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I. INTRODUCTION

Measurements are physical processes. As such, their
power is constrained by requirements and limitations, no
more and no less than the phenomena they observe. There
exist a long list of occurrences: the internal resistance of
an ammeter is meant to be small compared to the load,
while that of a voltmeter should be large, the heat capacity
of a thermometer should be small, and so on and so forth.
In addition, all measurement devices will introduce some
form of noise: for instance, any resistance will present fluc-
tuations of the current, due to the thermal motion of its
electrons.

All these facts are often recited out, concluding that the
resulting disturbance can be made, in principle, arbitrarily
small. However, when trying and applying this principle to
real cases, other considerations may come into play. While
the signal-to-noise ratio in an optical absorption measure-
ment could be made large at will by ramping up the
intensity on the sample, in practice this may affect the spec-
imen or saturate the amplifier. This is in fact a common
instance in optical measurements: they typically improve
with the intensity; however, they may alter the sample by
delivering energy to it. There may occur, then, a trade-off
between the quality of the measurement, and its invasiv-
ity. Thus, the promised arbitrariness in noise rejection must
actually come to terms with contrasting considerations.

The most fundamental limitations on measurements are
to be sought in the most fundamental theory of matter:
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quantum mechanics. Once all instrumental causes of error
and disturbance are removed, we are left with the fluctua-
tions inherent to quantum states as the source of variability
in our measurements. Understanding what these restric-
tions are and what opportunities open up is the aim of
quantum metrology [1]. Controlling the wavefunction of
the object employed as the probe does not make the trade-
off disappear, but it provides the means for a more satis-
factory compromise, whenever the simplest option—more
power—cannot be adopted. In this tutorial, we wish to dis-
cuss the essentials of quantum metrology in its applications
to photonics [2,3]. Along with solid-state [4] and atomic
systems [5], this represents one of the most investigated
platforms, due to its adaptability and the perspective of
leveraging on solutions for current photonics sensors. This
tutorial is intended for those searching an introduction to
the topic and a discussion of its methods and concepts,
coming from different backgrounds. It thus resembles in
its purposes the Tube map: it guides the traveller though
the main stops, but it should not be taken as a detailed
outline. And it does not aim at coming any closer to the
Knowledge.

II. FUNDAMENTALS

A. The conceptual framework

The uncertainty relation [6], written in its canonical
form

�x�p ≥ �

2
(1)

for a pair of conjugate observables x̂ and p̂ , is one of the
characteristic traits of quantum mechanics, and one of the
most abused tricks in the hands of popularizers when it
comes to presenting the weirdness of the quantum world to
the large public. Although the attitude of the specialist is
expected to be more detached and analytical, many would
confess this concept retains a certain fascination, even after
years of practice in the field.

Albeit a simple formula, relation (1) is prone to different
interpretations. At a very abstract level, it is a consequence
of adopting square-integrable functions as physical wave-
functions, whose Fourier transform is then bound to satisfy
this constraint. In classical physics, this statement is trans-
lated as the observation that an oscillation can be localized
in a region of size �x by superposing plane waves span-
ning over the range of wavevectors �k = �p/�. Thus,
translating this to quantum states, we could conclude that
Eq. (1) sets limits to our capabilities in state preparation.

It is remarkable that Heisenberg deemed it instructive
to provide an interpretation from the point of view of the
measurement, instead. His celebrated thought experiment
of a single-photon microscope detecting a single electron
is sketched in Fig. 1. Imagine that we are interested in
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FIG. 1. Heisenberg’s gedankenexperiment. It summarizes all
aspects to be used in analyzing the measurement process.

finding the position of an electron; for our task, we col-
lect a scattered photon through a microscope lens. The
complete arrangement then consists of the system to be
measured—the electron, a probe by which we carry out
our observation—the photon, and, finally, a measurement
setup to finalize our observation.

The interaction process is a Compton scattering event,
by which the photon deviates from its original path; the
position of the electron can be inferred by measuring the
photon in its new direction. At best, the electron can be
localized within the optical resolution of the microscope:
�x = λ/ sin θ with θ the maximal collection angle. This
can be set by choosing the wavelength of the photon and
the numerical aperture of the lens. It should be remarked
that the position of the electron is accessed by means of a
measurement on a different system, the photon, as it enters
as a parameter in the detection probability distribution of
the latter. On the other hand, scattering leads to the elec-
tron receiving a recoil, modifying its momentum within a
spread �p = 4π� sin θ/λ: the interaction has affected the
wavefunction of the electron. The product �x�p is thus
close to the rigorous result (1).

We can now ponder on how to sit on Heisenberg’s
shoulders, and look for a framework that could apply in
broader scenarios. This requires us to analyze Heisen-
berg’s thought experiment under a more abstract point of
view. First, we consider how the electron should be illu-
minated, bearing in mind that the wavelength dictates the
optical resolution. Also, the incoming direction of the pho-
ton should be set properly, in such a way not to cause stray
light: this would not carry any signature of the electron’s
position, and would end up decreasing the signal-to-noise
ratio of our measurement. These considerations highlight
the first critical step of the preparation of the probe, i.e.,
the physical system used for monitoring.

Next, we consider that, if we wish to obtain the posi-
tion of the electron from a measurement on the photon, we
have to rely on our knowledge that Compton scattering is
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occurring. We have thus learned the physical mechanism
behind the measurement: we can make exact predictions,
based on the knowledge of the interaction, be it in the
form of either a unitary or a dissipative process. This, in
turn, is characterized by one or more parameters that are
the quantities we want to estimate with the best possible
precision.

Finally, the physical size of the lens curtails our abil-
ity of localizing the electron. In general terms, after the
interaction, the probe is delivered to a measuring apparatus
designed to access one observable of the probe. There exist
physical limitations on the quality of this measurement,
dictating what we can actually learn about the parame-
ters. The complete process that eventually delivers the
estimate of the electron position thus consists of the triad
preparation-interaction-measurement.

We are now prepared to take one step further in abstrac-
tion and read the triad above as the physical implemen-
tation of an information exchange [7]. This starts with
the initialization of the probe to a blank state on which
information about the sought parameters will be written.
The interaction effects a modulation, which depends on
the values of the parameters following a known law. This
eventually allows us to proceed with information extrac-
tion, with a varying degree of effectiveness. We can enlarge
this construction to include cases in which the parameters
pertain directly to the initial state, as, for instance, the level
of entanglement or the purity [8,9], by including the inter-
action stage as a part of the state preparation. Beneath this
all, quantum mechanics puts limits on what is physically
possible or, equivalently, on the information exchange.
These lines of reasoning are summarized in Fig. 2.

For a given parameter, the choice of the probe state and
the measurement is what we call a strategy. The aim is
to optimize the amount of information this carries on the
value of the parameters. Intuition guides us to conclude
that the most informative measurements are those resulting
in the lowest uncertainty. Any comparison, however, only
makes sense if the resources invested are kept fixed. This
is a key concept, but translating it to a rigorous definition
is perhaps elusive. It is maybe best to adhere to an all-
encompassing description, calling a resource anything that
is useful to extract information. These include the physical

Physics
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Initialization Modulation Extraction

Probe Sample Detector

FIG. 2. Conceptual scheme of the estimation procedure, high-
lighting the main elements’ physical implementation, and the
corresponding steps in information processing.

constituents of the probe, the number of times the system is
accessed in a single experimental run, and the total number
of runs.

B. Measuring light

Before dwelling on more sophisticated aspects of quan-
tum measurements, we take some time to discuss the more
profane matter of how one actually measures properties
of light in the laboratory. First, one should acknowl-
edge that quantum optics often requires a certain mental
agility in passing from the first-quantization to the second-
quantization picture. This is not solely a matter of making
proper calculations, but, crucially, to understand what is
actually measured. Different kinds of detectors rely on dif-
ferent physical mechanisms for the measurement, and it
is important to delineate exactly how these are related to
the properties of quantum light. A short summary on the
manipulation of quantum states of light is presented in
Appendix A.

1. Photon counting

The simplest detection scheme is linear intensity detec-
tion by means of a photodiode. This device converts the
luminous flow to a proportional electronic current, up to
loss from reflections on the elements of the detectors (e.g.,
protective windows or the active area itself) and from the
elementary electron scattering mechanism. When operated
on a classical intense beam, the current will be affected,
at best, only by the shot noise [10], i.e., random Poisson
fluctuations of the photon number showing up in the cur-
rent [11]. More realistically, there will also be an electronic
noise component, associated with their thermal excitation,
and extra fluctuations due to unwanted modulations of the
beam intensity. These often prevent operating this mea-
surement scheme at the ultimate precision limit; hence,
direct detection is hardly ever used in quantum metrology
by itself.

Linear detectors cannot give access to single photons:
the corresponding current would be inappreciable due to
the electronic noise. This is why avalanche photodiodes
(APDs) are employed (Fig. 3): in these detectors, the exci-
tation of even a single electron is able to empty the active
area of all free charges by means of successive colli-
sions [12]. This avalanche effect is achieved by polarizing
the detector junction in reverse bias. The signal is suffi-
ciently high that it can be detected; however, it carries
no information on the actual photon number impinging
on the detector: as a terse summary, even a single pho-
ton suffices to saturate the current from the detector. This
scheme thus only provides an on-off event—often called a
“click.” The intrinsic quantum efficiency of these devices
is around 60% in the visible (500–800 nm) for Si detectors,
polluted by dark counts due to thermal activation of the
order of 1000 events/s. For longer wavelengths, different
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FIG. 3. Photon counting detectors. The avalanche photodiode
(APD) relies on an avalanche effect to form the signal. The super-
conducting nanowire single-photon detector (SNSPD) detects a
photon from the resulting heating that disrupts superconductiv-
ity. Both detectors can be described by the on-off measurement
operators �0 and �1 in the ideal limit of zero noise and unit
efficiency. The transition edge sensor (TES) relies on the break-
ing of superconductivity as well, but the resulting resistance R
is a function of its effective temperature T, and thus of the total
impinging energy. It thus realizes a photon-number discriminator
with measurement operators �n in the same ideal limit.

semiconductors are more indicated, reaching efficiencies
of the order of 20% [13]. These detectors are not mode sen-
sitive: they would respond with clicks to whichever mode
reaches them, compatibly with their spectral characteris-
tics. In order to restrict their response to the few modes
in which one is typically interested, being them spatial or
spectral, filters are employed, at the cost of bringing the
efficiency further down.

