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The scalability of photonic implementations of fault-tolerant quantum computing based on Gottesman-
Kitaev-Preskill (GKP) qubits is injured by the requirements of inline squeezing and reconfigurability of the
linear optical network. In this work we propose a topologically error-corrected architecture that does away
with these elements at no cost—in fact, at an advantage—to state preparation overheads. Our computer
consists of three modules: a two-dimensional (2D) array of probabilistic sources of GKP states; a depth-
four circuit of static beam splitters, phase shifters, and short delay lines; and a 2D array of homodyne
detectors. The symmetry of our proposed circuit allows us to combine the effects of finite squeezing and
uniform photon loss within the noise model, resulting in more comprehensive threshold estimates. These
jumps over both architectural and analytical hurdles considerably expedite the construction of a photonic
quantum computer.
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I. INTRODUCTION

The photonic quantum computing paradigm is well
placed to handle the long-term obstacles inherent to engi-
neering scalable quantum computers. The promise of this
technology is enabled by room-temperature functionality,
manufacturability, tolerance to photon loss, and the poten-
tial for long-range networking. In this approach, the need
for robust and stable optical quantum information is met
by combining bosonic codes known as Gottesman-Kitaev-
Preskill (GKP) qubits [1] with qubit quantum error correct-
ing codes implemented through measurement-based quan-
tum computation (MBQC) [2–4], in a hybrid continuous-
variable (CV) and discrete-variable (DV) architecture
[5–9]. However, the current best architectures of this type
still have critical challenges: inline squeezing in circuit or
measurement-based implementations of controlled-Z (CZ)
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gates introduce noise [6,9–11]; the requirement of deter-
ministic GKP sources leads to onerous multiplexing costs;
and the need for rapid reconfiguration in the linear optics
networks is a substantial burden on integrated chips [12].
All of these elements furthermore increase the number of
optical components seen in each photon’s journey, thereby
compounding loss—the most harmful imperfection in a
photonic quantum computer.

In particular, fast reconfigurability in beam splitter
parameters portends greater losses. Fast switches require
an electro-optical effect, restricting one to platforms
exhibiting second-order optical nonlinearity, among which
few low-loss examples are available. Furthermore, elec-
trodes must typically be placed much closer to the waveg-
uides involved, resulting in higher loss. Chips will still
likely require slow (static) tuning elements needed to
compensate for fabrication flaws. However, the system-
atic imperfections addressed by such reconfigurability are
much less threatening to the performance of quantum
algorithms than the stochastic errors that result from opti-
cal losses. While some reconfigurability or postfabrica-
tion trimming of linear optical devices will likely still be
required, such a feature will have no requirements related
to reconfiguration speed. For example, effectively loss-
less thermo-optic phase shifters can be used to make slow
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adjustments to splitting ratios in integrated Mach Zehn-
der interferometer-based beam splitters on ultralow-loss
waveguide platforms like silicon nitride. By contrast, an
electro-optic phase modulator, implementable on lithium
niobate, can exhibit losses of the order of 1 dB [13].

Here we show how to entangle the outputs of proba-
bilistic sources of GKP qubits into fault-tolerant resource
states for MBQC without requiring either inline squeez-
ing or reconfigurable linear optics. Our architecture pro-
duces a three-dimensional macronodal lattice structure
[5,7,9,14–21] in one temporal and two spatial dimensions
where each site consists of four modes. The advan-
tage of this approach is that the generation circuit
consists only of single-mode sources, a depth-four
static circuit of balanced beam splitters, half-time-step
delay lines, and homodyne detectors. The generated
resource state can be used equivalently to the CV-DV
hybridized Raussendorf-Harrington-Goyal (RHG) cluster
state [4,6,22,23], although the process is generalizable to
other qubit codes. Furthermore, both finite squeezing noise
and uniform photon loss throughout the beam splitter net-
work are equivalent to local Gaussian noise before each
detector due to the symmetry of the generation circuit.

We calculate logical error rates of the outer (qubit) code
for different levels of finite squeezing and photon loss,
over a range of failure probabilities of GKP state gener-
ation. In the event that a source fails to produce a GKP
state, we assume that it produces a squeezed vacuum state.
We find, for example, that at 15 dB of squeezing and
no loss, our architecture can tolerate GKP failure rates
of more than 50%, reducing by a significant factor the
size of the per-node state preparation modules and mul-
tiplexers in Ref. [6]. In addition, under the condition of
deterministic GKP state generation, we find a squeezing
threshold of approximately 10 dB, lower than that found in
Ref. [6], despite the latter neglecting the noise from inline
squeezing within the CZ gates. Finally, we show the sim-
ple trade-off between tolerable finite squeezing noise and
uniform photon loss rates for a given GKP failure rate.

II. BACKGROUND

Qubits are encoded into optical bosonic modes by the
GKP encoding, with ideal logical 0 and 1 codewords
defined as

|μ̄〉 =
∑

n

∣∣(2n + μ)
√
π

〉
q , μ = 0, 1, (1)

where |·〉q is a position eigenstate. Throughout the paper,
single-mode states within the GKP code space are indi-
cated with an overbar. Given a single-mode squeezer
S(s):= exp[−i(ln s)(q̂p̂ + p̂ q̂)/2], the states needed in our
scheme are a momentum eigenstate |0〉p , the sensor state
|∅〉 = S(

√
2) |+̄〉 = ∑

n |√2πn〉q, and a magic state such

as S(
√

2) |+T̄〉, where |+T̄〉 :=(1/√2)(|0̄〉 + eiπ/4 |1̄〉), the
last of which is required to implement non-Clifford opera-
tions. The effect of the squeezer on a position eigenstate is
S(s) |x〉q = |sx〉q.

The effects of finite squeezing are modeled by the appli-
cation of an additive Gaussian bosonic channel on the ideal
|0〉p and |∅〉 states [24]:

Ñ [ε](ρ):=
∫∫

dr ds
2πε

e−r2/2ε−s2/2εX (r)Z(s)ρZ†(s)X †(r),

(2)

where X (r):= exp(−irp̂) and Z(s):= exp(isq̂) are dis-
placements along the position and momentum phase-space
directions, respectively.

The 50:50 beam splitter is defined as Bjk :=
e−iπ(q̂j p̂k − p̂j q̂k)/4 = B†

kj , and depicted by an arrow from
mode j to k [25]. The phase shifter is defined as
R(θ):=eiθ n̂, with R(π/2) corresponding to a Fourier trans-
form in phase space, which implements a GKP Hadamard
gate. Homodyne detectors measure linear combinations of
the quadrature operators, with q̂, p̂ , and q̂ + p̂ measure-
ments implementing GKP Pauli Z, X , and Y measure-
ments, respectively. The single-mode squeezed vacuum
state is given by S(ξ) |0〉 with ln ξ → ±∞ being |0〉p(q).
The CV CZ gate is defined as CZjk:=eiq̂j q̂k , and the CV
CX gate as CXjk = e−iq̂j p̂k . These implement GKP CZ and
CX gates, respectively. In this article, we differentiate CXjk

from CX
†
jk by using a solid versus open circle on the control

mode j , respectively. Finally, GKP Pauli X and Z operators
are realized by displacements of any odd integer multiple
of

√
π in the q and p quadratures, respectively.

