PRX QUANTUM 3, 010302 (2022)

AKLT-States as ZX-Diagrams: Diagrammatic Reasoning for Quantum States

Richard D.P. East®,"2 John van de Wetering ,3 Nicholas Chancellor®,* and Adolfo G. Grushin®?"

" Université Grenoble Alpes, LIG, Saint-Martin-d 'Heres 38401, France
: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
> Radboud University Nijmegen, Netherlands

* Durham University physics department and Durham-Newcastle Joint Quantum Centre, South Road, Durham,
United Kingdom

® (Received 7 December 2020; revised 12 August 2021; accepted 7 December 2021; published 4 January 2022)

From Feynman diagrams to tensor networks, diagrammatic representations of computations in quan-
tum mechanics have catalyzed progress in physics. These diagrams represent the underlying mathematical
operations and aid physical interpretation, but cannot generally be computed with directly. In this paper we
introduce the ZXH-calculus, a graphical language based on the ZX-calculus, that we use to represent and
reason about many-body states entirely graphically. As a demonstration, we express the one-dimensional
(1D) AKLT-state, a symmetry protected topological state, in the ZXH-calculus by developing a representa-
tion of spins higher than 1/2 within the calculus. By exploiting the simplifying power of the ZXH-calculus
rules we show how this representation straightforwardly recovers the AKLT matrix-product state rep-
resentation, the existence of topologically protected edge states, and the nonvanishing of a string-order
parameter. Extending beyond these known properties, our diagrammatic approach also allows us to ana-
Iytically derive that the Berry phase of any finite-length 1D AKLT chain is 7. In addition, we provide
an alternative proof that the two-dimensional (2D) AKLT-state on a hexagonal lattice can be reduced
to a graph state, demonstrating that it is a universal quantum-computing resource. Lastly, we build 2D
higher-order topological phases diagrammatically, which we use to illustrate a symmetry-breaking phase
transition. Our results show that the ZXH-calculus is a powerful language for representing and computing
with physical states entirely graphically, paving the way to develop more efficient many-body algorithms

and giving a novel diagrammatic perspective on quantum phase transitions.
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I. INTRODUCTION

Representing involved mathematical formulae with sim-
ple diagrams has been a common strategy to drive progress
in physics. Important and widespread examples of this are
Feynman diagrams [1], where the often cumbersome inte-
grals that predict the amplitude of a quantum field theory
process are ordered in perturbation theory with the aid of
simple diagrammatic representations.

A more recent example is the formulation of the quan-
tum many-body problem in terms of tensor networks, that
are often represented diagrammatically [2,3]. Tensor net-
works have triggered the development of computationally
efficient variational algorithms that find an approximate
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solution to many-body problems [4—10]. These formula-
tions are based on efficient representations of quantum
states, for which matrix-product states [11-13] (MPS) and
projected entangled pair states [14,15] (PEPS) are among
the most successful approaches. These states are often rep-
resented diagrammatically as sites that connect to each
other by legs that represent tensor contractions.

Despite their unquestionable success in addressing
the quantum many-body problem, tensor networks have
known limitations. For example, MPS are a one-
dimensional (1D) representation of the wave function,
which limit their scope, while PEPS cannot be contracted
both efficiently and exactly [2,16]. Additionally, there are
limitations to the type of states one can represent efficiently
using existing tensor networks. MPS are well suited to
describe gapped Hamiltonians in one and two dimensions,
but are less suited for critical states and higher dimen-
sions [17—19]. PEPS can handle both gapped and critical
states and can be defined in any dimension [20], but rep-
resenting certain states is challenging, notably states with
chiral topological order [21-24]. Although many other
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tensor-network methods exist [2,3], each tailored to solve
different issues, finding novel ways to represent states is an
ongoing challenge.

In this work we present a diagrammatic representation
of quantum states with which we can compute directly, in
contrast to the typical graphical representation of a tensor
network, which is merely a representation of the under-
lying mathematical operations (the tensor contractions).
We use ZX-diagrams, a type of tensor network that comes
equipped with a set of graphical rewrite rules known as
the ZX-calculus. The ZX-calculus was developed to bet-
ter understand the foundations of quantum information and
entanglement [25-27]. It has seen use in quantum circuit
optimization [28-31], measurement-based quantum com-
putation [32—34], and surface-code lattice surgery [35-38].
The goal of this paper is to explore how the ZX-calculus
can be used to represent quantum states, and to extract their
useful physical properties.

The power of the ZX-calculus stems from the fact
that we can simplify a given diagram without calculat-
ing its underlying matrix: the diagram is the calculation.
The ZX-calculus is complete, which means that any dia-
grams representing the same linear map can be transformed
into one another entirely diagrammatically [39—43]. ZX-
diagrams are generated by a small set of generators that
are symmetric tensors acting on a two-dimensional (2D)
(i.e., spin-1/2) Hilbert space. While ZX-diagrams can, in
principle, represent any linear map between qubits, some
particularly canonical constructions are relatively hard to
represent, in particular “AND-like” constructions that are
especially relevant for this work. To remedy this prob-
lem, in 2018 the ZH-calculus was introduced [43]. It adds
another generator to the ZX-calculus, and suitable rewrite
rules to reason about it. In this paper we develop and
use a slight variation on the ZH-calculus that we dub the
ZXH-calculus.

The question we address in this work is to what extent
the ZXH-calculus can efficiently represent quantum states,
and simplify operations on them. We find that the ZXH-
calculus presents some advantages compared to existing
formulations, and an evident potential for further advances.
We demonstrate this by writing 1D and 2D AKLT-states
[44,45] as ZXH-diagrams. For the 1D AKLT-state we
show that the ZXH representation allows us to detect its
string order graphically [46]. We also map the ZXH repre-
sentation of the 1D AKLT-state to its MPS representation
[8], establishing a bridge between graphical calculi and
MPS representations. By exploiting the benefits of the dia-
grammatic calculus we derive that the Berry phase of the
1D AKLT-state is w for any finite chain length [47]. To
exemplify the power of the ZXH representation further, we
prove entirely diagrammatically that the 2D AKLT-state
reduces to a graph state under a suitable set of mea-
surements. This result, originally proved in Ref. [48] and
independently in Ref. [49], can be used to show that the 2D

AKLT-state is a universal resource for quantum computa-
tion. While Ref. [48] proved the reduction to a graph state
using reasoning specific to their construction, using our
representation it follows directly using relatively simple
and standard diagrammatic rewrites of the ZXH-calculus.

Lastly, we consider how crystalline symmetries can be
implemented in ZXH by constructing a higher-order topo-
logical phase protected by mirror symmetry. We find that
symmetric diagrams represent symmetric states, offering
a straightforward, diagrammatic way to implement crys-
tal symmetries, not available to other tensor networks. We
show how this result is advantageous to describe phase
transitions diagrammatically; by breaking the mirror sym-
metries that protect the higher-order topological state down
to fourfold rotations (Cy4), we can observe how the topo-
logical end modes, originally pinned to the corners, move
along the boundary.

For several of our computations we use the PYTHON soft-
ware package PYZX to assist in the diagrammatic reasoning
[50]. Many of the computations we present in this paper
are shown for pedagogical purposes only as they can be
performed in an entirely automated manner by PYZX, evi-
dencing the power of using the ZXH-calculus to represent
these states. For these calculations see the accompanying
Jupyter notebooks [51].

Based on the early work on the ZX-calculus of Refs.
[52,53], the authors of Refs. [54,55] also graphically calcu-
lated properties of some tensor-network states. However,
they restricted to representing networks that are stabi-
lizer states, and hence for which it is already known
they can be efficiently contracted [56]. In contrast, our
work deals with states that are computationally univer-
sal [48,49,57]. Other related work is the quon graphical
language [58—61], that has so far also focused on stabi-
lizer protocols, and Ref. [62], which recently developed a
graphical tensor-network representation of path integrals
describing topological phases.

The main difficulty in using the ZXH-calculus to rep-
resent arbitrary quantum states is that all the indices of
the tensors in a ZX-diagram are of dimension two (i.e.,
they are spin-1/2 degrees of freedom). Hence, to use ZXH-
diagrams to represent quantum states that live in larger
Hilbert spaces (such as the spin-1 states in a 1D AKLT-
state) we need to encode these larger Hilbert spaces into
tensor products of two-dimensional Hilbert spaces. We
solve this problem by resorting to the representation theory
of SU(2), which tells us there is a unique N-dimensional
representation given by the symmetric subspace of N — 1
copies of C2. Our construction of this symmetrizer in terms
of simple tensors and its ties to the representation theory of
SU(2) might be of broader interest.

As the intersection of readers familiar with both the ZX-
calculus and the AKLT-state is probably quite narrow, we
give a self-contained introduction to both. In Sec. II A
we describe briefly what AKLT-states are by introducing
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the paradigmatic 1D AKLT-state. In Sec. II B we present
a concise review of the ZX-calculus and its extension to
the ZXH-calculus. Then in Sec. III we represent the 1D
AKLT-state in the ZXH-calculus and demonstrate some
calculations on it. In Sec. IV we discuss how we can repre-
sent higher spin systems in the ZXH-calculus, and we use
this in Sec. V to represent the 2D AKLT-state on a hexag-
onal lattice in the ZXH-calculus and to derive its reduction
to a graph state fully diagrammatically. We study symme-
try transitions of states in Sec. VI and we end with some
concluding remarks in Sec. VII.

