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Quantum Monte Carlo and quantum simulation are both important tools for understanding quantum
many-body systems. As a classical algorithm, quantum Monte Carlo suffers from the sign problem, pre-
venting its application to most fermion systems and real-time dynamics. In this paper, we introduce a novel
nonvariational algorithm using quantum simulation as a subroutine to accelerate quantum Monte Carlo by
easing the sign problem. The quantum subroutine can be implemented with shallow circuits and, by incor-
porating error mitigation, can reduce the Monte Carlo variance by several orders of magnitude even when
the circuit noise is significant. As such, the proposed quantum algorithm is applicable to near-term noisy
quantum hardware.
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I. INTRODUCTION

The simulation of quantum many-body systems is one
of the main motivations for quantum computing [1]. A lot
of quantum many-body problems are intractable in classi-
cal computing. An apparent reason is that the Hilbert-space
dimension increases exponentially with the system size
and it is impossible to store the wave function of a large
system in classical memory. Quantum Monte Carlo (QMC)
is a group of classical algorithms designed to bypass
this memory issue. By sampling only the most important
part of the configuration space, QMC can solve certain
many-body problems at a polynomial complexity, at the
cost of introducing small statistical errors. Unfortunately,
when applied to fermion systems and real-time dynam-
ics, QMC encounters the notorious sign problem, i.e.,
the target amplitude is a highly oscillating function with
alternating sign. This sign problem results in a variance
that increases exponentially in the Monte Carlo simula-
tion [2], forming the dominant limitation of QMC. On the
other hand, by mapping the target wave function of the
simulated system into the wave function of qubits on a
fault-tolerant quantum computer [3], we can reproduce the
dynamics of quantum systems while the memory and run
time scale polynomially [4]. With the development of the
fault-tolerant technologies as a long-term goal, exploring
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the power of noisy intermediate-scale quantum hardware
is of particular importance for near-term applications [5].
In this paper, we establish the framework of quantum-
circuit Monte Carlo (QCMC) algorithm, in which quantum
computing is a subroutine of QMC. We show that this
algorithm has a quantum advantage in solving many-body
problems, even on noisy quantum computers.

Since Ulam and Metropolis’s pioneering work of using
random sampling to simulate real physical systems [6], the
Monte Carlo method has grown into a large family of algo-
rithms. Here, we focus on a specific subset of Monte Carlo
algorithms, namely, the QMC methods, which are based on
real- or imaginary-time evolution. These methods include
Green’s function Monte Carlo [7], auxiliary field Monte
Carlo [8,9], world-line Monte Carlo [10,11], and diagram-
matic Monte Carlo [12–15], and their various variants. In
what follows, by QMC, we refer to this subset of algo-
rithms. The other QMC algorithms are based on variational
methods [16] but while their connection to quantum com-
puting is also an interesting topic, they are not be covered
in this work.

In most QMC methods, we sample the configurations
according to a quasiprobability amplitude derived from
time evolution. For fermion systems, such an amplitude
is usually a complex number, which can be positive defi-
nite if the system respects certain symmetries. Examples of
the latter case include the half-filled Hubbard model with
particle-hole exchange symmetry [17,18] and the nuclear
system with Wigner-SU(4) symmetry [19,20]. However,
a realistic Hamiltonian usually contains terms that break
these symmetries and induce oscillating phases in the
probability amplitude. As a result, even though QMC
methods are very successful in describing certain strongly
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correlated systems in chemistry [21], condensed-matter
physics [22], and nuclear physics [7], their application
is still rather limited due to the sign problem. Although
in some important cases the sign problem can be allevi-
ated using complicated techniques [23], e.g., the complex
Langevin method [24,25] or the Lefschetz thimble method
[26,27], finding a generic solution is unlikely, as it is
proven that the sign problem is NP-hard [2].

In quantum computing, the qubit and time costs for sim-
ulating the unitary time evolution of a quantum system
scale polynomially with the problem parameters, i.e., the
system size, evolution time, and accuracy. Such algorithms
include the Lie-Trotter-Suzuki decomposition [4,28,29],
the truncated Taylor series [30,31], linear combinations
of Lie-Trotter-Suzuki products [32,33], and the random
compiler [34]. Based on the simulation of unitary time
evolution, one can also simulate open-system dynamics
[35,36], solve equilibrium-state problems [37,38], and find
the ground state for certain Hamiltonians [39–41]. How-
ever, implementation of these algorithms at a meaningful
scale usually requires a fault-tolerant quantum computer
[42,43], on which the logical error rate can be reduced
to any level at a polynomial cost in quantum error cor-
rection [44]. In recent years, hybrid quantum-classical
algorithms have been developed for applications before
the era of fault-tolerant technologies [45]. Many such
algorithms are based on variational principles for solv-
ing the ground-state energy [46,47], real-time simulation
[48,49], and imaginary-time simulation [50,51]. A varia-
tional quantum algorithm largely depends on the ansatz,
i.e., a parametrized quantum circuit. Some ansatz cir-
cuits suffer from the “barren-plateaus” problem, which is
a vanishing gradient in the parameter landscape, making
the algorithm inefficient [52]. So far, a general way to
construct a proper ansatz is still lacking. Applied to Hamil-
tonians with tens to hundreds of qubits, the performance
of variational quantum algorithms on a noisy quantum
computer remains an open question [53,54].

In this paper, we propose a hybrid nonvariational quan-
tum simulation algorithm, i.e., the QCMC algorithm. Con-
trary to the QMC methods, there is no sign problem in
simulating the time evolution using quantum computing.
If we can delegate the calculation of the most oscillating
part to quantum computing, the remaining calculations in
QMC might have a very mild sign problem, or even be
free from it when the entire calculation is delegated to
quantum computing. To explore this possibility, we carry
out the QCMC simulation by sampling random quantum
circuits. Several aspects of this hybrid scheme are dis-
cussed, including implementation of the time-evolution
operators, the total computational complexity, the opti-
mal sampling distribution in Monte Carlo, and the error-
mitigation techniques. We show that our algorithm is
polynomial on a fault-tolerant quantum computer and can
reduce the variance of the Monte Carlo estimator even

on a noisy quantum computer. As a subroutine of QMC,
the circuit depth in quantum computing can be drasti-
cally reduced compared with the conventional Lie-Trotter-
Suzuki decomposition. Therefore, our algorithm is a suit-
able candidate for the near-term application of quantum
computing.

In the QCMC algorithm, we simulate many-body
dynamics by expressing the time-evolution operator in a
summation form. Each term in the summation corresponds
to a quantum-circuit configuration. The summation for-
mula is chosen to minimize the circuit depth and variance
of the Monte Carlo estimator. We introduce two series of
summation formulas based on Lie-Trotter-Suzuki product
formulas [55,56]: Pauli-operator-expansion (POE) formu-
las and leading-order-rotation (LOR) formulas. Compared
with product formulas, in our formulas the algorithmic
error converges faster with the time-step size �t, at the
cost of a moderately increased gate number per time step.
For example, the second-order LOR formula converges as
O(�t6), which is even faster than the fourth-order product
formula. This algorithmic error in QCMC is only due to the
variance of the Monte Carlo estimator and can be reduced
by increasing the sample number.

We mitigate errors in QCMC in three ways. First,
our summation formulas are exact formulas of the time-
evolution operator for any finite time-step size. The prod-
uct formulas have the decomposition error depending on
�t, which must be sufficiently small to reduce the error.
Exact summation formulas allow us to take a large�t (i.e.,
a small number of time steps) and use shallow circuits
to implement QCMC. We remark that the gate number
per time step is only moderately increased to implement
the proposed summation formulas. Second, we use quan-
tum error-mitigation techniques to eliminate the impact of
machine errors caused by noise in the quantum computer
[48,57,58]. We present two types of circuits: forward-
backward circuits have larger depths than compact circuits
but provide inherent error mitigation. Alternatively, prob-
abilistic error cancellation is a universal way to mitigate
machine errors, which enlarges the estimator variance by
a factor depending on the circuit depth [57,59]. Consid-
ering probabilistic error cancellation applied to compact
circuits, we can estimate the overall variance of QCMC
due to both QMC and error mitigation. Third, we mini-
mize the variance, i.e., the statistical error, by taking the
optimal time-step size. We obtain the minimized variance
of QCMC in the form of approximately e4γ htott, where γ
is the increasing rate of the variance, htot characterizes the
magnitude of the Hamiltonian, and t is the evolution time.

QCMC has a variance that depends on the rate of
machine errors and achieves a quantum advantage even
when the error rate is finite. For the second-order LOR for-
mula, the rate of increase of the variance has the upper
bound γ � 2.45ε0.82, where ε is the total gate-error rate
of one elementary Lie-Trotter-Suzuki product (i.e., the
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first-order product for one time step). QCMC is polyno-
mial on a fault-tolerant quantum computer because we
can suppress ε to any small value at a polynomial cost
in quantum error correction. Suppose that the variance
in classical algorithms is in the same exponential form
with a finite increasing rate γc [2]: the quantum algorithm
surpasses the classical algorithms given an error rate of
ε � (γc/2.45)1/0.82. As an example, the rate of increase of
the variance in Green’s function Monte Carlo taking the
computational basis is γc = 1 for a large class of qubit
Hamiltonians. Compared with this classical algorithm,
QCMC reduces the variance by several orders of magni-
tude even on a quantum computer with significant noise,
e.g., by a factor of approximately 4 × 104 when htott = 4
and ε = 0.1. As a result, the sample number required in
Monte Carlo is reduced by the same factor.

In this paper, we focus on the nonvariational simulation
of real-time evolution. With the real-time simulation, we
can construct quantum phase-estimation circuits [39] and
eigenenergy filtering operators [40] to solve eigenstate and
finite-temperature problems. The QCMC algorithm also
provides a flexible tool for variational quantum algorithms.
Here, we present two such examples. First, the ground state
and other eigenstates are stationary and do not evolve with
time, which leads to a way of ruling out fallacious solu-
tions from the variational quantum eigensolver: if we find
that the state evolves in the real-time simulation, the ini-
tial state must not be an eigenstate. Second, the optimizer
in the variational algorithm may get stuck in a local min-
imum; then, real-time evolution can be used to bring the
state out of the local minimum without changing the aver-
age energy. Note that by using shallow circuits in QCMC,
the overall circuit combining the variational ansatz and
the time evolution are still within the regime of near-term
application.

This paper is organized as follows. In Sec. II, we briefly
review Green’s function Monte Carlo and auxiliary-field
Monte Carlo. In Sec. III, we sketch the QCMC algorithm.
Two series of summation formulas are introduced in
Sec. IV. Details of the QCMC algorithm are presented
in the form of pseudocode in Sec. V. In Sec. VI, we
give two types of quantum circuits (i.e., compact circuits
and forward-backward circuits) for evaluating transition
amplitudes. In Sec. VII, we discuss the optimal distribu-
tion for generating samples in Monte Carlo. Two quantum
error-mitigation protocols using probabilistic error can-
cellation and forward-backward circuits, respectively, are
discussed in Sec. VIII. The QCMC algorithm and the clas-
sical QMC algorithm are compared in Sec. IX. In Sec. X,
we summarize the conclusions.