III. THREE-DIMENSIONAL HYBRID
MACRONODE ARCHITECTURE

Bourassa et al. [6] proposed a constant-depth gener-
ation circuit for the RHG lattice state compatible with
probabilistic GKP state sources. Though simple in theory,
this proposal remains experimentally challenging because
it requires inline squeezing (present in the CZ gates) and
time-varying circuits (different gate arrangements between
even and odd time steps). Both these problems can be
circumvented by substituting the RHG lattice target state
with a computationally equivalent macronode cluster state
[5,7,9,14–21], where each node has several modes that
undergo multimode measurement.

The basic building block of our scheme is a type of
two-mode entangled state, which can be produced by
first generating a pair of modes—either being GKP or
momentum-squeezed vacuum—and sending these through
a 50:50 beam splitter. Though the constituent modes are
coupled only by a beam splitter, the resulting pairs are
equivalent to two-mode cluster states, as is made apparent
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by the following identities [25]:

Bjk :=
k

j

=
S(

√
2)

S†(
√

2)

,

(3)

CX
†
jk |∅〉j |∅〉k = |∅〉j |∅〉k , (4)

CX
†
jk |ϕ〉j |0〉pk

= |ϕ〉j |0〉pk
, (5)

CX
†
jk |0〉qj |ϕ〉k = |0〉qj |ϕ〉k . (6)

Here |ϕ〉 can be an arbitrary state. From these identities,
we get

S(
√

2) |ψ〉 R(−π
2 ) R(π

2 )

S(
√

2) |φ〉
=

|ψ〉

|φ〉
,

(7)

provided that both |ψ〉 and |φ〉 are |+̄〉, or at least one of
the states |ψ〉, |φ〉 be in |0〉p . Even if one has access only to
either |∅〉 or |0〉p at random, one always obtains an entan-
gled state that functions as a unit of a hybrid CV-GKP qubit
cluster. Magic states can be inserted into our architecture
by letting |ψ〉 or |φ〉 be a magic state such as |+T̄〉, while
letting the other be |0〉p .

We require that these entangled pairs be arranged in
a 3D configuration, shown in Fig. 1(a). To achieve this,
we begin with a 2D array of sources that emit |∅〉 with
probability 1 − pswap and momentum-squeezed states with
probability pswap at regular intervals. Generalizing Ref. [6],
we may assume that the sources are Gaussian boson sam-
pling (GBS) devices tuned to prepare sensor states. A
GBS state preparation device first generates a Gaussian
state by squeezing, displacing, and interfering a multimode
vacuum state; then, it conducts photon-number-resolving
measurements on the state in all but one mode to produce
a desired non-Gaussian state at the output, conditioned
on specific photon-number patterns. As of writing, there
has not been an experimental demonstration of GBS-based
optical GKP state preparation, although there has been
extensive theoretical work on the feasibility of such a
scheme [26–29] (see also Ref. [30]). Following Ref. [6],
we assume that the desired probabilities pswap may arise
from multiplexing multiple GBS sources for each effec-
tive source. We require that each source produces an input
mode every time step of length 
T, though the timing of
half of the sources is offset by 
T/2 according to its loca-
tion in the 2D layout in Fig. 1(b). The beam splitters, delay
lines, and phase delays in Figs. 1(b) and 1(c) produce the
required arrangement of pair states in (2+1) dimensions.

State sources

(b)

(c) (d)

Beam splitters Delays
source

source offset by Δ /2 π/2 phase delay
Δ /2 delay line

(a)

FIG. 1. Panel (a) shows the primal unit cell of the three-
dimensional (3D) hybrid pair cluster state, and panels (b) and
(c) show the steps for generating it. Panels (b)–(d) are pre-
sented as cross sections of waveguide layers stacked in the
Z direction, which coincides with the direction of propagation
of light through the waveguides. The 3D lattice exists in two
spatial (X , Y) dimensions and one temporal dimension. The lat-
ter is divided into discrete time bins of width 
T. Colors are
included for the relationship between sources and the final state.
(b) Waveguide arrangement at the first layer, with each node
receiving an input from a source in every
T-wide time bin. The
time bins for the solid nodes are offset by 
T/2, relative to the
hollow nodes. As indicated by the arrows, 50:50 beam splitters
are applied between pairs of modes, and these generate entangled
pairs [see Eq. (7)]. The beam splitters indicated by black arrows
create entangled pairs that will connect the state in the Z direc-
tion. In (c), crosses indicate the application of a
T/2 time-delay
line, while slashes indicate the application of a π/2 phase delay.
In (d), the state is connected into the macronode cluster state by
the application of four additional beam splitters between the four
modes that make up each macronode. Dotted beam splitters are
applied after solid ones. Note that the time signature of certain
nodes changes due to the time-delay lines.

To create a fully connected 3D resource state, we apply
four 50:50 beam splitters within each macronode, as shown
in Fig. 1(d), analogously to the so-called quad-rail lattice
construction [16,19,31]. A detailed graphical representa-
tion of the resulting state is given in Appendix A. Each
mode is subsequently sent to a homodyne detector.

A. Equivalence to the canonical hybrid cluster state

We refer to the hybrid RHG cluster state proposed in
Ref. [6] as the canonical RHG lattice state since there is
one mode per node and its generation involves CZ gates
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[32]. The state produced by the circuit in Fig. 1 is a
macronode version of this state. We consider the case
of always measuring three modes, referred to as satellite
modes, within a macronode in the q̂ basis. The remaining
mode, referred to as central mode, then forms the canoni-
cal RHG lattice state. Here, we prove this through circuit
identities.

To simplify the description of the postmeasurement
state, we have the central mode in each macronode be
chosen from wires whose inputs are prepared in GKP
states, whenever possible. Representing the state genera-
tion and measurement via a quantum circuit, we can further
simplify to the case where the central mode is taken to
be the top wire shown in Fig. 2(a), as other cases can
be made equivalent to this one by permuting the mea-
surement bases at the end [31]. Using Eqs. (3) and (7),
we can replace the beam splitters with CX(†) gates and
squeezers. At the measurement side, applying the com-
mutation relations between gates X (a), S(ξ), and CXjk, as
well as the identities 〈m|q X (a) = 〈m − a|q, 〈m|q S(ξ) ∝
〈m/ξ |q, and 〈m|q1

CX1k = 〈m|q1
Xk(m) for homodyne mea-

surements, we obtain the equivalent circuit shown in
Fig. 2(b). Next, we commute all the CZ gates across
the CX gates, towards the measurements, using the rela-
tion CX

†
1kCZjk = CZjkCZj 1CX

†
1k. This generates additional

CZ gates, but those with support on satellite modes
can be replaced with displacements by the identity
〈m|qk

CZjk = 〈m|qk
Zj (m). These changes are shown in

Fig. 2(c). A detailed step-by-step derivation is given in
Appendix B.

Since we assumed the central mode to be an encoded
GKP state |ψ̄〉1—either a plus state or a magic state—if

the macronode contains at least one GKP state then, by
using Eq. (5) and

CX
†
jk |ψ̄〉j |+̄〉k = |ψ̄〉j |+̄〉k , (8)

we can remove the CX
†
1j (j ∈ {2, 3, 4}) gates that act at

the beginning of the circuit in Fig. 2(c) [33]. Therefore,
the satellite modes are decoupled from the entanglement
structure, and the state supported on just the central modes
of each macronode is identical to the hybrid RHG lattice
considered in Ref. [6]—up to squeezing [S(2)] and dis-
placement operators (X0 and Z1–Z4), whose effect can be
eliminated in postprocessing. This treatment has thus far
ignored the effects of finite squeezing and photon loss, so
we now turn to their inclusion.