More information on the photon number is collected by
using multiple “click detectors,” going through the effort
of dividing the initial beam over multiple spatial or tem-
poral bins [14,16]. Care must be taken when handling the
outputs of such detectors [17]: while counting abilities are
improved, the convergence of the click distribution to the
actual photon-number distribution is slow with the total
number of bins. Superconducting nanowire detectors offer
superior efficiencies [18]: their working principle is based
on the fact that the energy of a single photon is suffi-
cient to disrupt superconductivity in one section of the wire
(Fig. 3). If light illuminates the wire uniformly, one effec-
tively realizes a multiplexed click detector by an effective
spatial binning [19,20], but time multiplexing can also be
employed [21]. This offers a more compact solution than
simple multiplexing, with an intrinsic quantum efficiency
of the order of 95% [22,23].

Genuine photon-number resolution can be obtained
based on superconducting transition edge sensors [24]:
these detectors are bolometers, kept close to the transition
temperature and whose signal is related to a disturbance to
the superconductivity, as in nanowires (Fig. 3). If the effect

of the light is not strong enough to drive the detector to
its normal state, a resistance is measured, proportional to
the impinging energy; at fixed wavelength, this amounts
to counting the number of photons. Intrinsic quantum effi-
ciencies exceed 95%, with the ability of distinguishing 10
to 20 photons, as a typical value [25]; with higher energies,
the normal state is fully reached, and saturation occurs. As
for other counting systems, a signal is obtained regardless
of the mode of the incoming photons; hence, the need to fil-
ter the desired modes. Recently, a more compact solution
has been found in silicon photomultipliers, reaching effi-
ciencies of the order 50% for the blue wavelengths [26].
Their optimization for quantum applications is currently
being pursued [27].

2. Coherent detection

Photon counting addresses particlelike aspects of light,
or, more properly, of its energy exchange. Alongside
these, there exist wavelike properties, which are typically
accessed by means of interference. Taking inspiration from
classical signal processing, the electric field of an opti-
cal mode can be decomposed into two components called
quadratures: x̂, which is in phase with a given local oscil-
lator, and p̂ , which has a π/2 shift. In terms of quantum
operators, these two are related to the creation-annihilation
operators â and â† as [11,28,29] x̂ = √

N0(â† + â) and
p̂ = i

√
N0(â† − â), and satisfy the commutation relation

[x̂, p̂] = 2iN0. These are the canonical variables describ-
ing an electromagnetic mode as a quantum harmonic
oscillator.

For a coherent state |α〉, we find that 〈α|x̂|α〉 =
2
√

N0Re[α] and 〈α|p̂|α〉 = 2
√

N0Im[α], hence reinforcing
the view of x̂ and p̂ as the in-phase and in-quadrature field
components, respectively. In these states, the variances are
given by �2x = �2p = N0, independent of the amplitude
α. Therefore, these are the characteristic fluctuations asso-
ciated with the vacuum (α = 0) [11,28,30]. The constant
N0 determines the convention for the units, and many are
used in the literature: the most common ones set N0 = 1/2
(the relations between the creation/destruction operators
and quadratures become symmetric), N0 = 1 (the quadra-
tures are normalized to the fluctuations in the vacuum),
or N0 = 1/4 (the conversion factor between expectation
values and α is one). In the following, we use N0 = 1/2.

Indeed, the values of the quadratures can be accessed
in the experiment by means of a homodyne detector [11],
shown in Fig. 4: the light on our mode is made to inter-
fere with an intense local oscillator on a beamsplitter with
equal reflectivity and transmittivity. Light at the two out-
puts reaches linear detectors and the difference between
the two photocurrents can be demonstrated to be propor-
tional to |αLO|(eiϑ â + e−iϑ â†), where αLO = |αLO|eiϑ is
the complex amplitude of the local oscillator. This oper-
ation thus maps exactly the statistics of a generalized
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FIG. 4. Homodyne detection makes it possible to measure the
distribution of the generalized quadratures q̂ of the state ρ,
by means of interference with a local oscillator (LO), whose
phase ϑ can be varied. The vacuum state ρ = |0〉〈0| shows con-
stant mean value 〈q̂〉 = 0, and characteristic fluctuations �2q =
1/2. Coherent states ρ = |α〉〈α| exhibit oscillations in 〈q̂〉 =√

2α cos(ϑ), while maintaining the same fluctuations as the
vacuum �2q = 1/2.

quadrature q̂ϑ = cosϑ x̂ + sinϑ p̂ on that of the output
current, with an amplification factor |αLO|. There is an
unknown conversion factor between the measured current
and the actual values of the quadratures, but this can be
directly inferred by imposing the condition that the vari-
ance of the current with a vacuum input is 1/2. By tuning
the phase of the local oscillator ϑ , we can set whether the
quadrature x̂ is measured (ϑ = 0), or p̂ (ϑ = π/2), or any
generalized quadrature in between.

Differently from photon counting, homodyne detection
is mode sensitive: detection occurs only for the mode that
perfectly matches the local oscillator on the beamsplitter.
Any difference between these two modes, leading to an
estimated interference fringe visibility v, would decrease
the effective efficiency of the detection by a factor v2

[31]. A second crucial aspect in homodyne detection is
achieving the balance between the two outputs of the
beamsplitter, which must be as equal as possible. Indeed,
subtraction of the two currents is necessary to cancel clas-
sical noise of the local oscillator; however, unavoidable
discrepancies will make it show in the final signal. The
better the balance, the higher the value of |αLO| that can
be employed, for the benefit of higher rejection of the
electronic noise from the linear detectors.

C. Fisher information and the Cramér-Rao bound

Turning back to our original problem, we have devel-
oped an intuition that a measure of information is an
appropriate figure to associate with different strategies, but
we are also left with the problem of connecting it to the
uncertainty on our parameters. This problem is not nec-
essarily quantum, since classical measurement strategies
work by the same conceptual scheme, only subject to dif-
ferent limitations. We can then start looking into solutions
of this issue at the classical level, and then extend them
to the quantum case. We focus on local estimation of the
parameters. By this, we mean that we know approximately
their values, thanks, for instance, to preliminary coarse
measurements we now wish to refine. Each measurement

run will give a measured value xi for a quantity we know to
be somehow related to a parameter of interest φ; this could
be, in principle, a vector of parameters, but we should
better discuss the single-parameter case first.

The probability distribution of the measured values is
p(x|φ), which we can interpret as the conditional prob-
ability of observing the value x, given that the param-
eter assumes the value φ. In most scenarios, we are
able to collect the outcomes of M repeated experiments:
{x1, x2, . . . , xM }, all drawn from p(x|φ). Since we are
assuming complete knowledge on how the parameter φ
enters the expression of p(x|φ), this provide us with the
means to give an estimation φ̃ of the value of the param-
eter. We have at our disposal a function mapping the
measured values {xi} to a value φ̃({xi}): such a function
is called an estimator. The quality of different estimators
of φ will depend on the measured quantity, and the final
result will also be influenced by the number of measure-
ments. Two quantities need to be inspected: how close
the value of our estimator is to the actual parameter, and
how wide its distribution is on average. The first quan-
tity is the bias b = E[φ̃({xi})− φ], where E denotes the
expectation value on all possible outcomes {xi} for a given
φ. We are interested in unbiased estimators, i.e., b = 0
for every φ, giving the value of the parameter with arbi-
trary accuracy. For such unbiased estimators, the variance
σ 2 = E[(φ̃({xi})− φ)2] gives indications of the precision.

In order to compare different estimation strategies in
quantitative terms, we first define the score as [32]

V(x,φ) = ∂ log p(x|φ)
∂φ

. (2)

This quantity indicates the relative variation of the prob-
ability of the measured value x when the parameter φ
undergoes slight changes. Under certain regularity condi-
tions, it can be demonstrated that its expectation value,
taken over all possible outcomes x, vanishes. We thus
turn our attention to its variance, going under the name of
Fisher information [32]:

F(φ) = E[V(x,φ)2]

=
∫

dx p(x|φ)
(
∂ log p(x|φ)

∂φ

)2

=
∫

dx
1

p(x|φ)
(
∂p(x|φ)
∂φ

)2

. (3)

This quantity is then linked to how a change in the value
of the parameter affects, on average, relative variations in
the probability distribution of the measured quantity x. For
unbiased estimators, an inequality can be found:

σ 2 ≥ 1
MF(φ)

; (4)
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this is the celebrated Cramér-Rao bound (CRB) [33,34].
Details on its derivation are discussed in Appendix B. This
inequality sets the minimal variance attainable by repeat-
ing the experiment M times, and by processing the data by
means of a proper estimator. This presumes that the mea-
surements are affected only by the fluctuations due to the
outcome statistics p(x|φ) and no more. If we are confident
that our sample is sufficiently large, a variance exceeding
the minimum in Eq. (4) reveals the presence of some kind
of noise, not explicitly considered in the outcome distri-
bution, either arising from technical limitations or large
variations of the parameter φ itself.

