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We show unambiguous violations of the different macrorealist inequalities, like the Leggett-Garg
inequality (LGI) and its variant called Wigner’s form of the Leggett-Garg inequality (WLGI) using a
heralded, single-photon-based experimental setup comprising a Mach-Zehnder interferometer followed
by a displaced Sagnac interferometer. In our experiment, negative result measurements are implemented
as control experiments, in order to validate the presumption of noninvasive measurability used in defining
the notion of macrorealism. Among the experiments to date testing macrorealism, the present experiment
stands out in comprehensively addressing the relevant loopholes. The clumsiness loophole is addressed
through the precision testing of any classical or macrorealist invasiveness involved in the implementation
of negative result measurements. This is done by suitably choosing the experimental parameters so that
the quantum mechanically predicted validity of the relevant two-time no-signaling in time (NSIT) condi-
tions is maintained in the three pairwise experiments performed to show the violation of LGI or WLGI.
Furthermore, importantly, the detection efficiency loophole is addressed in our experimental scheme by
adopting suitable modifications in the measurement strategy, enabling the demonstration of the violation
of LGI or WLGI for any nonzero detection efficiency. We also show how other relevant loopholes like the
multiphoton emission loophole, coincidence loophole, and the preparation state loophole are all closed in
the present experiment. We report a LGI violation of 1.32 ± 0.04 and a WLGI violation of 0.10 ± 0.02
in our setup, where the magnitudes of violation are respectively 8 times and 5 times the corresponding
error values, while agreeing perfectly with the ranges of quantum mechanically predicted values of the
LGI and WLGI expressions that we estimate by taking into account the nonidealities of the actual exper-
iment. At the same time, consistent with quantum mechanical predictions, the experimentally observed
probabilities satisfy the two-time NSIT conditions up to the order of 10−2. Thus, the noninvasiveness in
our implemented negative result measurement is convincingly upper bounded to 10−2.
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I. INTRODUCTION

The notion of realism is central to the classical world
view. It assumes that at any instant, irrespective of whether
or not actually measured, a system is definitely in one
of the possible states for which all its observable proper-
ties have definite values. This tenet has been the subject
of a variety of experimental tests, like the test of local
realism in terms of the Bell-type inequalities for the entan-
gled systems [1]. On the other hand, Leggett and Garg
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suggested a procedure for testing the validity of the con-
cept of realism for single systems in the macroscopic
domain [2]. For this purpose, they formulated an inequality
involving the observable time-separated correlation func-
tions, known as the Leggett-Garg inequality (LGI). This
is based on the notion of realism used in conjunction with
the concept of noninvasive measurability (NIM). Here one
assumes the possibility of measurements with only arbi-
trarily small disturbance affecting the subsequent evolution
of the system. The quantum mechanically predicted vio-
lation of LGI under suitable conditions is then taken to
signify repudiation of what has been called the notion of
macrorealism.

The quantum mechanically predicted violation of LGI
has been tested using various physical systems like super-
conducting qubits [3], nuclear spins [4,5], electrons [6],
quantum dot qubits [7], nitrogen-vacancy centers [8],

2691-3399/22/3(1)/010307(29) 010307-1 Published by the American Physical Society

https://orcid.org/0000-0003-0505-7068
https://orcid.org/0000-0003-4525-0903
https://orcid.org/0000-0003-4342-2927
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.010307&domain=pdf&date_stamp=2022-01-12
http://dx.doi.org/10.1103/PRXQuantum.3.010307
https://creativecommons.org/licenses/by/4.0/


KAUSHIK JOARDER et al. PRX QUANTUM 3, 010307 (2022)

atoms hopping in a lattice [9], spin-bearing phosphorus
impurities in silicon [10], oscillating neutrinos [11], and
photonic systems [12–16].

Here a point worth noting is that, although the original
motivation leading to LGI was for testing realism vis-à-
vis quantum mechanics in the macroscopic regime, one
important use of LGI over the years has been the certifi-
cation of nonclassicality or “quantumness” pertaining to
different types of microscopic systems [17,18]. For facili-
tating such studies, another macrorealist condition called
no-signaling in time (NSIT), also called “quantum wit-
ness” [18], was proposed [19–21]. This stipulates that the
choice of measurement at any instant does not affect the
statistical results of any measurement at a later instant.
While nearly all the experiments so far testing macrore-
alism have been based on LGI, the latest experiment using
a superconducting flux qubit [22] had invoked NSIT for
testing macrorealism. Also, to be noted, there is a further
macrorealist inequality that has been called Wigner’s form
of LGI (WLGI) [23]. This is obtained from the notion of
macrorealism in terms of the assumed existence of over-
all joint probabilities pertaining to different combinations
of measurement outcomes. By appropriate marginaliza-
tion, the pairwise observable joint probabilities are then
obtained, analogous to the way Wigner’s form of the local
realist inequality was derived [24].

Our present paper reports the first experimental demon-
stration of the decisive violations of both the forms of
the macrorealist inequalities, viz., LGI and WLGI in the
same setup. This has been achieved using single photons
by closing all the relevant loopholes. Toward this end, we
have devised suitable strategies in the context of the Mach-
Zehnder interferometric setup used in our experiment. This
can also be adapted for applications in the different pho-
tonic contexts. While there are a number of well-known
tests of nonclassicality of single photons, ours stands out
in providing a robust signature of the nonclassicality of
single photons in a way that comprehensively refutes the
quintessential classical notion of realism. Concurrently,
our experimental results are found to be fully compatible
with the quantum mechanical predictions within the limits
of experimental inaccuracies or nonidealities. A particu-
larly notable feature of the design of our experiment is
the way we use the no-signaling condition as a tool for
closing one of the key loopholes. Now, before explain-
ing the specifics of this experiment, let us first present an
overview of the relevant background in order to make clear
the motivation underpinning the way our experiment has
been conceived and implemented.

II. BACKGROUND AND MOTIVATION

A key feature of most of the experiments based on LGI
has been the use of projective measurements, along with
negative result measurement (a measurement in which an

outcome is inferred when the detector is not triggered).
Negative result measurement is employed to ensure the
validity of NIM so that the observed violation of a macro-
realist inequality can be attributed solely to the quantum
mechanical violation of realism per se (the underlying
conceptual justification for using negative result measure-
ment in order to ensure that NIM has been discussed by
Leggett [25]). However, the nonidealness in the empirical
implementation of negative result measurement can result
in the classical disturbance affecting the measured sys-
tem, thereby contributing to the observed violation of the
macrorealist condition being tested. This has been referred
to as the clumsiness loophole [26]. Different strategies
have been adopted for tackling this issue. For example,
in the experiment testing macrorealism based on NSIT
using a single superconducting flux qubit [22], the classi-
cal disturbance resulting from measurement is determined
using appropriate control experiments. In the “IBM quan-
tum experience” (IBM QE) study of the extension of such a
test for two or more qubits, the NSIT condition per se has
been reformulated in terms of an “invasive-measurement
bound,” which is estimated in the context of the relevant
circuits in the IBM QE. This bound thus takes into account
the clumsiness loophole, and its violation is regarded as
signifying the violation of “clumsy macrorealism” in such
tests [27].

On the other hand, an entirely different strategy for test-
ing macrorealism has been explored in terms of what has
been called “ambiguously measured LGI” formulated by
avoiding the use of NIM and hence not requiring nega-
tive result measurement [28]. But, for this procedure to
work, one has to consider two sets of measurements, pro-
jective and ambiguous measurements realized by a class
of positive operator-valued measures, and then, impor-
tantly, invoke an additional assumption called equivalently
invasive measurement (EIM), which equates the invasive
influence of ambiguous measurements with that of the
unambiguous ones. It has been argued that EIM leads to
a testable condition and, by violating the ambiguous ver-
sion of LGI while satisfying this condition, the clumsiness
loophole can be avoided. Furthermore, It has been pointed
out [28] that an assumption similar to EIM is also implicit
in the experiments on LGI in terms of weak measurements.

Therefore, the upshot of the above considerations is
that, for avoiding the use of NIM in testing macroreal-
ism, some other suitable assumption has to be necessarily
invoked. In this context, we note that recently another
approach has been suggested to avoid the use of NIM using
a single Mach-Zehnder interferometric setup by putting
forth an interesting plausible argument for inferring the
violation of macrorealism directly from the occurrence
of destructive interference per se [29]. To what extent
such an argument is general is not yet clear. Similarly,
the implications of another recent interesting finding [30]
that the quantum mechanical violation of LGI in the
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double-slit interferometric setup is necessarily accompa-
nied by destructive interference need to be further ana-
lyzed. On the other hand, for analyzing the experiment
testing LGI using neutrino flavor oscillations [11], the NIM
condition has been replaced by what has been called the
“stationarity” assumption.

Against the above backdrop, our photon-based experi-
ment presented in this paper focuses on testing macrore-
alism based on NIM, using LGI and its variant WLGI in
terms of projective and negative result measurements. This
has been achieved by rigorously addressing all the relevant
loopholes. The reasons for showing violation of both LGI
and WLGI are the following. First, both LGI and WLGI are
only necessary and not sufficient conditions of macroreal-
ism. Hence, simultaneous violation of both the inequalities
in a loophole-free way provides a more robust violation of
the notion of macrorealism. Second, there is an advantage
in working with WLGI in our experimental setup. This is
because here the WLGI expression involves a significantly
lower number of measurable joint probabilities, compared
to the number of measurable joint probabilities occurring
in the LGI expression. Hence, it is expected to generate a
lower error value, thus leading to better agreement with the
corresponding quantum mechanical prediction. A notable
feature of our treatment is the way we have analyzed the
comparison between the measured values of LGI, WLGI,
NSIT, and the corresponding quantum mechanically pre-
dicted values, which have been carefully evaluated by
considering the relevant experimental imperfections in the
actual setup we have used.

Our experimental proposal consists of two Mach-
Zehnder interferometers in tandem with standard optical
elements (Fig. 1). This is amenable to be adapted for
atoms, molecules, and other architectures toward stud-
ies in the macroscopic regime. While the use of her-
alded single photons from the process of spontaneous
parametric down-conversion (SPDC) in this experiment
aids in closing various loopholes due to the lower mul-
tiphoton generation probability and higher noise toler-
ance, a significant feature of our experiment is the way
we use the NSIT condition for closing the clumsiness
loophole.

In order to explain our procedure for this purpose, we
first recall the proposal in Ref. [26] to invoke a testable sta-
tistical relation to detect the amount of disturbance result-
ing from the measurement procedure, which is distinct
from the quantum mechanical effect due to measurement.
For this purpose, Wilde and Mizel [26] suggested the use
of a control experiment that can detect the amount of
classical or macrorealist invasiveness of an intermediate
measurement affecting the joint probability distribution of
the outcomes of the preceding and subsequent measure-
ments. The authors called the relation used to test this
the “adroitness” condition, the satisfaction of which would
certify the measurement as macrorealistically noninvasive

FIG. 1. Basic schematic of the experimental setup. Here BS1,
BS2, BS3 are beam splitters; θ1, θ2 are phase modulators.

or “adroit” in the words of Wilde and Mizel [26]. The
accuracy with which this relation is tested to be valid
is argued to give a quantitative measure of macroreal-
ist invasiveness or “adroitness.” This procedure has been
illustrated for a two-state oscillating system by choosing
the measurement times such that the “adroitness” con-
dition is satisfied by the quantum mechanical treatment,
while also showing the quantum mechanical violation of
macrorealism by using LGI.

Taking a clue from the treatment in Ref. [26], we
adopt the following procedure toward closing the clumsi-
ness loophole. In our experiment, the testing of the three
independent NSIT conditions [Eqs. (9) and (10) given in
Sec. V] is invoked as the control experiment. Here a key
point is that the configuration of our experimental setup
(Fig. 1) and the relevant parameters are chosen such that
the three NSIT conditions are quantum mechanically pre-
dicted to be satisfied, while also showing the violations
of LGI and WLGI (as explained in Sec. V). Thus, if
there is an empirically significant observed deviation from
any of these NSIT relations, this would be a sign of the
presence of macrorealist invasiveness (clumsiness) arising
from the nonideal implementation of the relevant nega-
tive result measurement. This is because the macrorealist
noninvasiveness requires that the statistical result of any
measurement should not be affected by any measurement
performed at an earlier instant.

Now, given the way the negative result measurements
have been performed in our experiment (as explained in
Sec. IV), the measurement statistics of the obtained rele-
vant outcomes are found to satisfy the three NSIT relations
with an accuracy of the order of 10−2. This means that
any possible deviation from any of these NSIT relations
is ensured to be within the corresponding measurement
error range (as can be seen from the relevant experimen-
tal results presented in Table III in Sec. VI). Thus, this
procedure enables quantitative determination of the extent
to which the macrorealist or classical noninvasiveness is
guaranteed for the negative result measurements employed
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in our experiment. Concurrently, the violations of LGI and
WLGI that are significantly larger than their respective
measurement error bounds are demonstrated (see Table II
given in Sec. VI).

Further discussion of the way this approach is real-
ized in our experiment is given in Sec. IV. There we
also elaborately explain the procedures we have adopted
for tackling a range of other loopholes like the detec-
tion efficiency loophole, multiphoton emission loophole,
coincidence loophole, and preparation state loophole.
Such detailed analyses enabling all these loopholes to be
either circumvented or closed in a given optical experi-
ment testing macrorealism are yet missing in the exist-
ing literature and the present work fills this important
gap.

The manuscript is structured as follows. In Sec. III, we
provide a brief discussion of the basics concerning the
different forms of macrorealist conditions and the experi-
mental setup used in our work. Subsequently, after explain-
ing in Sec. IV the way we address the various loopholes,
details of the experiment performed are discussed in Sec.
V. This is followed by the presentation of experimental
results with the relevant error analyses in Sec. VI. We show
that the LGI and WLGI measured range of values show a
decisive violation of macrorealism and are perfectly com-
patible with the quantum mechanically predicted ranges,
which we estimate taking into account different forms of
experimental nonidealities. Finally, in Sec. VII, we sum-
marize the work presented in this paper and also indicate
some future directions of study.

III. BASICS

The notion of macrorealism, which is a basic tenet of
any classical theory, can be regarded as consisting of the
following assumptions.

(1) Realism per se. A system with two or more macro-
scopically distinct states available to it is at any
instant in one or other of these states.

(2) Noninvasive measurability. It is possible, in prin-
ciple, to determine the state of a system with
an arbitrarily small perturbation on its subsequent
dynamics.

(3) Induction or arrow of time. The outcome of a mea-
surement on a system is not affected by what will or
will not be measured on it later.

Based on these assumptions, Leggett and Garg first pro-
posed a set of inequalities (LGI) [2]. One such inequality
is given by

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 ≤ 1 (1)

with Qti a dichotomic observable measured at time ti,
which has two possible outcomes with eigenvalues +1 or

−1. Here, t1 < t2 < t3 represents the flow of time, and
〈QtiQtj 〉 is the correlation function of the measurement
outcomes at ti and tj .

This inequality has the upper bound of 1.5 given by
the relevant quantum mechanical treatment [17]. Further-
more, as a consequence of macrorealism, another set of
inequalities called Wigner’s form of LG inequalities have
been derived [23]. These inequalities consist of two-time
joint probabilities of the form Pti,tj (qti , qtj ), which is the
joint probability of obtaining the outcomes denoted by qti
and qtj when the observable Qti is measured at ti and Qtj is
measured at tj . One such WLGI is given by

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +) ≤ 0. (2)

This form of WLGI has the maximum quantum mechani-
cal violation of approximately 0.4034 [see Eq. (8) below].
Since both LGI and WLGI are the necessary conditions for
macrorealism, the violations of both LGI and WLGI have
been demonstrated in our present experiment for invalidat-
ing the notion of macrorealism. The interferometric setup
(Fig. 1) used in our experiment has two key features.

