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We identify five selected open problems in the theory of quantum information, which are rather simple
to formulate, are well studied in the literature, but are technically not easy. As these problems enjoy diverse
mathematical connections, they offer a huge breakthrough potential. The first four concern existence of
certain objects relevant for quantum information, namely a family of symmetric informationally complete
generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension
six, measurements saturating multiparameter Cramér-Rao bound and bound entangled states with negative
partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is
two-copy distillable.
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I. INTRODUCTION

Roman Stanisław Ingarden, one of the founding fathers
of the field, wrote in 1975: “The aim of the present
paper was only to give a general formulation of the
quantum-information theory of the Shannon type. The
theory requires further investigations and mathematical
development.” At the time this paper Quantum informa-
tion theory [1] was published, exactly 45 years ago, it was
difficult to predict that such a piece of research in math-
ematical physics could inspire a vast new field of science
and trigger a remarkable progress in experimental physics
and yield numerous applications.

Indeed, the field of quantum information (see Refs.
[2,3]) with its cornerstones of pioneering discoveries of
quantum money [4], quantum cryptography [5,6], quantum
dense coding [7], quantum teleportation [8], quantum-
information compression [9], and quantum computing
[10–12] has visibly matured recently, therefore, more and
more often we hear and read about quantum technologies.
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The latter aim at turning famous theoretical concepts such
as quantum cryptography into fully operational devices.
These applications, based on “standard” technologies
developed so far, possess essential functionalities solely
operating on quantum principles.

Along the course of the, so-called, second quantum rev-
olution, experimental efforts are mostly directed towards
solutions to practical problems, such as mitigation of the
noise and decoherence effects, or scalability. Therefore,
a discussion of perspectives within experimental quan-
tum information could certainly focus on new techniques
allowing for a better protection and control of quantum
systems.

On the theory side we observe a similar tendency.
Current research focus is on optimization of theoretical
protocols and experimental schemes, as well as discus-
sion of practical limitations of the techniques developed.
An example of a very recent, beautiful result [13] from
the field of quantum metrology can serve us the purpose
of illustrating the above trend. While it is known that,
so-called, superresolution techniques [14] allow one to
increase the precision beyond that of typical diffraction-
limited direct imaging, robustness of this method is not
fully understood. In Ref. [13], a scheme based on inten-
sity measurements involving spatial mode decomposition
has been scrutinized against experimental noise stemming
from the crosstalk between the modes used. Deteriora-
tion of the quantum superresolution benefits has been
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found. Based on the above example it is easy to imagine
a perspective article devoted to theoretical quantum infor-
mation, pointing areas and problems, within all the pil-
lars of quantum technologies [15], which require further
attention.

In our work, however, we take a perspective visi-
bly different from that described above. Being aware of
the currently relevant, particular challenges of theoreti-
cal quantum information, we ask ourselves whether there
is still room for ground-breaking, though not completely
unexpected, developments. To let this question have an
affirmative answer, we identify open problems with such
a breakthrough potential [16]. We require the problems to
be as follows:

(a) well studied and extensively covered by the topi-
cal literature, so that a convincing evidence of their
importance exists;

(b) technically hard, so that they require methodology
beyond the toolbox available at the moment;

(c) universal and with a rich mathematical underpin-
ning, so that they are not associated with narrowly
defined platforms or protocols.

The first criterion assures the recognition, the proposed
problems have gained. Being well studied implies that the
problems have a long history deeply immersed in the field
of (theoretical) quantum information, therefore, a future
solution shall expand the base of the field, rather than one
of its distant branches. The second criterion, beyond offer-
ing an explanation why the problems still remain open,
pertains to the future impact of the solutions. Presumably
advanced techniques necessary to tackle the problems, per-
haps not yet recognized or even established, will likely
make an impact beyond their initial niche. Finally, since
we observe the tendency towards specialization and nar-
rowing of the research conducted, trends that are essential
at a stage where initially broad concepts are being turned
into concrete devices, we look for breakthrough theoreti-
cal discoveries beyond this modus operandi. Likely, only
unexpected solutions to problems, which are not associ-
ated with a particular setup, can influence the whole field
of quantum information.

In our tight selection of the open questions to be
offered as a future inspiration and guideline for theoret-
ical research, we restrict our attention to five concrete
problems. Why five? As it turns out, the number six, if
used to set the dimension of the Hilbert space, is still
insufficiently well understood in the context of quan-
tum information. While the above justification gives as
good a reason as any other reason, the first two prob-
lems described below are in fact associated with symmetric
configurations in discrete Hilbert spaces, and the sec-
ond one is to some extent concerned with this special
dimension.

II. DISCRETE STRUCTURES IN THE HILBERT
SPACE

The space of pure quantum states of a fixed dimension
[17] N is isotropic—no quantum state is “more equal than
others.” However, this property does not exclude existence
of complex and at the same time well-organized struc-
tures inside the Hilbert space, e.g., particular constellations
of quantum states with prescribed properties. It is easy
to imagine, that each structure of such kind nurtures a
potential for quantum-information protocols such as those
used in error correction, or particular experimental tasks,
such as quantum tomography. Readers familiar with the
background of theoretical quantum information will likely
recognize that mutually unbiased bases (MUBs) and sym-
metric informationally complete positive operator-valued
measures (SIC POVMs) provide natural examples of such
structures. Intriguingly, in both cases there is an important
missing piece of the puzzle, which we now turn into an
open problem.

The Fire Chief appearing in the middle of The Bald
Soprano, a first play written by Eugéne Ionesco, says “I
should like to remove my helmet, but I haven’t time to sit
down” [18]. After saying this he immediately “sits down
without removing the helmet.” In one aspect of this per-
spective we are going to follow the same strategy. While
we have just declared that the number of proposed prob-
lems shall be lower than six, in the Appendix we describe
the sixth problem, extending the discussion of the cur-
rent section to cover the third constellation, perhaps better
known in classical considerations (therefore, we introduce
it in more detail), namely the Latin squares (LSs). We
have believed this problem would remain unsolved for a
longer time, however, this turns out not to be the case
anymore [19].

Following the common word of wisdom saying that the
proof of the pudding is in the eating we cut here the general
discussion and immediately pose the problems associ-
ated with the two constellations and structures mentioned
above.

A. Existence of SIC POVMs

Problem 1. Construct SIC POVMs in an infinite sequence
of dimensions, N1, N2, N3, . . .