D. Estimators

There exist different options to data processing that
deliver an unbiased estimator, able to saturate, in princi-
ple, the CRB. The simpler choice is to build a maximum
likelihood estimator, by considering that, for independent
runs, the probability of observing a specific collection of
outcomes {x1, . . . , xM } is

L({xi}|φ) =
M∏

i=1

p(xi|φ), (5)

which we can take as a likelihood function. The esti-
mated value of φ can thus be taken as that maximizing the
likelihood:

φ̃ = arg max
φ

L({xi}|φ). (6)

An uncertainty on φ̃ is assessed by either repeating the
set of M runs multiple times or, if one is reasonably con-
fident of the outcome statistics, by applying a bootstrap
method to the data in order to simulate further experiments
by a Monte Carlo routine. This procedure is preferable
to trying and applying error propagation to Eq. (6), since
it automatically takes into account correlations within the
data.

An alternative method is grounded in Bayesian analysis,
and considers the parameter φ itself as a statistical vari-
able. The likelihood function should then satisfy Bayes’
rule, leading to the expression

P(φ|{xi}) = L({xi}|φ)P(φ)/P({xi}), (7)

where P(φ) is the a priori probability for φ—which we
have assumed to be narrowly distributed—and P(φ|{xi})
is the updated conditional probability for φ, given the
observed {xi}. Finally, P({xi}) is the probability of the
experimental outcome, which we can calculate by nor-
malizing the conditional probability. The estimate of the
parameter and of its uncertainty are thus assessed by
calculating the first and second moments of Eq. (7).

These two estimators are known to be optimal, in that
they saturate the CRB [34]; however, for this condition to
be met, the asymptotic regime of a large collection of runs
is needed. In practice, this limit can typically be reached
with M � 1000 [35,36]. Thus, even if the CRB holds for
arbitrary M , with standard estimators we expect this to pro-
vide useful guidance only in this regime. When only small
samples are available, saturating the CRB is still possible,
but requires more sophisticated data processing [37–39].
A modified CRB can also be derived in the case of biased
estimators [40]: σ 2 ≥ (1 + db/dφ)2/F(φ). If db/dφ < 0,
the variance can reach a value below the unbiased CRB.
Conversely, if the analysis reveals an uncertainty below the
minimum, this can be a symptom of a biased estimator or
the consequence of too small a collected sample. When an
experimental estimate of the variance σ 2 is obtained, it can
be compared with that at the CRB σ 2

0 = 1/[MF(φ)]. For
this purpose, the ratio F = σ 2/σ 2

0 = MF(φ)σ 2 is consid-
ered, which is expected to be distributed according to the
χ2 distribution.

E. The Mach-Zehnder interferometer

We now use an example for clarification. The single-
photon Mach-Zehnder interferometer (MZI) is an instruc-
tive choice, summarizing all of the different aspects we
have discussed. Incidentally, it is as relevant to optics as it
is for atoms, since Ramsey interferometry can be directly
translated into an equivalent MZI [41].

The scheme, shown in Fig. 5(a), has a single photon
arriving at a beamsplitter with no absorption, and whose
transmittivity equals its reflectivity (|r|2 = |t|2 = 1/2); a

(a)

(b) (c)

FIG. 5. Phase estimation in a Mach-Zehnder interferometer.
(a) The basic scheme of the MZI—two mirrors and a phase
shifter—with the labels for the input a0, a1 and output b0, b1
modes. (b) A posteriori Bayesian probability distribution for the
phase φ, based on M = 20 repetitions. (c) Variance on the esti-
mated phase as a function of M : the red points are numerical
simulations, while the blue continuous curve shows the CRB
σ 2 = 1/M .
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relative phase shift φ occurs between the two output modes
that are eventually recombined at a second beamsplitter.
The phase φ is the parameter we want to estimate. Calling
â†

0 and â†
1 the creation operators for the two output modes

of the beamsplitter, the action of this phase shift is dic-
tated by an operator Û = exp[(iφ/2)(â†

1â1 − â†
0â0)]. We

can describe the quantum state of the light in two equiv-
alent manners: the most intuitive one has the photon in a
quantum superposition of being on either mode, while the
more rigorous one considers the occupation number of the
two modes, |ψφ〉 = 2−1/2(â†

0 + eiφ â†
1)|0〉, where |0〉 is the

common vacuum state. This latter view is the most conve-
nient when it comes to generalizing to more particles. The
phase shift φ is retrieved by superposing the two modes a0
and a1 at a second beamsplitter, and then performing pho-
ton counting at two outputs b0 and b1. The probabilities
of finding a photon on either mode are p0(φ) = cos2(φ/2)
and p1(φ) = sin2(φ/2).

We thus recognize in this simple arrangement the three
steps we have discussed above: the first beamsplitter pre-
pares the single-photon (or, better, the two-mode) state
as the probe; the sample determines the interaction, char-
acterized by the parameter φ; and, finally, the second
beamsplitter and the photon counters represent the mea-
surement stage. For this particular case, the limit on the
precision of the phase φ is set by the Fisher information,
found by summing over the two possible outcomes x = 0
and x = 1:

F(φ) = 1
p0

(
∂p0

∂φ

)2

+ 1
p1

(
∂p1

∂φ

)2

= 1. (8)

This implies that, by a series of M repetitions, any
phase can be estimated, in principle, with uncertainty
σ = 1/

√
M . For the purpose of estimating φ, a Bayesian

estimator can be employed: knowing that a number m0
of events lead to a photon recorded on mode b0, and
m1 = M − m0 on mode b1, we can define the a pos-
teriori probability distribution for φ as P(φ|m0, m1) =
p0(φ)

m0p1(φ)
m1P(φ), up to normalization. This distribu-

tion is shown in Fig. 5(b) for M = 20. Its average value
will deliver the estimate φ̃, while its second moment is a
measure of the uncertainty σ 2. Figure 5(c) illustrates the
variance obtained in simulated experiments for different
values of M . Close inspection reveals that, with a small
number of repetitions, the variance of our estimator falls
below the CRB. From M � 200, proper working condi-
tions are met, in line with previous considerations on the
strictness of the CRB in the regime of a large number of
copies M . It should be noted that P(φ|m0, m1) with a flat
prior may become a multimodal distribution, i.e., it shows
different peaks. In this case, one can leverage on the fact
that the CRB only holds for local estimation, and use the

a priori information P(φ) to rule out irrelevant cases; in
our example, we have employed a flat prior in the [0,π ]
range [42].

Nothing prevents us from using classical light in the
MZI, and considering what the ultimate precision limit
is. The analysis now considers a coherent state |α〉, as a
way of describing a classical field through quantum for-
malism. For the sake of comparing strategies with equal
resources, we fix the average photon number in the coher-
ent state as |α|2 = M . The action of the MZI results in two
coherent states |α cos(φ/2)〉 and |α sin(φ/2)〉 appearing on
the two output modes: the intensity of the incoming beam
is thus eventually parted among the two output modes
as I0 = |α|2 cos2(φ/2) and I1 = |α|2 sin2(φ/2) [11]. The
uncertainty on φ estimated from an intensity measure-
ment on one of the arms is σ = |dI0/dφ|−1�I0, where�I0
gives the size of the intensity fluctuations. For a coher-
ent state, the variance of its photon number equals the
average; therefore, �I0 = α2 cos2(φ/2). This leads to the
same expression for the uncertainty σ = 1/|α| = 1/

√
M

as for single photons: for a given total energy, the limit for
classical light is the same as that when using independent
photons. This should not come at a surprise: measurements
of the photon number in a coherent state are described as a
Poisson distribution with mean |α|2. This statistic is typical
of independent events, and thus it does not matter whether
the photons are sent one by one in the MZI or sent together,
but acting independently. This is often called the shot-noise
limit (SNL) or the standard quantum limit (SQL), albeit it
is the one relevant for classical light [11,43,44].

III. INTRODUCING QUANTUM METROLOGY

A. The quantum Cramér-Rao bound

We now return to the generic quantum case: after initial-
ization to a state ρ0, the probe interacts with the sample, so
that its state becomes ρφ , and this is finally measured to
extract the value of φ from the outcome distributions. We
are confident about our statistical model: we know how
ρφ is connected to the parameter φ for all instances. On
the other hand, we cannot be sure that our choice of ini-
tial probe state and final measurement is actually the most
informative at our availability: after all, the probabilities
p(x|φ) are obtained for a specific observable, but there are
infinitely many other possibilities.

The standard way of describing a measurement has it
associated with an observable X̂ with eigenvectors |x〉:
the probability p(x) of measuring outcome x is given
by Born’s rule p(x) = 〈x|ρφ|x〉 = Tr[ρφ|x〉〈x|]. Such mea-
surements are called projective, as their action is captured
by the projecting operator |x〉〈x|. This can be extended
to more general cases that include imperfect measure-
ments or nondiscriminating observations: the outcomes
are not associated with a canonical observable, but each
value x corresponds to an operator �x, such that Born’s
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rule can still be written as p(x) = Tr[�xρφ�
†
x], and the

outcomes x cover all instances
∑

x �
†
x�x = I. These are

useful tools in describing click detectors, and their inability
of discriminating Fock states, as shown in Fig. 3.

For our purposes, the classical Fisher information (3)
provides a tool to compare different choices, but no con-
structive guideline. Intuitively, this is because the Fisher
information looks at how the specific outcome distribu-
tions vary with the parameter φ, rather than at the changes
of the state itself. In order to establish such a notion on
solid grounds, we first need to learn how to describe the
derivative of a state in operatorial terms by introducing
the symmetric logarithmic derivative (SLD) operator Lφ
as [45]

∂ρφ

∂φ
= 1

2
(Lφρφ + ρφLφ). (9)

Indeed, it can be demonstrated that the quantity [45–47]

H(φ) = Tr[L2
φρφ] (10)

sets a higher bound on the Fisher information for all pos-
sible choices of the measurement [48,49]; furthermore, a
related result is that there always exist a measurement that
saturates the inequality, F(φ) = H(φ), and it corresponds
to a projective measurement in the eigenbasis of Lφ [45];
these aspects are briefly discussed in Appendix C. The
optimal measurement may not be unique, nor necessarily
easy to implement, but it is guaranteed to exist, and pro-
vides guidance to assess how well the chosen strategy is
working. This is why H(φ) is called the quantum Fisher
information associated with the state ρφ . The achievable
precision is thus limited from below as

σ 2 ≥ 1
MH(φ)

, (11)

an inequality that goes under the name of the quantum
Cramér-Rao bound (QCRB).

