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We investigate the correlations that can arise between Alice and Bob in prepare-and-measure communi-
cation scenarios where the source (Alice) and the measurement device (Bob) can share prior entanglement.
The paradigmatic example of such a scenario is the quantum dense-coding protocol, where the com-
munication capacity of a qudit can be doubled if a two-qudit entangled state is shared between Alice
and Bob. We provide examples of correlations that actually require more general protocols based on
higher-dimensional entangled states. This motivates us to investigate the set of correlations that can be
obtained from communicating either a classical or a quantum d-dimensional system in the presence of
an unlimited amount of entanglement. We show how such correlations can be characterized by a hierar-
chy of semidefinite programming relaxations by reducing the problem to a noncommutative polynomial
optimization problem. We also introduce an alternative relaxation hierarchy based on the notion of infor-
mationally restricted quantum correlations, which, though it represents a strict (nonconverging) relaxation
scheme, is less computationally demanding. As an application, we introduce device-independent tests
of the dimension of classical and quantum systems that, in contrast to previous results, do not make the
implicit assumption that Alice and Bob share no entanglement. We also establish several relations between
communication with and without entanglement as resources for creating correlations.
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I. INTRODUCTION

The archetype communication scenario, which is ubiq-
uitous in classical and quantum information theory, is
the prepare-and-measure scenario illustrated in Fig. 1(a).
Alice prepares a physical system, depending on some
input x ∈ {1, . . . , nX }, and sends it to Bob. Bob then per-
forms on the incoming system a measurement, according
to some choice of input y ∈ {1, . . . , nY}, and obtains an
output b ∈ {1, . . . , nB}. From an operational perspective,
this prepare-and-measure scenario is completely charac-
terized by the conditional probabilities p(b|x, y), which
describe the correlations that are established between Alice
and Bob. These correlations are limited by the amount of
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communication carried by the physical systems from Alice
to Bob.

Communication may naturally be, and is commonly,
quantified in terms of the dimension d of the exchanged
messages, i.e., the alphabet size for classical messages and
the dimension of the Hilbert space for quantum messages.
Consequently, much research has been directed at studying
the correlations p(b|x, y) that arise from the communica-
tion of a classical or quantum d-dimensional system. This
covers a wide range of topics, including foundations of
quantum theory [1,2], dimension witnessing [3–6], random
access coding [7–9], quantum random-number genera-
tion [10,11], quantum key distribution [12,13], self-testing
[14–16], and various protocols for characterizing and cer-
tifying quantum devices [17–19]. It has also motivated
a considerable number of experiments (see, e.g., Refs.
[20–26]).

Typically, quantum communication models, e.g., as in
the above references, consider Alice and Bob as initially
independent or allow them to share a classical random vari-
able [as in Fig. 1(a)]. However, quantum theory naturally
enables a more general communication scenario in which
Alice and Bob share prior entanglement [as in Fig. 1(b)].
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FIG. 1. The prepare-and-measure scenario. Alice encodes an
input x into a physical system communicated to Bob. Bob mea-
sures the incoming system depending on an input y and obtains
an output b. We are interested in characterizing the possible con-
ditional probabilities p(b|x, y) if the communication is limited to
d-dimensional messages. Much of past research has considered
the case (a) where Alice and Bob are initially independent or
share classical randomness. We consider the situation (b) where
they share quantum entanglement.

The introduction of entanglement to assist classical and
quantum communication should enlarge the set of pos-
sible correlations between Alice and Bob. Indeed, while
entanglement itself cannot be used for communication, it
is well known to amplify the capacity of quantum channels
[27], most famously via the quantum dense-coding proto-
col [28]. In fact, even if Alice only communicates classical
messages to Bob, prior entanglement provides an advan-
tage for different tasks, such as communication complexity
[29–31] and random access codes [32].

An understanding of how the presence of entanglement
impacts the set of possible correlations between Alice and
Bob is also important for analyzing the security of semi-
device-independent prepare-and-measure protocols such
as random-number generation and quantum key distribu-
tion. Commonly, such protocols are based on unentangled
devices. Nevertheless, even if Alice’s and Bob’s devices
are initially uncorrelated, quantum messages in the early
communication rounds could be used to build up shared
entanglement that could then be exploited in later rounds
in order to corrupt the protocol.

In spite of the conceptual and practical interest, much
less is known about prepare-and-measure scenarios with
entanglement than scenarios without entanglement. It is
particularly noteworthy that, in contrast to the setting

without entanglement [33,34], no general technique is
known for bounding (from the exterior) the set of corre-
lations p(b|x, y) that can be generated by d-dimensional
messages assisted by a, potentially unbounded amount of,
entanglement. In this work, we address this central ques-
tion and initiate a systematic study of prepare-and-measure
scenarios with entanglement.

In Sec. II, we define formally the entanglement-assisted
(EA) communication scenario that we consider. The quan-
tum dense-coding protocol, which is the paradigmatic
example by which entanglement can enhance quantum
communication, exploits an entangled pair of the same
local dimension as the quantum communication (i.e., an
entangled qubit pair in the case that a qubit is transmit-
ted). In Sec. III, we show that certain correlations that
can be achieved by sending an EA qubit require higher-
dimensional entanglement. The classical analog of this
result is established in Ref. [35]. Motivated by these
observations, we proceed in Sec. IV by addressing the
general question of characterizing the set of correlations
achievable with d-dimensional classical and quantum com-
munication when the communicating parties may share
any amount of entanglement. We connect this problem to
noncommutative polynomial optimization [36] and to the
recently developed concept of informationally restricted
correlations [37,38]. This allows us to bound the cor-
relations using a hierarchy of semidefinite programming
(SDP) relaxations. In Sec. V, we apply our methods to
different device-independent tests of classical and quan-
tum dimension. In all considered examples, our method
produces either verifiably optimal bounds or (at worst)
nearly optimal bounds. Our more general setting leads us
to reexamine the conclusions that one can draw from such
dimension tests in light of shared entanglement. Finally, in
Sec. VI, we apply our methods to investigate the relation-
ship between entanglement and quantum communication
as resources for creating correlations. We show that there
exist situations where either resource can outperform the
other. While such questions have been the topic also of pre-
vious research efforts [26,32,39–42], our analysis requires
no additional assumptions and is tolerant to noise.

II. CORRELATIONS FROM
ENTANGLEMENT-ASSISTED d-DIMENSIONAL

COMMUNICATION

Consider an experiment featuring two parties, Alice and
Bob, who share an arbitrary, and without loss of generality,
pure entangled state |φAB〉 ∈ HA ⊗ HB [43]. Alice receives
an input x from the set [nX ] ≡ {1, . . . , nX } and encodes her
input, possibly using her share of the entangled state |φ〉,
into a system C of dimension no greater than d that is sent
to Bob. Bob receives an input y ∈ [nY] ≡ {1, . . . , nY} and
performs a measurement, depending on y, on the incom-
ing system C and his share of the entangled state. The
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FIG. 2. (a) The general channel. When Alice and Bob share
an entangled state φ, Alice encodes her classical input x into
a d-dimensional message c by applying a quantum channel
$x. Depending on his classical input y, Bob performs a joint
measurement {Mb|y}b on Alice’s message and his share of the
entanglement and produces an outcome b. (b) The quantum-to-
classical channel. When the communication is classical, Alice
performs a POVM {Mc|x}c and relays the outcome c to Bob.
Bob’s operation can be viewed as a POVM {Mb|y,c}y,c condi-
tioned on his classical input y and Alice’s message c.

outcome of this measurement is denoted by b ∈ [nB] ≡
{1, . . . , nB}. This scenario is characterized by the condi-
tional
probability distributions p(b|x, y), which we refer to as the
correlations.

The most general way that Alice can exploit her share
of the entangled state when encoding her classical input
x into the d-dimensional system C is through the appli-
cation of a completely positive trace-preserving (CPTP)
map $x : L(HA) → L(HC) from the space L(HA) of linear
operators on HA to the space L(HC) of linear operators
on HC � Cd. The total state available to Bob, com-
posed of the communicated d-dimensional quantum sys-
tem C from Alice and of his share of |φ〉, is then τ x

CB ≡
($x ⊗ 1B) [|φAB〉〈φAB|]. The most general measurement he
can perform on this state when selecting input y is then
given by a measurement (a positive operator-valued mea-
sure, or POVM) with elements {Mb|y}b. This is illustrated
in Fig. 2(a) and leads to the following definition.