II. QUANTUM MONTE CARLO

Many applications of QMC can be formalized as com-
puting the transition amplitude 〈ψf |eiHt∗Oe−iHt|ψi〉 given

the initial state |ψi〉, the final state |ψf 〉, and the operator
O. Here, H is the Hamiltonian, and t is a real or imaginary
evolution time. For example, the ground-state energy of an
interacting Hamiltonian can be expressed as

Eg.s. = lim
t→∞

〈ψ0|e−Ht/2He−Ht/2|ψ0〉
〈ψ0|e−Ht|ψ0〉 , (1)

where |ψ0〉 is a trial ground state, which has a large overlap
with the true ground state.

A canonical approach is Green’s function Monte Carlo
[7], in which the transition amplitude is expressed in the
path-integral form:

〈ψf |eiHt∗Oe−iHt|ψi〉

=
∫

r0,...,rN ,r′
0,...,r′

N

dr0 · · · drN dr′
0 · · · dr′

N

× 〈ψf |r′
0〉〈r′

0|eiH(t∗/N )|r′
1〉 · · · 〈r′

N−1|eiH(t∗/N )|r′
N 〉

× 〈r′
N |O|rN 〉〈rN |e−iH(t/N )|rN−1〉 · · ·

× 〈r1|e−iH(t/N )|r0〉〈r0|ψi〉, (2)

where {|r〉} is an orthonormal basis of the Hilbert space
and N is the number of time steps. The path integral is
performed numerically using Monte Carlo methods.

Auxiliary-field Monte Carlo is another important
approach of QMC [8,9], which is characterized by the
decomposition of particle-particle interactions into inter-
actions of particles with a group of auxiliary fields, i.e.,

e−iH�t �
∫

dsA(s,�t). (3)

Here, A(s,�t) is an operator depending on the auxiliary
field s. Then, the transition amplitude is expressed as

〈ψf |eiHt∗Oe−iHt|ψi〉

=
∫

ds1 · · · dsN ds′
1 · · · ds′

N 〈ψf |A(s′
1, −�t∗) · · ·

× A(s′
N , −�t∗)OA(sN ,�t) · · · A(s1,�t)|ψi〉. (4)

The operator A(s,�t) is chosen such that 〈ψf | · · · |ψi〉 in
the integral can be evaluated on a classical computer.

In diagrammatic QMC, the time-evolution amplitudes
are expressed as perturbative expansions [12–15]. Sup-
pose that the contribution of an mth-order term is
D(ξm, x1, . . . , xm): the transition amplitude is a summation
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of integrals in the form

〈ψf |eiHt∗Oe−iHt|ψi〉

=
∞∑

m=0

∑
ξm

∫
dx1 · · · dxmD(ξm, x1, . . . , xm), (5)

where ξm is the index of the term and the x variables are the
temporal and spatial coordinates to be integrated. These
terms can be represented by Feynman diagrams. In these
models, we can develop similar quantum algorithms, in
which both the noninteracting time evolution and the inter-
action vertices can be implemented as a series of operators
that can be evaluated on a quantum computer.

It often occurs that the amplitude q = 〈ψf | · · · |ψi〉 as a
function of r in Eq. (2) or as a function of s in Eq. (4) is not
positive definite. In this case, we have to use the reweight-
ing procedure by splitting q into its modulus and phase,
i.e., q = |q|eiθq , and sample according to a probability dis-
tribution P ∝ |q|. The expectation value of the remaining
phase 〈eiθq〉 indicates the degree of the sign problem and if
it is much smaller than 1 then the sign problem is severe. In
many QMC simulations, this phase goes to zero exponen-
tially for a large system volume or particle number, which
signifies a very bad sign problem.

In some special cases, the sign problem is only induced
by part of the integral variables. In other words, the ampli-
tude q is a highly oscillating function of some variables
and a smooth function of the others. This usually occurs
when the system is protected by an approximate symmetry.
For example, for fermion systems with equal numbers of
up and down spins, a spin-independent attractive interac-
tion respecting the SU(2) spin symmetry does not induce
the sign problem. In more general problems, the realistic
interaction might be dominated by such a “good” compo-
nent, while other “bad” components play a minor role but
induce most of the sign problem. A typical example is the
nuclear force, which is approximately independent of spin
and isospin at low energy [20]. The spin-isospin dependent
components and the Coulomb force only contribute a small
portion of the total nuclear binding energy but introduce
a strong sign problem in the auxiliary field Monte Carlo
calculations. Usually, these interactions can be simulated
using the coupling-constant extrapolation method [60],
perturbation theory [61], or the eigenvector-continuation
method [62–64], at the cost of additional uncertainties.

The above problem has an alternative solution in the
quantum computing era. As a quantum computer can cal-
culate the amplitude q with the same complexity regardless
of the form of the interaction, we can use the quantum com-
puter to simulate interactions causing the sign problem,
while leaving the smooth high-dimensional integrals to the
classical Monte Carlo solver. For example, in the auxiliary-
field Monte Carlo simulation of atomic nuclei [9], we can

simulate the repulsive Coulomb force using quantum com-
puting. In this paper, we introduce such a hybrid simulation
scheme and establish a general framework for future work
in this direction.

III. QUANTUM-CIRCUIT MONTE CARLO

To implement QMC using a quantum computer, we
replace the integral over the auxiliary field with a
summation over unitary operators. The time-evolution
operator is expressed in the summation form

e−iH�t =
∑

s

c(s)U(s), (6)

where the U(s) are unitary operators and the c(s) are
complex coefficients. For real-time evolution, approximate
summation formulas have been proposed, including trun-
cated Taylor expansion [30,31] and linear combinations of
Lie-Trotter-Suzuki products [32,33]. In this paper, we pro-
pose exact summation formulas of the real-time-evolution
operator (see Sec. IV). Note that we can also construct the
imaginary-time-evolution operator as a summation of uni-
tary operators and construct any operator in the limit that
the U(s) form a complete basis of the operator space. By
combining quantum circuits and the Monte Carlo method,
our exact formulas can be implemented for any finite time-
step size�t. In quantum circuits, the gate number per time
step is only moderately increased upon the Lie-Trotter-
Suzuki product (see Sec. VI) and we can minimize the
number of time steps N by maximizing �t. Because of
the minimized circuit depth, which is proportional to N ,
our formulas are practical on noisy quantum computers
without fault tolerance.

With the summation expression of the time-evolution
operator, the transition amplitude in the path-integral form
becomes

〈ψf |eiHtOe−iHt|ψi〉

=
∑

s1,...,sN ,s′1,...,s′N

[
N∏

i=1

c(si)c(s′
i)

∗
]

〈ψf |Os|ψi〉, (7)

where s = (s1, . . . , sN , s′
1, . . . , s′

N ) and

Os = U(s′
1)

† · · · U(s′
N )

†OU(sN ) · · · U(s1). (8)

One can realize a summation formula either by using
a deterministic circuit [30–32] or sampling random cir-
cuits [33,34]. To minimize the circuit depth, we compute
the transition amplitude using random circuits: we sam-
ple random unitary operators (i.e., the parameter s) on the
classical computer, evaluate 〈ψf |Os|ψi〉 on the quantum
computer, and then compute the path-integral summation
using the Monte Carlo method on the classical computer.
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Sample generation
(Algorithm 1)

Sample generation
for one time step
(Algorithm 2)

si ∼ (Wi, θi)

s ∼ (W, θ)

Quantum circuit evaluation
(Algorithm 4)

Quantum-circuit monte carlo
(Algorithm 3)

〈ψf |Os |ψi〉 ∼ aR + iaI

〈ψf |eiHtOe−iHt|ψi〉[
C2N

A eiθs〈ψf |Os|ψi〉
]

FIG. 1. A schematic diagram of the quantum-circuit Monte
Carlo algorithm. The quantum computer evaluates 〈ψf |Os|ψi〉
according to samples s generated by the classical computer. The
final estimate of the transition amplitude 〈ψf |eiHtOe−iHt|ψi〉 is
the empirical mean of results from the quantum computer up to
a factor.

See Fig. 1 for a schematic diagram of the QCMC algorithm
and see Sec. V for details.

Without fault tolerance, we use error-mitigation tech-
niques to eliminate errors in quantum circuits. In the quan-
tum error mitigation based on quasiprobability decompo-
sition (i.e., probabilistic error cancellation) [57,59], each
unitary circuit for evaluating 〈ψf |Os|ψi〉 is decomposed
into a linear combination of noisy circuits. Then, the
overall algorithm includes Monte Carlo summations over
unitary operators and also noisy circuits. Details of the
error mitigation are given in Sec. VIII. Using our exact for-
mulas of the time-evolution operator and assuming that the
quasiprobability decompositions are also exact, the sam-
pling noise in Monte Carlo is the only source of error in
our algorithm.

A. Sampling noise and normalization factor

The Monte Carlo summation has a finite variance
depending on the sampling approach. To compute the tran-
sition amplitude in Eq. (7), we randomly generate samples
of s with a probability distribution P(s). According to the
importance sampling method, the variance is minimized by
taking the optimal distribution

P(s) ∝
∣∣∣∣∣
[

N∏
i=1

c(si)c(s′
i)

∗
]

〈ψf |Os|ψi〉
∣∣∣∣∣ . (9)

Implementation of the optimal distribution requires knowl-
edge of

∣∣〈ψf |Os|ψi〉
∣∣.

In this paper, we focus on a practical suboptimal distri-
bution

P(s) =
∣∣∣∣∣

N∏
i=1

c(si)c(s′
i)

∗
∣∣∣∣∣ /C2N

A , (10)

where the normalization factor CA =∑s |c(s)| determines
the variance. Taking the suboptimal distribution, the tran-
sition amplitude 〈ψf |eiHtOe−iHt|ψi〉 is the expected value
of C2N

A eiθs〈ψf |Os|ψi〉, where

θs = arg

[
N∏

i=1

c(si)c(s′
i)

∗
]

. (11)

Formally, we have

〈ψf |eiHtOe−iHt|ψi〉 = E
[
C2N

A eiθs〈ψf |Os|ψi〉
]

=
∑

s

P(s)C2N
A eiθs〈ψf |Os|ψi〉. (12)

Taking the suboptimal distribution, the estimator of
〈ψf |eiHtOe−iHt|ψi〉 is

Â = C2N
A

〈
eiθs〈ψf |Os|ψi〉

〉
Ns

. (13)

Here, 〈•〉Ns denotes the empirical mean taken over Ns
samples of s. The variance of the estimator is

Var
(

Â
)

= 1
Ns

C4N
A Var

(
eiθs〈ψf |Os|ψi〉

)
. (14)

When O is a unitary operator, |〈ψf |Os|ψi〉| ≤ 1 and the
variance has the upper bound

Var
(

Â
)

≤ 1
Ns

C4N
A . (15)

In our QCMC algorithm, we use the circuits given
in Sec. VI to evaluate 〈ψf |Os|ψi〉. Each quantum cir-
cuit reports a probabilistic binary outcome, the expected
value of which is either the real or imaginary part of
eiθs〈ψf |Os|ψi〉. We find that the suboptimal distribution
(which is suboptimal when we can deterministically eval-
uate 〈ψf |Os|ψi〉) is actually the optimal distribution for
the probabilistic evaluation without prior knowledge of∣∣〈ψf |Os|ψi〉

∣∣ (see Sec. VII). Accordingly, the minimum
variance is

Var
(

Â
)

= 1
Mtot

(
2C4N

A − ∣∣〈ψf |eiHtOe−iHt|ψi〉
∣∣2) , (16)

where 2Mtot is the total number of quantum-circuit shots,
and each shot is an implementation of the circuit that
returns one binary measurement outcome.