The way an experiment is usually designed considers a
state ρ0 in a given set, chosen according to certain criteria;
for instance, these may be imposed by experimental limita-
tions, or from preliminary considerations on the form of the
state. The quantum Fisher information is then calculated
for the evolved states ρφ , keeping it a function of the vari-
ables defining the set. These are then optimized to provide
the probe giving the highest quantum Fisher information.

We can use these considerations to inspect the single-
photon MZI we discussed above. If we now allow
for arbitrary transmission t and reflection r = √

1 − t2
coefficients, the state in the interferometer can be written as
|ψφ〉 = (tâ†

0 + reiφ â†
1)|0〉 or, making the occupation num-

bers explicit, |ψφ〉 = (t|1, 0〉 + reiφ|0, 1〉). For pure states,
the defining equation of SLD (9) greatly simplifies and

the solution Lφ = 2(|∂φψφ〉〈ψφ| + |ψφ〉〈∂φψφ|) is readily
found [50]; this finally leads to the expression

H(φ) = 4[〈∂φψφ|∂φψφ〉 + (〈∂φψφ|ψφ〉)2]. (12)

Since in our case |∂φψφ〉 = ireiφ|0, 1〉, the quantum
Fisher information reads H(φ) = 4r2(1 − r2): the opti-
mal choices correspond to the symmetric case t = r =
1/

√
2, indeed. Furthermore, the strategy we have devised

achieves the maximum value for the Fisher information,
and thus it is able, in principle, to saturate the QCRB.

B. The origin of quantum enhancement

Quantum states can be shown to offer superior preci-
sion, based on very general considerations, as presented
in Ref. [51], at least for unitary parameters, those that
are related to the action of a unitary Ûφ = e−iφĜ, Ĝ being
the generator of the transformation. Fairly frequently, this
corresponds to the Hamiltonian of the system.

For a pure initial state ρ0 = |ψ0〉〈ψ0|, the evolution
reads |ψφ〉 = Ûφ|ψ0〉; the derivative of the state is then
|∂φψφ〉 = −iĜ|ψφ〉. From expression (12) for the quantum
Fisher information (QFI), we obtain

H(φ) = 4�2G, (13)

i.e., the QFI equals the variance of the generator Ĝ on
the state |ψφ〉. This gives the QCRB a form resembling
Heisenberg’s relation [52,53]:

σ 2�2G ≥ 1
4M

. (14)

This expression helps us to draw a comparison between
classical and quantum strategies for estimation. It is then
clear that the aim for a classical and a quantum exper-
imenter is to prepare a state maximizing the variance
�2G. It may first seem contradictory to label as classical
an experimenter who is given access to quantum states;
however, if their capabilities are cunningly restricted, we
can obtain bounds pertaining to classical resources; the
example of the Mach-Zehnder interferometer is quite illus-
trative.

We allow both the classical and the quantum labora-
tories to use N particles for each experimental run. The
classical experimenter can thus only prepare the state of
individual particles in the equal superposition of eigen-
states of the maximal gM and minimal gm eigenvalues of
Ĝ: |ψ0〉 = (|gM 〉 + |gm〉)/√2. Since in this state �2G =
(gM − gm)

2/4 and the run is using N such states, the total
QFI is H(φ) = N (gM − gm)

2, growing linearly with N .
This describes exactly what happens in the MZI, and thus
we recognize this scaling as the optimal classical limit,
i.e., the SQL. The quantum experimenter has more free-
dom and can prepare collective states of all N particles;
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in particular, if the global generator Ĝ⊗N is considered,
the experimenter can prepare a superposition of global
eigenstates |ψ0〉 = (|gM 〉⊗N + |gm〉⊗N )/

√
2 that exhibits a

variance, and hence a QFI, H(φ) = N 2(gM − gm)
2. The

scaling of the QFI is improved with respect to the clas-
sical case [54] and takes the name Heisenberg limit (HL)
[55]. In principle, the scaling at the SQL or the HL can
be achieved with separable measurements, if we can retain
control on individual particles [51], while in the other
instances collective measurements are required.

Some considerations on the use of the resources are
in order: the whole experiment comprises multiple runs,
M , and so NM particles are used overall. Thus, the view
that SQL has the QFI scaling linearly, and the HL scaling
quadratically with the number of resources glosses over
this observation, but it captures correctly what happens in
each single run. In the same vein, a single particle may
still provide a similar advantage, if it is used to investigate
the sample N times, by implementing the transformation
UN
φ : here, the scaling of the QFI is again quadratic in N ,

and has also been described as HL [56–58], with each pas-
sage counting as one resource in a run. This justifies the
comment above on the disparate nature of resources in
quantum metrology. We note that, stretching beyond this
simple unitary case, the use of Hamiltonians with k-body
interactions has been shown to provide N−k scaling for the
variance [59–62].

IV. APPLICATIONS

We have thus learned how precious Fisher information
is when we need to assess strategies for parameter esti-
mation. We should not forget, on the other hand, that this
serves one purpose: guiding the design of resource states
and their measurement. We now discuss relevant examples
centered on the estimation of optical phases.

A. Optical interferometry with squeezed states

A phase in an optical interferometer is the most com-
mon example studied in quantum estimation, due to its
conceptual value, as well as to its relevance to many exper-
imental situations. Certainly, it is indebted for much of its
popularity to the connection to the measurement of grav-
itational waves by long-arm interferometers [63,64]. One
of the most influential results in this field is the work of
Caves [44], who proposed the use of a squeezed state as a
way to reduce noise in these interferometers.

We start by inspecting our classical MZI under a
different perspective, so that we can now include quan-
tum fluctuations more explicitly. We write the output
operators b̂0 and b̂1 in terms of the input operators,
referring to the modes arriving at the first beamsplit-
ter, which we call î0 and î1. Up to overall phases, these
relations read b̂0 = cos(φ/2)î0 + sin(φ/2)î1 and b̂1 =

cos(φ/2)î1 − sin(φ/2)î0 [28,30]. The intensity on arm b0

is then given by b̂†
0b̂0 = cos2(φ/2)î†0 î0 + sin2(φ/2)î†1 î1 +

sin(φ)/2(î†0 î1 + î0 î†1). The standard arrangement has an
intense beam with classical amplitude α, taken to be real,
on the input i0, and vacuum on i1; we can thus replace
the operators î0 and î†0 with the corresponding classical
numbers. Consequently, the intensity operator becomes
b̂†

0b̂0 = cos2(φ/2)α2 + [sin(φ)α/
√

2]x̂, where x̂ is the x
quadrature of the vacuum mode i1. This treatment is con-
sistent with the approach we have taken in the previous
section, and leads to the correct expression σ 2 = 1/α2 for
the uncertainty on the phase. More relevantly to our pur-
poses, this expression offers an intriguing picture: the shot
noise observed with coherent states is a consequence of
the fluctuations of the vacuum modes entering the appa-
ratus through the unused port, as originally recognized in
Ref. [65].

The only way of preventing a vacuum from entering
is replacing it with another state: improving on the shot
noise then demands controlling the fluctuations. In fact,
the variances on the quadrature operators ought to satisfy
Heisenberg’s relation �2x�2p ≥ 1/4, properly rescaled
to our choice of units, yet there is no individual bound
on either; we can reduce one at will, provided that the
other is increased consistently. Therefore, a suppression
of the fluctuations on the x̂ quadrature as �2x = e−2s/2
must be compensated by increased fluctuations on the p̂
quadrature by at least �2p = e2s/2. States displaying such
a property are called squeezed states [44,66–68]; in partic-
ular, when the quadratures are centered on zero, the state
takes the name squeezed vacuum, although the average
photon number in the squeezed vacuum is not zero, but
n̄ = sinh2(s) [28]. Thanks to squeezing, the uncertainty
in our phase measurement can now be improved as σ 2 =
e−2s/α2, in the regime n̄ � |α|2 [44]. This scheme already
offers a concrete advantage; nevertheless, it is not optimal:
an explicit calculation gives F(φ) = α2e−2s + n̄ [69]. The
reason why this result is not recovered by means of error
propagation can be traced to the poor performance of the
average intensity as the estimator [69]. If the energy is
equally parted between the coherent state and the squeezed
state, i.e., |α|2 = n̄, this implies HL with the total number
of photons.

Producing a squeezed vacuum in a laboratory requires
processes in which photons are produced in pairs, since its
expression in Fock states reads [28]

|ζ 〉 = sech1/2s
∞∑

n=0

[2n!]1/2

n!

[
− 1

2
eiϑ tanh s

]n

|2n〉, (15)

where ϑ is associated with the squeezed quadrature. Non-
linear optics offers a solution by means of parametric
processes, in which two photons originate from the con-
version of one photon in an optical crystal (parametric
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Pump

Parametric
process

Squeezed
vacuum

FIG. 6. Scheme for the production of squeezed vacuum states.
A pump beam provides the energy to drive a nonlinear optical
parametric process by which a squeezed vacuum is produced.
The Hamiltonian pertaining to this coupling is quadratic in â and
â†, ensuring the even photon-number superposition in Eq. (15).
The variance of the quadrature q̂ thus depends on the phase ϑ .

down-conversion), or two photons in atomic vapors or
fibres (four-wave mixing), as depicted in Fig. 6. The first
reported production of squeezed light is that in Ref. [70]:
the source was based on four-wave mixing in a sodium gas
jet in an optical cavity, and a noise reduction of 0.3 dB was
achieved. This was followed shortly by other experiments
based on optical nonlinearities in a fibre [71] and in a crys-
tal [72]. Early examples of the enhancement in precision
based on squeezed light are found in Refs. [73,74].