B. Fault-tolerant computation

After the reduction to the canonical RHG lattice, quan-
tum computation can proceed as usual, for example
through lattice surgery, as detailed in Ref. [6]. In this
approach, a logical qubit is associated with a patch or
box of physical qubits. Logical single-qubit Pauli gates
and measurements are effected through lines of physi-
cal Pauli operations—q and p displacements and mea-
surements—from patch boundary to boundary. Multiqubit
gates are implemented with the help of ancillary physical
qubits as well as merge or split operations, which conjoin
or disjoin, respectively, qubit patches through sequences
of homodyne measurements along patch boundaries. The
non-Clifford gates are effected through injections of GKP

Beam splitter

//

(a) (b) (c)

CZ gate

CX  gate

or

2
phase delay

FIG. 2. (a) Circuit representation of the beam splitter network associated with a single macronode, 0, in the case where the central
mode is the top wire. Also shown is the connectivity, by beam splitters, to neighboring macronodes. See the legend for circuit con-
ventions. The final four beam splitters correspond to those in Fig. 1(d). (b) Equivalent circuit to (a), which follows from application
of identities (7) and (B14). Here X0 denotes displacement X [(m2 + m3 − m4)/2], m2, m3, and m4 denote homodyne measurement
outcomes on the satellite modes, as shown in the circuit (B14) and S is the squeezing gate defined in the main text, whose effect is to
rescale the homodyne outcomes. (c) Equivalent circuit to (b), which follows from circuit identities that migrate CZ gates toward the
measurements. The commuted CX† gates are depicted with a dotted line because they act trivially on the circuit input (see the main
text). The displacements Z1,...,4 depend on the measurement outcomes of satellite modes in the neighboring macronodes according to
the rules in Appendix B 4.
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magic states into the lattice, followed by a distillation pro-
cedure that extracts a single high-quality logical magic
states from multiple noisy magic state patches.

C. Noise model

Any single-mode Gaussian bosonic channel E that pre-
serves the phase-space mean of the vacuum state satisfies

Bjk[Ej ⊗ Ek(·)]B†
jk = Ej ⊗ Ek[Bjk(·)B†

jk]. (9)

Furthermore, if E is also isotropic with respect to phase-
space quadratures then

R(θ)[E(·)]R†(θ) = E[R(θ)(·)R†(θ)]. (10)

From these identities, it follows that uniform photon
loss occurring just before the beam splitter layers in
Figs. 1(b)–1(d) can be combined and commuted across to
act immediately before the layer of homodyne detectors
in Fig. 2(a). Let η denote the total transmission coefficient
of the accumulated losses acting before each detector. By
rescaling the homodyne outcomes by 1/

√
η, the accumu-

lated loss channel can be replaced with a Gaussian random
displacement channel with variance σ 2

loss = 1 − η/2η [34].
Finite squeezing noise, modeled as a Gaussian random dis-
placement with σ 2

fin. sq. as shown in Eq. (2) acting on the
raw outputs of the sources, can similarly be commuted
across all the optical elements so that it acts before the
homodyne detectors. The combined effects of both losses
and finite squeezing noise lead to homodyne outcomes
with an uncertainty drawn from a normal distribution with
variance σ 2

total = σ 2
fin. sq. + σ 2

loss.
Now that the photon loss and finite squeezing noise

are accounted for as Gaussian random noise in the mea-
surement data, one is free to apply the reduction to the
canonical RHG lattice state described above. However,
reinterpreting this noisy measurement data to undo the con-
ditional displacements (a.k.a. byproduct operators) on the
central mode in Fig. 2(c) will further distort the homodyne
outcome of the central mode. More details of the noise
model are given in Appendix C.

IV. THRESHOLD CALCULATIONS

We find the correctable region for our macronode
resource state through Monte Carlo simulations, where
each trial comprises of three steps: simulating the complete
macronode RHG lattice prepared in Fig. 1, reducing it to
the canonical lattice, and performing error correction on
the reduced lattice.

The noisy homodyne outcomes of the macronode lat-
tice are generated by first sampling the (ideal) quadratures,
applying the entangling gates, and then using them as the
means of a normal distribution with a covariance matrix

FIG. 3. Swap-out probability pswap over physical error thresh-
old ε for the passive architecture. Parameter ε combines the
effects of finite squeezing (parameter σ 2

fin. sq.) and uniform loss
(parameter σ 2

loss = 1 − η/2η for transmissivity η ) through ε =
σ 2

fin. sq. + σ 2
loss (i.e., ε corresponds to the increase in the vari-

ance of the Gaussians to the ideal states’ Wigner functions).
Each navy blue point reflects a Monte Carlo threshold search
and fit for a given pswap. A minimum-weight-perfect-matching
decoder is used with matching graph weights assigned accord-
ing to estimated qubit-level error probabilities on each node, as
in Appendices C and D. We find that the error threshold starts at
10.1 dB in the all-GKP case and tends to infinity as the swap-out
probability approaches 0.71. This makes our passive and static
architecture significantly more tolerant to swap outs compared
to the blueprint [6]. Inset: logical failure probability over noise
parameter ε for an all-GKP macronode RHG code of varying
odd distances. We also find an improvement to the no-swap-out
threshold compared to Ref. [6].

σ 2
total1. This model corresponds to uniform Gaussian pre-

detection noise. Following the above-described reduction
procedure, noise on the central modes originates from
both the generation circuit and from the byproduct oper-
ators. Appendix B 4 describes the postprocessing rules,
and Appendix C describes the propagating noise applied
to the outcomes on the central modes. Conditional qubit-
level error probabilities can then be estimated and used
for decoding of the higher-level code. We proceed as in
Ref. [6] through minimum-weight-perfect matching [35].
The details of the simulation are presented in Appendix D.

Thresholds calculated for various swap-out probabilities
pswap are shown in Fig. 3. In the case where all modes are
in GKP states (inset of Fig. 3), we find a threshold of 10.1
dB. With the additional restriction that every macronode
has exactly one GKP state, the threshold becomes 13.6
dB (see Fig. 4). There is a marked improvement in the
swap-out tolerance of our passive architecture: it is approx-
imately 71%, compared with the approximate 24% figure
determined in Ref. [6]. These values—occurring at the
limit of infinite squeezing and no loss—invite comparison
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FIG. 4. Logical failure probability over noise parameter ε for
a macronode RHG code where each macronode is populated
by exactly one GKP state and three momentum-squeezed states.
Compare with the infinite squeezing threshold in Fig. 3 at a 75%
swap-out rate. With the restriction that each macronode must
have a GKP state, no macronode behaves like an effective swap
out in the reduced lattice, resulting in a better threshold.

because of the unchanged decoder between the architec-
tures. We leave open the possibility of a better decoder
further increasing our swap-out tolerance. On the other
hand, comparison with Ref. [9] is more tenuous, since
there the authors assume an all-GKP encoding followed
by rounds of explicit GKP error correction on the states.

We offer two main reasons for the observed improve-
ment. First, as was described in Ref. [6], swapping a
GKP mode with a momentum-squeezed state introduces
noise correlated among its neighbors. Our analysis (see
Appendix B) reveals that reduced lattice will have an effec-
tive momentum-squeezed state only if all four modes in
the prereduced macronode are swapped out. Thus, the
redundancy in the macronode lattice results in a greater
tolerance to swap outs. Second, byproduct operators con-
ditioned on the measurements of neighboring GKP states
are binned, and thus do not propagate Gaussian noise;
in fact, every additional GKP state present in a given
macronode provides an additional degree of local GKP
error correction.