II. PRELIMINARIES
A. Introduction to AKLT-states

The one-dimensional AKLT Hamiltonian, named after
Affleck, Lieb, Kennedy, and Tasaki, is defined as [44]

H= Z§i§[+1 + ﬂ(§i§i+l)za (1)

where = 1/3. This Hamiltonian acts on a chain of N
spin-1 degrees of freedom. Hence, the local Hilbert space
at each site is C3, on which we act with the spin operator
Si = (S5, 8,89, where the S¢ are the 3 x 3 spin-1 matrices
(these matrices, along with other additional information on
the AKLT-state is given in Appendix A). Using representa-
tion theory it can be shown that the Hilbert space of a chain
with N sites, (C?)®V, can be represented by N copies of the
symmetric subspace of a pair of spin-1/2 particles. This
decomposition is convenient for finding the ground state
of the AKLT Hamiltonian, Eq. (1), because this Hamil-
tonian can be written as a positive sum of spin s =2
projectors on neighboring sites. Hence, by finding a state
where two neighboring spins are not in the s = 2 subspace,
we can construct the ground state of the AKLT Hamil-
tonian. Specifically, the ground state can be constructed
by decomposing each spin-1 site into two spin-1/2 sites
that form singlets between neighboring sites [Fig. 1(a)],
and thus have a maximum s = 1. These two spin-1/2 sites
are then projected back to the physical s = 1 at each site
by the appropriate symmetrizing projectors [Fig. 1(b)]. By
construction, the resulting state, depicted in Fig. 1(c) is
annihilated by the s = 2 projectors, and is therefore an
exact ground state of Eq. (1). We refer to this ground state
as the AKLT-state [63].

The AKLT-state has three important properties that we
express using the ZXH-calculus [46,47,64,65]. The first
property stems from the fact that terminating the chain nec-
essarily breaks two singlets, one at each edge, leaving two
free spin-1/2 degrees of freedom at the edges. Since each
spin-1/2 has a local Hilbert space of C? (the dimensions
corresponding to spin up or spin down), the AKLT-state
with open boundary conditions has a degeneracy of 4 (22).

The second property that we wish to express using
the ZXH-calculus is that the AKLT-state has a string
order [46]. Namely, the AKLT-state is a superposition
of all spin configurations where, if we ignore the spins
with s, = 0, the remaining spins are ordered antiferro-
magnetically: a spin s, = £1 is followed by s, = F1
[66]. For example, |/, /2,...jn) = [1,0,0,0,—1,0,0,0, 1)
is an allowed configuration, while |1,0,0,1,0,0,0,1) is
not. Analogous to how a spin-1/2 antiferromagnetic order
can be captured by an alternating spin-spin correlation
function, this string order can be captured by defining a
string-order parameter [46].

The last property of the 1D AKLT chain that we
consider in this work is its Berry phase. In describing
symmetry-protected topological phases, such as the 1D
AKLT-state, and their phase transitions, it is useful to
define quantities that are quantized due to the underly-
ing symmetries that protect the phase. Hatsugai showed
that the Berry phase, to be defined in Sec. C, is quan-
tized to 7 for the 1D AKLT-state in the thermodynamic
limit [47]. This distinguishes this state from trivial 1D
states, for which the Berry phase is zero. The quantization
of the Berry phase was later generalized to describe other
symmetry-protected topological phases [67—70].

The AKLT-state has also a simple MPS representation.
To describe it we follow the notation of Ref. [8] from
which we recall that any quantum state can be written as a
product of matrices as

Z Z MUV MUY o v - (2)

N 02,

The indices j; are called physical indices because they span
the local Hilbert space at a given site n (e.g., j; = 0, £1 for
spin-1). For a given j; and n the Mo[ffofl:l are matrices in the
indices «;, known as bond indices [71]. Although Eq. (2) is
an exact representation of any state of a finite system, the
maximum dimension of the bond indices needed to write
a given state, known as the bond dimension yx, generally
grows exponentially with system size. The bond dimension
X 1s a measure of the entanglement of the state we wish to
represent [8].

The AKLT-state can be written as an exact MPS of
bond dimension y = 2. The local Hilbert space of each site
consists of three spin-1 states and, with periodic bound-
ary conditions, each site is equivalent. The AKLT-state is
defined by the three matrices

2(0 0 1 (1 0
e [2 o — 1
=55 0) = Gea B,

2/0 -1
[\]-1 _ [ Z
M= 3<0 0)’

3)
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(a) Singlet . (c) AKLT-state spin-1
s =g xS TNy
(b) Projector @ N2 W4
10| 4+ (01 spin-
D=to i+ o O oy oo e e
- | | | |
x IOE I — — MM o — — |

(e) MPS equivalence (f)

FIG. 1. ZXH representation of the AKLT-state. (a),(b) The singlet and symmetric projector and their ZXH representation. These are
the basic building blocks of the 1D AKLT-state, shown pictorially in (c). (d) The MPS representation of the 1D AKLT-state, while
(f) gives its ZXH representation, which consists of the components in (a),(b). The shaded gray square in (f) highlights the part of the
diagram from which one obtains the three MPS matrices MU+!, M1M0 and M1 needed for the AKLT-state. The diagrams of these

matrices are shown in (e), and are obtained by fixing the physical index [highlighted by the magenta rectangles in (f)].

which are the same for all sites 1 < n < N in the bulk [see
Fig. 1(d)].

The ideas behind the AKLT-state and their general-
izations are widely used to understand more complicated
condensed-matter systems [72], and used as well as com-
putational tools [2]. The one-dimensional AKLT-state can
also be generalized to two-dimensional lattices [45]. The
particular case we consider in Sec. V is the AKLT-state
on a hexagonal lattice with a spin-3/2 degree of freedom
at each site. It can be constructed using entangled pairs
of spin-1/2 states projected to the appropriate subspace.
Hence the 2D AKLT-state can be represented as a 2D
PEPS with dimension D = 2 [15]. This state was shown
to be a universal source for measurement-based quantum
computation [48].

B. Introduction to the ZXH-calculus

In this paper we use a graphical calculus that is a mix-
ture of the ZX-calculus and the ZH-calculus. For ease of
reference, we dub this language the ZXH-calculus. First,
we provide a brief overview of the more well-known
ZX-calculus. For an in-depth reference, see Ref. [27] or
Ref. [73].

The ZX-calculus is a diagrammatic language similar to
quantum circuit notation [25,26]. A ZX-diagram (or simply
diagram) consists of wires and spiders. Wires entering the
diagram from the left are inputs; wires exiting to the right
are outputs. Given two diagrams we can compose them by

joining the outputs of the first to the inputs of the second,
or form their tensor product by stacking the two diagrams.
Spiders are linear operations, which can have any num-
ber of input or output wires. There are two varieties:
Z-spiders depicted as green dots and X-spiders depicted as
red dots, each of which can be labeled by a phase o € R:

..0><0...0|+eia|1...1><1...1‘

P
(4)
}g{ = ) = Y (= |

©)

Note that if you are reading this document in monochrome
or otherwise have difficulty distinguishing green and
red, Z-spiders will appear lightly shaded and X-spiders
darkly shaded. ZX-diagrams are constructed iteratively
from these spiders by composing them either sequentially,
which on the level of the linear map corresponds to the
regular composition of linear maps, or by stacking them,
which forms the tensor product of the linear maps they rep-
resent. As a special case, diagrams with no inputs represent
(unnormalized) state preparations, while diagrams with no
open wires represent complex scalars.
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As a demonstration, let us write down some simple state
preparations and unitaries in the ZX-calculus:

o— = 0)+1) = V2|+
10) + 1) +) ©
o— = 4= = V200
+)+1-) 0) )
—@— = 0)(0] + e [1)(1] = Zo
|0)(0] 1) ®)
—@— = [+ (] = Xa
[+) (+] =) (- ©)

Note that, while (8) and (9) have a label «, we have not
given a label to the state preparations (6) and (7). By con-
vention, a spider without a label is taken to have a label
of 0. When we take o« = 7 in (8) and (9) we get Pauli
matrices:

—— = Z —@— = X (10)
By composing spiders we can make more complicated
linear maps, such as the CNOT gate:

1000
I_ 1 (o100
—\/50001 X CNOT
0010

(11)

Here the symbol “oc” denotes that the diagram is propor-
tional to the gate, i.e., that there exists a global nonzero
scalar correction (in this case, the diagram needs to be mul-
tiplied by V/2) that makes them exactly equal. For many
of the calculations in this paper, the exact scalar value will
not be important. For clarity, we in those cases drop scalars
implicitly. As above, we write  in a diagrammatic deriva-
tion to denote that the diagrams are merely equal up to a
nonzero scalar.

We can treat a ZX-diagram as a graphical depiction of
a tensor network, similar in style to the work of, e.g., Pen-
rose [74]. In this interpretation, a wire between two spiders
denotes a tensor contraction. As tensors, Z- and X-spiders
can be written as follows:

o 1 ifir = = = j1 = o = i =
(@)dn =9 ifi=..=ip=fi=..=jn=1
0 otherwise

(12)

i ntm (14 e if @, ta ®Pyhs =0
(@)Jl]:(l) { @ @/3

1o vz L—e if @, ia®@yis=1

(13)

where iy, jg range over {0, 1} and @ is addition modulo 2.

ZX-diagrams have a number of symmetries that make
them easy to work with. In particular, we can treat a ZX-
diagram as an undirected (multi)graph, so that we can
move the vertices around in the plane, bending, unbending,
crossing, and uncrossing wires, as long as the connectivity
and the order of the inputs and outputs is maintained. These
deformations of the diagram do not affect the linear map it
represents. Indeed, the reader might have noticed that in
the CNOT diagram (11) we draw a vertical wire without
explaining whether this denotes an input or an output from
the Z- and X-spider. We are warranted in drawing it this
way because

N - L

Besides these topological symmetries, ZX-diagrams have a
set of rewrite rules associated to them, collectively referred
to as the ZX-calculus. See Fig. 2 for a set of these rules.
Note that these rules also hold with the Z- and X-spider
interchanged (i.e., with the colors flipped). When doing
diagrammatic derivations, we often label the equalities
with one of the rule names of Fig. 2, such as (f), to denote
that rule is used there.

In Fig. 2 we use a hybrid notation of writing numbers in
the diagram itself to denote the correct global scalar needed
to make the linear map of the two sides of the diagram
exactly equal to one another. As noted above, we some-
times drop these scalar factors when they are not relevant
to the derivation at hand.