The sources are often inserted in a cavity in order to
enhance the nonlinear optical interaction with the pump
beam: squeezing is thus revealed in the noise reduction in
the sidebands of a continuous homodyne signal [11]. These
are normally operated at a few megahertz [75], but, thanks
to specific technical solutions, operation in the gigahertz
regime can also be achieved [76,77]. Extending the work-
ing range down to the smaller frequencies is much more
challenging in comparison, due to the presence of classical
noise in that region: it took decades of patient craftsman-
ship [78] in order to make it possible to put squeezing at the
service of gravitational wave detection [79]. Alternatively,
pulses can be adopted for pumping, making it possible to
produce squeezing in the time domain [80–82]. Finally,
these two approaches can be merged in order to produce
squeezing in frequency combs [83].

If there is a Moriarty to every Holmes, loss does indeed
play that role for quantum enhancement: some of the
photons do not contribute to the final signal, nonethe-
less these resources have been produced and prepared, but
wasted for the sake of estimation. This is a severe but not
ruinous restriction when using squeezed states: if transmis-
sion occurs with loss 1 − η, the variance of the squeezed
quadrature will be a weighted sum of the initial one and
that of the vacuum: �2x = ηe−2s/2 + (1 − η)/2. Noise
suppression is reduced—the vacuum has found its way
back into the interferometer—but not lost. This mechanism
explains why squeezing is the optimal choice for gravi-
tational wave measurements [84]; currently, it has been
applied with success to more involved problems, includ-
ing monitoring of biological specimens [85], tracking of

time-changing phases [86], and problems in magnetom-
etry [87,88]. On the other hand, the detection scheme is
sensibly affected by phase fluctuations. This amounts to
averaging the noise over rotated quadratures, which have
components along x, the squeezed direction, as well as
p , which has excess noise with respect to the SNL: this
noise will enter the detection through this averaging, hence
spoiling the enhancement. Such a mechanism sets practical
limits to the amount of squeezing that may be efficiently
employed. This is made even worse by the fact that the
pure squeezed vacuum (15) is a distant approximation of
the state actually produced: parasitic nonlinear processes
couple the squeezed mode to others, resulting in excess
noise in the p̂ quadrature, with respect to what is expected
from the level of squeezing [89].

For problems involving two modes, the use of an entan-
gled two-mode squeezed vacuum can be relevant; these
are produced by interference of two squeezed vacuum
modes on a symmetric beamsplitter, with the same level of
squeezing, but along orthogonal directions in phase space.
They show correlations in the value of the quadratures
of the two modes, e.g., p1 and p2, in that the variance
of their difference �2[(p1 − p2)/

√
2] remains below the

vacuum noise level [28,90]. This implies that the conju-
gate quadrature (x1 − x2)/

√
2 must show increased fluc-

tuations. The other linear combination [(x1 + x2)/
√

2],
instead, is squeezed by the same amount. These states can
also be produced by means of a nonlinear optical inter-
action, either parametric down-conversion or four-wave
mixing, realized by coupling the pump mode to two modes
at lower frequencies, made distinguishable in direction
or mean wavelength. A suppression of the variance by a
factor e−2s corresponds to the state

|ζ2〉 = 1
cosh s

∞∑
n=0

[−eiϑ tanh s]n|n〉1|n〉2, (16)

where, as above, ϑ identifies a pair of squeezed quadra-
tures. The photon numbers of the two modes are perfectly
correlated, an effect at the basis of their application to
quantum imaging [90–93], and quantum plasmonic sens-
ing [94]. Their usefulness in correlated interferometry, in
which two correlated phases pertain to two distinct MZIs,
has also been demonstrated [95]. As with their single-mode
sisters, ideal two-mode squeezed states in Eq. (16) are
an idealization of an experimental case degraded by loss
and parasitic processes; nevertheless, they provide good
guidance in experimental design.

B. Fixed photon-number states

When using electromagnetic fields, we can find it con-
venient to design the state fixing the number N of photons
that can be used in a run. For phase estimation, these need
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N00N

FIG. 7. Illustration of N00N states, here with N = 2. In the
optimal measurement scheme, the two modes are superposed on
a beamsplitter, before resolving the photon number on the two
outputs: the phase φ can be reconstructed based on the observed
frequencies of the different occupation numbers.

to be subdivided between a probing arm, on which our tar-
get object sits, and a reference arm; the state is thus written
in the most general form as

|ψ〉 =
N∑

k=0

αk(â†
p)

k(â†
r )

N−k|0〉

=
N∑

k=0

βk|k〉|N − k〉, (17)

where â†
p (â†

r ) is the creation operator for the probing (ref-
erence) mode. The coefficients αk or, equivalently, βk are
chosen in order to maximize the Fisher information for a
given evolution. In the simplest case, the phase is imparted
by the operator Û(φ) = eiφ(n̂p −n̂r)/2, as in the MZI. The
optimal state is thus that with the highest variance�2(np −
nr) corresponding to β0 = βN = 1/

√
2, with the remain-

ing coefficients being zero, as first recognized in Ref. [96];
see Fig. 7. These states are commonly called N00N states,
with an obvious pun on their expression in the Fock basis
[97], and provide a QFI H(φ) = N 2, reaching Heisenberg
scaling in line with the considerations in the previous chap-
ter. It should be noted that we have no control on individual
photons in these states: in a particle picture, a collective
measurement on all N photons is required for optimal
extraction of information.

In many proof-of-principle experiments, N00N states
have been the workhorse for quantum metrological tasks
[98–104]. A common device for their production, which
only works for N = 2, is to make two indistinguishable
photons arrive at the same time at a beamsplitter [105]: the
output state is in the N00N form |20〉 + |02〉 over the two
output modes. Here, indistinguishability is key to ensure
that the two-photon interference process suppresses the
|11〉 component [106,107], which would not contribute to
our measurement task; when used in the Mach-Zehnder
configuration, this term would lead to fringes with reduced
visibility. Extending this to the interference of two Fock
states does not lead to generic N00N states; nevertheless,
the output state, often going under the name Holland-
Burnett state, is again capable of providing a 1/N 2 scaling
of the variance [108].

Although there exist nowadays multiple solutions for
producing single photons [13,109], a recipe for using them
to build N00N states deterministically is not known, let
alone arbitrary states; there are, nevertheless, different
proposals for their probabilistic, but heralded, production
[110–113]. Ad hoc solutions have been devised in order
to produce states with N > 2 [114–116], or states with
similar metrological power [117–121].

It was emphasized, from the very first reports [114], that
the presence of fringes oscillating with Nφ, what is called
superresolution, does not guarantee per se supersensitiv-
ity, i.e., improved uncertainty. In fact, the superresolution
mechanism can be, and has been [122,123], replicated with
classical light: it just requires measuring coincidences in a
clever interferometer arrangement. When compared with
squeezed states, loss has a more harmful impact on quan-
tum phase estimation performed with N00N states, and,
in general, with fixed-photon states: with these probes, the
advantage in using quantum resources may be completely
spoilt. This can be understood as follows: a coherent state
with N photons on average will be transformed by loss to
a different coherent state with lower energy [28]. The asso-
ciated minimal uncertainty is then increased to 1/

√
ηN . In

a N00N state, instead, the loss of a single photon destroys
quantum coherence—one would be able to tell from which
mode the photon came—and, thus, only those events lead-
ing to all N photons being detected provide information on
the phase; the probability of this event scales as ηN , reduc-
ing the available Fisher information accordingly [124].
Using a N00N state is not necessarily the wisest choice,
and optimal coefficients βk in Eq. (17) can be calculated for
the actual lossy evolution [124–126]. The expressions are
rather cumbersome, and it is hard to derive general consid-
erations other than the higher the loss, the more complex
the structure of the state. Since the values of the coeffi-
cients depend on the value of η, it needs to be known in
advance in order to design the state; an experimental real-
ization has been reported in Ref. [127], with further work
emphasizing the possibility of remedying, in part, at the
measurement stage [128]. However, it may not be possi-
ble or convenient to design a sensor that can tailor states
to the channel: fortunately, the class of Holland-Burnett
states exhibits a good degree of resistance to loss, and
can be considered a practical resource for lossy quantum
phase estimation [126]. While a rigorous assessment of
quantum advantage should consider a comparison of quan-
tum and classical Fisher information, a simple rule reads
[122,129]

ηtotv
2N > 1, (18)

where ηtot is the total efficiency, including detection and
generation when nondeterministic, and v is the contrast
of the fringes. Thanks to the enormous progress in high-
efficiency detectors, demonstrations of an unconditional
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advantage in quantum phase estimation with two-photon
N00N states has been reported [130]. As far as scaling
is concerned, however, the possibility of achieving the
HL is compromised by decoherence [131,132]. At best,
we can realistically expect conditions sitting between the
SNL and HL, unless we are able to access that part of the
environment that is causing the noise: in that limit, a feed-
back mechanism can be implemented to recover part of the
initial advantage [133].

The working conditions for the interferometer should be
set where sensitivity is the highest and more robust against
imperfections. While, under ideal conditions, all values of
the phase φ should show the same Fisher information, as
exemplified by Eq. (8), imperfect fringe visibility makes it
convenient to fix φ to one specific value [134]. In grav-
itational wave detection, for instance, the interferometer
operates close to the dark fringe condition [79], while in
a MZI φ � π/2 is often preferred. Such an operation can
be achieved by means of adaptive estimation [135,136],
which is typically based on Bayesian techniques; this has
been demonstrated in Refs. [56,137] with single photons,
in Ref. [138] with N00N states, and in Ref. [139] with
squeezing. In this case the CRB cannot be applied to the
whole estimation process, since it assumes local conditions
upfront.