A. Scaling of the logical error rate

In order to predict the overheads needed for achiev-
ing a given logical failure rate, it is desirable to have a

scaling law—how the probability of error Pfail scales with
the linear size of the system d. For the case of the (2D,
circuit-based) surface code based on physical qubits and
Pauli noise, Watson and Barrett [36] studied this scaling in
detail. The authors found two limiting cases for which ana-
lytical expressions can be written. In the region where the
probability of error κ is below the threshold κthr, but where
the number of errors is large (which happens for κ 
 1/d),
the logical error rate follows a universal scaling law:

Pfail = Ae−a(κthr−κ)μd. (11)

Here A, a, and μ are constants that can be found numeri-
cally. This expression comes from mapping the problem to
the random-bond Ising model [37]. In the regime of low
κ , this expression does not hold anymore, but the logical
failure rate is found to be strictly smaller than in Eq. (11).

Motivated by the strong connection between the RHG
lattice and the surface code [4], we consider the following
ansatz. For a threshold value εt

p and for a given probability

p of swap-outs, we define tp = erfc[
√
π/(2

√
2εt

p)], where
erfc is the complementary error function. In the regime
of high squeezing, erfc[

√
π/(2

√
2ε)] gives, to very good

approximation, the probability of having a qubit-level error
for the noise model considered. For ε below threshold,
we find numerically that, when sufficiently many qubit-
level errors happen, the logical error rate Pfail is well
described by

Pfail = 0.143 exp
{
−ap

([
tp − erfc

( √
π

2
√

2ε

)]
d1/νp

)μp }
,

(12)

where ap , νp , and μp are found independently for the vari-
ous swap-out probabilities. The values found are shown in
Table I. In the low ε regime, the logical failure rate is found
to be below the predicted values. While we believe an
analytical expression can be derived for the low ε regime
and specific criteria for the validity of Eq. (12) [36], it
is beyond the scope of the present work. Equation (12)
should thus be interpreted as an upper bound for the logical
failure rate.

B. Effect of randomness

It is instructive to see what would happen to the thresh-
old in the inset of Fig. 3 if, instead of demanding every

TABLE I. Parameters of Eq. (12) numerically determined for various swap-out probabilities p .

p(%) 0 6 12 18 24 30 36 42 48

tp(10−3) 4.73 3.35 2.30 1.51 0.94 0.53 0.25 0.087 0.016
ap(102) 5.0 6.0 5.3 8.5 28 80 130 190 12 000
νp 1.04 1.02 0.99 1.04 1.03 1.06 1.14 1.04 1.31
μp 1.21 1.21 1.14 1.14 1.28 1.34 1.27 1.23 1.42
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site to be occupied by a GKP state, we require each
macronode to have exactly one GKP state. The result-
ing threshold plot is displayed in Fig. 4. The threshold
(13.6 dB) is worse than in the no swap-out case because
the central modes no longer have the benefit of the addi-
tional GKP error correction supplied by GKP states in the
satellite modes. However, the threshold is noninfinite, an
unarguable improvement over the corresponding setting in
Fig. 3 for 75% swap outs. Such is the effect of removing the
randomness from state allocation: by demanding a GKP
state in each macronode, no mode in the canonical lattice
ever behaves like a momentum-squeezed state, yielding no
effective swap outs in the reduced state.

The setting of Fig. 4 is analogous to the no-swap-out
case of Ref. [6] with regards to state preparation overheads,
since there one also demands every node to contain a GKP
state. In that case, the threshold is approximately 10.5 dB,
ostensibly better than the threshold here. However, recall
that the noise from the finitely squeezed ancillae required
for inline squeezing within the CZ gates is not accounted
for in Ref. [6]. With this taken into account, we expect
the threshold to move in the direction of that in Fig. 4,
where the momentum-squeezed states in each macronode
also contribute to the noise.

V. DISCUSSION

Previous work showed how quantum error correction (in
the form of a topologically protected cluster state) can be
used for photonic quantum computation with probabilistic
sources of GKP qubits, provided that the available squeez-
ing is sufficiently high [6,9]. However, that work also
required both inline squeezing [38,39] and time-varying
beam splitters, both of which are difficult to implement at
the required noise levels. By using a static linear-optical
circuit to generate a macronode lattice, the present archi-
tecture circumvents these obstacles, making it feasible
to implement topological error correction at noise levels
compatible with Ref. [6] (see also Ref. [40]).

More crucial advantages emerge thanks to the sym-
metries and identities of our resource generation circuit.
First, we consolidate uniform loss and finite squeezing
effects into combined Gaussian noise associated with each
detector—a remarkably simple model that allows us to
go further in tackling experimentally consequential noise
than prior work [6,9,41]. Furthermore, we benefit from
the built-in redundancy supplied by satellite modes of our
resource state. Having multiple GKP states per macronode
is tantamount to additional rounds of GKP error correction,
favorably affecting the squeezing threshold. But bestow-
ing a macronode with even just one GKP state means that
the encoded state at each site still behaves like a GKP
state, leading to substantially higher tolerance to swap
outs. The increase in the number of modes of the cluster
is balanced by a corresponding decrease in the number of

required probabilistic state sources in every node, which
significantly relaxes the multiplexing requirements. Taken
together, our results thus substantially facilitate the real-
ization of a fault-tolerant and scalable photonic quantum
computer.
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APPENDIX A: ENTANGLEMENT STRUCTURE

Here we provide a detailed description of the relation-
ship between the generation circuit and the entanglement
structure of the resulting state. After the state generation
stages shown in Figs. 1(c) and 1(d), the array of modes is
as shown in Fig. 5(a).

Recall that the solid nodes in Fig. 1 indicate that these
lattice sites are present in temporal modes offset by 
T/2
relative to those in hollow nodes. The grouping of modes
into macronodes is indicated by yellow (blue) squares and
rectangles, also indicating that those macronodes are off-
set (not offset) by 
T/2. When the resource is constructed
up to the point between stages (c) and (d) in Fig. 1, it is
equivalent to a projected entangled pair state [44] for the
CV/DV RHG cluster state, as shown in Fig. 1(a). The pre-
cise identification of waveguide modes with graph nodes
is given in Fig. 5.

In the main text, we describe a four-to-one reduction of
modes for each macronode that corresponds to applying
projectors equivalent to doing four beam splitters and three
homodyne measurements. This description provides a very
natural way to understand how to implement computation
on the reduced canonical state, but we stress that, in princi-
ple, other measurements could be performed after the beam
splitters (resulting in operations more general than what
can be achieved on the canonical lattice). For complete-
ness, we also present the four-layer graph for the state after
beam splitters but before any homodyne measurements, as
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FIG. 5. Graph of the hybrid macronode 3D cluster state. (a) The 2D mode layout, with 
T/2 offset modes consistent with stages
(c) and (D) in Fig. 1—i.e., modes at solid nodes are offset in time by 
T/2 relative to the modes at hollow nodes. Each macronode
consists of four modes, labeled 1–4. (b) The three-dimensional arrangement of the four-mode macronodes is shown. For clarity, the
plaques with letters A to F have a color corresponding to a given layer, with lighter colors in deeper layers (green colors for X and
Y directions and red for Z). We omit five modes from the unit cell, corresponding to the back face of the cube. The connectivity in
the X -Y plane is identical to the front face. (c) Macronode graph edges for each bond in (b). The top six configurations correspond to
weight-1 CZ gates, connecting pairs of modes as in Fig. 1(a). The bottom six configurations correspond to weight-±1/4 CZ gates (the
signs are indicated by blue and yellow edge coloring, respectively), showing connectivity of the modes after stage (d) in Fig. 1.

shown in Fig. 5(c). Blue (yellow) edge colorings are con-
sistent with the plus (minus) sign on the state’s real-valued
adjacency matrix that arises from the graphical calculus for
Gaussian pure states in the case of all modes initially being
squeezed states [32].