We find that ideally CA = 1, i.e., the variance does not
increase with the number of time steps. This limit can
be approached on a fault-tolerant quantum computer: we
take a sufficiently small �t, c(1) � 1, U(1) � e−iH�t is a
Lie-Trotter-Suzuki product, and terms with s > 1 are neg-
ligible. On a noisy quantum computer, CA is always greater
than one. A large part of our effort is devoted to minimizing
CA, in order to reduce the variance.
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IV. SUMMATION FORMULAS OF
TIME-EVOLUTION OPERATORS

We look for summation formulas satisfying the follow-
ing criteria:

(a) The unitary operators U(s) are easy to implement
using elementary quantum gates, in order to reduce
the gate number.

(b) The normalization factor CA is minimized.
(c) Samples of s can be efficiently generated on a

classical computer according to the distribution in
Eq. (10).

We propose two types of summation formulas in this
paper as examples of the general approach. By adding
Pauli operators to Lie-Trotter-Suzuki products, we obtain
POE formulas. For an lth-order product formula, the cor-
responding POE summation formula has the normaliza-
tion factor CA = 1 + O(�tl+1). By replacing leading-order
Pauli operators with rotation operators, we obtain LOR
formulas and the normalization factor is reduced to CA =
1 + O(�t2l+2).

In the following, we first discuss Lie-Trotter-Suzuki
product formulas and then introduce our summation for-
mulas.

A. Product formulas

In this section, we review Lie-Trotter-Suzuki prod-
uct formulas [55,56] and discuss some properties that
are important for our discussion. Given the Hamiltonian
H =∑M

j =1 Hj , where the Hj are Hermitian operators, the
first-order formula reads

S1(�t) = e−iHM�t · · · e−iH1�t = e−iH�t + O(�t2). (17)

Higher-order formulas are defined recursively for any
positive integer m by

S2m(�t) = K2m(−�t)†K2m(�t)

= e−iH�t + O(�t2m+1), (18)

where K2(�t) = S1(�t/2),

K2m(�t) = K2m−2
[
(1 − 2rpr,m)�t

]
S2m−2

(
pr,m�t

)r ,
(19)

when m > 1, and pr,m = [2r − (2r)1/(2m+1)
]−1. Here, r can

be any positive integer. Each S2m is a product of 2r +
1 S2m−2 operators.

For the first-order formula, we define the correction
operator

V1(�t) ≡ e−iH�tS1(�t)† = e−i
∑∞

k=2 R(k)1 �tk , (20)

where R(k)1 are operators that are independent of �t.
Because V1(�t) is unitary for all real �t, all R(k)1 are
Hermitian operators. Then,

V1(�t) = 1 − iL1(�t)+ O(�t4), (21)

where the leading-order operator

L1(�t) = R(2)1 �t2 + R(3)1 �t3 (22)

is Hermitian. Later, we show that the Hermitian leading-
order operator is important for minimizing the normaliza-
tion factor CA.

For higher-order formulas, the correction operators are

V2m(�t) ≡ K2m(−�t)e−iH�tK2m(�t)†

= e−i
∑∞

k=2m+1 R(k)2m�tk , (23)

where R(k)2m are Hermitian operators that are indepen-
dent of �t. Because of the symmetric form, V2m(�t) =
V2m(−�t)† for all real �t and R(k)2m = 0 for all even k [56].
Then,

V2m(�t) = 1 − iL2m(�t)+ O(�t4m+2), (24)

where the leading-order operator

L2m(�t) =
2m∑

k=m

R(2k+1)
2m �t2k+1 (25)

is Hermitian. For the second-order formula,

L2(�t) = R(3)2 �t3 + R(5)2 �t5. (26)

B. Summation formulas

To simplify the quantum circuits, we work with Pauli
operators Pn = {I , X , Y, Z}⊗n as the basis of matrix space,
where n is the number of qubits. Without loss of generality,
we assume that each term of the Hamiltonian is a Pauli
operator, i.e., Hj = hj σj , where σj ∈ Pn, and hj is a real
coefficient. We define htot ≡∑j |hj |, which characterizes
the magnitude of the Hamiltonian.

Given the time-evolution operator, there exist many dif-
ferent summation formulas e−iH�t =∑s c(s)U(s). Each
formula represents a sampling protocol in Monte Carlo.
For example,

e−iH�t =
∑
σ∈Pn

2−nTr
(
σe−iH�t) σ . (27)

Such a formula is impractical, because the computing of
the coefficients Tr

(
σe−iH�t

)
on a classical computer is

usually difficult when n is large.
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TABLE I. The normalization factors of summation formulas. In the table, x ≡ htot�t.

Pauli-operator-expansion formulas CA = 1 + CL + CT

Leading-order-rotation formulas CA =
√

1 + C2
L + CT

High-order contribution CT eλx −∑2l+1
k=0 (1/k!)(λx)k

l (order of formula) 0 1 2 2m
λ 1 2 2 1 +∏m

k=2

(
4rpr,k − 1

)
Leading-order contribution CL x 1

2 (2x)2 + 1
6 (2x)3 1

6 (2x)3 + 1
120 (2x)5

∑2m
k=m[1/(2k + 1)!](λx)2k+1

Simplified leading-order contribution CL < 1
2 x2 + 1

6 (2x)3 < 1
18 x3 + 1

120 (2x)5

For the practical implementation, we express the time-
evolution operator in the form

e−iH�t = KLVKR, (28)

where KL and KR are unitary operators in the Lie-Trotter-
Suzuki product form and V is the correction operator
[see Eqs. (20) and (23)]. We apply the Taylor expansion
to the correction operator to obtain the summation for-
mula. We divide the Taylor expansion into three parts,
V = 1 − iL + T, where L is the leading-order operator,
and T is the high-order operator. The normalization fac-
tor of a POE summation formula is CA = 1 + CL + CT,
where CL and CT are contributions of L and T, respectively.
The normalization factor of a LOR summation formula is
CA =

√
1 + C2

L + CT. The normalization factors of all the
formulas are summarized in Table I.

1. Zeroth-order Pauli-operator-expansion formula

The direct Taylor expansion of the time-evolution oper-
ator gives the zeroth-order summation formula

V0(�t) = e−iH�t = 1 − iL0(�t)+ T0(�t), (29)

where the Hermitian leading-order operator is

L0(�t) =
∑

j

hj�tσj (30)

and the high-order operator is

T0(�t) =
∞∑

k=2

M∑
j1,...,jk=1

∏k
a=1

(−ihja�t
)

k!
σjk · · · σj1 . (31)

The normalization factor is given by CL = htot�t and CT =
ehtot�t − (1 + htot�t).

2. First-order Pauli-operator-expansion formula

According to the first-order product formula, we express
the time-evolution operator as

e−iH�t = V1(�t)S1(�t). (32)

We obtain the summation formula by applying the Taylor
expansion to each exponential in the correction operator,

V1(�t) = e−iH�teih1σ1�t · · · eihM σM�t

= 1 − iL1(�t)+ T1(�t), (33)

where

L1(�t) = iF (2)
1 (�t)+ iF (3)

1 (�t), (34)

T1(�t) =
∞∑

k=4

F (k)
1 (�t), (35)

and

F (k′)
1 (�t) =

∞∑
k,k1,...,kM =0

M∑
j1,...,jk=1

δk′,k+∑M
j =1 kj

∏k
a=1

(−ihja�t
)

k!

×
⎡
⎣ M∏

j =1

(ihj�t)kj

kj !

⎤
⎦ σjk · · · σj1σ

k1
1 · · · σ kM

M .

(36)

Note that the first term in L1 is O(�t2) according to dis-
cussions on product formulas. For the first-order formula,
the normalization factor is given by CL = 1

2 (2htot�t)2 +
1
6 (2htot�t)3 and CT = e2htot�t −∑3

k=0(1/k!) (2htot�t)k.

3. Second-order Pauli-operator-expansion formula

Similar to the first-order formula, according to the
second-order product formula, we express the time-
evolution operator as

e−iH�t = S1

(
−�t

2

)†

V2(�t)S1

(
�t
2

)
. (37)
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The Taylor expansion of the correction operator reads

V2(�t) = 1 − iL2(�t)+ T2(�t), (38)

where

L2(�t) = iF (3)
2 (�t)+ iF (5)

2 (�t), (39)

T2(�t) =
∞∑

k=6

F (k)
2 (�t), (40)

and

F (k′)
2 (�t) =

∞∑
k,k1,...,k′

1,...=0

M∑
j1,...,jk=1

δk′,k+∑M
j =1(kj +k′

j )

×
∏k

a=1

(−ihja�t
)

k!

⎡
⎣ M∏

j =1

(ihj�t/2)kj +k′
j

kj !k′
j !

⎤
⎦

× σ
k′

M
M · · · σ k′

1
1 σjk · · · σj1σ

k1
1 · · · σ kM

M . (41)

According to discussions on product formulas, L2 only
contain �t3 and �t5 terms. For the second-order formula,
the normalization factor is given by CL = 1

6 (2htot�t)3 +
1

120 (2htot�t)5 and CT = e2htot�t −∑5
k=0(1/k!) (2htot�t)k.

4. Higher-order Pauli-operator-expansion formulas

For the 2mth-order formula, we express the time-
evolution operator as

e−iH�t = K2m(−�t)†V2m(�t)K2m(�t). (42)

Then, we can obtain the POE summation formula by
applying a Taylor expansion to each exponential in the cor-
rection operator V2m, similar to the first- and second-order
formulas. The normalization factor of the 2mth-order for-
mula is given by CL =∑2m

k=m[1/(2k + 1)!] (λhtot�t)2k+1

and CT = eλhtot�t −∑4m+1
k=0 (1/k!) (λhtot�t)k. Here, the fac-

tor λ = 1 +∏m
k=2

(
4rpr,k − 1

)
is due to the backward evo-

lution with the time (1 − 2rpr,m)�t in the product formula.

5. Simplified leading-order operators

By combining terms with the same Pauli operator in
the summation formula, we can reduce the normaliza-
tion factor. For example, if both ασ and −ασ exist in
the summation formula, the contribution to the normal-
ization factor is 2|α|, which is reduced to zero after
combining like terms. We apply this approach to F (2)

1

and F (3)
2 in L1 and L2, respectively, to minimize the

dominant contribution to the normalization factor. See
Appendix A for the simplified expressions of F (2)

1 and F (3)
2 .