(a) Operationally, the measurement time t1 in the
inequalities given by Eqs. (1) and (2) corresponds
to any time the photon is within the first interferom-
eter between the first and second beam splitters, BS1
and BS2. The measurement time t2 pertains to any
time the photon is within the second interferometer
between BS2 and BS3, while t3 corresponds to the
photon emerging from BS3.

(b) The dichotomic observable Qti measured in our
setup has eigenvalues +1 and −1 corresponding to
the states of the photon being in one or other arm
of the interferometer. It is the interference effect
arising from the superposition of these states that
leads to the quantum violation of LGI and WLGI.
Thus, here the “macroscopic distinctness” between
the two superposing states is characterized by the
spatial separation between the two arms of the inter-
ferometer that in the present setup is around 1 cm.
This is much larger than the photonic wavelength of
810 nm used here, implying that the parameter can
be taken to denote “macroscopicity” in this context
to be of the order of 1.2 × 104.

It has been comprehensively argued [22,31] that the figure
of merit used to characterize “macroscopicity,” or, equiva-
lently, the notion of macroscopic distinctness of the super-
posed states involved in any test of macrorealism is, in
general, context dependent. This need not be necessarily
linked to mass. It essentially depends on the experimen-
tal specifics that an appropriate measure has to be defined
for the relevant macroscopicity scale. For example, in the
experiment involving a superconducting flux qubit [22],
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one plausible choice of the “macroscopicity” measure is
taken to be the difference in some extensive physical quan-
tity like the magnetic moment in the two superconducting
current states whose superposition is being tested, nor-
malized to some natural atomic-scale unit that, in this
case, is the Bohr magneton. Another plausible choice of
such “macroscopicity” measure for the same experiment
that has also been discussed [22] is in terms of what
has been called the notion of “disconnectivity.” This is
related to the number of electrons that behave differently
in the two branches of the superposition of the clockwise
and counterclockwise circulating current states of the flux
qubit.

Among the other diverse measures of “macroscop-
icity” that have been proposed in different contexts,
the following representative examples are worth not-
ing, all of which considered together emphatically illus-
trate the inherent context dependence of the criterion of
“macroscopicity.”

(i) In the IBM QE study of macrorealism [27], the
“macroscopicity” is characterized by the number of
qubits that can be considerably enhanced by making
use of the capabilities of IBM QE.

(ii) The energy separation between the superposed
states has been argued to be a plausible measure of
“macroscopicity” [32] in the context of the experi-
ments seeking to provide bounds on proposed mod-
ifications of standard quantum mechanics based
on the idea of wave function collapse or intrinsic
decoherence.

(iii) In the experiment using neutrino flavor oscillation
[11] to show the violation of LGI, the relevant
“macroscopicity” measure is argued to be related
to the length scale over which the effect of neutrino
oscillation is observed.

Now, focusing on the specific context of our experiment,
let us recall the way we have specified the “macroscop-
icity” figure of merit. The large value of this measure as
defined in our setup means that the Qti = +1 and Qti = −1
states are so well separated in space that the possibility of,
say, the Qti = +1 state being classically affected by a mea-
suring device triggered essentially by the Qti = −1 state
is considerably small. This therefore aids in closing the
clumsiness loophole. Further explanation of the way this
loophole is tackled will be provided next, together with a
discussion concerning other loopholes.

IV. ADDRESSING THE VARIOUS LOOPHOLES

A. Clumsiness loophole

In our present experiment, for testing LGI (1) and WLGI
(2) by measuring each of the correlation functions 〈QtiQtj 〉
and each of the joint probabilities Pti,tj (qti , qtj ), the first

measurement of each such pair is required to satisfy NIM.
This is ensured through negative result measurement by
placing the measuring device (detector or blocker) in one
of the arms of the interferometer, corresponding to, say,
qti = +1 so that the device being untriggered constitutes
the measurement of qti = −1. Then the results of only
these runs are used for determining the joint probabilities
like Pti,tj (−, +) and Pti,tj (−, −). Similarly, the other two
joint probabilities Pti,tj (+, −) and Pti,tj (+, +) are deter-
mined by shifting the measuring device to the other arm.
Thus, the LGI experiment takes place as three piecewise
separate sets of experimental runs measuring the joint
correlations, 〈Qt1Qt2〉, 〈Qt2Qt3〉, and 〈Qt1Qt3〉, with the neg-
ative result measurement performed at t1 or t2 depending
upon the set considered. Now, to determine the accu-
racy with which such negative result measurements satisfy
NIM, the relevant experimental parameters need to be cho-
sen such that the pertinent two-time NSITs are quantum
mechanically predicted to be satisfied. Consequently, the
testing of the validity of these relations would provide a
quantitative measure of the extent to which the classical
disturbance induced by the negative result measurements
is minimized in the setup we use. These NSIT relations are
given by

Pt2(qt2) = Pt1,t2(+, qt2) + Pt1,t2(−, qt2), (3a)

Pt3(qt3) = Pt1,t3(+, qt3) + Pt1,t3(−, qt3), (3b)

Pt3(qt3) = Pt2,t3(+, qt3) + Pt2,t3(−, qt3). (3c)

Equations (3a)–(3c) are valid for any qt2 = {+1, −1} and
qt3 = {+1, −1}. Specifics concerning the choice of the
experimental parameters for this purpose and the results
of our measurements testing relations (3a)–(3c) will be
discussed in Sec. VI. At this stage, we need to highlight
an important additional feature of our setup that arises
particularly because of the way we strategize our setup
to simultaneously sidestep the detection efficiency loop-
hole. As will be elaborated in the next subsection, apart
from using the perfect blockers (metallic blocking device
that perfectly absorbs all incident photons, so that one
can model it as a detector with 100% efficiency) instead
of detectors having finite efficiency, a key strategy we
employ is as follows. We measure the joint probability
Pt1,t2(qt1 , qt2) and hence the correlation function 〈Qt1Qt2〉
through implementing negative result measurement by
placing the two blockers jointly in the respective arms
of the two interferometers and determining the three-time
joint probabilities Pt1,t2,t3(qt1 , qt2 , qt3) for all qti = ±1. We
then obtain the marginal joint probabilities Pt1,t2(qt1 , qt2)

by using the following relation at the level of the observ-
able probabilities, implied by the assumption of induction
(entailing the absence of retrocausality) stated earlier as an
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ingredient of the notion of macrorealism:

Pt1,t2(qt1 , qt2) =
∑

qt3=±1

Pt1,t2,t3(qt1 , qt2 , qt3). (4)

As will be argued in the next subsection, the measurement
of Pt1,t2(qt1 , qt2) in the above way enables us to show the
violation of both LGI and WLGI for any nonzero detec-
tion efficiency. Now, since, for this procedure, the negative
result measurements are required to be performed at both
t1 and t2, in order to witness the precision up to which
NIM is satisfied in this case, ideally one would have to
test here the quantum mechanically predicted validity of
the relevant three-time NSIT conditions involving the plac-
ing of blockers at both t1 and t2. However, in our present
setup, the experimental parameters cannot be chosen to
ensure that all such three-time NSIT conditions are quan-
tum mechanically predicted to be satisfied, along with the
quantum mechanically predicted violations of both LGI
and WLGI given by inequalities (1) and (2). The essential
reason for this is that the two-time NSIT relations given by
Eqs. (3a)–(3c) in our paper are not sufficient conditions for
the validity of macrorealism. These relations, together with
the three-time NSIT relations as applied to our setup, con-
stitute the necessary and sufficient conditions for ensuring
macrorealism, as has been shown in Ref. [20]. Hence, if
the quantum mechanical results satisfy the two-time NSIT
conditions given by Eqs. (3a)–(3c), but LGI is violated by
quantum mechanical predictions, then one or more three-
time NSIT conditions would also have to be necessarily
violated by quantum mechanical predictions. Thus, in our
experimental architecture, it is not possible to choose the
relevant parameters such that the two-time and three-time
NSIT conditions are satisfied by quantum mechanical pre-
dictions, while also showing the violation of LGI. The
above point is essentially the reason why the validity of
the two-time NSIT conditions is a natural choice for our
experimental design in order to quantitatively determine
the effect of classical or macrorealist invasiveness of the
performed measurements, which violate LGI.

Nevertheless, a crucial pertinent feature is that the
blockers placed in the different interferometers are spa-
tially well separated. Hence, it is reasonable to argue from
the classical or macrorealist point of view that even if
these blockers would have been placed at both t1 and
t2, there would have been a negligibly small possibility
of their respective local actions influencing each other
(say, through some environmental degree of freedom) and
producing a significant cumulative effect on the measured
photon in the other spatially separated arms of the respec-
tive interferometers. Thus, the use of the two-time NSIT
conditions given by Eqs. (3a)–(3c) for verifying the preci-
sion of the smallness of the classical disturbance induced
by the blockers when they are placed separately at t1
or t2 suffices for plugging the clumsiness loophole. This

also enables getting around the detection efficiency loop-
hole in a way further explained in the next subsection.
Furthermore, it is worth noting here that the “collusion
loophole” proposed by Wilde et al. [26] implies that an
intermediate measurement may have an effect at the macro-
realist level that gets washed out and is not revealed at the
statistical level through the testing of the “adroitness” con-
dition, or, in our case, using the NSIT condition. Wilde
and Mizel [26] just briefly mentioned the “unnaturalness”
of this loophole. We now provide an argument corroborat-
ing the unnaturalness of this loophole in the context of our
experiments.

In our setup, we have tested the three independent NSIT
conditions, Eqs. (3a)–(3c), or, equivalently, Eqs. (9)–(11)
below. Let us first consider the ensembles of photons in
the two scenarios corresponding to Eqs. (9)–(11). While
in both these cases, negative result measurement is imple-
mented at the same instant t1, the photons are subsequently
detected at two different instants t2 and t3, respectively,
undergoing different evolutions—in the former case, pass-
ing through a single beam splitter, while in the latter case,
passing through two beam splitters. Thus, for the given
negative result measurement at t1, the macrorealist inva-
siveness has to occur in a conspiratorial way for these
two differently evolving sets of photons such that, in both
these cases, the “averaging washing out process” of the
invasiveness over different runs still results in the valid-
ity of the statistical noninvasive conditions (9) and (10),
respectively. Similarly, considering the ensemble of pho-
tons corresponding to Eq. (11) below, these pass through
a single beam splitter like that of Eq. (9), but after being
subjected to negative result measurement at an instant t2
different from that corresponding to Eq. (9). Then, for this
ensemble, too, the “averaging washing out process” of the
macrorealist invasiveness over different runs has to occur
in such a way that the statistical noninvasiveness condition
(11) holds well.

Here the key point is that, although the three differ-
ent ensembles respectively corresponding to NSIT condi-
tions (9)–(11) evolve in different ways, nevertheless, these
three mutually independent NSIT conditions of noninva-
siveness are found to be empirically satisfied, consistent
with the relevant quantum mechanical predictions. Thus,
the only possibility that remains is that there could have
been classical or macrorealist invasiveness that may have
occurred in individual runs due to the negative result
measurements, but have not evidenced at the statistical
level beyond the measurement errors involved in the
checking of these relations. However, for this possibility
to be valid, one would require the statistical washing out of
such individual effects of invasiveness separately for these
three ensembles—this is the so-called “collusion loop-
hole.” Therefore, what such a “collusion loophole” implies
is that a number of independent constraints be satisfied
by an allowed macrorealist model so that the invasiveness
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TABLE I. Experiments testing LGI based on projective measurements and by addressing the clumsiness loophole in different ways,
with the relevant references cited in the text.

System Macroscopicity parameter Procedure

Nitrogen-vacancy center in diamond
hosting a three-level quantum
system [8]

Atomic mass Testing the macrorealist bound on the
success rate in a “three-box” game while
satisfying the NSIT conditions

A single cesium atom performing
“quantum walk” on a discrete
lattice [9]

Atomic mass Testing the violation of LGI by determining
classical invasiveness using control
experiments

Spin-bearing phosphorus impurity
atom in silicon [10]

Atomic mass Testing LGI by suitable implementation of
controlled-NOT (CNOT) and anti-CNOT
gates

Neutrino flavor oscillation [11] Length scale of the neutrino
oscillation

Testing the violation of LGI using the
“stationarity” condition

Three-level single photons [16] Spatial separation between the paths Testing the violation of modified LGI [28]
using ambiguous measurements

Superconducting flux qubit [22] Difference in the magnetic moments
of the two oppositely circulating
superconducting superposed
current states of the flux qubit

Testing the violation of NSIT as a
consequence of macrorealism by
determining classical invasiveness using
control experiments

Two- and four-qubit “cat states”
studied in the cloud-based
quantum computing device “IBM
QE” [27]

Number of constituent qubits Testing the violation of the
“clumsy-macrorealist” bound of LGI

occurs in a way ensuring that the behaviors of these differ-
ent ensembles conform to the statistical noninvasiveness
tested by the relevant NSIT conditions.

It is then evident that to satisfy the above require-
ment one would require considerable fine tuning in the
formulation of the desired macrorealist model in order
to be consistent with our experimental results. To what
extent such fine tuning can be considered to be plausible,
or can be physically well motivated within the frame-
work of a macrorealist model, remains an open question.
Hence, modulo the possibility of the formulation of such
a required macrorealist model, we contend that the collu-
sion loophole has been significantly addressed and closed.
Of course, independent of whether such a macrorealist
model is explicitly formulated, it would be interesting to
explore whether our present experimental architecture can
possibly be extended for imposing tighter constraints. For
instance, by introducing more beam splitters and block-
ers to test more than three NSIT conditions as the control
experiment that would impose tighter constraints on such
a macrorealist model.

For the relevant perspective on the experimental stud-
ies of this issue, see Table I where different experi-
ments testing LGI using projective measurements that have
addressed the clumsiness loophole have been listed.

B. Detection efficiency loophole

In order to test the quantum mechanically predicted
bounds of LGI and WLGI given by inequalities (1) and

(2), one has to assume that the statistical properties of
the subensembles of photon pairs actually detected in the
relevant experimental runs are identical to those of the
entire ensemble of all the pairs. This is known as the fair-
sampling assumption that is strictly true if all the detectors
used are ideal, i.e., 100% efficient. However, in practice,
single-photon detectors have low efficiency of the order of
50%–60%. Hence, by exploiting this detection efficiency
loophole, it may be possible to reproduce the quantum
mechanically predicted measured statistics of the detected
sample based on the macrorealist considerations. A simi-
lar situation exists in the case of testing local realism for
which considerable studies have been done and different
approaches have been explored to take into account the
effect of detector efficiency in the testing of the relevant
inequalities. For example, one of the approaches in terms
of the probabilities has been to assign the measurement
result 0 to an undetected particle and generalize the Bell-
Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality to
include detector inefficiency [33]. Another approach has
been to use the correlation functions, but without requiring
to assign any measurement result to the undetected parti-
cles while incorporating the detection efficiency parameter
in the original form of Bell inequality [34]. It is the argu-
ment used in the latter approach that we adapt for the
LGI or WLGI case by coming up with an appropriate
measurement strategy.