APPENDIX B: REDUCTION TO THE RHG
LATTICE

In this section, we give a step-by-step description of
the equivalence between the macronode cluster state we
actually generate, and the canonical RHG lattice state con-
sidered in Ref. [6]. This complements the description in
Figs. 2(a)–2(c) in the main text.

1. Restructuring the four-body measurement

Here we recast the beam splitter-based four-body mea-
surement circuit described in Fig. 2(a) into a circuit involv-
ing CX gates. The starting point is the following circuit:

q = m2

q = m3

q = m4

“Central”

“Satellite”

(B1)

We name three modes measured in the q̂ basis the “satel-
lite modes” and the remaining (topmost) mode the “central
mode.” The last beam splitter between the second and
fourth modes in circuit (B1) is equivalent to postprocessing
the measurement data

m2 �→ m2 − m4√
2

and m4 �→ m2 + m4√
2

, (B2)

since

q2〈m2| q4〈m4| B42 = q2

〈
m2 − m4√

2

∣∣∣∣q4

〈
m2 + m4√

2

∣∣∣∣. (B3)

Therefore, we remove it from the circuit, but take it into
account by altering the measurement outcomes.

Next, applying circuit identities (3) to circuit (B1) and
using

qj〈m| CXjk = qj〈m| Xk(m), (B4)
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we find that the following circuit is equivalent to circuit
(B1):

q = m2−m4√
2

q = m3

q = m2+m4√
2

S(
√

2) X m2−m4√
2

)
S(

√
2) X(m3)

S†(
√

2)

S(
√

2) X m2+m4√
2

)
S†(

√
2)

S†(
√

2)

(B5)

We can account for the action of the squeezing operator on
a homodyne outcome using

〈m|q S(ξ)† ∝〈ξm|q . (B6)

Furthermore, the squeezing operators can be conjugated
through the displacement operators using

S(ξ)†X (a)S(ξ) = X (ξ−1a), (B7)

and through the CX† gates using [Si(s)Sj (s), eiqipj ] = 0 to
obtain

q = m2 − m4

q = m3

q = m2 + m4

X m2−m4
2

)
X(m3

2 ) S(2)

X m2+m4
2

) .

(B8)

Next, we conjugate the displacement operators across the
CX† gate using

CX
†
jkXj (a)Xk(b) = Xj (a)Xk(b − a)CX

†
jk, (B9)

and push displacement operators into the measurements, to
obtain

q = m2 − m4

q = m3 − m4

q = m2 + m4

X (m2 + m3 − m4)/2
)

S(2)

.

(B10)

We can transition the bottom-most CX† gate so that it
acts just before q measurements on these modes using the
relation

eiq1p3eiq3p4 = eiq3p4eiq1(p3+p4). (B11)

The resulting CX† gate between the third and fourth
modes just before q measurements can be identified

with reinterpretation of the q measurement of the fourth
mode by

m2 + m4 �→ (m2 + m4)+ (m3 − m4) (B12)

using

〈mj |qj
〈mk|qk

CX
†
jk = 〈mj |qj

〈mj + mk|qk
. (B13)

As a result, circuit (B1) is equivalent to the following
circuit:

q = m2 − m4

q = m3 − m4

q = m2 + m3

X (m2 + m3 − m4)/2
)

S(2)

(B14)

This, as well as circuit (7), completes the reduction from
the circuit in Fig. 2(a) to that in Fig. 2(b). We see that this
version of the circuit is highly symmetric, as the order of
the CX gates can be interchanged (since they commute).

Now that we have simplified the measurement circuit,
we show how the CZ gates associated with each entangled
pair can be “pushed through” from the satellite modes to
the central modes.

2. Commuting CZ gates to the measurement

Recall that the circuit in Fig. 2(b) is given by the
following:

q = m2 − m4

q = m3 − m4

q = m2 + m3

X (m2 + m3 − m4)/2
)

S(2)

,

(B15)

Here the circuit input is either |+̄〉 or |0〉p state (and
additionally |+T̄〉 for the central mode).

Now we conjugate all the CZ gates across the CX† gates
using the relations

eiqipj eiqj qk = ei(qi+qj )qk eiqipj . (B16)

This generates three extra CZ gates, all with support on
the central mode. The CZ gates with support on satellite
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modes precede q homodyne measurements, and these can
be omitted by using

〈m|qj CZjk = 〈m|qj Zk(m). (B17)

Following these steps, circuit (B15) is made equivalent to
the following:

q = m2 − m4

q = m3 − m4

q = m2 + m3

X (m2 + m3 − m4)/2
)

S(2)

Z(m2 − m4)

Z(m3 − m4)

Z(m2 + m3)

(B18)

Since outcome-dependent displacement operators Z(m) in
the sixth through eighth modes in circuit (B18) commute
with CZ gates, we can push them to the circuit inputs. Fur-
thermore, since circuit identities (B5)–(B18) do not use the
properties of input states, we can carry out these identities
for all the macronodes at the same time without conflict.
By performing circuit identities for all the macronodes,
therefore, we have the following circuit structure for each
macronode:

q = m2 − m4

q = m3 − m4

q = m2 + m3

...

Z1 X0 S(2)

Z2

Z3

Z4

,

(B19)

Here Zj denotes byproduct displacements that are pushed
into the circuit inputs when we carry out the circuit iden-
tities [see circuit (B18)]. In the above circuit, X0 depends
on homodyne outcomes of satellite modes in this macron-
ode while each Zj (j ∈ {1, 2, 3, 4}) depends respectively on
outcomes of satellite modes in the neighboring macronode
i (see Fig. 2).

By using the commutation relation between Zj and a CX†

gate, i.e., CX
†
jkZj (a)Zk(b) = Zj (a + b)Zk(b) CX

†
jk, as well as

the fact that Zj does not affect the q measurement, circuit

(??) can further be identified with the following.

q = m2 − m4

q = m3 − m4

q = m2 + m3

...

X0Z1Z2Z3Z4 S(2)

(B20)

This completes the reduction from the circuit in Fig. 2(b)
to that in Fig. 2(c).

Note that the above circuit involves displacements that
depend on the outcomes of the three q measurements
on the satellite modes. If the measurement outcomes are
known precisely then these byproduct displacements can
be undone in classical postprocessing: adding or subtract-
ing from the measured values of central modes. In the
presence of noise (such as loss or finite squeezing effects),
the true outcomes will be displaced by an unknown random
amount. When byproducts are corrected, noise in the mea-
surement outcomes will propagate onto the central modes,
which will be analyzed in Appendix C.