Setup. A symmetric informationally complete positive
operator-valued measure [20,21] associated with an N -
dimensional complex Hilbert space HN is given by a set
of N 2 vectors |ψj 〉 ∈ HN satisfying the following overlap
relations:

|〈ψj |ψk〉|2 = Nδjk + 1
N + 1

, j , k = 1, . . . , N 2. (1)

This set defines a generalized quantum measurement capa-
ble to extract complete information concerning any density
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FIG. 1. Four pure states |ψi〉 span a regular tetrahedron
inscribed in the Bloch sphere and lead to a single-qubit sym-
metric informationally complete measurement (SIC POVM) for
N = 2. Can you find N 2 pure states of size N such that the cor-
responding projectors form a simplex inscribed into the set of
quantum states of a given order N?

matrix of order N described by N 2 − 1 real parameters.
Moreover, such a constellation of N 2 projectors onto pure
states forms a simplex inscribed in the entire N 2 − 1
dimensional set of density matrices of order N—see Fig. 1
for an N = 2 example. For an accessible guide to the SIC
problem in low dimensions consult Ref. [22].

Motivation. From a mathematical point of view, we ask
about the maximal set of complex equiangular lines [23]
in a given dimension N . From a physical perspective one
looks for a scheme of an optimal quantum measurement of
an arbitrary size N , distinguished by the fact that the num-
ber of projector operators is the minimal possible required
to gather complete information concerning the analyzed
state. Solving the SIC existence problem for any dimen-
sion will significantly contribute to our understanding of
the geometry of the set of quantum states [24].

According to the 1999 dated conjecture by Zauner [20],
for any dimension N there exists a fiducial vector, such that
all remaining N 2 − 1 elements of the desired SIC can be
obtained by acting on it with unitary matrices representing
elements of the Weyl-Heisenberg group.

Numerical solutions obtained in 2004 for all dimen-
sions up to N = 45 (Renes et al. [21]) were extended
in 2010 by Scott and Grassl [25] to N ≤ 67. Fur-
ther results from 2017 included dimensions N ≤ 121,
Scott [26] and N ≤ 151, Fuchs et al. [27]. In 2020
numerical solutions were known for N ≤ 193 and also
for N = 204, 224, 255, 288, 528, 725, 1155, 2208 (Grassl
[28]). Analytical solutions are known for N ≤ 53

[21,25,26,29], and several other dimensions, including
N = 57, 61–63, 65, 67, 73, 74, 76, 78–80, 84, 86, 91, 93, 95,
97–99, 103, 109, 111, 120, 122, 124, 127, 129, 133, 134, 139,
143, 146, 147, 151, 155, 157, 163, 168, 169, 172, 181–183,
193, 195, 199, 201, 228, 259, 292, 323, 327, 364, 399, 403,
489, 844, 1299—see Refs. [28,30,31]. Recently, new solu-
tions have been found in dimension N = 487, 628, 787,
964, 1027, 1228, 1447, 1684, 1852, 2404, 2707, 4099,
5779, 19 603, and 39 604 [32]

However, in spite of a considerable research effort [33–
37], the general conjecture of Zauner remains unproven.
Finding a family of SICs in any infinite sequence of
dimensions could become a decisive step in this direc-
tion. Furthermore, let us emphasize inspiring connections
to some major open questions in algebraic number the-
ory, including a key part of the twelve problem of Hilbert
[38–41].

B. MUBs in dimension six

Problem 2. Construct a set of at least four mutually unbi-
ased bases in dimension six or prove that there are no
seven MUBs in H6.

Setup. Consider a set of K bases {|ψm
i 〉} (1 ≤ m ≤ K ,

1 ≤ i ≤ N ) in N -dimensional complex Hilbert space HN ,
so that all vectors in each basis are orthogonal, 〈ψm

i |ψm
j 〉 =

δij . These bases are called mutually unbiased if any two
bases are unbiased, which means

∀i,j |〈ψm
i |ψn

j 〉|2 = 1
N

, m �= n. (2)

It is relatively easy to show that there exist no more than
N + 1 MUBs in HN . Moreover, for any N ≥ 2, there exist
at least three MUBs (see Fig. 2 for an N = 2 example).
If the dimension N is a prime number or a power of a
prime, N = pk, there exists a complete set of N + 1 MUBs
[42,43]. This implies that for a composite dimension repre-
sented by a product of powers of primes, N = pk1

1 . . . pkm
m ,

with pk1
1 ≤ pk2

2 ≤ · · · ≤ pkm
m , there exist (at least) pk1

1 + 1
MUBs [20,44]. It is also known that if one finds N MUBs
in dimension N the last (N + 1)th unbiased basis also exist
[45], so the maximal number of existing MUBs is either
equal to N + 1, or it is less or equal to N − 1.

Several methods to construct MUBs are known [44,46,
47] and all solutions for dimensions 2–5 are classified [48].
If N is a power of a prime, various properties of a complete
set of N + 1 MUBs are already understood [49–53], but
otherwise the number of existing MUBs remains unknown
[54–56]. In particular, for N = 6 a complete set would con-
sist of seven MUBs, but to date only solutions containing
three bases were found [57–67]. It is however known that
if a complete set of seven MUB exists, it cannot contain a
triple of product bases [68,69].
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FIG. 2. Three eigenbases of Pauli matrices σx, σy , σz span an
octahedron inscribed in the Bloch sphere and form a set of three
mutually unbiased bases for N = 2. There exist four, five, and six
MUBs in dimensions N = 3, 4 and 5, respectively. How many
MUBs exist for N = 6?

Any unitary matrix that relates two unbiased bases,
Uij = 〈ψm

i |ψn
j 〉, belongs to the set of complex Hadamard

matrices. This set consists of unitary matrices of order N ,
such that all its entries have the same squared modulus,
|Uij |2 = 1/N . Interestingly, the set of complex Hadamard
matrices is again fully characterized [70–72] up to N = 5.
As several new complex Hadamard matrices of order N =
6 were discovered a decade ago [73,74], it was tempting to
expect that they could lead to certain sets of four MUBs in
this dimension [64]. However, to date the maximal num-
ber of MUBs for N = 6 remains three, even though for
larger dimensions further connections between Hadamard
matrices and MUBs were found [75].