Definition 1. We say that the correlations p(b|x, y) can be
reproduced by an EA d-dimensional quantum communica-
tion protocol if there exists

(a) A bipartite pure entangled state |φAB〉 in HA ⊗ HB,
where A and B are physical systems with finite or
separable [44] Hilbert spaces HA and HB

(b) A CPTP map $x : L(HA) → L(HC) from system A
to a system C with a d-dimensional Hilbert space
HC � Cd for each input x

(c) An nB-outcome POVM {Mb|y}b on the joint systems
C and B for each input y

such that

p(b|x, y) = Tr
(
τ x

CBMb|y
)

, (1)

where

τ x
CB ≡ ($x ⊗ 1B)

[|φAB〉〈φAB|]. (2)

The above definition is fully general and assumes
that the communication from Alice to Bob is quan-
tum. However, we can also restrict the communication
to be classical. This can be represented in the Hilbert-
space formalism of quantum theory by imposing that the
CPTP maps $x output diagonal classical states: $x[ρ] =∑d

c=1 p(c|x, ρ)|c〉〈c| for all ρ ∈ L(HA). The Riesz repre-
sentation theorem asserts that, for every x, linear maps
of the form p(c|x, ρ) can be written in terms of the
Born rule. Therefore, any CPTP map of this form repre-
sents the outcome of a POVM {Mc|x}c performed on the
input state ρ: $x[ρ] = ∑d

c=1 Tr
(
ρMc|x

) |c〉〈c|. The states
available to Bob are then the classical-quantum (CQ)
states τ x

CB = ($x ⊗ 1B) [|φAB〉〈φAB|] = ∑d
c=1 |c〉〈c| ⊗ τ

c,x
B ,

where τ
c,x
B = TrA

(|φAB〉〈φAB|Mc|x ⊗ 1B
)

is the (subnor-
malized) reduced state of Bob when Alice performs the
POVM {Mc|x} on her share of |φAB〉 and obtains out-
come c. Any measurement by Bob on such a CQ state
can be viewed as Bob first reading the classical system
C and then performing a measurement on the quantum
system B depending on the value c he obtained. This is
illustrated in Fig. 2(b). The correlations that Alice and
Bob generate are then p(b|x, y) = ∑

c Tr
(
τ

c,x
B Mb|y,c

) =∑
c Tr

(|φAB〉〈φAB| Mc|x ⊗ Mb|y,c
)
. We thus have the fol-

lowing definition in the classical case.

Definition 2. We say that the correlations p(b|x, y) can be
reproduced by an EA d-dimensional classical communica-
tion protocol if there exists

(a) A bipartite pure entangled state |φAB〉 in HA ⊗ HB,
where A and B are physical systems with finite or
separable Hilbert spaces HA and HB

(b) A d-outcome POVM {Mc|x}c on A for each input x
(c) An nB-outcome POVM {Mb|y,c}b on B for each input

y and c ∈ [d]

such that

p(b|x, y) =
d∑

c=1

Tr
(|φAB〉〈φAB| Mc|x ⊗ Mb|y,c

)
. (3)
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Note that Eq. (3) simply represents Bob’s marginal cor-
relations in a kind of bipartite Bell experiment where the
measurement performed on Bob’s side depends not only
on his input y but also on the communicated output c of
Alice’s measurement.

III. BEYOND DENSE CODING: QUBIT
COMMUNICATION ENHANCED BY

FOUR-DIMENSIONAL ENTANGLEMENT

The simplest form of quantum communication has Alice
sending qubits (d = 2) to Bob. While a single qubit can
only carry only 1 bit of information [45], it is well known
that if Alice and Bob share the maximally entangled two-
qubit state

|φmax〉 = 1√
2

(|00〉 + |11〉), (4)

Alice can use a single qubit of communication to send
2 bits of information to Bob; this is the quantum dense-
coding protocol [28]. Specifically, in this celebrated pro-
tocol, Alice has four possible inputs x = (x1, x2) ∈ {0, 1}2

and, given x, applies the Pauli unitary X x2Zx1 to her share
of |φmax〉 before sending it to Bob. Bob’s total state |τ x

CB〉 =
(X x2Zx1 ⊗ 1B) |φmax〉 then corresponds to one the four
Bell states {(|00〉 ± |11〉)/√2, (|01〉 ± |10〉)/√2}, depend-
ing on Alice’s input x. Since these states form a basis, Bob
can deterministically learn the value of x by measuring in
this basis, thus allowing Alice to send 2 bits to Bob. More
generally, this protocol enables Bob to generate any corre-
lations p(b|x, y) in a protocol with nX = 4, since knowing
Alice’s input x and his input y, Bob can sample b according
to the desired distribution p(b|x, y).

Note that from the perspective of the general definition
introduced in the previous section, the dense-coding proto-
col is particular in that the shared entangled state is of the
same local dimension as the communicated quantum sys-
tem and the CPTP maps applied by Alice are unitaries. We
now provide a qubit communication example, based on a
modified random access coding task, where entanglement
of local dimension four processed by nonunitary CPTP
maps outperforms any strategy based on two-dimensional
entanglement.

A. Random access code with flagged input

The starting point for the task that we introduce is
the usual 2 → 1 quantum random access code (RAC)
[7], where Alice must encode 2 bits x = (x1, x2) ∈
{00, 01, 10, 11} in a single qubit such that Bob is able to
guess as best as possible either the first bit, if y = 1, or
the second bit, if y = 2. Denoting Bob’s guess by b ∈
{0, 1} and assuming that Alice’s and Bob’s inputs are cho-
sen uniformly, the success probability of Bob is given by
1
8

∑1
x1,x2=0

∑2
y=1 p(b = xy |(x1, x2), y).

For convenience, we introduce the change of notation
x ∈ {00, 01, 10, 11} → {1, 2, 3, 4} and b ∈ {0, 1} → b ∈
{1, −1}. We can then write the success probability as 1/2 +
WRAC/16, where WRAC is the RAC correlation function

WRAC =
4∑

x=1

2∑

y=1

cxyExy , (5)

Exy = p(1|x, y)− p(−1|x, y) denotes the expectation value
of b, and the 4 × 2 coefficients cxy are given by

c =

⎛

⎜
⎝

1 1
1 −1

−1 1
−1 −1

⎞

⎟
⎠ . (6)

Obviously, if shared entanglement is present, then a
value of WRAC = 8 (corresponding to a success probabil-
ity of 1) is possible, as Alice can perfectly encode her
four possible inputs into a single qubit using the dense-
coding protocol. To make the task nontrivial, we add the
following modification. We assume that Alice has a fifth
possible choice of input x = 5 and Bob has a third input
y = 3. This additional input of Alice can be thought of as
a special flagged input (e.g., one that communicates a very
important or urgent matter) that must be unambiguously
identified by Bob whenever he decides on y = 3. This can
be represented by adding the following constraints to our
task:

E13 = E23 = E33 = E43 = −E53 = 1, (7)

i.e., when Bob uses input y = 3, he must necessarily obtain
output b = 1 if x = 1, 2, 3, 4 and b = −1 if x = 5, allowing
him to identify perfectly whether or not x = 5 has been
sent.

In summary, our scenario corresponds to nX = 5,
nY = 3, nB = 2 and we are interested in the maximal value
of Eq. (5) subject to the constraints Eq. (7) when Alice
communicates a quantum system to Bob of dimension
d = 2.

Clearly, we cannot achieve WRAC = 8 while respecting
the constraint given in Eq. (7), as this would imply that Bob
can perfectly guess the five inputs of Alice, i.e., that Alice
can communicate to Bob log2(5) bits, while we recall that
an EA qubit only can carry at most 2 bits of information.