3. Decoupling satellite modes from the central mode

If there is at least a single GKP state (|+̄〉 or |+H̄ 〉)
present in a given macronode then we assume that the top
mode of the four-mode circuits just considered is input
with a GKP state. In reality, whether the top mode is GKP
or a squeezed state is determined at random at every time
step by the source. However, we note that permutations
on the inputs of each four-body measurement can be taken
into account by adapting the homodyne bases [31], which
boils down to changing which mode is measured in p̂ . We
will not explicitly consider all configurations here. Rather,
we proceed as if the first mode was a GKP state (unless all
four sources emitted squeezed states), and assume that the
homodyne measurements will be adapted to compensate.
In this setting, the first three CX† gates in the circuit (B20),
i.e.,

q = m2 − m4

q = m3 − m4

q = m2 + m3 (B21)

act trivially on the circuit inputs. This is because

CX
†
jk |ψ̄〉j |+̄〉k = |ψ̄〉j |+̄〉k (B22)
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and

CX
†
jk |ϕ〉j |0〉pk

= |ϕ〉j |0〉pk
(B23)

hold, where |ϕ〉 can be an arbitrary state. Therefore, satel-
lite modes in each macronode are decoupled from the
central mode. Note that the residual state supported over
the central modes of each macronode still depends on the
measurement outcomes of each satellite mode. If a satel-
lite mode is in the GKP |+̄〉 state then the corresponding
byproduct displacement is a shift by a multiple of

√
π

depending on the measurement outcome. If it is in the
|0〉p state then the corresponding byproduct displacement
is a completely random displacement depending again on
the measurement outcome. When states are not ideal, the
byproduct displacements that depend on measurement out-
comes would be sampled from a noisy version of the ideal
distribution, and will be analyzed later.

To sum up, by applying a specific choice of homo-
dyne measurement bases, the resource state prepared by
Fig. 1 can be made equivalent to a canonical RHG lattice
supported only over the central modes, up to byproduct
displacements depending on q-homodyne outcomes of the
satellite modes (in the same macronode and the nearest-
neighbor macronodes) plus a squeezing by a factor of 2 on
each central mode. It is not surprising that even in the ideal
case there are byproduct displacement operators to keep
track of in the computation. This is very similar to com-
putation using CV cluster states or even the teleportation
primitive, where there are explicit measurement-dependent
displacement operators to keep track of.

In the next section we explicitly describe how a p- or
q-homodyne measurement outcome on a canonical CV
cluster state can be simulated on the macronode lattice
state. Note that p- and q-homodyne measurements as well
as magic state injection are the minimal requirements for
universal quantum computation with a canonical RHG
cluster state [4].

4. Macronode to canonical cluster state dictionary

Here we consider how to simulate a measurement of
either q̂ or p̂ on the canonical lattice (where each site
has only a single mode) by an appropriate choice of
measurements on the macronode lattice.

We consider a macronode, labeled 0, and its four neigh-
boring macronodes, enumerated 1–4 (see Fig. 2). In each
macronode, we proceed under the assumption that the cen-
tral mode is the top mode, which we enumerate with a
1, and the satellite modes are numbered from 2 to 4.
All the homodyne outcomes are accompanied by a super-
script, denoting the macronode index, and a subscript,
denoting the mode index. For example, m(0)

1,p denotes the
p-homodyne outcome of the central mode in macronode 0.
Without loss of generality, we further assume that the ith

0

1
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3
4 m(3)

1

1
1

1

2

2

2

2

2

3

3

3
3

3 4

4

4

4

4

1

m(2)

m(1)

m(4)

FIG. 6. Schematic of the dependency of byproduct displace-
ments. A group of circles colored in cyan denotes a macronode.
A red circle denotes a central mode and a black circle denotes a
satellite mode. Modes connected by thin black lines are the ini-
tial two-mode cluster states that form the lattice. The solid blue
arrow shows the dependency of byproduct displacements in the
q quadrature, and a broken blue arrow shows the dependency of
byproduct displacements in the p quadrature [see circuits (B18)
and (B20)].

mode of macronode 0 is connected to a mode in macronode
i. (See Fig. 6.)

First, we consider the case in which the central mode
in a macronode is measured in q̂ in order to simulate
the q-homodyne outcome m(0)

can,q of the canonical RHG
lattice. Letting m(0)

1,q be the q-homodyne outcome of the
central mode, we can push the squeezing operator S(2)
in circuit (B20) into the q-homodyne measurement, which
results in rescaling the outcome to be m(0)

1,q/2. Furthermore,
the byproduct operator X0 in circuit (B20) is explicitly
given in Eq. (B18) by X0 = X [(m(0)

2 + m(0)
3 − m(0)

4 )/2]. By
pushing this byproduct displacement into the q-homodyne
measurement in the 0th macronode, we can simulate the
q-homodyne outcome m(0)

can,q on the canonical RHG lattice
by the formula

(q̂(0)1 =)m(0)
can,q = m(0)

1,q − (m(0)
2 + m(0)

3 − m(0)
4 )

2
, (B24)

where q̂(0)1 denotes the quadrature operator of the input
of the central mode. In other words, we subtract the
value (m(0)

2 + m(0)
3 − m(0)

4 ) from the result of the position
measurement.

Next, we consider the case in which the central mode is
measured in p̂ in order to simulate the p-homodyne out-
come m(0)

can,p of the canonical RHG lattice. Letting m(0)
1,p

be the p-homodyne outcome of the central mode, we can
push squeezing operator S(2) in circuit (B20) to the p-
homodyne measurement, which results in rescaling the
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outcome to be 2m(0)
1,p . Circuit (B20) also involves four com-

bined displacements in momentum Z1Z2Z3Z4 that act on
the central mode. These displacements depend on partic-
ular linear combinations of the measurement outcomes
of satellite modes on macronodes 1–4, which we now
describe. We define Zi = Z(m(i)), where m(i) is given by

(a) m(i) = 0 (meaning no byproduct displacement) if
the ith mode in macronode 0 is connected to the first
mode (i.e., the central mode) in macronode i,

(b) m(i) = m(i)
2 − m(i)

4 if the ith mode in macronode 0 is
connected to the second mode in macronode i,

(c) m(i) = m(i)
3 − m(i)

4 if the ith mode in macronode 0 is
connected to the third mode in macronode i,

(d) m(i) = m(i)
2 + m(i)

3 if the ith mode in macronode 0 is
connected to the fourth mode in macronode i.

This follows from inspection of circuits (B18) and (B20).
The fact that the satellite modes are decoupled from the
central mode as shown in Fig. 2(c) has implications on the
possible values m(i) can take; it is restricted to be an integer
multiple of

√
π if the premeasurement state in macron-

ode i is |+̄〉, and m(i) is an unrestricted real number if the
premeasurement state is |0〉p . By pushing these byprod-
uct displacements Zi into the p-homodyne measurement of
macronode 0, we can simulate the p-homodyne measure-
ment outcome m(0)

can,p on the canonical RHG lattice by the
formula

(
p̂ (0)1 +

4∑

i=1

q̂(i)1 =
)

m(0)
can,p = 2m(0)

1,p −
4∑

i=1

m(i), (B25)

where q̂(i)1 and p̂ (i)1 are quadrature operators of input quan-
tum states of central modes in macronode i [6]. Therefore,
we can take these displacements into account by doing
subtraction appropriately on the measurement data.

5. Treatment of the boundary

In our architecture, there must always be four modes in
a macronode. Therefore, the treatment of the boundary of
the cluster state requires extra care. On the boundary, we
always generate additional bipartite entangled states so that
the boundary macronode always has four modes, and erase
each extra mode, i.e., one of the modes of the additional
bipartite entanglement that does not go through beam split-
ters, by measuring it in the q̂ basis. In order to eliminate the
effect of the extra mode, we subtract a measurement out-
come of the erased mode from m(0)

can,p = p̂ (0)1 + ∑4
i=1 q̂(i)1 .