As a result, the leading-order contributions are reduced to

CL <
1
2 (htot�t)2 + 1

6 (2htot�t)3 in the first-order formula
and CL <

1
18 (htot�t)2 + 1

120 (2htot�t)5 in the second-order
formula.

6. Leading-order-rotation formulas

The leading-order operator Ll is Hermitian, which
allows us to reduce its contribution to the normalization
factor CA from O(�tl+1) to O(�t2l+2). We suppose that
the Pauli-operator summation form of Ll is

Ll =
∑

u

αuτu, (43)

where the τu ∈ Pn are Pauli operators. Here, all αu are real
because Ll is Hermitian, which is the key to LOR formu-
las. To minimize the normalization factor, we express the
leading-order terms as a summation of rotation operators,

1 − iLl =
∑

u

βue−isgn(αu)φτu , (44)

where φ = arctan(CL), βu = |αu|/ sinφ and CL =∑u |αu|.
The normalization factor contributed by 1 − iLl is 1 +

CL in POE formulas, which is reduced to
∑

i |βu| =
CL/ sinφ =

√
1 + C2

L � 1 + C2
L/2 in LOR formulas. Note

that CL = O(�tl+1) and CT = O(�t2l+2). By using LOR
formulas, we reduce the normalization factor CA from
1 + O(�tl+1) to 1 + O(�t2l+2).

We have introduced all of our summation formulas. We
remark that our summation formulas are used for sampling
random U(s) rather than sampling quantum operations
[34], which corresponds to a summation of completely
positive maps instead of operators.

C. Comparison between formulas

Now, we compare different formulas of the time-
evolution operator in the fault-tolerance limit, i.e., gate
errors are negligible. In this case, we can use deep quantum
circuits to implement the formulas and take a sufficiently
small time-step size �t. We leave the discussions on noisy
quantum computing to Secs. VIII and IX.

When gate errors are negligible, sampling noise is the
only source of error for our exact summation formulas. The
error due to sampling noise is approximately (1/

√
Ns)C2N

A .
Therefore, the error for the lth-order POE formula is
approximately 1/

√
Ns + (2N/

√
Ns)O(�tl+1) and the error

for the lth-order LOR formula is approximately 1/
√

Ns +
(2N/

√
Ns)O(�t2l+2).

For Lie-Trotter-Suzuki product formulas, there are two
sources of error: the error due to finite �t, i.e., the for-
mulas are approximate, and the error due to sampling
noise. The error due to finite �t is systematic and can-
not be reduced by increasing the number of samples. For
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the lth-order product formula, the error is approximately
1/

√
Ns + NO(�tl+1), where the first term is due to the

sampling noise and the second term is due to the finite �t.
We note that on a fault-tolerant quantum computer, we can
use amplitude amplification to accelerate the evaluation of
an amplitude of the wave function [65]. Amplitude ampli-
fication can be applied to product formulas; how to apply
it to our summation formulas is an open question.

We find that for the same order of formulas, our summa-
tion formulas have a smaller error than product formulas,
due to the factor 1/

√
Ns in the �t term and the increased

exponent of �t (for LOR formulas). The reduced error is
at the cost of an increased gate number per time step: to
implement our formulas, we need to add a correction oper-
ator to the Lie-Trotter-Suzuki product for each time step.
A correction operator is either a Pauli operator σ or a rota-
tion operator in the form e−iφσ . In Sec. C, we show that
implementation of the correction operator for POE and
LOR formulas requires at most n and 4n controlled-NOT
gates, respectively, on an all-to-all qubit network (4n − 3
and 8n − 4 gates, respectively, on a linear qubit network).
Here, n is the qubit number. Unless the Hamiltonian has
the simplest structure, such as the one-dimensional quan-
tum Ising model, it is reasonable to assume that the gate
number for the first-order Lie-Trotter-Suzuki product S1
is more than 2n. Therefore, the gate-number increment in
each time step is moderate.

The linear combination of Lie-Trotter-Suzuki products
can efficiently reduce the error due to finite�t [32,33]. The
simplest example is e−iH�t = 4

3 S2(�t/2)2 − 1
3 S2(�t)+

O(�t5). We find that the error for our second-order LOR
formula converges faster as O(�t6) and the gate number is
smaller compared with S2

2 (assuming that the gate number
for one S2 is larger than a correction operator).

V. ALGORITHM

The algorithm consists of three phases. First, the clas-
sical computer generates samples of s according to the
distribution given by Eq. (10) and composes correspond-
ing quantum circuits. Second, the quantum computer
implements circuits to evaluate 〈ψf |Os|ψi〉. Finally, with
results from the quantum computer, the classical com-
puter calculates the expected value of eiθs〈ψf |Os|ψi〉 and
returns the final estimate of the transition amplitude
〈ψf |eiHtOe−iHt|ψi〉.

In this section, we present the first and final phases
of the algorithm, which are implemented on the classi-
cal computer. We leave details of the second phase, i.e.,
the quantum computing, to Sec. VI. We focus on second-
order summation formulas and the algorithms for the other
summation formulas are similar.

Our algorithm has some implicit connections to the dia-
grammatic Monte Carlo, in which the Feynman diagrams
represent the perturbative expansions for interacting

amplitudes. Similarly, the summation formulas in our
algorithm are perturbativelike expansions around Lie-
Trotter-Suzuki products. In our case, each term represents
a path in the Hilbert space defined by the unitary operator
U(s) instead of ξm and x variables and these paths consti-
tute the time evolution, which resembles the path-integral
picture. This connection may be further explored to design
new quantum algorithms.

A. Sampling algorithm

The Hamiltonian is specified by a vector of real num-
bers h = (h1, . . . , hM ) and a vector of Pauli operators
σ = (σ1, . . . , σM ). Given the evolution time t, we need to
choose a number of time steps N ; then, the correspond-
ing time-step size is�t = t/N . These parameters, h, σ , N ,
and �t, are inputs to the sampling algorithm. To present
the algorithm in a way that works for both POE and LOR
formulas, we introduce an additional input parameter F =
P, R to denote POE and LOR formulas, respectively.

In the second-order summation formulas, each term is
in the form S1[−(�t/2)]†WS1(�t/2): In the POE for-
mula, W is always a Pauli operator; in the LOR for-
mula, W is either a rotation operator or a Pauli opera-
tor. Taking U(si) = S1[−(�t/2)]†WiS1(�t/2) and U(s′

i) =
S1[−(�t/2)]†W′

iS1(�t/2), we have

Os = S†
1W′†

1 S′†
1 · · · S†

1W′†
N S′†

1 OS′
1WN S1 · · · S′

1W1S1, (45)

Here, we use the notations S1 = S1(�t/2) and S′
1 =

S1[−(�t/2)]† for simplicity. Given the vector of correction
operators

W = (W1, . . . , WN , W′
1, . . . , W′

N ), (46)

the quantum computer can evaluate 〈ψf |Os|ψi〉.
In the final phase, the classical computer estimates the

transition amplitude by computing the expected value of
eiθs〈ψf |Os|ψi〉. Therefore, the sampling algorithm also
needs to output θs.

Overall, the outputs of the sampling algorithm are W
and θ . The procedure for generating W and θ is given in
Algorithm 1. Algorithm 2 is a subroutine for processing
one time step.

Algorithm 1. Sample generation.
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Algorithm 2. Sample generation for one time step.

B. Quantum-circuit Monte Carlo algorithm

Using the Monte Carlo summation to compute the path-
integral formula in Eq. (7), we need to choose two param-
eters Ns and Ms, which are the number of s samples and
the number of shots per quantum circuit for evaluating
〈ψf |Os|ψi〉, respectively. Because the transition amplitude
is a complex number in general, the quantum computing
returns two real numbers aR,s and aI ,s, which are estimates
of the real and imaginary parts of eiθs〈ψf |Os|ψi〉, respec-
tively. By computing expected values of aR,s and aI ,s, we
obtain the transition amplitude 〈ψf |eiHtOe−iHt|ψi〉 up to the
factor C2N

A . QCMC is summarized in Algorithm 3.

C. Quantum-circuit Monte Carlo on classical
computer

In this section, we show that QCMC with the zeroth-
order POE formula is equivalent to QMC on a classical
computer. In the zeroth-order POE formula, the time-
evolution operator is expanded into the form e−iH�t =∑

s c(s)σs, where the σs ∈ Pn are Pauli operators. We can

Algorithm 3. Quantum-circuit Monte Carlo.

express a Pauli operator as

σ = ix1z1X x1Zz1 ⊗ · · · ⊗ ixnznX xnZzn , (47)

where xa, za = 0, 1, and ixazaX xaZza = I , X , Y, Z is a single-
qubit Pauli operator of qubit a. We consider com-
putational basis states in the form

⊗n
a=1 |μa〉, where

μa = 0, 1. A Pauli operator acting on a basis state
always results in a basis state, i.e., σ

⊗n
a=1 |μa〉 =⊗n

a=1 ixaza(−1)zaμa |μa ⊕ xa〉, where ⊕ denotes the
modulo-2 addition. Therefore, Pauli operators acting on
basis states can be efficiently calculated on a classical com-
puter. Similarly, Pauli operators acting on product states
in the form

⊗n
j =1 |ψj 〉 and stabilizer states [66] can also

be efficiently calculated on a classical computer. In the
following, we focus on computational basis states.

The zeroth-order POE formula is auxiliary-field Monte
Carlo, which takes the space of Pauli operators as the aux-
iliary field. Suppose that the initial and final states are
computational basis states and O is a Pauli operator. We
can evaluate

〈ψf |Os|ψi〉 = 〈ψf |σs′1 · · · σs′N OσsN · · · σs1 |ψi〉, (48)

on a classical computer. By expressing the initial and final
states as linear combinations of basis states and the oper-
ator O as a linear combination of Pauli operators, we can
evaluate 〈ψf |Os|ψi〉 on a classical computer for the gen-
eral states and the operator. Therefore, we can implement
QCMC with the zeroth-order POE formula without using
a quantum computer.

Now, we consider a class of Hamiltonians without short-
time interference between Pauli operators. Each Pauli
operator corresponds to two binary strings (x1, . . . , xn)

and (z1, . . . , zn). If the x strings of two Pauli operators
σ and τ are different, we have 〈ψ |τσ |ψ〉 = 0 for all
computational basis states |ψ〉 =⊗n

a=1 |μa〉. The short-
time-evolution operator e−iH�t � 1 − iH�t acting on a
basis state results in

e−iH�t|ψ〉 � |ψ〉 − i�t
∑

j

hj σj |ψ〉. (49)

We find that there is no interference between the terms if
and only if 〈ψ |τσ |ψ〉 = 0 for all σ , τ ∈ {1} ∪ {σj }: i.e.,
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the Pauli operators in the Hamiltonian have different x
strings.

