ψR|φ0〉 = 0 implies that 〈ψR|e−itH |φ0〉
= 0 for all t ∈ R, because |ψR〉 is an eigenvector of
e−itH . All of these are reasonable assumptions for a
second-quantized fermionic Hamiltonian: we choose |ψR〉
to be the vacuum state, λR = 0, and |φ0〉 to be the
Hartree-Fock state, which can be prepared efficiently
[74]. Naturally, 〈ψR|φ0〉 = 0 because of particle-number
conservation.

With these assumptions, we let

α = 〈φ0|e−it(H−λR)|φ0〉.

We also define

|�0,±〉 = 1√
2
(|ψR〉 ± |φ0〉), |�1,±〉 = 1√

2
(|ψR〉 ± i|φ0〉).

With these states, we can express α in terms of expectation
values:

〈�0,+|e−itH |�0,±〉 = 1
2

e−iλRt(1± α),

〈�0,+|e−itH |�1,±〉 = 1
2

e−iλRt(1± iα).

In Refs. [43,45], it is assumed that we have unitary circuits
to prepare |�0,±〉 and |�1,±〉. However, it is not immedi-
ately clear how these circuits are constructed. Here, we
take a slightly different approach. The circuit diagram is
as follows:

|0〉 H K H

|0〉 H H

|0n〉 UI UR e−itH U†
I U†

R (E2)

In this circuit, we choose K = I for the real part of α or the phase gate S for the imaginary part of α. This circuit uses
three registers, with the first two containing one qubit each and the third one containing n qubits.
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We first analyze the probability of different measure-
ment outcomes when K = I . When we run the above cir-
cuit and measure all the qubits, the probability of the mea-
surement outcomes of the first two qubits being (b1, b2)

and the rest of the qubits being all 0 is

p0,(b1,b2) =
{
|〈�0,+|e−itH |�0,+〉|2/4, b1 = b2

|〈�0,+|e−itH |�0,−〉|2/4, b1 = b2

= 1
16
(1+ |α|2 + 2(−1)b1+b2 Reα).

Here, we use the fact that |〈�0,+|e−itH |�0,+〉| =
|〈�0,−|e−itH |�0,−〉|.

Similarly, when K = S, the probability of the measure-
ment outcomes of the first two qubits being (b1, b2) and the
rest of the qubits being all 0 is

p1,(b1,b2) =
{
|〈�0,+|e−itH |�1,+〉|2/4, b1 = b2

|〈�0,+|e−itH |�1,−〉|2/4, b1 = b2

= 1
16
(1+ |α|2 − 2(−1)b1+b2 Imα).

Based on the above analysis, we construct the random vari-
able Z̃ in the following way: we first run the circuit with
K = I and denote the measurement outcomes of the first
two qubits by (b1, b2). If the third register returns all 0
when measured, then we let X̃ = (−1)b1+b2 . Otherwise,
we let X̃ = 0. Similarly, we define a random variable Ỹ
for K = S. We have

E[X̃ ] = p0,(0,0) + p0,(1,1) − p0,(0,1) − p0,(1,0) = 1
2

Reα,

and

E[̃Y] = p1,(0,0) + p1,(1,1) − p1,(0,1) − p1,(1,0) = −1
2

Imα.

Therefore, we can define

Z̃ = 2e−iλRt(X̃ − ĩY).

Then,

E[̃Z] = e−iλRtα = Tr[ρe−itH ].

Thus we can see that this new random variable Z̃ satisfies
Eq. (E1). Compared to the Z in the main text, this new
random variable has a slightly larger variance:

var[̃Z] ≤ E[|̃Z|2] ≤ 8.

This, however, does not change the asymptotic complexity.

APPENDIX F: DETAILS ON THE NUMERICAL
EXPERIMENTS

In Fig. 3, we apply the procedure described in Sec.
III to approximate the CDF of the Fermi-Hubbard model,
described by the Hamiltonian

H = −t
∑

〈j ,j ′〉,σ
c†

j ,σ cj ′,σ + U
∑

j

(
nj ,↑ − 1

2

)(
nj ,↓ − 1

2

)
,

(F1)

where cj ,σ (c†
j ,σ ) denotes the fermionic annihilation (cre-

ation) operator on the site j with spin σ ∈ {↑,↓}. 〈·, ·〉
denotes sites that are adjacent to each other. nj ,σ = c†

j ,σ cj ,σ
is the number operator. The sites are arranged into a
one-dimensional chain, with the open boundary condition.

We first evaluate Ḡ(x) defined in Eq. (16) and the result
is shown in Fig. 3. We use a classical computer to simulate
the sampling from the quantum circuit. The initial state ρ
is chosen to be the Hartree-Fock solution, which has an
overlap of around 0.4 with the exact ground state. We can
see that Ḡ(x) closely follows the CDF and even though
there is significant noise from Monte Carlo sampling, the
jump corresponding to the ground-state energy is clearly
resolved.

Then, we consider estimating the ground-state energy
from Ḡ(x). In this numerical experiment, we use a heuris-
tic approach and the rigorous approach that comes with a
provable error bound and confidence level is discussed in
Secs. IV and V. We obtain the estimate by

x� = inf{x : Ḡ(x) ≥ η/2},
and x�/τ is an estimate for the ground-state energy λ0. We
expect x� ∈ [τλ0 − δ, τλ0 + δ]. Here, η is chosen so that
p0 ≥ η.

The error of the estimated ground-state energy, the total
evolution time, and the maximal evolution time are shown
in Fig. 4, in which we choose U/t = 4 for the Hubbard
model. In the right-hand panel of Fig. 4, we can see that
the line for the total evolution time runs parallel to the
line for the maximal evolution time. Because the maxi-
mal evolution time scales linearly with respect to δ−1 and
this plot uses logarithmic scales for both axes, we can
see that the total evolution time has a δ−1 scaling and is
therefore inversely proportional to the allowed error of the
ground-state energy estimation.
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APPENDIX G: FREQUENTLY USED SYMBOLS

In this appendix we list the symbols that are frequently
used in this work.

TABLE III. Frequently used symbols in this work.

Symbol Meaning

H The Hamiltonian for which we want to estimate the
ground-state energy.

ρ The initial state from which we perform time
evolution and measurement.

pk The overlap between ρ and the kth-lowest
eigensubspace.

τ A renormalization factor satisfying τ‖H‖ ≤ π/4.
p(x) The spectral density associated with τH and ρ.
C(x) The cumulative distribution function defined in

Eq. (6).
C̃(x) The approximate CDF defined in Eq. (8).
G(x) An unbiased estimate of the ACDF C̃(x) defined in

Eq. (14).
Ḡ(x) The average of multiple samples of G(x), defined in

Eq. (16).
Jk An integer drawn from the distribution Eq. (11),

signifying the number of steps in the time
evolution. |Jk| ≤ d.

Zk A sample generated on a quantum circuit from two
measurement outcomes. Defined in Eq. (13). Can
only take value ±1± i.

d The maximal possible value of |Jk|.
δ In the context of Corollary 3, we choose δ = τε

where ε is the allowed error of the ground-state
energy.

ϑ The allowed failure probability.
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