Motivation. On the one hand, finding a complete set of
MUBs in dimension 6 would yield an optimal scheme of
orthogonal quantum measurement in this dimension. More
importantly, deciding whether such a configuration exists
has significant implications for foundations of quantum
theory, as to date our understanding of basic properties of
finite-dimensional Hilbert spaces is not complete. On the
other hand, a possible nonexistence result is of a consid-
erable mathematical interest, as it would provide further
arguments that the number 6—the smallest product of
two different primes—is indeed very special and “less
equal than others.” Let us emphasize here that there is no
affine plane of order six and there are no orthogonal Latin
squares of order six, which inspired the problem discussed
in Appendix A. Research on the MUBs reveals further
intricate links between foundations of quantum theory
and several fields of mathematics, including Galois rings,
group theory, combinatorics, finite fields, and projective
geometry [76–84].

C. Further perspectives I

The two problems discussed above concern
finite-dimensional Hilbert spaces. However, the notion of
MUBs (or mutually unbiased measurements—MUMs) is
also present in experimentally relevant setups involving
continuous [85] or coarse-grained [86] systems. While
in the continuous case we maximally have three MUBs
[85], in the coarse-grained scenario [87] the situation is
much more elaborate. Interestingly, the special dimension
N = 6 is not at all distinguished in the coarse-grained set-
ting, since the systems of even dimension behave like the
continuous ones (no more than three MUMs)—only odd
dimensions nurture potential for more [87]. Whether this
fact is connected to the conundrum of N = 6 for discrete
systems remains and open question at the moment.

Real Hadamard gates play a key role in numerous
schemes of quantum-information processing. More gen-
eral, complex Hadamard matrices are instrumental in Prob-
lem 2 concerning MUBs, but they also become linked [88]
to Problem 1 on SICs. These matrices do exist in any
dimension—as for any dimension N we can write down the
Fourier matrix FN —in contrast to real Hadamard matrices
[55]. They were constructed by Sylvester more than 150
years ago [89], but it was Hadamard who first showed [90]
that such matrices do not exist unless N = 2 or N = 4k.
The celebrated conjecture due to Paley [91] that they do
exist for all dimensions not excluded by Hadamard is now
confirmed [92] up to N = 664. The point is that finding
a solution for N = 4k gives us no clues, whether a real
Hadamard matrix exists for N ′ = 4k + 4. We encounter a
similar situation in Problem 1, as finding SIC for a given
N sheds no light into the existence problem in dimension
N + 1. However, it is straightforward to construct an infi-
nite family of Hadamard matrices in dimension N = 2m by
tensor product, while we are still in search for a family of
SICs in an infinite sequence of dimensions. Knowing a SIC
configuration for a certain dimension N it might be easier
to look for another one in dimension N (N − 2), but such
a SIC dimension tower [35,36] remains, to date, of a finite
size only.

The first two problems deal with pure quantum states
from a single space HN , while the last one requires consid-
eration of at least its two copies, HN ⊗ HN . Such a space
with a tensor-product structure corresponds to a physical
system in which two subsystems can be distinguished. This
construction allows one to introduce product states and
entangled states, including the generalized Bell state (A1).

III. QUANTUM METROLOGY

In the Introduction we pointed towards current trends
and practical problems considered in quantum metrology,
such as those relevant for superresolution [13,14,93,94].
Now, in accordance with the desiderata formulated at the
beginning, we wish to pose a fundamental problem of
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a general relevance within a broad domain of quantum
metrology.

Problem 3. Provide general necessary and sufficient con-
ditions, depending on an unspecified probe state ρθ , rel-
evant for saturability of the quantum Cramér-Rao bound
(QCRB) in multiparameter quantum metrology on the
single-copy level.

Setup. Given a set of N > 1 parameters θ =
(θ1, . . . , θN ) to be estimated, one is concerned with the
precision of a chosen estimator θ̂ . We follow a usual
assumption that the estimator is unbiased. The precision
is then most often quantified by the covariance matrix
Cov(θ̂). Due to the famous quantum Cramér-Rao bound
we have the lower bound [95–104]

Cov(θ̂) ≥ Q−1, (3)

where the quantum Fisher information matrix is defined
as Qkm = 1

2 Tr [ρθ (LkLm + LmLk)]. The state ρθ depends
on the parameters θ to be estimated and can, in gen-
eral, be mixed. Moreover, Lk is the symmetric loga-
rithmic derivative given through the relation 2∂kρθ =
Lkρθ + ρθLk, where ∂k is the derivative with respect to
the parameter θk. This is not the only possible choice
of the formal setting—one can also, for example, con-
sider bounds involving right logarithmic derivative [105]
∂kρθ = ρθRk—however, here we focus only on the setting
with the symmetric logarithmic derivative (other settings
described below share many similarities when it comes to
the posed problem). The matrix inequality (3), as usual,
means that Cov(θ̂)− Q−1 is a positive semidefinite matrix.
Therefore, this bound becomes saturated if both matrices
entering the QCRB are equal.

For a condensed and comprehensive review of the his-
tory of the problem we refer to the “Zeitgeist” section
of Ref. [101], where important names such as Helstrom,
Belavkin, and Holevo, among others, enter the scene in an
appropriate chronological order.

The proposed problem concerns general conditions for
saturability of QCRB. By the word “general” we under-
stand that neither the number N of the parameters (and
their other features) nor the dimension and the form of the
probe state are fixed. Consequently, the necessary and suf-
ficient conditions for saturation of the bound must involve
the analyzed mixed state depending on N parameters,
ρ = ρ(θ1, . . . , θN ), and the set of symmetric logarithmic
derivatives.

However, there is one crucial distinction we need to
make. We assume that only a single copy of the state
ρθ is available. By allowing M copies of the probe state
ρ⊗M

θ and collective measurements (see Fig. 3 for compari-
son), we facilitate the asymptotic limit M → ∞, in which

(a)

(b)

FIG. 3. Pictorial comparison between quantum metrology on
the single-copy level (a) and with multiple copies being subject
to collective measurements visualized by a frame (b).

the problem has recently been solved [106]. The neces-
sary and sufficient condition in the asymptotic limit (see
below) is milder in comparison with the single-copy case
(even though here we know only some necessary condi-
tions), because the presence of many copies to some extent
sweeps away quantum incompatibility between noncom-
muting observables.