V. MULTIPARAMETER ESTIMATION

A. The quantum Fisher information matrix

This far, we have not looked into the fact that all
properties of the probe state may emerge modified after
the measurement, and how this translates in our context.
Turning back to Heisenberg’s example, we can observe
that, first, the measurement is insensitive to the electron’s
momentum and, second, the state after the measurement
carries no information on the original position and momen-
tum. Therefore, if we aimed at collecting information on
both quantities at once, oblivious of quantum mechanics,
we would have failed spectacularly.

Based on these considerations, we can now face the
problem of generalizing our treatment to the multiparam-
eter case; we now aim at measuring a set of parameters

φ = {φ1,φ2, . . . ,φP}, searching to come as close as pos-
sible to the best possible precision. The values of the
parameters are all inferred from the outcomes of M rep-
etitions of the measurement of the quantity x, exactly as
in the single-parameter case. This task is not as severely
restricted as attempting the measurement of incompati-
ble observables: we can design a strategy to end up with
a value for each φi. The limitations concern the qual-
ity of the estimation: the optimal measurement for one
parameter may not be sensitive to some of the others or
two or more such measurements cannot be implemented
jointly [140].

In order to describe uncertainty in the multiparameter
case, the covariance matrix � is introduced:

�h,k = E[(φ̃h − φh)(φ̃k − φk)]. (19)

The diagonal element �h,h gives the variance on φh, while
the off-diagonal elements satisfy �h,k = �k,h, and quan-
tify how much our estimates of φh and φk are statistically
correlated.

The classical Fisher information itself can be expressed
as a symmetric matrix [46]:

Fh,k( 
φ) =
∫

dx
1

p(x| 
φ)
∂p(x, 
φ)
∂φh

∂p(x, 
φ)
∂φk

. (20)

The corresponding CRB then reads

� ≥ 1
M

F−1, (21)

meaning that (� − F−1/M ) is a non-negative matrix
or, equivalently, that for any unit vector 
u, we have

u ·�
u ≥ 
u · F−1
u/M . In scalar form, we can use it to
bound the individual variances as

�h,h ≥ 1
M
(F−1)h,h. (22)

We now try and attach a meaning to both the diagonal and
off-diagonal terms in F; for the sake of clarity, we consider
the example of P = 2 parameters, but our considerations
extend to the general case. For these 2 × 2 matrices, the
scalar bound for φ1 is given by the simple formula

�1,1 ≥ 1
M

1
F1,1 − F2

1,2/F2,2
, (23)

and a similar expression holds for �2,2. The scalar limit
�1,1 ≥ 1/(MF1,1) is recovered when the diagonal term F1,2
vanishes or when F2,2 is infinite, i.e., when φ2 is per-
fectly known. This leads us to identify Fh,h as the Fisher
information on one parameter when all others are known,
and Fh,k as the quantifier of how much the uncertainty on
the parameter φk affects that on φh, and the other way
around. The quantity F (eff)

1,1 = F1,1 − F2
1,2/F2,2 represents

an effective value for the available Fisher information on
the parameter φ1.

As for the single-parameter case, a comparison can be
carried out between the experimental covariance matrix �
and the prediction of the CRB �0 = F−1/M . Also in this
case, a quantitative assessment can be carried out by means
of a variable that is χ2 distributed [141]. This has to take
into account that, for the two matrices to match, both the
magnitude of the uncertainties and their correlations must
be compatible with the predictions.
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B. Using quantum resources

The extension to the quantum case should be appar-
ently straightforward: if one builds on the ideas leading
to Eq. (20), it is natural to define a quantum Fisher
information matrix as [46,47]

Hh,k( 
φ) = 1
2 Tr[ρ 
φ{Lh, Lk}], (24)

where Lh is the SLD associated with the parameter φh
and the curly brackets denote the commutator. It can be
demonstrated that a matrix QCRB holds:

� ≥ 1
M

F−1 ≥ 1
M

H−1. (25)

However, we are left without unambiguous guidance
towards the optimal measurement, as the bound only tells
us that each Lh is connected to the best choice for φh. More
information is collected by looking at the so-called weak
commutators

Dh,k = i
2

Tr[ρ 
φ{Lh, Lk}]. (26)

Whenever Dh,k = 0, there exists a measurement able to
achieve optimal precision for φh and φk at once; unfortu-
nately, the optimal choice may be a collective measure-
ment performed on all M copies [140,142]. We can still
make use of the quantum Fisher information matrix to
assess how well a given strategy is scoring, but, for this
purpose, it is necessary to introduce scalar quantities to
be compared. The usual choice is to consider a weighted
sum of the individual variances � = Tr[W�], where W is
a diagonal matrix containing the weights; we thus obtain a
lower limit

� ≥ 1
M

Tr[WH−1], (27)

and different strategies can be assessed on how close they
come to it. A distinct evaluation criterion is based on
assessing how much of the available information has actu-
ally been extracted by the selected measurement; the figure
commonly employed for this purpose is

ϒ( 
φ) = Tr[FH−1]. (28)

This quantity ranges from 0, in the trivial case of an unin-
formative measurement, to P, when all parameters are
estimated jointly at their ultimate precision.

Should we be interested in a different parameter set 
θ ,
which is a function of the original 
φ, the corresponding
Fisher information matrices, classical and quantum, are

found as

F
θ = B F 
φ BT,

H
θ = B H 
φ BT,
(29)

where the elements of the reparametrization matrix B are
given by the derivatives Bi,j = ∂φj /∂θi.

In a pure-state model, the evolution leads the initial state
|ψ0〉 to |ψ 
φ〉 = e−i 
G· 
φ|ψ0〉, where 
G is the vector of the
generators associated with the different parameters. By a
similar procedure as for the single-parameter case, we find
that

〈ψ 
φ|LhLk|ψ 
φ〉 = 4(〈GhGk〉 − 〈Gh〉〈Gk〉); (30)

therefore, the Fisher information matrix (24) is pro-
portional to the symmetrized covariance matrix of the
generators.

C. Multiparameter Mach-Zehender interferometry

As a much needed clarifying example, we consider a
MZI in which we aim at estimating the phase φ and the
transmittivity of the first BS t, jointly. As with our first
example, we use a single photon as the input, while, for
our measurement, we consider a second BS with variable
transmittivity tm, and one APD on each output mode.

The state emerging from the evolution is in the form
|ψφ,t〉 = (t|1, 0〉 + reiφ|0, 1〉)we discussed above, this time
interpreted as a function of both parameters φ and t. The
SLDs are found with the pure-state model, and deliver an
expression for the quantum Fisher information matrix of

H =
(

Hφ,φ 0
0 Ht,t

)
(31)

with Hφ,φ = 4t2(1 − t2) and Ht,t = 4/(1 − t2). The weak
commutator, however, is nonzero, and thus we have to give
up any hopes of finding a single measurement by which
the two parameters can be estimated at once at their best
possible precision.

We can now inspect our choice of measurement, and
calculate the quantities Fφ,φ and Ft,t, observing a trade-
off as we vary the measurement setting: for tm = 0, Fφ,φ

vanishes and Ft,t = Ht,t, while for tm = 1/
√

2, Ft,t = 0 and
Fφ,φ = Hφ,φ for φ = π/2. It would be wrong to think that
by properly setting tm we may find a trade-off condition
that allows us to estimate φ and t: the whole Fisher infor-
mation matrix must be calculated and inverted, and this
reveals it is singular for any value of tm. This means,
through the matrix QCRB (25), that the covariance matrix
diverges. No information on the individual parameters can
be inferred. This is a consequence of the fact that we
cannot resolve two parameters from only two normalized
detection probabilities.

010202-13



MARCO BARBIERI PRX QUANTUM 3, 010202 (2022)

As a viable strategy, we can alternate between perform-
ing a measurement at tm = 0 and a measurement at tm =
1/

√
2 with weights w and 1 − w, respectively; this corre-

sponds to a four-outcome generalized measurement. This
eventually leads to the bounds

F (eff)
φ,φ = wHφ,φ ,

F (eff)
t,t = (1 − w)Ht,t.

(32)

As for the information extraction efficiency, ϒ(φ, t) takes
the value 1, independently of w, to be compared with the
maximum possible value 2. This means that such strate-
gies are unable to extract all the information available in
principle on the two parameters.

D. Further bounds

There is another point to be considered: we have intro-
duced a derivative operator for quantum states in its sym-
metric form (9), but this option is not unique. In fact, we
may introduce a right logarithmic derivative (RLD) Rh
associated with φh following Yuen and Lax [143] as

∂ρ 
φ
∂φh

= ρ 
φRh (33)

for a single parameter φ, and an alternative Fisher infor-
mation matrix as

Jh,k( 
φ) = Tr[R†
hρ 
φRk]. (34)

Note that J( 
φ) is not necessarily real, and it sets the lower
bound

� ≥ 1
M

{Tr[W Re(J−1)] + ‖
√

W Im(J−1)
√

W‖1}, (35)

where ‖A||1 = Tr[
√

A†A] [144]. In the single-parameter
case, it can be verified that the SLD always leads to the
tightest bound [145]; this property does not extend to the
multiparameter case, and thus both cases must be inspected
to assess the stricter bound.