Here, a key idea we consider in the context of a typical
macrorealist hidden-variable-based model is to regard the
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behavior of a photon, say whether it is detected or not, to
be determined by the hidden variable λ characterizing its
state. Furthermore, an important relevant point is that, in
our setup, the subspace of hidden variables determining
the detection of photons at time ti is, in general, differ-
ent from the hidden variable subspace corresponding to
the detection of photons at time tj . Consequently, it is
with respect to various such subspaces of hidden variable
distributions corresponding to the detection of photons at
t1, t2, t3, and by considering the negative result measure-
ments for the first of each pair of such time-separated
measurements, a detailed treatment is required, which is
provided in Appendix A. This is based on the appropri-
ately written forms for the measured joint probabilities
and correlations, leading to expressions for the left-hand
sides of LGI and WLGI given by Eqs. (1) and (2), respec-
tively, recast in terms of the detector efficiency, η ∈ (0, 1],
which is assumed to be the same for all the detectors
that have been used. From the modified upper bounds,
i.e., 2/η − η for LGI and (1 − η)/(2η − 1) for WLGI
whenever η ≥ 2/3, it is seen that the minimum detection
efficiency required is greater than 85% for which the quan-
tum mechanical violation of LGI cannot be reproduced by
the type of hidden variable model we have considered.
Similarly, the requirement for WLGI is greater than 78%.
Detailed calculations for the modified upper bound of LGI
or WLGI and their respective efficiency requirements have
been provided in Appendix A 1.

Now, comes the crunch. The above argued detection
efficiency requirements get remarkably relaxed by tak-
ing advantage of the following two key modifications
in the measurement procedure, already alluded to in the
preceding subsection. First, for determining the quanti-
ties Pt1,t3(−, +), Pt2,t3(−, +) and 〈Qt1Qt3〉, 〈Qt2Qt3〉 in the
WLGI and LGI expressions (2) and (1), respectively, we
replace the detectors used for the negative result measure-
ments at t1 or t2 by metallic blocking devices that act as
perfect absorbers of incident photons. Then this proce-
dure ensures that such measured joint probability distri-
butions Pt1,t3(qt1 , qt3) and Pt2,t3(qt2 , qt3) expressed in terms
of hidden variables involve only the hidden variable sub-
space corresponding to photon detection at t3, as explicitly
discussed in Appendix A 2. Second, the two-time joint
probabilities Pt1,t2(qt1 , qt2) are evaluated from the mea-
sured three-time joint probabilities Pt1,t2,t3(qt1 , qt2 , qt3)

using Eq. (4), whence the hidden variable expressions for
such evaluated two-time joint probabilities and correlation
functions contain integration over only the particular hid-
den variable subspace determining photon detection at t3
(see Appendix A 2). Subsequently, writing such hidden
variable expressions explicitly for the left-hand sides of
inequalities (1) and (2), it is seen that the forms of LGI
and WLGI respectively reduce to Eqs. (A23) and (A24)
in Appendix A 2. This ensures that the dependence on
the detector efficiency parameter η is such that, for the

measurement strategy we have employed, both LGI and
WLGI are satisfied by the relevant hidden variable model,
importantly, for any value of η. Thus, the violations of both
LGI and WLGI measured in this way cannot be reproduced
by the hidden variable model, whatever the detector effi-
ciency, thereby rendering the detection efficiency loophole
irrelevant in this context.

C. Multiphoton emission loophole

For testing the macrorealist inequalities in the context
of our setup, a crucial requirement is to have a single
photon at a time within our setup comprising the inter-
ferometers. Thus, it is important to rigorously take into
account the effect of any deviation from this condition
that may occur in our experiment stemming from the non-
idealness of the single-photon source that is used. We
call this the multiphoton emission loophole, meaning that
any nonvanishing probability of the multiphoton genera-
tion can give rise to a pseudoviolation of the macrorealist
inequalities. Hence, by taking into account the possibility
of such multiphoton occurrences, it is necessary to obtain
the appropriately modified respective upper bounds of LGI
and WLGI.

Now, to estimate this, for example, in the case of LGI,
the strategy we employ is to first show that one can for-
mulate, in principle, an internally consistent model of two
photons, each of which is present in either of the two
different paths, that would give rise to the violation of
LGI corresponding to the maximum algebraic bound of
the expression given by the left-hand side of inequal-
ity (1). Such a model is outlined in Appendix B 1. The
existence of such a model implies that in terms of a suit-
able parameter, say γ , which characterizes the fraction of
the total set of runs that corresponds to the occurrence
of two photons within our experimental setup, we can
write the modified upper bound of LGI in the form (see
Appendix B 1)

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 ≤ 1 + 2γ . (5)

Based on similar reasoning (see Appendix B 1), it can be
shown that the modified form of WLGI in the presence of
multiple photons is given by

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +) ≤ γ

2
. (6)

For the SPDC-based heralded single-photon source used in
our experiment with low pump power and suitable filter-
ing, the probability of producing multiple photons is very
small compared to that using other sources like a weak
coherent pulse. Now, in order to estimate the precise value
of the modified upper bound of LGI or WLGI relevant to
our experiment, we follow the procedure for measuring γ

whose specifics are discussed in Appendix 2. This is based
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on our experimental data pertaining to a set of measured
relevant single counts and coincidence counts, along with
the values of the key parameters of our setup like the beam
splitter coefficients and detector efficiencies. As shown in
Appendix B2, the value of parameter γ evaluated in this
way turns out to be 0.0023. Substituting this value of γ

into Eqs. (5) and (6), the modified upper bounds of LGI
and WLGI are found to be 1.0046 and 0.0012, respec-
tively. Thus, in our experiment, the changes in the upper
bounds of the macrorealist inequalities due to the con-
tribution from the possible presence of multiple photons
are ensured to be indeed negligibly small in comparison
with the observed magnitudes of the violations of these
inequalities.

D. Coincidence loophole

For the case of nonheralded single photons used in an
experiment and for a specified detection time window, a
loophole (similar to the coincidence loophole [35] in the
case of Bell’s inequality) can occur because of fluctuations
in the passage time of the single photons within the setup,
particularly as the measurement settings are varied. In our
experiment, this loophole is closed by using heralded sin-
gle photons having timing reference that is used in the
postprocessing stage for appropriately adjusting the corre-
sponding coincidence time windows between the heralding
and heralded photons of the same pair, for different mea-
surement settings. More details on this can be found in
Appendix D.

E. Preparation state loophole

In deriving the macrorealist inequalities, an inherent
assumption is that in different runs of the experiment, the
photon considered is always prepared in the same initial
state. While the heralded single photons originating from
a stable SPDC source are expected to be prepared in the
same initial state, the possibility remains that detectors
can register photons from other sources, such as back-
ground stray noises (we call this loophole the preparation
state loophole). Nevertheless, in the present experiment,
by choosing different measurement settings, with the cor-
responding coincidence time windows having high signal-
to-noise ratios, and by subtracting the accidental coinci-
dences, we postselect only those detected photons that
come from the SPDC source, and not from the background
(see Appendix D). Thus, in this way, the “preparation state
loophole” is also closed in our experiment.

Finally, we note that a number of experiments test-
ing macrorealism have attempted to address the clum-
siness loophole (see Table I). However, the other loop-
holes that have been analyzed in this work remain largely
unaddressed in the relevant literature. For example, the
issue of the detection efficiency loophole has not been
substantially analyzed in any other experiment testing
macrorealism.

V. DETAILS OF THE EXPERIMENT

An experimental scheme to investigate the violation of
macrorealism consists of three consecutive stages. These
may be defined as the preparation stage (P), unitary trans-
formation stage (Uti,tj ), and measurement stage (Mtk ). For
the simplest case of three-time inequalities, measurements
are carried out at three different times, t1, t2, t3 (denoted
by Mt1 , Mt2 , and Mt3 ), with the unitary transformations
(denoted by Ut1,t2 and Ut2,t3 ) in between.

As illustrated in Fig. 1, the preparation stage consists
of a single-photon source and a beam splitter (BS1) with
splitting ratio of T1 : R1. A unitary transformation Ut1,t2
is simulated as a combination of a phase modulator (θ1)
and a beam splitter (BS2). BS2 has a splitting ratio of
T2 : R2. Similarly, Ut2,t3 is simulated as a combination of a
phase modulator (θ2) and a beam splitter (BS3) with a split-
ting ratio T3 : R3. Here, Ti + Ri = 1 for all i = 1, 2, 3. We
perform three separate experiments to measure 〈Qt1Qt2〉,〈Qt2Qt3〉, and 〈Qt1Qt3〉, wherein, for each experiment, neg-
ative result measurement is implemented by inserting one
blocker in any one arm at any time and considering only
those photons that have not interacted with that blocker.

To illustrate this point, note that if a blocker is placed in
the −1 arm at time t2, and a photon is detected at time
t3, this implies that the photon must have traversed the
path +1 at time t2, without directly interacting with that
blocker. Here it may be noted that we have explicitly ver-
ified that the number of photons detected after passing
through a blocker is comparable to the detector dark count,
which implies that the blocker is behaving ideally. For
this setup, the quantum mechanically predicted violation
of LGI given in Eq. (1) is then obtained as

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉
= 1 − 4R2R3 + 4 cos θ2

√
T2T3R2R3

≤ 1.5, (7)

in which the maximum value 1.5 is found for

θ2 = 0, T2 = 0.75, T3 = 0.75.

Similarly, the quantum mechanically predicted violation of
WLGI given in Eq. (2) is obtained as

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +)

= 2 cos θ2R1
√

T2T3R2R3

− 2 cos θ1R3
√

T1T2R1R2 − R2R3

≤ 0.4034, (8)

in which the maximum value 0.4034 is found for

θ1 = π , θ2 = 0, T1 = 0.1524,

T2 = 0.6952, T3 = 0.4833.
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Now, in order to enable a loophole-free version of the
experiment, we apply a few modifications to the setup. For
satisfying the two-time NSITs, we make the two arms of
the first Mach-Zehnder interferometer (MZI) noninterfer-
ing, by adding a path difference between the +1 and −1
arms at the instant t1. This modification makes the phase
term associated with the first MZI (θ1) irrelevant in our
setup. Also, the second phase term (θ2) is required to be
zero for the maximum violation of both LGI (7) and WLGI
(8). So, we do not consider both the phase modulators (θ1,
θ2) in the setup. Furthermore, in the experimental imple-
mentation, we replace the second MZI with a displaced
Sagnac interferometer, as it provides the desired interfer-
ometric stability against any external vibrations, due to its
geometric configuration [36,37].

Our modified setup (see Fig. 2) starts with a heralded
single-photon source, where a diode laser (cobolt) pumps
a beta barium borate (BBO) crystal with a continuous wave
of light at a central wavelength of 405 nm and pump power
of 10 mW. The BBO crystal is oriented in such a way
that it is phase matched for degenerate, noncollinear, type-
I SPDC while being pumped with horizontally polarized
light. To make the input pump beam Gaussian, we use an
apparatus for spatial filtering, including a focusing lens, a
pinhole, and a collimating lens [38]. To make the pump
beam horizontally polarized, a combination of a half-wave
plate (HWP1) and a polarizing beam splitter (PBS1) is
used. Parametric down-conversion creates pairs of single
photons, both with vertical polarization and 810 nm cen-
tral wavelength. In order to increase pair generation, we

also place a focusing lens (L1) to focus the pump beam into
the central spot of the BBO crystal. A long-pass filter (F1)
is placed after the crystal to block the pump beam and pass
only the down-converted single-photon pairs. Two dielec-
tric mirrors (M1, M2) are placed to send one photon from
each pair to the experiment, and another photon toward a
single-photon avalanche detector (SPAD1) for heralding.
One collimating lens (L2, L3) is placed in each arm, just
after the mirrors. The SPADs (ID Quantique, ID120) are all
free-space detectors with a maximum quantum efficiency
of 80% at 800 nm wavelength. In front of each SPAD
(SPAD1, SPAD2+, SPAD2−), we place a focusing lens
(L4, L5, L6) and a band-pass filter (F2, F3, F4) centered
at 810 nm with a filtering bandwidth of 3 nm. Focusing
lenses focus single photons onto the sensors and the filters
reduce background noises.

Once the single-photon pairs are generated from the
SPDC source, one photon (heralded photon) from each pair
is sent to the main experimental setup comprising the two
interferometers that are suitably devised. The first inter-
ferometer is an asymmetric Mach-Zehnder interferometer
(AMZI), whereas the second one is a displaced Sagnac
interferometer (DSI). The AMZI is made asymmetric by
introducing a path difference of a few millimeters between
the two arms of the AMZI, by slightly shifting the position
of the mirror (M4) in arm 2. This modification makes
the two arms of the AMZI noninterfering as the coher-
ence length of the single photons (typically hundreds of
micrometers) is well below the path difference. A com-
bination of a HWP (HWP2) and a PBS (PBS2) controls

FIG. 2. Schematic of the modified experimental setup. Here HWP1, HWP2, and HWP3 are the half-wave plates; PBS1 and PBS2
are the polarizing beam splitters; L1, L4, L5, and L6 are the focusing lens; F1 is the long-pass filter; M is the dielectric mirror; L2 and
L3 are the collimating lens; F2, F3, and F4 are the band-pass filters; B1, B2, B3, and B4 are the blockers; NPBS is the nonpolarizing
beam splitter; and SPAD1, SPAD2+, and SPAD2− are the single-photon avalanche detectors. Two arms of the AMZI are marked as
1 and 2, which represent the +1 and −1 arms, respectively. Similarly, two arms of the DSI are marked as 3 and 4, representing −1 and
+1. SPAD2+ and SPAD2− are placed in the +1 and −1 arms, respectively.
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the beamsplitting ratio in the two arms of the AMZI.
Another HWP (HWP3) in arm 1 converts the horizon-
tally (H ) polarized photon back to vertically (V) polarized.
In the DSI, a single nonpolarizing beam splitter (NPBS)
with a measured splitting ratio of T : R = 80: 20 (with
respect to vertically polarized light at 810 nm wavelength)
is used. All alignments in the DSI are catered to achieve
optimal interference visibility and stability for both input
arms, simultaneously. However, as will be seen later, small
inadequacies in the same lead to certain modifications
in the experimentally achievable quantum mechanically
predicted values for the various bounds. Two detectors
(SPAD2+, SPAD2−) placed in the two output arms of the
DSI detect single photons.

Any time between the photon traveling from PBS2 to
the first impact on the NPBS is considered as t1. The time
from the first impact to the second impact on the NPBS is
t2. Any time after the impact on NPBS is t3. Two motor-
ized blockers (B1, B2) are placed in arms 1 and 2, and
another two blockers (B3, B4) are placed in arms 3 and
4, to perform negative result measurements at times t1 and
t2, respectively.

Quantum mechanically predicted violations of LGI and
WLGI for the modified setup are evaluated in Eqs. (12) and
(13) below. The splitting ratio due to the HWP2 and PBS2
combination is denoted as |α|2 : |β|2, where |α|2 + |β|2 =
1. The splitting ratio of the NPBS is denoted as T : R.
Using Eqs. (3a)–(3c), all three NSIT conditions, NSIT(t1)t2 ,
NSIT(t1)t3 , NSIT(t2)t3 , are respectively expressed as

|Pt2(+) − Pt1,t2(+, +) − Pt1,t2(−, +)| = 0, (9)

|Pt3(+) − Pt1,t3(+, +) − Pt1,t3(−, +)| = 0, (10)

|Pt3(+) − Pt2,t3(+, +) − Pt2,t3(−, +)|
= 2TR cos(θ2)|{|α|2 − |β|2}|. (11)

Because of the introduced path difference, there is no inter-
ference as the photon evolves independently with ampli-
tudes |α|2 and |β|2, corresponding to the +1 and −1 arms,
respectively. Hence, the two NSIT conditions (9) and (10)
are valid for any value of T : R and |α|2 : |β|2. On the
other hand, a simple calculation leads to the expression of
NSIT(t2)t3 in Eq. (11) [see Eq. (A4) of Ref. [19] ], which
vanishes if we fix |α|2 = |β|2 = 0.5.