A strategy directly based on the dense-coding protocol
can achieve a value WRAC = 6. Indeed, it amounts to a
strategy where two classical bits are sent from Alice to
Bob. But since the input x = 5 must be perfectly discrim-
inated from the inputs x = 1, . . . , 4, this means that effec-
tively Alice encodes the four inputs x = 1, . . . , 4 using a
classical trit. The best value of the 2 → 1 RAC function
given in Eq. (5) when communicating a trit is known to
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be 6 [46]. We show in the next subsection that there are
strategies using a two-qubit entangled state that are more
effective than the dense-coding protocol and in the follow-
ing one that strategies based on two-ququart entanglement
are even better.

B. Strategies based on two-dimensional entanglement

Consider the following simple strategy for evaluat-
ing WRAC under the constraint given in Eq. (7) when
the entanglement is restricted to a two-qubit state.
The intuition stems directly from the quantum dense-
coding protocol. Let Alice and Bob share the maxi-
mally entangled state given in Eq. (4) and let Alice,
on her share of the state, apply the unitaries [(1 −
iσx)/

√
2,1, σx, σy , σz] for inputs x = 1, 2, 3, 4, 5, respec-

tively. She then communicates the transformed qubit to
Bob. It is immediate that the states τ x

CB for x = 1, . . . , 4 live
in the subspace {(|00〉 + |11〉)/√2, (|01〉 ± |10〉)/√2},
while |τ 5

CB〉 = (|00〉 − |11〉)/√2 is in the orthogonal com-
plement. Thus the input x = 5 can be completely dis-
criminated from the other inputs using an appropriate
measurement for y = 3 and the constraint given in Eq.
(7) is satisfied. Replacing Exy = Tr

(
τ x

CB My
)

in Eq. (5),
where My = M1|y − M−1|y is the observable associated
with Bob’s input y, we have

WRAC = Tr
[
(τ 1

CB + τ 2
CB − τ 3

CB − τ 4
CB)M1

]

+ Tr
[
(τ 1

CB − τ 2
CB + τ 3

CB − τ 4
CB)M2

]
, (8)

which is maximized when the ±1 eigenspace of My is the
±1 eigenspace of the combination of states appearing in
the traces. This leads to

WRAC = Tr
(|τ 1

CB + τ 2
CB − τ 3

CB − τ 4
CB|)

+ Tr
(|τ 1

CB − τ 2
CB + τ 3

CB − τ 4
CB|)

= 2(1 +
√

5)

≈ 6.47 (9)

for the specific states chosen above. This strategy thus
makes a better use of the shared entanglement than one
directly based on the dense-coding protocol.

It turns out that no larger value of WRAC is possible
by means of qubit communication assisted by two-qubit
entanglement. To prove this, note that the states τ x

CB in
Bob’s possession are four dimensional, since HC � C2

(Alice communicates a qubit) and HB � C2 (we assume
that the shared entanglement is of local dimension two).
These states actually occupy a subset of the total four-
dimensional Hilbert space, since they must satisfy the
condition given in Eq. (7). Let us relax this condition and
consider the more generous situation where the states τ x

CB
live in an unconstrained four-dimensional space. This does

not decrease the largest possible value of WRAC and it sim-
plifies the analysis of the problem. The constraint given in
Eq. (7) implies that Alice’s first four states must be con-
fined to a three-dimensional Hilbert space orthogonal to
her fifth state. This reduces the problem to one of evaluat-
ing the largest value of the RAC function WRAC when the
four relevant states (x ∈ {1, . . . , 4}) are encoded in a qutrit.
This problem has been addressed in previous literature
[14,47], where it has been shown that the optimal quan-
tum implementation achieves the value given in Eq. (9).
Actually, the strategy that we describe above is a straight-
forward reformulation of this optimal qutrit strategy to our
EA qubit scenario.

C. Strategy based on four-dimensional entanglement

We now show that qubit communication assisted by
higher-dimensional entanglement can further improve the
value of WRAC. Specifically, we show that a value of WRAC
larger than that in Eq. (9) is possible if Alice and Bob
share two copies of the maximally entangled two-qubit
state: |φ〉AB = |φmax〉A1B1 ⊗ |φmax〉A2B2 . Consequently, the
states held by Bob after Alice’s communication are of
dimension eight, corresponding to a qubit system (the
communication) and the ququart system (Bob’s share of
|φ〉AB).

Alice’s strategy consists in applying a two-qubit unitary
Ux on her systems A1A2, binning the first qubit A1, and
sending the second qubit A2 to Bob. The channel that she
implements is thus given by

Bob,
Ux

A1

A2 (10)

where the unitary operations are given by

U1 = 1 ⊗ 1, (11)

U2 = CNOT1 CNOT2, (12)

U3 = 1 ⊗ σx CNOT1 CNOT2, (13)

U4 = 1 ⊗ σz, (14)

U5 = 1 ⊗ σzσx CNOT2, (15)

where CNOTi is the controlled-NOT gate with the control on
the ith qubit.

It can be checked that the total states τ x
CB Bob measures

in his laboratory are then rank-two states of the form

τ x
CB = 1

2
(|ψx〉〈ψx| + |ϕx〉〈ϕx|

)
, (16)

where the states |ψx〉 and |φx〉 are readily computed from
the unitaries given above. In particular, one finds that |ψ5〉
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and |φ5〉 are orthogonal to all other states and thus that the
constraint given in Eq. (7) is satisfied through a proper
choice of measurement for y = 3. The optimization of
Bob’s measurements for y = 1, 2 can be performed as in
the previous subsection and, replacing the specific states
obtained from the unitaries Eqs. (11)–(14) in Eq. (9), we
obtain

W = 2(2 +
√

2) ≈ 6.83, (17)

which exceeds the bound WRAC ≤ 6.47 for qubit commu-
nication assisted by two-qubit entanglement.

In summary, we show in this section that in EA d-
dimensional quantum communication protocols, we can-
not restrict the entanglement to be of local dimension d. We
establish a similar result for the case of EA classical com-
munication in Ref. [35]. Whether some finite upper bound
on the entanglement dimension can generally be assumed
is an interesting question not resolved here. The analogy
with the usual Bell scenario would suggest a negative
answer [48].

IV. SEMIDEFINITE PROGRAMS FOR
CORRELATIONS IN ENTANGLEMENT-ASSISTED

d-DIMENSIONAL COMMUNICATION

We now describe how to characterize, through seque-
nces of SDP approximations, the set of correlations
achievable from d-dimensional quantum or classical
communication. We consider both inner and outer char-
acterizations that approximate the quantum set from the
inside and the outside.

A. Inner characterization through seesaw iterations

In Definition 1, the correlations p(b|x, y) are expressed
as the result of a measurement performed by Bob on a
state τ x

CB resulting from Alice’s application of a CPTP map
on her part of an entangled state shared with Bob. This
representation can be simplified using state-channel dual-
ity [49,50]. Specifically, by exploiting the isomorphism
between CPTP maps and quantum states, we may repre-
sent the total state τ x

CB as a (generally mixed) bipartite state
in L (HC ⊗ HB) with the property that the marginal state
on system B is independent of Alice’s input x (no signal-
ing): TrC

(
τ x

CB

) = τB for all x. We thus have the following
definition, which is equivalent to Definition 1.

Definition 1’. We say that the correlations p(b|x, y) can
be reproduced by an EA d-dimensional quantum commu-
nication protocol if there exists

(a) A bipartite entangled state τ x
CB ∈ L (HC ⊗ HB),

where C is a physical system with d-dimensional
Hilbert space HC � Cd and B is a physical sys-
tem with finite or separable Hilbert space HB, for

each input x, where the states τ x
CB all have the same

marginal state τB:

TrC
(
τ x

CB

) = τB for all x (18)

(b) An nB-outcome POVM {Mb|y}b on the joint systems
C and B for each input y

such that

p(b|x, y) = Tr
(
τ x

CB Mb|y
)

. (19)

In the case of classical communication, it is easily
seen that we can similarly use state-channel duality,
and more specifically the Gisin-Hughston-Jozsa-Wootters
theorem [51,52], to provide the following alternative to
Definition 2.