In this way, we can use the same passive circuit and cir-
cuit identities even on the boundary at the expense of
consuming extra bipartite entangled states, which will be
negligible when the 3D cluster state is large.

APPENDIX C: ERROR ANALYSIS

As explained in the main text, in the presence of finite
squeezing and uniform loss, all the measurement outcomes
m(i)

j (after rescaling by the factor 1/
√
η to transform uni-

form loss into Gaussian random displacement) acquire
Gaussian random noise. We denote these randomly shifted
outcomes that we actually obtain in experiment as m′(i)

j ,
i.e.,

m(i)
j

N [m(i)j ,ε]
−−−−−→ m′(i)

j , (C1)

where N [μ, ν] denotes the normal distribution with mean
μ and variance ν, and ε = σ 2

fin. sq. + 1 − η/2η combines
the effect of finite squeezing and loss. This also affects
the ability to simulate m(i)

can of the canonical RHG lat-
tice from measurement outcomes of our macronode cluster
state. In this section, we show how errors in the macron-
ode lattice measurements induce errors on the simulated
canonical cluster state. Framing the error analysis in terms
of the canonical cluster state in this way allows us to then
apply the decoding techniques developed in Ref. [6] for the
hybrid CV-DV RHG lattice state.

The analysis in Ref. [6] treated cases where a |0〉p state
was prepared instead of a |+̄〉 as a “swap-out” error. In
that work, the authors developed a heuristic decoder that
assigns an error weight to each mode depending on its mea-
surement outcome. An equivalent decoding strategy can be
applied to the present case, with two caveats: (1) the central
mode is an encoded |0〉p state only when all the modes in
that macronode are in the |0〉p state; and (2) we must take
into account additional byproduct operators caused by the
satellite modes. Since we can adopt the same strategy as in
Ref. [6] if there is a swap out, we only need to analyse the
error weight for the case of no swap outs in the following.
Hereafter, we call “performing standard GKP binning for
m′” the process of picking the nearest integer multiple of√
π of m′, which is denoted by m̃.
Before going into detail, we give a brief overview of

how the noise on measurement data of satellite modes
leads to computational errors through byproduct operators.
For the satellite mode prepared in momentum-squeezed
states, the best we can do is just to believe the noisy data
to cancel the byproduct operators, which leaves a random
Gaussian error on the measurement data of the central
mode. The situation is more favorable for satellite modes
prepared as GKP states; in the absence of noise, the homo-
dyne outcomes as well as the byproduct displacements
from GKP satellite modes must be 0 mod

√
π . Provided

that the actual measurement outcome of the satellite mode
is not shifted by an amount greater than

√
π/2, the noise

contribution—that is, the deviation from an integer mul-
tiple of

√
π—can be corrected by standard GKP binning.

However, a larger shift may result in a GKP logical Pauli-
Z error on the central mode after the data are processed.
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Note finally that we need to rescale the homodyne out-
come of the central mode to cancel the squeezing factor
in Fig. 2(c). This effectively doubles the noise deviation on
the measurement data of the central mode if it is measured
in the p̂ basis while halving it if it is measured in the q̂
basis.

To make the description more explicit, we analyze
the case of q-homodyne m(0)

can,q first. Recall that this
is defined via the linear combination of terms given
in Eq. (B24). In the presence of noise, we obtain
m′(0)

can,q:=m′(0)
1,q − (m′(0)

2 + m′(0)
3 − m′(0)

4 )/2, where each m′(0)
j

is Gaussian randomly shifted from m(0)
j with variance ε.

Therefore, m′(0)
can,q is Gaussian randomly shifted from m(0)

can,q

with variance ε. We estimate m(0)
can,q by applying standard

GKP binning to m′(0)
can,q, resulting in m̃(0)

can,q. The posterior
probability of introducing a logical GKP level-X error for
this measurement (i.e., m̃(0)

can,q = m(0)
can,q) is approximately

perr =
∑

n∈Z
exp[−(m′(0)

can,q − (2n + r̄)
√
π)2/(2ε)]

∑
n∈Z

exp[−(m′(0)
can,q − n

√
π)2/(2ε)]

, (C2)

where r̄:=1 − r ∈ {0, 1} and m̃(0)
can,q/

√
π ≡ r mod 2.

A compact, analytic representation of Eq. (C2) is avail-
able in terms of the Jacobi theta function of the third kind,
for which we use the notation [45]

θ(z, τ):=
∑

n∈Z

exp(π in2τ + 2π inz) (C3)

with z, τ ∈ C, Im(τ ) > 0. This function is particularly
useful for representing a T-periodic Gaussian pulse train
[45]:

∑

n∈Z

exp
[

− (x − nT)2

2σ 2

]
=

√
2πσ 2

T2 θ

(
x
T

, 2π i
σ 2

T2

)
. (C4)

Using Eq. (C4), we can define the auxiliary function

f (x, b, σ 2):=
∑

n∈Z
exp[−(x − (2n + b)

√
π)2/(2σ 2)]∑

n∈Z
exp[−(x − n

√
π)2/(2σ 2)]

= θ [x/(2
√
π)− b/2, iσ 2/2]

2θ(x/
√
π , 2iσ 2)

, (C5)

which will allow us to analytically represent all of the
expressions in the rest of this section. For instance, using
Eq. (C5), we can rewrite Eq. (C2) as simply

perr = f (m′(0)
can,q, r̄, ε). (C6)

Now, we analyze the case of p-homodyne measurements
m(0)

can,p with two extreme examples. First, we consider the
case in which all the modes in macronode 0 are con-
nected to satellite modes in macronode 1 to 4 (i.e., m(i) is

nonzero), and all these satellite modes are in |0〉p states.
Then, we can have m′(0)

can,p :=2m′(0)
1,p − ∑4

i=1 m′(i), which
is Gaussian randomly shifted from m(0)

can,p with variance
12ε, since m(i) is a summation or subtraction of two q-
homodyne outcomes on satellite modes. As above, we
estimate m(0)

can,p by applying standard GKP binning to m′(0)
can,p

to get m̃(0)
can,p . The posterior error probability perr for a GKP

logical-Z error is given by

perr =
∑

n∈Z
exp[−(m′(0)

can,p − (2n + r̄)
√
π)2/(24ε)]

∑
n∈Z

exp[−(m′(0)
can,p − n

√
π)2/(24ε)]

,

= f (m′(0)
can,p , r̄, 12ε), (C7)

where r̄:=1 − r ∈ {0, 1} and r ≡ m̃(0)
can,p/

√
π mod 2, and

the auxiliary function f is defined in Eq. (C5).
Next, we analyze the case in which all the modes in

macronode 0 are connected to satellite modes in macron-
odes 1 to 4, and all these satellite modes are in |+̄〉 states.
Then, each m(i) must be an integer multiple of

√
π due to

the fact that satellite modes are decoupled from the cen-
tral mode in Fig. 2(c). Therefore, we can estimate m(i) by
applying standard GKP binning to m′(i), resulting in m̃(i).
The probability of introducing a logical error by incorrect
binning is

∑
n∈Z

exp{−[m′(i) − (2n + r̄(i))
√
π]2/(4ε)}∑

n∈Z
exp[−(m′(i) − n

√
π)2/(4ε)]

= f (m′(i), r̄(i), 2ε), (C8)

where r̄(i):=1 − r(i) ∈ {0, 1} and r(i) ≡ m̃(i)/
√
π mod 2.