As a small demonstration of these rewrite rules,
let us prove diagrammatically that the CNOT dia-
gram (11) indeed acts like the CNOT. The com-
putational basis states are given by the following
diagrams:

(14)

=13 =12 -1 -1 &
(15

)
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(\/5) (n=1)(m-1)

(ho)

—a o 1/2—0 o—

FIG. 2. The rules of the ZX-calculus. These rules hold for all «, 8 € [0,27), and a € {0, 1}. They also hold with the colors red and

green interchanged, and with inputs and outputs permuted freely. Note - - -

” should be read as “0 or more,” hence the spiders on the

left-hand side of (f) are connected by one or more wires. Furthermore, the addition in (f) is taken to be modulo 27r. The right-hand side
of (b) is a fully connected bipartite graph. The rule names stand, respectively, for (f)use, (x ¢)opy, (b)ialgebra, (¢)opy, (id)entity, and

(ho)pf.

Then we can check that the diagram has the correct action
on these basis states:

(c)

X

C
ol -
ZX-diagrams were introduced over a decade ago [25] and
have proven useful for reasoning about Clifford computa-
tion and single-qubit phase-rotation gates [28,35,75]. It is
however harder to reason about certain logical construc-
tions, in particular the AND operation |x) ® [y) — [x - y).
For instance, the only way to represent a CCNOT gate (also
commonly known as the Toffoli gate) in the ZX-calculus is
to expand it into Clifford and phase gates—which contains
on the order of approximately 25 spiders. In 2018 a new
graphical calculus was introduced to remedy this problem:
the ZH-calculus [43]. This calculus adds another generator

to the ZX-calculus that allows for a compact representation
of an AND gate. This new generator is the H-box:

m{ )@( } n = Zail'”im-h'”-jn |71+ gn) (i1 o i)

(7

—
N2

?@@e $or

Pe ®

(16)

Here a can be any complex number, and the sum in this
equation is over all iy,...,iu,Jj1,...,/n € {0,1} so that a
H-box represents a matrix where all entries are equal to 1,
except for the bottom right element, which is a. As a tensor

we can write it as

= =j1=..=jn=1

(@ iedn {a ifi,=...

PLeectm 1  otherwise

(13)

Whereas for spiders we draw only the phase on the spi-
der when it is nonzero, for H-boxes we draw only the label
when it is not equal to —1. This is because the 1-input,
I-output H-box with a phase of —1 corresponds to the
familiar Hadamard gate (up to a global scalar):

= ()

Note that in this paper we need only H-boxes labeled by
—1. We give the general definition for completeness’ sake.

We have the following relations among the three gener-
ators, Z-spiders, X-spiders, and H-boxes:

e
e

(19)

(20)
|
(2D
@— = er* (22)
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&—0—3
V2 D (23)

Note that it is also possible to represent H-boxes of higher
arity, i.e., boxes with a larger number of input and out-
put wires, using just Z- and X-spiders, but this is quite
involved and not necessary for our purposes [76].

In addition to the rules of the ZX-calculus of Fig. 2
and the relations among the generators (20)+23) we also
have some rules specific to the ZH-calculus; see Fig. 3.
We present in Appendix D a condensed overview of all the
rewrite rules and relations we have introduced so far.

A H-box with zero input and output wires that is labeled
by a is equal to the scalar a. This means we can always
translate the scalars in the hybrid notation of Figs. 2 and
3 into a ZH-diagram. For instance, the self-inverseness of
the Hadamard gate can be represented as follows:

—a—0— = — (24)
ZH-diagrams are universal, meaning that any linear map
between complex vector spaces of dimension 2" can
be represented as a ZH-diagram. Furthermore, the ZH-
calculus is complete, meaning that if two diagrams rep-
resent the same linear map, then we can find a sequence
of rewrites from Figs. 2 and 3 and Egs. (20)+23) that
transforms one diagram into the other [43]. However, in
general, such a sequence of rewrites will involve diagrams
of size exponential in the number of inputs and outputs
(as otherwise we could establish efficient classical sim-
ulation of quantum computation, among other unlikely
consequences such as P = NP). The key to working with
ZH-diagrams efficiently is then to find good heuristics for
simplifying diagrams.

H-boxes allow us to straightforwardly represent
controlled-phase gates. For instance, a CCZ(f) gate, i.e.,
a gate that maps the computational basis state |xyz) to
€% |xyz) is given by

SO OH OO OO
SO OO OO
O R OO OOO
%OOOOOOO

DO DDODDODODO O
SO OO O~ O
S OO OO+ OO
SO ODO R OO O

9]

(25)

As a special case of (25) we also have the standard
controlled-Z (Cz) gate:

100 0
(o100
~ loo1 o0
000 —1 (26)

As another variation on these diagrams, we have the fol-
lowing diagram that we use different iterations on through-

out this paper:

In other words, this linear map throws away a |11) input,
but otherwise acts as the identity.

As another variation on (25) we can represent the CCNOT
gate as follows:

N |+
S oo
SO = O
o= OO
(== enlienlian)

@7

N
DO O R OO OO
SO OO OOoOOoO
— OO0 O oo
OR OO OO OO

OO OO O =
[N elNeNoleNoll o)
[eslenlenlen el =R )
OO OO OOO

(28)

Those familiar with the ZX-calculus or the ZH-calculus
might have noticed that they have conflicting definitions
of the X-spider and the 2-ary H-box, resulting in different
scalar factors of +/2. In this paper we use the conventions
also used in PYZX [50] in order to aid in our calculations.
This means that our Z- and X-spider are defined as is usual
in the ZX-calculus. However, most of the literature on
the ZX-calculus also includes a yellow box to represent
the Hadamard gate. In our case we use the convention of
the ZH-calculus that such a box represents an unnormal-
ized Hadamard gate [cf. (19)]. Hence, certain scalar factors
will be different than is usual in the literature on the ZX-
calculus. Conversely, our H-box and Z-spider match the
definition used in the ZH-calculus, but our X-spider does
not match the corresponding definition in the ZH-calculus,
and is off by certain factors of /2. It is unfortunately
not possible to have a fully satisfactory convention when
it comes to scalar factors in the ZX- and ZH-calculus,
and choices have to be made about where scalar correc-
tions appear (see Ref. [77] for a longer discussion on this
topic). In order to prevent confusion about these clashing
scalar conventions, we refer to our version of the ZX- and
ZH-calculus as the ZXH-calculus throughout the paper.

C. Graph states

As it will be important for Sec. V, let us recall briefly
the notion of graph states and how they can be repre-
sented in the ZX-calculus. Given a simple undirected graph
G = (V,E), there is a corresponding graph state |G). The
state |G) is constructed by preparing for each vertex v € V'
a qubit in the |+) state, and for each edge (vi,v;) € E
applying a Cz gate between the qubits corresponding to
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v; and v, [78]. Recall that graph states are important as
all stabilizer states can be reduced to a graph state (up to
local Cliffords) [79], and because most measurement-based
quantum-computation protocols use a graph state as their
resource state [80].

The representation of a graph state in the ZX-calculus is
most easily explained by an example:

G G)
29

In words, for each vertex of the graph we add a Z-spider
with a single output, and for each edge we add a cor-
responding wire between spiders with a Hadamard gate
on it.

I1I. THE 1D AKLT-STATE IN THE
ZXH-CALCULUS

A. ZXH representation and relation to matrix-product
states

We now have all we need to show how the AKLT-state
is represented in the ZXH-calculus. We start by represent-
ing the singlet operator |01) — |10) of Fig. 1(a). Note that

(hh)

the Bell state |00) 4 |11) is related to the singlet state by
application of a Pauli Z and X on one of its qubits. Hence,
the operator in ZXH is

01) — [10) .

g (30)

Indeed, an empty curved wire (commonly referred to as a
“cup” in the ZX-calculus literature) is the Bell state |00) +
[11). If we then apply a Z 7 phase (]0)(0] + ™ |1)(1]) to
the first (upper) qubit we get |00) — |11). Applying a NOT
gate (an X 7 phase) on the second (lower) qubit we then
get |01) — |10) as desired.

The next operator we need to represent is the sym-
metrizer on two spin-1/2 spaces. We encode the spin-
1 state |4+1) as the paired spin-1/2 state |00), the
spin-1 state |0) as (|01)+|10)/«/§) and |—1) as [11).
This is a convenient basis for us, and indeed the
projector operator in Fig. 1(b) acts as the identity on
this basis. In fact, the operator of Fig. 1(b) acts only
to project away the |01) — [10) state, which reduces
the basis {100}, (101) + [10)/+/2), (101) — |10)/+/2), 111}
into a three-dimensional space with basis {|00), (]01)
+ |10)/ V2),|11). We can represent the projection operator

s

FIG. 3.

The rules of the ZH-calculus. These rules hold for all a,b € C. Note . -

-7 should be read as “0 or more.” The right-hand

side of (in)and (hb)and the left-hand side of (m)contain fully connected bipartite graphs. In this paper we need only the rules in
the left column. The rest are shown for completeness. The rule names stand for (hh)-cancellation, remove wire, (ex)plode, (ab)sorb,
(hb)ialgebra, (hf)use, (he)opy, (m)ultiplication, (av)erage, and (in)troduction (as it introduces additional wires to the H-box on the

left-hand side).
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as a ZXH-diagram as follows:

N
oo O
OV~ O
OwRI= O
o O O

€3]

Indeed, this can be shown by checking its action on
each of the basis states in {|00), (]01) + |10)/«/§), (]01) —
[10) /ﬁ), [11)} or composing the matrices presented in
(11) and (27). We leave this as an exercise for the reader.
Note how this diagram is symmetric under interchange of
the inputs and outputs (i.e., under a horizontal flip), and
hence we generally do not care about its orientation in our
diagrams. We find a different diagram that implements the
same operator in Sec. IV where we show how to construct
the symmetrizing projector for larger Hilbert spaces.