For Hamiltonians without short-time interference, the
zeroth-order POE formula is equivalent to Green’s func-
tion Monte Carlo, which takes the computational basis.
In Green’s function Monte Carlo, we sample states |r〉; in
QCMC, we sample Pauli operators. Substituting the com-
putational basis for {|r〉}, the transition amplitude of each
time step reads 〈ψ ′|e−iH�t|ψ〉, where |ψ ′〉 =⊗n

a=1 |μ′
a〉.

For a Hamiltonian without short-time interference, basis
states |ψ ′〉 with nonzero 〈ψ ′|e−iH�t|ψ〉 and Pauli opera-
tors in {1} ∪ {σi} have one-to-one correspondence in the
limit of small �t. Therefore, sampling Pauli operators is
equivalent to sampling basis states |ψ ′〉.

The class of Hamiltonians without short-time interfer-
ence includes those are hard for simulation in classical
computing. In Appendix B, we show that the Fermi-
Hubbard model on any bipartite lattice (e.g., the square
lattice) can be encoded into a qubit Hamiltonian without
short-time interference, using the Jordan-Wigner transfor-
mation.

VI. QUANTUM CIRCUITS

We propose quantum circuits for evaluating the transi-
tion amplitude of the operator Os and the gate number per
time step is moderately increased upon the Lie-Trotter-
Suzuki product. To measure the transition amplitude, we
need to introduce an ancillary qubit, which controls the
evolution of n qubits representing the system. In Eq. (45),
the evolution is driven by Lie-Trotter-Suzuki products R1
and correction operators W. Our circuits are simplified in
two ways: first, we avoid controlled Lie-Trotter-Suzuki
products and only use controlled corrections; and, second,
the correction operators are either Pauli operators σ or
rotation operators e−iφσ .

We propose two types of circuits. For compact circuits,
the circuit depth is the same as the Lie-Trotter-Suzuki
decomposition with additional controlled-correction gates.
For forward-backward circuits, the circuit depth is dou-
bled but they provide inherent quantum error mitigation.
In this section, we also show how to efficiently decom-
pose a controlled-correction gate into elementary gates.
We assume that O is a unitary operator and we can eval-
uate a general operator by decomposing it into a linear
combination of unitary operators.

A. Compact circuit

The compact circuit for second-order formulas is shown
in Fig. 2(a). The circuits for the other summation formulas
are similar. For the first-order formulas, we remove the S′

1
products from the circuit; for the zeroth-order formulas,
we remove both the S1 and the S′

1 products; and by adding
more S1 and S′

1 products, the circuit can be used for higher-
order formulas. If we ignore controlled-correction gates,

Algorithm 4. Quantum-circuit evaluation.

the compact circuit for the lth-order summation formula is
the same as the circuit for the lth-order Lie-Trotter-Suzuki
product formula.

Now, we focus on second-order formulas, and the anal-
ysis for the other formulas is similar. The final state of the
compact circuit (before the basis-adjusting gate B) is

|�〉 = 1√
2

(|0〉a ⊗ OS′
1WN S1 · · · S′

1W1S1|ψi〉 + |1〉a

⊗ S′
1W′

N S1 · · · S′
1W′

1S1|ψf 〉) . (50)

Measuring the ancillary qubit, we obtain

〈�|Xa|�〉 = Re
(〈ψf |Os|ψi〉

)
, (51a)

〈�|Ya|�〉 = −Im
(〈ψf |Os|ψi〉

)
, (51b)

where Xa and Ya are Pauli operators of the ancillary
qubit. Here, we use Eq. (45). The procedure for evaluating
〈ψf |Os|ψi〉 using compact circuits is given in Algorithm 4.

B. Forward-backward circuit

The forward-backward circuit for second-order formu-
las is shown in Fig. 2(b). Compared with the compact
circuit, the number of S1 and S′

1 products is doubled. The
final state of the circuit is

|�〉 = 1√
2

(
|0〉a ⊗ |0〉⊗n + |1〉a ⊗ U†

f Os|ψi〉
)

. (52)

Here, we use Eq. (45). Measuring the ancillary qubit, we
obtain

〈�|Xa|�〉 = Re
(〈ψf |Os|ψi〉

)
, (53a)

〈�|Ya|�〉 = Im
(〈ψf |Os|ψi〉

)
. (53b)

The procedure for evaluating 〈ψf |Os|ψi〉 is similar to
Algorithm 4. Note that evaluating the transition amplitude
in this way does not provide inherent error mitigation. We
discuss the inherent error mitigation using postselection in
Sec. VIII B.
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(a) (b)
|0〉

|0〉⊗n

|0〉

|0〉⊗nWiS1 S′
1

H
×N

O

H

OW ′
i WiS1

×N

S′
1 S†

1S′†
1 W ′†

i
|0〉⊗n

×N

UfU
†
iUi U†

iUiU
†
fUi

B B

FIG. 2. Quantum circuits for evaluating eiθs〈ψf |Os|ψi〉. The qubit on the top is the ancillary qubit. The empty circle in the blue box
denotes a controlled-U gate that U acts on the n qubits when the ancillary qubit is in |0〉. Unitary operators Ui and Uf prepare the
initial and final states, respectively, i.e., |ψi〉 = Ui|0〉⊗n and |ψf 〉 = Uf |0〉⊗n. The gate B is for adjusting the measurement basis. For
simplicity, we use the notations S1 = S1(�t/2) and S′

1 = S1[−(�t/2)]†.

C. Controlled-correction gates

We consider two types of qubit networks. On the all-to-
all network, controlled-NOT gates on all pairs of qubits are
available. On the linear network, only controlled-NOT gates
on nearest-neighboring qubits are allowed. We use �a,b to
denote the controlled-NOT gate that a and b are the control
and target qubits, respectively. Because the error rate of
controlled-NOT gates is usually much higher than that of
single-qubit gates, we only count controlled-NOT gates and
we minimize their number.

A general Pauli operator σ is equivalent to an X -product
Pauli operator (i.e., a tensor product of I and X ) up to a
unitary transformation. For the σ in Eq. (47), the transfor-
mation is R̃ = H z1(1−x1)Sz1x1 ⊗ · · · ⊗ H zn(1−xn)Sznxn , where
H is the Hadamard gate, and S is the π/4 phase gate.
This transformation leads to σ̃ = R̃†σ R̃ = X x1∨z1 ⊗ · · · ⊗
X xn∨zn , where xa ∨ za = 1 − (1 − xa)(1 − za).

Implementation of the controlled-σ̃ gate on the all-to-
all network is straightforward. For each qubit with xa ∨
za = 1, we apply the controlled-NOT gate �0,a, where
qubit 0 is the ancillary qubit. The controlled-σ̃ gate is∏n

a=1�
xa∨za
0,a and the number of controlled-NOT gates is

N� =∑n
a=1 xa ∨ za ≤ n.

In the compact circuit shown in Fig. 2(a), there are two
controlled-correction gates in each time step, correspond-
ing to Wi and W′

i, respectively. When Wi = τ and W′
i = τ ′

are Pauli operators, we can combine the two controlled-
correction gates into one controlled-σ gate in the following
way. Note that τ ′τ = ζσ , where ζ is a phase factor. We
apply τ first, then a controlled-σ gate, and finally a phase
gate diag(1, ζ ) on the ancillary qubit. The overall transfor-
mation is equivalent to the two controlled-correction gates.
The total number of controlled-NOT gates is N�.

Now, we present another protocol for the controlled-σ
gate. The circuit is shown in Fig. 3(a), which is formed of
three parts: gates transforming a general Pauli operator σ
into an X -product Pauli operator σ̃ , gates transforming σ̃
into the single-qubit Pauli operator X1 on qubit 1, and the
controlled-NOT gate �0,1 on the ancillary qubit and qubit
1. On the linear network, we assume that qubit 1 is next to
the ancillary qubit. On the all-to-all network, we can label
any qubit as qubit 1; without loss of generality, we assume
that x1 ∨ z1 = 1. In this protocol, there is only one instead

of N� gates on the ancillary qubit. Because the outcome is
obtained by measuring the ancillary qubit, applying fewer
gates on the ancillary qubit potentially reduces the impact
of errors. Replacing �0,1 with the circuit in Fig. 3(b), we
can realize the controlled-e−iφσ gate.

To transform σ̃ into X1, we look for a transformation
�̃ that satisfies σ = �̃†X1�̃. On the all-to-all network, we
take �̃ =∏n

a=2�
xa∨za
1,a and the number of controlled-NOT

gates for each �̃ is N� − 1. On the linear network, we take

�̃ = �1,2�
x1↓z1
2,1 �2,3�

x2↓z2
3,2 · · ·�n′−1,n′�

xn′−1↓zn′−1
n′,n′−1 , (54)

where xa ↓ za = (1 − xa)(1 − za) and n′ = max
{a | xa = 1}. On the linear network, the number of
controlled-NOT gates for each �̃ is (n′ − 1)+∑n′−1

a=1 xa ↓
za ≤ 2n − 2.

The maximum number of controlled-NOT gates for
implementing the two controlled-correction gates in each
time step is summarized as follows. On the all-to-all
network, the maximum gate number is n for POE for-
mulas, which becomes 2(n − 1)+ 1 = 2n − 1 to reduce
gates on the ancillary qubit and 2[2(n − 1)+ 2] = 4n
for LOR formulas. On the linear network, the maximum
gate number is 2(2n − 2)+ 1 = 4n − 3 for POE formulas
and 2[2(2n − 2)+ 2] = 8n − 4 for LOR formulas. In the
MCQC algorithm, the controlled-correction gates are ran-
domly selected and the gate number could be much smaller
than its maximum value. For example, for the POE for-
mula, the Pauli operator of the zeroth-order term in the
expansion is the identity.

(a)
0

1

0

1

(b)

RZ
R̃ R̃†

R†
Z

Λ̃ Λ̃†
H H

FIG. 3. (a) The circuit of the controlled-σ gate. Qubit 0 is
the ancillary qubit. (b) The circuit of the controlled-e−iφX1 gate.
Replacing the controlled-NOT gate in the dashed box with the
controlled-e−iφX1 gate, we have the circuit of the controlled-e−iφσ

gate. The single-qubit phase gate RZ = ei(φ/2)Z .
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VII. OPTIMAL DISTRIBUTION

In this section, we derive the optimal distribution of s
that minimizes the variance in Monte Carlo. Using the pro-
tocols in Sec. VI to evaluate 〈ψf |Os|ψi〉, we prove that
taking the distribution in Eq. (10) and Ms = 1 is optimal
and that the minimum variance is given by Eq. (16).