Another point to be noted is that we have used qt2 = +1
and qt3 = +1 in Eqs. (3a)–(3c), while deriving the three
NSIT expressions. Here, one may also use qt2 = −1 and
qt3 = −1, which will give the same result. We evaluate the
maximum values of the LGI expression as

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 = 1 − 4R2 + 4TR

= 1.50 for T = 0.75
(12)

and the WLGI expression as

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +) = 2|β|2TR − R2

= 0.125 for T = 0.75 while |α|2 = |β|2 = 0.5.
(13)

In order to measure 〈Qt2Qt3〉, we perform two runs of the
experiment. In the first run, a blocker is placed in the
−1 arm at time t2, and coincidence counts are measured
between SPAD1 and SPAD2+ and between SPAD1 and
SPAD2−. We denote the first coincidence as Ct2,t3(+, +),
because any photon that gets detected in SPAD2+ must be
in the +1 arm at t2 and in the +1 arm at t3. Similarly,
the second coincidence count is denoted as Ct2,t3(+, −).
In the second run of the experiment, a blocker is placed
in the +1 arm at t2. So, the coincidence count between
SPAD1 and SPAD2+ is Ct2,t3(−, +), and the coincidence
count between SPAD1 and SPAD2− is Ct2,t3(−, −). To
make sure that both runs of the experiment are consistent
with each other, we measure all the coincidences for the
same duration of time. However, the coincidence counts
may also experience some systematic as well as random
fluctuations with time that have been taken into consid-
eration in the error analysis (see Appendix 2). Now, the
total coincidence count becomes CT

t2,t3 = Ct2,t3(+, +) +
Ct2,t3(+, −) + Ct2,t3(−, +) + Ct2,t3(−, −). All four joint
probabilities, Pt2,t3(qt2 , qt3), where qt2 = ±1 and qt3 = ±1,
are measured from these four coincidence counts:

Pt2,t3(qt2 , qt3) = Ct2,t3(qt2 , qt3)

CT
t2,t3

. (14)

A similar strategy is used to measure 〈Qt1Qt3〉 as well,
where in the first run, a blocker is placed in the −1 arm
at time t1, and in the +1 arm at time t1 for the second run.
Then

Pt1,t3(qt1 , qt3) = Ct1,t3(qt1 , qt3)

CT
t1,t3

. (15)

Measurement of 〈Qt1Qt2〉 is slightly different, as we do not
place the detectors (SPAD2+ and SPAD2−) at time t2, in
order to close the detection efficiency loophole. Here we
use two blockers at times t1 and t2 and measure the eight,
three-time joint probabilities. We perform four runs of the
experiment to get the eight probabilities

Pt1,t2,t3(qt2 , qt3 , qt3) = Ct1,t2,t3(qt1 , qt2 , qt3)

CT
t1,t2,t3

. (16)

The four marginal joint probabilities Pt1,t2(qt1 , qt2)

are calculated from these eight measured probabil-
ities Pt1,t2,t3(qt2 , qt3 , qt3) using Eq. (4). More details
on the experimental methods have been provided in
Appendix C 1.
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VI. RESULTS AND THE ERROR ANALYSIS

We obtain all the joint probabilities of the form
Pti,tj (qti , qtj ) from the experimental data, and evaluate the
correlation functions 〈QtiQtj 〉 from these joint probabili-
ties. A representative violation of LGI and WLGI from
the experiment is provided in Table II. We also verify that
the two-time NSIT conditions (3a)–(3c) are satisfied in the
experiment, as shown in Table III. We show that all the
measured NSIT values are within the statistical fluctua-
tions and hence can be considered as zero with a bound
of the order of 10−2; thus ensuring the validity of the
maintenance of noninvasive measurement (NIM) in our
experiment.

To show the violation of LGI, we calculate the left-
hand side (lhs) of Eq. (1) using experimentally mea-
sured correlation values 〈Qt1Qt2〉 = 0.56, 〈Qt2Qt3〉 = 0.54,
〈Qt1Qt3〉 = −0.22. Similarly for WLGI, we use measured
joint probabilities Pt1,t2(−, +) = 0.11, Pt2,t3(−, +) = 0.12,
Pt1,t3(−, +) = 0.33 to calculate the lhs of Eq. (2). Details
on the experimental methods to measure correlation values
and joint probabilities, similar to those mentioned above,
can be found in Appendix C 1.

Here, we make a pertinent observation. While the rela-
tive error in the measured WLGI value is of course larger
than the LGI value given the smaller value of the mean
WLGI, the experimentally measured values for LGI have
a higher absolute error than the WLGI ones. The reason for
this can be easily understood as follows. The LGI expres-
sion (1) includes twelve joint probabilities, which is much
larger in number than the three joint probabilities required
for evaluating the WLGI expression (2). The higher num-
ber of terms involves more imperfections stemming from
various experimental parameters, which in turn increases

TABLE II. Measured mean values of the LGI [given by Eq. (1)]
and WLGI [given by Eq. (2)] expressions are given with their
respective error ranges in order to compare with their respec-
tive macrorealist upper bounds, as well as the maximum quantum
mechanically (QM) predicted ranges that have been estimated by
taking into account nonidealities in our setup arising from least
count related systematic limitations in our experimental compo-
nents as well as the range of interferometric visibility values, as
observed in our experiment. In the case of LGI, the magnitude
of violation or the difference between the experimentally mea-
sured value and the upper bound from macrorealism is 8 times the
error value. For WLGI, the violation is 5 times the error value.
Both the measured values show perfect compatibility with the
respective quantum mechanically predicted ranges.

Expression

Experimentally
measured

value
Macrorealist
upper bound

QM predicted
range including

experimental
non-idealities

LGI (1) 1.32 ± 0.04 1 1.34 ± 0.06
WLGI (2) 0.10 ± 0.02 0 0.08 ± 0.03

TABLE III. Measured mean values of the three NSIT expres-
sions given by Eqs. (9)–(11), respectively, are of the order of
10−3, smaller than their respective error ranges (approximately
10−2). Hence, the three measured NSIT values can be consid-
ered to be zero, with a bound of 10−2, in accordance with the
quantum mechanical predictions, which have been estimated by
taking into account experimental nonidealities as for LGI and
WLGI reported in Table II. This implies the maintenance of the
NIM condition in the present experiment, up to this accuracy.

NSIT expression

Experimentally
measured

value

QM predicted
range including

experimental
non-idealities

NSIT(tl)t2 (9) |0.002 ± 0.017| 0
NSIT(tl)t3 (10) |0.002 ± 0.016| 0
NSIT(t2)t3 (11) |0.004 ± 0.016| |0 ± 0.0261|

their contribution to the absolute error in the experimen-
tally measured value for the LGI expression as compared
to the WLGI and NSIT expressions. This is thus an instruc-
tive feature of showing the violation of WLGI in our setup,
along with the LGI violation.

Next, comparisons between the measured values and
the quantum mechanically estimated ranges of the LGI,
WLGI, and NSIT values are discussed. While calcu-
lating the quantum mechanically predicted ranges for
LGI, WLGI, and NSITs in Tables II and III, we
consider two different sources of nonidealities in our
setup.

(a) One arises from least count related systematic lim-
itations in many of our experimental components,
e.g., the nonpolarizing beam splitter (NPBS in
Fig. 2) having 80% transmission probability instead
of the ideal requirement of 75%, the T : R ratio
of the NPBS being dependent on the input ports
and having ±2% error, the half-wave plate (HWP2)
angle having a precision error of ±1◦, etc. This gives
rise to a quantum mechanically predicted range of
1.47 ± 0.02 for LGI, 0.11 ± 0.02 for WLGI, and
|0 ± 0.03| for NSIT(t1)t3 .

(b) The second source of experimental nonidealities
stems from our inteferometric architecture itself. We
recall from the discussion in Sec. V that in order to
achieve the maximum quantum mechanically pre-
dicted values of the LGI and the WLGI expressions,
we need the second phase term θ2 in Eqs. (7) and
(8) to be zero. This would require achievement
of optimal interferometric visibility for all exper-
iment runs. However, although we aim for this
optimal condition through painstaking alignment
procedures, our relative visibility ranges between
70% and 85% during the course of the experimen-
tal runs. This in turn is related to some unavoidable

010307-12



LOOPHOLE-FREE INTERFEROMETRIC TEST OF MACROREALISM . . . PRX QUANTUM 3, 010307 (2022)

contributions that persist irrespective of the near
perfect alignment. These include small tempera-
ture fluctuations in the lab, surface imperfections
from mirrors that could be in the micrometer range
and thus comparable to our single-photon wave-
length (810 nm), small polarization dependence that
is observed even in a NPBS, as well as polariza-
tion dependence of the mirrors along with slight
noncolinearity that may still persist in the interfer-
ometer outputs due to minute angular mismatch in
the beam splitter arrangements. We thus go on to
estimate the modified quantum mechanically pre-
dicted range for our experiment by relaxing the
θ2 = 0 condition and also including a relative vis-
ibility range from 70% to 85% in the calculation.
This leads to a modified quantum mechanically pre-
dicted range for our experiment of 1.34 ± 0.06 for
LGI, 0.08 ± 0.03 for WLGI, and |0 ± 0.026| for
NSIT(t1)t3 . A detailed discussion on the calculation
of the quantum mechanically predicted range for
various inequalities and equalities and their depen-
dence on different experimental parameters is given
in Appendix C 3. In order to gain a further under-
standing of such models in general, we refer the
reader to Refs. [39,40], wherein extensive calcu-
lations have been performed to capture such non-
idealities of various experimental parameters in the
context of a Hong-Ou-Mandel experiment and a
quantum key distribution experiment, respectively.

An important point to note here is that the spread in the
quantum mechanically predicted range without the θ2 = 0
relaxation takes into account imperfections in optical com-
ponents, including least count errors. The spread in the
range after relaxing the θ2 = 0 condition is reflective of the
spread in the measured visibility of the interferometer. This
spread clearly subsumes the optical component related
nonidealities and also includes other unavoidable nonide-
alities as discussed above, thus providing an expectation
closer to actuality of our experiment.

In Table III, we give theoretical estimates of the quan-
tum mechanically predicted values for the three NSIT
expressions. It can be seen that, while both the NSIT(t1)t2
and NSIT(t1)t3 expressions are predicted to have fixed val-
ues of zero, the estimated NSIT(t2)t3 value ranges from 0
to 0.026. The reason for this is the fact that the first inter-
ferometer we use in the setup is an AMZI that does not
allow any interference, while the second interferometer
(DSI) shows interference. So, NSIT(t1)t2 and NSIT(t1)t3 do
not depend on any experimental parameters [see Eqs. (9)
and (10)], while NSIT(t2)t3 depends on beamsplitting ratios,
the half-wave plate angle, etc. [see Eq. (11)]; hence, due to
the uncertainties in the values of these parameters, there
is a range of quantum mechanically predicted values for
this NSIT expression. As for LGI and WLGI above, we

also note the quantum mechanically predicted values for
the NSIT expressions in the θ2 �= 0 condition (as shown in
Appendix C 3).

In order to quote the measured values for the LGI,
WLGI, and NSITs, in Tables II and III, we estimate
the average values and the errors from all experimen-
tal datasets. For this purpose, we repeat all the exper-
imental runs a significant number of times, recording
the coincidence counts for 10 s in the different runs. In
order to find the number of iterations sufficient for the
experiment, we record 1000 coincidence datasets for each
of the two scenarios. First, for the noninterfering setup,
two blockers are used, one placed in arm 1 and another in
arm 3, and the coincidences between SPAD1 and SPAD2+
are measured (see Fig. 2). For the second case, which we
call the interference case, the blocker is placed only in arm
1, and the coincidences between SPAD1 and SPAD2+ are
measured. We apply a bootstrapping algorithm to find the
standard deviation by mean (SD/M ) value of the mean
coincidence for the different iterations of the experiment.
We find a SD/M value lower than 0.05% for 150 iterations
in the noninterference case and 300 iterations for the inter-
ference case. Hence, we take 300 iterations while mea-
suring the correlation function 〈Qt1Qt3〉 as it includes all
interference terms, and for 150 iterations, the correlation
functions 〈Qt1Qt2〉 and 〈Qt2Qt3〉 are measured. For testing
LGI, the three mean values 〈Qt1Qt2〉μ, 〈Qt2Qt3〉μ, 〈Qt1Qt3〉μ
are measured, along with their respective standard
deviations denoted as σ1,2, σ2,3, σ1,3. Here, the subscript
μ is used to identify these correlation values as exper-
imentally measured averages of the large iterations. The
LGI expression 〈Qt1Qt2〉μ + 〈Qt2Qt3〉μ − 〈Qt1Qt3〉μ in this
way has a maximum error of ±
. We consider the worst-
case scenario where we assume that the three experimental
runs are independent of each other, and hence the error
from each run adds up to form the maximum error, i.e.,

 = σ1,2 + σ2,3 + σ1,3. A similar strategy is also applied
for testing WLGI and the NSITs. A detailed discussion on
the bootstrapping strategy as well as the standard deviation
can be found in Appendix 2.

VII. SUMMARY AND OUTLOOK

In this work, we have demonstrated experimental vio-
lations of both LGI (1) and WLGI (2) using an inter-
ferometric setup where a two-level system is realized by
measuring the position of the heralded single photon in
either of the two arms of the interferometer at three dif-
ferent instants (t1, t2, t3). All the measurements are unam-
biguous and projective, and negative result measurements
have been performed at times t1 and t2, in order to satisfy
the noninvasiveness condition. We report LGI violation of
1.32 ± 0.04 and WLGI violation of 0.10 ± 0.02 from the
experimental data, whereas the macrorealist upper bound
for these inequalities are 1 and 0, respectively. We have
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also estimated the LGI and WLGI ranges from quantum
mechanical predictions for our experimental conditions to
be 1.34 ± 0.06 and 0.08 ± 0.03, respectively, and we find
that both the WLGI value and the LGI measured values
are perfectly consistent with quantum mechanical predic-
tions. Thus, our experiment not only provides a decisive
violation of macrorealism but also a convincing com-
patibility with quantum mechanical predictions. All the
measured NSIT values are zero with a bound of the order
of 10−2, thus ensuring the required noninvasiveness of the
measurements in our experiment.

In a nutshell, the experiment we have reported in the
present paper provides for the first time a rigorous test
of the notion of macrorealism as applied to single pho-
tons by closing the relevant loopholes. The conclusive
violation of the macrorealist inequalities (LGI and WLGI)
observed in our experiment establishes that, independent
of the specifics of any theoretical framework, the behavior
of single photons in the interferometric setup we have used
is fundamentally incompatible with the tenet of macro-
realism that is a generic trait characterizing any classical
description of the physical world. This deep-seated impli-
cation of such an experimental demonstration thus enriches
its significance beyond showing the quantumness of single
photons per se. The present experimental study therefore
complements the loophole-free empirical repudiation of
another fundamental notion, viz., local realism that has
been convincingly demonstrated in the recent years using
entangled photons [41,42]. While the locality loophole has
been significantly closed in these latter experiments, our
present experiment addresses the clumsiness loophole by
suitably employing negative result measurement and using
the NSIT condition as a tool for confirming the extent to
which this loophole has been closed. For getting around
the detection efficiency loophole, the scheme adopted by
the tests of local realism using the entangled photons rely
on achieving the required critical detection efficiency. On
the other hand, a striking feature of our experiment is
that the procedure based on the experimental configuration
we have used facilitates avoiding the detection efficiency
loophole by showing the violation of the macrorealist
inequalities for any value of the detection efficiency. Sur-
prisingly, the detection efficiency loophole has remained
unaddressed in the experiments performed so far toward
testing macrorealism using photons. Another salient fea-
ture is the way we have closed the multiphoton emission
loophole that has also not been tackled in any of the pho-
tonic experiments that have been performed to date for
testing macrorealism.