In Fig. 1 we summarize our construction of the one-
dimensional AKLT-state as a ZXH-diagram. We show the
diagrammatic representation of its constituents, the singlet
[Fig. 1(a)] and the projector [Fig. 1(b)]. The ZXH-diagram
of the 1D AKLT-state is obtained by joining these in a
(periodic) chain, as shown in Fig. 1(f). This diagram con-
sists of repetitions of the same block which is built out
the symmetrizer projector (31) [Fig. 1(b)] and singlets (30)

[Fig. 1(a)]:

(32)

Note how we have a Z  phase on the left, respectively,
an X 7 phase on the right, open wires. We are allowed to
do this as we are free to choose a basis for these degrees of
freedom. We choose this convention as it allows us to see
that there is a repeating block structure. We can now show
explicitly how the ZXH-diagrammatic representation and
the MPS representation of the AKLT-state are connected.
In Fig. 1(f) we overlay a gray box over the part of the ZXH-
diagram that encodes the MPS matrices given in Eq. (3), as
we now show.

Recall that we represent the spin-1 [+1) state as |00) on
a pair of spin-1/2 wires. If we apply this state, given by the
first diagram in Eq. (15), to one of the sites of (32), we get a
diagram that can be drastically simplified and be shown to
be equal as a matrix to M1+ up to a scalar factor of 1/+/6:

(21)
()
(mc)
f
1 (i) _1 (_) _1
2 - 2V2 T 2v2
(ex) (20)
® o @ o ®
= 1 = 1 =
e "ipeq s e
B 00\ .
2(1 0> M

(33)

As we are plugging |00) into the top wires, we start with a
scalar 1/2 as shown in (15). Note that in the last diagram-
matic step we used that a Z-spider with no legs is equal
to a scalar 2. The reason we keep track of scalars here is
because for the MPS representation it is important that the
matrices are scaled correctly with respect to each other.

We now proceed analogously, showing that if we plug
the two remaining spin-1 states, |0) and |—1), into one of
the sites of (32) that we get the corresponding MPS matri-
ces up to the same scalar factor of 1/+/6. First, we obtain
M0 by plugging 1/+/2(|01) 4 |10)), which corresponds
to the |0) spin-1 state:

N

(ab)

id
(:) 1 g = 2 =2 10 _ L pgln]o
EPCNERFON oy

(34)

And similarly, we obtain M["~1:

(35)
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Note here that the last instance of (c)introduced an e =
—1 scalar.

As summarized in Fig. 1(e), Egs. (33), (34), and (35)
show that the ZXH representation encodes the same infor-
mation as the MPS representation Eq. (3), up to a global
factor that can be fixed by normalizing the state. We can
conclude that our ZXH-diagram is indeed equal to the
AKLT-state. The advantage of the ZXH representation is
that we can compute with it diagrammatically, as we now
show.

B. Edge states and string order

From the ZXH-diagram of the 1D AKLT-state in
Eq. (32) and Fig. 1(f) we can immediately infer one of its
main properties: the presence of spin-1/2 edge states under
open boundary conditions. Observe that the finite chain Eq.
(32) has two dangling wires at the bottom on the left and on
the right. The precise way of ending the chain amounts to a
choice in boundary conditions, as in a conventional MPS,
which fixes the edge two-dimensional spin-1/2 degrees of
freedom [81]. If the boundary condition is not fixed, the
dangling edge wires can be understood as the projective (or
fractionalized) symmetry representation of the bulk spin-1
rotation symmetry [82].

A second property of the AKLT-state, the nonzero
string-order parameter, can be shown by direct computa-
tion on its ZXH-diagram as follows. We take L sites in a
chain, and we postselect each of the physical indices on the
sites 2,3, ..., L — 1 to the state |0):

(36)

The nonvanishing of the string-order parameter then tells
us that the sites 1 and L cannot then both be in the spin +1
or spin —1 state. On the level of the diagram we can see
this behavior when we postselect both of the states j; and
Jji to the same nonzero spin state:

(37

That this diagram is zero tells us that the spin configuration
where j; and j; are equal is not part of the AKLT-state.

In contrast, when j; # j, we get

(38)

Hence, the configuration where j; # j; is part of the
AKLT-state. These results signify the dilute antiferromag-
netic order characteristic of the 1D AKLT-state.

While one could use software such as the PYZX PYTHON
package [50] to simplify the diagrams above to show
that these diagrams are indeed (non)zero, it is illustra-
tive to rewrite the diagram manually. Note that the central
repeated building block consisting of the projection to the
spin-1 subspace followed by a postselection for the |0)
spin-1 state is exactly the diagram we simplified in (34).
Hence, (36) simplifies to

(39)

Note that this diagram is only equal to (36) up to nonzero
scalar, but as we care only about whether the coming dia-
grams are zero or not, this is enough for our purposes.
Depending on the number of repetitions of the central
block this diagram simplifies to one of the following:

(40)

Whether this middle Z phase appears depends on whether
there are an even or odd number of intermediate |0) states
applied—giving a Z m phase in the former case and none
in the latter. Now suppose we take j; =j;, = |[4+1). Then
we get the following diagram and simplification:

(c)
)
x @

re pe

(41)
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A spider with a phase 7 with no legs is equal to 1 + e =
1 — 1 =0, and hence this is indeed zero as we expect.
The case where we take j; =j, = |—1) is shown simi-
larly. Now when we set j; # j;, for instance, j; = |—1) and
ji = |+1) we get a nonzero diagram:

(33) (c)
(35) (f)
X @H@EHe(m)0 (@)

A

(42)

Indeed, as the scalar red spider we get is equal to 2, this
diagram is indeed nonzero.

To summarize, we started with the 1D AKLT chain (32).
We then postselected an arbitrary number of adjacent sites
to the spin-1 |0) state, resulting in the diagram (36), which
we simplify to one of the diagrams in (40) depending on
the parity of the number of |0) sites. Then, in Eq. (41) we
saw that postselecting the j; and j; sites to be equal but
nonzero spins resulted in a zero diagram. However, in (42)
we saw that postselecting the j; and j; sites to be different
nonzero spins resulted in a nonzero diagram. These obser-
vations signal the nonvanishing of the antiferromagnetic
string order, as expected for the AKLT-state.

The calculations presented in this section are also avail-
able in the accompanying Jupyter notebook [83].

C. Quantized Berry phase

We now show how to calculate the Berry phase for the
1D AKLT-state [47] diagrammatically, obtaining an exact
result for any finite chain. To calculate the Berry phase one
introduces a phase twist within a given bond (a phase in
our case, but a unitary matrix in general). For the periodic
1D AKLT-state, this amounts to picking one singlet of the
AKLT-state |) and transforming it to |10) — €?|01). This
defines a twisted AKLT-state |y/y) for each angle 8 and we
recover the standard 1D AKLT-state when 8 = 0[47]. The
Berry phase is then defined as

(7 (W 139 V)
= — ———do, 43
Y ’/o (Vo o) “3)

where we use the expression for an unnormalized wave
function (see, e.g. Ref. [84]) in terms of the normalization

factor (yg|Vs).

To calculate this value diagrammatically we start by
writing the twisted AKLT-state |vy) as a ZXH diagram:

(44)

To obtain the Berry phase we need to take the derivative of
this diagram. For this we could use the techniques for dia-
grammatic differentiation described in Refs. [85,86]. For
our purposes however it suffices to derive a couple of sim-
ple equations, which can then be described as diagrams. In
particular, we need the following diagram equality:

00 —@— =06(|0) (0] + 1) (1) = & -® @~
(45)

Here the factor of 1/2 is introduced because single-wire
spiders are equal to states up to a constant V2. Using this
identity we get

(46)

We then have the integrand of the unnormalized Berry
phase over which we must integrate

2 iei@
T (_z)/o 2(vg|ve)

47
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We can simplify this expression somewhat by combining
the adjacent symmetrizers:

(48)

Now, in order to calculate the expression of (47) we split
the diagram there up into two terms, using the following
identity:

=]+’ =} oo + 5 @@
(49)
So, using (48) and (49) in (47) we arrive at

27 2N—2 i 8 @@
Py_/o (Yolthe) ‘ :-..M

(50)

Here N is the length of the chain and the 2V term comes
from repeated application of (48).

To arrive at an equation for all N we must decompose
our diagrams in some systematic scalable fashion. To this
end we use the following identities (see Appendix 1 for the
proofs):

62

(52)

(53)

We can similarly derive

YEf - YE 0

(54)

See (B4) for the proof (and note that they are mirror images
of each other). Now let us simplify the first term in the
integrand of (50). We do this by repeatedly applying (54):

(35)

Hence, this is equal to 4(—1)". We can similarly simplify
the second term in the integrand by using Egs. (51), (52),
and (53):

So the value is

e }g ' g %i (57)

We can fuse all the red spiders and then, using the equality
10) = 1/4/2(]4+) + |—)), we can reduce it to a sum of two
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simpler diagrams:

@/m oo M b

= L@V +(-2)N) = 23V + (-1

(58)

Here a € {0, 1} depends on whether N is even (a = 0) or
N-2
odd (@ = 1), and we write ¢ = <l/ﬁ) =2/ﬁN.

Now that we know the value of the two terms of the
integrand, it remains to calculate the normalization fac-
tor (Yg|ve). We first simplify the diagram by combining
symmetrizers using (48) and then decompose the 9-labeled
spiders using (49) twice to get the normalization factor:

(59)

Each of the four diagrams we get on the right we have
already calculated the value of. The diagrams fora = b =
0 and a = b =1 are equal to that in (56), while the other
two are equal to those in (55). Hence,

Vo) (Yol = %ZN{(e"e +e ) x4=DN 42
x 2[3Y + (=DM} = 2V [2(—= )Y cos O
+ 3V + (=DM (60)

It is simple to check that for 6 =0 the norm can
be rewritten as 6V + 3(=2)" = (V6)*M[1 + 3(—1/3)"],
which coincides with the usual AKLT normalization (see,
e.g., below Eq. (90) in Ref. [7]) up to the prefactor (v/6)2V.
This different prefactor is the same +/6 factor as seen in
Egs. (33), (34), and (35).