A quantum circuit usually has random measurement
outcomes; therefore, the outputs of quantum computing
aR,s and aI ,s are random variables. We suppose that aν,s
(ν = R, I ) takes the value ai with the probability Pν,s,i
in the quantum computing; then, its expected value is
E
[
aν,s
]

QC =∑i Pν,s,iai. Here, E [•]QC denotes the mean
taken over quantum computing runs for the specific s (each
run returns an output evaluated using Ms shots) and E [•]
without the subscript “QC” denotes the mean taken over
both s and quantum computing runs. Using the proto-
cols in Sec. VI, aR,s and aI ,s are unbiased estimators of
〈ψf |Os|ψi〉, i.e.,

eiθs〈ψf |Os|ψi〉 = E
[
aR,s
]

QC + iE
[
aI ,s
]

QC . (55)

Let AR and AI be the real and imaginary parts of
〈ψf |eiHtOe−iHt|ψi〉, respectively. In the QCMC algorithm,
we evaluate the summation Aν =∑s csE

[
aν,s
]

QC using

the Monte Carlo method, where cs =
∣∣∣∏N

i=1 c(si)c(s′
i)

∗
∣∣∣.

Given any probability distribution P(s), we have

Aν =
∑

s

P(s)
csE
[
aν,s
]

QC

P(s)
= E
[

csaν,s

P(s)

]
. (56)

Therefore, we can estimate Aν by sampling s according
to the distribution P(s) and compute the empirical mean
of csaν,s/P(s). The variance of the estimator Âν with Ns
samples is

Var
(

Âν
)

= 1
Ns

Var
[

csaν,s

P(s)

]

= 1
Ns

∑
s

c2
sα

2
ν,s

P(s)
− A2

ν

Ns
, (57)

where αν,s =
√

E
[
a2
ν,s

]
QC. The optimal distribution that

minimizes the variance is P(s) ∝ |cs|αν,s and the minimum
variance is

Var
(

Âν
)

= 1
Ns

(∑
s

|cs|αν,s

)2

− A2
ν

Ns
. (58)

Now, we consider that aν,s is obtained by taking the empir-
ical mean of Ms binary numbers. Each binary number
takes ±1 corresponding to the measurement outcome of

the ancillary qubit (see Algorithm 4). Then, aν,s follows
the binomial distribution and

αν,s =

√√√√1 + (Ms − 1)E
[
aν,s
]2

QC

Ms
. (59)

Let Mtot be the total number of circuit shots; we have Ns =
Mtot/Ms. Substituting αν,s and Ns into Eq. (58), we obtain
the variance as a function of Ms. Taking Ms as a continuous
variable, we find that the derivative of the variance with
respect to Ms is always positive when Ms ≥ 1. Therefore,
the variance is minimized at Ms = 1. When Ms = 1, we
have αν,s = 1 and the optimal distribution is P(s) ∝ |cs|.
Accordingly, the minimum variance is

Var
(

Âν
)

= 1
Mtot

(∑
s

|cs|
)2

− A2
ν

Mtot
. (60)

With Var
(

Â
)

= Var
(

ÂR

)
+ Var

(
ÂI

)
, we obtain the min-

imum total variance in Eq. (16). Here, we assume that the
total number of shots for each of the real and imaginary
parts is Mtot.

We remark that the optimal distribution is obtained by
assuming the empirical mean estimator for aν,s. If we
have prior knowledge of the aν,s distribution, we can use
other estimators such as the Bayes estimator to reduce
the variance. In the extreme case, suppose that E

[
aν,s
]

QC

is known: the optimal distribution is P(s) ∝ |csE
[
aν,s
]

QC|
instead of P(s) ∝ |cs|αν,s (note that in this case, we do not
even need the quantum computer).

VIII. QUANTUM ERROR MITIGATION

Many quantum error-mitigation protocols can be clas-
sified into three categories. In the first category, with
knowledge of the error model, we compensate the effect
of errors by using approaches such as error extrapolation
and probabilistic error cancellation (i.e., quasiprobability
decomposition) [48,57,59]. In the second category, data
from quantum circuits are processed according to con-
straints on the quantum state. The protocols in this cate-
gory include, for example, symmetry-based postselection
[67,68] and purification [69–71]. There are also proto-
cols, e.g., subspace expansion [58], introduced for specific
algorithms, which belong to the third category.

In this section, we first discuss the application of
quasiprobability decomposition in QCMC and then we
show that the forward-backward circuit in Fig. 2(b) pro-
vides inherent error mitigation based on constraints on the
state. The error mitigation increases the variance in Monte
Carlo. On a noisy quantum computer, we need to choose an
optimal time-step size �t to minimize the variance. Even-
tually, the variance is determined by the error rate, which
is discussed in Sec. IX.
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A. Quasiprobability decomposition

In the quasiprobability decomposition, an error-free
quantum operation is expressed as a linear combination
of noisy operations. Let Gef = [U] and Gi be the error-
free operation and noisy operations, respectively. The
quasiprobability decomposition is in the form

Gef =
∑

i

qiGi, (61)

where qi are real coefficients, i.e., quasiprobabilities. Here,
U is a unitary quantum gate, [U](•) = U • U† is the trace-
preserving completely positive map of the gate and Gi are
operations that can actually be implemented on the noisy
quantum computer. Similar decompositions can be applied
to the initial state and measurement.

We take the Pauli-error model as an example. Note that
a general error model can be converted into the Pauli-
error model by using Pauli twirling [72]. In the Pauli-error
model, the noisy operation of a two-qubit gate U reads
G = N [U], where the noise map is

N = (1 − p)[I ⊗ I ] +
∑

σ∈{I ,X ,Y,Z}⊗2\{I⊗I}
pσ [σ ], (62)

pσ � 1 is the rate of Pauli error σ , and p =∑σ �=I⊗I pσ is
the total error rate. The inverse map of N is also in the
Pauli-operation summation form, i.e.,

N−1 =
∑

σ∈{I ,X ,Y,Z}⊗2

qσ [σ ], (63)

and we can solve coefficients qσ numerically. Without a
general analytically expression of qσ , it is sufficient for us
to consider the first-order expansion in order to discuss the
impact on variance. To the first order, we have

qI⊗I = 1 + p + O(p2), (64)

qσ �=I⊗I = −pσ + O(p2). (65)

Given the inverse map, the quasiprobability decomposition
of gate U is

Gef =
∑

σ∈{I ,X ,Y,Z}⊗2

qσ [σ ]G. (66)

Assuming that errors in single-qubit gates are negligible,
the composite operation [σ ]G can be implemented on the
noisy quantum computer by adding a Pauli gate σ after
the noisy two-qubit gate G. We note that the assumption of
negligible errors in single-qubit gates is not necessary for
the quasiprobability decomposition.

Now, we apply the quasiprobability decomposition to a
quantum circuit. In QCMC, using protocols in Sec. VI,

only the ancillary qubit is measured. We can adjust the
measurement basis using the gate B in Fig. 2; therefore,
without loss of generality, we focus on the observable Za
in the error mitigation. Given a quantum circuit formed of
many elementary gates, the mean of Za reads

〈Za〉 = Tr
[
ZaGNG · · ·G1(ρ)

]
, (67)

where ρ = |0〉〈0|⊗n is the initial state of the quantum
circuit and NG is the number of gates. Suppose that
the quasiprobability decomposition of each gate is Gef

j =∑
i qj ,iGj ,i. The error-free mean is

〈Za〉ef =
∑

i1,...,iNG

⎛
⎝

NG∏
j =1

qj ,i

⎞
⎠Tr

[
ZaGNG,iNG

· · ·G1,i1(ρ)
]

.

(68)

Each term in the summation is the mean of Za in a circuit
modified from the original one. We remark that errors in
the initial state and the final measurement can be corrected
in a similar way.

We evaluate the decomposition formula in Eq. (68)
using the Monte Carlo summation method by sampling
random noisy circuits; therefore, such an error-mitigation
protocol is called probabilistic error cancellation. Similar
to QCMC, the sampling of random circuits increases the
variance by a factor of C2

E , where CE =∏NG
j =1

(∑
i |qj ,i|

)
.

According to the Pauli-error model, we have CE =∏NG
j =1[1 + 2pj + O(p2

j )], where pj is the error rate of the
j th gate. We find that the factor CE increases with the num-
ber of noisy gates. Therefore, the circuit with fewer gates,
i.e., the compact circuit in Fig. 2(a), is preferred.

In previous discussions, we have assumed that errors in
different gates are not correlated. To deal with correlations,
we need to introduce a general form of the quasiprobability
decomposition,

〈Za〉ef
C0

=
∑

k

qk〈Za〉Ck , (69)

where 〈Za〉Ck is the mean of Za in the circuit Ck, C0 is the
original circuit, and the Ck �=0 are modified circuits. Modi-
fied circuits generated by adding single-qubit operations to
the original circuit are usually sufficient for the existence
of the decomposition formula. Without correlations, we
can work out quasiprobabilities using gate-set tomography
[59]; with correlations, we can determine quasiprobabili-
ties using data of Clifford circuits, i.e., Clifford sampling
[73,74]. Given the quasiprobability decomposition for-
mulas, we can evaluate 〈ψf |Os|ψi〉 with error mitigation
following the procedure in Algorithm 5.

B. Inherent error mitigation by postselection

As shown in verified quantum phase estimation [75]
and dual-state purification [76], a quantum circuit with the
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Algorithm 5. Quantum-circuit evaluation with error mitiga-
tion.

forward-backward structure incorporating postselection is
robust to errors. For the postselection, we measure the n
qubits representing the system in addition to the ancillary
qubit [see Fig. 2(b)]. We only select the state when the
measurement outcome is |0〉⊗n, which transforms the final
state in Eq. (52) into

|�′〉 = |0〉a + 〈ψf |Os|ψi〉|1〉a√
1 + ∣∣〈ψf |Os|ψi〉

∣∣2 ⊗ |0〉⊗n. (70)

Measuring the ancillary qubit in the state after postselec-
tion, we have

〈Xa〉0 = 2Re
(〈ψf |Os|ψi〉

)
1 + ∣∣〈ψf |Os|ψi〉

∣∣2 , (71a)

〈Ya〉0 = 2Im
(〈ψf |Os|ψi〉

)
1 + ∣∣〈ψf |Os|ψi〉

∣∣2 , (71b)

〈Za〉0 = 1 − ∣∣〈ψf |Os|ψi〉
∣∣2

1 + ∣∣〈ψf |Os|ψi〉
∣∣2 , (71c)

where 〈•〉0 denotes the mean conditioned on the outcome
|0〉⊗n. Solving the equations, we obtain

〈ψf |Os|ψi〉 = 〈Xa〉0 + i〈Ya〉0

1 + 〈Za〉0
. (72)

The postselection forces most of qubits into a pure state,
which eliminates errors that transform |0〉⊗n into orthog-
onal states. In addition to postselection, we can purify
the ancillary qubit as follows. According to Eq. (70), the
state of the ancillary qubit is a pure state when the quan-
tum circuit is error free. In the tomography purification,
we implement the state tomography to the ancillary qubit
and compute the eigenstate with the largest eigenvalue of
the reconstructed reduced density matrix [76]. Using the

eigenstate to compute the three means 〈•〉0, we can make
sure that the final result is obtained from a pure state. In
Sec. 1, we demonstrate that the inherent error mitigation
can significantly reduce the error in QCMC.