Definition 2’. We say that the correlations p(b|x, y) can
be reproduced by an EA d-dimensional classical commu-
nication protocol if there exists

(a) d subnormalized states {τ c,x
B }c in L(HB), where B is

a physical system with finite or separable Hilbert
space HB, for each input x, where the total normal-
ized state

∑d
c=1 τ

c,x
B = τB is independent of x

(b) An nB-outcome POVM {Mb|y,c}b on B for each input
y and c ∈ [d]

such that

p(b|x, y) =
d∑

c=1

Tr
(
τ

c,x
B Mb|y,c

)
. (20)

If we fix the dimension of HB to some finite value
dim (HB) = D, it is straightforward from Definitions 1’
and 2’ that optimizing over the set of correlations p(b|x, y)
for fixed measurements is an SDP, as it amounts to opti-
mizing over quantum states satisfying certain linear prop-
erties. Similarly, if we fix the states, the search for optimal
measurements is also an SDP. Approximations to the set of
correlations p(b|x, y) can thus be obtained through a see-
saw algorithm that repeatedly optimizes over the states for
fixed measurements and then over the measurements for
fixed states until some degree of convergence is achieved.
This seesaw scheme represents an inner relaxation of the
set of correlations for two reasons. First, though every
solution that is obtained is a valid strategy, it is not nec-
essarily the optimal one. Second, some finite value D on
the dimension of HB must be chosen. However, better
solutions can, in principle, be obtained by increasing the
dimension of D. If some general upper bounds on the
dimension of the shared entanglement were to hold and be
known, this could evidently be used to limit the size of the
SDP.
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More interestingly, we now provide SDP methods for
obtaining outer relaxations that are valid irrespective of the
amount of shared entanglement, i.e., without assumptions
on dim (HA) and dim (HB).

B. Outer approximations through noncommutative
polynomial optimization

To introduce our outer relaxation scheme, let us again
consider Definition 1. Since we do not assume any
bound on the dimension of HA or HB, the CPTP maps
$x : L(HA) → L(HC) appearing in Definition 1 can be seen
as arising from unitary transformations on HA ⊗ HC and
the POVMs {Mb|y}b can be assumed to be projective. That
is, for some initial state |ϕ〉C in HC, we can reexpress the
correlations as

p(b|x, y) = 〈�|U†
xMb|yUx|�〉, (21)

where |�〉 = |φ〉AB|ϕ〉C, the Ux = Ux
AC ⊗ 1B are unitaries

that act nontrivially only on HA ⊗ HC, and Mb|y = 1A ⊗
M b|y

BC are projectors that act nontrivially only on HB ⊗ HC.
Let us now introduce the following (Kraus) operators,

which induce a parametrization on the system C:

Ux;j
A = (1A ⊗ 〈j |C)Ux(1A ⊗ |ϕ〉C), (22)

M b|y;jk
B = (1B ⊗ 〈k|C)Mb|y(1B ⊗ |j 〉C). (23)

Inserting two resolutions of the identity on HC into Eq.
(21), we find that

p(b|x, y) =
d−1∑

j ,k=0

〈�|U†
x |j 〉〈j |Mb|y |k〉〈k|Ux|�〉 (24)

=
d−1∑

j ,k=0

〈φ|U†
x;j Ux;k ⊗ Mb|y;jk|φ〉, (25)

which now involves only subsystems A and B, i.e., the
shared state |φ〉, the (Kraus) operators Ux;j acting in HA,
and the operators Mb|y;jk acting in HB (to simplify the nota-
tion, we drop the subsystem superscripts from the states
and operators).

One can verify that the unitary conditions U†
xUx = 1AC

translate to the operator constraints

d−1∑

k=0

U†
x;kUx;k = 1A, (26)

while the mathematical properties
∑

b Mb|y = 1BC and
M †

b|y = Mb|y , Mb|yMb′|y = δb,b′Mb|y of the projectors are

equivalent to
∑

b

Mb|y;jk = δjk1,

M †
b|y;kj = Mb|y;jk,

d−1∑

k=0

Mb|y;jkMb′|y;kl = δbb′Mb|y;jl.

(27)

The problem of determining whether given correlations
p(b|x, y) can be reproduced through EA d-dimensional
quantum communication, or finding the maximal value of a
linear functional of the correlations p(b|x, y), thus amounts
to optimizing over a state |φ〉 and (non-Hermitian) oper-
ators Ux,j , U†

x,j , Mb|y;jk, satisfying the constraints given
in Eqs. (26) and (27) such that Eq. (25) holds. Without
the subsystem restriction and the tensor product appearing
in Eq. (25), that would be a typical instance of non-
commutative polynomial optimization [36], to which the
Navascués-Pironio-Acín (NPA) hierarchy of SDP relax-
ations [53,54] could be directly applied. As usual, one can
relax the subsystem structure and the tensor product using
commutation relations instead. That is, one can assume
that all the operators Ux,j , U†

x,j , Mb|y;jk, act on the same
Hilbert space, but satisfy

[Ux;j , Mb|y;jk] = 0, [U†
x;j , Mb|y;jk] = 0. (28)

Physically, this amounts to considering a field-theoretic
variant of our prepare-and-measure scenario. The NPA
hierarchy can now be applied directly. It provides an SDP
relaxation hierarchy that represents an outer relaxation of
the original tensor-product variant of our problem, that
converges asymptotically to the field-theoretic variant, and
that returns the original tensor-product variant when rank
optimality conditions are satisfied [36,54].

Note that the scheme that we introduce here can be
seen as a hybrid scheme, where the dimension-free sub-
systems A and B are accounted for à la NPA, while the
subsystem C, the dimension of which is fixed, is explic-
itly parametrized. In particular, if we impose the additional
constraints that all the operators on subsystems A and B
commute between themselves (corresponding to a situa-
tion where the devices do not share any prior entanglement
but possibly only classical correlations), we recover a
Lasserre-type SDP hierarchy [55] applied to an explicit
parametrization of Alice’s preparations of and Bob’s mea-
surement on system C.

Finally, the case of EA classical communication can
be seen as a subcase of the general quantum commu-
nication by imposing additional constraints on Alice’s
operations forcing the output system C to be in a diago-
nal state

∑d−1
j =0 p(j |x)|j 〉〈j |C irrespective of the input state

|φ〉AB|ϕ〉C. Alternatively and equivalently, one can directly
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start from Definition 2. As we mentioned below that
definition, the correlations in that scenario can be seen as
the marginal correlations (obtained by summing over c) in
a relaxed Bell scenario where the measurement performed
on Bob’s side depends not only on his input y but also on
the communicated output c of Alice’s measurement. Such
relaxations of the usual Bell scenarios have been consid-
ered in Refs. [56–58]. Similarly to the observation made
in Ref. [58] for the slightly different Instrumental sce-
nario, one can then directly use the NPA hierarchy for Bell
nonlocal correlations [53,54] in order to bound the corre-
lations in our case. Indeed, it is immediate from Eq. (3)
that the correlations p(b|x, y) are a linear combination of
standard Bell correlations where Bob has nY × d measure-
ments labeled by inputs y ′ = (y, c) and thus they can be
viewed as linear combinations of entries of the moment
matrices of the Bell-NPA hierarchy.

C. Outer approximations through
information-restricted correlations

The NPA relaxations that we introduce above involve
2nX d + nBnYd2 operators in the case of quantum commu-
nication and nX d + nBnYd [59] operators in the case of
classical communication. The size of the corresponding
SDP is determined by the number of such operators and
grows rapidly as one increases the order, with the number
of such operators. In practice, these SDPs cannot be used to
characterize EA communication scenarios with more than
a few inputs or outputs without excessive computational
resources.

For this reason, we propose an entirely different
approach that applies equally well to both classical and
quantum communication. It is based on two relaxations of
the problem. First, we relax the (postcommunication) state
space of Bob to a state space characterized by its informa-
tion content [37]. Second, we use semidefinite relaxations
of the set of informationally restricted correlations [38] to
efficiently bound the correlations from EA communication.
We now proceed to outline this approach.