Combining Egs. (60), (55), and (56) the Berry phase is
given by

_ 2 2N—2 [4(_1)Nei0 4 3N + (—I)N]
Y _/(; 2N [2(_1)N cos @ +3N + (—I)N]dQ’ (61)

L7 2(=DNe? 3V (DN

- 5/o 2(—1)Ncos9+3N+(_1)Nd9- (62)

Now, factor out the term 3" + (—1)" from the fraction and
define the constant
2(—DHN

=W (63)

We then see that

1 2 i 1
y:_/ &dg
2Jo gcosb+1
1/2”g0050+igsin0+1
0

= do,
gcost 41

2

1 2 2 : in@
_! / 1d9+/ 7 __4p),
2 \Jo o (14gcosH)
1
= 5(271 +0)=m. (64)

Here the second integral evaluates to zero because it is
an odd function. We thus arrive to y = 7 as was already
known in the thermodynamic limit, but which here is
shown to hold for all finite lengths [47].

IV. ENCODING HIGHER SPINS IN MULTIPLE
WIRES

The wires in a ZXH-diagram represent two-dimensional
Hilbert spaces, or in other words, they carry a spin-1/2 rep-
resentation of SU(2). In the previous section we represent a
spin-1 wire (a three-dimensional Hilbert space) by a pair of
spin-1/2 wires together with a projector to the appropriate
subspace. This raises the question of how we can gener-
alize this construction to higher spin representations, and
thus larger Hilbert spaces.

To do this we need some basic representation theory.
Recall that the group SU(2) has a unique irreducible rep-
resentation on C" for each n [87]. For n = 1 this is the
trivial representation, and for » = 2 this is the fundamen-
tal representation where each matrix M simply acts by
matrix multiplication. For our purposes a convenient way
to write the n-dimensional irreducible representation of
SU(2) (which is spin-n/2) is to take the symmetric sub-
space of n copies of the fundamental representation [88].
That is, we build spin-n/2 from the symmetric subspace of
n spin-1/2 spaces. So, starting with the space of the fun-
damental representation H = C? we build the the space
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of the (n + 1)-dimensional representation as Sym(H®").
Indeed, Sym(H®") has dimension n + 1 as a basis for it is
given by [0---0), |1---1) and the uniform superpositions
of computational basis states containing a fixed number
of |1)’s, such as [10---0) 4+ 1010---0) +---+|0---01).
In summary, if we can represent the projector to the
symmetric subspace on n wires as a ZXH-diagram then
we have succeeded in representing arbitrary-dimensional
(spin) systems on a collection of qubit wires.

Let 0 € S, be a permutation on # points. We write U,
for the unitary on H®" that permutes each of the com-
posite H spaces via o: Uy |x1 - - X,) = |Xo1 * * - Xon). Note
that a space can be symmetrized by taking the superpo-
sition over all the permutations. Hence, the symmetrizing
projector Pé") on n wires is given by

P Z U,. (65)

! oeS,

Each U, can straightforwardly be written as a ZXH-
diagram by just permuting the wires, but as we need to
represent a coherent superposition of these permutation
unitaries we need a controlled permutation operator. It
turns out to be sufficient to use controlled SWAP (CSWAP)
operators that have the control qubit postselected into (+|.
Recall that the cSWAP is defined by |0xy) — |Oxy) and
[1xy) — |1yx), i.e., the first qubit determines whether the
second and third qubit are swapped. Including the postse-
lection, we can represent this (up to a nonzero scalar) as a
ZXH-diagram in a convenient way:

o O

(66)

We refer to the right-hand side as a CSWAP in what follows.

Here the top wire is the control. By inputting a computa-
tional basis state we can verify that it indeed performs the
maps required. First, when the input is |0):

(67)

And second, when the input is |1):
(ab)

=2
(hh)

Now, to write the symmetrizing projector on n = 2 wires
we need an equal superposition of the identity permuta-
tion and the SWAP. Hence, if we make the control of (66) a
|[+) = |0) + |1) state we get the desired map:

To generalize this to larger » we use induction. Indeed,
if we have a coherent superposition of all the permuta-
tions on n wires Pé"), then to get a coherent superposition
of the permutations on n + 1 wires we need to compose
Pg") with a coherent superposition of the identity and
the SWAP gates from the (n + 1)th qubit to every other
qubit: id + SWAP ;41 + SWAPp 41 + - - - + SWAP,, 1. We
construct this superposition as a ZXH-diagram by writing
CSWAP gates from the (n + 1)th qubit to each other qubit
and then connecting all the control wires in such a way that
at most one CSWAP “fires” at the same time. This gives us
the general construction for n wires.
For n = 3 this gives the following diagram:

e e L,
This works, because

@< o 00) +]10) +[01), o

and hence the appropriate superposition is created.

We present a general construction for higher spins in
Appendix C.

Notice that the symmetric subspace encoding for two
wires of (69) seems to give an alternative form of the sym-
metrizing projection given in (31). They can however be

(ld)

=
"

(68)

%ﬁi

010302-14



AKLT-STATES AS ZX-DIAGRAMS...

PRX QUANTUM 3, 010302 (2022)

shown to be equal, up to an irrelevant scalar:
(b) (20)
ICIRRCHE

(b) (f) (ho)
x = o

and as such our 1D AKLT chain [(cf. Eq. (32)] can
alternatively be written as

(72)

Here the projector now is of the form (69).

Note that there are modified versions of the ZX-calculus
where a wire carries a three-dimensional Hilbert space
[89,90]. However, much less is known about rewriting
those diagrams, and it is harder to reason about the types
of diagrams we have in this paper where we mix systems
of different types of spins.

V. THE 2D AKLT-STATE AS A UNIVERSAL
RESOURCE FOR QUANTUM COMPUTING

We now study the generalization of the 1D AKLT-state
to the 2D hexagonal lattice [44], depicted in Fig. 4(a).
First, we derive the representation of this state as a ZXH-
diagram, and then we show how it can be used as a
universal resource for quantum computing, by showing
that it reduces to a graph state.

As mentioned in the introduction, it is possible to con-
struct an AKLT-type state on a hexagonal lattice using
spin-3/2 degrees of freedom at each site [Fig. 4(a)].
Each spin-3/2 degree of freedom corresponds to a four-
dimensional Hilbert space and, by the discussion in the
previous section, can be represented on a set of three qubit
wires with the projector presented in (70). So whereas in
the 1D AKLT-state we projected two spin-1/2 states down
to the symmetric subspace to represent a spin-1 degree of
freedom, here we project three spin-1/2 degrees of freedom
to form a spin-3/2. This projector, with each of the com-
ponent spin-1/2 wires linked to another by singlet states,
forms the basic unit (a site) of the 2D AKLT-state. As a

ZXH-diagram,

(74

Here we have a single spin-3/2 degree of freedom of the 2D
AKLT-state with singlet states on each of its legs. These
can then be combined to give a diagram of a lattice that is
not just a convenient visual aid for the 2D AKLT-state, but
literally is the 2D AKLT-state; see Fig. 4(b).

Analogous to the 1D AKLT example in Fig. 1 where
two wires corresponded to the physical spin-1 state, the
triples of wires coming out to the right of (74) correspond
to the physical spin-3/2 degrees of freedom that form the
state. The remaining wires of the diagram should be con-
sidered to be connected to other parts in the hexagonal
lattice periodically [see Fig. 4(b)].

We now show how a hexagonal lattice AKLT-state
reduces to a graph state under a suitable measurement of
the spin-3/2 degrees of freedom. A consequence of this
result is that the 2D AKLT-state is a universal resource for
measurement-based quantum computing [91]. This result
was already shown in Ref. [48] and independently in
Ref. [49]. The proof in Ref. [48] consists of two parts.
First, they showed the hexagonal lattice reduces to a graph
state. Second, they used a percolation argument to prove
the resulting state is a universal resource for quantum com-
putation. We derive the first part entirely diagrammatically.
In the process we see that certain derivations concerning
the simplification of the lattice presented in Ref. [48] are
in our approach just the standard spider fusion rule (f)and
the Hopf rule (ho)of the ZX-calculus.

To reduce the 2D AKLT-state to a graph state, we need
to reduce it to a simpler state. We do this by measuring
each of the spin-3/2 states. Recall that each of these spin-
3/2 states is presented as a symmetric three-qubit state and
hence a measurement on it can be present as a simultaneous
measurement on these three qubits. The measurement is a
positive operator-valued measurement (POVM, the most
general type of measurement [92]) with three elements:

E. = §(|ooo><000| + [111)(111)), (75)
2
Evi= () ttt + ===} ===, (76)
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(a) (b)

Projector .

Singlet o ©

FIG. 4. The 2D AKLT-state on a hexagonal lattice and its representation as a ZXH-diagram. (a) Pictorial representation of the unit
cell of the 2D AKLT-state on a hexagonal lattice. At each site there is a spin-3/2 degree of freedom that can be decomposed into three
spin-1/2 states that form singlets with their nearest neighbors (represented by oval shapes). The blue circles denote projectors to the
appropriate symmetric subspace. The gray hexagon denotes a choice of unit cell. (b) The 2D AKLT-state unit cell as a ZXH-diagram,

with the same unit cell denoted by a gray dotted line.