Below, we provide three particular results as a potential
starting point. We stress that we assume N > 1, as for the
case of single-parameter estimation all the conditions men-
tioned are trivially satisfied. It is well known that QCRB
can be saturated if all logarithmic derivatives commute,
i.e., [Lk, Lm] = 0, for all k, m = 1, . . . , N . This strong con-
dition imposed on the logarithmic derivatives is therefore
sufficient. In a special case, when the state ρθ is pure, a
weak variant of commutativity, i.e., Tr (ρθ [Lk, Lm]) = 0,
for all k, m = 1, . . . , N is proved to be both necessary and
sufficient [107]. The latter example, however, does not
meet the requirement of generality as assumptions about
the probe state appear. On the other hand, the same weak
commutativity condition is necessary and sufficient for all
states (not necessarily pure), in the aforementioned asymp-
totic limit [106]. However, on the single-copy level it
is known that the situation is more complicated, as yet
another necessary condition, situating itself somewhere in
between the other conditions, has very recently been estab-
lished [108]: all logarithmic derivatives need to commute
on the whole support of ρθ (see Theorem 3 in Ref. [108]).

An assumption which is often made and at the same time
jeopardizes generality of the problem is that the parameters
to be estimated are imprinted in the probe state by virtue
of a unitary transformation, i.e., ρθ = Uθ�U†

θ . The desired
necessary and sufficient conditions shall not depend upon
this assumption.
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Looking at the problem from an information-theoretic
perspective, the actual mathematical question behind it can
be posed in a slightly different way. We are concerned with
existence of a POVM (i.e., a measurement) for which the
corresponding classical Fisher information matrix equals
its quantum counterpart. Given such a measurement one
can then resort to a universal construction of a locally unbi-
ased estimator saturating the classical Cramér-Rao bound
[see Eq. (9) in Ref. [100] ].

Motivation. Theoretical and experimental quantum
information entered the era, when more and more often
people speak about quantum technologies. However, with
an advanced technology, we usually associate a mindset
in which details are tailored to perfection. At the same
time, used schemes are being optimized under realistic (not
idealized) assumptions.

While the above by itself justifies efforts aiming at
closing fundamental gaps in the theoretical framework,
there is more to that than just formally oriented curios-
ity. An increasing effort is and will be put towards “tighter
bounds that can be realized for practical applications of
multiparameter estimation theory” [109]. It is clear, that
such bounds [110], optimization algorithms behind them
[109], and experimentally friendly measurement prescrip-
tions [111], will all be accompanied by a serious piece
of quantum-theory-oriented mathematics. Therefore, fresh
attempts to solve this quite hard and very well-known
problem, will render novel techniques and expand the
palette of theoretical tools.

Importantly, in multiparameter problems it is in gen-
eral impossible to obtain saturable matrix inequalities like
Eq. (3). One then optimizes scalar figures of merit involv-
ing the covariance matrix. A solution to the problem posed
here will therefore also tell when the optimal measurement
is independent of the figure of merit being chosen.

A. Further perspectives II

We observe several interesting questions touched upon
recently, which would mutually benefit in relation to
research devoted to the posed problem. Among such direc-
tions we can distinguish the following: quantumness in
multiparameter estimation [112,113], uncertainty trade-
offs [114], nonasymptotic regime [115,116] (which is dif-
ferent than the regime considered here), or indefinite causal
order [117].

This is by no means an exhaustive list of ideas pertaining
to optimal quantum metrology under realistic experimen-
tal conditions or with the help of extraordinary protocols.
In addition, quantum Fisher information and QCRB are
subject of extensive research in the context of thermody-
namics [99], and geometry [118]. The latter dates back to
the inception of quantum metrology [95], since the relation
between Fisher information and metrics on the space of
quantum states are very well known [24]. Still, we observe

new geometric developments associated with the QCRB,
e.g., that in certain cases the bound is independent of the
parametrization used in the encoding procedure [118].

Moreover, in Fig. 3 we can only see so-called classical-
classical (a) and classical-quantum (b) settings, since the
state ρθ is assumed to be given. On the other hand, one
can also consider quantum-classical and quantum-quantum
strategies (see Fig. 1 in Ref. [96]), relevant when the model
ρθ is not fixed, or even adaptive strategies (see Fig. 1 in
Ref. [119]).

In the context of saturability or attainability (Cramér-
Rao, Holevo, etc.) the topic has just been touched upon
[120], therefore, we expect more research in this subarea
will blossom. Last but not least, even though the Holevo
Cramér-Rao bound, a very profound approach, which how-
ever is not in the scope of this brief review, has been well
understood [121], there are still open problems beyond this
paradigm. For example, existence of tight bounds when
one cannot perform collective measurements on multiple
copies [122].

IV. QUANTUM ENTANGLEMENT AND ITS
DISTILLABILITY

One of the most fundamental notions in the theory of
quantum-information processing is that of entanglement.
We say that a bipartite product state is called separable
with respect to a given bipartition of the system into two
distinct physical subsystems (denoted by the tensor prod-
uct), while all other pure states are entangled. A density
matrix representing a mixed state is called entangled if it
cannot be represented as a convex combination of product
states [123].

Entanglement proved itself to be a crucial resource rele-
vant for quantum-information processing. Therefore, one
of the major problems in this field has been, since the
early days of quantum information, to decide whether a
given quantum state of a composite system is separable or
entangled [124].

Perhaps surprisingly, this general problem is to date
solved only for 2 ⊗ 2 and 2 ⊗ 3 systems [125], as in these
cases the single positive partial transpose criterion pro-
vides a constructive answer [126]. Already for a 3 ⊗ 3
system, neither a finite number of positive-maps-based
separability criteria [127] nor a technique using finite-
size semidefinite programming [128] allows us to conclude
whether a given quantum state is entangled or not. More-
over, the known procedure for deciding the separability
of a given bipartite quantum state in a finite number of
steps [129] cannot be applied in practice due to its high
complexity.

The above problem, as well as the whole associated sub-
field concerned with certification (tests) or quantification
(measures) of entanglement, gains visibly less attention in
recent years. This occurs likely because a lot has in fact
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been achieved, and it is relatively hard to identify research
directions promising an intellectual reward. Not to dream
about giving a twist to the whole subfield. Here we attempt
to offer two such problems, which, when solved, are capa-
ble of boosting the research on quantum entanglement
per se.

A. Bound entanglement

Problem 4. Establish whether there exist bound entangled
states with negative partial transpose.

Setup. To analyze quantum entanglement it is useful
to introduce the notion of partial transpose of a density
matrix. Let ρ denote a bipartite quantum state with matrix
elements written in a product basis, ρij ,lm = 〈ij |ρ|lm〉.
Then its partial transposition, ρ	 , reads

〈ij |ρ	|lm〉 = 〈im|ρ|lj 〉. (4)

A quantum state is said to have positive partial transpose
(PPT) if all eigenvalues of its partial transpose are non-
negative. Otherwise, if some eigenvalues of ρ	 are strictly
smaller than zero, the state has negative partial transpose
(NPT).