Thus, having plugged the relevant loopholes, our present
experiment with single photons not only decisively falsi-
fies both the macrorealist inequalities LGI and WLGI in
the same experiment for the first time, but also demon-
strates a convincing compatibility with quantum mechan-
ical predictions that have been estimated by taking into

account experimental nonidealities. This, therefore, poten-
tially provides a reliable, robust, and efficient platform
toward exploring the single-photon-based applications
of such macrorealist inequalities, for which some rele-
vant ideas have already been discussed [17,43–45]. For
instance, in Ref. [45], specific examples have been given
of the information-theoretic tasks for which the quan-
tum advantage stems from the violation of the relevant
macrorealist bounds. Interestingly, it has been suggested
that quantum communication complexity protocols that are
based on the exchange of qubits can be reformulated within
the framework of such tasks, thereby contributing to the
possibility of increasing capacities of classical computa-
tional devices. In the context of quantum cryptography,
in Ref. [44], the question of whether the violation of LGI
can contribute toward enhancing the security of the BB84
protocol has been analyzed. On the other hand, relevant
to quantum computation, information-theoretic temporal
versions of the Bell inequality have also been proposed
[43]. These study directions should be worth exploring
for harnessing the violation of macrorealism for practical
applications.

Of course, no experiment, as ideal as it is, can unequiv-
ocally be regarded as entirely free from loopholes. Similar
to what underlies the memory loophole in the context of
testing the Bell-type inequalities [46], the analysis of the
experiments testing macrorealist inequalities also involves
a subtle assumption that the behaviors of single photons
in the different runs of the experiment are mutually inde-
pendent. In particular, in the context of our experiment, it
means assuming that the behavior of a single photon in
the nth run is independent of the measurement choices and
outcomes for the preceding (n − 1) runs. With respect to
the testing of the Bell-CHSH inequality, it has been argued
[46] that the probability of simulating a significant viola-
tion of this inequality by a local realist model exploiting
this memory loophole can be made negligibly small by tak-
ing a sufficiently large number of runs. Thus, by taking a
cue from the way this martingale-based analysis has been
formulated [46] in the Bell-CHSH context, it should be
instructive to investigate to what extent one can minimize
the possibility of simulating the observed violation of LGI
or WLGI using a macrorealist model based on the devia-
tion from the assumed condition of mutual independence
of different runs.

Another possible direction in which our setup may be
used is by adopting the type of negative result measure-
ment protocol that has been proposed for arbitrary choices
of the measurement times, as well as for testing higher-
order correlations involved in the generalization of the
macrorealist framework [47].

Finally, we note that the macrorealist inequalities (LGI
and WLGI) tested in the present experiment are essen-
tially the necessary conditions for macrorealism. In recent
years, interestingly, the necessary and sufficient conditions

010307-14



LOOPHOLE-FREE INTERFEROMETRIC TEST OF MACROREALISM . . . PRX QUANTUM 3, 010307 (2022)

for macrorealism have been formulated in terms of a
suitable combination of the three-time and two-time LG
inequalities [48]. The platform provided by our present
experimental study can thus be appropriately utilized to
empirically check in a loophole-free way the full set of
such necessary and sufficient macrorealist conditions.
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APPENDIX A: CLOSING THE DETECTION
EFFICIENCY LOOPHOLE

Let us first recall the LGI and WLGI expressions con-
sidered in the main text:

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 for LGI, (A1)

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +) for WLGI.
(A2)

In an experiment, usually all the events for which the pho-
ton is not detected by the inefficient detectors used are
rejected and it is assumed that the collected data are a
faithful representation of the data that would have been
recorded for perfect detectors. This is known as the fair-
sampling assumption. If the efficiency of the detectors is
sufficiently low then, exploiting this fact, it is possible to
reproduce the quantum mechanical violation of a macro-
realist inequality using a noninvasive realist model. Here,
for addressing this loophole, we proceed as follows. We
assume that the fate of the photon, whether it will be
detected or not, is predefined by its “hidden-variable” state
λ spanned over the “hidden-variable” state space �, and it
depends on the measurement time ti (i = 1, 2, 3). Photons
generated from the source are assumed to be prepared with
the distribution ρ(λ), where

∫
λ∈�

ρ(λ)dλ = 1. The sub-
space of � that corresponds to detection at time ti may, in
general, be different from the subspace that corresponds to
detection at time tj . Let us assume that �i is the subspace
of the overall space � for which the photon is detected at
ti. We take the detection efficiency of all the detectors to be
η ∈ (0, 1], which implies that

∫

λ∈�i

ρ(λ)dλ = η for all i = 1, 2, 3. (A3)

The distributions of ρ(λ) for different subspaces are shown
in Fig. 3. For example, �q is the subspace for which

FIG. 3. The overall “hidden-variable” state space is �. Its sub-
spaces �1, �2, �3 for which the photon is detected at t1, t2, t3
are respectively represented by blue, green, and red circles. All
the detectors are assumed to have the same detection efficiency.
Different subspaces within �1 ∪ �2 ∪ �3 are denoted by the
symbols q, p , s, a, b, c, d.

photons are detected at t1 but not detected at t2 and t3;
�a is the subspace for which photons are detected at t1
and t2 but not detected at t3. Similarly, other subspaces
�p , �s, �b, �c, �d correspond to distinct possible fates of
the photons, as depicted in Fig. 3.

According to macrorealism, the joint probabilities of the
measurement outcomes at times t1, t2, t3 are predefined by
the state λ. In each of the seven subspaces, we denote the
joint probabilities of eight possible joint measurement out-
comes by the subscripts 1, . . . , 8 for three different times.
For instance, the joint probabilities within �q are

q1 =
∫

λ∈�q

Pt1,t2,t3(+, +, +|λ)ρ(λ)dλ,

q2 =
∫

λ∈�q

Pt1,t2,t3(+, +, −|λ)ρ(λ)dλ, (A4a)

q3 =
∫

λ∈�q

Pt1,t2,t3(+, −, +|λ)ρ(λ)dλ,

q4 =
∫

λ∈�q

Pt1,t2,t3(+, −, −|λ)ρ(λ)dλ, (A4b)

q5 =
∫

λ∈�q

Pt1,t2,t3(−, +, +|λ)ρ(λ)dλ,

q6 =
∫

λ∈�q

Pt1,t2,t3(−, +, −|λ)ρ(λ)dλ, (A4c)

q7 =
∫

λ∈�q

Pt1,t2,t3(−, −, +|λ)ρ(λ)dλ,

q8 =
∫

λ∈�q

Pt1,t2,t3(−, −, −|λ)ρ(λ)dλ. (A4d)
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Similarly, we define pi, si, ai, bi, ci, di for the respective
subspaces �p , �s, �a, �b, �c, �d. Furthermore, we denote
the contribution arising from ρ(λ) on the subspace �q by

q =
∫

λ∈�q

ρ(λ)dλ =
8∑

i=1

qi, (A5)

and, similarly, for the other subspaces,

p =
8∑

i=1

pi, s =
8∑

i=1

si, a =
8∑

i=1

ai, b =
8∑

i=1

bi,

c =
8∑

i=1

ci, d =
8∑

i=1

di. (A6)

Based on the above considerations, we now present the
analyses pertaining to the two different experimental sce-
narios: the setup involving only detectors, and the setup
involving detectors and blockers that we have imple-
mented.

1. The setup involving only detectors

First, we consider the scenario where three detectors
are used to observe the joint probabilities in our setup.
For example, if we want to measure Pt1,t2(+, +) using
negative result measurement, we place a detector D1 in
the “−1” arm at t1 and two detectors, say, D2 and D3,
in the arms “+1” and “-1” at t2. The joint probability is
given by

Pt1,t2(+, +) = No. of photons detected at D2
total No. of photons detected at three detectors

. (A7)

In terms of a realist model, we can write the above as

Pt1,t2(+, +) =
∫
λ∈�2

Pt1,t2(+, +|λ)ρ(λ)dλ
∫
λ∈�2

Pt1,t2(+, +|λ)ρ(λ)dλ + ∫
λ∈�2

Pt1,t2(+, −|λ)ρ(λ)dλ + ∫
λ∈�1

Pt1(−|λ)ρ(λ)dλ

=
∫
λ∈�2

Pt1,t2(+, +|λ)ρ(λ)dλ
∫
λ∈�2

Pt1(+|λ)ρ(λ)dλ + ∫
λ∈�1

Pt1(−|λ)ρ(λ)dλ
. (A8)

Similarly, by obtaining the other joint probabilities, we get the correlation 〈Qt1Qt2〉 in terms of the above introduced
quantities in Eqs. (A4)–(A6), given by the expression

〈Qt1Qt2〉 = Pt1,t2(+, +) − Pt1,t2(+, −) − Pt1,t2(−, +) + Pt1,t2(−, −)

=
∫
λ∈�2

Pt1,t2(+, +|λ)ρ(λ)dλ − ∫
λ∈�2

Pt1,t2(+, −|λ)ρ(λ)dλ
∫
λ∈�2

Pt1(+|λ)ρ(λ)dλ + ∫
λ∈�1

Pt1(−|λ)ρ(λ)dλ

+
∫
λ∈�2

Pt1,t2(−, −|λ)ρ(λ)dλ − ∫
λ∈�2

Pt1,t2(−, +|λ)ρ(λ)dλ
∫
λ∈�2

Pt1(−|λ)ρ(λ)dλ + ∫
λ∈�1

Pt1(+|λ)ρ(λ)dλ

=
∑

i=1,2(ai + ci + di + pi) − ∑
i=3,4(ai + ci + di + pi)

a + d + ∑
i=1,2,3,4(ci + pi) + ∑

i=5,6,7,8(bi + qi)

+
∑

i=7,8(ai + ci + di + pi) − ∑
i=5,6(ai + ci + di + pi)

a + d + ∑
i=5,6,7,8(ci + pi) + ∑

i=1,2,3,4(bi + qi)
. (A9)

Subsequently, the LGI expression given by Eq. (A1) reduces to

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉

=
∑

i=1,2(ai + ci + di + pi) − ∑
i=3,4(ai + ci + di + pi)

a + d + ∑
i=1,2,3,4(ci + pi) + ∑

i=5,6,7,8(bi + qi)
+

∑
i=7,8(ai + ci + di + pi) − ∑

i=5,6(ai + ci + di + pi)

a + d + ∑
i=5,6,7,8(ci + pi) + ∑

i=1,2,3,4(bi + qi)
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+
∑

i=1,5(bi + ci + di + si) − ∑
i=2,6(bi + ci + di + si)

c + d + ∑
i=1,2,5,6(bi + si) + ∑

i=3,4,7,8(ai + pi)
+

∑
i=4,8(bi + ci + di + si) − ∑

i=3,7(bi + ci + di + si)

c + d + ∑
i=3,4,7,8(bi + si) + ∑

i=1,2,5,6(ai + pi)

−
∑

i=1,3(bi + ci + di + si) − ∑
i=2,4(bi + ci + di + si)

b + d + ∑
i=1,2,3,4(ci + si) + ∑

i=5,6,7,8(ai + qi)
−

∑
i=6,8(bi + ci + di + si) − ∑

i=5,7(bi + ci + di + si)

b + d + ∑
i=5,6,7,8(ci + si) + ∑

i=1,2,3,4(ai + qi)
.

(A10)

Now, in order to obtain the maximum macrorealist value
of the LGI expression, the right-hand side of the above
equation is maximized under two conditions. (i) The nor-
malization condition, that is,

8∑

i=1

(pi + qi + si + ai + bi + ci + di) ≤ 1. (A11)

(ii) Condition (A3) expressed as follows using Eqs. (A4):

8∑

i=1

(pi + ai + bi + di) =
8∑

i=1

(qi + ai + ci + di)

=
8∑

i=1

(si + bi + ci + di) = η.

(A12)

For η < 2/3, the maximum value of the right-hand side of
Eq. (A10) is 8/3, which is larger than the maximum quan-
tum value of the LGI expression. This maximum value is
obtained when the parameters

a7 = b5 = c1 = η

2
, (A13)

and all other parameters are zero. On the other hand, for
η ≥ 2/3, this maximum value occurs for

a1 = b4 = c1 = 1 − η, d1 = 3η − 2, (A14)

and when other parameters are zero, so that the LGI
expression in Eq. (A10) simplifies to 2/η − η. Thus, tak-
ing into account the detection efficiency loophole, the LGI
given by Eq. (A1) is modified to the form

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 ≤
⎧
⎨

⎩

8
3 for η < 2

3 ,
2
η

− η for η ≥ 2
3 .

(A15)

Now, considering the maximum quantum value 3/2 of the
LGI expression, it follows from Eq. (A15) that a real-
ist model reproduces all quantum predictions up to that

maximum value whenever

2
η

− η ≤ 3
2

=⇒ η ≤ 0.8508. (A16)

Thus, in order to close the detection efficiency loophole in
this case for testing LGI, one requires η > 0.851.

Next, considering the WLGI expression given by Eq.
(A2), it takes the form

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +)

=
∫
λ∈�3

Pt1,t3(−, +|λ)ρ(λ)dλ
∫
λ∈�3

Pt1(−|λ)ρ(λ)dλ + ∫
λ∈�1

Pt1(+|λ)ρ(λ)dλ

−
∫
λ∈�2

Pt1,t2(−, +|λ)ρ(λ)dλ
∫
λ∈�2

Pt1(−|λ)ρ(λ)dλ + ∫
λ∈�1

Pt1(+|λ)ρ(λ)dλ

−
∫
λ∈�3

Pt2,t3(−, +|λ)ρ(λ)dλ
∫
λ∈�3

Pt2(−|λ)ρ(λ)dλ + ∫
λ∈�2

Pt2(+|λ)ρ(λ)dλ

=
∑

i=5,7(bi + ci + di + si)

b + d + ∑
i=5,6,7,8(ci + si) + ∑

i=1,2,3,4(ai + qi)

−
∑

i=5,6(ai + ci + di + pi)

a + d + ∑
i=5,6,7,8(ci + pi) + ∑

i=1,2,3,4(bi + qi)

−
∑

i=3,7(bi + ci + di + si)

c + d + ∑
i=3,4,7,8(bi + si) + ∑

i=1,2,5,6(ai + pi)
.

(A17)

It can be verified that, whenever η < 2/3, the above WLGI
expression is 1 for the choice of parameter values given
in Eq. (A13). For η ≥ 2/3, the maximum value of the
right-hand side of Eq. (A17) is obtained when all other
parameters are zero except

a7 = b5 = c1 = 1 − η, d1 = 3η − 2, (A18)

so that the expression in Eq. (A17) simplifies to (1 −
η)/(2η − 1). Subsequently, we have the modified form of
WLGI given by

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +)

≤
⎧
⎨

⎩

1 for η < 2
3 ,

1 − η

2η − 1
for η ≥ 2

3 .
(A19)
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Taking into account the maximum quantum value 0.4034 of the WLGI expression, it follows from Eq. (A19) that a
realist model reproduces all quantum predictions up to that maximum value whenever

1 − η

2η − 1
≤ 0.4034 =⇒ η ≤ 0.78. (A20)

Thus, in order to close the detection efficiency loophole in this case for testing WLGI, one requires η > 0.78.