E, = %(liii)(iiil + | =i, =i, =i){—i, =i, —i)).  (77)

Here the sets {|0),|1)}, {|+),|—)}, and {|i), |—i)} denote,
respectively, the eigenbases of the Z, X', and Y Pauli matri-
ces. Usually the elements of a POVM should sum up to
the identity, but as we are working in the symmetric sub-
space, we instead have E. + E, + E, = Pg, where Py is the
projection on the symmetric subspace, as desired.
Conveniently, each of these POVM elements can be
represented as a small ZX-diagram (up to global scalar):

(78)
(79)

z) &

E, x O3
& @ (80)

The forms of E, and E, follow directly from the definition
of the Z- and X-spider. To see the correctness of E, note
thata Z r /2-rotation R, (7w /2) acts as R, (7 /2)|+) = |i) and
R.(7/2)|—) = |—i) where |£i) = |0) & i|1). Hence, we
can see (80) as an X-projector surrounded by a basis trans-
formation from the Y eigenbasis to the X eigenbasis. We
could have equivalently chosen a Z-projector surrounded
by X £(mr/2) rotations, which corresponds to flipping the
colors and the signs of the rotations; cf. Ref. [27, Sec. 9.4].
Note that E), is not symmetric under interchange of inputs
and outputs, and thus unlike the case for £, or E,, when

considering £, we must keep in mind what we consider an
input and output.

Importantly, each of the POVM elements £., E,, E,
projects to a 2D subspace, and hence encodes a spin-1/2
degree of freedom. While we could continue to work with
the three output wires as a single qubit with the qubit oper-
ations encoded onto the three wires, we instead represent
the collapse to a single spin-1/2 degree of freedom by
simply writing one wire:

B - E%
81)
B, }(H
(82)
@
B, -~ ®P®
&) (83)

We use this “squigly arrow” ~~ to denote when we make a
step that corresponds to a redefinition of the output basis.
Here this is a collapse of a two-dimensional degree of free-
dom spread out over three wires to a single wire, but later
on we also use redefinitions to absorb single qubit gates
that appear on output wires. Physically, this corresponds
to updating the correspondence between the “logical” or
“encoded” |0) and |1), and the actual physical states.

As these POVM elements are symmetric on the three
qubits, they are preserved by the projection to the symmet-
ric subspace, a fact we can prove diagrammatically. For
instance, considering E, we first show that it absorbs a
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CSWAP gate:

(ex % é (c) é

7
vz
Iterating this 3 times we then get the following equality:

; 5
(f) (ho) (21)
) ﬁ:’@* (1
=
(34)

LT R

B2

(85)

The floating scalar diagram on top multiplied by the scalar
produced by the sequence of rewrites represents the eigen-
value of this operation under the projection. This scalar is
not important for our purposes, and we drop it implicitly in
later diagrams.

We can do a similar derivation for £, (see Appendix 2):

(86)

T2

TN

An analogous equation and derivation exists for £, as well
(see Appendix 2).

We start with the 2D AKLT-state on a hexagonal lattice
(Fig. 4), and then we measure each of the spin-3/2 states
with this POVM ({E_, E,, E,}. Due to Egs. (85) and (86)
and the analogous one for £),, we see that regardless of the
measurement outcome E., E,, or E, that the symmetriz-
ing projector on each spin-3/2 output is “consumed” and
replaced by the spider associated to one of £, E,, and
E,. Hence, what remains of the 2D AKLT-state is a set
of singlet states, connected via a network of spiders of the
form (81)—(83). The state resulting from applying this mea-
surement to the 2D AKLT-state will hence be a hexagonal
lattice where at each site we randomly have a X-, Y-, or
Z-spider (which depends on the measurement outcome),
and these are connected via singlet states. For example,
the hexagonal unit cell of Fig. 4(b) could be reduced to a

diagram like the following:

@87

Readers familiar with the ZX-calculus can easily see that
the resulting diagram is a Clifford diagram. Indeed, it does
not contain any higher-arity H-boxes, and the only phases
that appear are multiples of 7 /2 making it a ZX-diagram
in the Clifford fragment [75]. As it only has outputs, it is a
state, and hence is a Clifford state [93]. Any Clifford state
can be presented as a graph state with single-qubit Clifford
unitaries on its outputs (see Ref. [79], or for a proof using
the ZX-calculus, see, for instance, Refs. [28,75]). Hence,
we can already conclude that the state we get is a graph
state.

However, to show that the state we obtain is a universal
resource for quantum computing we need to know more
about the specific construction of the graph state, so let us
go through the derivation manually. This happens in a few
steps.

The first step is to get rid of the Z and X & phases aris-
ing from the singlet states. We do this by commuting these
phases through the spiders onto the outputs of the state (the
spin-3/2 outputs). For instance, for a £, outcome, we can
do the following:

(8%)

Here the site is understood to be in the bulk of the lat-
tice, with the top wire corresponding to its spin-3/2 degree
of freedom [94]. Hence, we can remove the internal
phases by moving them onto the external edges. The anal-
ogous procedure for £, and E;, measurement outcomes is
demonstrated in Appendix 3.

Since each Z and X 7 phase is connected to two spiders
we need to make a choice about which way to commute
each . As the hexagonal lattice is two colorable this is
indeed possible in a consistent way.
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After this procedure, we have a diagram where the only
7 phases are on the spin-3/2 outputs of the states. As
discussed beneath (83), our choice of representation of
the spin-3/2 degree of freedom can be chosen arbitrarily.
Hence we can redefine our basis here to remove these
phases (this again corresponds to a redefinition of how we
encode the |0) and |1) states on our physical system):

R

The second step is to bring the diagram closer to the form
of a graph state as presented in (29) by changing the X-
spiders coming from E, and E, measurement outcomes
to Z-spiders. This can be done easily using (21), and a
redefinition of the output basis to remove the resulting
Hadamard:

(90)

For the E, outcomes, we additionally remove the /2
phases. For instance,

”(91)

We leave the other cases to the reader. The diagram we
have now consists solely of Z-spiders and Hadamards.

Now, the third step of our reduction to a graph state is
to fuse all the spiders that can be fused. In practice this
means that two adjacent sites that had the same measure-
ment outcome will be fused together. This fusing results in
sites that have multiple outputs, which we again collapse
to a single output as we did in (81)—(83). See Fig. 5 for a
demonstration of this procedure.

The final step is to remove parallel Hadamard edges
that could have been introduced by sites that were fused
together. To do this we use a variation on the Hopf rule
(ho):

(20)
(hh) (ho)

>o€;><>>ocxét>ocxét>o<<

92)

The resulting diagram consists of phaseless Z-spiders con-
nected via single Hadamard edges, and hence is a graph
state, as desired. Note that this entire procedure can also

be done in an automated fashion using PYZX [50]; see the
accompanying Jupyter notebook [95].

Because neighboring sites that have the same measure-
ment outcome get fused, and parallel edges resulting from
this fusing get disconnected, the highly regular hexago-
nal graph will generally collapse to a much less regular
and more sparsely connected graph. For example, consider
the hexagonal graph given in Fig. 5 where the vertices are
labeled by X, Y, or Z to denote the 2D AKLT-state with the
Ey, E,, or E, measurement outcomes, and consider also its
reduction with the rules outlined above.

Not any graph state can be used as a universal resource
for measurement-based quantum computing. The most
canonical example of a universal resource state is the clus-
ter state that as a graph is just a regular square tiling.
In Ref. [48] it is shown via a percolation argument that
given a large enough initial hexagonal lattice the irregu-
lar graph state resulting from the measurement of a 2D
AKLT-state can, with high probability, be further reduced
to a cluster state. In particular, they show that the expected
connectivity of the graph is above the critical “percola-
tion threshold” [96], which means that it includes a large
cluster-state subgraph with high probability. Hence, for a
large enough lattice we can use, with high probability,
the 2D AKLT-state to do universal measurement-based
quantum computation.

VI. CRYSTAL SYMMETRIES AND TRANSITIONS
IN ZXH

Symmetries are at the core of our understanding of
topological phases as they enrich their classification and
simplify the calculation of topological invariants [65,97—
100]. One remarkable consequence of crystal symmetries,
like rotation or mirror symmetries, is that they can pro-
tect gapless topological states not only at the boundaries
of insulators, but also at the boundary of a boundary.
For example, a 2D [respectively, three-dimensional (3D)]
insulator with insulator edges (respectively, surfaces)
can display protected (respectively, hinge) corner modes.
These phases, known as higher-order topological insula-
tors [101—105], can only exist in the presence of crystal
symmetries.

The goal of this section is to diagrammatically represent
a transition between topological states with different crys-
tal symmetries. Using mirror and rotational symmetries as
a specific example, we first discuss how to diagrammat-
ically construct states that are symmetric crystal symme-
tries. This will require that the diagram representing the
state is also symmetric, in a way that we specify shortly.
With these states in hand, we construct a ZXH-diagram
that transitions between two states with different crystal
symmetries as a function of a control parameter. The pos-
sibility of diagrammatic transitions between topological
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FIG. 5.

This figure shows the AKLT hexagonal lattice affer the E,, E,, and E. projectors have been applied and the 7 phases moved

onto the external wires and absorbed into basis redefinitions. In the first diagram on the left note that we have added X,Y,Z labels to the
Z-spiders. These are not formally part of the diagram, but are just labels to indicate which projector is applied to reach this diagram.
The first equality shows that spiders with the same measurement outcome are merged. Following this, the Hopf rule (ho)is applied to
remove pairs of wires with a Hadamard box on them between the same spiders. The final step is to redefine the output basis to collapse
multiple output wires coming from the same spider into a single wire. The resulting diagram can indeed be seen to be a graph state.
This bears strong resemblance to the diagram seen in Ref. [48] (Fig. 4 diagram C) where now their ad hoc reduction is describable

entirely in quantum-informational terms via the ZXH-calculus.

states serves as an example of the potential of diagram-
matic reasoning compared to other tensor networks, even
for relatively simple states.

Concretely, we consider the higher-order symmetry pro-
tected topological state based on the AKLT-state shown in
Fig. 6(a) [103]. Each site represents a spin-2 degree of free-
dom, which can be decomposed into four spin-1/2 wires.
Coupling these spin-1/2s with singlets in the configura-
tion shown pictorially in Fig. 6(a) results in four unpaired
spin-1/2 degrees of freedom that reside at the corners (red
circles). The existence of each one of these unpaired spin-
1/2 degrees of freedom is protected by mirror symmetry:
they cannot be removed unless mirror symmetry is bro-
ken, for example, by acting with different local unitary
operators at sites related by mirror symmetry.