The concept of entanglement distillation refers to
protocols that allow us to transform noisy entangled
states to maximally entangled states in a well-defined
scenario.

To explain the main idea of the concept let us recall that
a quantum operation on bipartite quantum system is called
of local-operation classical communication (LOCC)-type
or just LOCC if and only if it is composed from (possi-
bly quantum) LOs on subsystems and CC (see Ref. [130],
Sec. 12.2). Now, the entanglement distillation protocol in
its original version is the protocol in which a large number
N of copies of ρAB shared by Alice and Bob can be trans-
formed with the help of a LOCC map into some smaller
but still large (e.g., with asymptotically linear scaling with
respect to the number of initial states) number KN of max-
imally entangled two-qubit states, up to some error that
vanishes with increasing number of initial pairs.

Typically, the final number of maximally entangled
qubit states is replaced by a single maximally entangled
state with local dimension dN = 2KN , which simplifies the
description of the whole procedure. For the formal descrip-
tion of the distillation protocol one can see Ref. [130] (Df.
12.1 in Sec. 12.2) and references therein. Now, a given
state ρAB is distillable if and only if it admits entangle-
ment distillation described above. Apart from the explicit
construction of the distillation protocol (for specific exam-
ples see Ref. [131]), there exist necessary and sufficient
tests for that (see Theorem 12.1 of Ref. [130]). One of
the crucial and elementary observations is that separable
states are not distillable since the tensor product of sep-
arable states is still separable, and it is not possible to

transform any separable state into an entangled one by
LOCC operations.

Entanglement distillation was originally discovered in
1996 when an explicit protocol was proposed for a class
of mixed two-qubit states [132] and applied in its general
form to quantum error correction [133] and cryptogra-
phy [134]. Soon after it was shown that all two-qubit
entangled states are distillable [135]. Also, in higher-
dimensional systems most entangled states can be distilled
to a singlet form [136], but there exist also nondistill-
able entangled states, which are called bound entangled
[130,137]. More specifically, if the dimension of a bipartite
system is larger than six, there exist entangled states with
PPT property [138] and the set of these states has a pos-
itive measure [139]. It has been shown that all entangled
states with PPT property are nondistillable [137]. This is
the case because LOCC operations used in the entangle-
ment distillation protocol always preserve PPT property,
while the desired output states of the distillation proto-
col—maximally entangled ones—are located outside of
the set of PPT states (actually they are far from it with
respect to any smooth distance). This fact directly proves
that in all dimensions dd′ ≥ 6 there exist bound entangled
states.

We analyze here Problem 4 with equal dimensions
of both subsystems, as the general case, d �= d′, can be
reduced to it. It has been shown (see Ref. [137]) that a
d-dimensional [140] bipartite state ρ defined on a com-
posite Hilbert space Hd ⊗ Hd is distillable, if it is n-copy
distillable for some finite n. The latter notion is of a
rather technical character, being related with the original
definition of distillability, but at the same time having
a quite different mathematical sense. Namely, the prop-
erty of n-copy distillability means that there exist two-
dimensional (i.e., of rank-two) projectors P and Q such that
the matrix (P ⊗ Q)[ρ	]⊗n(P ⊗ Q) has a negative eigen-
value [130,137,141]. It should be stressed that the projec-
tors P and Q act on the product (Hd)

⊗n of all n Hilbert
spaces associated with left and right subsystems of copies
of the considered bipartite system, respectively—see Refs.
[142,143].

The question of NPT bound entanglement is closely
related to a mathematical problem concerning 2-copositive
maps [142,144]. A linear map 
 : Md(C) → Md(C) act-
ing on Hd is called positive if and only if it transforms
any matrix with non-negative eigenvalues into a matrix
with the same property. Furthermore, a linear map 
 is
called k-positive if and only if the following extension
1k ⊗
 : Mk(C)⊗ Md(C) → Mk(C)⊗ Md(C) is positive,
where 1k stands for the identity map, which sends any
complex matrix from Mk(C) into itself. In particular, 1-
positivity is equivalent to positivity. The map is called
completely positive if and only if it is k-positive for any
k. For a finite dimension d, to ensure complete positivity
it is enough to check only k-positivity for k = d. A map 
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Separable
= PPT

=Nondis�llable
Dis�llable

Nondis�llable

Separable

PPT

Dis�llable ?

d = 2 d > 2 

H  = Hd H d

FIG. 4. In the two-qubit problem, d = 2, the set of separa-
ble states coincides with the set of PPT states and there are no
bound entangled states since any entangled state is distillable.
For higher dimensions, d > 2, one asks whether the hypothetical
region representing bound entangled states with negative partial
transpose, depicted in yellow, is empty or not.

is called k-copositive (respectively, completely co-positive)
if and only if the composition S = T ◦
 is k positive
(respectively, completely positive), where T stands for
transposition. In particular, 1-copositive maps are called
just co-positive.

Motivation. This is one of the long-standing open ques-
tions of quantum-information theory [142,145]. It pro-
vides a sharp distinction between the two-qubit case, in
which all entangled states are distillable [135], and higher-
dimensional d ⊗ d problem, for which the question of
existence of bound entangled states with negative partial
transpose is open—see Fig. 4.

Its positive solution would therefore have several conse-
quences. If NPT bound entangled states exist then the set
of nondistillable entangled states is neither closed under
the tensor product nor under mixing (see Ref. [144], Sec.
4.4, for a detailed proof). The latter means that there would
exist a pair of nondistillable entangled states such that
their tensor product—or mixture, respectively—were dis-
tillable. This would imply that one of the central measures
of entanglement theory, namely distillable entanglement
(which describes an asymptotic amount of entanglement
that can be distilled from many copies of a given state
by local operations and classical communication [124]) is
neither additive nor convex [144].

In this way, a possible affirmative solution to the present
problem would lead to an extremal example of superaddi-
tivity. Namely, it has been proven that for any NPT state
there exists PPT bound entangled state such that the prod-
uct of the two is distillable [146]. Consequently, if the NPT
state were bound entangled, then we would have the pair
of two bound entangled states (both with their individual
distillable entanglement measure equal to zero) such that
their tensor product would be distillable (i.e., having the
measure strictly positive). As already pointed out, such a
scenario is an extreme case of superadditivity: two objects

containing no resource of a given type, if put together
constitute a single object that, surprisingly, turns out to
contain some amount of the resource. For this type of
effect on the ground of quantum channel capacities see
Ref. [147].