From Eq. (B25), 2m(0)
1,p must also be an integer multiple

of
√
π in this case. We can estimate 2m(0)

1,p by applying
standard GKP binning to 2m′(0)

1,p , resulting in 2m̃(0)
1,p . The

probability of introducing a logical error is given by

∑
n∈Z

exp{−[2m′(0)
1,p − (2n + r̄)

√
π]2/(8ε)}

∑
n∈Z

exp[−(2m′(0)
1,p − n

√
π)2/(8ε)]

= f (2m′(0)
1,p , r̄, 4ε), (C9)

where r̄:=1 − r ∈ {0, 1} and r ≡ 2m̃(0)
1,p/

√
π mod 2.

Therefore, we can infer that m̃(0)
can,p/

√
π ≡ r − ∑4

i=1 r(i)
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mod 2 with a posterior error probability

perr ≤
∑

n∈Z
exp{−[2m′(0)

1,p − (2n + r̄)
√
π]2/(8ε)}

∑
n∈Z

exp[−(2m′(0)
1,p − n

√
π)2/(8ε)]

+
4∑

i=1

∑
n∈Z

exp{−[m′(i) − (2n + r̄(i))
√
π ]2/(4ε)}∑

n∈Z
exp[−(m′(i) − n

√
π)2/(4ε)]

,

= f (2m′(0)
1,p , r̄, 4ε)+

4∑

i=1

f (m′(i), r̄(i), 2ε), (C10)

by applying the union bound to Eqs. (C8) and (C9).
In generic cases in which some of the connected satel-

lite modes are in |0〉p state and others are in |+̄〉 states,
the m′(i) corresponding to |+̄〉 satellite modes are binned
separately with variance 2ε as explained above, and the
remaining 2m′(0)

1,p − ∑
m′(j ) are binned together with vari-

ance (4 + 2t)ε, where t is the number of |0〉p satellite
modes in neighboring macronodes. The combined poste-
rior error probability perr can be given by the union bound
on the same footing as Eq. (C10). Note that, in case the
ith mode in macronode 0 is connected to the central mode
in macronode i, no noise is introduced from macronode i
because there is no byproduct [see circuit (B18)].

APPENDIX D: THRESHOLD ESTIMATION

Aided by the preceding sections, we describe here how
we simulate the error correction of noisy hybrid macronode
lattice states and estimate fault-tolerant error thresholds.

First, we generate a hybrid macronode RHG lattice of
code distance d and periodic boundary conditions in all
three directions. The code distance corresponds to the
number of primal unit cells along each dimension, and
translates to 4N modes in the macronode lattice through
N = 6d3. This choice of boundary conditions precludes us
having to erase and process superfluous nodes and speeds
up the decoding algorithm. By using only the circuit iden-
tification of Eq. (7), the state generation circuit in Fig. 1 is
identified as follows:

q = m2

q = m3

q = m4

1

2

3

4

(D1)

Here each circuit input state is either |0〉p with probability
p0 or |+̄〉 with probability 1 − p0. We can now permute the

mode indices (1, . . . , 4N ) so that central modes are posi-
tioned at {1 + 4(i − 1) | 1 ≤ i ≤ N } and satellite modes
are everywhere else. After the permutation, we generate
a list of quadratures of modes at the circuit input min =
(m1

q, . . . , m4N
q , m1

p , . . . , m4N
p )T, where mi

p = 0 for all i and

mi
q =

{
rand(0,

√
π) if ith mode is in |+̄〉 ,

randU(0, 2
√
π) if ith mode is in |0〉p ,

(D2)

where the function rand(a, b) randomly chooses between
a and b, whereas randU(a, b) samples from the uniform
distribution over the interval [a, b). These quadratures are
updated with the application of CZ gates and beam splitters
in Eq. (D1) by

min → mout = SBSSCZmin, (D3)

where SCZ and SBS denote the symplectic matrices [46]
corresponding to CZ gates and beam splitters.

At this juncture, we generate the noisy homodyne out-
comes m′i with the model m′i = randG(mi

out, ε), where
randG(μ, ν) selects a random sample from the normal dis-
tribution N [μ, ν] [47]. With the simulated noisy outcomes
m′i, we use the processing rules in Appendix B 4 to obtain a
list (m1

can,p , . . . , mN
can,p) of effective p-homodyne outcomes

for the reduced lattice, along with associated conditional
qubit-level phase error probabilities perr for each effective
p-homodyne outcome. Furthermore, we label each reduced
node its effective type: “p” if all modes in the macron-
ode before the reduction are in momentum-squeezed states,
“GKP” otherwise. (This is simply because a mode pre-
pared in the GKP state is always chosen to be a central
mode unless there is no GKP state in that macronode.)
With these effective outcomes and types, we can construct
a canonical RHG lattice of N nodes. This lattice is equiv-
alent to what was fed into the decoder of Ref. [6], except
for the boundary conditions (all periodic in our case) and
the polarity of the edges (CZ gates all have weight +1
for us). These differences aside, we can run the decod-
ing and recovery operation on the reduced lattice almost
exactly as in Algorithms 4 and 5 and Sec. 6 of Ref. [6]. For
completeness, we briefly describe the process here.

A single decoding-recovery-verification step for the
lattice goes as follows.

(a) A CV (inner) decoder translates the homodyne out-
comes to bit values. Although the authors in Ref. [6]
developed an advanced CV decoder that navigates
the correlated noise, we restrict ourselves to stan-
dard GKP binning and feed error weights into the
qubit (outer) decoder, which appears to have com-
parable threshold with only a minor effect on logical
error rates [6].

(b) All the six-body (GKP) Pauli-X stabilizer elements
(hereafter referred to as “stabilizers”) of unit cubes
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of the primal lattice are identified. In the error-
free case, the sum of the bit values associated with
each stabilizer should be 0 mod 2; in other words,
each stabilizer ought to have even parity, or else the
stabilizer is said to be unsatisfied.

(c) A weight is assigned to each node at the interface of
two adjacent stabilizers. We use the same combina-
tion of heuristic and analog weight assignments as in
Ref. [6]. Let n be the number of label-“p” neighbors
of a given reduced node. Then we have

weight(n) = − log

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2/5 if n = 4,
1/3 if n = 3,
1/4 if n = 2,
perr if n ≤ 1.

(D4)

(d) A matching graph is constructed in the following
way (we call its edges “arcs” for clarity): each of
its vertices corresponds to an unsatisfied stabilizer,
and each arc has the weight of the shortest-weight
path connecting the stabilizers in the lattice. The
weight of a path is the sum of the individual weights,
and the shortest paths are found using the Dijkstra
algorithm [48].

(e) The matching graph undergoes minimum-weight
perfect matching through an implementation of
Edmond’s algorithm [35]. The result is a set of pairs
of unsatisfied stabilizers (the matching) that mini-
mizes the net weight, that is, finds the likeliest set of
error chains that has caused the observed syndrome.

(f) For each pair in the matching, the recovery oper-
ation flips the bit values of all the qubits along
the path connecting the pair. At this point, all the
stabilizers should be satisfied in the resulting lattice.

(g) If the net effect of the error and recovery is a logical
identity, error correction has succeeded; otherwise,
a nontrivial logical operator has been applied, and
error correction has failed. This can be discovered
by computing the total parity of a correlation surface
(a plane of primal qubits) of the lattice, with odd
parity indicating failure. As we are using periodic
boundaries conditions, we must check planes along
x, y, and z, unlike Ref. [6], where only one slice was
chosen.

The above procedure is repeated for roughly 50 000 trials,
and the threshold is estimated using the fitting procedure
in Ref. [49].
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