Now, we have two protocols using the circuit in Fig. 2(b)
to evaluate 〈ψf |Os|ψi〉. In the protocol without postse-
lection (see Sec. VI B), the estimator of 〈ψf |Os|ψi〉 is
unbiased and it is optimal to take Ms = 1. In the proto-
col with postselection, the estimator is biased due to the
denominator in Eq. (72); i.e., the mean of estimates is not
exactly 〈ψf |Os|ψi〉 when Ms is finite. Therefore, for the
postselection protocol, it is necessary to choose a large Ms
to evaluate each 〈•〉0 (such that the bias is small) in order to
obtain an accurate final result of the transition amplitude.

The inherent error mitigation increases the variance of
QCMC. When the circuit is error free, the postselection
succeeds with the probability

PS = 1
2

(
1 + ∣∣〈ψf |Os|ψi〉

∣∣2) ≥ 1
2

. (73)

If the circuit is implemented for Ms shots, only PSMs shots
generate effective data on average. When the circuit is
noisy, errors transform |0〉⊗n into orthogonal states, which
reduces the success rate. Therefore, the number of effective
shots decreases with the error rate and the gate number,
which causes an enlarged variance.

1. Numerical demonstration

To demonstrate the inherent error mitigation, we con-
sider the one-dimensional Fermi-Hubbard model and
numerically simulate the noisy quantum computing on a
classical computer. The Hamiltonian reads

H = −J
NL−1∑
i=1

∑
s=↑,↓

(
c†

i,sci+1,s + c†
i+1,sci,s

)

+ U
∑

i

c†
i,↑ci,↑c†

i,↓ci,↓, (74)

where NL = 3 is the number of sites and ci,s is the anni-
hilation operator for the fermion with spin s on the ith
site. This model can be encoded into 2NL qubits using the
Jordan-Wigner transformation.

We use the first-order Lie-Trotter-Suzuki product for-
mula and a corresponding summation formula to simu-
late the real-time evolution. The initial state is |ψi〉 =
c†

1,↑c†
2,↓c†

3,↑|Vac〉, where |Vac〉 is the vacuum state and
we take |ψf 〉 = |ψi〉. The observable is O = 2c†

3,↑c3,↑ − 1

and the simulation is to compute 〈O〉 = 〈ψi|eiHtOe−iHt|ψi〉.
To minimize the variance of QCMC, we first expand the
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correction operator using Pauli operators, i.e.,

V1 =
∑
σ∈Pn

(aσ − ibσ )σ , (75)

where aσ and bσ are real and

aσ − ibσ = 2−nTr
[
σe−iH�tS1(�t)†

]
. (76)

We have a1 > 0 and b1 = 0. Then, we take the summation
formula

e−iH�t =
∑

σ∈Pn\{1}

[
aσ σ + βσ e−isgn(bσ )φσ

]
S1, (77)

where φ = arctan(a−1
1

∑
σ |bσ |) and βσ = |bσ |/ sinφ.

Using the forward-backward circuit for error mitiga-
tion, we find that the impact of machine errors can be

(a)
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〈O
〉−

〈O
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〉

t
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−0.2

−0.1
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t
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FIG. 4. (a) The observable 〈O〉 as a function of the time t.
In the simulation, we take J = 2, U = 4 and �t = 0.05. The
raw data are obtained using the forward-backward circuit with-
out error mitigation, according to Eq. (53). With postselection,
the observable is computed according to Eq. (72). Tomography
purification is used to further reduce the error. As a compari-
son, the Lie-Trotter-Suzuki product formula is evaluated without
machine errors. (b) The error 〈O〉 − 〈O〉ef in the observable.
Here, 〈O〉ef denotes the exact value.

significantly suppressed, as shown in Fig. 4. We model
the noise in quantum computing using the depolarizing
error model. For a controlled-NOT gate, the noise map is
given by Eq. (62) with parameters pσ = p/15. We neglect
errors in the initialization, single-qubit gates, and mea-
surement. In the numerical simulation, we take the error
rate per gate p = 0.03%. The number of controlled-NOT
gates for each S1 is 14 and the simulation involves at
most 85 time steps, i.e., the total number of controlled-NOT
gates is above 2380. Therefore, the maximum total error
rate is above 71.4%. After the error mitigation, we find
that the overall accuracy of the summation formula taking
Ns = 10 000 samples is higher than the product formula
without machine errors.

IX. QUANTUM COMPUTING VERSUS
CLASSICAL COMPUTING

Sampling noise is the main source of error in the
QCMC algorithm. The Monte Carlo variance increases
exponentially with the evolution time as approxi-
mately (1/Ns)C4N

A = (1/Ns)e4t�t−1 ln CA . As summarized in
Table I, CA = 1 + ξ�tk + O(�tk+1), where ξ is a constant
depending on the Hamiltonian. When k > 1, by taking
�t = (δ/4tξ)1/(k−1), we can reduce the factor to C4N

A =
eδ+O

(
δk/(k−1)

)
for any small δ. We note that k > 1 in lth-

order POE formulas with l > 0 and all LOR formulas. For
the zeroth-order POE formula, because CA = ehtot�t (i.e.,
k = 1), we have C4N

A = e4htott for all �t.
It is widely believed that a classical computer cannot

simulate the time evolution of general quantum many-body
systems at a polynomial cost, which is one of main moti-
vations for quantum computing [1]. The QCMC algorithm
with the zeroth-order POE formula is equivalent to a clas-
sical algorithm, i.e., Green’s function Monte Carlo taking
the computational basis, for a large class of Hamiltoni-
ans (see Sec. C). In this classical algorithm, the variance
increases exponentially with the evolution time and sys-
tem size, i.e., approximately (1/Ns)e4htott, whatever �t we
choose. Here, t is the evolution time and htot increases
with the system size. The variance is up to minimization,
e.g., changing the Hilbert-space basis [23] and optimizing
the method for generating samples. Nevertheless, the exis-
tence of a generic approach that reduces the exponential
scaling to polynomial one is unlikely [2].

On a fault-tolerant quantum computer, we can simulate
the time evolution of quantum many-body systems at a
polynomial cost. By taking a small �t, we can reduce the
factor C4N

A to a satisfactory level and �t scales polynomi-
ally with t and htot. Therefore, the number of times steps
N = t/�t, i.e., the circuit depth, scales polynomially with
t and htot.

To demonstrate the impact on the sign problem in
QMC incorporating quantum computing, we simulate the
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real-time evolution of two models, the Fermi-Hubbard
model and the Heisenberg model. We use two formulas
in the simulation of each model, the zeroth-order POE
and first-order LOR formulas. The zeroth-order POE for-
mula corresponds to a classical QMC algorithm. Because
the zeroth-order POE formula only includes products of
Pauli operators, we can efficiently evaluate it on a clas-
sical computer even when the system size is large. The
first-order LOR formula includes products of non-Pauli
unitary operators, e.g., the product in Eq. (17). With a
quantum computer, we can efficiently evaluate these non-
Pauli products when the system is large. For the purpose
of comparing the sign problem in two formulas, we eval-
uate both formulas on a classical computer, given that the
system size is up to six qubits. The phase average 〈eiθq〉 is
used to indicate the sign problem, where eiθq denotes the
phase of eiθs〈�f |Os|�i〉. We find that the sign problem is
significant in the zeroth-order POE formula, i.e., 〈eiθq〉 con-
verges to zero rapidly with the evolution time (see Figs. 5
and 6). As a result, the estimation of an observable has a
large variance. In comparison, the sign problem is mild in
the first-order LOR formula, i.e., 〈eiθq〉 is finite. With the
sign problem mitigated, the simulation using the first-order
LOR formula is accurate for a much longer evolution time
compared with the zeroth-order POE formula.

On a noisy quantum computer, the cost of simulating
quantum many-body systems increases exponentially with
the evolution time and system size and the rate of increase
decreases with the error rate. Using the quasiprobabil-
ity decomposition to mitigate errors, the error mitigation
enlarges the variance. The variance taking into account
quantum error mitigation is approximately (1/Ns)C4N

A C2
E .

We consider the compact circuit in Fig. 2(a). Let ε be the
error rate of one elementary product S1 (we assume that
S′

1 has the same error rate), let g be the number of S1 and
S′

1 products per time step, and let ηε be the average error
rate of the controlled-correction gates in one time step. The
total error rate of one time step is approximately (g + η)ε.
Here, g = 0, 1, 2 for zeroth-, first-, and second-order for-
mulas, respectively. Suppose that the total error rate of
other operations [which are out of the bracket in Fig. 2(a)]
is ε′ and the factor due to error mitigation is CE � (1 +
2ε′) [1 + 2(g + η)ε]N , according to the Pauli-error model.
Then, we can express the variance in the form

1
Ns

C4N
A C2

E � 1
Ns
(1 + 2ε′)2e4γ htott, (78)

where

γ = 1
htot�t

ln
[
CA
√

1 + 2(g + η)ε
]

. (79)

We find that the rate γ decreases with the error rate.
Given the error rate of the noisy quantum computer, we

choose the time-step size�t to minimize the rate γ . Taking
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FIG. 5. (a) The phase average and (b) the expected value of the
observable O = 2c†

3,↑c3,↑ − 1 in the Monte Carlo simulation of
the Fermi-Hubbard model. The Hamiltonian is given in Eq. (74),
in which we take J = 2 and U = 4. The simulation is to compute
〈O〉 = 〈ψi|eiHtOe−iHt|ψi〉, where |ψi〉 = c†

1,↑c†
2,↓c†

3,↑|Vac〉. In the
quantum-circuit Monte Carlo (first-order leading-order-rotation
formula), we take �t = 0.05 and Ns = 10 000. In the classical
Monte Carlo (zeroth-order Pauli-operator-expansion formula),
we take �t = 0.01 and Ns = 100 000 [77]. The samples are
generated according to the distribution in Eq. (10).

CA � 1 + ξ�tk, we find that the optimal step size is

�topt �
[
(g + η)ε

(k − 1)ξ

]1/k

, (80)

and the corresponding minimum rate is

γmin � kξ 1/k

htot

[
(g + η)ε

k − 1

](k−1)/k

. (81)

For the second-order LOR formula, k = 6, g = 2, and ξ <
h6

tot/(2 × 182). In Fig. 7, we plot the minimum rate com-
puted numerically using formulas of CA in Table I. For the
first- and second-order formulas, we take the upper bound
of the simplified leading-order contribution. We find that
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FIG. 6. (a) The phase average and (b) the expected value of the
observable O = Z3 in the Monte Carlo simulation of the Heisen-
berg model. The Hamiltonian is H = −J

∑NS−1
i=1 (XiXi+1 +

YiYi+1 + ZiZi+1)− h
∑NS

i=1 Zi, where the number of spins is
NS = 6, and J = h = 1. The simulation is to compute 〈O〉 =
〈ψi|eiHtOe−iHt|ψi〉, where |ψi〉 = |010101〉. In the quantum-
circuit Monte Carlo (first-order leading-order-rotation formula),
we take �t = 0.05 and Ns = 10 000. In the classical Monte
Carlo (zeroth-order Pauli-operator-expansion formula), we take
�t = 0.01 and Ns = 200 000 [77]. The samples are generated
according to the distribution in Eq. (10).

the second-order LOR formula outperforms other formu-
las. Taking higher-order formulas does not further reduce
γ for the given error rates.