One can show [142] that the existence of an n-copy
nondistillable state is equivalent to the existence of a com-
pletely positive map
 such that it is not completely copos-
itive but 2-copositive and its nth tensor power,
⊗n = 
⊗
· · · ⊗
, is also 2-copositive. Interestingly, there is also
sufficient condition for existence of NPT bound entangle-
ment expressed in the language of positive maps. If there
exists a positive map 
 that is neither completely posi-
tive, nor completely copositive such that its tensor power

⊗n is positive for any n, (this property is called tensor-
stable positivity), then there exist NPT bound entangled
states that can be constructed explicitly on the basis of this
map [148].

Note that for any n there exists an n-copy nondistillable
state that is (n + 1)-copy distillable—see Ref. [149]. This
fact might be considered as an indication that the present
problem of existence of NPT bound entanglement is hard.

An important practical observation bridging between the
fourth and the fifth problem is contained in the follow-
ing theorem [136]: NPT nondistillable entanglement exists
if and only if there exist NPT nondistillable entangled
Werner states for local dimension d > 2. In the smallest
dimension, d = 2, this is not the case.

This theorem implies that the current, fourth problem
can be formulated as follows: decide whether there exists
a NPT Werner state, which is nondistillable.

Werner states [123] constitute a one-parameter family
ρ(d,α) of density matrices of order d2 described in the
next section. These states are NPT for α ∈ [−1, −1/d)
and they are 1-copy nondistillable for α ∈ [−2/d, 1]. In
this range of the parameter α they are conjectured to be
nondistillable [142–145,150].

Although the above theorem reduces the problem of
NPT bound entangled states to the question concerning a
single-parameter family, it is not clear, whether analysis of
this particular family of states provides the easiest techni-
cal way to solve the problem. Some other subfamilies of
the set of NPT states were also considered in the above
context [142,149]. Finally, it is worth mentioning that a
variant of the Problem 4, for quantum states defined with
help of hypercomplex numbers, has recently been stated
and solved affirmatively. However, this solution cannot
be extended to standard quantum description in a natural
way [151].

B. Distillability of quantum entanglement

Problem 5. Decide whether the Werner state ρ(4, −1/2)
of two ququarts, d = 4, defined in Eq. (5) below, is
2-copy distillable.
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1-copy nondis�llable

2-copy nondis�llable
Nondis�llable

(n-copy nondis�llable for any n)

…
B1A

B2
B•

C

PPT

Separable
B

C?

FIG. 5. Sketch of the convex set of mixed quantum states for
a d ⊗ d system with d > 2, which contains the sets of separa-
ble states, a larger set of PPT states and the sets of states with
various classes of distillability. The line represents the family
of Werner states, Eq. (5), and the points A, B1, B, and C cor-
respond to states labeled by α equal to −1, −2/d, −1/d, and
1, respectively. Point A represents here the mixed state equal to
the normalized projector onto the antysymmetric subspace. Prob-
lem 4 of the existence of NPT bound entanglement is equivalent
to the question, whether point B∞, the position of which is still
unknown, differs from point B. The nature of the states along the
dashed line B1B is still unclear—to solve Problem 5 one has to
decide, whether in case d = 4 the unknown point B2 is identical
with B1.

Setup. Consider the family of Werner states defined on
the Hilbert space Hd ⊗ Hd as

ρ(d,α) = 1 ⊗ 1 + αV
d2 + αd

, (5)

with the general range of the parameter α ∈ [−1, 1]. The
matrix V stands for the swap operator, defined by its matrix
elements, 〈ij |V|kl〉 = δilδjk. Let us repeat that the above
states are NPT for α ∈ [−1, −1/d) and our fourth prob-
lem can be just reduced to the analysis of their distillability
in the cases of d > 2. A distinguished state of this fam-
ily, ρ(4, −1/2), appearing in the problem considered here,
is the only two-ququart Werner state such that its partial
transpose [see Eq. (4)] is proportional to a unitary matrix.

The Werner states are invariant with respect to twirling
with local unitaries [123], so they are also called U ⊗
U invariant. It was conjectured [142–145,150] that the
Werner states, which are not 1-copy distillable, are just
nondistillable, so in particular they are also 2-copy nondis-
tillable. Problem 5 is visualized in Fig. 5, and can be
reduced to the question whether in the case d = 4 the
points B1 and B2 in this plot are equal. A stronger con-
jecture that for Werner states’ 1-copy nondistillability is
equivalent to complete nondistillability, means that B∞ =
B1 in Fig. 5.

Motivation. On the physical side working on this prob-
lem might bring a step towards a proof of existence of NPT
bound entanglement discussed in Problem 4. Note that

there is no promise for that due to the examples of Watrous
[149], in which the corresponding nondistillability prop-
erty holds for n copies, but not for n + 1 copies. Yet,
some hope might come from the fact that Watrous states
do not have full rank—as opposed to the above Werner
states—and this particular property seems important for
their distillability.

Furthermore, a possibly negative answer would render
the chance for universality of distillation protocols (cf.
Refs. [135,136]), involving the recurrence scheme [129]
as a first stage of interaction among particles. The recur-
rence scheme is very intuitive (can be seen as sequence
or probabilistic pumping of entanglement from one pair
to another) and requires very simple two-particle cou-
pling, namely CNOT gates. On the other side, the positive
solution of the problem would allow construction of practi-
cal entanglement distillation scheme for remarkably noisy
states.

On a mathematical side, the negative solution of the
problem would provide a very elegant completely pos-
itive map that is not completely co-positive, but it is
2-copositive and the tensor product of its two copies also
possesses this property. Interestingly, this question is also
equivalent to the following algebraic problem [143]: show
that the sum of squares of the two largest singular val-
ues is bounded by 1/2 for any Kronecker (tensor) sum,
A ⊕ B = A ⊗ 1 + 1 ⊗ B, where A and B denote traceless
matrices of size 4 satisfying Tr(A†A)+ Tr(B†B) = 1/4.
The bound equal to 1/2 has been proven [143] under the
additional assumption that A and B are normal, so they
commute with their Hermitian conjugates. Recently, fur-
ther progress has been announced in the form of a theorem
stating that the bound still holds if one of the matrices is
made completely arbitrary [152].

Moreover, the explicit parameters d = 4 and α = −1/2
appearing in the problem are of special interest since they
correspond to the case of what follows:

(i) The minimal dimension for which this very spe-
cial Werner state is 1-copy nondistillable. Namely,
the state ρ(d, −2/d) has its partial transpose pro-
portional to the dichotomic unitary operator U =
I − 2|ψ+〉〈ψ+|, where |ψ+〉 denotes the maximally
entangled state defined in Eq. (A1). A dichotomic
unitary operator by definition has eigenvalues ±1.