Recently, a framework has been developed for studying
the correlations p(b|x, y) = Tr

(
ρx Mb|y

)
in prepare-and-

measure experiments when the only assumption is that
the information relayed about x through the states ρx is
restricted [37,38]. This information restriction is quantified
through a bound on the guessing probability

Pg = max
{Nz}

∑

x

px Tr (ρx Nx) , (29)

which expresses how well the input x can be guessed on
average when performing an ideal measurement {Nz}z on
the states ρx if they are given with prior probabilities px.
This restriction can equivalently be expressed in terms of

the information quantity

I ≡ − log2

(
max

x
px

)
+ log2 Pg , (30)

which quantifies in entropic terms the information that is
gained when given the ensemble {px, ρx} as compared to
when the ensemble is not given (in which case the best
guess of x is its most likely value and this guess is thus
correct with probability maxx px). We refer the reader to
Ref. [38] for further details on informationally restricted
correlations.

An important feature is that no assumption is made in
Ref. [38] on how the states ρx that Bob eventually receives
and measures are physically prepared: they may leverage
shared randomness, entanglement, high-dimensional sys-
tems, etc. The only thing that matters is the bound on
the information quantity Eq. (30). Thus if we can find a
bound on the information conveyed by the states ρx = τ x

CB
in Eq. (2), we can apply the methods of Ref. [38] to our
setting.

In the case of classical communication, since the dimen-
sion of the message is d, we expect the bound I ≤ log d
bits to be valid since, by no signaling, shared entangle-
ment should not help Alice communicate the value of
x to Bob. In the case of quantum dimension, we would
instead expect a bound of I ≤ 2 log d bits, since shared
entanglement can double the capacity of quantum commu-
nication through dense coding. Indeed, we now prove that
this intuition is correct.

More generally, we express a bound on I that depends
on how well the entanglement shared between Alice and
Bob is preserved by Alice’s actions $x. For this, let kx
be the Schmidt number of the bipartite state τ x

CB (i.e.,
the minimum Schmidt rank of the pure states in opti-
mal ensemble realizing the density operator τ x

CB) and let
k = maxx kx be the largest Schmidt number. The parameter
k can be viewed as a measure of the entanglement content
in the set of states τ x

CB. It satisfies the bounds 1 ≤ k ≤ d,
where the lower limit corresponds to the case of classi-
cal communication, since the state τ x

CB is a CQ state with
no entanglement between system C and system B and the
upper limit corresponds to the general case of quantum
communication, where the bounds come from the fact that
the local dimension of system C is at most d.

Proposition 1’. Consider an EA communication protocol
where the total states τ x

CB of Bob after Alice’s communi-
cation are characterized by a maximal Schmidt number
k = maxx kx. Then,

I ≤ log k + log d, (31)

where I is the quantity defined in Eqs. (30) and (29),
and the above inequality is valid for any choice of the
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prior probabilities px. In particular, we obtain the bound
I ≤ log d in the case of classical communication and
the bound I ≤ 2 log d in the case of general quantum
communication.

We note that a related, somewhat more restricted, result
appears in the independent work of Ref. [60]. We refer the
reader to Appendix A for the proof.

Having introduced the connection to informationally
restricted correlations and their SDP relaxation hierarchy,
several remarks are in order. First, though the relaxation to
information-restricted correlations sometimes gives tight
bounds (see examples in the next section), it represents
in general a strict relaxation of the EA communication
correlation set. Indeed, there exist correlations that can
be obtained by Alice sending to Bob (high-dimensional)
states that carry no more than I ≤ 1 bit of information
but that cannot be attained by the EA communication of
a single bit (see example in the next section) [61]. The
approach based on the NPA hierarchy inherits, in con-
trast, its nice converging properties and we thus expect
that it will in general give better bounds at a sufficiently
high order. However, in practice, when taking into account
limited computer memory and time, the information-based
SDP relaxation may sometimes be superior. The reason is
that, as we pointed out earlier, the size of these SDP relax-
ations grows rapidly with the number of basic operators
involved, which depend on a factor of order d2 in the case
of quantum communication and d in the case of classical
communication. In contrast, the information-based SDP
relaxation have a much smaller size, which is moreover
independent of d. This provides an advantage for the later
relaxation both for fixed dimension d when one increases
the relaxation order and at fixed relaxation order when one
increases the dimension d.

Finally, note that in a situation where no entangle-
ment is preshared between Alice and Bob, the Schmidt
number k satisfies k = 1 even in the case of quantum
communication. Thus the bound I ≤ log d valid for EA
d-dimensional classical communication is also valid for
non-EA d-dimensional quantum communication. Thus
the SDP relaxation hierarchy based on informationally
restricted correlations does not distinguish these two sets
of correlations. We come back to the relationship between
these two sets in Sec. VI and see that in general they are
distinct overlapping sets (in particular, the set of EA clas-
sical d-dimensional correlations is not contained in the
set of non-EA quantum d-dimensional correlations and
vice versa). Similarly, the bound I ≤ 2 log d valid for
EA d-dimensional quantum communication is also valid
for non-EA d2-dimensional quantum communication and
thus the SDP relaxation hierarchy based on information-
ally restricted correlations does not distinguish these two
sets. Again, we discuss the relationship between these two
sets in more detail in Sec. VI.

V. APPLICATION: REVISED CLASSICAL AND
QUANTUM TESTS OF DIMENSION

We now apply the methods introduced in Sec. IV toward
the task of device independently testing the dimension
of a physical system (classical or quantum). Specifically,
we consider two different tests of dimension that have
been previously investigated, in both theory and experi-
ment, and reexamine their analysis to account for the most
general picture in which parties may share unlimited entan-
glement. Notably, in all cases that we consider, we obtain
either optimal or close to optimal dimension witnesses.

A. The random access code

Let us begin with the dimension witness experimentally
realized in Ref. [46]. It is based on the regular random
access code [7] introduced at the beginning of Sec. III A,
in which Alice has a choice among four possible inputs
x ∈ [4], while Bob has a binary input y ∈ [2] and generates
binary outcomes b ∈ [2]. We are interested in the success
probability of this RAC, which can be expressed through
the RAC correlation function WRAC defined in Eqs. (5)
and (6). When no entanglement is present, the following
bounds on WRAC for classical and quantum systems of
dimension two, three, and four are known [46]:

WRAC
C2≤ 4

Q2≤ 4
√

2
C3≤ 6

Q3≤ 2
(

1 +
√

5
) C4, Q4≤ 8.

(32)

Note that for four-dimensional classical and quantum sys-
tems, Alice may simply send her input to Bob and thus
one reaches the algebraically maximal value of WRAC = 8.
Depending on which inequalities in the chain given in Eq.
(32) are experimentally violated, one can certify that sys-
tems of certain minimal classical and quantum dimensions
are produced.

Let us reexamine the problem in a fully device-
independent setting in which Alice’s and Bob’s devices
may share prior entanglement. First, it is clear that quan-
tum dense coding allows Alice to send her entire input
to Bob and thus reach the algebraically maximal value of
WRAC = 8 using only EA qubit communication, i.e., the
following bound is tight:

WRAC
Ent-Q2≤ 8. (33)

Therefore, when entanglement is allowed, it is no longer
possible to certify three- and four-dimensional quantum
communication using the RAC dimension witness WRAC.

In the classical case, the reexamination is less trivial.
In order to bound WRAC for EA classical communication
of dimensions two and three, we evaluate semidefinite
relaxations based on both the NPA hierarchy [62] and the
information-based SDP hierarchy [63] for both messages
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of dimension d = 2 and d = 3. We obtain the same bounds
with both approaches, namely

WRAC
Ent-C2≤ 5.657

Ent-C3≤ 6.828. (34)

The first bound is tight (up to solver precision), since it
is known that it can be saturated if Alice and Bob use
the shared entanglement to maximally violate the Clauser-
Horne-Shimony-Holt Bell inequality before communicat-
ing a two-dimensional classical system [29]. Moreover,
we also find that the second bound is tight. To show this,
we use the SDP seesaw routine described in Sec. IV to
efficiently search for optimal EA classical communication
strategies. This leads us to find an explicit strategy, involv-
ing a shared entangled state of local dimension D = 4,
achieving WRAC = 6.828. These results show that in order
to test classical dimension in the presence of entanglement,
one must significantly revise the bounds in Eq. (32), which
are valid only when entanglement is assumed to not be
present in the experiment.