Although the cost of the QCMC algorithm on a noisy
quantum computer scales exponentially with the evolu-
tion time and system size in the same way as the classical
algorithm, the quantum computing can accelerate QMC
by reducing the variance. To achieve the computation
accuracy δ, i.e., to reduce the variance to δ2, we take
Ns ∼ e4γ htott/δ2. In the classical algorithm, γ = 1. In the
quantum algorithm, taking the minimum value for η = 1
[see Fig. 7(b)], we have γ � 0.34 when the error rate
per elementary product is ε = 0.1 and γ � 0.058 when
ε = 0.01. For htott = 4, the quantum algorithm reduces the

(a) (b)
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10−110−4 10−210−3

ε

γmin

FIG. 7. The minimum rate of increase of the variance γmin.
ε is the error rate of one elementary Lie-Trotter-Suzuki prod-
uct S1. ηε is the average error rate of the controlled-correction
gates in one time step. POE l denotes the lth-order Pauli-
operator-expansion formula and LOR l denotes the lth-order
leading-order-rotation formula.

sample size Ns by a factor of approximately 4 × 104 when
ε = 0.1 and approximately 4 × 106 when ε = 0.01. The
advantage of the quantum algorithm grows when the error
rate decreases: fitting to the second-order LOR curve in
Fig. 7(b), we have γ � 2.45ε0.82.

We can optimize the quantum algorithm to reduce the
variance in various ways. First, we can significantly reduce
CA for a Hamiltonian with only local interactions. CA is
greater than one because of the correction operator, which
is used to compensate the difference between the exact
time-evolution operator and the Lie-Trotter-Suzuki prod-
uct. According to the Baker-Campbell-Hausdorff formula,
this difference is a series of commutators. For local interac-
tions, most of the commutators in low-order terms are zero.
In this case, expanding the correction operator accord-
ing to the Baker-Campbell-Hausdorff formula (instead of
the direct Taylor expansion) can reduce CA. Second, sim-
ilar to the classical algorithm, with some knowledge of
〈ψf |Os|ψi〉, we can optimize the distribution of generat-
ing samples to reduce the variance. Third, the variance
due to quantum error mitigation can be reduced. In the
error-mitigation protocol used to estimate γ , we correct all
Pauli errors in the circuit, which is unnecessary. Because
the ancillary qubit is measured to evaluate the transition
amplitude, we only need to correct errors that affect the
ancillary qubit. These errors can be identified and cor-
rected by utilizing the learning-based approach of error
mitigation [73].

X. CONCLUSIONS

In this paper, we propose a QMC algorithm that uses
quantum computing as a subroutine, which allows the
nonvariational quantum simulation to be implemented
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with noisy intermediate-scale quantum hardware. In our
algorithm, we use exact summation formulas to express
the time-evolution operator. We optimize these summa-
tion formulas and quantum circuits to minimize the Monte
Carlo variance and circuit depth. The optimal distribu-
tion of generating samples in Monte Carlo is derived in
the circumstances of probabilistic evaluation using quan-
tum computing. On a noisy quantum computer, we can use
probabilistic error cancellation or inherent error mitigation
to eliminate machine errors. By choosing the parameter
�t, we can maximize the quantum speed-up given a finite
error rate. This scheme illustrates a way of designing quan-
tum algorithms with reduced circuit depth by using Monte
Carlo techniques [78].

Our algorithm shows that a quantum computer without
fault tolerance can speed up solving practical problems.
In terms of algorithmic complexity, quantum computing
has an advantage over classical computing in many com-
putational tasks, in the fault-tolerance regime achieved
with quantum error correction [79]. Even without error
correction, a quantum device can perform tasks that are
intractable for classical computers, such as sampling the
output of a quantum circuit [80]. Our algorithm is to
solve a practical problem, i.e., the nonvariational simu-
lation of quantum many-body systems. We theoretically
analyze the complexity of our algorithm, i.e., the circuit
depth and sampling cost. The complexity is polynomial on
a fault-tolerant quantum computer. On a noisy quantum
computer, although the complexity is exponential due to
the finite error rate, our algorithm can still outperform clas-
sical algorithms and speed up Monte Carlo calculations by
substantially reducing the sign problem.
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APPENDIX A: LEADING-ORDER TERMS

Let Aj ≡ −ihj σj�t and A ≡∑i Ai = −iH�t for sim-
plicity. The Taylor expansion of the time-evolution opera-
tor reads

e−iH�t = eA = 1 + A + 1
2

A2 + 1
6

A3 + O
(
�t4
)

. (A1)

We have

A2 =
∑
i<j

(
AiAj + Aj Ai

)+∑
i

A2
i (A2)

and

A3 =
∑

i<j<k

(
AiAj Ak + AkAj Ai + Aj AiAk + AkAiAj

+ AiAkAj + Aj AkAi
)+∑

i<j

(
A2

i Aj + Aj A2
i + AiAj Ai

+ AiA2
j + A2

j Ai + Aj AiAj

)
+
∑

i

A3
i . (A3)

1. First-order formula

According to the first-order formula, we have

S1(�t)† = e−A1 · · · e−AM

=
M∏

i=1

[
1 − Ai + 1

2
A2

i − 1
6

A3
i + O

(
�t4
)]

= 1 − A + 1
2

A(2) − 1
6

A(3) + O
(
�t4
)

, (A4)

where

A(2) = 2
∑
i<j

AiAj +
∑

i

A2
i , (A5)

A(3) = 6
∑

i<j<k

AiAj Ak + 3
∑
i<j

(
A2

i Aj + AiA2
j

)
+
∑

i

A3
i .

(A6)

The correction operator is

V1(�t) = 1 − A2 + 1
2
(
A2 + A(2)

)+ 1
2

A
(
A(2) − A2)

+ 1
6
(
A3 − A(3)

)+ O
(
�t4
)

. (A7)

Then, we have

F (2)
1 (�t) = −A2 + 1

2
(
A2 + A(2)

) = 1
2
(
A(2) − A2)

= 1
2

∑
i<j

(
AiAj − Aj Ai

)
(A8)

and
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F (3)
1 (�t) = 1

2
A
(
A(2) − A2)+ 1

6
(
A3 − A(3)

)

= 1
2

∑
i<j<k

(
AiAj Ak − AkAj Ai + Aj AiAk + AkAiAj − AiAkAj − Aj AkAi

)

+ 1
2

∑
i<j

(
A2

i Aj − AiAj Ai − A2
j Ai + Aj AiAj

)
+ 1

6
(
A3 − A(3)

)

= 1
6

∑
i<j<k

(−2AiAj Ak − 2AkAj Ai + 4Aj AiAk + 4AkAiAj − 2AiAkAj − 2Aj AkAi
)

+ 1
6

∑
i<j

(
A2

i Aj + Aj A2
i − 2AiAj Ai − 2AiA2

j − 2A2
j Ai + 4Aj AiAj

)
. (A9)

According to Eq. (A8), the contribution of F (2)
1 (�t) to the

normalization factor is

∑
i<j

|hihj |�t2 <
1
2

(∑
i

|hi|
)2

�t2. (A10)

2. Second-order formula

We can write the second-order correction operator as

V2(�t) = V1

(
−�t

2

)†

V1(
�t
2
)

= 1 + F (3)
1

(
�t
2

)
+ F (3)

1

(
−�t

2

)†

+ O(�t5).

(A11)

Then, we have

F (3)
2 (�t) = F (3)

1

(
�t
2

)
+ F (3)

1

(
−�t

2

)†

. (A12)

Accordingly, the contribution of F (3)
2 (�t) to the normaliza-

tion factor is

1
3

∑
i<j<k

|hihj hk|�t3 + 1
12

∑
i<j

(
|h2

i hj | + 2|hih2
j |
)
�t3

<
1

18

(∑
i

|hi|
)3

�t3. (A13)

APPENDIX B: FERMI-HUBBARD MODEL

The Hamiltonian of Fermi-Hubbard model reads

HFH = −
∑
i<j

Ji,j

∑
s=↑,↓

(
c†

i,scj ,s + c†
j ,sci,s

)

+ U
∑

i

(
c†

i,↑ci,↑ − 1

2

)(
c†

i,↓ci,↓ − 1

2

)
, (B1)

where ci,s is the annihilation operator for the fermion
with spin s on the ith site. Operators of fermions satisfy
{ci,s, ci′,s′ } = 0 and {ci,s, c†

i′,s′ } = δi,i′δs,s′1. Here, we mod-
ify the original Fermi-Hubbard model by adding a uniform
on-site potential −(U/2)N , which does not affect the time
evolution if the initial state is an eigenstate of the total
particle number operator N =∑i,s c†

i,sci,s. For a bipartite
lattice, Ji,j = 0 for all i + j ∈ Even, i.e., two sites are not
coupled if their labels have the same parity.

To encode the Fermi-Hubbard model into qubits, we
take the Jordan-Wigner transformation

ci,↑ = Y2i−1 − iZ2i−1

2

∏
l<2i−1

Xl,

ci,↓ = Y2i − iZ2i

2

∏
l<2i

Xl,
(B2)

where Xa, Ya, and Za are the Pauli operators of qubit
a. The spin-↑ and spin-↓ on the ith site are encoded
on qubits (2i − 1) and 2i, respectively. According to the
Jordan-Wigner transformation, the qubit Hamiltonian of
Fermi-Hubbard model is

HFH = −
∑
i<j

Ji,j

2
(
Y2i−1,2j −1 + Z2i−1,2j −1 + Y2i,2j + Z2i,2j

)

+ U
4

∑
i

X2i−1X2i, (B3)

where

Ya,b = YaYb

∏
a<l<b

Xl,

Za,b = ZaZb

∏
a<l<b

Xl.
(B4)

Each Pauli operator σ corresponds to an x binary string
according to Eq. (47), and we define x(σ ) ≡ (x1, . . . , xn) as
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the x binary string of the Pauli operator σ . A Hamiltonian
does not have short-time interference if x(σ1) �= x(σ2) for
any pair of Pauli-operator terms σ1 and σ2 in the Hamil-
tonian. We use xa,b to denote the binary string for which
xk = 0 if k < a or k > b and xk = 1 if a ≤ k ≤ b. Then,

x
(
Ya,b
) = xa,b,

x
(
Za,b
) = xa+1,b−1,

x (X2i−1X2i) = x2i−1,2i.

(B5)

We find that x strings of Ya,b and Za,b terms in Eq. (B3)
are all different from X2i−1X2i terms: note that a and b
have the same parity. The only question is whether Ya,b
and Za′,b′ have the same x string. If their x strings are
the same, we must have a = a′ + 1 and b = b′ − 1. For
a bipartite lattice, (b − a)/2 and (b′ − a′)/2 are both odd;
however, (b′ − 1 − a′ − 1)/2 is even if (b′ − a′)/2 is odd.
Therefore, x strings of Ya,b and Za′,b′ are always different.
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