2. The setup involving detectors and blockers

For the modified version of the setup, the detectors used for negative result measurement are replaced by ideal blockers,
while detectors are placed only at time t3. So, it is the subspace �3 that is essentially relevant for our subsequent analysis.
For example, the joint probability Pt1,t3(+, +) is written in terms of the realist model considered as

Pt1,t3(+, +) =
∫
λ∈�3

Pt1,t3(+, +|λ)ρ(λ)dλ
∫
λ∈�3

Pt1(+|λ)ρ(λ)dλ + ∫
λ∈�3

Pt1(−|λ)ρ(λ)dλ

=
∫
λ∈�3

Pt1,t3(+, +|λ)ρ(λ)dλ
∫
λ∈�3

ρ(λ)dλ
=

∫
λ∈�3

Pt1,t3(+, +|λ)ρ(λ)dλ

η
. (A21)

Similar expressions are valid for the other joint probabilities Pt1,t3(qt1 , qt3), Pt2,t3(qt2 , qt3). However, for determining the
joint probabilities of the form Pt1,t2(qt1 , qt2), we have considered an additional step of marginalizing the outcome at t3
using the induction condition at the level of observable probabilities (C7). For instance,

Pt1,t2(+, +) = Pt1,t2,t3(+, +, +) + Pt1,t2,t3(+, +, −)

=
∫
λ∈�3

{Pt1,t2,t3(+, +, +|λ) + Pt1,t2,t3(+, +, −|λ)}ρ(λ)dλ

η
=

∫
λ∈�3

Pt1,t2(+, +|λ)ρ(λ)dλ

η
. (A22)

Furthermore, the correlation functions are expressed as

〈Qt1Qt3〉 =
∫
λ∈�3

{Pt1,t3(+, +|λ) − Pt1,t3(+, −|λ) − Pt1,t3(−, +|λ) + Pt1,t3(−, −|λ)}ρ(λ)dλ

η

=
∫
λ∈�3

〈Qt1Qt3〉λρ(λ)dλ

η
,

〈Qt1Qt2〉 =
∫
λ∈�3

〈Qt1Qt2〉λρ(λ)dλ

η
,

〈Qt2Qt3〉 =
∫
λ∈�3

〈Qt2Qt3〉λρ(λ)dλ

η
.

Hence, the LGI expression involves integration only on the subspace of �3 and reduces to the form

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 =
∫
λ∈�3

{〈Qt1Qt2〉λ + 〈Qt2Qt3〉λ − 〈Qt1Qt3〉λ}ρ(λ)dλ

η
, (A23)

where the numerator is the macrorealist expression of the left-hand side of the LGI given by Eq. (A1). It is then seen that,
for any nonvanishing value of η, the above expression remains less than or equal to 1. Similarly, the WLGI expression
given by Eq. (A2) reduces to the form

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +)

=
∫
λ∈�3

{Pt1,t3(−, +|λ) − Pt1,t2(−, +|λ) − Pt2,t3(−, +|λ)}ρ(λ)dλ

η
, (A24)
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where the numerator is its macrorealist expression on the
subspace of �3. Thus, the WLGI expression given by Eq.
(A2) retains its same macrorealist upper bound 0 for any
nonvanishing value of η. Therefore, it follows from Eqs.
(A23) and (A24) that any quantum mechanical violation
of LGI or WLGI for this setup cannot be reproduced by a
macrorealist model, whatever the detection efficiency.

APPENDIX B: CLOSING THE MULTIPHOTON
EMISSION LOOPHOLE

1. Derivation of the modified upper bounds of LGI and
WLGI, considering the presence of multiphotons

inside the setup

In our analysis, we consider the probability of gener-
ating multiple photon pairs to be negligibly small so that
we can ignore the possibility of more than two photons
being present in our setup. Now, considering the case of
LGI, we first show that there exists a realist model of
two photons, each of which is present in either of the two
different paths, for which the LGI expression attains its
algebraic upper bound. To describe such a model, let us
denote the hidden-variable states λ1, λ2 for photons 1 and
2, respectively. Because of the presence of both these pho-
tons, they may mutually influence each other on arriving at
the beam splitter simultaneously, which, in turn, can affect
their subsequent individual behaviors.

Now, recall that we place a blocker at t1 (either in
path “+1” or path “−1”) for implementing the nega-
tive result measurement to obtain the joint probabilities
Pt1,t3(qt1 , qt3), Pt1,t2(qt1 , qt2), while we do not place any
blocker at t1 to obtain the joint probabilities Pt2,t3(qt2 , qt3).
If the two photons are respectively in different paths at
t1 and there is no blocker placed at t1, the photons may
influence each other at the second beam splitter just before
t2. Hence, in principle, the behavior of the photon that is
present at t2 depends on whether a blocker is placed at t1
or not. Furthermore, to specify the realist model of two
photons we are considering, we take the joint probability
distributions of the measurement outcomes at t1, t2, t3 to be
given by the following expressions for all λ1, λ2:

P1
t1,t2,t3(+, +, +|λ1, N1) = 1,

P2
t1,t2,t3(−, −, −|λ2, N1) = 1, (B1)

P1
t1,t2,t3(+, +, −|λ1, B1−) = 1,

P2
t1,t2,t3(−, −, +|λ2, B1+) = 1. (B2)

Here Pi denotes the probability distribution for photon i ∈
{1, 2}, N1 denotes the configuration in which no blocker is
placed at t1, and B1± denotes the configuration in which
the blocker is placed at t1 in the “±1” path.

Now, for the realist model specified by relations
(B1) and (B2), let us evaluate the joint probabilities

Pt1,t3(qt1 , qt3), Pt1,t2(qt1 , qt2), Pt2,t3(qt2 , qt3) measured in
our experimental setup using Eqs. (C4)–(C6), as will be
explained in Appendix 1. For example, the joint proba-
bilities Pt2,t3(qt2 , qt3) are obtained from relations (B1) for
which we do not place any blocker at t1. For this purpose,
we place a blocker at t2 and two detectors, say, D+ and D−,
at t3 in the “±1” paths. When the blocker is placed in the
“−1” path, we observe clicks only at D+, since from Eqs.
(B1) we know that photon 2 is blocked at t2 and photon 1
is in the “+1” path all the time. Likewise, when the blocker
is placed in the “+1” path, we observe clicks only at D−,
since from Eqs. (B1) we know that photon 1 is blocked at
t2 and photon 2 is in the “−1” path all the time.

Next, considering in the context of Eq. (C4) relating
the quantities Pt2,t3(qt2 , qt3) to the actual observed coin-
cidence counts, let N to be the total number of photons
in each of the two sets of runs corresponding to each of
the two configurations (the block being placed in the “±1”
paths at t2), respectively. Then, in view of what has been
explained above using relations (B1), it follows that the
relevant coincidence counts are given by

Ct2,t3(+, +) = Ct2,t3(−, −) = N , Ct2,t3(+, −)

= Ct2,t3(−.+) = 0. (B3)

Thus, from Eq. (C4) we obtain

Pt2,t3(+, +) = Pt2,t3(−, −) = 1
2 ,

Pt2,t3(+, −) = Pt2,t3(−, +) = 0. (B4)

Similarly, following the above procedure, we can obtain
the other joint probabilities Pt1,t3(qt1 , qt3), Pt1,t2(qt1 , qt2)

from relations (B2), (C5), and (C6), which are given as

Pt1,t3(+, +) = Pt1,t3(−, −) = 0,

Pt1,t3(+, −) = Pt1,t3(−, +) = 1
2 ,

Pt1,t2(+, +) = Pt1,t2(−, −) = 1
2 ,

Pt1,t2(+, −) = Pt1,t2(−, +) = 0.

(B5)

Using the joint probabilities (B4) and (B5), one can readily
show that 〈Qt1Qt2〉 = 〈Qt2Qt3〉 = −〈Qt1Qt3〉 = 1. Hence,
for the realist model specified by relations (B1) and (B2),
the value of the LGI expression in Eq. (A1) attains its
algebraic maximum value 3.

Now, if γ is the fraction of the total number of runs for
which multiple photons occur, the modified upper bound
for LGI, in this case, can be written as

modified upper bound of Leggett-Garg inequality

= γ × algebraic upper bound of Leggett-Garg

inequality

+ (1 − γ ) × macrorealist upper bound of

Leggett-Garg inequality. (B6)
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It then follows from Eq. (B6) that the LGI given in Eq.
(A1) is modified to

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 ≤ 1 + 2γ . (B7)

Next, by considering all possible two-photon realist mod-
els, one can show that the WLGI expression given by Eq.
(A2) attains the maximum value 1/2 for the two-photon
realist model specified above by relations (B1) and (B2).
Subsequently, it follows from Eqs. (B4) and (B5) that the
WLGI given by Eq. (A2) is modified to

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +) ≤ γ

2
. (B8)

2. Determining the value of γ in our experimental
setup

In order to formulate the required procedure, we first
consider the simplest configuration in which the pho-
tons are incident on a beam splitter, followed by the
two detectors in the reflecting and transmitting channels,
respectively. Here, in evaluating the single and coincidence
counts, apart from the single photons, we take into account
the possibility of simultaneous occurrence of two photons
within the setup, ignoring the negligible possibility of the
simultaneous presence of more than two photons for the
type of source used in our experiment.

Let us say that, for a large time interval (T), N pho-
ton events are generated, among which N1 is the number
of single-photon events and N2 is the number of the
two-photon events. So, N = N1 + N2 and γ = N2/N =
1/[(N1/N2) + 1]. Let us assume that N photons are sent
to a beam splitter (BS) with a splitting ratio (T : R). In the
transmitting arm of the BS, we place a single-photon detec-
tor (D1) whose efficiency is η1. Similarly, in the reflecting
arm detector D2 is placed with efficiency η2. For the N1
single photons, they have Tη1 and Rη2 probabilities of
getting detected in D1 and D2, respectively. For the N2

two-photon events, the probability that D1 will get a detec-
tion is T2η1(2 − η1) + 2TRη1. The probability that D2 will
get a detection is R2η2(2 − η2) + 2TRη2. The probabil-
ity that both D1 and D2 will get simultaneous detection
is 2TRη1η2. Consequently, the single counts denoted by
C1, C2 and the coincidence counts between detectors D1
and D2 denoted by C1,2 are then given by

C1 = N1Tη1 + N2{T2η1(2 − η1) + 2TRη1}, (B9)

C2 = N1Rη2 + N2{R2η2(2 − η2) + 2TRη2}, (B10)

C1,2 = 2N2TRη1η2. (B11)

We can determine the values of C1, C2, and C1,2 from the
experiment and, using Eqs. (B9)–(B11), we can obtain γ .
This process forms the basis of our procedure to measure γ

directly from the LGI experimental setup. For this purpose,
we consider measurements of the single and coincidence
counts in each of the four different configurations used
in our experiment, wherein the two blockers are respec-
tively placed corresponding to each of the instants t1 and
t2, swapped among the two arms of each of the two inter-
ferometers, while the two detectors are respectively placed
in the final two output channels at t3. For each of these four
configurations (denoted by set 1, 2, 3, or 4), the expres-
sions for the single and coincidence counts are given below
in terms of the relevant parameters, similar to the way in
which Eqs. (B9)–(B11) have been derived.

Note that, for this treatment, set in the context of the
setup we have actually used in our experiment (Fig. 2), to
be empirically relevant, we take the T : R splitting ratio of
the NPBS to be varying, dependent upon which input port
of the NPBS the photons are impinging on (see Fig. 4).
The splitting ratio due to the HWP and PBS combination
(HWP2, PBS2 in Fig. 2) is denoted by |α|2 : |β|2.

Set 1: t1+, t2+ (blocking arms 2 and 3 in the experimental setup shown in Fig. 2). We have

C1(+, +) = N1|α|2T1R2η1 + N2|α|4(T1)
2{(R2)

2η1(2 − η1) + 2T2R2η1}
+ N2(|α|42T1R1 + 2|α|2|β|2T1)R2η1, (B12)

C2(+, +) = N1|α|2T1T2η2 + N2|α|4(T1)
2{(T2)

2η2(2 − η2) + 2T2R2η2}
+ N2(|α|42T1R1 + 2|α|2|β|2T1)T2η2, (B13)

C1,2(+, +) = 2N2|α|4(T1)
2T2R2η1η2. (B14)
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Set 2: t1+, t2− (blocking arms 2 and 4). We have

C1(+, −) = N1|α|2R1T3η1 + N2|α|4(R1)
2{(T3)

2η1(2 − η1) + 2T3R3η1}
+ N2(|α|42T1R1 + 2|α|2|β|2R1)T3η1, (B15)

C2(+, −) = N1|α|2R1R3η2 + N2|α|4(R1)
2{(R3)

2η2(2 − η2) + 2T3R3η2}
+ N2(|α|42T1R1 + 2|α|2|β|2R1)R3η2, (B16)

C1,2(+, −) = 2N2|α|4(R1)
2T3R3η1η2. (B17)

Set 3: t1−, t2+ (blocking arms 1 and 3). We have

C1(−, +) = N1|β|2R4R2η1 + N2|β|4(R4)
2{(R2)

2η1(2 − η1) + 2T2R2η1}
+ N2(|β|42T4R4 + 2|α|2|β|2R4)R2η1, (B18)

C2(−, +) = N1|β|2R4T2η2 + N2|β|4(R4)
2{(T2)

2η2(2 − η2) + 2T2R2η2}
+ N2(|β|42T4R4 + 2|α|2|β|2R4)T2η2, (B19)

C1,2(−, +) = 2N2|β|4(R4)
2T2R2η1η2. (B20)

Set 4: t1−, t2− (blocking arms 1 and 4). We have

C1(−, −) = N1|β|2T4T3η1 + N2|β|4(T4)
2{(T3)

2η1(2 − η1) + 2T3R3η1}
+ N2(|β|42T4R4 + 2|α|2|β|2T4)T3η1, (B21)

C2(−, −) = N1|β|2T4R3η2 + N2|β|4(T4)
2{(R3)

2η2(2 − η2) + 2T3R3η2}
+ N2(|β|42T4R4 + 2|α|2|β|2T4)R3η2, (B22)

C1,2(−, −) = 2N2|β|4(T4)
2T3R3η1η2. (B23)

We measure C1, C2, and C1,2 from the above four sets
of experiments, and numerically fit the twelve equations

FIG. 4. Splitting ratios of the NPBS are denoted as Ti : Ri for
i = 1, 2, 3, 4, depending on the input port of the NPBS. Here,
Ti + Ri = 1 for all i.

[Eqs. (B12)–(B19)] by varying all input parameters, |α|2,
T1, T2, T3, T4, η1, η2, and γ . We take ten iterations of
raw datasets (time stamps) for each of the four runs of the
experiments and measure the average values of C1, C2, and
C1,2; see Table IV.

TABLE IV. Measured values of singles and coincidences from
the experiment.

C1(+, +) 9412
C2(+, +) 36 458.33
C1,2(+, +) 7.67
C1(+, −) 9589.33
C2(+, −) 2611.67
C1,2(+, −) 0.67
C1(−, +) 2206
C2(−, +) 11 286
C1,2(−, +) 1
C1(−, −) 32 375.33
C2(−, −) 10 656.67
C1,2(−, −) 7.33
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For the purpose of the numerical fitting, we per-
form the chi-squared test using the formula χ2 =∑

i (C
E
i − CT

i )
2
/CT

i , where CE
i represents the twelve coin-

cidence values obtained from the experiment, CT
i rep-

resents all coincidence values from theory [Eqs. (B12)
and (B19)]. We tweak all the fitting parameters to
get the minimum value of χ2. We find the best
fit for |α|2 = 0.48, T1 = 0.74, T2 = 0.77, T3 = 0.81, T4 =
0.65, η1 = 0.56, η2 = 0.64, and γ = 0.0023, where the
chi-squared value is 7.2 (p-value > 0.05). Using the mea-
sured value of γ = 0.0023, we find that the maximum
upper bound for LGI is 1.0046 and, for WLGI, it is 0.0012
[using Eq. (B6)]. As we can see that the changes in the
upper bounds due to the contribution of multiphotons are
very small, i.e., in the third decimal place only, we can
ignore this effect in our experiment.