In order to also consider a nontrivial setting for EA
quantum communication, let us return to the modified
RAC considered in Sec. III A, where Alice and Bob are
each supplied with one more input and asked to maximize
Eq. (5) under the constraint Eq. (7). Rather than requir-
ing these constraints to be exactly satisfied, we can instead
incorporate them in a modified witness

WfRAC =
5∑

x=1

3∑

y=1

cxyExy , (35)

where the 5 × 3 coefficients cxy are given by

c =

⎛

⎜⎜⎜
⎝

1 1 β

1 −1 β

−1 1 β

−1 −1 β

0 0 −4β

⎞

⎟⎟⎟
⎠

, (36)

depending on some positive parameter β, which favors
(when β is sufficiently large) strategies where the con-
straints given in Eq. (7) are satisfied. For concreteness,
we use β = 4. The explicit qubit strategy using entangle-
ment of local dimension four that we introduce in Sec. III
C achieves a value WfRAC = 6.828 + 8β = 38.8284.

We evaluate the information-based SDP relaxation [64]
for EA qubit communication and obtain

WfRAC
Ent-Q2≤ 38.8284. (37)

This result is (up to solver precision) identical to that
obtained using the explicit strategy of Sec. III C, show-
ing that it is optimal. On the other hand, an EA qutrit

(allowing us to communicate two classical trits using dense
coding) can reach the algebraic maximum WfRAC = 8 +
8β = 40. The modified witness Eq. (35) thus constitutes
a proper qutrit witness, even in the presence of arbitrary
entanglement.

B. The witness of Gallego et al.

Let us now consider another dimension witness, intro-
duced in Ref. [4], different variants of which have been
experimentally realized in Refs. [21,22,24].

In this scenario, Alice receives one of five possible
inputs x ∈ [5], while Bob receives one of four possible
inputs y ∈ [4] and produces binary outcomes b ∈ [2]. The
witness, labeled W5, is written in the correlation format of
Eq. (5) with coefficients

c =

⎛

⎜⎜⎜
⎝

1 1 1 1
1 1 1 −1
1 1 −1 0
1 −1 0 0

−1 0 0 0

⎞

⎟⎟⎟
⎠

. (38)

In a scenario without shared entanglement, the tight
bounds on the witness for classical systems have been
obtained in Ref. [4]:

W5
C2≤ 8

C3≤ 10
C4≤ 12

C5≤ 14. (39)

In addition, using symmetrized semidefinite relaxations
[34], we compute upper bounds on W5 for dimensionally
restricted quantum systems without shared entanglement.
These bounds are tight, since we could saturate them
numerically with explicit quantum strategies:

W5
Q2≤ 8.828

Q3≤ 11.527
Q4≤ 13.036

Q5≤ 14. (40)

Hence, the witness W5 enables the certification of systems
of classical and quantum dimension of two, three, four, or
five in scenarios without shared entanglement.

Let us reconsider this analysis for the situation in which
entanglement may be shared between Alice and Bob. We
first note that in the quantum case, the maximal algebraic
value W5 = 14 can be attained with EA qutrit communica-
tion, since a dense-coding protocol can be used to relay x
to Bob; i.e., the following tight bound holds:

W5
Ent-Q3≤ 14. (41)

For classical communication of dimension two, three,
and four as well as for quantum communication of dimen-
sion two, we reanalyze the classical bounds given in Eq.
(39) and the qubit bound given in Eq. (40) in the presence
of shared entanglement.
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We start by considering explicit classical and quan-
tum communication strategies based on sharing two copies
of the maximally entangled two-qubit state. Using the
seesaw routine of Sec. IV, we find explicit strategies
achieving W5 = 9.034 (Ent-C2), W5 = 11.515 (Ent-C3),
and W5 = 13.036 (both Ent-C4 and Ent-Q2), violating
the non-entanglement-assisted bounds for all considered
resources.

Next, we compute upper bounds on W5 for these
entanglement-assisted resources using our new SPD meth-
ods. In the classical case, we again consider both the NPA
hierarchy and the information-based SDP hierarchy. This
time, however, the two methods return different results.
The best bounds we obtained are the following:

W5
Ent-C2≤ 9.034npa Ent-C3≤ 11.563info Ent-C4≤ 13.095info,

(42)

where npa indicates that the result is obtained with the
NPA SDP relaxation [65] and info indicates that the result
is obtained with the information-based SDP relaxation
[66]. Thus the lower and upper bounds nearly match:
their ratios are > 99.9%, 99.5%, 99.5%, and 99.5%,
respectively. Thus, we find the NPA SDP relaxation per-
forms better for the smaller problem (d = 2) but that the
information-based SDP relaxation becomes advantageous
for the somewhat larger problem (d = 3, 4). Furthermore,
the bound for d = 2 allows us to prove that the information
relaxation of EA classical communication is, generally,
not tight. Indeed, by numerical search, we find explicit
strategies from quantum states carrying at most I = 1
bit of information, which achieves W5 = 9.054. Thus the
information-based SDP relaxation, even if implemented
at an arbitrary high order, cannot return an upper bound
smaller than W5 = 9.054. But this exceeds the upper bound
Eq. (42) on EA classical communication for d = 2 found
using NPA.

For the case of EA qubit communication, the rel-
evant information-based SDP relaxation is identical to
that considered for EA quart communication. Therefore,
the following quantum dimension witness is immediately
obtained:

W5
Ent-Q2≤ 13.095. (43)

A quantum system of minimal dimension three can be cer-
tified by violating this inequality. For comparison, solving
the NPA relaxation for EA quantum communication for the
same problem at level 2 of the hierarchy, we recover only
the trivial algebraic bound W5 � 14 after more than 40 h
of computing time.

To summarize, we emphasize that the bounds given in
Eqs. (39) and (40) are completely revised, both in the
classical and quantum case, in a fully device-independent
setting where entanglement is permitted in the experiment.

VI. QUANTUM COMMUNICATION VERSUS EA
CLASSICAL COMMUNICATION

A (non-EA) qubit and a EA bit represent two different
ways of employing quantum resources to generate cor-
relations in a prepare-and-measure setting, which in both
cases cannot be used to communicate more than one bit of
information on Alice’s input (in particular, the use of the
information-based SDP hierarchy leads to the same relax-
ations of both sets). It is natural to ask how these resources
compare and, in particular, if one is more powerful than the
other.

A. EA bits can outperform qubits

The comparison of qubits and EA classical bits has
already received substantial research attention. It has been
proven in Ref. [39] that when Bob has binary outcomes,
all correlations obtained by communicating a qubit can be
simulated by communicating an EA bit [67].

By combining the results of Refs. [8,32], it follows that
this resource inequality is strict. Reference [32] shows that
EA classical bits achieve a winning probability of pwin =
3/4 four-bit RAC with binary communication, while Ref.
[8] shows that non-EA qubits must satisfy pwin < 3/4.
However, the noise tolerance of this advantage is presently
restricted only to numerical evidence [8].

Our results from Sec. V B in fact prove a noise-robust
gap between the correlations obtained from non-EA qubits
and EA classical bits. Specifically, in the former case,
we find that the witness obeys W5 ≤ 8.828, while in the
latter case, it can achieve W5 = 9.034. This enables exper-
imental certification of the advantage of EA classical
communication, which tolerates a substantial amount of
noise.

B. Qudits can outperform EA classical dits

A more interesting situation is encountered when one
goes beyond binary outcomes for Bob. Several different
works [26,40–42] hint that the above situation can be
reversed, i.e., that non-EA qudit communication can out-
perform EA classical dit communication. However, all
these works consider a certain subclass of EA classical
dit strategies, which may not always do justice to the full
power of EA classical communication [68]. We now pro-
ceed to employ the general tools developed in Sec. IV to
prove that non-EA qudit communication can outperform
completely general EA classical dit communication.