Constructing this state as a ZXH-diagram is straight-
forward using our previous discussions. For each site we
construct the n = 4 symmetrizer, as we did in Eq. (70) for
n = 3. Then we connect the sites with singlets in the way
specified in Fig. 6(a). This results in the diagram shown
in Fig. 6(b), where we show only the lower-left quadrant
for clarity. Note that we know that the symmetrizer is sym-
metric under any permutation of its wires, by definition of
it representing the symmetrizer. Concretely this means it is

irrelevant which intrasite wire connects to other sites as all
wires within a site are equivalent. Hence, for the purposes
of symmetry, any reordering of the connectivity at the indi-
vidual site level is irrelevant and we need only to concern
ourselves with the connectivity between different sites.

So long as we connect sites in a way that respects the
desired symmetry (which will be either mirror or rota-
tional symmetry in our example) the diagram will possess
the same crystal symmetries as the state it represents. This
follows from a general property of ZXH-diagrams. If one
constructs a diagram, which can be brought to a symmetric
form with respect to some lattice symmetry, the state that
it represents must also have these symmetries. This is the
case because the generating elements of the diagram, spi-
ders, and H-boxes, are themselves fully symmetric tensors
and thus any symmetry in the relation of the diagrammatic
elements is also a symmetry of the tensors they represent.
Note this does not imply that an asymmetric diagram rep-
resents an asymmetric tensor, as it is possible to apply
rewrites to one side of a symmetric diagram to remove
the diagrammatic symmetry. For instance, our symmetrizer
diagram is asymmetric, yet represents a symmetric ten-
sor. Note however that because the calculus is complete,
there will always be a series of rewrites that transforms
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diagrammatic transition (Fig. 7)
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FIG. 6.

(a) A higher-order symmetry-protected topological phase with corner modes protected by mirror symmetries (diagonal

dashed black lines). (b) The corresponding ZXH representation of the gray-shaded bottom-left quadrant. (c) When mirror symmetry
is broken, C4 symmetry protects the topological modes, which are then unpinned from the corners, as shown schematically. The
transition between a higher-order topological state protected by mirror symmetry to one protected by C, symmetry can be modeled
diagrammatically in ZXH, see Fig. 7, resulting in the ZXH diagram (d). In (b),(d) the topological modes are dangling wires (marked
by the magenta box), and correspond to the red dots in the gray shaded areas in (a),(c), respectively.

a diagram representing a tensor with some symmetry to a
diagram with the same symmetry.

Instead of constructing a state with a mirror symme-
try, as in Fig. 6(a), we can similarly construct a state that
has fourfold rotational symmetry; see Fig. 6(c). This state
also has dangling spin-1/2 states on each side, at positions
related by C4 symmetry. Its corresponding ZXH represen-
tation is depicted in Fig. 6(d), where once more we show
only the lower-left quadrant for clarity.

While a desirable property of ZXH-diagrams is that a
symmetric diagram mathematically represents a symmet-
ric state, one might feel that the schematic representations
in Fig. 6(a) and Fig. 6(c) already imply that the states
possess the symmetries we are interested in, even if they
lack mathematical rigour. The ZXH representations in and
of themselves may then not seem like a sufficient advan-
tage, at least for simple states. The advantage becomes

clearer however when we consider what one can do once
the states are rigorously defined. As we show next, the
ZXH-diagrams allow us to go further than is possible
with informal representations. We show how to model a
transition between these two states by diagrammatically
breaking the symmetry. It is unclear how one would repre-
sent this schematically in a useful way. More importantly,
it also goes beyond what one could achieve using other
tensor-network approaches, which would require explicit
knowledge of the tensors that define these states.

Let us now describe how to interpolate between the
mirror-symmetric state of Figs. 6(a) and 6(b) and the C;-
symmetric state in Figs. 6(c) and 6(d) using a parametrized
ZXH-diagram. Since we are dealing with (at least) Cy-
symmetric states it is sufficient to focus on a quadrant, e.g.,
the bottom-left quadrant. Our goal is to break the symme-
try by moving the corner mode one site down, from the
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corner to the edge, along with the relevant intersite sin-
glets. We can represent the path between these two states
by a parametrized ZXH-diagram. To do this, we make
repeated use of the following diagrammatic element that
can represent both a singlet as well as a product state:

2V/2 when f(0) =0
- <
2v/2 @ when f(0) =
(93)

When f(#) = 0 it disconnects, while for f(0) =7 it
generates a singlet between the spiders. These two cases
are easily derived by application of (ex)and (ab). By
iterating this construction we can toggle the connectiv-
ity of many singlets at once in a diagram. It is precisely
this mechanism that allows us to demonstrate a diagra-
matic transition between the two symmetric higher-order
symmetry-protected states of Fig. 6; see Fig. 7.

For f(9) =0 or f (9) = m we can start to apply (c)to
push the corresponding X-spider through the diagram,
where it encounters some 7 phases to toggle its behavior
for that particular singlet.

To summarize, we have shown that if a diagram has
crystal symmetries, or is built with elements that respect
the symmetry, the state the diagram represents has the

same symmetries. This allowed us to build a diagram that
interpolates, as a function of a control phase, between
two different symmetry-protected higher-order topological
phases.

VII. CONCLUSION

We introduced the ZXH-calculus as a new tool to rep-
resent and operate with quantum states. Specifically, we
showed how to represent the 1D and 2D AKLT-states as
ZXH-diagrams. Using the ZXH-calculus we showed how
the nonzero string order of the 1D AKLT-state emerges
in the ZXH representation, and how to reduce the 2D
AKLT-state to a graph state using a suitable measurement.
We found two further examples where the diagrammatic
nature of the ZXH representation offers an advantage. First,
we found an explicit expression for the Berry phase of
a finite AKLT chain. Second, we observed that crystal
symmetries can be implemented by constructing symmet-
ric diagrams. This observation allowed us to exemplify a
transition between a mirror-symmetric and Cs-symmetric
higher-order topological phase. In addition, many of the
diagrammatic calculations (the entirety of Secs. III and
V) were presented solely for pedagogical purposes and
are of such a mechanical nature that they can be done
straightforwardly by PYZX, a PYTHON package that can
simplify ZXH-diagrams. In the process of constructing the
AKLT-states, we also found a general way to represent the
symmetrizing projector on a tensor product of qubit Hilbert
spaces in the ZXH-calculus.

FIG. 7.

A demonstration of a diagrammatic symmetry transition. When f (8) = 0 (in the bottom-left corner) we recover the mirror-

symmetric state of Figs. 6(a) and 6(b), while if f (8) = & we recover the C4-symmetric state of Figs. 6(c) and 6(d).
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Our work opens several directions for further research.
One is to seek ZXH representations of more general
quantum states that would allow computations on them
to be simplified. The success in representing AKLT-type
states suggests that more general resonating valence bond
states [72], as well as fractional quantum Hall states [106]
have useful representations in the ZXH-calculus. Another
natural direction is to construct more elaborate symmetry-
protected topological phases [65,98—100]. For example,
other higher-order topological phases could be built based
on the coupled wire construction [107], which consists of
piling coupled d — 1-dimensional states together to con-
struct d-dimensional topological states. More generally,
it would be desirable to explore representations of chiral
topological states using the ZXH-calculus, especially those
with gapped bulk excitations, as those have been challeng-
ing to study as PEPS [2]. However, it is worth remem-
bering that injective MPS or PEPS cannot represent topo-
logical order [108,109], a restriction which might present
so-far unexplored complications in the ZXH formalism.
Interestingly, our discussion of symmetries suggests that
a chiral ZXH diagram would necessarily represent a chiral
state. However, finding which chiral ZXH diagrams pos-
sess nontrivial topological order remains an open question.
One possible example of a chiral phase is one that would
be realized by stacking C4 symmetric 2D-HOTIS in Fig. 6
in such a way that for each consecutive layer the dangling
spin-1/2 has moved one site along the edge. This state
would have C; symmetry in each plane, but the end states
will spiral in the z direction, defining a 3D chiral state with
no mirror symmetry. Lastly, it is also worth investigat-
ing if the ZXH-calculus allows us to represent and apply
matrix-product operators (MPO) more efficiently, which
are central to MPS-based algorithms [4,5,7,8]. For exam-
ple, it might be possible for the MPO to be “compressed”
using ZXH-calculus rewrite rules. Lastly, since the ZXH
representation of higher-dimensional Hilbert spaces are
not conceptually different, the ZXH-calculus offers a prac-
tical way to describe and reason about a broad number of
systems, not restricted to one or two spatial dimensions.

More intriguingly, the versatility of the ZXH-calculus
could inspire the search for simpler algorithms to tackle
many-body problems. For example, it is in principle possi-
ble to formulate existing algorithms, such as the density-
matrix renormalization group [4,5,8], in terms of ZXH-
diagrams and use rewrite rules to reduce the complexity
of the involved mathematical objects. It is interesting to
note that our Berry-phase proof employed the derivative of
a diagram. This suggests that implementing a variational
principle based on minimizing over a parameter could
be feasible. It would overlap with work using these dia-
grams to analyze problems in quantum machine learning
[85,86]. Simplifying to logically equivalent, but repre-
sentationally simpler objects could be a way to reduce
the number of variational parameters. However, it is an

open question how to implement an algorithm that benefits
explicitly from the rewrite rules. That said, given successes
in quantum compilation algorithms [28—30,38,110] and the
aforementioned work on diagrammatic quantum machine
learning, we are optimistic.