APPENDIX C: CALCULATIONS AND ERROR
ANALYSES PERTAINING TO THE

EXPERIMENTAL DATA

In this section, we describe the procedures for calculat-
ing the results mentioned in Sec. VI.

1. Details of the experimental methods.
2. Estimating the standard deviations in the data statis-

tics obtained from the experiment for the LGI,
WLGI, and NSIT.

3. Estimating the range of measured values of LGI,
WLGI, and NSIT, considering all the significant
imperfections in the optical components.

1. Details of the experimental methods

In order to measure the LGI and WLGI values from
the experimental setup, we perform three experimental
runs. In the first run, we measure all four joint probabil-
ities of the form Pt2,t3(qt2 , qt3) for all qt2 = ±1, qt3 = ±1.
In the second run, we measure four joint probabilities of
the form Pt1,t3(qt1 , qt3). In the third run, we measure eight
joint probabilities of the form Pt1,t2,t3(qt1 , qt2 , qt3). These
sixteen measured joint probabilities are used for calculat-
ing the LGI and WLGI expressions, given by Eqs. (A1)
and (A2). For WLGI, we get the three joint probabilities
directly from the three experimental runs mentioned above.
In the case of LGI, we do an additional step of calculating
the correlation values from the measured joint probabilities
using the equation 〈QtiQtj 〉 = Pti,tj (+, +) − Pti,tj (+, −) −
Pti,tj (−, +) + Pti,tj (−, −). To show the maintenance of all
relevant NSITs, we perform the fourth run of the exper-
iment where we measure the probabilities Pt3(+) and
Pt3(−), and then calculate the three expressions

NSIT(t1)t2 : |Pt2(+) − Pt1,t2(+, +) − Pt1,t2(−, +)|, (C1)

NSIT(t1)t3 : |Pt3(+) − Pt1,t3(+, +) − Pt1,t3(−, +)|, (C2)

NSIT(t2)t3 : |Pt3(+) − Pt2,t3(+, +) − Pt2,t3(−, +)|. (C3)

As we have implemented negative result measurement
in our experiment for preserving the NIM condition, we
perform multiple subruns under each of the first three
experimental runs. For each of the subruns, coincidence
data are recorded for 10 s and repeated a large number of
times (300 iterations for the second experimental run, 150
iterations for both the first and the third runs) for better
averaging. Details of the subruns are provided below.

In the first experimental run, we measure the correla-
tion between times t2 and t3. For this purpose, we perform
two subexperimental runs, incorporating negative result
measurement. In the first subrun, a blocker is placed in
the −1 arm at t2 (or at arm 3 in the experimental setup
provided in Fig. 2), and coincidence counts are measured
between SPAD1 and SPAD2+ and between SPAD1 and
SPAD2−. We denote the first coincidence as Ct2,t3(+, +)

as any photon that gets detected in SPAD2+ must be
in the +1 arm at t2 and in the +1 arm at t3. Similarly,
the second coincidence count can be denoted Ct2,t3(+, −).
In the second subrun of the experiment, a blocker is
placed in the +1 arm at t2. So the coincidence count
between SPAD1 and SPAD2+ is denoted Ct2,t3(−, +),
and the coincidence count between SPAD1 and SPAD2−
is denoted Ct2,t3(−, −). The total coincidence count from
the first run becomes CT

t2,t3 = Ct2,t3(+, +) + Ct2,t3(+, −) +
Ct2,t3(−, +) + Ct2,t3(−, −). We calculate four joint prob-
abilities of the form Pt2,t3(qt2 , qt3), where qt2 = ±1 and
qt3 = ±1, by normalizing the four coincidence values
obtained in the first run

Pt2,t3(qt2 , qt3) = Ct2,t3(qt2 , qt3)

CT
t2,t3

. (C4)

A similar strategy is used in the second run of the exper-
iment, where we perform two subruns as well. In this
case, a blocker is placed in the −1 arm at time t1 in
the first subrun, and in the +1 arm for the second sub-
run. We obtain four coincidence values, i.e., Ct1,t3(+, +),
Ct1,t3(+, −), Ct1,t3(−, +), Ct1,t3(−, −), which are normal-
ized to calculate the joint probabilities of the form

Pt1,t3(qt1 , qt3) = Ct1,t3(qt1 , qt3)

CT
t1,t3

. (C5)

The third experimental run, where we measure the correla-
tion between times t1 and t2, is slightly different, as we do
not place any detectors (SPAD2+ and SPAD2−) at time
t2 in order to close the detection efficiency loophole. Here,
we still fix the detectors at time t3 and use two blockers
(instead of one) at both times t1 and t2. In this case, we
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perform four subruns of the experiment, by changing the
positions of the two blockers inside the setup. To give an
example, in the first subrun, we place one blocker in the
−1 arm at t1 and the other blocker in the −1 arm at t2.
So, the measured coincidence count between SPAD1 and
SPAD2+ is denoted Ct1,t2,t3(+, +, +), and that between
SPAD1 and SPAD2− is denoted Ct1,t2,t3(+, +, −). In this
way, we obtain eight coincidence values of the form
Ct1,t2,t3(qt1 , qt2 , qt3) from the third experimental run, and
calculate the eight three-time joint probabilities using the
normalization

Pt1,t2,t3(qt1 , qt2 , qt3) = Ct1,t2,t3(qt1 , qt2 , qt3)

CT
t1,t2,t3

. (C6)

All four joint probabilities of the form Pt1,t2(qt1 , qt2) are
then calculated from these eight three-time joint probabil-
ities by using the induction or arrow of time expression,
given by

Pt1,t2(qt1 , qt2) =
∑

qt3=±1

Pt1,t2,t3(qt1 , qt2 , qt3). (C7)

We also perform another experiment run (fourth run)
where we do not place any blocker in any arm of the
setup and measure coincidences. In this case, the coin-
cidence count between SPAD1 and SPAD2+ is denoted
Ct3(+) and the coincidence count between SPAD1 and
SPAD2− is denoted Ct3(−). So, the probabilities at time

t3 are measured as

Pt3(+)= Ct3(+)

Ct3(+) + Ct3(−)
, Pt3(−)= Ct3(−)

Ct3(+) + Ct3(−)
.

(C8)

Probabilities (C8) are used to calculate the two-time NSIT
equations, NSIT(t1),t3 and NSIT(t2),t3 [Eqs. (C3) and (C2)].
Details of the experimental methods, as discussed in this
section, have been summarized in Table V.

Now, in Table VI we show the measured coincidence
values obtained from the four runs of the experiment for
a representative dataset. We also show calculations for
getting all the relevant joint probabilities from these coin-
cidence values, and how to calculate the LGI, WLGI, and
NSIT values.

From Table VI we calculate the three correlation values
〈Qt1Qt2〉 = 0.56, 〈Qt2Qt3〉 = 0.54, 〈Qt1Qt3〉 = −0.22, and
get the LGI value of 1.32 using Eq. (A1). For the same
dataset, the WLGI value is obtained from Eq. (A2) to be
0.09. The NSIT values are NSIT(t1)t2 = 0.002 [Eq. (C1)],
NSIT(t2)t3 = 0.004 [Eq. (C3)], and NSIT(t1)t3 = 0.002 [Eq.
(C2)].

2. Evaluating the standard deviations

We observe time-dependent fluctuations in the measured
coincidence counts, which can be primarily ascribed to
three different reasons; the first being the fluctuations in the
intensity of the pump beam itself, the second being the ran-
dom statistical fluctuations from the SPDC process, and the

TABLE V. Details of the various runs and subruns of the experiment performed to obtain all relevant probabilities.

Expt. Expt. blockers Measured Total
runs subruns used Blocker placement coincidences coincidence Measured probabilities

1 1.1 1 at t2 in the −1 path (arm 3) Ct2,t3(+, +)

Ct2,t3(+, −)
CT

t2,t3
Pt2,t3(+, +), Pt2,t3(+, −)

Pt2,t3(−, +), Pt2,t3(−, −)

1.2 1 at t2 in the +1 path (arm 4) Ct2,t3(−, +)

Ct2,t3(−, −)

2 2.1 1 at t1 in the −1 path (arm 2) Ct1,t3(+, +)

Ct1,t3(+, −)
CT

t1,t3
Pt1,t3(+, +), Pt1,t3(+, −)

Pt1,t3(−, +), Pt1,t3(−, −)

2.2 1 at t1 in the +1 path (arm 1) Ct1,t3(−, +)

Ct1,t3(−, −)

3 3.1 2 at t1 in the -1 path (arm 2) at t2
in the -1 path (arm 3)

Ct1,t2,t3(+, +, +)

Ct1,t2,t3(+, +, −)
CT

t1,t2,t3

Pt1,t2,t3(+, +, +), Pt1,t2,t3(+, +, −)

Pt1,t2,t3(+, −, +), Pt1,t2,t3(+, −, −)

Pt1,t2,t3(−, +, +), Pt1,t2,t3(−, +, −)

Pt1,t2,t3(−, −, +), Pt1,t2,t3(−, −, −)

3.2 2 at t1 in the -1 path (arm 2)at t2
in the +1 path (arm 4)

Ct1,t2,t3(+, −, +)

Ct1,t2,t3(+, −, −)

3.3 2 at t1 in the +1 path (arm 1) at t2
in the -1 path (arm 3)

Ct1,t2,t3(−, +, +)

Ct1,t2,t3(−, +, −)

3.4 2 at t1 in the +1 path (arm 1) at t2
in the +1 path (arm 4)

Ct1,t2,t3(−, −, +)

Ct1,t2,t3(−, −, −)

4 4.1 0 N/A Ct3(+)

Ct3(−)
CT

t3 Pt3(+), Pt3(−)

010307-23



KAUSHIK JOARDER et al. PRX QUANTUM 3, 010307 (2022)

TABLE VI. Experimentally measured coincidence values and calculated joint probabilities from a representative experimental
dataset.

Expt. run Measured coincidences Total coincidence Measured probabilities

1

Ct2,t3(+, +) = 41 644.94
Ct2,t3(+, −) = 10 725.33
Ct2,t3(−, +) = 12 334.57
Ct2,t3(−, −) = 35 954.40

CT
t2,t3 = 100 659.24 Pt2,t3(+, +) = 0.414, Pt2,t3(+, −) = 0.107

Pt2,t3(−, +) = 0.122, Pt2,t3(−, −) = 0.357

2

Ct1,t3(+, +) = 22 977.20
Ct1,t3(+, −) = 30 456.67
Ct1,t3(−, +) = 35 541.98
Ct1,t3(−, −) = 19 814.86

CT
t1,t3 = 108 790.71 Pt1,t3(+, +) = 0.211, Pt1,t3(+, −) = 0.280

Pt1,t3(−, +) = 0.327, Pt1,t3(−, −) = 0.182

3

Ct1,t2,t3(+, +, +) = 34 430.15
Ct1,t2,t3(+, +, −) = 8957.09
Ct1,t2,t3(+, −, +) = 2203.34
Ct1,t2,t3(+, −, −) = 9067.37

Ct1,t2,t3(−, +, +) = 10 218.37
Ct1,t2,t3(−, +, −) = 1900.90

Ct1,t2,t3(−, −, +) = 10 171.06
Ct1,t2,t3(−, −, −) = 30 126.35

CT
t1,t2,t3 = 107 074.63

Pt1,t2,t3(+, +, +) = 0.322, Pt1,t2,t3(+, +, −) = 0.084
Pt1,t2,t3(+, −, +) = 0.021, Pt1,t2,t3(+, −, −) = 0.085
Pt1,t2,t3(−, +, +) = 0.095, Pt1,t2,t3(−, +, −) = 0.018
Pt1,t2,t3(−, −, +) = 0.095, Pt1,t2,t3(−, −, −) = 0.281

Pt1,t2(+, +) = 0.406, Pt1,t2(+, −) = 0.106
Pt1,t2(−, +) = 0.113, Pt1,t2(−, −) = 0.376

4 Ct3(+) = 49 888.96
Ct3(−) = 42 526.46 CT

t3 = 92 415.42 Pt3(+) = 0.540, Pt3(−) = 0.460

third from the fluctuation in the interference pattern due to
the slight unavoidable instability in the interferometer. The
intensity of the pump beam coming from a diode laser can
oscillate with time due to its sensitivity toward the minute
temperature fluctuations inside the lab. We measure these
fluctuations in the pump power by placing a power meter
just before the BBO crystal and recording input power
for around 2 h. We observe a sinusoidal fluctuation in the
power of the laser. The period of this fluctuation is less
than 15 min. The mean pump power is 13.45 mW, with a
standard deviation by mean (SD/M ) value of 0.95%.

The random fluctuation present in the coincidence count
is due to the randomness of the single-photon pair gener-
ation process in spontaneous parametric down-conversion.
To understand these fluctuations, we record the coin-
cidence counts between any one of the detectors and
the heralding detector (coincidence between SPAD1 and
SPAD2+) for 10 s and 1000 iterations. We observe sin-
gles counts of 4.87 × 105 cps (SPAD1) and 1.73 × 105 cps
(SPAD2+), and a coincidence of the order of 104 MHz
for a time window of 8192 ps. In order to understand
the effect of the instability in the Sagnac interferometer
on the temporal fluctuations in the coincidence count, we
record coincidences for two different scenarios. First, for
the noninterference scenario, we use two blockers, one
placed in arm 1 and another placed in arm 3 (see Fig. 2)
and measure coincidences between SPAD1 and SPAD2+.
For the second case, which we call the interference case,
we place one blocker only in arm 1 and measure coinci-
dences between SPAD1 and SPAD2+. As we do not place
any blocker at time t2 inside the Sagnac interferometer, we
allow interference to take place for the second case. For

both cases, coincidence counts are recorded for 10 s at each
iteration and repeated for 1000 iterations. From the statisti-
cal distribution of these 1000 iterations, we observe higher
fluctuations in the coincidence counts from the interference
condition than the noninterference condition.

To counter the random fluctuations described in the
previous paragraph, we measure average coincidence val-
ues from a representative sample of datasets. The first
step is to find the minimum number of datasets (or the
number of iterations) necessary for the averaging pro-
cess. For this purpose, we apply a bootstrapping strategy
described as follows. We measure the number of coinci-
dence detections in a time interval T for a significantly
large number of iterations (IL), where we assume that
the measured samples are a good representation of the
actual sample space. We select any integer value I where
I < IL, randomly select I samples from IL total samples,
and measure the average value μI . We repeat this pro-
cess with resampling (with replacement) K times and get
a list of K μI values, e.g., μ1

I , μ2
I , . . . , μK

I . We calculate
the average of this list, i.e., μI = (1/K)

∑K
k=1 μk

I , and the

standard deviation, σ
μ
I =

√
[1/(K − 1)]

∑K
k=1(μ

k
I − μI )

2.
In the case in which I iterations is sufficient for the averag-
ing, we would expect a negligibly small σ

μ
I as compared

to μI (σμ
I � μI ). If we plot the ratio between the standard

deviation and the mean (SD/M ), that is, σ
μ
I /μI , as a func-

tion of the iteration (I ), we will see an exponential decay
as I increases. So, we can select a value of I for which
SD/M is negligibly small or below a reasonable preferred
lower threshold value. We record the coincidence value in
a time interval T = 10 s and for IL = 1000 iterations for
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FIG. 5. Plot for SD/M versus
the number of iterations. The blue
curve represents the interference
case, whereas the red curve repre-
sents the noninterference case.

both the interference and the noninterference conditions.
We apply a bootstrapping algorithm with K = 105 to find
the standard deviation by mean (SD/M ) value for the dif-
ferent numbers of iterations of the experiment. We pick a
representative SD/M value of 0.05% obtained for I = 150
iterations in the noninterference case, as we can observe
from the plot (see Fig. 5) that the SD/M curve quickly flat-
tens after 150 iterations. The same value of SD/M requires
I = 300 iterations in the interference case. This observa-
tion implies that we have to take at least 300 datasets to
calculate the average coincidences, where the coincidences
are dependent on the interference in the Sagnac interfer-
ometer. Otherwise, we have to take at least 150 datasets
for averaging.