We consider the scenario of Ref. [40], which is a higher-
dimensional version of the previously considered RAC.
In this task, Alice has nine possible inputs x ∈ [9], rep-
resented by two trits x1, x2 ∈ {0, 1, 2}. Bob has an input
y ∈ [2] and aims to guess Alice’s yth input trit in his out-
put b ∈ [3]. With uniformly distributed inputs, the average
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success probability is

W = 1
18

2∑

x1,x2=0

2∑

y=1

p(b = xy |x1, x2, y). (44)

It is shown in Ref. [9] that non-EA qutrit communica-
tion can achieve W = 1

2

(
1 + 1√

3

)
≈ 0.788 and in Ref.

[40] that certain classes of EA trit communication proto-
cols based on a natural Bell-inequality violation satisfy the
bound W ≤ 7

9 ≈ 0.778.
We now employ our general methods to reexamine the

analysis of EA trit communication without the additional
assumption of restricting to a particular Bell-inequality
test. First, we use the seesaw routine described in Sec. IV.
Considering entanglement of local dimension D = 3, we
recover the value W = 7

9 . However, by considering entan-
glement of local dimension D = 9, we are able to find an
improved protocol that achieves W = 0.784. This shows
that the EA classical communication protocol considered
in Ref. [40] is not general enough.

This leads to the question of whether non-EA qutrits do
actually outperform the most general EA trit protocols. We
answer this in the positive by employing our information-
based SDP relaxations to bound W for the latter case. To
enable this computation on a standard desktop computer,
we exploit the symmetries of the function given in Eq. (44)
to reduce the number of variables in the final SDP matrix
[69]. We find the bound

W
EA-C3≤ 0.787. (45)

This upper bound is likely to be only nearly optimal but
even so it is strictly smaller than the qutrit protocol achiev-
ing W = 0.788. Thus, it proves that non-EA quantum
communication can outperform fully general EA classical
communication.

VII. CONCLUSIONS

In this work, we investigate the correlations that can be
generated in prepare-and-measure experiments in which
parties share entanglement and communicate either clas-
sical or quantum systems of a given dimension. We show
that the strongest forms of quantum correlations require
protocols that go beyond the paradigmatic quantum dense-
coding protocol and we develop general methods for
bounding the correlations that can be obtained in such
experiments when an unlimited amount of entanglement
is allowed. We apply this to introduce device-independent
tests of the dimension of classical and quantum systems
that make no assumption on the presence of entanglement
between the involved devices and show how this warrants
a reexamination of standard tests of dimension in which
entanglement is assumed not be present in experiments.

We also apply the methods to investigate the relation
between entanglement-assisted communication protocols
and non-entanglement-assisted communication protocols.

Our work introduces the main conceptual and tech-
nical tools necessary to pave the way for a systematic
investigation of entanglement-assisted communication in
prepare-and-measure scenarios. It leaves open several nat-
ural questions and continuations. First, while the method
for bounding correlations based on a relaxation to informa-
tionally restricted quantum correlations is relatively effi-
cient computationally and, as we have seen, often leads to
strong bounds, one cannot in general expect the bounds to
be optimal. How can one overcome this limitation in both
a conceptual and practical manner? Second, we show that
the strongest correlations possible from EA qubit commu-
nication in general require high-dimensional entanglement
[70]. How high does this dimension need to be? Do there
exist correlations that can only be generated with qubit
communication and infinite-dimensional entanglement?
Third, our work motivates a comparison of different types
of quantum resources in prepare-and-measure scenarios.
We explore some of these in Sec. VI but there remain many
other open questions. For instance, our results in Sec. III
imply that there exist scenarios where EA qubit commu-
nication can outperform non-EA quaquart communication
[compare Eqs. (17) with Eq. (9)] [71]. Is this a strict
resource inequality or do there exist scenarios in which
non-EA ququart communication can outperform EA qubit
communication? Fourth, it is interesting to explore tests
of classical and quantum dimension when entanglement is
involved. Can one construct simple families of dimension
witnesses, favorably based on binary measurements, that
are valid for any dimension? Fifth, tests of physical dimen-
sion are primarily practically motivated tasks. This has
led to several experiments (see, e.g., Refs. [21,22,24,46])
testing dimension in standard prepare-and-measure experi-
ments (assuming no shared entanglement). However, as we
show, the conclusions of such experiments are generally
not valid when entanglement is introduced. It is interest-
ing and relevant to consider experimental implementations
of device-independent tests of both classical and quan-
tum dimensions when no assumptions are made on the
entanglement that can be shared between preparation and
measurement devices. Finally, it would also be interesting
to use our method to design and analyze the security of
semi-device-independent quantum random-number gener-
ation and quantum key distribution protocols that do not
make the assumption that the devices do not share prior
entanglement.

The code that is used in the numerical analysis of
this paper can be found on GitHub [72]. The reposi-
tory contains scripts for the information hierarchy as well
as the NPA hierarchy for entanglement-assisted classical
communication. It also contains scripts for the heuristic
search algorithms that we use to find lower bounds for
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quantum communication, information-restricted commu-
nication, and entanglement-assisted classical communica-
tion, in addition to the optimal strategies achieving the
lower bounds quoted in this paper.
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APPENDIX A: PROOF OF PROPOSITION 1

To prove Proposition 1, we need the following lemma.

Lemma 1’. Let ρ, σ be two positive semidefinite operators
on a joint finite Hilbert space HC ⊗ HB. Then,

Tr[ρσ ] ≤ k Tr[ρBσB], (A1)

where k is the Schmidt number of ρ and XB = TrC[X ]
denotes the partial trace.

Proof. Let us start by assuming that ρ = |φ〉〈φ| and σ =
|ψ〉〈ψ | are rank one. We can then introduce Schmidt
decompositions

|φ〉 =
k∑

i=1

√
pi|αi〉|βi〉, (A2)

|ψ〉 =
∑

j

√
qj |α′

j 〉|β ′
j 〉, (A3)

where the sum over i runs at most over k values by
assumption.

We have that Tr[φψ] = |〈φ|ψ〉|2. Writing the inner
product explicitly gives

|〈φ|ψ〉| =
∣∣
∣
∑

ij

√
pi

√
qj 〈αi|α′

j 〉〈βi|β ′
j 〉
∣
∣∣

≤
√∑

ij

|〈αi|α′
j 〉|2

√∑

ij

piqj |〈βi|β ′
j 〉|2

≤
√

k
√

Tr[φBψB]. (A4)

The second line follows from applying the Cauchy-
Schwarz inequality |a · b| ≤ ‖a‖‖b‖ to vectors of compo-
nents

a = (〈αi|α′
j 〉∗
)
, (A5)

b = (√
pi

√
qj 〈βi|β ′

j 〉
)
. (A6)

The third line follows by noting that
∑

ij |〈αi|α′
j 〉|2 ≤ k,

since the |α′
j 〉 form an orthornomal basis and the sum over

i runs over at most k values. Equally is thus obtained when
i runs over precisely k values. Hence,

Tr[φψ] ≤ k Tr[φBψB]. (A7)

If ρ and σ are not rank one, we can decompose them as
ρ = ∑

i φi and σ = ∑
j ψj , where the φi and ψj are rank

one and, furthermore, the Schmidt rank of φi is at most k
by assumption. Then, using that the relation Eq. (A7) is
linear, we obtain

Tr[ρσ ] =
∑

ij

Tr[φiψj ]

≤ k
∑

ij

Tr[φiBψjB]

= k Tr[ρBσB]. (A8)

�
Equipped with this, we can now prove a general bound

on the guessing probability given in Eq. (29) for the
specific states ρx = τ x

CB in our EA scenario:

Pg = max
{Nz}

∑

x

px Tr
(
τ x

CB Nx
)

≤ k max
{Nz}

∑

x

px Tr
(
τB Ñ x)

≤ k
(

max
x

px

)
max
{Nz}

Tr

(

τB

∑

x

Ñx

)

= k
(

max
x

px

)
max
{Nz}

Tr [τB TrC (1C ⊗ 1B)]

= kd
(

max
x

px

)
. (A9)

In the second line, we use the inequality Eq. (A1), together
with the fact that τ x

B = τB is independent of x, and intro-
duce the notation Ñx = TrC(Nx). In the fourth line, we use
the completeness of the measurement {Nz} and in the fifth
line the fact that TrC 1C = d, since dim(HC) = d. Inserting
this bound into Eq. (30), we obtain Eq. (31).