(ii) The unique dimension, for which the above Werner
state characterized by the parameter α = −2/d is
located just on the boundary of a 1-copy nondistil-
lability. For d = 4 all the states with α < −1/2 are
already one-copy distillable, which is not true for
d > 4.

The choice of the state with its partial transpose propor-
tional to the dichotomic unitary operator is additionally
motivated by the fact that checking its n-copy distillability
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seems to be easier than in the general case. In particular,
the property of proportionality to the dichotomic unitary
operation is preserved with respect to taking the tensor
product.

C. Further perspectives III

Solution of the fifth problem would likely provide us
some new insight into general properties of the Kronecker
sum of matrices, A ⊕ B = A ⊗ 1 + 1 ⊗ B, relevant from
the point of view of quantum theory and already studied
in general matrix analysis [153]. Problem 4 seems to be
rather complex, so its solution may involve some novel
techniques concerning tensor products of several matrices.
Its negative solution would likely stimulate research on an
important question relevant for quantum communication,
namely, whether all NPT entangled states represent quan-
tum privacy that may be distilled to the so-called private
bit states—see Ref. [154]. If the answer were positive, the
practical question would be, whether such a distillation
procedure can be achieved in the scheme involving so-
called “one-way classical communication,” in which one
party, say Alice, communicates classical bits to Bob, and
not vice versa.

V. CONCLUDING REMARKS

The goal of this perspective and the competition
announced is to stimulate further research on interest-
ing mathematical problems directly related to quantum-
information applications. Each problem described above
has in a way been associated to a single simple equation,
which played a profound role in the development of the
theory of quantum information. Furthermore, each prob-
lem is illustrated with a single figure, aimed to visualize
the question posed.

The problems concerning the discrete Hilbert space,
related to deep algebraic and geometric properties of the
set of quantum states, are also linked to fundamental prob-
lems from various branches of mathematics ranging from
group theory to number theory. Solving some of them will
impact the research on existence and enumeration of vari-
ous constellations of quantum states, which satisfy certain
conditions of balance and symmetry—a novel emerging
field at the borderline of theoretical physics and mathemat-
ics, which can be called “quantum combinatorics.”

Results in the outlined directions, including metrology
and the QCRB, while relevant for our understanding of
foundations of quantum theory, can be useful for the devel-
opment of quantum-information processing. Furthermore,
some measurement schemes or particular constellations of
quantum states can influence the computer designed quan-
tum experiments [155], which may allow one to cope with
a huge number of possible configurations, which “explodes
combinatorically.” On the other hand, it is also think-
able that the future results of new physical experiments

designed in this way could bring hints concerning some
of the theoretical problems discussed in this work.

Possible solutions of problems devoted to distillabil-
ity of quantum entanglement definitely would enrich our
understanding of the nature of quantum interaction as
a resource in entanglement processing—one of the key
ingredients of quantum advantage in information process-
ing. This knowledge might be relevant for development of
secure quantum communication in quantum networks. For
instance, NPT bound entanglement can lead to private bits
that will allow to go beyond limitations known in quan-
tum repeaters for PPT states with quantum security—see
Ref. [156]. Independently, the solution will shed new light
on important structures known in linear matrix algebra.
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APPENDIX A: QUANTUM ORTHOGONAL LATIN
SQUARES

Problem 6. [158] Determine whether there exists a pair
of quantum orthogonal Latin squares [159–161] of order
six. In other words, find a solution of the problem of 36
“entangled officers” of Euler or demonstrate that it does
not exist.

Setup. A Latin square of order N is filled with N
copies of N symbols arranged in a square in such a way
that no row nor column of the square contains the same
symbol twice. The name refers to papers of Leonhard
Euler [162], who used Latin characters as symbols to be
arranged. To enjoy a simple example use the Pauli matrix
and write down 2σx + 12. It is likely that Euler’s approach
to the problem was rather different. Two orthogonal Latin
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FIG. 6. Example of N = 4 Greaco-Latin square prepared for
bridge players. Due to works of Euler and Tarry we know that for
N = 6 a similar design of 36 cards of six different suits and six
different ranks (or 36 officers of different ranks and arms) does
not exist. Is there a solution of the N = 6 problem if we play
bridge with quantum cards, like (|K♣〉 + |Q♦〉)/√2, or allow
the officers of Euler to be entangled?

squares (also called Graeco-Latin squares) of order N
consist of N 2 cells arranged in a square with a pair of
ordered symbols in each cell, for instance, one Greek char-
acter and one Latin. Every row and every column of the
square contains each possible pair of symbols exactly once,
and no two cells contain the same ordered pair—see Fig. 6
prepared for bridge players [163]. A set of k Latin squares,
which are pairwise orthogonal, are called mutually orthog-
onal Latin squares (MOLSs). It is easy to show that for a
given N there exist no more than N − 1 MOLSs. Similarly
with the case of the MUBs, this bound is saturated if N is
a prime or a power of a prime [164].

Historically, Euler analyzed the problem of 36 officers
from six regiments, each containing six officers of six dif-
ferent ranks. They should be arranged before a parade into
a 6 × 6 square such that each row and each column holds
only one officer from each regiment and only one officer
from each rank. Euler wrote in 1782 that this problem has
no solution [162] without providing a formal proof, estab-
lished only in 1901 by Gaston Tarry [165]. This result
implies that there is no pair of orthogonal Latin squares
of size 6, so that the upper bound for the number of
MOLS, in this case N − 1 = 5, is not saturated. For any
N ≥ 7 there exist at least two MOLSs, in particular, also
for N = 2 × 5 = 10—consult a novel by Georges Perec
[166]. In general, the problem of finding the maximal num-
ber of MOLSs for an arbitrary value of N remains open
[167].

As a rule of thumb, for any interesting classical notion
one can find a quantum analog. A quantum Latin square is
an N × N table of N 2 vectors from N -dimensional Hilbert
space HN arranged in such a way that every row and every
column of the table forms an orthonormal basis in the
space [168].

Orthogonal quantum Latin squares (OQLSs).

To discuss a quantum analog of two orthogonal Latin
squares consider a collection of N 2 normalized vectors
|ψij 〉 from a composite space, HN ⊗ HN [159–161]. Any
such state can be written in a product basis, |ψij 〉 =
∑d

k,�=1 X i,j
k� |k, �〉 for i, j = 1, . . . , d.