To quote the values for LGI, WLGI, and the NSITs
in the results section in Tables II and III, we calculate
the average value and the standard deviation from all
the datasets obtained from the experiment. We repeat all
experimental runs for a statistically significant number of
times, where we record coincidence counts for 10 s in dif-
ferent runs. We take 300 iterations while measuring the
correlation between time t1, t3 (interference case) and 150
iterations for correlations between times t1, t2 and between
t2, t3 (noninterference case). For LGI, we measure three
average values 〈Qt1Qt2〉μ, 〈Qt2Qt3〉μ, 〈Qt1Qt3〉μ along with
their respective standard deviations denoted σ1,2, σ2,3, σ1,3.
Here, the subscript μ is used to identify these correlation
values as experimentally measured averages of large itera-
tions. The measured LGI value that is LGI = 〈Qt1Qt2〉μ +
〈Qt2Qt3〉μ − 〈Qt1Qt3〉μ has a maximum error of ±
, where

 = σ1,2 + σ2,3 + σ1,3. The reason for defining the maxi-
mum error as the summation of three standard deviations is
that we measured the three average values from three sep-
arate experimental runs performed one after another and

combined together. So, we consider the worst-case sce-
nario where we assume that the three experimental runs
are independent of each other, and hence the error from
each run adds up to form the maximum error. Any vio-
lation with a magnitude much higher than the maximum
error obtained for the worst-case scenario can then be con-
sidered as a significant violation. Each of the three sets of
the experiment also has two or more subsets of experimen-
tal runs since we are using negative result measurements.
For example, while measuring 〈Qt1Qt3〉μ we perform two
subexperiments, where in the first one we block the “+1”
arm at t1, and in the second run, we block the “−1” arm
at t1. Although we take data for the same time duration
(T = 10 s) for both cases, due to statistical fluctuations,
the input number of photons to the setup itself can be
different for the two cases. Then the four joint probabili-
ties measured from the two different experiments may be
self-inconsistent and introduce error in the average value
〈Qt1Qt3〉μ. For this, we apply a strategy where we compare
the 300 iterations of the first experiment with the 300 iter-
ations of the second, generating 300 × 300 combinations
of 〈Qt1Qt3〉 values. We the measure average 〈Qt1Qt3〉μ and
standard deviation σ1,3 of this distribution. Similarly, we
measure the average value 〈Qt2Qt3〉μ and standard devi-
ation σ2,3 from a combination of 150 × 150 possibilities.
For 〈Qt1Qt2〉μ, however, we measure the tree-time joint
probabilities rather than two-time joint probabilities, which
requires four subexperiment instead of two, leading to
a distribution of 1504 possible values of 〈Qt1Qt2〉, from
which we measure the average and standard deviation.

For WLGI, we measure average violation, that is,
{Pt1,t3(−, +)}

μ
− {Pt1,t2(−, +)}

μ
− {Pt2,t3(−, +)}

μ
with a

maximum error of ±
, where 
 = σ1,2 + σ2,3 + σ1,3,
and σi,j represents the standard deviation of distribution
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Pti,tj (qti , qtj ). We measure the three averages and standard
deviations in the same procedure as implemented for LGI.
For NSITs, we measure three expressions, NSIT(t1)t2 =
|{Pt2(+)}μ − {Pt1,t2(+, +) + Pt1,t2(−, +)}μ|, NSIT(t2)t3 =
|{Pt3(+)}μ − {Pt2,t3(+, +) + Pt2,t3(−, +)}μ|, and NSIT(t1)t3= |{Pt3(+)}μ − {Pt1,t3(+, +) − Pt1,t3(−, +)}μ|. Each of
the NSIT equations requires only two separate experimen-
tal runs rather than three used in LGI and WLGI.

3. Estimating the quantum mechanically predicted
values of LGI, WLGI, and NSIT by incorporating

experimental nonidealities

We write the expressions for LGI and WLGI, using
various experimental parameters, respectively as

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉 = 1 − 4R2 + 4TR cos(θ2),
(C9)

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +)

= 2|β|2TR cos(θ2) − R2, (C10)

where T : R is the splitting ratio of the NPBS (see Fig. 2)
and |α|2 : |β|2 is the splitting ratio due to the HWP2 and
PBS2 combination. Here θ2 represents the overall phase
difference between the two arms of the Sagnac interfer-
ometer. Hence, the cos(θ2) term can be considered as a
quantifier of the interferometric visibility obtained in the
setup.

However, while deriving Eqs. (C9) and (C10), we
assume an ideal case where the beamsplitting ratio T : R
for the NPBS has a fixed value. But, as we observe exper-
imentally, the splitting ratio varies based on the input
polarization and the input port of the NPBS. Even if we
consider that all photons impinging on the NPBS are ver-
tically polarized, they experience different T : R values
based on which of the four input ports of the NPBS they are
impinging on. We follow the same notation for the splitting
ratios Ti : Ri for all i = {1, 2, 3, 4} as mentioned in Fig. 4.
With this modification, the LGI and WLGI expressions
respectively become

〈Qt1Qt2〉 + 〈Qt2Qt3〉 − 〈Qt1Qt3〉
= |α|2{R1(T3 − 3R3) + T1 + 2

√
T1T2R1R3 cos(θ2)

+ 2
√

T1T3R1R2 cos(θ2)} + |β|2{R4(T2 − 3R2)

+ T4 + 2
√

T2T4R3R4 cos(θ2) + 2
√

T3T4R2R4 cos(θ2)},
(C11)

Pt1,t3(−, +) − Pt1,t2(−, +) − Pt2,t3(−, +)

= 2|β|2
√

T2T4R3R4 cos(θ2) − |α|2R1R3 − |β|2R2R4,
(C12)

and NSIT(t1)t2 = |Pt2(+) − Pt1,t2(+, +) − Pt1,t2(−, +)|
= 0 and NSIT(t1)t3 = |Pt3(+) − Pt1,t3(+, +) − Pt1,t3
(−, +)| = 0, independent of the values of the splitting
ratios (Ti : Ri). However, NSIT(t2)t3 is dependent on the
splitting ratio of the beam splitter:

|Pt3(+) − Pt2,t3(+, +) − Pt2,t3(−, +)|
= |2|α|2

√
T1T2R1R3 cos(θ2)

− 2|β|2
√

T2T4R3R4 cos(θ2)|. (C13)

Using the ideal values of |α|2 = |β|2 = 0.5, cos(θ2) =
1, and experimentally characterized values, T1 = 0.80,
T2 = 0.79, T3 = 0.82, T4 = 0.82, in Eqs. (C11)–(C13), the
quantum mechanically estimated values of LGI, WLGI,
and NSIT(t2)t3 are obtained as 1.47, 0.11, and 0.006,
respectively. In the experimental setup, these values of the
input parameters may change slightly, depending on the
precision of various optical components. So, instead of
the quantum mechanically estimated fixed values for the
LGI and WLGI expressions, we obtain a range of quan-
tum mechanically predicted values, considering most of
the experimental imperfections along with their respective
least count errors. The value |α|2 depends on the rota-
tion angle of HWP2, where we consider a typical least
count error of ±1◦ for the rotation angle. Also, for the
Ti values, we consider a least count of ±2%. Considering
these experimental error ranges, the range of the quantum
mechanically predicted LGI value is calculated to be from
1.45 to 1.49, while the range of the WLGI value is calcu-
lated to be from 0.09 to 0.13. For NSIT(t2)t3 , this range is
from 0 to 0.03.

A point to be noted is that so far we have considered a
simplified model for these calculations, where we assume
that the interference visibility of the DSI reaches the opti-
mal value in the experiment, or cos(θ2) = 1. However,
we observe from the experimental setup that the interfer-
ometric visibility value can only be reached up to 85%,
with our best effort in the alignment process, and also
fluctuates between 70% and 85% along with time. The
reasons for this phenomenon can be attributed to various
observations. First, we simultaneously maintain optimal
interference for both the two input arms of the beam splitter
(NPBS in Fig. 2 in the main text). To achieve this con-
dition, both the input beams should be collinear (on top
of each other) throughout the whole interference process.
This is not easy to maintain, given that the reflection angle
from the NPBS is sensitive to the polarization of the input
beam. Although we maintain both the input beams to have
the same polarization (vertical polarization) with appropri-
ate polarization control, a slight difference can lead to an
observable change in the relative angle between the two
beams as they pass through many reflecting mirrors inside
the interferometer. Another issue arises due to the geom-
etry of the DSI, where the two interfering beams hit the
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mirrors placed inside the interferometer at two different
spots. So, any surface imperfections in the mirrors lead
to a path difference (of the order of micrometers) between
the two beams, causing a reduction in the visibility. We
also observe that the visibility value slowly drifts between
85% and 70% due to the minute changes inside the lab
environment, such as temperature, mechanical vibrations,
etc.

From the above discussion, it is evident that the ideal
assumption of cos(θ2) = 1 is not suitable for the exper-
imental setup that we used. So, we calculate a modified
range for the quantum mechanical prediction using Eqs.
(C11)–(C13), where we vary the value of cos(θ2) from
0.7 to 0.85, along with imperfections stemming from other
experimental parameters and their respective least count
errors, as mentioned earlier. We obtain the modified quan-
tum mechanically predicted range to be from 1.28 to 1.40
for LGI, from 0.05 to 0.11 for WLGI, and from 0 to 0.026
for NSIT(t2)t3 .

APPENDIX D: CLOSING THE COINCIDENCE
LOOPHOLE AND THE PREPARATION STATE

LOOPHOLE BY ADJUSTING THE COINCIDENCE
TIME WINDOW FOR DIFFERENT

MEASUREMENT SETTINGS

In experiments performing violation of Bell inequalities,
the coincidence loophole arises from the fact that different
measurement settings may introduce various time delays
between the two time-correlated entangled photons, which
results in an asymmetric detection of correlated photon
pairs within a predefined coincidence time window. Here,
one can show that, by adjusting the delay between the two
photons of the same entangled pair for different measure-
ment settings, a local hidden variable theory can produce a
fake violation of the Bell inequalities. For the experiments
testing macrorealism, it is necessary to use single photons.
So, the coincidence loophole does not directly apply to this
scenario. However, one can argue that a similar type of
loophole may arise when different measurement settings
introduce time variation in the arrival time of the individ-
ual photons. In this case, one can control which photon
will be detected in which detector by introducing differ-
ent time delays to the single photons based on the choice
of measurement setting. Our use of the heralded photon or
time-correlated photon is discussed later in this section but,
before understanding the same, it is important to point out
why nonheralded photons are amenable to this loophole.

In the experimental setup, all single-photon detectors
(SPAD2+, SPAD2−) are fixed at time t3, and different
measurement settings are realized by changing the posi-
tion of the blockers only. Now, consider a general scenario
where these different measurement settings introduce dif-
ferent path lengths for the photons to traverse inside the
setup before getting detected in SPAD2+ or SPAD2−. For

example, let us consider two measurement settings where
the blocker is placed at time t1 in the +1 arm for the first
setting and in the −1 arm for the second setting. If there
is a difference in the path lengths between the +1 and −1
arms then a photon will take a different time (say T for the
+1 arm and T + τ for the −1 arm) to reach the detectors.

Suppose that one uses nonheralded single photons for
the experiment. In that case, a detection time window
needs to be preset in order to reduce the background noise,
as nonheralded single photons do not have any timing ref-
erences. In the case of different path lengths introduced
by different measurement settings, a preset detection time
window is disadvantageous. For example, if one fixes the
time window around T then photons traversing the +1
arm have higher chances of getting detected than pho-
tons traveling the −1 arm. This may introduce inaccurate
joint probability distributions such that even a macrorealist
theory may produce a false violation of LGI or WLGI.

In light of the above discussion, the usage of heralded
single photon for the experimental test of macrorealism
has a certain advantage, as will be discussed next. Single
photons generated from a SPDC source always come as
a pair, or in other words, two photons from each pair are
time correlated. We use the arrival time of the heralding
photon (in SPAD1) as the timing reference for the her-
alded single photon that goes to the experimental setup. So,
instead of any preset detection time window, we measure
the coincidence between the heralding and the heralded
photons (or between SPAD1 and SPAD2 + /SPAD2−) in
the postprocessing stage. Now, going back to the two dif-
ferent measurement settings mentioned earlier. In the case
of all the photons that go through the +1 arm, they form
a coincidence peak around time T with the heralding pho-
ton. So, we place a coincidence window at full width half
maximum (FWHM) around the peak position. On the other
hand, the photons passing through the −1 arm form the
coincidence peak with the heralding photon, at a shifted
position T + τ . We place the FWHM coincidence window
around T + τ for the second case. So, by adjusting the
coincidence window for different measurement settings,
we have nullified any error introduced by the photon-time
shift occurring due to different settings.

Another important consideration is the way we select
the coincidence window for individual data sets such that
the contribution of background noise is minimized. This
step is essential to close the preparation state loophole
as it ensures that the postselected sample of single pho-
tons is generated from the SPDC process only; hence, we
can safely assume that all the selected photons have the
same preparation state, within permissible errors. Once we
select the coincidence time window, only the coincidence
events occurring within the selected time window are con-
sidered as valid coincidence counts. In most cases, the
coincidence window is chosen as a time interval slightly
larger than the temporal width of the coincidence peak,
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such that the area under the peak is properly included.
This strategy is appropriate if the background noise is
significantly lower than the signal itself. However, in the
presence of significant noise, a large coincidence window
also captures background noise, which may increase the
errors in the experimental results. For example, if we mea-
sure the ratio between two coincidence counts C1 and
C2, and if the large window size also captures additional
noise counts N1 and N2 as well, then the ratio becomes
(C1 + N1)/(C1 + C2 + N1 + N2), which is significantly
different than C1/(C1 + C2) if C1/N1 �= C2/N2.

We follow the strategy to set a coincidence window that
is smaller than the temporal width of the coincidence peak
such that the noise is minimized. We select two positions in
the x axis of the coincidence curve around the peak posi-
tion and adjust them such that the signal-to-noise ratio is
optimal. We can also adjust the window such that it covers
the FWHM of the coincidence peak, or we may also apply
the standard 1/e2 width value. In our case, we select the
FWHM size as our coincidence window due to the obser-
vation that it provides an optimal signal-to-noise ratio as
well as a higher data collection rate for our datasets. In
this way, we reduce the contribution of unnecessary back-
ground noise in the experiment. Also, there is a flatline
on both sides of the coincidence peak in the coincidence
plot, which is due to the accidental coincidences coming
from background noise. So, to correct for these acciden-
tal coincidences, we first calculate the total background
coincidences within the time window as

background = average coincidence value in the flatline

× size of the coincidence window.

We then subtract this background value from the coinci-
dence value to get the background-corrected coincidences.
Interested readers are referred to the main text of Ref.
[40] to find a more detailed analysis regarding the selec-
tion and adjustment of the coincidence time window based
on various experimental requirements in the context of the
quantum key distribution experiment.
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