We thus relax the problem of deciding whether p(b|x, y)
can be achieved by EA communication of a classical or
quantum d-dimensional system to a problem of deciding
whether the same correlations can be achieved by states
carrying at most, respectively, log d or 2 log d bits of infor-
mation. The latter problem is known to admit a hierarchy
of increasingly precise semidefinite relaxations [38], which
can thus also be applied to our original problem. We
discuss the main features of this hierarchy in Appendix B.

The information bound given in Eq. (31) is valid for
any choice of the prior probabilities {px} and any such
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choice defines a relaxation of the set of correlations achiev-
able through EA d-dimensional communication. However,
the choice of uniform priors, i.e., px = 1/nX , is the opti-
mal choice that results in the most constraining relaxation.
Indeed, any bound of the form I ≤ α for arbitrary priors
is necessarily implied by the bound Iuni ≤ α for uniform
priors px = 1/nX . To see this, simply note that

Pbias
g = max

{Nz}

nX∑

x=1

px Tr (ρxNx)

≤
(

max
x

px

)
max
{Nz}

nX∑

x=1

Tr (ρxNx)

=
(

max
x

px

)
nX Puni

g . (A10)

Consequently,

I ≤ − log
(

max
x

px

)
+ log

[(
max

x
px

)
nX Puni

g

]

= log nX + log
(

Puni
g

)
= Iuni ≤ α. (A11)

APPENDIX B: SKETCH OF THE
INFORMATION-BASED SDP HIERARCHY

Here, we sketch the hierarchy of semidefinite pro-
grams for bounding the set of informationally restricted
quantum correlations, which we employ to efficiently
(but, in general, not tightly) bound the set of correla-
tions obtainable from classical or quantum communication
in entanglement-assisted prepare-and-measure scenarios.
This hierarchy has originally been introduced in Ref. [38]
to investigate the concept of informationally restricted
correlations. Notably, due to a connection between this
concept and quantum contextuality, a modification of this
hierarchy has also recently been proposed to bound the set
of quantum correlations in contextuality experiments [73].

Given that Alice’s input is sampled from a probability
distribution px, the information carried by her communi-
cated quantum ensemble is given by Eq. (30). This quantity
is one to one with the so-called guessing probability Pg ,
defined in Eq. (29) as the performance of the best possible
quantum protocol for minimal-error state discrimination
of Alice’s ensemble. Consider now that we are given a
probability distribution p(b|x, y) in a prepare-and-measure
scenario and asked to decide whether p(b|x, y) is compat-
ible with some quantum model based on an information
transmission corresponding to a fixed value of Pg (for
given px). A hierarchy of increasingly precise necessary
conditions for the existence of such a quantum model has
been presented in Ref. [38]. Each condition takes the form
of a semidefinite program. We now proceed to sketch the
construction of these semidefinite relaxations.

Define a list of operators containing all the preparations
and measurements in the relevant scenario:

S = {1, σ , ρ1, . . . , ρnX , M1|1, . . . , MnB|1, . . . , MnB|nY}.
(B1)

The measurements can, without loss of generality, be cho-
sen as projective (Mb|yMb′|y = δb,b′Mb|y). Moreover, the list
also includes the identity (of unknown dimension) and an
auxiliary operator σ . By considering products of the ele-
ments of S (monomials), we can build a list, which we
name S . This list should, at the very least, contain all ele-
ments of S (products of length one). The addition of more
monomials to this list corresponds to a more precise nec-
essary condition for a quantum model. From the monomial
list S , we can now build a |S| × |S| matrix of moments,
defined as

�ij = Tr
(
SiS†

j

)
. (B2)

Note that the quantum probabilities p(b|x, y) = Tr
(
ρxMb|y

)

appear as explicit entries in the moment matrix. By associ-
ating Tr

(
ρxMb|y

)
to the corresponding entry (i, j ) in �, we

may label the relevant entries as �bxy . A quantum model is
compatible with the positivity condition � ≥ 0.

So far, no physically relevant constraint is placed on �.
A priori, it may appear difficult to impose the constraint
on the guessing probability, since in itself it corresponds to
a semidefinite program. The key observation for resolving
the apparent difficulty is that one may exploit the program
dual to that corresponding to the guessing probability.
Specifically, define σ ≥ pxρx ∀x. Then,

Pg = max
{Nz}

∑

x

px Tr (ρxNx) ≤ max
{Nz}

∑

x

Tr (σNx) = Tr (σ ) .

(B3)

This is the reason why we include σ in the operator list
S. In order to constrain the guessing probability, we can
impose a bound on Tr (σ ), which appears as an explicit
entry in �. We label that single entry as �σ . However,
in order to nontrivially impose this constraint, we must
also account for the semidefinite conditions σ ≥ pxρx on
the level of the semidefinite relaxation. To this end, we
introduce a set of localizing matrices, defined as

�̃
(x)
ij = Tr

(
Ri (σ − pxρx)R†

j

)
, (B4)

where R is (in analogy with S) a list of monomials built
from products taken from the elements of S. Notably,
one does not need to choose R = S but it is favorable
to choose R such that all entries in �̃(x) appear in �.
Imposition of the positivity constraint �̃(x) ≥ 0 for all x
nontrivially enforces the desired constraints.
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Finally, it is known that the analysis of informationally
restricted correlations cannot be restricted to pure quan-
tum states without loss of generality [38]. This means
that we do not wish to enforce ρ2

x = ρx but, instead, the
constraint ρx ≥ 0 on the level of the semidefinite relax-
ation. To this end, we introduce another set of localizing
matrices, defined as

�̄
(x)
ij = Tr

(
TiρxT †

j

)
, (B5)

where T is (in analogy with S and R) a list of monomials
built from products taken from the elements of S. The pos-
itivity of the state is nontrivially imposed by the condition
�̄(x) ≥ 0.

Putting the above together, a necessary condition for the
existence of a quantum model with guessing probability
Pg (for given prior px) takes the form of the following
semidefinite program:

Find {�, �̃(x), �̄(x)} such that

� ≥ 0, ∀x : �̃(x) ≥ 0, ∀x : �̄(x) ≥ 0,

Tr (ρx) = 1, �σ ≤ Pg , �bxy = p(b|x, y).

(B6)

For any given choice of monomial lists {S ,R,T }, the fail-
ure of this program implies the impossibility of a quantum
model. Note that for the purposes of entanglement-assisted
communication scenarios, we always choose px = 1/nX
and Pg = d/nX (where d is the dimension of communi-
cation) when communication is classical. When communi-
cation is quantum, we choose Pg = d2/nX .

APPENDIX C: EA BITS ARE STRICTLY MORE
POWERFUL THAN HYPERBITS

In Ref. [39], an equivalence is claimed between EA bit
and hyperbit strategies. While it is true that any hyperbit
strategy can be simulated by EA bits, the converse claim is
incorrect, as we illustrate with an explicit counterexample.

We consider the dimension witness of Gallego et al.
from Sec. V B. As discussed there, we find an explicit EA
bit strategy achieving W5 ≈ 9.034, which we prove to be
optimal. The correlations in a hyperbit model are given by
the scalar products between unit vectors. Hence, finding
the optimal value of a linear function of the correlations
for a hyperbit strategy amounts to a search over Gram
matrices, which can be cast as a single SDP [74]. Taking
into account the possibility that Bob may use more com-
plex strategies (e.g., where he probabilistically decides to
discard Alice’s message and he outputs a predetermined
output), we find, following the methods of Ref. [74],

W5
hyperbit≤ 9, (C1)

which is strictly smaller than the EA bit value.

The hyperbit construction given in Appendix A of Ref.
[39] fails, because the probabilities for Bob to flip his bit,
under [Eq. (A9) [39] ], are not guaranteed to be positive.
Taking our optimal EA bit strategy achieving W5 ≈ 9.034,
we can verify that this is indeed the issue by attempt-
ing to transform it into a hyperbit strategy following the
construction of Ref. [39]. As expected, the flipping prob-
abilities are negative for most of Bob’s inputs and Alice’s
messages. The explicit calculation can be found in two
MATLAB files as ancillary files on the arXiv page of the
present paper [72].
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