As an example, we can study the case of the simulta-
neous estimation of the real and imaginary parts of the
amplitude α of a coherent state. We can adopt a pure-
state model by means of the displacement operator |α〉 =
e−√

2i(αrp̂−αix̂)|0〉, where we have defined αr = Re(α) and
αi = Im(α) [11,28]. The generators of the two parameters
are thus Gr = √

2p̂ and Gi = −√
2x̂, leading to a diagonal

SLD Fisher information matrix:

H =
(

4 0
0 4

)
. (36)

RLD operators cannot be constructed for pure states; how-
ever, we can make use of a theorem by Fujiwara [146,147]

stating that, if the SLD operators satisfy the D-invariance
condition [148], we can nevertheless associate a RLD
quantum Fisher information matrix to |ψ 
φ〉 satisfying

J−1 = H−1 + H−1 D H−1, (37)

where the matrix D is one of the weak commutators (26),
and for this example, reads

D =
(

0 −4i
4i 0

)
, (38)

eventually leading to the expression

J−1 = 1
4

(
1 −i
i 1

)
. (39)

For equal weights, W = I, the contribution of the imag-
inary part of J in Eq. (35) is ‖Im(J−1)‖1 = 1/2, thus
revealing how the RLD bound becomes the most informa-
tive one; this was originally highlighted by Yuen and Lax
[143].

Further generalization can be obtained by a construc-
tion due to Holevo [47] that considers families of oper-
ators 
X = {Xh} such that Tr[Xh∂ρ 
φ/∂φk] = δh,k. Defining
Zh,k[ 
X ] = Tr[ρ 
φXhXk], a lower bound is set as

� ≥ 1
M

min

X

(Tr[WRe(Z{ 
X })] + ‖
√

WIm(Z{ 
X })
√

W‖1),

(40)

which is tighter than those obtained from the logarithmic
derivatives (27) and (35), and can be saturated in princi-
ple, but allowing for collective measurements [149–152].
Remarkably, the same D-invariance conditions ensuring
the optimality of the RLD bound also grant that this cor-
responds to the Holevo bound [153]. Although an explicit
analytical calculation of this limit is often unattainable, it
can be put in the form of a semidefinite problem that allows
us to find numerical solutions efficiently [154].

E. Applications

Investigations of multiparameter bounds have been
inspired by the possibility of accessing complex signals
in communications [143,145]. In the optical domain, this
problem can be recast as the estimation of a displacement
in phase space, comprising a real and an imaginary part,
which we have discussed in the previous paragraph. This
was initially studied in Ref. [155], in which the use of
two-mode squeezed states was shown to be beneficial; the
experimental realization followed shortly, highlighting the
connections of this problem to that of continuous-variable
dense coding [156]. The tightness of the SLD- and the
RLD-based bounds depends on the value of the squeezing
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parameter r, with the first bound being more relevant for
high squeezing; remarkably, the Holevo bound provides a
unifying view of the optimal precision [157].

Extending the simple two-mode interferometer case, the
estimation of multiple phases {φh} in a multiarm arrange-
ment represents a relevant application of the multipa-
rameter approach, also because it models phase imaging
of transparent objects. Since these refer to independent
modes, all corresponding generators Ĝh commute, and thus
we may expect that these parameters can be estimated
jointly at their ultimate precision: explicit calculations on
fixed photon-number states [158] as well as on Gaussian
states [159] have demonstrated this is the case. The key
aspect is finding a measurement that can, in principle, sat-
urate the matrix CRB (27), while delivering the values of
each individual φi. The expression for such a measure-
ment can be found explicitly, however finding a realistic
implementation for it in the laboratory is an entirely dif-
ferent matter. These measurements, in fact, need to obey
symmetry conditions [160], which may not be satisfied
by experimentally viable interferometers [161,162]. The
unavailability of such optimal schemes, however, only
makes the strategies partially suboptimal, without compro-
mising the quantum enhancement: this has been demon-
strated in the experiment in Refs. [163,164], addressing the
estimation of two phases in a three-arm integrated inter-
ferometer. The general theory for the sensitivity in such
systems has been derived in Ref. [165]: understanding the
limits demands complementary particle and mode descrip-
tions of the problem in order to define the SNL and the HL
in multiphase problems, and how to attain states able to
achieve those.

The many complications behind multiparameter estima-
tion recommend restricting its use when necessary. For
instance, in the example of the MZI above, it would not be
worth investing resources in estimating t, when this param-
eter can be accessed with a calibration. The same applies
for the loss η of the system, including the efficiencies of
the detectors. For such cases, an off-line procedure that
assesses all relevant nuisances is a much more appealing
option. In particular, studies have been devoted to under-
standing optimal estimation of loss; these have demon-
strated that this task remains essentially classical, in that
the scaling of the uncertainty with the resources always
follows the SNL �2η ∼ 1/N [53,166].

When the sample is inserted, however, further loss may
occur; thus, the transmission of this object may seem
to constitute a valid parameter to be estimated, jointly
with the phase. The explicit calculations demonstrate a
similar trade-off in the available Fisher information for
these two parameters [154]. Whether this approach is
worth pursuing is dictated by the details of the problem:
if loss, in our example, or any other parameter in gen-
eral, is subject to variations as phase is measured then
a multiparameter approach guarantees that the working

conditions are assessed properly as the measurement
evolves. This may be the case when monitoring of time-
dependent parameters [86], or when spurious effects come
into play [167,168].

The problem of estimating small separations in images
serves as an epitomizing example. Lord Rayleigh put for-
ward some simple considerations on the resolution of
imaging systems [169], which can be summarized, in mod-
ern terms, as the impossibility of telling two point sources
apart, if their point spread functions significantly over-
lap. In the language of parameter estimation, the Fisher
information associated with the separation d vanishes
as d approaches zero; this is commonly referred to as
Rayleigh’s curse [170]. But we have just learned that the
Fisher information for one specific measurement scheme
being zero does not amount to possessing no information
on that parameter under all circumstances: we may have
been very clumsy in choosing our measurement and, in
fact, we have. Direct intensity detection is indeed a poor
option, and there exist alternative schemes, notably based
on coherent detection [171], for which the Fisher infor-
mation does not vanish. These have been first proposed in
Ref. [170], and then demonstrated with spatial degrees of
freedom [172–175], as well as with spectral and temporal
properties [176].

In real scenarios, however, the position of the centroid
of the two sources is needed, since the optimal measure-
ment for the separation d requires its value. Furthermore,
the protocol can be made robust against differences in
the intensities from the two sources, but this unbalance
should be known [177]. The proper approach to follow
is then the multiparameter scenario [178]. Remarkably,
the available Fisher information can remain finite, even
when accounting for the correlations between the param-
eters, as demonstrated in an experiment addressing the
frequency-time domain [179]. This also extends to consid-
ering the simultaneous estimation of axial and transverse
separations of the two sources [180–182].

VI. CONCLUDING REMARKS

In attempting predictions about such a swiftly chang-
ing field as quantum metrology we run the risk of making
a spectacle of ourselves. Nevertheless, we can venture to
take interpolations of current trends in order to try and
ground our speculations.

The production of quantum states of light, especially
squeezed states, demands a certain familiarity with non-
linear optical effects. It was thus natural to start asking
questions about the potential of nonlinear evolution for
quantum metrology [54]. Replacing beamsplitters with
active elements has been shown to deliver phase estimation
beyond the SNL [183,184], with distinctive advantages in
terms of loss tolerance [185] and spatial properties [186].
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Multiparameter scenarios can be extended to cases with
a continuum of parameters, notably that of waveforms
[187,188] and, in general, varying signals in time [189].
Reaching the continuous limit imposes nontrivial con-
straints to the optimal use of resources, which must take
into account uncertainties associated with both direct mea-
surements as well as interpolation; in turn, fundamental
limits to estimation depend on the regularity of the signals
[190].

The systems to be accessed by quantum probes need not
be localized in one spatial location: extending this frame-
work to include the monitoring of distributed systems has
led to intense activity [191–194], which is also fostering
considerations on security [195,196].

These three examples point to three different directions
taken by quantum metrology in the interaction with, viz.,
nonlinear optics, signal processing, and quantum commu-
nications. As no discipline is an island, maintaining the
vitality of quantum metrology in the future is tied to con-
tinuing to listen to problems and challenges coming from
other fields.

The literature of reviews on quantum metrology is
rich, and can satisfy tastes and needs of all sorts. The
short reviews in Refs. [1,197] are excellent primers
on concepts and methods, while Ref. [198] presents
more advanced material, equally precious to theorists
and experimentalists wanting to delve into the subject.
Those feeling the need for more introductory material
on quantum optics are referred to Refs. [199,200]. Ref-
erence [7] assumes some solid background in quantum
information, but illustrates meticulously the connections
to informational aspects. As for multiparameter esti-
mation, Ref. [201] offers a gentle introduction to the
topic, while Refs. [147,202] provide a wider overview.
Focusing on photonics, Ref. [2] and especially Ref. [3]
provide a comprehensive discussion on recent progress;
the reviews in Refs. [4,5], instead, are dedicated to a
different architecture, but present very accessible general
discussions.
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APPENDIX A: BASIC QUANTUM OPTICS

We provide a short guide to the quantum treatment of
light to those readers who are not entirely confident with
this topic, yet have an interest in quantum metrology. This
has the purpose of helping them through the calculations
we have employed in the main text.

The simplest quantum treatment of light consists of
introducing photons as massless particles, with degrees of
freedom taken from the corresponding mode of the elec-
tromagnetic field. The photon therefore has momentum
k = hc/λ, energy �ω, spin 1 related to its polarization
(with the component at ms = 0 being suppressed due to
the transverse nature of the waves); this description can
be extended to include wavepackets in time or states with
orbital angular momentum. This is akin to forcing a first
quantization treatment to the photons, which leaves much
to be desired, but nevertheless provides useful guidance for
an intuitive understanding of experiments.

The proper way of treating the field relies on a second
quantization. A harmonic oscillator is associated with each
mode of the field, and thus the respective Hamiltonian is
�ω

(
n̂ + 1/2

)
, where the number operator n̂ has a discrete

spectrum n = 0, 1, 2, . . . and counts the number of elemen-
tary excitations, i.e., what we have introduced as photons.
Eigenstates of the energy are the number states, or Fock
states, |n〉. Note how the vacuum state |0〉 is associated
with a nonvanishing energy; this is responsible for observ-
able phenomena, foremost the presence of spontaneous
emission.