In summary, we have presented how the ZXH-calculus
can significantly enhance the scope of diagrammatic rea-
soning to solve many-body quantum problems. Our work
promotes the helpful pictorial representations of tensor net-
works to full-fledged methods of computation, where the
diagram is the calculation.
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APPENDIX A: SPIN MATRICES AND
REPRESENTATION THEORY

The Hilbert space of a spin chain with N spins is a
tensor product of the Hilbert space for each individual
spin s: (C**+1)®N_ For the spin s = 1 chain this is simply
(C*)®N | At each site, the spin-1 matrices that can be used
to construct the AKLT Hamiltonian Eq. (1) in the main text
can be taken to be

(010 L0 -1 0
s=— (101 ). 9y=2{1 0o =1],
V2l o 1 o V2lo 1 o

(A1)
L1000
s=—|o0o0 o |, (A2)
V20 o -1

which can be used to define a spin vector at each site S; =
(87,57, 57). The spin operator S¢ at site i acts on the local
Hilbert space of the ith spin, and thus acts trivially on the
full Hilbert space:

S=1QIQI- - IRIQS'®IR---.  (A3)

Hence, for two sites i,j we have the commutation rules

[Sf’ S.b] = 18 €aneSC, (A4)

127y
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where latin letters label Cartesian directions (e.g., a =
X,),2).

Using representation theory we can explain how a spin-
1 particle can be decomposed into the symmetric space
of two spin-1/2 particles. First, recall that we can decom-
pose the four dimensions of the Hilbert space of two
spin-1/2 particles into the triplet representation, which
is spanned by [00), 1/«/§(|01) 4+ [10)), |11), and the sin-
glet representation 1/ V2(101) — [10)). Viewing the triplet
representation as a three-dimensional Hilbert space, these
three spin-1/2 pairs have eigenvalues s, = 1,0, —1, respec-
tively, and so we can view them as a representation of a
spin-1.

In general, the tensor product of the Hilbert space of
two spins, s; and s, can be decomposed into the represen-
tations with spins |s; — sa|, |s; —s2| + 1,...,51 +52. We
can then express the triplet and singlet decomposition for
two spin-1/2 particles as

(1/2) ® (1/2) = (0) & (D), (AS5)

which is sometimes called a fission rule. For two spin-1
particles we get using this rule

Mo =00 Q). (A6)

Note that the only way to get (2) is from (1) ® (1). We can
use of this property to find the ground state of the AKLT
Hamiltonian by expressing the Hamiltonian as a sum of
projectors onto the s = 2 subspace.

A projector P has eigenvalue 1 when applied to a state
with spin s and zero otherwise. A projector into m spins
of total spm s can be built from products of the operator

=07 S) - (Z"’S) —j(j + 1) where j # s. This can
be seen by noticing that §%|s, s.) = s(s + 1)|s,s.), and thus
@j returns zero when applied to a state with total spin .

For two (m = 2) spin-1 particles, the projector to s =
2 is constructed by projecting out the s =0 and s =1
subspaces (choosing j =0, 1)

PO (S1,5,) = 100(51,5,) 01 (51, 8)

= ALt + $2)> — 00 + DI[S1 + 82)> — 1(1 + D).
(A7)

The projector P® onto spin-2 annihilates any state
with total spin s equal to 0 or 1, ie., PP|s=1,s.) =
PP|s =0,s.) = 0, where s. denotes the eigenvalue of the
state for §°. The coefficient X is fixed by the requirement
that PP |s =2,5.) = |s = 2,s.) which results in 1/A =
22+ 1)—-0][22+ 1) — 1(1 + 1)] = 24. By using that

N 5 \2
(S1 4 Sz) =52+ 82+25; -5, and that 5? = 52 = 2 for

spin-1 we have
- S 1 - o - o
PP(S,S)) = ﬁ[4 + 281 - S,][2 4281 - S5]

. 1. - 1
) 4 =8-S+ =

1 -
= (S A8
6(1 7 3 (A8)

As a result, the AKLT Hamiltonian can be written as

.. 1. -
H = Zsi “Sip1 + E(Si - Sip1)? (A9)

2y (P<2>(§,-, Sit) — 1/3) . (Al0)

As we observed below Eq. (A6), the only way for two spin-
1 particles to be in the s = 2 subspace is for each to be in
s = 1 subspace. Since the AKLT Hamiltonian is the sum of
projectors onto the spin-2 subspace of neighboring spins, it
annihilates any state where any two of the four neighboring
spin-1/2 degrees of freedom are in a spin singlet, because
such states have total spin s = 0.

Lastly, as mentioned in the main text, the AKLT-state
has a dilute antiferromagnetic order (a site with s, = %1 is
followed by a site 1, with a string of s, = 0 in between),
as discussed in the main text. It can be shown that this order
is captured by a nonzero string-order parameter [46].

APPENDIX B: ADDITIONAL DIAGRAMMATIC
PROOFS

1. Additional proofs for the AKLT Berry-phase
calculation

The following proofs are used in Sec. C to derive the
Berry phase of the 1D AKLT-state. We only use the
standard rewrite rules of Figs. 2 and 3.

—_
<]
-~

1d)
f)
Y
2
(BI)
(20)
(f) (ho)
= /3 = %
(b) (ho)
(21) (f) (id)
= = 2 = %
(B2)

010302-23



RICHARD D. P. EAST et al.

PRX QUANTUM 3, 010302 (2022)

(B3)

i i@ (©) (f)
=1 = S %
’

2. CSWAP POVM calculations

(B4)

In the main text it was shown that if the E, operator is
applied to a CSWAP, that the CSWAP is absorbed [see (84)].
In this appendix we show the same for E. and E,. First,

with E,
(b) (f)
x -

S
O,

(B3)

40
O
O% o

(B6)

For the analogous derivation with E, we need a couple
more types of rewrites. First, there is a way to commute

a X phase through a H-box:

This can be proven easily using (f)to unspider the 7 phase,
followed by (hb)and (ab).

Second, there are ways to remove 7 /2-labeled Z-spiders
and z-labeled Z-spiders from a diagram, by complement-
ing the connectivity of their neighbors in a suitable way.
These were proven in Ref. [28]. To write them down

clearly we adopt the notation of Hadamard edges from
[28]

(B7)

Note that on the right-hand side the middle spider is
removed, at the cost of introducing edges between all its
neighbors. Because of (92), if there was already an edge
present between the spiders, the edge is cancelled, hence
the name complementation.

The second rule is known as pivoting:

- 4 N I"
v ﬁ{ ® oy L NN
@GFG+htDm) @t GEHEF D)

(B10)

Here the connected pair of spiders u and v, which have a
phase of 0 or 7 are removed on the right-hand side, at the
costs of introducing edges between the exclusive neighbor-
hood of u, the exclusive neighborhood of v and the joint
neighborhood, labeled by, respectively, U, V, and W in the
diagram.
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Now we have all the ingredients we need to prove that E,, applied to the symmetrizer reduces to just E,,:

While this derivation is significantly more complicated,
note that PyZX still manages to simplify it in an automated
way (using a different rewrite strategy).

3. Removing 7 pi phases from a graph state

In the main text it was shown how the 7 phases from the
singlets on the measured 2D AKLT lattice can be moved
onto the external wires for the measurement outcome E.
Here we demonstrate the same for £, and E.,.

For an E, outcome in the bulk of the lattice we have

@® ﬁ<
M—L: &0 -
®e (B12)

For an E, outcome, again in the bulk, we have

) 00 @ 30
O-@5—od = H—O-@—0

D @

Go @)
G) %)

& & ®
3-'330-'3£ - o &9
6 ) !
(B13)

(B11)

APPENDIX C: CONSTRUCTING HIGHER SPINS
IN ZXH

In Sec. IV we discussed how one can in principle con-

struct spaces for higher spins by making use of CSWAP
operators. We then demonstrated the principle for spin-

1 and spin-3/2. We here outline how to construct the
diagrams for the spin-4 (which is used in Sec. VI) and spin-
5/2 symmetrizers. The construction of these symmetrizers
show how we can build them for all higher spins.

Recall that we construct the symmetrizer on n 4 1 wires
PYD by making use of the symmetrizer PJ" and then
inserting additional CSWAPs that are fired in a superposi-
tion.

For n = 3 we saw this gives the following diagram:

A
daoo | |
thoy Sl

This works, because

o -

so that the the latter two CSWAPs generate a superposition
of the identity, SWAP; 3 and SWAP, 3.

For n = 4 things are slightly more involved. The fol-
lowing diagram is an example of how we can construct
1t:

2(]00) + |10) + |01)),
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p
\

)

L

For n = 5 we can use the following diagram:

[N

Dl
Dl

=3

p
.
p
.

1\

The goal of the “crowns” over these operators is to gen-
erate a superposition over all states that fire at most one of
the CSWAPs. Recall that the SWAP gates are triggered when
fed a |1), corresponding to an X 7 phase. So the desired
superposition consists of those states |x; - - -x,) where at
most one of the x; is a 1. For example, for n =4 we
want |[000) 4 ]001) 4 ]010) + |100). The first step in cre-
ating this state in ZXH is to take k& Z-spiders such that
2¥ > n. For n =4 we need two (arity 3) green spiders.
These spiders give us

[000)[000) + [000)|111) + [111)]000) + [111)|111).

We then use NOT gates (X 7 phases) and AND gates (pairs
of H-boxes and Hadamards) to transform each of these four
terms into one of the states we want. In (C1) for instance,
the three AND gates “select” the state |01) + [10) 4 |11).
The superposition also contains a |00), but this is not
passed through the ANDs, and hence results in none of the
CSWAPs firing, which is the final state we require.

(CD)

The n = 4 case is special, as in general there will be
redundant states in the superposition. If we consider the
crown of (C2) we see that we have 23 states in superposi-
tion but we require only five of them:

[000) 4 1001) + [010) + [100) + [111).

As a result we must “bin” the rest of the states. This is
done by using an AND gate that is postselected to a |0)
outcome. We can represent such a postselected AND by a
H-box with a Z-spider attached to it (see the top of the
diagram). Indeed, looking at the crown of (C2) we see
that it selects four elements of the superposition to trig-
ger gates (which precise ones it selects is not irrelevant).
It then discards three more states leaving one state (|111))
left over that is present in the superposition, but triggers
no additional CSWAPs so that we get the required iden-
tity gate. This construction for n = 5 generalizes to any
desired n.
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