A set of N 2 bipartite states |ψij 〉 forms a OQLS if

(a) the states satisfy ortogonality relations, 〈ψij |ψk�〉 =
δikδj �, so they form an orthonormal basis, and
the block matrix X̃ of size N 2, written X̃ =
(X 1,1, . . . , X 1,N ; . . . ; X N ,1, . . . , X N ,N ), is block uni-
tary, so that the conditions

(b)
∑N

i=1 X i,j (X i,�)† = δj ,�I, and
(c)

∑N
j =1 X i,j (X k,j )† = δi,kI, are satisfied.

Any Graeco-Latin square leads to such a design, since it
suffices to treat the pair of classical objects (α, B) as a
product state, |α〉 ⊗ |B〉 [19].

It is known that the generalized Bell state

|ψ+〉 = 1√
N

N∑

j =1

|j 〉 ⊗ |j 〉, (A1)

is maximally entangled among all states of a bipartite
N × N system. For other systems, a natural question arises
[169–178]: what are the most entangled states for quan-
tum systems consisting of N systems with d levels each?
The answer depends on the entanglement measure used
[24], but already for a four-qutrit system there exists a
state, which displays maximal entanglement with respect
to all three possible splittings of the entire system into two
pairs of qutrits. Such a state is called maximally multipar-
tite entangled state (MMES) [175] or absolutely maximally
entangled (AME) state [179].

This notion can also be generalized for larger systems.
An n-partite pure state is called AME state if it is max-
imally entangled with respect to all possible bipartitions
[179], so that all its reductions consisting of k subsystems,
with arbitrary k ≤ �n/2�, are maximally mixed. A density
matrix on a given N -dimensional Hilbert space is maxi-
mally mixed, if it is proportional to the identity operator
on this space, ρ∗ = 1N/N . It is known that there are no
AME states of four qubits [170], and equivalently, a pair of
OQLSs does not exist for N = 2. This problem was found
interesting to a future Nobel laureate, who showed with his
collaborators a relation between this fact and frustration in
the spin systems [175].

Scott demonstrated [172] that, for systems containing
m qubits, the AME states do exist for m = 3, 4, 5, 6 and
also showed that they do not exist for m ≥ 8. The last
remaining issue of m = 7 qubits was later solved by Huber
et al. [180], who proved that such AME states do not
exist. The list of currently known AME states is available
online [181].
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As there are no two orthogonal Latin squares (OLSs) of
order six, the famous classical problem of 36 officers of
Euler has no solution [182].

An analogous quantum problem, which involves 36
entangled officers, was open until very recently [19]

Motivation. This problem can be reformulated in sev-
eral other settings. To present them we need to review
some further notions. A unitary matrix U of size N 2

is called 2-unitary [183] if both the partially transposed
matrix U	 and the reshuffled matrix UR remain uni-
tary—for the definitions of these reorderings of the entries
of a matrix see Eq. (4) and consult Ref. [24].

Any matrix of a square size can be represented as a ten-
sor Tijkl with four indices. Such a tensor can be reshaped
into a matrix Wμν using composed indices in three differ-
ent ways: (a) μ = μ(ij ), (b) μ = μ(ik), and (c) μ = μ(il),
while the second index ν is obtained in each case from the
remaining two indices. A tensor T is called perfect [184]
if for any of these three ways of reshaping it, the out-
come matrix W becomes unitary. Hence any flattening of a
perfect tensor forms 2-unitary matrix.

Establishing a positive result concerning existence of a
pair of quantum orthogonal Latin squares of order six is
equivalent to proving that

(i) there exists AME state of four subsystems with six
levels each [179,185]. Thus there exists the cor-
responding quantum error-correction code [186],
written [(4, 1, 3)]6;

(ii) there is 2-unitary matrix U ∈ U(36);
(iii) there exists a perfect tensor with four indices, each

running from 1 to 6.

Furthermore, a positive result can become an important
step towards development of the theory of quantum combi-
natorial designs, which deals with particular constellations
of discrete quantum objects, with special properties of
symmetry and balance, hidden in the continuous Hilbert
space. As the standard combinatorics deals with discrete
objects and is related to the group of permutations, its
quantum analog concerns the continuous space of quantum
states and relies on the continuous unitary group.

Since the problems, number 2 and number 6, refer to
the same dimension, N = 6, it is natural to speculate that
they might be somehow related. It seems, however, that
a connection between problems of finding the maximal
number of MOLSs and MUBs for a given dimension is
not a direct one [81,82]. On the other hand, several links
between both problems were established: Wocjan and Beth
used (classical) MOLSs to construct a set of six MUBs in
dimension N = 262 = 676, which beats the prime power
construction applied to the factorization N = 22132 yield-
ing only 4 + 1 = 5 MUBs [54]. Furthermore, Musto used
quantum Latin squares to construct in square dimensions
mutually unbiased bases consisting of maximally entan-
gled states [187].

1. Further perspectives IV

Incidentally, Problem 6 concentrates on the Hilbert
space of dimension six, but it is clear that more than a sin-
gle copy of H6 has to be involved. Looking for a solution
of the generalized Euler problem we are allowed to play
with quantum cards, cosϕ|A♠〉 + sinϕ|K♥〉, and analyze
configurations of 62 = 36 possibly entangled states in
H6 ⊗ H6.

To create entanglement in a bipartite N × N system we
need a global unitary gate, U ∈ U(N 2), which couples both
subsystems. For any such bipartite gate U one defines
an entangling power [172,182,188] as the average linear
entropy of entanglement [24] created when U acts on a ran-
dom product state sampled according to the Haar measure
on both subspaces.

A unitary matrix U of size N 2, which saturates the abso-
lute bound for the entangling power, has to be 2-unitary
and therefore it allows one to construct the AME state
for four subsystems with N -levels each—see Ref. [189].
In the latter formulation of the problem devoted to the
search of distinguished AME pure states of four parties
[179,181], one works with four subsystems with six levels
each, which are represented in the space H⊗4

6 .
To shed some light on counterintuitive properties of

such a peculiar quantum state consider a set of four unbi-
ased cube dice in four different colors. Ask your friend
to select any two of them and to roll them in the same
moment, as you roll the remaining two dice. If the set of
these four dice is prepared in a four-quhex AME state,
then by measuring the outcomes of both your dice you
will always be able to predict the outcomes of both dice
rolled by your friend. This is not possible if the four dice
are replaced by four coins, as AME states of four qubits do
not exist [170].
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