The number operator is written as the product of two
non-Hermitian operators n̂ = â†â, whose actions on num-
ber states are â†|n〉 = √

n + 1|n + 1〉 and â|n〉 = √
n|n −

1〉. Since â† adds a photon on that mode, it takes the
name creation operator, and, for the opposite reason, â is
called the destruction or annihilation operator. They sat-
isfy the commutation relations [â, â†] = 1. Creation and
destruction operators help to define the quadrature oper-
ators x̂ = √

N0(â† + â) and p̂ = i
√

N0(â† − â), which can
be interpreted, as mentioned, as in-phase and in-quadrature
components of the electric field with respect to a local
oscillator, borrowing this picture from signal processing.
Their commutation relation is then [x̂, p̂] = 2iN0. Cre-
ation and destruction operators referring to nonoverlap-
ping modes, instead, commute, and, consequently, so do
quadratures.

Fock states have vanishing expectation values for the
field 〈n|x̂|n〉 = 0, 〈n|p̂|n〉 = 0; therefore, classical eletro-
magnetism cannot be recovered in the simple limit of
large-n states, as no phase can be associated with the Fock
states. The classical conditions of a field with given ampli-
tude and phase are approximated by minimal uncertainty
states, in the form of coherent states

|α〉 = e−|α|2/2
∞∑

n=0

α√
n!

|n〉, (A1)
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where α is a complex number associated with the field
amplitude. Coherent states are eigenstates of the destruc-
tion operator â|α〉 = α|α〉 and, while they are not orthogo-
nal 〈β|α〉 = exp[−(|α|2 + |β|2 − β∗α)/2], they still form
an overcomplete basis, in that any state ρ can be written in
the form

ρ = 1
π

∫
d2αP(α)|α〉〈α|. (A2)

The function P(α) is known as the Glauber-Sudarshan dis-
tribution, and can show singular behaviors, which are a
signature of nonclassicality. For coherent states, we get
〈α|x̂|α〉 = 2

√
N0 Re(α) and 〈α|p̂|α〉 = 2

√
N0Im(α), as we

could expect from the physical meaning we attached to α.
Coherent states are found by the application of the dis-
placement operator D̂(α) = eαâ†−α∗â to the vacuum state.
The action of D̂(α) is a rigid translation of the (x, p) phase
space so that the origin moves to the point with coordinates
x0 = 2

√
N0Re(α) and p0 = 2

√
N0Im(α) (hence its name);

in terms of the quadrature operators, the displacement
operator is written as D̂(x0 + ip0) = e−(i/2N0)(x0p̂−p0 x̂).

In the analysis of metrological protocols, we are often
demanded to evaluate the variance of the number or
quadrature observables in these states. For Fock states, n
is clearly a well-defined number, while the quadratures
have a variance �2x = �2p = N0(2n + 1). For coherent
states, we have�2x = �2p = N0, regardless of the ampli-
tude α: in the limit of large |α|, we recover classical fields
with well-defined amplitude and phase. As for the number
observables in coherent states, Eq. (A1) implies a Poisson
distribution with mean 〈α|n̂|α〉 = |α|2.

In the description of the state evolution, a rotating frame
is often used not to take into account fast phase oscillations
as e−iωt, and the Heisenberg picture offers a more practi-
cal approach. Linear systems will induce transformations
of the kind UâiU† = ∑

j ci,j âj , linking mode i with the
other modes involved in the evolution. For our purposes,
we mostly need to describe only two elements: the phase
shifter and the beamsplitter.

An object imparting a phase shift φ implements the
transformation of â to e−iφ â. Consequently, the output
quadratures x̂′ and p̂ ′ are rotated as

x̂′ = cosφx̂ + sinφp̂ ,

p̂ ′ = cosφp̂ − sinφx̂.
(A3)

A phase shift thus acts on the Fock state |n〉 by trans-
forming it to e−inφ|n〉, while this same operation brings the
coherent state |α〉 to |e−iφα〉.

A lossless beamsplitter is characterized by its transmis-
sivity t and its reflectivity r, satisfying |t|2 + |r|2 = 1; the
relation between the phases of r and t depends on the
chosen convention, compatibly with the unitarity of the
transformation. Calling x̂1 and x̂2 the quadratures of the

two input modes, these evolve to the output modes x̂′
1 and

x̂′
2 under the action of the beamsplitter as

x̂′
1 = tx̂1 + rx̂2,

x̂′
2 = tx̂2 − rx̂1.

(A4)

This implies that, given two input states in input arms, the
average value of the output quadratures will be the linear
combination of the input ones. As for their variances, we
obtain

�2x′
1 = t2�2x1 + r2�2x2 + rt(〈x̂1x̂2〉 − 〈x̂1〉〈x̂2〉), (A5)

and a similar expression for �2x′
2.

As an example, we consider a symmetric Mach-Zehnder
interferometer imparting a relative phase shift φ between
its two arms, divided up as φ/2 on one mode and −φ/2
on the other. It can be shown, by combining Eqs. (A3)
and (A4), that the action of the whole interferometer is a
single beamsplitter with transmittivity t = cos(φ/2). We
take a coherent state |α〉 and a squeezed state |α〉 as inputs;
for simplicity, we take α real and ϑ = 0 in the squeezed
state, corresponding to squeezing in the x̂ direction. A
measurement of the x̂′

2 quadrature leads to an average
value 〈x̂′

2〉 = 2
√

N0α sin(φ/2), with a variance �2x′
2 =

N0[cos2(φ/2) e−2s + sin2(φ/2)]. The minimal uncertainty
σ 2 on φ is found around φ = 0 by error propagation:

σ 2 = �2x′
2

d〈x′
2〉/dφ

∣∣∣∣
φ=0

= e−2s

α2 , (A6)

as we found in the main text.
Besides their relevance as actual elements in the appa-

ratus, beamsplitters are also employed as an effective
description for loss; in this case, the second input arm is
generally taken to be in the vacuum state, but when used
to describe an inefficient detector, a thermal state may
also model dark counts. In our example above, the effi-
ciency η of the detector lowers the average to 2

√
ηN0α

and raises the squeezed variance to N0(ηe−2s + 1 − η).
Consequently, the uncertainty σ 2 is now evaluated as

σ 2 = 1
α2

(
e−2s + 1 − η

η

)
. (A7)

Note how the term (1 − η)/η appears as added noise in the
fluctuations of the quadrature [203].

APPENDIX B: DERIVATION OF THE CLASSICAL
CRAMÉR-RAO BOUND

We detail here a proof of the scalar Cramér-Rao bound.
Two regularity conditions must hold: first, ∂ log p(x|φ)/∂φ
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must be regular for all x and φ and, second, for all estima-
tors φ̃(x), integration over x and differentiation by φ should
commute in the expression

∫
dx φ̃(x)

∂

∂φ
p(x|φ) = ∂

∂φ

∫
dx φ̃(x)p(x|φ). (B1)

We recognize that the right-hand side is the derivative
of the expectation value of φ̃(x), i.e., ∂[φ + b(φ)]/∂φ =
1 + b′(φ). The left-hand side of Eq. (B1) is the expecta-
tion value E[φ̃(x)V(x,φ)]. Since the expectation value of
the score is zero, the latter is also the covariance of the
two statistical variables V(x,φ) and φ̃(x). The Cauchy-
Schwartz inequality then states that the variances σ 2 =
V[φ̃(x)] and F(φ) = V[V(x,φ)] are bounded from below
by their covariance

V[φ̃(x)]V[V(x,φ)] ≥ E[φ̃(x)V(x,φ)]2, (B2)

implying through Eq. (B1) that

σ 2F(θ) ≥ [1 + b′(φ)]2. (B3)

Since the Fisher information is additive for independent
events, it follows that, after M repetitions, the total infor-
mation is MF(θ). This leads to the expression

σ 2 ≥ [1 + b′(φ)]2

MF(φ)
, (B4)

which reduces to the usual bound (4) for unbiased estima-
tors.

APPENDIX C: DERIVATION OF THE QUANTUM
CRAMÉR-RAO BOUND

The expression for the scalar quantum Cramér-Rao
bound is found as follows. For quantum states, the prob-
ability distributions p(x|φ) are obtained by Born’s rule:
p(x|φ) = Tr[ρφ�x] with �x the measurement operator
associated with the outcome x. By the definition of SLD
(9), we find that

∂p(x|φ)
∂φ

= Re(Tr[ρφLφ�x]). (C1)

Any strategy then has a Fisher information that is limited
above as

F(φ) ≤
∫

dx
1

Tr[ρφ�x]
|Tr[ρφLφ�x]|2

=
∫

dx
|Tr[

√
�x

√
ρφ

√
ρφLφ

√
�x]|2

Tr[ρφ�x]
. (C2)

The last step is needed to employ the Cauchy-Schwartz
inequality to the scalar product of matrices |Tr[X †Y]|2 ≤

Tr[X †X ]Tr[Y†Y]. Taking X = √
�x

√
ρφ/Tr[ρφ�x]1/2 and

Y = √
ρφLφ

√
�x, we get

F(φ) ≤
∫

dx Tr[ρφLφ�xLφ]

= Tr[L2
φρφ], (C3)

where we have used the fact that the measurement opera-
tors form a resolution of the identity. This can be employed
to show bound (11). The optimality of the eigenbase of Lφ
as the measurement choice can be demonstrated by direct
substitution, after observing that Tr[ρφLφ�x] must be real
for inequality (C2) to be saturated: this is not restrictive, as
Lφ can be taken as Hermitian. Since now �x = |x〉〈x| and
Lφ|φ〉 = lx|x〉, we obtain

F(φ) =
∫

dx l2x〈x|ρφ|x〉 = Tr[L2
φρφ], (C4)

concluding our proof.
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